rubi / README.md
emplitude's picture
Upload model
9e947ec verified
---
language:
- en
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- Yuma42/KangalKhan-Ruby-7B-Fixed
- Yuma42/KangalKhan-RawEmerald-7B
base_model:
- Yuma42/KangalKhan-Ruby-7B-Fixed
- Yuma42/KangalKhan-RawEmerald-7B
model-index:
- name: KangalKhan-RawRuby-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 66.89
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawRuby-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.53
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawRuby-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.46
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawRuby-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.09
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawRuby-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.69
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawRuby-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.02
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawRuby-7B
name: Open LLM Leaderboard
---
# KangalKhan-RawRuby-7B
I suggest using ChatML (Use whatever system prompt you like, this is just an example!):
```
<|im_start|>system
You are a friendly assistant.<|im_end|>
<|im_start|>user
Hello, what are you?<|im_end|>
<|im_start|>assistant
I am an AI language model designed to assist users with information and answer their questions. How can I help you today?<|im_end|>
```
Q4_K_S GGUF:
https://huggingface.co./Yuma42/KangalKhan-RawRuby-7B-GGUF
More GGUF variants by [mradermacher](https://huggingface.co./mradermacher):
WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4_K_S GGUF above.
https://huggingface.co./mradermacher/KangalKhan-RawRuby-7B-GGUF
weighted/imatrix GGUF by [mradermacher](https://huggingface.co./mradermacher):
https://huggingface.co./mradermacher/KangalKhan-RawRuby-7B-i1-GGUF
KangalKhan-RawRuby-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Yuma42/KangalKhan-Ruby-7B-Fixed](https://huggingface.co./Yuma42/KangalKhan-Ruby-7B-Fixed)
* [Yuma42/KangalKhan-RawEmerald-7B](https://huggingface.co./Yuma42/KangalKhan-RawEmerald-7B)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: Yuma42/KangalKhan-Ruby-7B-Fixed
layer_range: [0, 32]
- model: Yuma42/KangalKhan-RawEmerald-7B
layer_range: [0, 32]
merge_method: slerp
base_model: Yuma42/KangalKhan-Ruby-7B-Fixed
parameters:
t:
- filter: self_attn
value: [0.1, 0.55, 0.35, 0.75, 0.97]
- filter: mlp
value: [0.9, 0.45, 0.65, 0.25, 0.03]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Yuma42/KangalKhan-RawRuby-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Yuma42__KangalKhan-RawRuby-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.95|
|AI2 Reasoning Challenge (25-Shot)|66.89|
|HellaSwag (10-Shot) |85.53|
|MMLU (5-Shot) |63.46|
|TruthfulQA (0-shot) |57.09|
|Winogrande (5-shot) |78.69|
|GSM8k (5-shot) |62.02|