File size: 5,881 Bytes
9e947ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
---
language:
- en
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- Yuma42/KangalKhan-Ruby-7B-Fixed
- Yuma42/KangalKhan-RawEmerald-7B
base_model:
- Yuma42/KangalKhan-Ruby-7B-Fixed
- Yuma42/KangalKhan-RawEmerald-7B
model-index:
- name: KangalKhan-RawRuby-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 66.89
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawRuby-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 85.53
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawRuby-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.46
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawRuby-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 57.09
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawRuby-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.69
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawRuby-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 62.02
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawRuby-7B
      name: Open LLM Leaderboard
---

# KangalKhan-RawRuby-7B

I suggest using ChatML (Use whatever system prompt you like, this is just an example!):
```
<|im_start|>system
You are a friendly assistant.<|im_end|>
<|im_start|>user
Hello, what are you?<|im_end|>
<|im_start|>assistant
I am an AI language model designed to assist users with information and answer their questions. How can I help you today?<|im_end|>
```


Q4_K_S GGUF:  
https://huggingface.co./Yuma42/KangalKhan-RawRuby-7B-GGUF  

More GGUF variants by [mradermacher](https://huggingface.co./mradermacher):  
WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4_K_S GGUF above.
https://huggingface.co./mradermacher/KangalKhan-RawRuby-7B-GGUF
weighted/imatrix GGUF by [mradermacher](https://huggingface.co./mradermacher):  
https://huggingface.co./mradermacher/KangalKhan-RawRuby-7B-i1-GGUF



KangalKhan-RawRuby-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Yuma42/KangalKhan-Ruby-7B-Fixed](https://huggingface.co./Yuma42/KangalKhan-Ruby-7B-Fixed)
* [Yuma42/KangalKhan-RawEmerald-7B](https://huggingface.co./Yuma42/KangalKhan-RawEmerald-7B)

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: Yuma42/KangalKhan-Ruby-7B-Fixed
        layer_range: [0, 32]
      - model: Yuma42/KangalKhan-RawEmerald-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: Yuma42/KangalKhan-Ruby-7B-Fixed
parameters:
  t:
    - filter: self_attn
      value: [0.1, 0.55, 0.35, 0.75, 0.97]
    - filter: mlp
      value: [0.9, 0.45, 0.65, 0.25, 0.03]
    - value: 0.5
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Yuma42/KangalKhan-RawRuby-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Yuma42__KangalKhan-RawRuby-7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |68.95|
|AI2 Reasoning Challenge (25-Shot)|66.89|
|HellaSwag (10-Shot)              |85.53|
|MMLU (5-Shot)                    |63.46|
|TruthfulQA (0-shot)              |57.09|
|Winogrande (5-shot)              |78.69|
|GSM8k (5-shot)                   |62.02|