logo-matching-base / README.md
ellabettison's picture
Model save
91b7878 verified
|
raw
history blame
5.89 kB
metadata
library_name: transformers
base_model: openai/clip-vit-base-patch32
tags:
  - generated_from_trainer
model-index:
  - name: logo-matching-base
    results: []

logo-matching-base

This model is a fine-tuned version of openai/clip-vit-base-patch32 on an unknown dataset. It achieves the following results on the evaluation set:

  • Adjusted Rand Score: 0.0402
  • Adjusted Mutual Info Score: 0.0818
  • Homogeneity Score: 0.1156
  • Completeness Score: 0.4826
  • Fowlkes Mallows Score: 0.4235
  • Pair Confusion Matrix: [[15374, 32276], [3428, 10178]]
  • Loss: 0.0402

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Adjusted Rand Score Adjusted Mutual Info Score Homogeneity Score Completeness Score Fowlkes Mallows Score Pair Confusion Matrix Validation Loss
0.6833 1.0 34 0.0691 0.0960 0.1237 0.5110 0.4440 [[16212, 31438], [2986, 10620]] 0.0691
0.5711 2.0 68 0.0479 0.1605 0.2478 0.4802 0.3262 [[30178, 17472], [7800, 5806]] 0.0479
0.5048 3.0 102 0.0694 0.1445 0.2069 0.4853 0.3562 [[28728, 18922], [6962, 6644]] 0.0694
0.4474 4.0 136 0.0640 0.1520 0.2011 0.5054 0.3601 [[27632, 20018], [6716, 6890]] 0.0640
0.4433 5.0 170 0.0450 0.0923 0.1295 0.4857 0.4179 [[16938, 30712], [3792, 9814]] 0.0450
0.4582 6.0 204 0.1236 0.1550 0.1349 0.7626 0.5091 [[13668, 33982], [754, 12852]] 0.1236
0.4384 7.0 238 0.0837 0.1718 0.2242 0.5223 0.3648 [[29196, 18454], [6850, 6756]] 0.0837
0.4388 8.0 272 0.2021 0.2045 0.2252 0.5851 0.4533 [[30796, 16854], [5202, 8404]] 0.2021
0.4136 9.0 306 0.0964 0.1118 0.1082 0.6507 0.4900 [[12770, 34880], [1174, 12432]] 0.0964
0.4148 10.0 340 0.0174 0.1329 0.2074 0.4634 0.3148 [[28346, 19304], [7786, 5820]] 0.0174
0.4146 11.0 374 0.0578 0.1546 0.2132 0.5013 0.3500 [[28252, 19398], [7026, 6580]] 0.0578
0.4096 12.0 408 0.0835 0.1595 0.2378 0.4866 0.3489 [[31128, 16522], [7482, 6124]] 0.0835
0.3973 13.0 442 0.1255 0.1904 0.2738 0.5047 0.3619 [[33812, 13838], [7670, 5936]] 0.1255
0.4051 14.0 476 0.1816 0.1869 0.2432 0.5246 0.4169 [[33010, 14640], [6422, 7184]] 0.1816
0.4062 15.0 510 0.2598 0.2182 0.2648 0.5641 0.4795 [[33538, 14112], [5216, 8390]] 0.2598
0.4025 16.0 544 0.0908 0.1006 0.1138 0.5697 0.4760 [[14202, 33448], [1794, 11812]] 0.0908
0.4043 17.0 578 0.0615 0.1185 0.1434 0.5431 0.4324 [[16966, 30684], [3408, 10198]] 0.0615
0.4013 18.0 612 0.2412 0.2010 0.2598 0.5344 0.4579 [[34176, 13474], [5818, 7788]] 0.2412
0.4006 19.0 646 0.2402 0.2522 0.3445 0.5460 0.4233 [[37986, 9664], [7382, 6224]] 0.2402
0.4044 20.0 680 0.0402 0.0818 0.1156 0.4826 0.4235 [[15374, 32276], [3428, 10178]] 0.0402

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0