File size: 5,889 Bytes
b10d85b
 
792a4fa
b10d85b
 
 
 
 
 
 
 
 
 
 
 
15e7e34
91b7878
 
 
 
 
 
 
 
b10d85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3c974
 
 
b10d85b
15e7e34
b10d85b
91b7878
b10d85b
15e7e34
 
91b7878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15e7e34
 
b10d85b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
base_model: openai/clip-vit-base-patch32
tags:
- generated_from_trainer
model-index:
- name: logo-matching-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# logo-matching-base

This model is a fine-tuned version of [openai/clip-vit-base-patch32](https://huggingface.co./openai/clip-vit-base-patch32) on an unknown dataset.
It achieves the following results on the evaluation set:
- Adjusted Rand Score: 0.0402
- Adjusted Mutual Info Score: 0.0818
- Homogeneity Score: 0.1156
- Completeness Score: 0.4826
- Fowlkes Mallows Score: 0.4235
- Pair Confusion Matrix: [[15374, 32276], [3428, 10178]]
- Loss: 0.0402

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Adjusted Rand Score | Adjusted Mutual Info Score | Homogeneity Score | Completeness Score | Fowlkes Mallows Score | Pair Confusion Matrix           | Validation Loss |
|:-------------:|:-----:|:----:|:-------------------:|:--------------------------:|:-----------------:|:------------------:|:---------------------:|:-------------------------------:|:---------------:|
| 0.6833        | 1.0   | 34   | 0.0691              | 0.0960                     | 0.1237            | 0.5110             | 0.4440                | [[16212, 31438], [2986, 10620]] | 0.0691          |
| 0.5711        | 2.0   | 68   | 0.0479              | 0.1605                     | 0.2478            | 0.4802             | 0.3262                | [[30178, 17472], [7800, 5806]]  | 0.0479          |
| 0.5048        | 3.0   | 102  | 0.0694              | 0.1445                     | 0.2069            | 0.4853             | 0.3562                | [[28728, 18922], [6962, 6644]]  | 0.0694          |
| 0.4474        | 4.0   | 136  | 0.0640              | 0.1520                     | 0.2011            | 0.5054             | 0.3601                | [[27632, 20018], [6716, 6890]]  | 0.0640          |
| 0.4433        | 5.0   | 170  | 0.0450              | 0.0923                     | 0.1295            | 0.4857             | 0.4179                | [[16938, 30712], [3792, 9814]]  | 0.0450          |
| 0.4582        | 6.0   | 204  | 0.1236              | 0.1550                     | 0.1349            | 0.7626             | 0.5091                | [[13668, 33982], [754, 12852]]  | 0.1236          |
| 0.4384        | 7.0   | 238  | 0.0837              | 0.1718                     | 0.2242            | 0.5223             | 0.3648                | [[29196, 18454], [6850, 6756]]  | 0.0837          |
| 0.4388        | 8.0   | 272  | 0.2021              | 0.2045                     | 0.2252            | 0.5851             | 0.4533                | [[30796, 16854], [5202, 8404]]  | 0.2021          |
| 0.4136        | 9.0   | 306  | 0.0964              | 0.1118                     | 0.1082            | 0.6507             | 0.4900                | [[12770, 34880], [1174, 12432]] | 0.0964          |
| 0.4148        | 10.0  | 340  | 0.0174              | 0.1329                     | 0.2074            | 0.4634             | 0.3148                | [[28346, 19304], [7786, 5820]]  | 0.0174          |
| 0.4146        | 11.0  | 374  | 0.0578              | 0.1546                     | 0.2132            | 0.5013             | 0.3500                | [[28252, 19398], [7026, 6580]]  | 0.0578          |
| 0.4096        | 12.0  | 408  | 0.0835              | 0.1595                     | 0.2378            | 0.4866             | 0.3489                | [[31128, 16522], [7482, 6124]]  | 0.0835          |
| 0.3973        | 13.0  | 442  | 0.1255              | 0.1904                     | 0.2738            | 0.5047             | 0.3619                | [[33812, 13838], [7670, 5936]]  | 0.1255          |
| 0.4051        | 14.0  | 476  | 0.1816              | 0.1869                     | 0.2432            | 0.5246             | 0.4169                | [[33010, 14640], [6422, 7184]]  | 0.1816          |
| 0.4062        | 15.0  | 510  | 0.2598              | 0.2182                     | 0.2648            | 0.5641             | 0.4795                | [[33538, 14112], [5216, 8390]]  | 0.2598          |
| 0.4025        | 16.0  | 544  | 0.0908              | 0.1006                     | 0.1138            | 0.5697             | 0.4760                | [[14202, 33448], [1794, 11812]] | 0.0908          |
| 0.4043        | 17.0  | 578  | 0.0615              | 0.1185                     | 0.1434            | 0.5431             | 0.4324                | [[16966, 30684], [3408, 10198]] | 0.0615          |
| 0.4013        | 18.0  | 612  | 0.2412              | 0.2010                     | 0.2598            | 0.5344             | 0.4579                | [[34176, 13474], [5818, 7788]]  | 0.2412          |
| 0.4006        | 19.0  | 646  | 0.2402              | 0.2522                     | 0.3445            | 0.5460             | 0.4233                | [[37986, 9664], [7382, 6224]]   | 0.2402          |
| 0.4044        | 20.0  | 680  | 0.0402              | 0.0818                     | 0.1156            | 0.4826             | 0.4235                | [[15374, 32276], [3428, 10178]] | 0.0402          |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0