|
--- |
|
license: mit |
|
base_model: facebook/bart-large-cnn |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- tldr_news |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: my_summ |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: tldr_news |
|
type: tldr_news |
|
config: all |
|
split: test |
|
args: all |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.21647643221587914 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my_summ |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the tldr_news dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.1133 |
|
- Rouge1: 0.2165 |
|
- Rouge2: 0.0872 |
|
- Rougel: 0.1846 |
|
- Rougelsum: 0.1881 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 2.2607 | 1.0 | 125 | 2.2706 | 0.2318 | 0.0950 | 0.1983 | 0.2024 | |
|
| 1.1698 | 2.0 | 250 | 2.3624 | 0.2150 | 0.0848 | 0.1828 | 0.1856 | |
|
| 0.5798 | 3.0 | 375 | 2.8369 | 0.2144 | 0.0838 | 0.1802 | 0.1848 | |
|
| 0.2813 | 4.0 | 500 | 3.3045 | 0.2112 | 0.0803 | 0.1788 | 0.1821 | |
|
| 0.1544 | 5.0 | 625 | 3.6092 | 0.2096 | 0.0793 | 0.1780 | 0.1838 | |
|
| 0.0862 | 6.0 | 750 | 3.7615 | 0.2168 | 0.0848 | 0.1851 | 0.1881 | |
|
| 0.0518 | 7.0 | 875 | 3.9039 | 0.2180 | 0.0861 | 0.1842 | 0.1873 | |
|
| 0.0253 | 8.0 | 1000 | 4.1133 | 0.2165 | 0.0872 | 0.1846 | 0.1881 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|