--- license: mit base_model: facebook/bart-large-cnn tags: - summarization - generated_from_trainer datasets: - tldr_news metrics: - rouge model-index: - name: my_summ results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: tldr_news type: tldr_news config: all split: test args: all metrics: - name: Rouge1 type: rouge value: 0.21647643221587914 --- # my_summ This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the tldr_news dataset. It achieves the following results on the evaluation set: - Loss: 4.1133 - Rouge1: 0.2165 - Rouge2: 0.0872 - Rougel: 0.1846 - Rougelsum: 0.1881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 2.2607 | 1.0 | 125 | 2.2706 | 0.2318 | 0.0950 | 0.1983 | 0.2024 | | 1.1698 | 2.0 | 250 | 2.3624 | 0.2150 | 0.0848 | 0.1828 | 0.1856 | | 0.5798 | 3.0 | 375 | 2.8369 | 0.2144 | 0.0838 | 0.1802 | 0.1848 | | 0.2813 | 4.0 | 500 | 3.3045 | 0.2112 | 0.0803 | 0.1788 | 0.1821 | | 0.1544 | 5.0 | 625 | 3.6092 | 0.2096 | 0.0793 | 0.1780 | 0.1838 | | 0.0862 | 6.0 | 750 | 3.7615 | 0.2168 | 0.0848 | 0.1851 | 0.1881 | | 0.0518 | 7.0 | 875 | 3.9039 | 0.2180 | 0.0861 | 0.1842 | 0.1873 | | 0.0253 | 8.0 | 1000 | 4.1133 | 0.2165 | 0.0872 | 0.1846 | 0.1881 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0