Daniel Vila's picture

Daniel Vila

dvilasuero

AI & ML interests

RLHF, RLAIF, DPO, data, data, data

Recent Activity

updated a dataset 13 days ago
dvilasuero/test_datagen
published a dataset 13 days ago
dvilasuero/test_datagen
View all activity

Articles

Organizations

Hugging Face's profile picture Cohere For AI's profile picture SomosNLP's profile picture Libre Euro Lingua-Alliance's profile picture Hugging Face H4's profile picture Hugging Face OSS Metrics's profile picture Argilla's profile picture Blog-explorers's profile picture Hugging Face TB Research's profile picture ZeroGPU Explorers's profile picture h4-argilla-collab's profile picture mLLM multilingual's profile picture DIBT Spanish's profile picture Data is Better Together - Russian Language Team's profile picture Open Arabic LLM Leaderboard's profile picture Argilla Explorers's profile picture distilabel-internal-testing's profile picture Data Is Better Together's profile picture ORPO Explorers's profile picture Social Post Explorers's profile picture HuggingFaceFW-Dev's profile picture UCSF-JHU Opioid Industry Documents Archive's profile picture LLHF's profile picture SLLHF's profile picture Hugging Quants's profile picture argilla-internal-testing's profile picture Argilla Warehouse's profile picture rg-preview's profile picture Dataset Tools's profile picture open/ acc's profile picture Data Is Better Together Contributor's profile picture

dvilasuero's activity

upvoted an article 6 days ago
view article
Article

Welcome to Inference Providers on the Hub πŸ”₯

β€’ 216
upvoted an article 13 days ago
reacted to davidberenstein1957's post with πŸ”₯β€οΈπŸ‘€ 14 days ago
reacted to nataliaElv's post with πŸ”₯❀️ 17 days ago
view post
Post
1433
New chapter in the Hugging Face NLP course! πŸ€— πŸš€

We've added a new chapter about the very basics of Argilla to the Hugging Face NLP course. Learn how to set up an Argilla instance, load & annotate datasets, and export them to the Hub.Β 

Any feedback for improvements welcome!

https://huggingface.co./learn/nlp-course/chapter10
published a Space 18 days ago
liked a Space 21 days ago
reacted to davanstrien's post with πŸš€ 24 days ago
view post
Post
2217
The data-is-better-together/fineweb-c dataset is growing!

This week a few more languages have got 1,000 annotations for the educational quality of data from HuggingFaceFW/fineweb-2.

Why should you care?

The quality of pre-training data can have a big impact on the performance of downstream language models trained on that data ( HuggingFaceFW/blogpost-fineweb-v1).

Being able to filter by educational quality is on way of improving the quality of the data you use for training an LLM. Very importantly this approach can also reduce the amount of data needed for pertaining.

Why not use an LLM?

LLMs can be used to annotate educational quality for a subset of data. This data can then be used to train a smaller encoder only model to label the full dataset. However, this may not work well for languages outside of english. This is where fineweb-c (community) comes in.

The community is annotating the educational quality of fineweb2 data. Currently 114 languages have some annotations. These annotations will enable a number of things:

- Evaluate whether an LLM can label the educational quality for texts in that language well
- Directly be used for training quality classifiers
- Help discover other rules and huerisitcs for refining fineweb2 further for different languages.

This week the following languages where done:

Swedish thanks to: @Lauler @AntonVic @ohallstrom @bjarlestam @menbom @Ekgren @apsod

Ukrainian thanks to: @hannayukhymenko @robinhad @realPivo @RabotiahovDmytro @reciprocate

Assamese thanks to: @moyoor97 @Arpanjyoti @nawaf-helmi123 @pahigogoi1 @aelhence @kishorekashyap

Want to learn more: https://huggingface.co./blog/davanstrien/fineweb2-community

Contribute yourself here: data-is-better-together/fineweb-c
  • 1 reply
Β·
upvoted an article 25 days ago
view article
Article

Crowd-sourced Open Preference Dataset for Text-to-Image Generation

By RapidataAI β€’
β€’ 18