Stable Diffusion 3
Stable Diffusion 3 (SD3) was proposed in Scaling Rectified Flow Transformers for High-Resolution Image Synthesis by Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Muller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach.
The abstract from the paper is:
Diffusion models create data from noise by inverting the forward paths of data towards noise and have emerged as a powerful generative modeling technique for high-dimensional, perceptual data such as images and videos. Rectified flow is a recent generative model formulation that connects data and noise in a straight line. Despite its better theoretical properties and conceptual simplicity, it is not yet decisively established as standard practice. In this work, we improve existing noise sampling techniques for training rectified flow models by biasing them towards perceptually relevant scales. Through a large-scale study, we demonstrate the superior performance of this approach compared to established diffusion formulations for high-resolution text-to-image synthesis. Additionally, we present a novel transformer-based architecture for text-to-image generation that uses separate weights for the two modalities and enables a bidirectional flow of information between image and text tokens, improving text comprehension typography, and human preference ratings. We demonstrate that this architecture follows predictable scaling trends and correlates lower validation loss to improved text-to-image synthesis as measured by various metrics and human evaluations.
Usage Example
As the model is gated, before using it with diffusers you first need to go to the Stable Diffusion 3 Medium Hugging Face page, fill in the form and accept the gate. Once you are in, you need to login so that your system knows you’ve accepted the gate.
Use the command below to log in:
huggingface-cli login
The SD3 pipeline uses three text encoders to generate an image. Model offloading is necessary in order for it to run on most commodity hardware. Please use the torch.float16
data type for additional memory savings.
import torch
from diffusers import StableDiffusion3Pipeline
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
pipe.to("cuda")
image = pipe(
prompt="a photo of a cat holding a sign that says hello world",
negative_prompt="",
num_inference_steps=28,
height=1024,
width=1024,
guidance_scale=7.0,
).images[0]
image.save("sd3_hello_world.png")
Note: Stable Diffusion 3.5 can also be run using the SD3 pipeline, and all mentioned optimizations and techniques apply to it as well. In total there are three official models in the SD3 family:
stabilityai/stable-diffusion-3-medium-diffusers
stabilityai/stable-diffusion-3.5-large
stabilityai/stable-diffusion-3.5-large-turbo
Image Prompting with IP-Adapters
An IP-Adapter lets you prompt SD3 with images, in addition to the text prompt. This is especially useful when describing complex concepts that are difficult to articulate through text alone and you have reference images. To load and use an IP-Adapter, you need:
image_encoder
: Pre-trained vision model used to obtain image features, usually a CLIP image encoder.feature_extractor
: Image processor that prepares the input image for the chosenimage_encoder
.ip_adapter_id
: Checkpoint containing parameters of image cross attention layers and image projection.
IP-Adapters are trained for a specific model architecture, so they also work in finetuned variations of the base model. You can use the ~SD3IPAdapterMixin.set_ip_adapter_scale
function to adjust how strongly the output aligns with the image prompt. The higher the value, the more closely the model follows the image prompt. A default value of 0.5 is typically a good balance, ensuring the model considers both the text and image prompts equally.
import torch
from PIL import Image
from diffusers import StableDiffusion3Pipeline
from transformers import SiglipVisionModel, SiglipImageProcessor
image_encoder_id = "google/siglip-so400m-patch14-384"
ip_adapter_id = "InstantX/SD3.5-Large-IP-Adapter"
feature_extractor = SiglipImageProcessor.from_pretrained(
image_encoder_id,
torch_dtype=torch.float16
)
image_encoder = SiglipVisionModel.from_pretrained(
image_encoder_id,
torch_dtype=torch.float16
).to( "cuda")
pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3.5-large",
torch_dtype=torch.float16,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
).to("cuda")
pipe.load_ip_adapter(ip_adapter_id)
pipe.set_ip_adapter_scale(0.6)
ref_img = Image.open("image.jpg").convert('RGB')
image = pipe(
width=1024,
height=1024,
prompt="a cat",
negative_prompt="lowres, low quality, worst quality",
num_inference_steps=24,
guidance_scale=5.0,
ip_adapter_image=ref_img
).images[0]
image.save("result.jpg")
Check out IP-Adapter to learn more about how IP-Adapters work.
Memory Optimisations for SD3
SD3 uses three text encoders, one of which is the very large T5-XXL model. This makes it challenging to run the model on GPUs with less than 24GB of VRAM, even when using fp16
precision. The following section outlines a few memory optimizations in Diffusers that make it easier to run SD3 on low resource hardware.
Running Inference with Model Offloading
The most basic memory optimization available in Diffusers allows you to offload the components of the model to CPU during inference in order to save memory, while seeing a slight increase in inference latency. Model offloading will only move a model component onto the GPU when it needs to be executed, while keeping the remaining components on the CPU.
import torch
from diffusers import StableDiffusion3Pipeline
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
image = pipe(
prompt="a photo of a cat holding a sign that says hello world",
negative_prompt="",
num_inference_steps=28,
height=1024,
width=1024,
guidance_scale=7.0,
).images[0]
image.save("sd3_hello_world.png")
Dropping the T5 Text Encoder during Inference
Removing the memory-intensive 4.7B parameter T5-XXL text encoder during inference can significantly decrease the memory requirements for SD3 with only a slight loss in performance.
import torch
from diffusers import StableDiffusion3Pipeline
pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers",
text_encoder_3=None,
tokenizer_3=None,
torch_dtype=torch.float16
)
pipe.to("cuda")
image = pipe(
prompt="a photo of a cat holding a sign that says hello world",
negative_prompt="",
num_inference_steps=28,
height=1024,
width=1024,
guidance_scale=7.0,
).images[0]
image.save("sd3_hello_world-no-T5.png")
Using a Quantized Version of the T5 Text Encoder
We can leverage the bitsandbytes
library to load and quantize the T5-XXL text encoder to 8-bit precision. This allows you to keep using all three text encoders while only slightly impacting performance.
First install the bitsandbytes
library.
pip install bitsandbytes
Then load the T5-XXL model using the BitsAndBytesConfig
.
import torch
from diffusers import StableDiffusion3Pipeline
from transformers import T5EncoderModel, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
text_encoder = T5EncoderModel.from_pretrained(
model_id,
subfolder="text_encoder_3",
quantization_config=quantization_config,
)
pipe = StableDiffusion3Pipeline.from_pretrained(
model_id,
text_encoder_3=text_encoder,
device_map="balanced",
torch_dtype=torch.float16
)
image = pipe(
prompt="a photo of a cat holding a sign that says hello world",
negative_prompt="",
num_inference_steps=28,
height=1024,
width=1024,
guidance_scale=7.0,
).images[0]
image.save("sd3_hello_world-8bit-T5.png")
You can find the end-to-end script here.
Performance Optimizations for SD3
Using Torch Compile to Speed Up Inference
Using compiled components in the SD3 pipeline can speed up inference by as much as 4X. The following code snippet demonstrates how to compile the Transformer and VAE components of the SD3 pipeline.
import torch
from diffusers import StableDiffusion3Pipeline
torch.set_float32_matmul_precision("high")
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True
pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers",
torch_dtype=torch.float16
).to("cuda")
pipe.set_progress_bar_config(disable=True)
pipe.transformer.to(memory_format=torch.channels_last)
pipe.vae.to(memory_format=torch.channels_last)
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
# Warm Up
prompt = "a photo of a cat holding a sign that says hello world"
for _ in range(3):
_ = pipe(prompt=prompt, generator=torch.manual_seed(1))
# Run Inference
image = pipe(prompt=prompt, generator=torch.manual_seed(1)).images[0]
image.save("sd3_hello_world.png")
Check out the full script here.
Using Long Prompts with the T5 Text Encoder
By default, the T5 Text Encoder prompt uses a maximum sequence length of 256
. This can be adjusted by setting the max_sequence_length
to accept fewer or more tokens. Keep in mind that longer sequences require additional resources and result in longer generation times, such as during batch inference.
prompt = "A whimsical and creative image depicting a hybrid creature that is a mix of a waffle and a hippopotamus, basking in a river of melted butter amidst a breakfast-themed landscape. It features the distinctive, bulky body shape of a hippo. However, instead of the usual grey skin, the creature’s body resembles a golden-brown, crispy waffle fresh off the griddle. The skin is textured with the familiar grid pattern of a waffle, each square filled with a glistening sheen of syrup. The environment combines the natural habitat of a hippo with elements of a breakfast table setting, a river of warm, melted butter, with oversized utensils or plates peeking out from the lush, pancake-like foliage in the background, a towering pepper mill standing in for a tree. As the sun rises in this fantastical world, it casts a warm, buttery glow over the scene. The creature, content in its butter river, lets out a yawn. Nearby, a flock of birds take flight"
image = pipe(
prompt=prompt,
negative_prompt="",
num_inference_steps=28,
guidance_scale=4.5,
max_sequence_length=512,
).images[0]
Sending a different prompt to the T5 Text Encoder
You can send a different prompt to the CLIP Text Encoders and the T5 Text Encoder to prevent the prompt from being truncated by the CLIP Text Encoders and to improve generation.
The prompt with the CLIP Text Encoders is still truncated to the 77 token limit.
prompt = "A whimsical and creative image depicting a hybrid creature that is a mix of a waffle and a hippopotamus, basking in a river of melted butter amidst a breakfast-themed landscape. A river of warm, melted butter, pancake-like foliage in the background, a towering pepper mill standing in for a tree."
prompt_3 = "A whimsical and creative image depicting a hybrid creature that is a mix of a waffle and a hippopotamus, basking in a river of melted butter amidst a breakfast-themed landscape. It features the distinctive, bulky body shape of a hippo. However, instead of the usual grey skin, the creature’s body resembles a golden-brown, crispy waffle fresh off the griddle. The skin is textured with the familiar grid pattern of a waffle, each square filled with a glistening sheen of syrup. The environment combines the natural habitat of a hippo with elements of a breakfast table setting, a river of warm, melted butter, with oversized utensils or plates peeking out from the lush, pancake-like foliage in the background, a towering pepper mill standing in for a tree. As the sun rises in this fantastical world, it casts a warm, buttery glow over the scene. The creature, content in its butter river, lets out a yawn. Nearby, a flock of birds take flight"
image = pipe(
prompt=prompt,
prompt_3=prompt_3,
negative_prompt="",
num_inference_steps=28,
guidance_scale=4.5,
max_sequence_length=512,
).images[0]
Tiny AutoEncoder for Stable Diffusion 3
Tiny AutoEncoder for Stable Diffusion (TAESD3) is a tiny distilled version of Stable Diffusion 3’s VAE by Ollin Boer Bohan that can decode StableDiffusion3Pipeline latents almost instantly.
To use with Stable Diffusion 3:
import torch
from diffusers import StableDiffusion3Pipeline, AutoencoderTiny
pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd3", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "slice of delicious New York-style berry cheesecake"
image = pipe(prompt, num_inference_steps=25).images[0]
image.save("cheesecake.png")
Loading the original checkpoints via from_single_file
The SD3Transformer2DModel
and StableDiffusion3Pipeline
classes support loading the original checkpoints via the from_single_file
method. This method allows you to load the original checkpoint files that were used to train the models.
Loading the original checkpoints for the SD3Transformer2DModel
from diffusers import SD3Transformer2DModel
model = SD3Transformer2DModel.from_single_file("https://huggingface.co./stabilityai/stable-diffusion-3-medium/blob/main/sd3_medium.safetensors")
Loading the single checkpoint for the StableDiffusion3Pipeline
Loading the single file checkpoint without T5
import torch
from diffusers import StableDiffusion3Pipeline
pipe = StableDiffusion3Pipeline.from_single_file(
"https://huggingface.co./stabilityai/stable-diffusion-3-medium/blob/main/sd3_medium_incl_clips.safetensors",
torch_dtype=torch.float16,
text_encoder_3=None
)
pipe.enable_model_cpu_offload()
image = pipe("a picture of a cat holding a sign that says hello world").images[0]
image.save('sd3-single-file.png')
Loading the single file checkpoint with T5
The following example loads a checkpoint stored in a 8-bit floating point format which requires PyTorch 2.3 or later.
import torch
from diffusers import StableDiffusion3Pipeline
pipe = StableDiffusion3Pipeline.from_single_file(
"https://huggingface.co./stabilityai/stable-diffusion-3-medium/blob/main/sd3_medium_incl_clips_t5xxlfp8.safetensors",
torch_dtype=torch.float16,
)
pipe.enable_model_cpu_offload()
image = pipe("a picture of a cat holding a sign that says hello world").images[0]
image.save('sd3-single-file-t5-fp8.png')
Loading the single file checkpoint for the Stable Diffusion 3.5 Transformer Model
import torch
from diffusers import SD3Transformer2DModel, StableDiffusion3Pipeline
transformer = SD3Transformer2DModel.from_single_file(
"https://huggingface.co./stabilityai/stable-diffusion-3.5-large-turbo/blob/main/sd3.5_large.safetensors",
torch_dtype=torch.bfloat16,
)
pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3.5-large",
transformer=transformer,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
image = pipe("a cat holding a sign that says hello world").images[0]
image.save("sd35.png")
StableDiffusion3Pipeline
class diffusers.StableDiffusion3Pipeline
< source >( transformer: SD3Transformer2DModel scheduler: FlowMatchEulerDiscreteScheduler vae: AutoencoderKL text_encoder: CLIPTextModelWithProjection tokenizer: CLIPTokenizer text_encoder_2: CLIPTextModelWithProjection tokenizer_2: CLIPTokenizer text_encoder_3: T5EncoderModel tokenizer_3: T5TokenizerFast image_encoder: PreTrainedModel = None feature_extractor: BaseImageProcessor = None )
Parameters
- transformer (SD3Transformer2DModel) — Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
- scheduler (FlowMatchEulerDiscreteScheduler) —
A scheduler to be used in combination with
transformer
to denoise the encoded image latents. - vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder (
CLIPTextModelWithProjection
) — CLIP, specifically the clip-vit-large-patch14 variant, with an additional added projection layer that is initialized with a diagonal matrix with thehidden_size
as its dimension. - text_encoder_2 (
CLIPTextModelWithProjection
) — CLIP, specifically the laion/CLIP-ViT-bigG-14-laion2B-39B-b160k variant. - text_encoder_3 (
T5EncoderModel
) — Frozen text-encoder. Stable Diffusion 3 uses T5, specifically the t5-v1_1-xxl variant. - tokenizer (
CLIPTokenizer
) — Tokenizer of class CLIPTokenizer. - tokenizer_2 (
CLIPTokenizer
) — Second Tokenizer of class CLIPTokenizer. - tokenizer_3 (
T5TokenizerFast
) — Tokenizer of class T5Tokenizer. - image_encoder (
PreTrainedModel
, optional) — Pre-trained Vision Model for IP Adapter. - feature_extractor (
BaseImageProcessor
, optional) — Image processor for IP Adapter.
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None prompt_2: typing.Union[str, typing.List[str], NoneType] = None prompt_3: typing.Union[str, typing.List[str], NoneType] = None height: typing.Optional[int] = None width: typing.Optional[int] = None num_inference_steps: int = 28 sigmas: typing.Optional[typing.List[float]] = None guidance_scale: float = 7.0 negative_prompt: typing.Union[str, typing.List[str], NoneType] = None negative_prompt_2: typing.Union[str, typing.List[str], NoneType] = None negative_prompt_3: typing.Union[str, typing.List[str], NoneType] = None num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None ip_adapter_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor], NoneType] = None ip_adapter_image_embeds: typing.Optional[torch.Tensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None clip_skip: typing.Optional[int] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 256 skip_guidance_layers: typing.List[int] = None skip_layer_guidance_scale: float = 2.8 skip_layer_guidance_stop: float = 0.2 skip_layer_guidance_start: float = 0.01 mu: typing.Optional[float] = None ) → ~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput
or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds
. instead. - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent totokenizer_2
andtext_encoder_2
. If not defined,prompt
is will be used instead - prompt_3 (
str
orList[str]
, optional) — The prompt or prompts to be sent totokenizer_3
andtext_encoder_3
. If not defined,prompt
is will be used instead - height (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. This is set to 1024 by default for the best results. - width (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. This is set to 1024 by default for the best results. - num_inference_steps (
int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - sigmas (
List[float]
, optional) — Custom sigmas to use for the denoising process with schedulers which support asigmas
argument in theirset_timesteps
method. If not defined, the default behavior whennum_inference_steps
is passed will be used. - guidance_scale (
float
, optional, defaults to 7.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scale
is defined asw
of equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the textprompt
, usually at the expense of lower image quality. - negative_prompt (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). - negative_prompt_2 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_2
andtext_encoder_2
. If not defined,negative_prompt
is used instead - negative_prompt_3 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_3
andtext_encoder_3
. If not defined,negative_prompt
is used instead - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — One or a list of torch generator(s) to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - negative_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - negative_pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated fromnegative_prompt
input argument. - ip_adapter_image (
PipelineImageInput
, optional) — Optional image input to work with IP Adapters. - ip_adapter_image_embeds (
torch.Tensor
, optional) — Pre-generated image embeddings for IP-Adapter. Should be a tensor of shape(batch_size, num_images, emb_dim)
. It should contain the negative image embedding ifdo_classifier_free_guidance
is set toTrue
. If not provided, embeddings are computed from theip_adapter_image
input argument. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generate image. Choose between PIL:PIL.Image.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput
instead of a plain tuple. - joint_attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined underself.processor
in diffusers.models.attention_processor. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
.callback_kwargs
will include a list of all tensors as specified bycallback_on_step_end_tensor_inputs
. - callback_on_step_end_tensor_inputs (
List
, optional) — The list of tensor inputs for thecallback_on_step_end
function. The tensors specified in the list will be passed ascallback_kwargs
argument. You will only be able to include variables listed in the._callback_tensor_inputs
attribute of your pipeline class. - max_sequence_length (
int
defaults to 256) — Maximum sequence length to use with theprompt
. - skip_guidance_layers (
List[int]
, optional) — A list of integers that specify layers to skip during guidance. If not provided, all layers will be used for guidance. If provided, the guidance will only be applied to the layers specified in the list. Recommended value by StabiltyAI for Stable Diffusion 3.5 Medium is [7, 8, 9]. - skip_layer_guidance_scale (
int
, optional) — The scale of the guidance for the layers specified inskip_guidance_layers
. The guidance will be applied to the layers specified inskip_guidance_layers
with a scale ofskip_layer_guidance_scale
. The guidance will be applied to the rest of the layers with a scale of1
. - skip_layer_guidance_stop (
int
, optional) — The step at which the guidance for the layers specified inskip_guidance_layers
will stop. The guidance will be applied to the layers specified inskip_guidance_layers
until the fraction specified inskip_layer_guidance_stop
. Recommended value by StabiltyAI for Stable Diffusion 3.5 Medium is 0.2. - skip_layer_guidance_start (
int
, optional) — The step at which the guidance for the layers specified inskip_guidance_layers
will start. The guidance will be applied to the layers specified inskip_guidance_layers
from the fraction specified inskip_layer_guidance_start
. Recommended value by StabiltyAI for Stable Diffusion 3.5 Medium is 0.01. - mu (
float
, optional) —mu
value used fordynamic_shifting
.
Returns
~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput
or tuple
~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput
if return_dict
is True, otherwise a
tuple
. When returning a tuple, the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import StableDiffusion3Pipeline
>>> pipe = StableDiffusion3Pipeline.from_pretrained(
... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> prompt = "A cat holding a sign that says hello world"
>>> image = pipe(prompt).images[0]
>>> image.save("sd3.png")
encode_image
< source >( image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] device: device ) → torch.Tensor
Encodes the given image into a feature representation using a pre-trained image encoder.
encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] prompt_2: typing.Union[str, typing.List[str]] prompt_3: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 do_classifier_free_guidance: bool = True negative_prompt: typing.Union[str, typing.List[str], NoneType] = None negative_prompt_2: typing.Union[str, typing.List[str], NoneType] = None negative_prompt_3: typing.Union[str, typing.List[str], NoneType] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None clip_skip: typing.Optional[int] = None max_sequence_length: int = 256 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in all text-encoders - prompt_3 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_3
andtext_encoder_3
. If not defined,prompt
is used in all text-encoders - device — (
torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - do_classifier_free_guidance (
bool
) — whether to use classifier free guidance or not - negative_prompt (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). - negative_prompt_2 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_2
andtext_encoder_2
. If not defined,negative_prompt
is used in all the text-encoders. - negative_prompt_2 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_3
andtext_encoder_3
. If not defined,negative_prompt
is used in both text-encoders - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - negative_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - negative_pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated fromnegative_prompt
input argument. - clip_skip (
int
, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. - lora_scale (
float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
prepare_ip_adapter_image_embeds
< source >( ip_adapter_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor], NoneType] = None ip_adapter_image_embeds: typing.Optional[torch.Tensor] = None device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 do_classifier_free_guidance: bool = True )
Parameters
- ip_adapter_image (
PipelineImageInput
, optional) — The input image to extract features from for IP-Adapter. - ip_adapter_image_embeds (
torch.Tensor
, optional) — Precomputed image embeddings. - device — (
torch.device
, optional): Torch device. - num_images_per_prompt (
int
, defaults to 1) — Number of images that should be generated per prompt. - do_classifier_free_guidance (
bool
, defaults to True) — Whether to use classifier free guidance or not.
Prepares image embeddings for use in the IP-Adapter.
Either ip_adapter_image
or ip_adapter_image_embeds
must be passed.