|
--- |
|
language: |
|
- sw |
|
license: apache-2.0 |
|
base_model: openai/whisper-large |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_14_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper small - Denis Musinguzi |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 14.0 |
|
type: mozilla-foundation/common_voice_14_0 |
|
config: sw |
|
split: None |
|
args: 'config: sw, split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.25130933149495305 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper small - Denis Musinguzi |
|
|
|
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co./openai/whisper-large) on the Common Voice 14.0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4428 |
|
- Wer: 0.2513 |
|
- Cer: 0.0983 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 10000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:------:|:---------------:|:------:| |
|
| 0.9179 | 0.51 | 800 | 0.1412 | 0.5355 | 0.3693 | |
|
| 0.3078 | 1.02 | 1600 | 0.1196 | 0.4343 | 0.3152 | |
|
| 0.1959 | 1.53 | 2400 | 0.1172 | 0.4068 | 0.2822 | |
|
| 0.1737 | 2.04 | 3200 | 0.1145 | 0.3922 | 0.2721 | |
|
| 0.1046 | 2.55 | 4000 | 0.1084 | 0.3958 | 0.2634 | |
|
| 0.1019 | 3.06 | 4800 | 0.1029 | 0.3957 | 0.2578 | |
|
| 0.0588 | 3.57 | 5600 | 0.1132 | 0.4013 | 0.2666 | |
|
| 0.0545 | 4.08 | 6400 | 0.1009 | 0.4112 | 0.2510 | |
|
| 0.0305 | 4.59 | 7200 | 0.0941 | 0.4183 | 0.2442 | |
|
| 0.0275 | 5.1 | 8000 | 0.1005 | 0.4303 | 0.2549 | |
|
| 0.0153 | 5.61 | 8800 | 0.4374 | 0.2407 | 0.0908 | |
|
| 0.014 | 6.12 | 9600 | 0.4428 | 0.2513 | 0.0983 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|