--- language: - sw license: apache-2.0 base_model: openai/whisper-large tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_14_0 metrics: - wer model-index: - name: Whisper small - Denis Musinguzi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 14.0 type: mozilla-foundation/common_voice_14_0 config: sw split: None args: 'config: sw, split: test' metrics: - name: Wer type: wer value: 0.25130933149495305 --- # Whisper small - Denis Musinguzi This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co./openai/whisper-large) on the Common Voice 14.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4428 - Wer: 0.2513 - Cer: 0.0983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:----:|:------:|:---------------:|:------:| | 0.9179 | 0.51 | 800 | 0.1412 | 0.5355 | 0.3693 | | 0.3078 | 1.02 | 1600 | 0.1196 | 0.4343 | 0.3152 | | 0.1959 | 1.53 | 2400 | 0.1172 | 0.4068 | 0.2822 | | 0.1737 | 2.04 | 3200 | 0.1145 | 0.3922 | 0.2721 | | 0.1046 | 2.55 | 4000 | 0.1084 | 0.3958 | 0.2634 | | 0.1019 | 3.06 | 4800 | 0.1029 | 0.3957 | 0.2578 | | 0.0588 | 3.57 | 5600 | 0.1132 | 0.4013 | 0.2666 | | 0.0545 | 4.08 | 6400 | 0.1009 | 0.4112 | 0.2510 | | 0.0305 | 4.59 | 7200 | 0.0941 | 0.4183 | 0.2442 | | 0.0275 | 5.1 | 8000 | 0.1005 | 0.4303 | 0.2549 | | 0.0153 | 5.61 | 8800 | 0.4374 | 0.2407 | 0.0908 | | 0.014 | 6.12 | 9600 | 0.4428 | 0.2513 | 0.0983 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1 - Datasets 2.17.0 - Tokenizers 0.15.2