rubert-electra-srl / README.md
dl-ru's picture
New version with explicit predicate marking
1bdd317 verified
|
raw
history blame
9.1 kB
metadata
license: mit
base_model: ai-forever/ruElectra-medium
tags:
  - generated_from_trainer
model-index:
  - name: rubert-electra-srl
    results: []

rubert-electra-srl

This model is a fine-tuned version of ai-forever/ruElectra-medium on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0564
  • Addressee Precision: 0.8710
  • Addressee Recall: 0.9153
  • Addressee F1: 0.8926
  • Addressee Number: 59
  • Benefactive Precision: 0.0
  • Benefactive Recall: 0.0
  • Benefactive F1: 0.0
  • Benefactive Number: 8
  • Causator Precision: 0.9007
  • Causator Recall: 0.9379
  • Causator F1: 0.9189
  • Causator Number: 145
  • Cause Precision: 0.8491
  • Cause Recall: 0.7895
  • Cause F1: 0.8182
  • Cause Number: 114
  • Contrsubject Precision: 0.872
  • Contrsubject Recall: 0.9008
  • Contrsubject F1: 0.8862
  • Contrsubject Number: 121
  • Deliberative Precision: 0.7439
  • Deliberative Recall: 0.9385
  • Deliberative F1: 0.8299
  • Deliberative Number: 65
  • Destinative Precision: 1.0
  • Destinative Recall: 0.5238
  • Destinative F1: 0.6875
  • Destinative Number: 21
  • Directivefinal Precision: 1.0
  • Directivefinal Recall: 0.7
  • Directivefinal F1: 0.8235
  • Directivefinal Number: 10
  • Experiencer Precision: 0.9132
  • Experiencer Recall: 0.9374
  • Experiencer F1: 0.9252
  • Experiencer Number: 1055
  • Instrument Precision: 0.8409
  • Instrument Recall: 0.7255
  • Instrument F1: 0.7789
  • Instrument Number: 51
  • Limitative Precision: 0.0
  • Limitative Recall: 0.0
  • Limitative F1: 0.0
  • Limitative Number: 3
  • Object Precision: 0.9449
  • Object Recall: 0.9389
  • Object F1: 0.9419
  • Object Number: 1898
  • Overall Precision: 0.9210
  • Overall Recall: 0.9228
  • Overall F1: 0.9219
  • Overall Accuracy: 0.9855
  • Mediative Number: 0.0
  • Mediative F1: 0.0
  • Mediative Precision: 0.0
  • Mediative Recall: 0.0
  • Directiveinitial Number: 0.0
  • Directiveinitial F1: 0.0
  • Directiveinitial Precision: 0.0
  • Directiveinitial Recall: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00016666401556632117
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 708526
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.21
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Addressee Precision Addressee Recall Addressee F1 Addressee Number Benefactive Precision Benefactive Recall Benefactive F1 Benefactive Number Causator Precision Causator Recall Causator F1 Causator Number Cause Precision Cause Recall Cause F1 Cause Number Contrsubject Precision Contrsubject Recall Contrsubject F1 Contrsubject Number Deliberative Precision Deliberative Recall Deliberative F1 Deliberative Number Destinative Precision Destinative Recall Destinative F1 Destinative Number Directivefinal Precision Directivefinal Recall Directivefinal F1 Directivefinal Number Experiencer Precision Experiencer Recall Experiencer F1 Experiencer Number Instrument Precision Instrument Recall Instrument F1 Instrument Number Limitative Precision Limitative Recall Limitative F1 Limitative Number Object Precision Object Recall Object F1 Object Number Overall Precision Overall Recall Overall F1 Overall Accuracy Mediative Number Mediative F1 Mediative Precision Mediative Recall Directiveinitial Number Directiveinitial F1 Directiveinitial Precision Directiveinitial Recall
0.574 1.0 2942 0.5853 0.0 0.0 0.0 59 0.0 0.0 0.0 8 0.0 0.0 0.0 145 0.0 0.0 0.0 114 0.0 0.0 0.0 121 0.0 0.0 0.0 65 0.0 0.0 0.0 21 0.0 0.0 0.0 10 0.0 0.0 0.0 1055 0.0 0.0 0.0 51 0.0 0.0 0.0 3 0.0 0.0 0.0 1898 0.0 0.0 0.0 0.8893 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1625 2.0 5884 0.1573 0.5714 0.8136 0.6713 59 0.0 0.0 0.0 8 0.6966 0.8552 0.7678 145 0.3186 0.6316 0.4235 114 0.6875 0.4545 0.5473 121 0.0 0.0 0.0 65 0.0 0.0 0.0 21 0.0 0.0 0.0 10 0.8504 0.8246 0.8373 1055 0.4769 0.6078 0.5345 51 0.0 0.0 0.0 3 0.8923 0.8161 0.8525 1898 0.8104 0.7744 0.7920 0.9634 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0838 3.0 8826 0.0564 0.8710 0.9153 0.8926 59 0.0 0.0 0.0 8 0.9007 0.9379 0.9189 145 0.8491 0.7895 0.8182 114 0.872 0.9008 0.8862 121 0.7439 0.9385 0.8299 65 1.0 0.5238 0.6875 21 1.0 0.7 0.8235 10 0.9132 0.9374 0.9252 1055 0.8409 0.7255 0.7789 51 0.0 0.0 0.0 3 0.9449 0.9389 0.9419 1898 0.9210 0.9228 0.9219 0.9855 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1