New version with explicit predicate marking
Browse files- README.md +72 -73
- config.json +4 -2
- model.safetensors +3 -0
- tokenizer.json +6 -1
- tokenizer_config.json +42 -0
- training_args.bin +2 -2
README.md
CHANGED
@@ -13,69 +13,69 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
# rubert-electra-srl
|
15 |
|
16 |
-
This model is a fine-tuned version of [ai-forever/ruElectra-medium](https://huggingface.co/ai-forever/ruElectra-medium) on
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
-
- Addressee Precision: 0.
|
20 |
-
- Addressee Recall: 0.
|
21 |
-
- Addressee F1: 0.
|
22 |
-
- Addressee Number:
|
23 |
-
- Benefactive Precision: 0.
|
24 |
-
- Benefactive Recall: 0.
|
25 |
-
- Benefactive F1: 0.
|
26 |
-
- Benefactive Number:
|
27 |
-
- Causator Precision: 0.
|
28 |
-
- Causator Recall: 0.
|
29 |
-
- Causator F1: 0.
|
30 |
-
- Causator Number:
|
31 |
-
- Cause Precision: 0.
|
32 |
-
- Cause Recall: 0.
|
33 |
-
- Cause F1: 0.
|
34 |
-
- Cause Number:
|
35 |
-
- Contrsubject Precision: 0.
|
36 |
-
- Contrsubject Recall: 0.
|
37 |
-
- Contrsubject F1: 0.
|
38 |
-
- Contrsubject Number:
|
39 |
-
- Deliberative Precision: 0.
|
40 |
-
- Deliberative Recall: 0.
|
41 |
-
- Deliberative F1: 0.
|
42 |
-
- Deliberative Number:
|
43 |
- Destinative Precision: 1.0
|
44 |
-
- Destinative Recall: 0.
|
45 |
-
- Destinative F1: 0.
|
46 |
-
- Destinative Number:
|
47 |
-
- Directivefinal Precision: 0
|
48 |
-
- Directivefinal Recall: 0.
|
49 |
-
- Directivefinal F1: 0.
|
50 |
-
- Directivefinal Number:
|
51 |
-
- Experiencer Precision: 0.
|
52 |
-
- Experiencer Recall: 0.
|
53 |
-
- Experiencer F1: 0.
|
54 |
-
- Experiencer Number:
|
55 |
-
- Instrument Precision: 0.
|
56 |
-
- Instrument Recall: 0.
|
57 |
-
- Instrument F1: 0.
|
58 |
-
- Instrument Number:
|
59 |
- Limitative Precision: 0.0
|
60 |
- Limitative Recall: 0.0
|
61 |
- Limitative F1: 0.0
|
62 |
-
- Limitative Number:
|
63 |
-
- Object Precision: 0.
|
64 |
-
- Object Recall: 0.
|
65 |
-
- Object F1: 0.
|
66 |
-
- Object Number:
|
67 |
-
- Overall Precision: 0.
|
68 |
-
- Overall Recall: 0.
|
69 |
-
- Overall F1: 0.
|
70 |
-
- Overall Accuracy: 0.
|
71 |
-
- Directiveinitial Recall: 0.0
|
72 |
-
- Directiveinitial Number: 0.0
|
73 |
-
- Directiveinitial Precision: 0.0
|
74 |
-
- Directiveinitial F1: 0.0
|
75 |
-
- Mediative Recall: 0.0
|
76 |
- Mediative Number: 0.0
|
77 |
-
- Mediative Precision: 0.0
|
78 |
- Mediative F1: 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
## Model description
|
81 |
|
@@ -94,31 +94,30 @@ More information needed
|
|
94 |
### Training hyperparameters
|
95 |
|
96 |
The following hyperparameters were used during training:
|
97 |
-
- learning_rate: 0.
|
98 |
- train_batch_size: 1
|
99 |
- eval_batch_size: 1
|
100 |
-
- seed:
|
101 |
-
- gradient_accumulation_steps:
|
102 |
-
- total_train_batch_size:
|
103 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
104 |
- lr_scheduler_type: linear
|
105 |
-
- lr_scheduler_warmup_ratio: 0.
|
106 |
-
- num_epochs:
|
|
|
107 |
|
108 |
### Training results
|
109 |
|
110 |
-
| Training Loss | Epoch | Step | Validation Loss | Addressee Precision | Addressee Recall | Addressee F1 | Addressee Number | Benefactive Precision | Benefactive Recall | Benefactive F1 | Benefactive Number | Causator Precision | Causator Recall | Causator F1 | Causator Number | Cause Precision | Cause Recall | Cause F1 | Cause Number | Contrsubject Precision | Contrsubject Recall | Contrsubject F1 | Contrsubject Number | Deliberative Precision | Deliberative Recall | Deliberative F1 | Deliberative Number | Destinative Precision | Destinative Recall | Destinative F1 | Destinative Number | Directivefinal Precision | Directivefinal Recall | Directivefinal F1 | Directivefinal Number | Experiencer Precision | Experiencer Recall | Experiencer F1 | Experiencer Number | Instrument Precision | Instrument Recall | Instrument F1 | Instrument Number | Limitative Precision | Limitative Recall | Limitative F1 | Limitative Number | Object Precision | Object Recall | Object F1 | Object Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
111 |
-
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.0748 | 4.0 | 3053 | 0.1382 | 0.9038 | 0.9216 | 0.9126 | 51 | 0.1905 | 0.25 | 0.2162 | 16 | 0.9104 | 0.8714 | 0.8905 | 70 | 0.5859 | 0.7353 | 0.6522 | 102 | 0.825 | 0.75 | 0.7857 | 132 | 0.4875 | 0.78 | 0.6 | 50 | 0.0 | 0.0 | 0.0 | 31 | 0.4615 | 0.6667 | 0.5455 | 9 | 0.9033 | 0.8237 | 0.8617 | 726 | 0.4 | 0.2222 | 0.2857 | 9 | 0.0 | 0.0 | 0.0 | 4 | 0.8468 | 0.8678 | 0.8571 | 1611 | 0.8321 | 0.8285 | 0.8303 | 0.9659 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
116 |
-
| 0.0504 | 5.0 | 3815 | 0.1471 | 0.9583 | 0.9020 | 0.9293 | 51 | 0.8 | 0.25 | 0.3810 | 16 | 0.8971 | 0.8714 | 0.8841 | 70 | 0.6466 | 0.7353 | 0.6881 | 102 | 0.832 | 0.7879 | 0.8093 | 132 | 0.6269 | 0.84 | 0.7179 | 50 | 1.0 | 0.3871 | 0.5581 | 31 | 0.5455 | 0.6667 | 0.6 | 9 | 0.8669 | 0.8609 | 0.8639 | 726 | 0.5 | 0.3333 | 0.4 | 9 | 0.0 | 0.0 | 0.0 | 4 | 0.8676 | 0.8703 | 0.8689 | 1611 | 0.8515 | 0.8467 | 0.8491 | 0.9687 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
117 |
|
118 |
|
119 |
### Framework versions
|
120 |
|
121 |
-
- Transformers 4.
|
122 |
-
- Pytorch 2.
|
123 |
-
- Datasets 2.
|
124 |
-
- Tokenizers 0.
|
|
|
13 |
|
14 |
# rubert-electra-srl
|
15 |
|
16 |
+
This model is a fine-tuned version of [ai-forever/ruElectra-medium](https://huggingface.co/ai-forever/ruElectra-medium) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0564
|
19 |
+
- Addressee Precision: 0.8710
|
20 |
+
- Addressee Recall: 0.9153
|
21 |
+
- Addressee F1: 0.8926
|
22 |
+
- Addressee Number: 59
|
23 |
+
- Benefactive Precision: 0.0
|
24 |
+
- Benefactive Recall: 0.0
|
25 |
+
- Benefactive F1: 0.0
|
26 |
+
- Benefactive Number: 8
|
27 |
+
- Causator Precision: 0.9007
|
28 |
+
- Causator Recall: 0.9379
|
29 |
+
- Causator F1: 0.9189
|
30 |
+
- Causator Number: 145
|
31 |
+
- Cause Precision: 0.8491
|
32 |
+
- Cause Recall: 0.7895
|
33 |
+
- Cause F1: 0.8182
|
34 |
+
- Cause Number: 114
|
35 |
+
- Contrsubject Precision: 0.872
|
36 |
+
- Contrsubject Recall: 0.9008
|
37 |
+
- Contrsubject F1: 0.8862
|
38 |
+
- Contrsubject Number: 121
|
39 |
+
- Deliberative Precision: 0.7439
|
40 |
+
- Deliberative Recall: 0.9385
|
41 |
+
- Deliberative F1: 0.8299
|
42 |
+
- Deliberative Number: 65
|
43 |
- Destinative Precision: 1.0
|
44 |
+
- Destinative Recall: 0.5238
|
45 |
+
- Destinative F1: 0.6875
|
46 |
+
- Destinative Number: 21
|
47 |
+
- Directivefinal Precision: 1.0
|
48 |
+
- Directivefinal Recall: 0.7
|
49 |
+
- Directivefinal F1: 0.8235
|
50 |
+
- Directivefinal Number: 10
|
51 |
+
- Experiencer Precision: 0.9132
|
52 |
+
- Experiencer Recall: 0.9374
|
53 |
+
- Experiencer F1: 0.9252
|
54 |
+
- Experiencer Number: 1055
|
55 |
+
- Instrument Precision: 0.8409
|
56 |
+
- Instrument Recall: 0.7255
|
57 |
+
- Instrument F1: 0.7789
|
58 |
+
- Instrument Number: 51
|
59 |
- Limitative Precision: 0.0
|
60 |
- Limitative Recall: 0.0
|
61 |
- Limitative F1: 0.0
|
62 |
+
- Limitative Number: 3
|
63 |
+
- Object Precision: 0.9449
|
64 |
+
- Object Recall: 0.9389
|
65 |
+
- Object F1: 0.9419
|
66 |
+
- Object Number: 1898
|
67 |
+
- Overall Precision: 0.9210
|
68 |
+
- Overall Recall: 0.9228
|
69 |
+
- Overall F1: 0.9219
|
70 |
+
- Overall Accuracy: 0.9855
|
|
|
|
|
|
|
|
|
|
|
71 |
- Mediative Number: 0.0
|
|
|
72 |
- Mediative F1: 0.0
|
73 |
+
- Mediative Precision: 0.0
|
74 |
+
- Mediative Recall: 0.0
|
75 |
+
- Directiveinitial Number: 0.0
|
76 |
+
- Directiveinitial F1: 0.0
|
77 |
+
- Directiveinitial Precision: 0.0
|
78 |
+
- Directiveinitial Recall: 0.0
|
79 |
|
80 |
## Model description
|
81 |
|
|
|
94 |
### Training hyperparameters
|
95 |
|
96 |
The following hyperparameters were used during training:
|
97 |
+
- learning_rate: 0.00016666401556632117
|
98 |
- train_batch_size: 1
|
99 |
- eval_batch_size: 1
|
100 |
+
- seed: 708526
|
101 |
+
- gradient_accumulation_steps: 4
|
102 |
+
- total_train_batch_size: 4
|
103 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
104 |
- lr_scheduler_type: linear
|
105 |
+
- lr_scheduler_warmup_ratio: 0.21
|
106 |
+
- num_epochs: 3
|
107 |
+
- mixed_precision_training: Native AMP
|
108 |
|
109 |
### Training results
|
110 |
|
111 |
+
| Training Loss | Epoch | Step | Validation Loss | Addressee Precision | Addressee Recall | Addressee F1 | Addressee Number | Benefactive Precision | Benefactive Recall | Benefactive F1 | Benefactive Number | Causator Precision | Causator Recall | Causator F1 | Causator Number | Cause Precision | Cause Recall | Cause F1 | Cause Number | Contrsubject Precision | Contrsubject Recall | Contrsubject F1 | Contrsubject Number | Deliberative Precision | Deliberative Recall | Deliberative F1 | Deliberative Number | Destinative Precision | Destinative Recall | Destinative F1 | Destinative Number | Directivefinal Precision | Directivefinal Recall | Directivefinal F1 | Directivefinal Number | Experiencer Precision | Experiencer Recall | Experiencer F1 | Experiencer Number | Instrument Precision | Instrument Recall | Instrument F1 | Instrument Number | Limitative Precision | Limitative Recall | Limitative F1 | Limitative Number | Object Precision | Object Recall | Object F1 | Object Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Mediative Number | Mediative F1 | Mediative Precision | Mediative Recall | Directiveinitial Number | Directiveinitial F1 | Directiveinitial Precision | Directiveinitial Recall |
|
112 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------:|:---------------:|:-----------:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|:----------------:|:------------:|:-------------------:|:----------------:|:-----------------------:|:-------------------:|:--------------------------:|:-----------------------:|
|
113 |
+
| 0.574 | 1.0 | 2942 | 0.5853 | 0.0 | 0.0 | 0.0 | 59 | 0.0 | 0.0 | 0.0 | 8 | 0.0 | 0.0 | 0.0 | 145 | 0.0 | 0.0 | 0.0 | 114 | 0.0 | 0.0 | 0.0 | 121 | 0.0 | 0.0 | 0.0 | 65 | 0.0 | 0.0 | 0.0 | 21 | 0.0 | 0.0 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 1055 | 0.0 | 0.0 | 0.0 | 51 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 1898 | 0.0 | 0.0 | 0.0 | 0.8893 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
114 |
+
| 0.1625 | 2.0 | 5884 | 0.1573 | 0.5714 | 0.8136 | 0.6713 | 59 | 0.0 | 0.0 | 0.0 | 8 | 0.6966 | 0.8552 | 0.7678 | 145 | 0.3186 | 0.6316 | 0.4235 | 114 | 0.6875 | 0.4545 | 0.5473 | 121 | 0.0 | 0.0 | 0.0 | 65 | 0.0 | 0.0 | 0.0 | 21 | 0.0 | 0.0 | 0.0 | 10 | 0.8504 | 0.8246 | 0.8373 | 1055 | 0.4769 | 0.6078 | 0.5345 | 51 | 0.0 | 0.0 | 0.0 | 3 | 0.8923 | 0.8161 | 0.8525 | 1898 | 0.8104 | 0.7744 | 0.7920 | 0.9634 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
115 |
+
| 0.0838 | 3.0 | 8826 | 0.0564 | 0.8710 | 0.9153 | 0.8926 | 59 | 0.0 | 0.0 | 0.0 | 8 | 0.9007 | 0.9379 | 0.9189 | 145 | 0.8491 | 0.7895 | 0.8182 | 114 | 0.872 | 0.9008 | 0.8862 | 121 | 0.7439 | 0.9385 | 0.8299 | 65 | 1.0 | 0.5238 | 0.6875 | 21 | 1.0 | 0.7 | 0.8235 | 10 | 0.9132 | 0.9374 | 0.9252 | 1055 | 0.8409 | 0.7255 | 0.7789 | 51 | 0.0 | 0.0 | 0.0 | 3 | 0.9449 | 0.9389 | 0.9419 | 1898 | 0.9210 | 0.9228 | 0.9219 | 0.9855 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
|
|
|
|
116 |
|
117 |
|
118 |
### Framework versions
|
119 |
|
120 |
+
- Transformers 4.42.4
|
121 |
+
- Pytorch 2.3.1+cu121
|
122 |
+
- Datasets 2.20.0
|
123 |
+
- Tokenizers 0.19.1
|
config.json
CHANGED
@@ -32,7 +32,8 @@
|
|
32 |
"18": "B-DirectiveInitial",
|
33 |
"19": "I-DirectiveInitial",
|
34 |
"20": "I-Experiencer",
|
35 |
-
"21": "I-Cause"
|
|
|
36 |
},
|
37 |
"initializer_range": 0.02,
|
38 |
"intermediate_size": 2304,
|
@@ -51,6 +52,7 @@
|
|
51 |
"B-Limitative": 14,
|
52 |
"B-Mediative": 16,
|
53 |
"B-Object": 1,
|
|
|
54 |
"I-Cause": 21,
|
55 |
"I-ContrSubject": 11,
|
56 |
"I-Deliberative": 13,
|
@@ -72,7 +74,7 @@
|
|
72 |
"summary_type": "first",
|
73 |
"summary_use_proj": true,
|
74 |
"torch_dtype": "float32",
|
75 |
-
"transformers_version": "4.
|
76 |
"type_vocab_size": 2,
|
77 |
"use_cache": true,
|
78 |
"vocab_size": 64000
|
|
|
32 |
"18": "B-DirectiveInitial",
|
33 |
"19": "I-DirectiveInitial",
|
34 |
"20": "I-Experiencer",
|
35 |
+
"21": "I-Cause",
|
36 |
+
"22": "I-Causator"
|
37 |
},
|
38 |
"initializer_range": 0.02,
|
39 |
"intermediate_size": 2304,
|
|
|
52 |
"B-Limitative": 14,
|
53 |
"B-Mediative": 16,
|
54 |
"B-Object": 1,
|
55 |
+
"I-Causator": 22,
|
56 |
"I-Cause": 21,
|
57 |
"I-ContrSubject": 11,
|
58 |
"I-Deliberative": 13,
|
|
|
74 |
"summary_type": "first",
|
75 |
"summary_use_proj": true,
|
76 |
"torch_dtype": "float32",
|
77 |
+
"transformers_version": "4.42.4",
|
78 |
"type_vocab_size": 2,
|
79 |
"use_cache": true,
|
80 |
"vocab_size": 64000
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8dc983e23ebf1a46a93b9ffb6bb8dfcc4f96b632c2282ab78edd817e53106b5c
|
3 |
+
size 340184276
|
tokenizer.json
CHANGED
@@ -1,6 +1,11 @@
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
-
"truncation":
|
|
|
|
|
|
|
|
|
|
|
4 |
"padding": null,
|
5 |
"added_tokens": [
|
6 |
{
|
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
+
"truncation": {
|
4 |
+
"direction": "Right",
|
5 |
+
"max_length": 2048,
|
6 |
+
"strategy": "LongestFirst",
|
7 |
+
"stride": 0
|
8 |
+
},
|
9 |
"padding": null,
|
10 |
"added_tokens": [
|
11 |
{
|
tokenizer_config.json
CHANGED
@@ -1,4 +1,46 @@
|
|
1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
"clean_up_tokenization_spaces": true,
|
3 |
"cls_token": "[CLS]",
|
4 |
"do_basic_tokenize": true,
|
|
|
1 |
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
"clean_up_tokenization_spaces": true,
|
45 |
"cls_token": "[CLS]",
|
46 |
"do_basic_tokenize": true,
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e293be6da178e0dad7a21799fcc806409ec27abe94b264bcf829fab4f996651
|
3 |
+
size 5240
|