metadata
language: en
license: mit
base_model: distilbert/distilbert-base-uncased
tags:
- token-classification
- distilbert-base-uncased
datasets:
- disham993/ElectricalNER
metrics:
- epoch: 1
- eval_precision: 0.8758209405903223
- eval_recall: 0.9169366948549752
- eval_f1: 0.8959073359073358
- eval_accuracy: 0.9532186105799872
- eval_runtime: 1.7541
- eval_samples_per_second: 860.279
- eval_steps_per_second: 13.682
disham993/electrical-ner-distilbert-base
Model description
This model is fine-tuned from distilbert/distilbert-base-uncased for token-classification tasks.
Training Data
The model was trained on the disham993/ElectricalNER dataset.
Model Details
- Base Model: distilbert/distilbert-base-uncased
- Task: token-classification
- Language: en
- Dataset: disham993/ElectricalNER
Training procedure
Training hyperparameters
[Please add your training hyperparameters here]
Evaluation results
Metrics\n- epoch: 1.0\n- eval_precision: 0.8758209405903223\n- eval_recall: 0.9169366948549752\n- eval_f1: 0.8959073359073358\n- eval_accuracy: 0.9532186105799872\n- eval_runtime: 1.7541\n- eval_samples_per_second: 860.279\n- eval_steps_per_second: 13.682
Usage
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-ner-distilbert-base")
model = AutoModel.from_pretrained("disham993/electrical-ner-distilbert-base")
Limitations and bias
[Add any known limitations or biases of the model]
Training Infrastructure
[Add details about training infrastructure used]
Last update
2024-12-30