--- language: en license: mit base_model: distilbert/distilbert-base-uncased tags: - token-classification - distilbert-base-uncased datasets: - disham993/ElectricalNER metrics: - epoch: 1.0 - eval_precision: 0.8758209405903223 - eval_recall: 0.9169366948549752 - eval_f1: 0.8959073359073358 - eval_accuracy: 0.9532186105799872 - eval_runtime: 1.7541 - eval_samples_per_second: 860.279 - eval_steps_per_second: 13.682 --- # disham993/electrical-ner-distilbert-base ## Model description This model is fine-tuned from [distilbert/distilbert-base-uncased](https://huggingface.co./distilbert/distilbert-base-uncased) for token-classification tasks. ## Training Data The model was trained on the disham993/ElectricalNER dataset. ## Model Details - **Base Model:** distilbert/distilbert-base-uncased - **Task:** token-classification - **Language:** en - **Dataset:** disham993/ElectricalNER ## Training procedure ### Training hyperparameters [Please add your training hyperparameters here] ## Evaluation results ### Metrics\n- epoch: 1.0\n- eval_precision: 0.8758209405903223\n- eval_recall: 0.9169366948549752\n- eval_f1: 0.8959073359073358\n- eval_accuracy: 0.9532186105799872\n- eval_runtime: 1.7541\n- eval_samples_per_second: 860.279\n- eval_steps_per_second: 13.682 ## Usage ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-ner-distilbert-base") model = AutoModel.from_pretrained("disham993/electrical-ner-distilbert-base") ``` ## Limitations and bias [Add any known limitations or biases of the model] ## Training Infrastructure [Add details about training infrastructure used] ## Last update 2024-12-30