leaderboard-pr-bot's picture
Adding Evaluation Results
fb7b3d0 verified
|
raw
history blame
4.31 kB
---
license: apache-2.0
model-index:
- name: llama-2-7b-miniguanaco
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 50.0
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decruz07/llama-2-7b-miniguanaco
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 76.96
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decruz07/llama-2-7b-miniguanaco
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 48.05
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decruz07/llama-2-7b-miniguanaco
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 42.84
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decruz07/llama-2-7b-miniguanaco
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.48
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decruz07/llama-2-7b-miniguanaco
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 19.11
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decruz07/llama-2-7b-miniguanaco
name: Open LLM Leaderboard
---
## llama-2-7b-miniguanaco
This is my first model, with LLama-2-7b model finetuned with miniguanaco datasets.
This is a simple finetune based off a Google Colab notebook. Finetune instructions were from Labonne's first tutorial.
To run it:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
model_path = "decruz07/llama-2-7b-miniguanaco"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_decruz07__llama-2-7b-miniguanaco)
| Metric |Value|
|---------------------------------|----:|
|Avg. |51.74|
|AI2 Reasoning Challenge (25-Shot)|50.00|
|HellaSwag (10-Shot) |76.96|
|MMLU (5-Shot) |48.05|
|TruthfulQA (0-shot) |42.84|
|Winogrande (5-shot) |73.48|
|GSM8k (5-shot) |19.11|