leaderboard-pr-bot's picture
Adding Evaluation Results
fb7b3d0 verified
|
raw
history blame
4.31 kB
metadata
license: apache-2.0
model-index:
  - name: llama-2-7b-miniguanaco
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 50
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decruz07/llama-2-7b-miniguanaco
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 76.96
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decruz07/llama-2-7b-miniguanaco
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 48.05
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decruz07/llama-2-7b-miniguanaco
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 42.84
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decruz07/llama-2-7b-miniguanaco
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 73.48
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decruz07/llama-2-7b-miniguanaco
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 19.11
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=decruz07/llama-2-7b-miniguanaco
          name: Open LLM Leaderboard

llama-2-7b-miniguanaco

This is my first model, with LLama-2-7b model finetuned with miniguanaco datasets.

This is a simple finetune based off a Google Colab notebook. Finetune instructions were from Labonne's first tutorial.

To run it: import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math

model_path = "decruz07/llama-2-7b-miniguanaco"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")

generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:")

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 51.74
AI2 Reasoning Challenge (25-Shot) 50.00
HellaSwag (10-Shot) 76.96
MMLU (5-Shot) 48.05
TruthfulQA (0-shot) 42.84
Winogrande (5-shot) 73.48
GSM8k (5-shot) 19.11