coconut_s / README.md
xdeng77's picture
upload download script link
c104217 verified
metadata
license: cc
dataset_info:
  features:
    - name: mask
      dtype: image
    - name: segments_info
      struct:
        - name: file_name
          dtype: string
        - name: image_id
          dtype: int64
        - name: segments_info
          list:
            - name: category_id
              dtype: int64
            - name: id
              dtype: int64
            - name: iscrowd
              dtype: int64
            - name: isthing
              dtype: int64
    - name: image_info
      struct:
        - name: coco_url
          dtype: string
        - name: date_captured
          dtype: string
        - name: file_name
          dtype: string
        - name: height
          dtype: int64
        - name: id
          dtype: int64
        - name: license
          dtype: int64
        - name: width
          dtype: int64
  splits:
    - name: train
      num_bytes: 874203347.2
      num_examples: 118200
  download_size: 817249090
  dataset_size: 874203347.2
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*

How to download

  1. Set up environment
pip install datasets tqdm
wget https://raw.githubusercontent.com/bytedance/coconut_cvpr2024/main/download_coconut.py
  1. Use the download script to download the COCONut dataset splits.
python download_coconut.py --split coconut_s # default split: relabeled_coco_val, need to switch to coconut_s

The above command should print your download status, if you download it successfully you can see the results below:

image/png

  1. Download other COCONut dataset splits.

If you want to download the other splits, you can replace the split name to "relabeled_coco_val" or "coconut_b" NOTE: multiple splits download is not yet supported.

python download_coconut.py --split relabeled_coco_val --output_dir relabeled_coco_val
  1. The mask images are nearly black as we use continuous segment ids for each image, you can use github visualization tutorial to create colorful masks for viewing.

Please go to our offical github repo for detailed usage instruction: https://github.com/bytedance/coconut_cvpr2024