File size: 2,204 Bytes
e96a8dc
 
69a8118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e96a8dc
ca43b60
 
 
 
 
 
c104217
ca43b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b22c509
dbd6284
b22c509
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: cc
dataset_info:
  features:
  - name: mask
    dtype: image
  - name: segments_info
    struct:
    - name: file_name
      dtype: string
    - name: image_id
      dtype: int64
    - name: segments_info
      list:
      - name: category_id
        dtype: int64
      - name: id
        dtype: int64
      - name: iscrowd
        dtype: int64
      - name: isthing
        dtype: int64
  - name: image_info
    struct:
    - name: coco_url
      dtype: string
    - name: date_captured
      dtype: string
    - name: file_name
      dtype: string
    - name: height
      dtype: int64
    - name: id
      dtype: int64
    - name: license
      dtype: int64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 874203347.2
    num_examples: 118200
  download_size: 817249090
  dataset_size: 874203347.2
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---


## How to download
1. Set up environment
```
pip install datasets tqdm
wget https://raw.githubusercontent.com/bytedance/coconut_cvpr2024/main/download_coconut.py
```

2. Use the download script to download the COCONut dataset splits.
```
python download_coconut.py --split coconut_s # default split: relabeled_coco_val, need to switch to coconut_s
```
The above command should print your download status, if you download it successfully you can see the results below:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65ca9b1743207e438a95e90c/tRcbV6pX-r0xSoobOBJzD.png)

3. Download other COCONut dataset splits.

If you want to download the other splits, you can replace the split name to "relabeled_coco_val" or "coconut_b"
NOTE: multiple splits download is not yet supported.

```
python download_coconut.py --split relabeled_coco_val --output_dir relabeled_coco_val
```

4. The mask images are nearly black as we use continuous segment ids for each image, you can use [github visualization tutorial](https://github.com/bytedance/coconut_cvpr2024/blob/main/tutorials/visualization/demo.ipynb) to create colorful masks for viewing.

Please go to our offical github repo for detailed usage instruction: https://github.com/bytedance/coconut_cvpr2024