filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_1187
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ServiceAssociationLinksOperations(object): """ServiceAssociationLinksOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_03_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name, # type: str virtual_network_name, # type: str subnet_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.ServiceAssociationLinksListResult" """Gets a list of service association links for a subnet. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_name: The name of the virtual network. :type virtual_network_name: str :param subnet_name: The name of the subnet. :type subnet_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ServiceAssociationLinksListResult, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_03_01.models.ServiceAssociationLinksListResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ServiceAssociationLinksListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkName': self._serialize.url("virtual_network_name", virtual_network_name, 'str'), 'subnetName': self._serialize.url("subnet_name", subnet_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ServiceAssociationLinksListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/subnets/{subnetName}/ServiceAssociationLinks'} # type: ignore
the-stack_0_1188
import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.activation import LeakyReLU from utils import initialize_weights_he # The MNIST datasets are hosted on yann.lecun.com that has moved under CloudFlare protection # Run this script to enable the datasets download # Reference: https://github.com/pytorch/vision/issues/1938 from six.moves import urllib opener = urllib.request.build_opener() opener.addheaders = [('User-agent', 'Mozilla/5.0')] urllib.request.install_opener(opener) from Networks import ResNetBlock import torch import numpy as np from torchvision import datasets import torchvision.transforms as transforms import cv2 from zu_resnet import ResNetEncoder # define the NN architecture class ConvAutoencoder_NAV2(nn.Module): def __init__(self, imgChannels=1, zDim=512,featureDim=12*10*10, fix_params=False): super(ConvAutoencoder_NAV2, self).__init__() self.featureDim = featureDim ## encoder layers ## # https://stackoverflow.com/questions/39691902/ordering-of-batch-normalization-and-dropout self.encode = nn.Sequential( nn.Conv2d(imgChannels, 32, 5, padding=2) , nn.BatchNorm2d(32), nn.ReLU(), ResNetBlock(32,64,3), ResNetBlock(64,128,3), ResNetBlock(128,256,3), ResNetBlock(256,128,3), # 64x5x5 = 3200 feature vector ).apply(initialize_weights_he) ## decoder layers ## ## a kernel of 2 and a stride of 2 will increase the spatial dims by 2 self.decode = nn.Sequential( nn.ConvTranspose2d(128, 256, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(256, 128, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(128, 64, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(64, imgChannels, 2, stride=2), ).apply(initialize_weights_he) def fix_params(self): for param in self.encode.parameters(): param.requires_grad = False for param in self.decode.parameters(): param.requires_grad = False def encode_(self, x): return self.encode(x) def forward(self, x): x = self.encode(x) # print(x.shape) # x = x.reshape(64,5,5) x = self.decode(x) x = torch.sigmoid(x) return x # define the NN architecture class ConvAutoencoder_NAV3(nn.Module): def __init__(self, imgChannels=1, zDim=512,featureDim=12*10*10, fix_params=False): super(ConvAutoencoder_NAV3, self).__init__() self.featureDim = featureDim ## encoder layers ## # https://stackoverflow.com/questions/39691902/ordering-of-batch-normalization-and-dropout self.encode = ResNetEncoder(12,blocks_sizes=[64,128,256,384],deepths=[2,2,2,2]) ## decoder layers ## ## a kernel of 2 and a stride of 2 will increase the spatial dims by 2 self.decode = nn.Sequential( nn.ConvTranspose2d(384, 512, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(512, 256, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(256, 128, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(128, 64, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(64, imgChannels, 2, stride=2) ).apply(initialize_weights_he) def fix_params(self): for param in self.encode.parameters(): param.requires_grad = False for param in self.decode.parameters(): param.requires_grad = False def encode_(self, x): return self.encode(x) def forward(self, x): x = self.encode(x) # print(x.shape) # x = x.reshape(64,5,5) x = self.decode(x) x = torch.sigmoid(x) return x # define the NN architecture class ConvAutoencoder_NAV4(nn.Module): def __init__(self, imgChannels=1, zDim=512,featureDim=12*10*10, fix_params=False): super(ConvAutoencoder_NAV4, self).__init__() self.featureDim = featureDim ## encoder layers ## # https://stackoverflow.com/questions/39691902/ordering-of-batch-normalization-and-dropout self.encode = nn.Sequential( ResNetBlock(imgChannels,64,3), ResNetBlock(64,128,3), ResNetBlock(128,256,3), ResNetBlock(256,128,3), # 64x5x5 = 3200 feature vector ).apply(initialize_weights_he) ## decoder layers ## ## a kernel of 2 and a stride of 2 will increase the spatial dims by 2 self.decode = nn.Sequential( nn.ConvTranspose2d(128, 256, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(256, 128, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(128, 64, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(64, imgChannels, 2, stride=2), ).apply(initialize_weights_he) def fix_params(self): for param in self.encode.parameters(): param.requires_grad = False for param in self.decode.parameters(): param.requires_grad = False def encode_(self, x): return self.encode(x) def forward(self, x): x = self.encode(x) # print(x.shape) # x = x.reshape(64,5,5) x = self.decode(x) x = torch.sigmoid(x) return x # define the NN architecture class ConvAutoencoder_NAV6(nn.Module): def __init__(self, imgChannels=1, zDim=1024,featureDim=64*5*5, fix_params=False): super(ConvAutoencoder_NAV6, self).__init__() self.featureDim = featureDim ## encoder layers ## # https://stackoverflow.com/questions/39691902/ordering-of-batch-normalization-and-dropout self.encode = nn.Sequential( ResNetBlock(imgChannels,64,3), ResNetBlock(64,128,3), ResNetBlock(128,256,3), ResNetBlock(256,64,3), # 64x5x5 = 3200 feature vector, nn.Flatten(), nn.Linear(featureDim,zDim) ).apply(initialize_weights_he) self. FC_1 = nn.Linear(zDim,featureDim) ## decoder layers ## ## a kernel of 2 and a stride of 2 will increase the spatial dims by 2 self.decode = nn.Sequential( nn.ConvTranspose2d(64, 128, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(128, 256, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(256, 128, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(128, 64, 2, stride=2), ).apply(initialize_weights_he) def fix_params(self): for param in self.encode.parameters(): param.requires_grad = False for param in self.decode.parameters(): param.requires_grad = False def encode_(self, x): return self.encode(x) def forward(self, x): x = self.encode(x) x = x.view(-1, self.fedim) x = self.decode(x) x = torch.sigmoid(x) return x if __name__ == '__main__': GPU = True device_idx = 0 if GPU: device = torch.device("cuda:" + str(device_idx) if torch.cuda.is_available() else "cpu") else: device = torch.device("cpu") # convert data to torch.FloatTensor transform = transforms.ToTensor() channels = 3 n_s_f = 4 inputshape = (80,80,channels) cv2_resz = (80,80) imshape = (channels,*cv2_resz) show_shape = (*cv2_resz,channels) model = ConvAutoencoder_NAV4(imgChannels=channels*n_s_f) # model.load_state_dict(torch.load("/home/developer/Training_results/Qricculum_Learning/big_and_small/final/Models/1/VAE_20")) model.load_state_dict(torch.load("/home/developer/Training_results/Qricculum_Learning/big_and_small/hoffentlich/VAE_80803_615")) model.eval() model.to(device) train_images = [] test_images = [] moving_database = np.load("/home/developer/Training_results/Qricculum_Learning/big_and_small/hoffentlich/VAE_dtb_12_8080_final_hoffentlich.npy") # moving_database = np.load("/home/developer/VAE_dtb_12_128128_final.npy") # moving_database = np.load("/home/developer/Training_results/Qricculum_Learning/big_and_small/3/VAE_dtb_3_8080.npy") print(moving_database.shape) print(moving_database[0]) stacked_images = [] train_data = (moving_database[0:45000]/ 2**8).astype(np.float32) test_data = (moving_database[45000:] / 2**8).astype(np.float32) print(train_data.shape) print(test_data.shape) # Create training and test dataloaders num_workers = 10 # how many samples per batch to load batch_size = 32 # prepare data loaders train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=num_workers,shuffle=True) test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=num_workers,shuffle=True) import matplotlib.pyplot as plt infostring = "net: \n" + str(model) + " \n \n \n" print(infostring) filename = "/home/developer/Training_results/VA/"+"Infofile.txt" text_file = open(filename, "w") n = text_file.write(infostring) text_file.close() learning_rate = 0.01 # specify loss function criterion = nn.MSELoss() # specify loss function # torch.optim.Adam optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import MultiStepLR # scheduler1 = ExponentialLR(optimizer, gamma=0.90) scheduler2 = MultiStepLR(optimizer, milestones=[30,50,70,90], gamma=0.25) # number of epochs to train the model n_epochs = 100 # for epoch in range(1, n_epochs+1): # # monitor training loss # train_loss = 0.0 # test_loss = 0.0 # ################## # # train the model # # ################## # for data in train_loader: # # _ stands in for labels, here # # no need to flatten images # images = data # images = images.to(device) # # clear the gradients of all optimized variables # optimizer.zero_grad() # # forward pass: compute predicted outputs by passing inputs to the model # outputs = model(images).to(device) # # output_decoder = decoder(images) # # print(output_decoder) # # print(output_decoder.shape) # # calculate the loss # loss = criterion(outputs, images) # # backward pass: compute gradient of the loss with respect to model parameters # loss.backward() # # perform a single optimization step (parameter update) # optimizer.step() # # update running training loss # train_loss += loss.item()*images.size(0) # # print avg training statistics # train_loss = train_loss/len(train_loader) # print('Epoch: {} \tTraining Loss: {:.6f}'.format( # epoch, # train_loss # )) # for test_i_data in test_loader: # # _ stands in for labels, here # # no need to flatten images # test_images = test_i_data # test_images = test_images.to(device) # # clear the gradients of all optimized variables # with torch.no_grad(): # # forward pass: compute predicted outputs by passing inputs to the model # outputs = model(test_images).to(device) # loss = criterion(outputs, test_images) # test_loss += loss.item()*test_images.size(0) # print('Epoch: {} \tTesting Loss: {:.6f}'.format( # epoch, # test_loss # )) # torch.save(model.state_dict(), "/home/developer/Training_results/VA/VAE_RESNET18"+str(epoch)) # # scheduler1.step() # scheduler2.step() # obtain one batch of test images dataiter = iter(test_loader) while True: show_images = dataiter.next() show_images = show_images.to(device) # get sample outputs output = model(show_images) # prep images for display show_images = show_images.detach().cpu().numpy() # output is resized into a batch of iages output = output.view(batch_size,n_s_f*channels,*cv2_resz) # use detach when it's an output that requires_grad output = output.detach().cpu().numpy() print(output.shape) print(show_images.shape) # torch.save(model.state_dict(), "/home/developer/Training_results/VAE") # plot the first ten input images and then reconstructed images fig, axes = plt.subplots(nrows=2, ncols=4, sharex=True, sharey=True, figsize=(20,20)) axes[0][0].imshow(show_images[0][0:3].reshape(show_shape)) axes[0][0].get_xaxis().set_visible(False) axes[0][0].get_yaxis().set_visible(False) axes[0][1].imshow(show_images[0][3:6].reshape(show_shape)) axes[0][1].get_xaxis().set_visible(False) axes[0][1].get_yaxis().set_visible(False) axes[0][2].imshow(show_images[0][6:9].reshape(show_shape)) axes[0][2].get_xaxis().set_visible(False) axes[0][2].get_yaxis().set_visible(False) axes[0][3].imshow(show_images[0][9:12].reshape(show_shape)) axes[0][3].get_xaxis().set_visible(False) axes[0][3].get_yaxis().set_visible(False) axes[1][0].imshow(output[0][0:3].reshape(show_shape)) axes[1][0].get_xaxis().set_visible(False) axes[1][0].get_yaxis().set_visible(False) axes[1][1].imshow(output[0][3:6].reshape(show_shape)) axes[1][1].get_xaxis().set_visible(False) axes[1][1].get_yaxis().set_visible(False) axes[1][2].imshow(output[0][6:9].reshape(show_shape)) axes[1][2].get_xaxis().set_visible(False) axes[1][2].get_yaxis().set_visible(False) axes[1][3].imshow(output[0][9:12].reshape(show_shape)) axes[1][3].get_xaxis().set_visible(False) axes[1][3].get_yaxis().set_visible(False) # input images on top row, reconstructions on bottom # for show_images, row in zip([show_images, output], axes): # for img, ax in zip(show_images, row): # ax.imshow(img[0:3].reshape(show_shape)) # ax.get_xaxis().set_visible(False) # ax.get_yaxis().set_visible(False) plt.show()
the-stack_0_1189
""" Parsed Config File Produces Expected Behaviors - fixed parameters """ import inspect import os import deeplenstronomy.deeplenstronomy as dl doc = """ \tRunning tests from test_expected_behaviors_fixed.py \tThe tests included in this module demonstrate that the values of fixed parameters \tin the main configuration file are accurately utilized in the simulation and \tappear as expected in the simulation metadata. The functions are: \t\t- test_dataset_section \t\t\tTesting that NAME, OUTDIR, and SEED properties from the DATASET section of \t\t\tthe main config file were properly interpretted and utilized as properties \t\t\tof the generated dataset \t\t- test_cosmology_section \t\t\tTesting that the cosmological parameters from the COSMOLOGY section appear \t\t\tas expected in the simulation metadata \t\t- test_image_size \t\t\tTesting that the IMAGE.numPix keyword produced simulated images with the \t\t\texpected size. \t\t- test_bands \t\t\tTesting that the BANDS argument was interpretted properly and produced an \t\t\tarray of simulated images with the expected number of bands """ print(doc) # Below are all of the possible operation modes kwargs_sets = {0: {}, # default arguments 1: {'save_to_disk': True}, 2: {'save_to_disk': True, 'image_file_format': 'h5'}, 3: {'save_to_disk': True, 'skip_image_generation': True}, 4: {'store_in_memory': False}, 5: {'store_sample': True}, 6: {'skip_image_generation': True, 'survey': 'des'}, 7: {'solve_lens_equation': True}, 8: {'return_planes': True} } f = open('status.txt', 'r') current_test = int(f.read().strip()) f.close() # Generate the dataset kwargs_set = kwargs_sets[current_test] config_filename = 'config.yaml' dataset = dl.make_dataset(config_filename, **kwargs_set) has_images = [hasattr(dataset, x + '_images') for x in dataset.configurations] has_metadata = [hasattr(dataset, x + '_metadata') for x in dataset.configurations] has_planes = [hasattr(dataset, x + '_planes') for x in dataset.configurations] images_exist = [os.path.exists(dataset.outdir +'/' + x + '_images.' + dataset.arguments['image_file_format']) for x in dataset.configurations] metadata_exist = [os.path.exists(dataset.outdir +'/' + x + '_metadata.csv') for x in dataset.configurations] planes_exist = [os.path.exists(dataset.outdir +'/' + x + '_planes.' + dataset.arguments['image_file_format']) for x in dataset.configurations] # Begin test functions def test_dataset_section(): section = dataset.config_dict['DATASET']['PARAMETERS'] assert dataset.size == section['SIZE'] assert dataset.outdir == section['OUTDIR'] if 'SEED' in section.keys(): assert dataset.seed == section['SEED'] def test_cosmology_section(): if all(has_metadata): section = dataset.config_dict['COSMOLOGY']['PARAMETERS'] for conf in dataset.configurations: for band in dataset.bands: for param, value in section.items(): md = eval(f'dataset.{conf}_metadata["{param}-{band}"]') assert all(md.values == value) def test_image_size(): if all(has_images): for conf in dataset.configurations: x = eval(f'dataset.{conf}_images').shape[-2] y = eval(f'dataset.{conf}_images').shape[-1] assert dataset.config_dict['IMAGE']['PARAMETERS']['numPix'] == x assert dataset.config_dict['IMAGE']['PARAMETERS']['numPix'] == y def test_bands(): config_bands = dataset.config_dict['SURVEY']['PARAMETERS']['BANDS'].split(',') assert config_bands == dataset.bands if all(has_images): for conf in dataset.configurations: b = eval(f'dataset.{conf}_images').shape[-3] assert len(config_bands) == b if all(has_metadata): get_band = lambda col: col.split('-')[-1] for conf in dataset.configurations: md = eval(f'dataset.{conf}_metadata').columns assert all([band in config_bands for band in [get_band(c) for c in md]])
the-stack_0_1190
from argparse import ArgumentParser from mmdet.apis import inference_detector, init_detector, show_result_pyplot def main(): parser = ArgumentParser() parser.add_argument('img', help='Image file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='bbox score threshold') args = parser.parse_args() # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # test a single image result = inference_detector(model, args.img) # show the results show_result_pyplot(model, args.img, result, score_thr=args.score_thr) if __name__ == '__main__': main()
the-stack_0_1192
import datetime import json from itertools import chain from io import BytesIO from django.template.loader import get_template from xlsxwriter.workbook import Workbook from xhtml2pdf import pisa import xlrd import logging from django.db import transaction from django.contrib import messages from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.db.models import Max from django.http import HttpResponse, HttpResponseRedirect from django.http import JsonResponse from django.shortcuts import get_object_or_404, render, redirect from django.template.loader import render_to_string from django.core.exceptions import ObjectDoesNotExist from django.utils import timezone from notification.views import AssistantshipClaim_notify,AssistantshipClaim_acad_notify,AssistantshipClaim_account_notify,AssistantshipClaim_faculty_notify from applications.academic_information.models import (Calendar, Course, Student,Curriculum_Instructor, Curriculum, Student_attendance) from applications.central_mess.models import(Monthly_bill, Payments) from applications.programme_curriculum.models import (CourseSlot, Course as Courses, Batch, Semester) from applications.globals.models import (DepartmentInfo, Designation, ExtraInfo, Faculty, HoldsDesignation) from .models import (BranchChange, CoursesMtech, InitialRegistration, StudentRegistrationChecks, MinimumCredits, Register, Thesis, FinalRegistration, ThesisTopicProcess, Constants, FeePayments, TeachingCreditRegistration, SemesterMarks, MarkSubmissionCheck, Dues,AssistantshipClaim, MTechGraduateSeminarReport, PhDProgressExamination,CourseRequested, course_registration, MessDue, Assistantship_status) from notification.views import academics_module_notif from .forms import BranchChangeForm demo_date = timezone.now() # demo_date = demo_date - datetime.timedelta(days = 180) # demo_date = demo_date + datetime.timedelta(days = 180) # demo_date = demo_date + datetime.timedelta(days = 3) # demo_date = demo_date - datetime.timedelta(days = 5) student_status = None hod_status = None account_status = None available_cse_seats = 100 available_ece_seats = 100 available_me_seats = 100 # assistantship_status = Assistantship_status.objects.all() # for obj in assistantship_status: # student_status = obj.student_status # hod_status = obj.hod_status # account_status = obj.account_status @login_required(login_url='/accounts/login') def academic_procedures_redirect(request): return HttpResponseRedirect('/academic-procedures/main/') @login_required(login_url='/accounts/login') def main(request): return HttpResponseRedirect('/academic-procedures/main/') @login_required(login_url='/accounts/login') def academic_procedures(request): current_user = get_object_or_404(User, username=request.user.username) #extra info details , user id used as main id user_details = ExtraInfo.objects.select_related('user','department').get(user = request.user) des = HoldsDesignation.objects.all().select_related().filter(user = request.user).first() if str(des.designation) == "student": obj = Student.objects.select_related('id','id__user','id__department').get(id = user_details.id) return HttpResponseRedirect('/academic-procedures/stu/') # return HttpResponseRedirect('/logout/') elif str(des.designation) == "Associate Professor" or str(des.designation) == "Professor" or str(des.designation) == "Assistant Professor" : return HttpResponseRedirect('/academic-procedures/fac/') # return HttpResponseRedirect('/logout/') elif str(request.user) == "acadadmin" : return HttpResponseRedirect('/aims/') elif str(request.user) == "rizwan": return HttpResponseRedirect('/academic-procedures/account/') elif str(request.user) == "talib": Messdue = MessDue.objects.all() dues = Dues.objects.all() return render(request, '../templates/academic_procedures/messdueassistant.html' , { 'Mess_due' : Messdue, 'dues' : dues, }) else: return HttpResponse('person not found') # # # # # # @login_required(login_url='/accounts/login') def academic_procedures_faculty(request): current_user = get_object_or_404(User, username=request.user.username) #extra info details , user id used as main id user_details = ExtraInfo.objects.select_related('user','department').get(user = request.user) des = HoldsDesignation.objects.all().select_related().filter(user = request.user).first() fac_id = user_details fac_name = user_details.user.first_name + " " + user_details.user.last_name if str(des.designation) == "student": return HttpResponseRedirect('/academic-procedures/main/') elif str(request.user) == "acadadmin": return HttpResponseRedirect('/academic-procedures/main/') elif str(des.designation) == "Associate Professor" or str(des.designation) == "Professor" or str(des.designation) == "Assistant Professor": object_faculty = Faculty.objects.select_related('id','id__user','id__department').get(id = user_details) month = int(demo_date.month) sem = [] if month>=7 and month<=12: sem = [1,3,5,7] else: sem = [2,4,6,8] student_flag = False fac_flag = True Faculty_department =user_details.department # temp = Curriculum.objects.all().filter(course_code = "CS315L").first() # Curriculum_Instructor.objects.create(curriculum_id = temp, instructor_id = user_details) #thesis_supervision_request_list = ThesisTopicProcess.objects.all() thesis_supervision_request_list = ThesisTopicProcess.objects.all().select_related().filter(supervisor_id = object_faculty) approved_thesis_request_list = thesis_supervision_request_list.filter(approval_supervisor = True) pending_thesis_request_list = thesis_supervision_request_list.filter(pending_supervisor = True) faculty_list = get_faculty_list() assistantship_request_list = AssistantshipClaim.objects.all() hod_assistantship_request_list = assistantship_request_list.filter(ta_supervisor_remark = True).filter(thesis_supervisor_remark = True).filter(hod_approval = False) hod_approved_assistantship = assistantship_request_list.filter(ta_supervisor_remark = True).filter(thesis_supervisor_remark = True).filter(acad_approval = False) ta_approved_assistantship_request_list = AssistantshipClaim.objects.all().filter(ta_supervisor_remark=True) thesis_approved_assistantship_request_list = AssistantshipClaim.objects.all().filter(thesis_supervisor_remark=True) approved_assistantship_request_list = ta_approved_assistantship_request_list | thesis_approved_assistantship_request_list mtechseminar_request_list = MTechGraduateSeminarReport.objects.all().filter(Overall_grade = '') phdprogress_request_list = PhDProgressExamination.objects.all().filter(Overall_grade = '') courses_list = Curriculum_Instructor.objects.select_related('curriculum_id','instructor_id','curriculum_id__course_id','instructor_id__department','instructor_id__user').filter(instructor_id=user_details).filter(curriculum_id__sem__in = sem) r = range(4) return render( request, '../templates/academic_procedures/academicfac.html' , { 'student_flag' : student_flag, 'fac_flag' : fac_flag, 'hod_flag' : hod_status, 'thesis_supervision_request_list' : thesis_supervision_request_list, 'pending_thesis_request_list' : pending_thesis_request_list, 'approved_thesis_request_list' : approved_thesis_request_list, 'faculty_list' : faculty_list, 'courses_list' : courses_list, 'fac_id': fac_id, 'fac_name' : fac_name, 'department' : Faculty_department, 'assistantship_request_list' : assistantship_request_list, 'approved_assistantship_request_list' : approved_assistantship_request_list, 'hod_assistantship_request_list' : hod_assistantship_request_list, 'hod_approved_assistantship' : hod_approved_assistantship, 'mtechseminar_request_list' : mtechseminar_request_list, 'phdprogress_request_list' : phdprogress_request_list, 'r' : r, }) else: HttpResponse("user not found") @login_required(login_url='/accounts/login') def account(request): assistant_account_list = AssistantshipClaim.objects.filter(ta_supervisor_remark = True).filter(thesis_supervisor_remark = True) assistant_pen_list = AssistantshipClaim.objects.filter(ta_supervisor_remark = True).filter(thesis_supervisor_remark = True).filter(acad_approval = True).filter(account_approval = False) assistant_account_length = len(assistant_account_list.filter(acad_approval = True).filter(account_approval = False)) return render(request, '../templates/ais/account.html' , { 'assistant_account_length' : assistant_account_length, 'assistant_account_list' : assistant_account_list , 'assistant_pen_list' : assistant_pen_list, 'account_flag' : account_status, }) @login_required(login_url='/accounts/login') def academic_procedures_student(request): current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.select_related('user','department').get(id = request.user) des = HoldsDesignation.objects.all().select_related().filter(user = request.user).first() if str(des.designation) == "student": obj = Student.objects.select_related('id','id__user','id__department').get(id = user_details.id) if obj.programme.upper() == "PHD" : student_flag = True ug_flag = False masters_flag = False phd_flag = True fac_flag = False des_flag = False elif obj.programme.upper() == "M.DES" : student_flag = True ug_flag = False masters_flag = True phd_flag = False fac_flag = False des_flag = True elif obj.programme.upper() == "B.DES" : student_flag = True ug_flag = True masters_flag = False phd_flag = False fac_flag = False des_flag = True elif obj.programme.upper() == "M.TECH" : student_flag = True ug_flag = False masters_flag = True phd_flag = False fac_flag = False des_flag = False elif obj.programme.upper() == "B.TECH" : student_flag = True ug_flag = True masters_flag = False phd_flag = False fac_flag = False des_flag = False else : return HttpResponse("Student has no record") # masters_flag=True current_date = demo_date.date() year = demo_date.year registers = get_student_register(user_details.id) user_sem = get_user_semester(request.user, ug_flag, masters_flag, phd_flag) user_branch = get_user_branch(user_details) batch = obj.batch_id curr_id = batch.curriculum curr_sem_id = Semester.objects.get(curriculum = curr_id, semester_no = obj.curr_semester_no) try: next_sem_id = Semester.objects.get(curriculum = curr_id, semester_no = obj.curr_semester_no+1) except Exception as e: next_sem_id = curr_sem_id student_registration_check_pre = get_student_registrtion_check(obj,next_sem_id) student_registration_check_final = get_student_registrtion_check(obj,next_sem_id) cpi = get_cpi(user_details.id) # branch change flag branchchange_flag=True # True for testing, to be initialised as False if user_sem==2: branchchange_flag=True pre_registration_date_flag = get_pre_registration_eligibility(current_date) final_registration_date_flag = get_final_registration_eligibility(current_date) add_or_drop_course_date_flag = get_add_or_drop_course_date_eligibility(current_date) pre_registration_flag = False final_registration_flag = False if(student_registration_check_pre): pre_registration_flag = student_registration_check_pre.pre_registration_flag if(student_registration_check_final): final_registration_flag = student_registration_check_final.final_registration_flag acad_year = get_acad_year(user_sem, year) currently_registered_courses = get_currently_registered_courses(user_details.id, user_sem) next_sem_branch_course = get_sem_courses(next_sem_id, batch) current_sem_branch_course = get_sem_courses(curr_sem_id, batch) next_sem_registration_courses = get_sem_courses(next_sem_id, batch) final_registration_choice, unavailable_courses_nextsem = get_final_registration_choices(next_sem_registration_courses,batch.year) currently_registered_course = get_currently_registered_course(obj,obj.curr_semester_no) current_credits = get_current_credits(currently_registered_course) cur_cpi=0.0 details = { 'current_user': current_user, 'year': acad_year, 'user_sem': user_sem, 'user_branch' : str(user_branch), 'cpi' : cpi, } cur_cpi=details['cpi'] try: pre_registered_course = InitialRegistration.objects.all().filter(student_id = user_details.id,semester_id = next_sem_id) pre_registered_course_show = pre_registered_course except Exception as e: pre_registered_course = None pre_registered_course_show = None try: final_registered_course = FinalRegistration.objects.all().filter(student_id = user_details.id,semester_id = next_sem_id) add_courses_options = get_add_course_options(current_sem_branch_course, currently_registered_course, batch.year) drop_courses_options = get_drop_course_options(currently_registered_course) except Exception as e: final_registered_course = None drop_courses_options = None add_courses_options = None fee_payment_mode_list = dict(Constants.PaymentMode) performance_list = [] result_announced = False for i in currently_registered_courses: try: performance_obj = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = obj, curr_id = i).first() except Exception as e: performance_obj = None performance_list.append(performance_obj) for i in currently_registered_courses: try: result_announced_obj = MarkSubmissionCheck.objects.select_related().get(curr_id = i) if result_announced_obj: if result_announced_obj.announced == True: result_announced = result_announced_obj.announced else: continue except Exception as e: continue faculty_list = None thesis_request_list = None assistantship_list = None pre_existing_thesis_flag = False teaching_credit_registration_course = None if masters_flag: faculty_list = get_faculty_list() thesis_request_list = ThesisTopicProcess.objects.all().filter(student_id = obj) assistantship_list = AssistantshipClaim.objects.all().filter(student = obj) pre_existing_thesis_flag = get_thesis_flag(obj) if phd_flag: pre_existing_thesis_flag = get_thesis_flag(obj) teaching_credit_registration_course = Curriculum.objects.all().select_related().filter(batch = 2016, sem =6) # Dues Check #Initializing all due with -1 value , since generating no due certificate requires total due=0 lib_d, pc_d, hos_d, mess_d, acad_d = -1, -1, -1, -1, -1 if student_flag: try: obj = Dues.objects.select_related().get(student_id=Student.objects.select_related('id','id__user','id__department').get(id=request.user.username)) lib_d = obj.library_due pc_d = obj.placement_cell_due hos_d = obj.hostel_due mess_d = obj.mess_due acad_d = obj.academic_due except ObjectDoesNotExist: logging.warning("entry in DB not found for student") tot_d = lib_d + acad_d + pc_d + hos_d + mess_d obj = Student.objects.select_related('id','id__user','id__department').get(id=request.user.username) course_list = [] for i in registers: course_list.append(i.curr_id) attendence = [] for i in course_list: instructors = Curriculum_Instructor.objects.select_related('curriculum_id','instructor_id','curriculum_id__course_id','instructor_id__department','instructor_id__user').filter(curriculum_id=i) pr,ab=0,0 for j in list(instructors): presents = Student_attendance.objects.select_related('student_id','student_id__id','student_id__id__user','student_id__id__department','instructor_id','instructor_id__curriculum_id','instructor_id__curriculum_id__course_id','instructor_id__instructor_id','instructor_id__instructor_id__user','instructor_id__instructor_id__department').filter(student_id=obj,instructor_id=j, present=True) absents = Student_attendance.objects.select_related('student_id','student_id__id','student_id__id__user','student_id__id__department','instructor_id','instructor_id__curriculum_id','instructor_id__curriculum_id__course_id','instructor_id__instructor_id','instructor_id__instructor_id__user','instructor_id__instructor_id__department').filter(student_id=obj,instructor_id=j, present=False) pr += len(presents) ab += len(absents) attendence.append((i,pr,pr+ab)) cur_spi='Sem results not available' # To be fetched from db if result uploaded Mess_bill = Monthly_bill.objects.filter(student_id = obj) Mess_pay = Payments.objects.filter(student_id = obj) # Branch Change Form save if request.method=='POST': if True: # Processing Branch Change form objb = BranchChange() objb.branches=request.POST['branches'] objb.save() return render( request, '../templates/academic_procedures/academic.html', {'details': details, # 'calendar': calendar, 'currently_registered': currently_registered_course, 'pre_registered_course' : pre_registered_course, 'pre_registered_course_show' : pre_registered_course_show, 'final_registered_course' : final_registered_course, 'current_credits' : current_credits, 'courses_list': next_sem_branch_course, 'fee_payment_mode_list' : fee_payment_mode_list, 'next_sem_registration_courses': next_sem_registration_courses, 'final_registration_choice' : final_registration_choice, 'unavailable_courses_nextsem' : unavailable_courses_nextsem, 'performance_list' : performance_list, 'faculty_list' : faculty_list, 'thesis_request_list' : thesis_request_list, 'assistantship_list' : assistantship_list, 'next_sem': next_sem_id, 'curr_sem': curr_sem_id, # 'final_register': final_register, 'student_flag' : student_flag, 'ug_flag' : ug_flag, 'masters_flag' : masters_flag, 'phd_flag' : phd_flag, 'fac_flag' : fac_flag, 'des_flag' : des_flag, 'result_announced' : result_announced, 'thesis_flag' : pre_existing_thesis_flag, # 'change_branch': change_branch, # 'add_course': add_course, 'add_courses_options': add_courses_options, 'drop_courses_options' : drop_courses_options, # 'pre_register': pre_register, 'prd': pre_registration_date_flag, 'frd': final_registration_date_flag, 'adc_date_flag': add_or_drop_course_date_flag, 'pre_registration_flag' : pre_registration_flag, 'final_registration_flag': final_registration_flag, # 'final_r': final_register_1, 'teaching_credit_registration_course' : teaching_credit_registration_course, 'cur_cpi': cur_cpi, 'cur_spi': cur_spi, # 'mincr': minimum_credit, 'Mess_bill' : Mess_bill, 'Mess_pay' : Mess_pay, 'lib_d':lib_d, 'acad_d':acad_d, 'mess_d':mess_d, 'pc_d':pc_d, 'hos_d':hos_d, 'tot_d':tot_d, 'attendence':attendence, 'BranchChangeForm': BranchChangeForm(), 'BranchFlag':branchchange_flag, 'assistantship_flag' : student_status, } ) elif str(des.designation) == "Associate Professor" : return HttpResponseRedirect('/academic-procedures/main/') elif str(request.user) == "acadadmin" : return HttpResponseRedirect('/academic-procedures/main/') else: return HttpResponse('user not found') def dues_pdf(request): template = get_template('academic_procedures/dues_pdf.html') current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.get(id = request.user) des = HoldsDesignation.objects.all().filter(user = request.user).first() name = ExtraInfo.objects.all().filter(id=request.user.username)[0].user if str(des.designation) == "student": obj = Student.objects.get(id = user_details.id) context = { 'student_id' : request.user.username, 'degree' : obj.programme.upper(), 'name' : name.first_name +" "+ name.last_name, 'branch' : get_user_branch(user_details), } pdf = render_to_pdf('academic_procedures/dues_pdf.html',context) if pdf: response = HttpResponse(pdf, content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename=Bonafide.pdf' return response return HttpResponse("PDF could not be generated") def facultyData(request): current_value = request.POST['current_value'] try: # students =ExtraInfo.objects.all().filter(user_type = "student") faculty = ExtraInfo.objects.all().filter(user_type = "faculty") facultyNames = [] for i in faculty: name = i.user.first_name + " " + i.user.last_name if current_value != "": Lowname = name.lower() Lowcurrent_value = current_value.lower() if Lowcurrent_value in Lowname: facultyNames.append(name) else: facultyNames.append(name) faculty = json.dumps(facultyNames) return HttpResponse(faculty) except Exception as e: return HttpResponse("error") def get_course_to_show_pg(initial_courses, final_register): ''' This function fetches the PG courses from the database and store them into list x. @param: initial_courses - The courses that the registered PG student has already selected. final_register - Finally registered courses of the user. @variables: x - The courses that are not being finally registered. ''' x = [] for i in initial_courses: flag = 0 for j in final_register: if(str(i.course_name) == str(j.course_id)): flag = 1 if(flag == 0): x.append(i) return x def get_pg_course(usersem, specialization): ''' This function fetches the PG Spcialization courses from the database and store them into list result. @param: usersem - Current semester of the user. specialization - has the specialization of the logged in PG student. @variables: result - The selected Specialization courses. ''' usersem = 2 obj = CoursesMtech.objects.select_related().filter(specialization=specialization) obj3 = CoursesMtech.objects.select_related().filter(specialization="all") obj2 = Course.objects.filter(sem=usersem) result = [] for i in obj: p = i.c_id for j in obj2: if(str(j.course_name) == str(p)): result.append(j) for i in obj3: p = i.c_id for j in obj2: if(str(j.course_name) == str(p)): result.append(j) return result def get_add_course(branch, final): ''' This function shows the courses that were added after pre-registration. @param: branch - Branch of the Logged in student. final - all the added courses after pre-registration. @variables: x - all the added courses after pre-registration. total_course - al the remaining courses that were not added. ''' x = [] for i in final: x.append(i.course_id) total_course = [] for i in branch: if i not in x: total_course.append(i) return total_course @login_required(login_url='/accounts/login') def apply_branch_change(request): ''' This function is used to verify the details to apply for the branch change. It checks the requirement and tells the user if he/she can change the branch or not. @param: request - trivial @variables: branches - selected branches by the user. student - details of the logged in user. extraInfo_user - gets the user details from the extrainfo model. cpi_data - cpi of the logged in user. semester - user's semester. label_for_change - boolean variable to check the eligibility. ''' # Get all the departments # branch_list = DepartmentInfo.objects.all() branches = ['CSE', 'ME', 'ECE'] # Get the current logged in user student = User.objects.all().filter(username=request.user).first() # Get the current logged in user's cpi extraInfo_user = ExtraInfo.objects.all().select_related('user','department').filter(user=student).first() cpi_data = Student.objects.all().select_related('id','id__user','id__department').filter(id=extraInfo_user.id).first() # for i in range(len(branch_list)): # branch_cut = branch_list[i].name # branches.append(branch_cut) label_for_change = False semester = get_user_semester(extraInfo_user.id, ug_flag, masters_flag, phd_flag) # semester = 2 if cpi_data.cpi >= 8 and semester >= 1 and semester <= 2: label_for_change = True context = { 'branches': branches, 'student': student, 'cpi_data': cpi_data, 'label_for_change': label_for_change, } return context def branch_change_request(request): ''' This function is used to apply the branch change request. @param: request - trivial @variables: current_user - details of the current user. student - details of the logged in student. extraInfo_user - gets the user details from the extrainfo model. department - user's applied brach. ''' if request.method == 'POST': current_user = get_object_or_404(User, username=request.user.username) extraInfo_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() student = Student.objects.all().select_related('id','id__user','id__department').filter(id=extraInfo_user.id).first() department = DepartmentInfo.objects.all().filter(id=int(request.POST['branches'])).first() change_save = BranchChange( branches=department, user=student ) change_save.save() return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') @login_required(login_url='/acounts/login') def approve_branch_change(request): ''' This function is used to approve the branch change requests from acad admin's frame. @param: request - trivial @variables: choices - list of students who applied for the branch change. branches - selected brances by the student. get_student - updating the student's branch after approval. branch - branch of the current user. ''' if request.method == 'POST': values_length = len(request.POST.getlist('choice')) choices = [] branches = [] for i in range(values_length): for key, values in request.POST.lists(): if key == 'branch': branches.append(values[i]) if key == 'choice': choices.append(values[i]) else: continue changed_branch = [] for i in range(len(branches)): get_student = ExtraInfo.objects.all().select_related('user','department').filter(id=choices[i][:7]) get_student = get_student[0] branch = DepartmentInfo.objects.all().filter(name=branches[i]) get_student.department = branch[0] changed_branch.append(get_student) student = Student.objects.all().select_related('id','id__user','id__department').filter(id=choices[i][:7]).first() change = BranchChange.objects.select_related('branches','user','user__id','user__id__user','user__id__department').all().filter(user=student) change = change[0] change.delete() try: ExtraInfo.objects.bulk_update(changed_branch,['department']) messages.info(request, 'Apply for branch change successfull') except: messages.info(request, 'Unable to proceed, we will get back to you very soon') return HttpResponseRedirect('/academic-procedures/main') else: messages.info(request, 'Unable to proceed') return HttpResponseRedirect('/academic-procedures/main') # Function returning Branch , Banch data which was required many times def get_batch_query_detail(month, year): ''' This function is used to get the batch's detail simply return branch which is required often. @param: month - current month year - current year. @variables: stream1 - string BTech. stream2 - string MTech. query_option1 - year to be shown on students course sho page acad admin ''' stream1 = "B.Tech " stream2 = "M.Tech " query_option1 = {} if(month >= 7): query_option1 = { stream1+str(year): stream1+str(year), stream1+str(year-1): stream1+str(year-1), stream1+str(year-2): stream1+str(year-2), stream1+str(year-3): stream1+str(year-3), stream1+str(year-4): stream1+str(year-4), stream2+str(year): stream2+str(year), stream2+str(year-1): stream2+str(year)} else: query_option1 = { stream1+str(year-1): stream1+str(year-1), stream1+str(year-2): stream1+str(year-2), stream1+str(year-3): stream1+str(year-3), stream1+str(year-4): stream1+str(year-4), stream1+str(year-5): stream1+str(year-5), stream2+str(year-1): stream2+str(year-1), stream2+str(year-2): stream2+str(year-2), } return query_option1 # view when Admin drops a user course @login_required(login_url='/accounts/login') def dropcourseadmin(request): ''' This function is used to get the view when Acad Admin drops any course of any student. @param: request - trivial @variables: data - user's id. rid - Registration ID of Registers table response_data - data to be responded. ''' data = request.GET.get('id') data = data.split(" - ") course_code = data[1] # need to add batch and programme curriculum_object = Curriculum.objects.all().filter(course_code = course_code) try: Register.objects.filter(curr_id = curriculum_object.first(),student_id=int(data[0])).delete() except: print("hello ") response_data = {} return HttpResponse(json.dumps(response_data), content_type="application/json") @login_required(login_url='/accounts/login') def gen_course_list(request): if(request.POST): try: batch = request.POST['batch'] course_id = request.POST['course'] course = Courses.objects.get(id = course_id) obj = course_registration.objects.all().filter(course_id = course) except Exception as e: batch="" course="" obj="" students = [] for i in obj: if i.student_id.batch_id.year == int(batch): students.append(i.student_id) html = render_to_string('academic_procedures/gen_course_list.html', {'students': students, 'batch':batch, 'course':course_id}, request) maindict = {'html': html} obj = json.dumps(maindict) return HttpResponse(obj, content_type='application/json') # view where Admin verifies the registered courses of every student @login_required(login_url='/accounts/login') def verify_course(request): ''' This function is used to get the view when Acad Admin verifies the registered courses of every student. @param: request - trivial @variables: current_user - details of current user. desig_id - Finds the Acad admin whose designation is "Upper Division Clerk". acadadmin - details of the acad person(logged in). roll_no - roll number of all the students. firstname - firstname of the students. year - current year. month - current month. date - current date. ''' if(request.POST): current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() desig_id = Designation.objects.all().filter(name='adminstrator').first() temp = HoldsDesignation.objects.all().select_related().filter(designation = desig_id).first() acadadmin = temp.working k = str(user_details).split() final_user = k[2] if (str(acadadmin) != str(final_user)): return HttpResponseRedirect('/academic-procedures/') roll_no = request.POST["rollNo"] obj = ExtraInfo.objects.all().select_related('user','department').filter(id=roll_no).first() firstname = obj.user.first_name lastname = obj.user.last_name dict2 = {'roll_no': roll_no, 'firstname': firstname, 'lastname': lastname} obj2 = Student.objects.all().select_related('id','id__user','id__department').filter(id=roll_no).first() obj = Register.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = obj2) curr_sem_id = obj2.curr_semester_no details = [] current_sem_courses = get_currently_registered_course(roll_no,curr_sem_id) idd = obj2 for z in current_sem_courses: z=z[1] course_code,course_name= str(z).split(" - ") k = {} # reg_ig has course registration id appended with the the roll number # so that when we have removed the registration we can be redirected to this view k['reg_id'] = roll_no+" - "+course_code k['rid'] = roll_no+" - "+course_code # Name ID Confusion here , be carefull courseobj2 = Courses.objects.all().filter(code = course_code) # if(str(z.student_id) == str(idd)): for p in courseobj2: k['course_id'] = course_code k['course_name'] = course_name k['sem'] = curr_sem_id k['credits'] = p.credit details.append(k) year = demo_date.year month = demo_date.month yearr = str(year) + "-" + str(year+1) semflag = 0 if(month >= 7): semflag = 1 else: semflag = 2 # TO DO Bdes date = {'year': yearr, 'semflag': semflag} html = render_to_string('academic_procedures/studentCourses.html', {'details': details, 'dict2': dict2, 'date': date}, request) maindict = {'html': html} obj = json.dumps(maindict) return HttpResponse(obj, content_type='application/json') # view to generate all list of students def acad_branch_change(request): ''' This function is used to approve the branch changes requested by the students. @param: request - trivial @variables: current_user - logged in user desig_id - Finds the Acad admin whose designation is "Upper Division Clerk". acadadmin - details of the logged in acad admin. user_details - details of the logged in user. change_queries - gets all the details of branch changes from the database. year - current year. month - current month date - current date. total_cse_seats - total availbale CSE seats. total_ece_seats - total availbale ECE seats. total_me_seats - total availbale ME seats. available_cse_seats - availbale CSE seats. available_ece_seats - available ECE seats. available_me_seats - available ME seats. ''' current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() desig_id = Designation.objects.all().filter(name='Upper Division Clerk') temp = HoldsDesignation.objects.all().select_related().filter(designation = desig_id).first() acadadmin = temp.working k = str(user_details).split() final_user = k[2] if (str(acadadmin) != str(final_user)): return HttpResponseRedirect('/academic-procedures/') # year = datetime.datetime.now().year # month = datetime.datetime.now().month year = demo_date.year month = demo_date.month yearr = str(year) + "-" + str(year+1) semflag = 0 queryflag = 0 query_option1 = get_batch_query_detail(month, year) query_option2 = {"CSE": "CSE", "ECE": "ECE", "ME": "ME"} if(month >= 7): semflag = 1 else: semflag = 2 # TO DO Bdes date = {'year': yearr, 'month': month, 'semflag': semflag, 'queryflag': queryflag} change_queries = BranchChange.objects.select_related('branches','user','user__id','user__id__user','user__id__department').all() # Total seats taken as some random value total_cse_seats = 100 total_ece_seats = 100 total_me_seats = 100 total_cse_filled_seats = 98 total_ece_filled_seats = 98 total_me_filled_seats = 98 available_cse_seats = total_cse_seats - total_cse_filled_seats available_ece_seats = total_ece_seats - total_ece_filled_seats available_me_seats = total_me_seats - total_me_filled_seats initial_branch = [] change_branch = [] available_seats = [] applied_by = [] cpi = [] for i in change_queries: applied_by.append(i.user.id) change_branch.append(i.branches.name) students = Student.objects.all().select_related('id','id__user','id__department').filter(id=i.user.id).first() user_branch = ExtraInfo.objects.all().select_related('user','department').filter(id=students.id.id).first() initial_branch.append(user_branch.department.name) cpi.append(students.cpi) if i.branches.name == 'CSE': available_seats.append(available_cse_seats) elif i.branches.name == 'ECE': available_seats.append(available_ece_seats) elif i.branches.name == 'ME': available_seats.append(available_me_seats) else: available_seats.append(0) lists = zip(applied_by, change_branch, initial_branch, available_seats, cpi) tag = False if len(initial_branch) > 0: tag = True context = { 'list': lists, 'total': len(initial_branch), 'tag': tag } return render( request, '../templates/academic_procedures/academicadminforbranch.html', { 'context': context, 'lists': lists, 'date': date, 'query_option1': query_option1, 'query_option2': query_option2, 'result_year' : result_year } ) @login_required(login_url='/accounts/login') def phd_details(request): ''' This function is used to extract the details of the PHD details. @param: request - trivial @variables: current_user - logged in user student - details of the logged in student. thesis - gets the thesis details of the PhD student. faculty - gets the chosen faculty's details. user_details - details of the logged in user. total_thesis - total number of applied thesis. ''' current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() student = Student.objects.all().select_related('id','id__user','id__department').filter(id=user_details.id).first() thesis = Thesis.objects.all().filter(student_id=student).first() #Professor = Designation.objects.all().filter(name='Professor') #faculty = ExtraInfo.objects.all().filter(department=user_details.department, # designation='Professor') f1 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Assistant Professor")) f2 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Professor")) f3 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Associate Professor")) faculty = list(chain(f1,f2,f3)) faculties_list = [] for i in faculty: faculties_list.append(str(i.user.first_name)+" "+str(i.user.last_name)) total_thesis = True if(thesis is None): total_thesis = False context = { 'total_thesis': total_thesis, 'thesis': thesis, } return render( request, '../templates/academic_procedures/phdregistration.html', {'context': context, 'faculty': faculties_list, 'student': student} ) # # # # # # ## # # # # ## # # # # # # ### # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def get_student_register(id): return Register.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = id) def get_pre_registration_eligibility(current_date): try: pre_registration_date = Calendar.objects.all().filter(description="Pre Registration").first() prd_start_date = pre_registration_date.from_date prd_end_date = pre_registration_date.to_date if current_date>=prd_start_date and current_date<=prd_end_date: return True else : return False except Exception as e: return False def get_final_registration_eligibility(current_date): try: frd = Calendar.objects.all().filter(description="Physical Reporting at the Institute").first() frd_start_date = frd.from_date frd_end_date = frd.to_date if current_date>=frd_start_date and current_date<=frd_end_date: return True else : return False except Exception as e: return False def get_add_or_drop_course_date_eligibility(current_date): try: add_drop_course_date = Calendar.objects.all().filter(description="Last Date for Adding/Dropping of course").first() adc_start_date = add_drop_course_date.from_date adc_end_date = add_drop_course_date.to_date if current_date>=adc_start_date and current_date<=adc_end_date: return True else : return False except Exception as e: return False def get_course_verification_date_eligibilty(current_date): try: course_verification_date = Calendar.objects.all().filter(description="course verification date").first() verif_start_date = course_verification_date.from_date verif_end_date = course_verification_date.to_date if current_date>=verif_start_date and current_date<=verif_end_date: return True else : return False except Exception as e: return False def get_user_branch(user_details): return user_details.department.name def get_acad_year(user_sem, year): if user_sem%2 == 1: acad_year = str(year) + "-" + str(year+1) elif user_sem%2 == 0: acad_year = str(year-1) + "-" + str(year) return acad_year def pre_registration(request): if request.method == 'POST': try: current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() current_user = Student.objects.all().filter(id=current_user.id).first() sem_id = Semester.objects.get(id = request.POST.get('semester')) count = request.POST.get('ct') count = int(count) reg_curr=[] for i in range(1, count+1): i = str(i) choice = "choice["+i+"]" slot = "slot["+i+"]" if request.POST.get(choice)!='0': course_id = Courses.objects.get(id = request.POST.get(choice)) courseslot_id = CourseSlot.objects.get(id = request.POST.get(slot)) p = InitialRegistration( course_id = course_id, semester_id = sem_id, student_id = current_user, course_slot_id = courseslot_id ) else: continue reg_curr.append(p) InitialRegistration.objects.bulk_create(reg_curr) try: check = StudentRegistrationChecks( student_id = current_user, pre_registration_flag = True, final_registration_flag = False, semester_id = sem_id ) check.save() messages.info(request, 'Pre-Registration Successful') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') def get_student_registrtion_check(obj, sem): return StudentRegistrationChecks.objects.all().filter(student_id = obj, semester_id = sem).first() def final_registration(request): if request.method == 'POST': if request.POST.get('type_reg') == "register" : try: current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() current_user = Student.objects.all().filter(id=current_user.id).first() sem_id = Semester.objects.get(id = request.POST.get('semester')) choice = request.POST.getlist('choice') slot = request.POST.getlist('slot') values_length = 0 values_length = len(choice) mode = str(request.POST.get('mode')) transaction_id = str(request.POST.get('transaction_id')) f_reg = [] for x in range(values_length): if choice[x] != '0': course_id = Courses.objects.get(id = choice[x]) courseslot_id = CourseSlot.objects.get(id = slot[x]) if FinalRegistration .objects.filter(student_id__batch_id__year = current_user.batch_id.year, course_id = course_id).count() < courseslot_id.max_registration_limit: p = FinalRegistration( course_id = course_id, semester_id=sem_id, student_id= current_user, course_slot_id = courseslot_id, verified = False ) f_reg.append(p) else: messages.info(request, 'Final-Registration Falied\n'+course_id.code+'-'+course_id.name+' registration limit reached.') return HttpResponseRedirect('/academic-procedures/main') FinalRegistration.objects.bulk_create(f_reg) obj = FeePayments( student_id = current_user, semester_id = sem_id, mode = mode, transaction_id = transaction_id ) obj.save() try: StudentRegistrationChecks.objects.filter(student_id = current_user, semester_id = sem_id).update(final_registration_flag = True) messages.info(request, 'Final-Registration Successful') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') elif request.POST.get('type_reg') == "change_register" : try: current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() current_user = Student.objects.all().filter(id=current_user.id).first() sem_id = Semester.objects.get(id = request.POST.get('semester')) FinalRegistration.objects.filter(student_id = current_user, semester_id = sem_id).delete() count = request.POST.get('ct') count = int(count) mode = str(request.POST.get('mode')) transaction_id = str(request.POST.get('transaction_id')) f_reg=[] for i in range(1, count+1): i = str(i) choice = "choice["+i+"]" slot = "slot["+i+"]" if request.POST.get(choice) != '0': try: course_id = Courses.objects.get(id = request.POST.get(choice)) courseslot_id = CourseSlot.objects.get(id = request.POST.get(slot)) if FinalRegistration .objects.filter(student_id__batch_id__year = current_user.batch_id.year, course_id = course_id).count() < courseslot_id.max_registration_limit: p = FinalRegistration( course_id = course_id, semester_id=sem_id, student_id= current_user, course_slot_id = courseslot_id, verified = False ) f_reg.append(p) else: messages.info(request, 'Final-Registration Falied\n'+course_id.code+'-'+course_id.name+' registration limit reached.') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') FinalRegistration.objects.bulk_create(f_reg) obj = FeePayments( student_id = current_user, semester_id = sem_id, mode = mode, transaction_id = transaction_id ) obj.save() try: StudentRegistrationChecks.objects.filter(student_id = current_user, semester_id = sem_id).update(final_registration_flag = True) messages.info(request, 'registered course change Successful') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') def get_cpi(id): obj = Student.objects.select_related('id','id__user','id__department').get(id = id) return obj.cpi def register(request): if request.method == 'POST': try: current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() current_user = Student.objects.all().select_related('id','id__user','id__department').filter(id=current_user.id).first() values_length = 0 values_length = len(request.POST.getlist('choice')) sem = request.POST.get('semester') for x in range(values_length): reg_curr=[] for key, values in request.POST.lists(): if (key == 'choice'): try: last_id = Register.objects.all().aggregate(Max('r_id')) last_id = last_id['r_id__max']+1 except Exception as e: last_id = 1 curr_id = get_object_or_404(Curriculum, curriculum_id=values[x]) p = Register( r_id=last_id, curr_id=curr_id, year=current_user.batch, student_id=current_user, semester=sem ) reg_curr.append(p) else: continue Register.objects.bulk_create(reg_curr) messages.info(request, 'Pre-Registration Successful') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') def add_courses(request): """ This function is used to add courses for currernt semester @param: request - contains metadata about the requested page @variables: current_user - contains current logged in user sem_id - contains current semester id count - no of courses to be added course_id - contains course id for a particular course course_slot_id - contains course slot id for a particular course reg_curr - list of registered courses object choice - contains choice of a particular course slot - contains slot of a particular course # gg and cs """ if request.method == 'POST': try: current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().filter(user=current_user).first() current_user = Student.objects.all().filter(id=current_user.id).first() sem_id = Semester.objects.get(id = request.POST.get('semester')) count = request.POST.get('ct') count = int(count) reg_curr=[] for i in range(1, count+1): choice = "choice["+str(i)+"]" slot = "slot["+str(i)+"]" try: course_id = Courses.objects.get(id = request.POST.get(choice)) courseslot_id = CourseSlot.objects.get(id = request.POST.get(slot)) # Check if maximum course registration limit has not reached and student has not already registered for that course if course_registration.objects.filter(student_id__batch_id__year = current_user.batch_id.year, course_id = course_id).count() < courseslot_id.max_registration_limit and (course_registration.objects.filter(course_id=course_id, student_id=current_user).count() == 0): p = course_registration( course_id = course_id, student_id=current_user, course_slot_id = courseslot_id, semester_id=sem_id ) if p not in reg_curr: reg_curr.append(p) except Exception as e: continue course_registration.objects.bulk_create(reg_curr) return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') def drop_course(request): if request.method == 'POST': try: current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() current_user = Student.objects.all().get(id=current_user.id) values_length = 0 values_length = len(request.POST.getlist('choice')) sem_id = request.POST.get('semester') sem = Semester.objects.get(id = sem_id) for x in range(values_length): for key, values in request.POST.lists(): if (key == 'choice'): course_id = get_object_or_404(Courses, id=values[x]) course_registration.objects.filter(course_id = course_id, student_id = current_user).delete() else: continue messages.info(request, 'Course Successfully Dropped') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') def add_thesis(request): if request.method == 'POST': try: if(str(request.POST.get('by'))=="st"): thesis_topic = request.POST.get('thesis_topic') research_area = request.POST.get('research_area') supervisor_faculty = get_object_or_404(User, username = request.POST.get('supervisor')) supervisor_faculty = ExtraInfo.objects.select_related('user','department').get(user = supervisor_faculty) supervisor_faculty = Faculty.objects.select_related('id','id__user','id__department').get(id = supervisor_faculty) try: co_supervisor_faculty = get_object_or_404(User, username = request.POST.get('co_supervisor')) co_supervisor_faculty = ExtraInfo.objects.select_related('user','department').get(user = co_supervisor_faculty) co_supervisor_faculty = Faculty.objects.select_related('id','id__user','id__department').get(id = co_supervisor_faculty) except Exception as e: co_supervisor_faculty = None current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() current_user = Student.objects.all().select_related('id','id__user','id__department').filter(id=current_user.id).first() try: curr_id = request.POST.get('curr_id') curr_id = Curriculum.objects.select_related().get(curriculum_id = curr_id) except Exception as e: curr_id = None p = ThesisTopicProcess( student_id = current_user, research_area = research_area, thesis_topic = thesis_topic, curr_id = curr_id, supervisor_id = supervisor_faculty, co_supervisor_id = co_supervisor_faculty, submission_by_student = True, pending_supervisor = True, ) p.save() messages.info(request, 'Thesis Successfully Added') return HttpResponseRedirect('/academic-procedures/main/') elif(str(request.POST.get('by'))=="fac"): obj = request.POST.get('obj_id') obj = ThesisTopicProcess.objects.get(id = obj) member1 = get_object_or_404(User, username = request.POST.get('member1')) member1 = ExtraInfo.objects.select_related('user','department').get(user = member1) member1 = Faculty.objects.select_related('id','id__user','id__department').get(id = member1) member2 = get_object_or_404(User, username = request.POST.get('member2')) member2 = ExtraInfo.objects.select_related('user','department').get(user = member2) member2 = Faculty.objects.select_related('id','id__user','id__department').get(id = member2) try: member3 = get_object_or_404(User, username = request.POST.get('member3')) member3 = ExtraInfo.objects.select_related('user','department').get(user = member3) member3 = Faculty.objects.select_related('id','id__user','id__department').get(id = member3) except Exception as e: member3 = None if(str(request.POST.get('approval'))=="yes"): obj.pending_supervisor = False obj.member1 = member1 obj.member2 = member2 obj.member3 = member3 obj.approval_supervisor = True obj.forwarded_to_hod = True obj.pending_hod = True obj.save() elif(request.POST.get('approval')=="no"): obj.pending_supervisor = False obj.member1 = member1 obj.member2 = member2 obj.member3 = member3 obj.approval_supervisor = False obj.forwarded_to_hod = False obj.pending_hod = False obj.save() else: logging.warning("Not approved till now") return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main/') return HttpResponseRedirect('/academic-procedures/main/') def get_final_registration_choices(branch_courses,batch): course_option = [] unavailable_courses = [] for courseslot in branch_courses: max_limit = courseslot.max_registration_limit lis = [] for course in courseslot.courses.all(): if FinalRegistration .objects.filter(student_id__batch_id__year = batch, course_id = course).count() < max_limit: lis.append(course) else: unavailable_courses.append(course) course_option.append((courseslot, lis)) return course_option, unavailable_courses def get_add_course_options(branch_courses, current_register, batch): course_option = [] courses = current_register slots = [] for c in current_register: slots.append(c[0]) for courseslot in branch_courses: max_limit = courseslot.max_registration_limit if courseslot not in slots: lis = [] for course in courseslot.courses.all(): if course_registration.objects.filter(student_id__batch_id__year = batch, course_id = course).count() < max_limit: lis.append(course) course_option.append((courseslot, lis)) return course_option def get_drop_course_options(current_register): courses = [] for item in current_register: if item[0].type != "Professional Core": courses.append(item[1]) return courses def get_user_semester(roll_no, ug_flag, masters_flag, phd_flag): roll = str(roll_no) now = demo_date year, month = now.year, int(now.month) y = str(year) if(ug_flag): if(roll[2].isdigit()): roll = int(roll[:4]) else: roll = int("20"+roll[:2]) user_year = year - roll elif(masters_flag or phd_flag): roll = int(roll[:2]) user_year = int(y[-2:]) - roll sem = 'odd' if month >= 7 and month<=12: sem = 'odd' else: sem = 'even' if sem == 'odd': return user_year * 2 + 1 else: return user_year * 2 def get_branch_courses(roll_no, user_sem, branch): roll = str(roll_no) year = int(roll[:4]) courses = Curriculum.objects.all().select_related().filter(batch=(year)) courses = courses.filter(sem = user_sem) courses = courses.filter(floated = True) course_list = [] for course in courses: if branch.lower() == course.branch.lower() : course_list.append(course) elif course.branch.lower() == 'common': course_list.append(course) return course_list def get_sem_courses(sem_id, batch): courses = [] course_slots = CourseSlot.objects.all().filter(semester_id = sem_id) for slot in course_slots: courses.append(slot) return courses def get_currently_registered_courses(id, user_sem): obj = Register.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id=id, semester=user_sem) ans = [] for i in obj: course = Curriculum.objects.select_related().get(curriculum_id=i.curr_id.curriculum_id) ans.append(course) return ans def get_currently_registered_course(id, sem_id): obj = course_registration.objects.all().filter(student_id = id, semester_id=sem_id) courses = [] for i in obj: courses.append((i.course_slot_id,i.course_id)) return courses def get_current_credits(obj): credits = 0 for i in obj: credits = credits + i[1].credit return credits def get_faculty_list(): f1 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Assistant Professor")) f2 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Professor")) f3 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Associate Professor")) faculty = list(chain(f1,f2,f3)) faculty_list = [] for i in faculty: faculty_list.append(i) return faculty_list def get_thesis_flag(student): obj = ThesisTopicProcess.objects.all().select_related().filter(student_id = student) if(obj): return True else: return False @login_required(login_url='/accounts/login') def acad_person(request): current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.select_related('user','department').get(user = request.user) des = HoldsDesignation.objects.all().select_related().filter(user = request.user).first() if str(des.designation) == "student": return HttpResponseRedirect('/academic-procedures/main/') elif str(des.designation) == "Associate Professor" : return HttpResponseRedirect('/academic-procedures/main/') elif str(request.user) == "acadadmin" : # year = datetime.datetime.now().year # month = datetime.datetime.now().month year = demo_date.year month = demo_date.month yearr = str(year) + "-" + str(year+1) semflag = 0 queryflag = 0 query_option1 = get_batch_query_detail(month, year) query_option2 = {"CSE": "CSE", "ECE": "ECE", "ME": "ME"} if(month >= 7): semflag = 1 else: semflag = 2 date = {'year': yearr, 'month': month, 'semflag': semflag, 'queryflag': queryflag} result_year = [] result_year = get_batch_all() # result_year = [1,2] change_queries = BranchChange.objects.select_related('branches','user','user__id','user__id__user','user__id__department').all() course_verification_date = get_course_verification_date_eligibilty(demo_date.date()) initial_branch = [] change_branch = [] available_seats = [] applied_by = [] cpi = [] for i in change_queries: applied_by.append(i.user.id) change_branch.append(i.branches.name) students = Student.objects.all().select_related('id','id__user','id__department').filter(id=i.user.id).first() user_branch = ExtraInfo.objects.all().select_related('user','department').filter(id=students.id.id).first() initial_branch.append(user_branch.department.name) cpi.append(students.cpi) if i.branches.name == 'CSE': available_seats.append(available_cse_seats) elif i.branches.name == 'ECE': available_seats.append(available_ece_seats) elif i.branches.name == 'ME': available_seats.append(available_me_seats) lists = zip(applied_by, change_branch, initial_branch, available_seats, cpi) tag = False if len(initial_branch) > 0: tag = True context = { 'list': lists, 'total': len(initial_branch), 'tag': tag } submitted_course_list = [] obj_list = MarkSubmissionCheck.objects.all().select_related().filter(verified= False,submitted = True) for i in obj_list: if int(i.curr_id.batch)+int(i.curr_id.sem)/2 == int(demo_date.year): submitted_course_list.append(i.curr_id) else: continue # submitted_course_list = SemesterMarks.objects.all().filter(curr_id__in = submitted_course_list) batch_grade_data = get_batch_grade_verification_data(result_year) return HttpResponseRedirect('/aims/') else: return HttpResponse('user not found') def acad_proced_global_context(): year = demo_date.year month = demo_date.month yearr = str(year) + "-" + str(year+1) semflag = 0 queryflag = 0 query_option1 = get_batch_query_detail(month, year) query_option2 = {"CSE": "CSE", "ECE": "ECE", "ME": "ME"} if(month >= 7): semflag = 1 else: semflag = 2 date = {'year': yearr, 'month': month, 'semflag': semflag, 'queryflag': queryflag} result_year = [] result_year = get_batch_all() # result_year = [1,2] change_queries = BranchChange.objects.select_related('branches','user','user__id','user__id__user','user__id__department').all() course_verification_date = get_course_verification_date_eligibilty(demo_date.date()) initial_branch = [] change_branch = [] available_seats = [] applied_by = [] cpi = [] for i in change_queries: applied_by.append(i.user.id) change_branch.append(i.branches.name) students = Student.objects.all().select_related('id','id__user','id__department').filter(id=i.user.id).first() user_branch = ExtraInfo.objects.all().select_related('user','department').filter(id=students.id.id).first() initial_branch.append(user_branch.department.name) cpi.append(students.cpi) if i.branches.name == 'CSE': available_seats.append(available_cse_seats) elif i.branches.name == 'ECE': available_seats.append(available_ece_seats) elif i.branches.name == 'ME': available_seats.append(available_me_seats) lists = zip(applied_by, change_branch, initial_branch, available_seats, cpi) tag = False if len(initial_branch) > 0: tag = True context = { 'list': lists, 'total': len(initial_branch), 'tag': tag } submitted_course_list = [] obj_list = MarkSubmissionCheck.objects.all().select_related().filter(verified= False,submitted = True) for i in obj_list: if int(i.curr_id.batch)+int(i.curr_id.sem)/2 == int(demo_date.year): submitted_course_list.append(i.curr_id) else: submitted_course_list.append(i.curr_id) #continue # submitted_course_list = SemesterMarks.objects.all().filter(curr_id__in = submitted_course_list) batch_grade_data = get_batch_grade_verification_data(result_year) batch_branch_data = get_batch_branch_data(result_year) return { 'context': context, 'lists': lists, 'date': date, 'query_option1': query_option1, 'query_option2': query_option2, 'course_verification_date' : course_verification_date, 'submitted_course_list' : submitted_course_list, 'result_year' : result_year, 'batch_grade_data' : batch_grade_data, 'batch_branch_data': batch_branch_data } def get_batch_all(): result_year = [] if demo_date.month >=7: result_year = [demo_date.year, demo_date.year-1, demo_date.year-2, demo_date.year-3] # result_year = [1,2] else : result_year = [demo_date.year-1,demo_date.year-2, demo_date.year-3, demo_date.year-4] return result_year def announce_results(request): i = int(request.POST.get('id')) year = get_batch_all() acad = get_object_or_404(User, username="acadadmin") student_list = Student.objects.all().select_related('id','id__user','id__department').filter(batch = year[i-1]) # for obj in student_list: # academics_module_notif(acad, obj.id.user, 'result_announced') courses_list = Curriculum.objects.all().select_related().filter(batch = year[i-1]) rsl = [] for obj in courses_list: try : o = MarkSubmissionCheck.objects.select_related().get(curr_id = obj) o.announced = True rsl.append(o) except Exception as e: continue MarkSubmissionCheck.objects.bulk_update(rsl,['announced']) return JsonResponse({'status': 'success', 'message': 'Successfully Accepted'}) def get_batch_grade_verification_data(list): semester_marks = [] batch_1_list_CSE = [] batch_2_list_CSE = [] batch_3_list_CSE = [] batch_4_list_CSE = [] batch_1_list_ECE = [] batch_2_list_ECE = [] batch_3_list_ECE = [] batch_4_list_ECE = [] batch_1_list_ME = [] batch_2_list_ME = [] batch_3_list_ME = [] batch_4_list_ME = [] c = Curriculum.objects.all().select_related().filter(batch = list[0]).filter(floated = True) c_cse = c.filter(branch = 'CSE') c_me = c.filter(branch = 'ME') c_ece = c.filter(branch = 'ECE') for i in c_cse: batch_1_list_CSE.append(i) for i in c_me: batch_1_list_ME.append(i) for i in c_ece: batch_1_list_ECE.append(i) for i in c: try: obj_sem = MarkSubmissionCheck.objects.select_related().get(curr_id = i) if obj_sem: semester_marks.append(obj_sem) else: continue except Exception as e: continue c = Curriculum.objects.all().select_related().filter(batch = list[1]).filter(floated = True) c_cse = c.filter(branch = 'CSE') c_me = c.filter(branch = 'ME') c_ece = c.filter(branch = 'ECE') for i in c_cse: batch_2_list_CSE.append(i) for i in c_me: batch_2_list_ME.append(i) for i in c_ece: batch_2_list_ECE.append(i) for i in c: try: obj_sem = MarkSubmissionCheck.objects.select_related().get(curr_id = i) if obj_sem: semester_marks.append(obj_sem) else: continue except Exception as e: continue c = Curriculum.objects.all().select_related().filter(batch = list[2]).filter(floated = True) c_cse = c.filter(branch = 'CSE') c_me = c.filter(branch = 'ME') c_ece = c.filter(branch = 'ECE') for i in c_cse: batch_3_list_CSE.append(i) for i in c_me: batch_3_list_ME.append(i) for i in c_ece: batch_3_list_ECE.append(i) for i in c: try: obj_sem = MarkSubmissionCheck.objects.select_related().get(curr_id = i) if obj_sem: semester_marks.append(obj_sem) else: continue except Exception as e: continue c = Curriculum.objects.all().select_related().filter(batch = list[3]).filter(floated = True) c_cse = c.filter(branch = 'CSE') c_me = c.filter(branch = 'ME') c_ece = c.filter(branch = 'ECE') for i in c_cse: batch_4_list_CSE.append(i) for i in c_me: batch_4_list_ME.append(i) for i in c_ece: batch_4_list_ECE.append(i) for i in c: try: obj_sem = MarkSubmissionCheck.objects.select_related().get(curr_id = i) if obj_sem: semester_marks.append(obj_sem) else: continue except Exception as e: continue batch_1_list = { 'batch_list_year' : list[0], 'batch_list_ME' : batch_1_list_ME, 'batch_list_ECE' : batch_1_list_ECE, 'batch_list_CSE' : batch_1_list_CSE } batch_2_list = { 'batch_list_year' : list[1], 'batch_list_ME' : batch_2_list_ME, 'batch_list_ECE' : batch_2_list_ECE, 'batch_list_CSE' : batch_2_list_CSE } batch_3_list = { 'batch_list_year' : list[2], 'batch_list_ME' : batch_3_list_ME, 'batch_list_ECE' : batch_3_list_ECE, 'batch_list_CSE' : batch_3_list_CSE } batch_4_list = { 'batch_list_year' : list[3], 'batch_list_ME' : batch_4_list_ME, 'batch_list_ECE' : batch_4_list_ECE, 'batch_list_CSE' : batch_4_list_CSE } batch_grade_data_set = {'batch_grade_data' : [batch_1_list, batch_2_list, batch_3_list, batch_4_list], 'batch_sub_check' : semester_marks} return batch_grade_data_set def get_batch_branch_data(result_year): batches = [] for batch in Batch.objects.all(): if batch.year in result_year: batches.append(batch) return batches @login_required(login_url='/accounts/login') def student_list(request): if(request.POST): batch = request.POST["batch"] year = demo_date.year month = demo_date.month yearr = str(year) + "-" + str(year+1) semflag = 0 queryflag = 1 if(month >= 7): semflag = 1 else: semflag = 2 batch_year_option = get_batch_query_detail(month, year) branch_option = {"CSE": "CSE", "ECE": "ECE", "ME": "ME"} date = {'year': yearr, 'month': month, 'semflag': semflag, 'queryflag': queryflag} batch_id = Batch.objects.get(id = batch) student_obj = Student.objects.all().filter(batch_id = batch_id) student = [] for obj in student_obj: curr_id = batch_id.curriculum sem_id = Semester.objects.get(curriculum = curr_id, semester_no = obj.curr_semester_no + 1) try: reg = StudentRegistrationChecks.objects.all().filter(student_id = obj, semester_id = sem_id).first() pay = FeePayments.objects.all().filter(student_id = obj, semester_id = sem_id).first() final = FinalRegistration.objects.all().filter(student_id = obj, semester_id = sem_id,verified = False) except Exception as e: reg = None pay = None final = None if reg: if reg.final_registration_flag == True and final: student.append((obj,pay,final)) else: continue else: continue html = render_to_string('academic_procedures/student_table.html', {'student': student}, request) maindict = {'date': date, 'query_option1': batch_year_option, 'query_option2': branch_option, 'html': html, 'queryflag': queryflag} obj = json.dumps(maindict) return HttpResponse(obj, content_type='application/json') def process_verification_request(request): if request.is_ajax(): return verify_registration(request) return JsonResponse({'status': 'Failed'}, status=400) @transaction.atomic def verify_registration(request): if request.POST.get('status_req') == "accept" : student_id = request.POST.get('student_id') student = Student.objects.get(id = student_id) batch = student.batch_id curr_id = batch.curriculum sem_id = Semester.objects.get(curriculum = curr_id, semester_no = student.curr_semester_no+1) final_register_list = FinalRegistration.objects.all().filter(student_id = student, verified = False, semester_id = sem_id) sem_no = student.curr_semester_no + 1 with transaction.atomic(): ver_reg = [] for obj in final_register_list: p = course_registration( course_id=obj.course_id, student_id=student, semester_id=obj.semester_id, course_slot_id = obj.course_slot_id ) ver_reg.append(p) o = FinalRegistration.objects.filter(id= obj.id).update(verified = True) course_registration.objects.bulk_create(ver_reg) academics_module_notif(request.user, student.id.user, 'registration_approved') Student.objects.filter(id = student_id).update(curr_semester_no = sem_no) return JsonResponse({'status': 'success', 'message': 'Successfully Accepted'}) elif request.POST.get('status_req') == "reject" : reject_reason = request.POST.get('reason') student_id = request.POST.get('student_id') student_id = Student.objects.get(id = student_id) batch = student_id.batch_id curr_id = batch.curriculum sem_id = Semester.objects.get(curriculum = curr_id, semester_no = student_id.curr_semester_no + 1) with transaction.atomic(): academicadmin = get_object_or_404(User, username = "acadadmin") FinalRegistration.objects.filter(student_id = student_id, verified = False, semester_id = sem_id).delete() StudentRegistrationChecks.objects.filter(student_id = student_id, semester_id = sem_id).update(final_registration_flag = False) FeePayments.objects.filter(student_id = student_id, semester_id = sem_id).delete() academics_module_notif(academicadmin, student_id.id.user, 'Registration Declined - '+reject_reason) return JsonResponse({'status': 'success', 'message': 'Successfully Rejected'}) def get_registration_courses(courses): x = [[]] for temp in courses: flag = False i = str(temp.course_code) i = i[:5] for j in x: if j: name = j[0] name = str(name.course_code) name = name[:5] if i.upper() == name.upper(): j.append(temp) flag = True else : continue if not flag: x.append([temp]) return x def teaching_credit_register(request) : if request.method == 'POST': try: roll = request.POST.get('roll') course1 = request.POST.get('course1') roll = str(roll) student_id = get_object_or_404(User, username=request.POST.get('roll')) student_id = ExtraInfo.objects.all().select_related('user','department').filter(user=student_id).first() student_id = Student.objects.all().select_related('id','id__user','id__department').filter(id=student_id.id).first() course1 = Curriculum.objects.select_related().get(curriculum_id = request.POST.get('course1')) course2 = Curriculum.objects.select_related().get(curriculum_id = request.POST.get('course2')) course3 = Curriculum.objects.select_related().get(curriculum_id = request.POST.get('course3')) course4 = Curriculum.objects.select_related().get(curriculum_id = request.POST.get('course4')) p = TeachingCreditRegistration( student_id = student_id, curr_1 = course1, curr_2 = course2, curr_3 = course3, curr_4 = course4 ) p.save() messages.info(request, ' Successful') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') def course_marks_data(request): try: curriculum_id = request.POST.get('curriculum_id') course = Curriculum.objects.select_related().get(curriculum_id = curriculum_id) student_list = Register.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(curr_id = course) mrks = [] for obj in student_list: o = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = obj.student_id).filter(curr_id = course).first() if o : continue else : p = SemesterMarks( student_id = obj.student_id, q1 = 0, mid_term = 0, q2 = 0, end_term = 0, other = 0, grade = None, curr_id = course ) mrks.append(p) SemesterMarks.objects.bulk_create(mrks) enrolled_student_list = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(curr_id = course) grade_submission_date_eligibility = False try : d = Calendar.objects.get(description = "grade submission date") if demo_date.date() >= d.from_date and demo_date.date() <= d.to_date : grade_submission_date_eligibility = True except Exception as e: grade_submission_date_eligibility = False data = render_to_string('academic_procedures/course_marks_data.html', {'enrolled_student_list' : enrolled_student_list, 'course' : course, 'grade_submission_date_eligibility' : grade_submission_date_eligibility}, request) obj = json.dumps({'data' : data}) return HttpResponse(obj, content_type = 'application/json') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') def submit_marks(request): try: user = request.POST.getlist('user') q1 = request.POST.getlist('q1_marks') mid = request.POST.getlist('mid_marks') q2 = request.POST.getlist('q2_marks') end = request.POST.getlist('end_marks') other = request.POST.getlist('other_marks') try: grade = request.POST.getlist('grade') except Exception as e: grade = None messages.info(request, ' Successful') values_length = len(request.POST.getlist('user')) curr_id = Curriculum.objects.select_related().get(curriculum_id = request.POST.get('curriculum_id')) for x in range(values_length): student_id = get_object_or_404(User, username = user[x]) student_id = ExtraInfo.objects.select_related('user','department').get(id = student_id) student_id = Student.objects.select_related('id','id__user','id__department').get(id = student_id) if grade: g = grade[x] else : g = None st_existing = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = student_id).filter(curr_id = curr_id).first() if st_existing : st_existing.q1 = q1[x] st_existing.mid_term = mid[x] st_existing.q2 = q2[x] st_existing.end_term = end[x] st_existing.other = other[x] st_existing.grade = g st_existing.save() else : p = SemesterMarks( student_id = student_id, q1 = q1[x], mid_term = mid[x], q2 = q2[x], end_term = end[x], other = other[x], grade = g, curr_id = curr_id ) p.save() if request.POST.get('final_submit') == "True": try: o_sub = MarkSubmissionCheck.objects.select_related().get(curr_id = curr_id) except Exception as e: o_sub = None if o_sub: o_sub.submitted = True o_sub.save() else: o_sub_create = MarkSubmissionCheck( curr_id = curr_id, verified = False, submitted =True, announced = False,) o_sub_create.save() if request.POST.get('final_submit') == "False": try: sub_obj = MarkSubmissionCheck.objects.select_related().get(curr_id = curr_id) except Exception as e: sub_obj = None if sub_obj: continue else : sub_obj_create = MarkSubmissionCheck( curr_id = curr_id, verified = False, submitted =False, announced = False) sub_obj_create.save() return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') def verify_course_marks_data(request): try: curriculum_id = request.POST.get('curriculum_id') course = Curriculum.objects.select_related().get(curriculum_id = curriculum_id) enrolled_student_list = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(curr_id = course) grade_verification_date_eligibility = False try : d = Calendar.objects.get(description = "grade verification date") if demo_date.date() >= d.from_date and demo_date.date() <= d.to_date : grade_verification_date_eligibility = True except Exception as e: grade_verification_date_eligibility = False data = render_to_string('academic_procedures/verify_course_marks_data.html', {'enrolled_student_list' : enrolled_student_list, 'course' : course, 'grade_verification_date_eligibility' : grade_verification_date_eligibility}, request) obj = json.dumps({'data' : data}) return HttpResponse(obj, content_type = 'application/json') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') ######################################## ##########GLOBAL VARIABLE############### ######################################## verified_marks_students = [[]] verified_marks_students_curr = None ######################################## ##########GLOBAL VARIABLE############### ######################################## def verify_marks(request): try: global verified_marks_students global verified_marks_students_curr verified_marks_students = [[]] verified_marks_students_curr = None user = request.POST.getlist('user') curr_id = Curriculum.objects.select_related().get(curriculum_id = request.POST.get('curriculum_id')) grade = request.POST.getlist('grade') values_length = len(request.POST.getlist('user')) ver_gr = [] for x in range(values_length): student_id = get_object_or_404(User, username = user[x]) student_id = ExtraInfo.objects.select_related('user','department').get(id = student_id) student_id = Student.objects.select_related('id','id__user','id__department').get(id = student_id) if grade: g = grade[x] else : g = None st_existing = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = student_id).filter(curr_id = curr_id).first() st_existing.grade = g ver_gr.append(st_existing) verified_marks_students.append([student_id,g]) SemesterMarks.objects.bulk_update(ver_gr,['grade']) verified_marks_students_curr = curr_id obj = MarkSubmissionCheck.objects.select_related().get(curr_id = curr_id) obj.verified = True obj.save() return HttpResponseRedirect('/aims/') except Exception as e: return HttpResponseRedirect('/aims/') def render_to_pdf(template_src, context_dict): template = get_template(template_src) html = template.render(context_dict) result = BytesIO() pdf = pisa.pisaDocument(BytesIO(html.encode("ISO-8859-1")), result) if not pdf.err: return HttpResponse(result.getvalue(), content_type='application/pdf') return None def generate_grade_pdf(request): instructor = Curriculum_Instructor.objects.all().select_related('curriculum_id','instructor_id','curriculum_id__course_id','instructor_id__department','instructor_id__user').filter(curriculum_id = verified_marks_students_curr).first() context = {'verified_marks_students' : verified_marks_students, 'verified_marks_students_curr' : verified_marks_students_curr, 'instructor' : instructor} pdf = render_to_pdf('academic_procedures/generate_pdf.html',context) if pdf: response = HttpResponse(pdf, content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename="%s.pdf"' %(verified_marks_students_curr.course_code) return response return HttpResponse("PDF could not be generated") def generate_result_pdf(request): batch = request.POST.get('batch') branch = request.POST.get('branch') programme = request.POST.get('programme') student_list = [] branch_list = [] result_list = [[]] curriculum_list = [] if programme == "": return HttpResponse("please insert programme") student_obj = Student.objects.all().select_related('id','id__user','id__department').filter(programme = programme) if batch == "": return HttpResponse("please insert batch") else: student_obj = student_obj.filter(batch = int(batch)) if branch == "" : return HttpResponse("please insert branch") else : dep_objects = DepartmentInfo.objects.get(name = str(branch)) branch_objects = ExtraInfo.objects.all().select_related('user','department').filter(department = dep_objects) for i in branch_objects: branch_list.append(i) for i in student_obj: if i.id in branch_list: student_list.append(i) else: continue curriculum_obj = Curriculum.objects.all().select_related().filter(batch = int(batch)).filter(branch = str(branch)).filter(programme = programme) curriculum_obj_common = Curriculum.objects.all().select_related().filter(batch = int(batch)).filter(branch = 'Common').filter(programme = programme) for i in curriculum_obj: curriculum_list.append(i) for i in curriculum_obj_common: curriculum_list.append(i) for i in student_list : x = [] x.append(i.id.user.username) x.append(i.id.user.first_name+" "+i.id.user.last_name) for j in curriculum_list : grade_obj = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(curr_id = j).filter(student_id = i).first() if grade_obj : x.append(grade_obj.grade) else : x.append("-") spi = get_spi(curriculum_list ,x) x.append(spi) result_list.append(x) context = {'batch' : batch, 'branch' : branch, 'programme' : programme, 'course_list' : curriculum_list, 'result_list' : result_list} pdf = render_to_pdf('academic_procedures/generate_result_pdf.html',context) if pdf: response = HttpResponse(pdf, content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename="%s.pdf"' %(programme + batch + branch) return response return HttpResponse("PDF could not be generated") def generate_grade_sheet_pdf(request): batch = request.POST.get('batch') branch = request.POST.get('branch') programme = request.POST.get('programme') student_list = [] branch_list = [] result_list = [[]] curriculum_list = [] if programme == "": return HttpResponse("please insert programme") student_obj = Student.objects.all().select_related('id','id__user','id__department').filter(programme = programme) if batch == "": return HttpResponse("please insert batch") else: student_obj = student_obj.filter(batch = int(batch)) if branch == "" : return HttpResponse("please insert branch") else : dep_objects = DepartmentInfo.objects.get(name = str(branch)) branch_objects = ExtraInfo.objects.all().select_related('user','department').filter(department = dep_objects) for i in branch_objects: branch_list.append(i) for i in student_obj: if i.id in branch_list: student_list.append(i) else: continue curriculum_obj = Curriculum.objects.all().select_related().filter(batch = int(batch)).filter(branch = str(branch)).filter(programme = programme) curriculum_obj_common = Curriculum.objects.all().select_related().filter(batch = int(batch)).filter(branch = 'Common').filter(programme = programme) for i in curriculum_obj: curriculum_list.append(i) for i in curriculum_obj_common: curriculum_list.append(i) for i in student_list : x = [] x.append(i.id.user.username) x.append(i.id.user.first_name+" "+i.id.user.last_name) for j in curriculum_list : grade_obj = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(curr_id = j).filter(student_id = i).first() if grade_obj : x.append(grade_obj.grade) else : x.append("-") spi = get_spi(curriculum_list ,x) x.append(spi) result_list.append(x) context = {'batch' : batch, 'branch' : branch, 'programme' : programme, 'course_list' : curriculum_list, 'result_list' : result_list} pdf = render_to_pdf('academic_procedures/generate_sheet.html',context) if pdf: response = HttpResponse(pdf, content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename="%s.pdf"' %(programme + batch + branch) return response return HttpResponse("PDF could not be generated") def get_spi(course_list,grade_list): spi = 0.0 credits = 0 total = 0 earned = 0 y = [] for i in range(2,len(grade_list)) : x = { 'grade' : grade_list[i], 'credits' : None } y.append(x) for i in range(0,len(course_list)): y[i]['credits'] = course_list[i].credits for obj in y: if obj['grade'] == 'O': total = total + 10*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'A+': total = total + 10*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'A': total = total + 9*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'B+': total = total + 8*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'B': total = total + 7*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'C+': total = total + 6*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'C': total = total + 5*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'D+': total = total + 4*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'D': total = total + 3*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'F': total = total + 2*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'S': total = total credits = credits earned = earned + obj['credits'] elif obj['grade'] == 'X': total = total credits = credits earned = earned elif obj['grade'] == '-': total = total credits = credits earned = earned if credits == 0: return 0.0 spi = total/credits return spi def manual_grade_submission(request): if request.method == 'POST' and request.FILES: manual_grade_xsl=request.FILES['manual_grade_xsl'] excel = xlrd.open_workbook(file_contents=manual_grade_xsl.read()) sheet=excel.sheet_by_index(0) course_code = str(sheet.cell(0,1).value) course_name = str(sheet.cell(1,1).value) instructor = str(sheet.cell(2,1).value) batch = int(sheet.cell(3,1).value) sem = int(sheet.cell(4,1).value) branch = str(sheet.cell(5,1).value) programme = str(sheet.cell(6,1).value) credits = int(sheet.cell(7,1).value) curriculum_obj = Curriculum.objects.all().select_related().filter(course_code = course_code).filter(batch = batch).filter(programme = programme).first() if not curriculum_obj: course_obj = Course.objects.all().filter(course_name = course_name).first() if not course_obj : course_obj_create = Course( course_name = course_name, course_details = instructor) course_obj_create.save() course_obj = Course.objects.all().filter(course_name = course_name).first() curriculum_obj_create = Curriculum( course_code = course_code, course_id = course_obj, credits = credits, course_type = 'Professional Core', programme = programme, branch = branch, batch = batch, sem = sem, floated = True) curriculum_obj_create.save() curriculum_obj = Curriculum.objects.all().select_related().filter(course_code = course_code).filter(batch = batch).filter(programme = programme).first() marks_check_obj = MarkSubmissionCheck.objects.select_related().all().filter(curr_id = curriculum_obj).first() if marks_check_obj : marks_check_obj.submitted = True marks_check_obj.verified = True marks_check_obj.save() elif not marks_check_obj : marks_check_obj_create = MarkSubmissionCheck( curr_id = curriculum_obj, submitted = True, verified = False, announced = False) marks_check_obj_create.save() for i in range(11,sheet.nrows): roll = str(int(sheet.cell(i,0).value)) q1 = float(sheet.cell(i,2).value) mid = float(sheet.cell(i,3).value) q2 = float(sheet.cell(i,4).value) end = float(sheet.cell(i,5).value) others = float(sheet.cell(i,6).value) grade = str(sheet.cell(i,8).value).strip() user = get_object_or_404(User, username = roll) extrainfo = ExtraInfo.objects.select_related('user','department').get(user = user) dep_objects = DepartmentInfo.objects.get(name = str(branch)) extrainfo.department = dep_objects extrainfo.save() extrainfo = ExtraInfo.objects.select_related('user','department').get(user = user) student_obj = Student.objects.select_related('id','id__user','id__department').get(id = extrainfo) student_obj.programme = programme student_obj.batch = batch student_obj.category = 'GEN' student_obj.save() student_obj = Student.objects.select_related('id','id__user','id__department').get(id = extrainfo) register_obj = Register.objects.all().filter(curr_id = curriculum_obj, student_id = student_obj).first() if not register_obj: register_obj_create = Register( curr_id = curriculum_obj, year = batch, student_id = student_obj, semester = sem) register_obj_create.save() register_obj = Register.objects.all().filter(curr_id = curriculum_obj, student_id = student_obj).first() st_existing = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = student_obj).filter(curr_id = curriculum_obj).first() if st_existing : st_existing.grade = str(sheet.cell(i,8).value) st_existing.save() else : p = SemesterMarks( student_id = student_obj, q1 = q1, mid_term = mid, q2 = q2, end_term = end, other = others, grade = grade, curr_id = curriculum_obj ) p.save() return HttpResponseRedirect('/academic-procedures/') # # # # # # # # # # # # # # # # # # # # # # ## def test(request): br_up = [] st_list = Student.objects.select_related('id','id__user','id__department').all() for i in st_list : roll = i.id.user.username roll = str(roll) if i.programme.upper() == "B.DES" or i.programme.upper() == "B.TECH": batch = int(roll[:4]) i.batch = batch elif i.programme.upper() == "M.DES" or i.programme.upper() == "M.TECH" or i.programme.upper() == "PH.D": batch = int('20'+roll[:2]) i.batch = batch br_up.append(i) Student.objects.bulk_update(br_up,['batch']) return render(request,'../templates/academic_procedures/test.html',{}) def test_ret(request): try: data = render_to_string('academic_procedures/test_render.html', {}, request) obj = json.dumps({'d' : data}) return HttpResponse(obj, content_type = 'application/json') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') def Bonafide_form(request): template = get_template('academic_procedures/bonafide_pdf.html') current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.select_related('user','department').get(id = request.user) des = HoldsDesignation.objects.all().select_related().filter(user = request.user).first() name = ExtraInfo.objects.all().select_related('user','department').filter(id=request.user.username)[0].user if str(des.designation) == "student": obj = Student.objects.select_related('id','id__user','id__department').get(id = user_details.id) context = { 'student_id' : request.user.username, 'degree' : obj.programme.upper(), 'name' : name.first_name +" "+ name.last_name, 'branch' : get_user_branch(user_details), 'purpose' : request.POST['purpose'] } pdf = render_to_pdf('academic_procedures/bonafide_pdf.html',context) if pdf: response = HttpResponse(pdf, content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename=Bonafide.pdf' return response return HttpResponse("PDF could not be generated") # def bonafide(request): # # if this is a POST request we need to process the form data # if request.method == 'POST': # # create a form instance and populate it with data from the request: # form = BonafideForm(request.POST) # # check whether it's valid: # if form.is_valid(): # # process the data in form.cleaned_data as required # # ... # # redirect to a new URL: # print("vaild") # # if a GET (or any other method) we'll create a blank form # else: # form = BonafideForm() # return render(request, 'bonafide.html', {'form': form}) @login_required def ACF(request): stu = Student.objects.get(id=request.user.username) month = request.POST.get('month') year= request.POST.get('year') account = request.POST.get('bank_account') thesis = request.POST.get('thesis_supervisor') ta = request.POST.get('ta_supervisor') appli = request.POST.get('applicability') FACUL1 = None FACUL2 = None message = "" faculties = ExtraInfo.objects.all().filter(user_type = "faculty") res = "error" for j in range(2): for i in faculties: checkName = i.user.first_name + " " + i.user.last_name if j==0 and ta == checkName: res = "success" FACUL1 = i elif j==1 and thesis == checkName: res = "success" FACUL2 = i if (res == "error"): message = message + "The entered faculty incharge does not exist" content = { 'status' : res, 'message' : message } content = json.dumps(content) return HttpResponse(content) faculty_inc1 = get_object_or_404(Faculty, id = FACUL1) faculty_inc2 = get_object_or_404(Faculty, id = FACUL2) acf = AssistantshipClaim(student=stu,month=month, year=year, bank_account=account, thesis_supervisor=faculty_inc2, ta_supervisor=faculty_inc1, applicability= appli) acf.save() message= message + "Form submitted succesfully" content = { 'status' : res, 'message' : message } sender1 = ExtraInfo.objects.get(id = str(FACUL1)[:4]).user sender2 = ExtraInfo.objects.get(id = str(FACUL2)[:4]).user content = json.dumps(content) AssistantshipClaim_faculty_notify(request.user,sender1) AssistantshipClaim_faculty_notify(request.user,sender2) return HttpResponse(content) def update_assistantship(request): if request.method == 'POST': r = request.POST.get('remark') i = request.POST.get('obj_id') user = ExtraInfo.objects.get(user = request.user) recipient = User.objects.get(username = "acadadmin") assistantship_object = AssistantshipClaim.objects.get(id = i) sender = User.objects.get(username = assistantship_object.student) if user == assistantship_object.ta_supervisor.id and r == "Satisfactory": assistantship_object.ta_supervisor_remark=True elif user == assistantship_object.ta_supervisor.id and r == "Unsatisfactory": assistantship_object.ta_supervisor_remark=False if user == assistantship_object.thesis_supervisor.id and r == "Satisfactory": assistantship_object.thesis_supervisor_remark=True elif r == "Unsatisfactory" : assistantship_object.thesis_supervisor_remark=False assistantship_object.save() if assistantship_object.thesis_supervisor_remark == True and assistantship_object.ta_supervisor_remark == True : AssistantshipClaim_acad_notify(sender,recipient) return HttpResponseRedirect('/academic-procedures/main/') def update_hod_assistantship(request): if request.method == 'POST': d = request.POST.get('dict') dic = json.loads(d) assisobj = AssistantshipClaim.objects.filter(ta_supervisor_remark = True).filter(thesis_supervisor_remark = True).filter(hod_approval = False) for obj in assisobj: if str(obj.student) in dic.keys(): obj.hod_approval =True obj.save() return HttpResponse('success') def update_acad_assis(request): if request.method == 'POST': d = request.POST.get('dict') dic = json.loads(d) aobj= AssistantshipClaim.objects.all() for obj in aobj: if obj.acad_approval == False and str(obj.student) in dic.keys(): obj.stipend = dic[str(obj.student)] obj.acad_approval=True obj.save() return HttpResponse('success') def update_account_assistantship(request): if request.method == 'POST': di = request.POST.get('dict') dic = json.loads(di) acobj= AssistantshipClaim.objects.all() for obj in acobj: if obj.account_approval == False and str(obj.student) in dic.keys(): obj.account_approval = True obj.save() recipient = User.objects.get(username = obj.student) AssistantshipClaim_notify(request.user,recipient,obj.month,obj.year) return HttpResponse('success') def assis_stat(request): if request.method == 'POST': flag= request.POST.get('flag') assis_status = Assistantship_status.objects.all() for obj in assis_status: if flag == "studenttrue" : obj.student_status= True elif flag == "studentfalse": obj.student_status = False elif flag == "hodtrue" : obj.hod_status= True elif flag == "hodfalse": obj.hod_status = False elif flag == "accounttrue" : obj.account_status= True elif flag == "accountfalse": obj.account_status = False obj.save() return HttpResponse('success') @login_required def MTSGF(request): if request.method == 'POST': stu= Student.objects.get(id=request.user.username) theme = request.POST.get('theme_of_work') date = request.POST.get('date') place = request.POST.get('place') time = request.POST.get('time') work = request.POST.get('workdone') contribution = request.POST.get('specificcontri') future = request.POST.get('futureplan') report = request.POST.get('briefreport') publication_submitted = request.POST.get('publicationsubmitted') publication_accepted = request.POST.get('publicationaccepted') paper_presented = request.POST.get('paperpresented') paper_under_review = request.POST.get('paperunderreview') form=MTechGraduateSeminarReport(student=stu, theme_of_work=theme, date=date, place=place, time=time, work_done_till_previous_sem=work, specific_contri_in_cur_sem=contribution, future_plan=future, brief_report=report, publication_submitted=publication_submitted, publication_accepted=publication_accepted, paper_presented=paper_presented, papers_under_review=paper_under_review) form.save() message= "Form submitted succesfully" res="success" content = { 'status' : res, 'message' : message } content = json.dumps(content) return HttpResponse(content) @login_required def PHDPE(request): if request.method == 'POST': stu= Student.objects.get(id=request.user.username) theme = request.POST.get('theme_of_work') dateandtime = request.POST.get('date') place = request.POST.get('place') work = request.POST.get('workdone') contribution = request.POST.get('specificcontri') future = request.POST.get('futureplan') uploadfile = request.POST.get('Attachments') paper_submitted = request.POST.get('papersubmitted') paper_published = request.POST.get('paperaccepted') paper_presented = request.POST.get('paperpresented') form=PhDProgressExamination(student=stu, theme=theme, seminar_date_time=dateandtime, place=place, work_done=work, specific_contri_curr_semester=contribution, future_plan=future,details=uploadfile, papers_published=paper_published, presented_papers=paper_presented,papers_submitted=paper_submitted) form.save() message= "Form submitted succesfully" res="success" content = { 'status' : res, 'message' : message } content = json.dumps(content) return HttpResponse(content) def update_mtechsg(request): if request.method == 'POST': i = request.POST.get('obj_id') ql=request.POST.get('quality') qn=request.POST.get('quantity') gr=request.POST.get('grade') pr=request.POST.get('panel_report') sg=request.POST.get('suggestion') mtech_object=MTechGraduateSeminarReport.objects.get(id = i) mtech_object.quality_of_work=ql mtech_object.quantity_of_work=qn mtech_object.Overall_grade=gr mtech_object.panel_report=pr mtech_object.suggestion=sg mtech_object.save() return HttpResponseRedirect('/academic-procedures/main/') def update_phdform(request): if request.method == 'POST': i = request.POST.get('obj_id') ql = request.POST.get('quality') qn = request.POST.get('quantity') gr = request.POST.get('grade') continuationa = request.POST.get('continuationa') enhancementa = request.POST.get('enhancementa') completionperiod = request.POST.get('completionperiod') pr = request.POST.get('pr') annualp = request.POST.get('annualp') sugg = request.POST.get('sugg') phd_object = PhDProgressExamination.objects.get(id = i) phd_object.quality_of_work=ql phd_object.quantity_of_work=qn phd_object.Overall_grade=gr phd_object.continuation_enhancement_assistantship=continuationa phd_object.enhancement_assistantship=enhancementa phd_object.completion_period=completionperiod phd_object.panel_report=pr phd_object.annual_progress_seminar=annualp phd_object.commments=sugg phd_object.save() content="success" content = json.dumps(content) return HttpResponse(content) def update_dues(request): if request.method == "POST": i = request.POST.get('obj_id') md =int(request.POST.get('md')) hd = int(request.POST.get('hd')) ld = int(request.POST.get('ld')) pd = int(request.POST.get('pd')) ad = int(request.POST.get('ad')) dues_object = Dues.objects.get(id = i) message = "" if md < 0 and -1*md > dues_object.mess_due : message = message + "Subtracting more value than existing mess due<br>" if hd < 0 and -1*hd > dues_object.hostel_due : message = message + "Subtracting more value than existing hostel due<br>" if ld < 0 and -1*ld > dues_object.library_due : message = message + "Subtracting more value than existing library due<br>" if pd < 0 and -1*pd > dues_object.placement_cell_due : message = message + "Subtracting more value than existing placement cell due<br>" if ad < 0 and -1*ad > dues_object.academic_due : message = message + "Subtracting more value than existing academic due<br>" if (not message): message = "success" if message != "success": content = json.dumps(message) return HttpResponse(content) md += dues_object.mess_due hd += dues_object.hostel_due ld += dues_object.library_due pd += dues_object.placement_cell_due ad += dues_object.academic_due dues_object.mess_due = md dues_object.hostel_due = hd dues_object.library_due = ld dues_object.placement_cell_due = pd dues_object.academic_due = ad dues_object.save() content = json.dumps(message) return HttpResponse(content) def mdue(request): if request.method == 'POST': rollno = request.POST.get('rollno') year = request.POST.get('year') month = request.POST.get('month') amount = int(request.POST.get('amount')) desc = request.POST.get('desc') amount1 = amount if desc == "due": amount1 = -1*amount Dues_mess = amount student = Student.objects.get(id = rollno) messdue_list=MessDue.objects.all().filter(student = student) duesobj = Dues.objects.get(student_id = student) if(messdue_list): new_remaining = messdue_list[len(messdue_list)-1].remaining_amount + amount1 Dues_mess = new_remaining messdueobj = MessDue(student = student, month = month, year = year,description = desc, amount = amount, remaining_amount = new_remaining) else: messdueobj=MessDue(student = student, month = month, year = year,description = desc, amount = amount, remaining_amount = amount1) messdueobj.save() if Dues_mess >= 0 : duesobj.mess_due = 0 else : duesobj.mess_due = -1*Dues_mess duesobj.save() content = json.dumps("success") return HttpResponse(content)
the-stack_0_1193
from typing import Literal, List, Tuple, Union, Optional, Dict import numpy as np import scipy.linalg as la from scipy import stats Indices = Union[str, List[str]] def std_basis_vector(size: int, index: int, shape: Literal["row", "col", "flat"] = "col"): """Create a vector of {size} values where all values are zero except at position {index} which is one. The shape can be specified as 'row', 'col', or 'flat' to generate vectors of shape (1, {size}), ({size}, 1), or ({size}, ) respectively. The default shape is 'col'.""" e = np.zeros(size) e[index] = 1 if shape.lower() == "col": e = np.reshape(e, (size, 1)) elif shape.lower() == "row": e = np.reshape(e, (1, size)) elif shape.lower() == "flat": pass else: raise ValueError(f"Cannot understand vector shape: '{shape}', use " f"'row', 'col', or 'flat'") return(e) class GenericDiagnosisMethod: def __init__(self) -> None: self.sample_size = 0 def contribution(self, sample: np.ndarray, variable_index: int) -> float: """Return the error contribution of a variable in a sample""" raise NotImplementedError def expectation(self, variable_index: int) -> float: """Return the expected error contribution of a variable""" raise NotImplementedError def limits(self, variable_index: int, alpha: float) -> Tuple[float, float]: """Return the lower and upper limits of a variable at a given alpha""" e_contrib = self.expectation(variable_index) lower = stats.chi2.ppf(alpha, 1) * e_contrib upper = stats.chi2.ppf(1 - alpha, 1) * e_contrib return(lower, upper) def rel_contribution(self, sample: np.ndarray, variable_index: int) -> float: """Return the relative error contribution of a variable in a sample""" c = self.contribution(sample, variable_index) E_c = self.expectation(variable_index) return(c / E_c) def all_contributions(self, sample: np.ndarray) -> np.ndarray: """Return the error contributions for all variables in a sample""" contribs = np.zeros(self.sample_size) for i in range(self.sample_size): contribs[i] = self.contribution(sample, i) return(contribs) def all_rel_contributions(self, sample: np.ndarray) -> np.ndarray: """Return the relative error contributions for all variables in a sample""" rel_contribs = np.zeros(self.sample_size) for i in range(self.sample_size): rel_contribs[i] = self.rel_contribution(sample, i) return(rel_contribs) def all_expectations(self) -> np.ndarray: """Return the expected error contribution for all variables""" e_contribs = np.zeros(self.sample_size) for i in range(self.sample_size): e_contribs[i] = self.expectation(i) return(e_contribs) def all_limits(self, alpha: float) -> np.ndarray: """Return the lower and upper limits for all variables at a given alpha""" lower_upper_limits = np.zeros((self.sample_size, 2)) for i in range(self.sample_size): lower_upper_limits[i] = self.limits(i, alpha) return(lower_upper_limits) class CDC(GenericDiagnosisMethod): def __init__(self, M: np.ndarray, S: Optional[np.ndarray]) -> None: """Complete Decomposition Contributions Diagnosis Method""" super().__init__() self.M = M self.S = S self.sqrt_M = np.real(la.fractional_matrix_power(M, 0.5)) self.sample_size = M.shape[0] def contribution(self, sample: np.ndarray, variable_index: int) -> float: e_i = std_basis_vector(self.sample_size, variable_index, 'col') contrib = (e_i.T @ self.sqrt_M @ sample) ** 2 return(contrib) def expectation(self, variable_index: int) -> float: if self.S is None: raise RuntimeError("S matrix must be set to use this function") e_i = std_basis_vector(self.sample_size, variable_index, 'col') e_contrib = e_i.T @ self.S @ self.M @ e_i return(e_contrib) class PDC(GenericDiagnosisMethod): def __init__(self, M: np.ndarray, S: Optional[np.ndarray]) -> None: """Partial Decomposition Contributions Diagnosis Method""" super().__init__() self.M = M self.S = S self.sample_size = M.shape[0] def contribution(self, sample: np.ndarray, variable_index: int) -> float: e_i = std_basis_vector(sample.size, variable_index, 'col') contrib = sample.T @ self.M @ e_i @ e_i.T @ sample return(contrib) def expectation(self, variable_index: int) -> float: if self.S is None: raise RuntimeError("S matrix must be set to use this function") e_i = std_basis_vector(self.sample_size, variable_index, 'col') e_contrib = e_i.T @ self.S @ self.M @ e_i return(e_contrib) def limits(self, variable_index: int, alpha: float) -> Tuple[float, float]: e_contrib = self.expectation(variable_index) e_i = std_basis_vector(self.sample_size, variable_index, 'col') stdv_contrib = ((e_contrib) ** 2 + e_i.T @ self.S @ self.M @ self.M @ e_i @ e_i.T @ self.S @ e_i) ** 0.5 # Assumes n>=30 to use normal distribution rather than t distribution lower, upper = stats.norm.interval(alpha, e_contrib, stdv_contrib) return(lower, upper) class DC(GenericDiagnosisMethod): def __init__(self, M: np.ndarray, S: Optional[np.ndarray]) -> None: """Diagonal Contributions Diagnosis Method""" super().__init__() self.M = M self.S = S self.sample_size = M.shape[0] def contribution(self, sample: np.ndarray, variable_index: int) -> float: e_i = std_basis_vector(self.sample_size, variable_index, 'col') contrib = sample.T @ e_i @ e_i.T @ self.M @ e_i @ e_i.T @ sample return(contrib) def expectation(self, variable_index: int) -> float: if self.S is None: raise RuntimeError("S matrix must be set to use this function") e_i = std_basis_vector(self.M.shape[1], variable_index, 'col') e_contrib = e_i.T @ self.S @ e_i @ e_i.T @ self.M @ e_i return(e_contrib) class RBC(GenericDiagnosisMethod): def __init__(self, M: np.ndarray, S: Optional[np.ndarray]) -> None: """Reconstruction Based Contributions Diagnosis Method""" super().__init__() self.M = M self.S = S self.sample_size = M.shape[0] def contribution(self, sample: np.ndarray, variable_index: int) -> float: e_i = std_basis_vector(self.sample_size, variable_index, 'col') contrib = (e_i.T @ self.M @ sample) ** 2 / (e_i.T @ self.M @ e_i) return(contrib) def expectation(self, variable_index: int) -> float: if self.S is None: raise RuntimeError("S matrix must be set to use this function") e_i = std_basis_vector(self.sample_size, variable_index, 'col') e_contrib = (e_i.T @ self.M @ self.S @ self.M @ e_i / (e_i.T @ self.M @ e_i)) return(e_contrib) class GenericFaultDiagnosisModel: def __init__(self, M: np.ndarray, S: Optional[np.ndarray]) -> None: """Generic Fault Diagnosis Model for any test statistic""" if S is not None: if not (M.shape[0] == M.shape[1] == S.shape[0] == S.shape[1]): raise ValueError("M and S need to be [n x n] matrices") else: if not (M.shape[0] == M.shape[1]): raise ValueError("M needs to be an [n x n] matrix") self.diagnosis_methods = { "CDC": CDC(M, S), "PDC": PDC(M, S), "DC": DC(M, S), "RBC": RBC(M, S) } self.sample_size = M.shape[0] indices = list(self.diagnosis_methods.keys()) rel_indices = [f"r{i}" for i in indices] self.valid_indices = indices + rel_indices def validate_indices(self, indices: Indices) -> List[str]: """Validate list of requested indices""" if type(indices) == str: indices = [indices] for ind in indices: if ind not in self.valid_indices: raise ValueError(f"No contribution index {ind} exists") return(indices) def validate_sample(self, sample: np.ndarray) -> np.ndarray: """Validate passed sample""" if not isinstance(sample, np.ndarray): raise TypeError("Expected numpy array inputs for sample") if not (self.sample_size == sample.size): raise ValueError("M needs to be an [n x n] matrix and x needs to " "be an [n x 1] vector") sample = np.reshape(sample, (-1, 1)) # Makes sure it's a column vector return(sample) def get_contributions(self, sample: np.ndarray, indices: Indices = ['CDC']) -> Dict[str, np.ndarray]: """Get the fault contributions for the sample for each index passed""" indices = self.validate_indices(indices) sample = self.validate_sample(sample) index_values = dict() for ind in indices: if ind[0] == 'r': fd_method = self.diagnosis_methods[ind[1:]] index_values[ind] = fd_method.all_rel_contributions(sample) else: fd_method = self.diagnosis_methods[ind] index_values[ind] = fd_method.all_contributions(sample) return(index_values) def get_limits(self, alpha: float = 0.05, indices: Indices = ['CDC']) -> Dict[str, np.ndarray]: """Get the lower and upper control limits for any non-relative contribution indices""" indices = self.validate_indices(indices) limits = dict() for ind in indices: if ind[0] == 'r': raise ValueError("Control limits are not defined for relative " "contribution indices") else: fd_method = self.diagnosis_methods[ind] limits[ind] = fd_method.all_limits(alpha) return(limits) if __name__ == "__main__": import random print("Module ran as script: Running example fault diagnosis with PCA") def example_process_model(num_samples): A = [ [-0.3441, 0.4815, 0.6637], [-0.2313, -0.5936, 0.3545], [-0.5060, 0.2495, 0.0739], [-0.5552, -0.2405, -0.1123], [-0.3371, 0.3822, -0.6115], [-0.3877, -0.3868, -0.2045] ] A = np.asarray(A) num_vars = 6 # Generate inputs t t1 = 2.0 * stats.uniform.rvs(size=num_samples) t2 = 1.6 * stats.uniform.rvs(size=num_samples) t3 = 1.2 * stats.uniform.rvs(size=num_samples) t = np.asarray([t1, t2, t3]) # Generate noise noise = [None] * num_vars for i in range(num_vars): noise[i] = stats.norm.rvs(size=num_samples, scale=0.2) noise = np.asarray(noise) # Create samples X = A @ t + noise return(X) num_samples = 3000 num_faults = 2000 num_vars = 6 X = example_process_model(num_samples) """ PCA Model """ # Shift to 0 mean xmean = np.mean(X, 1).reshape((-1, 1)) X = X - xmean # Scale to unit variance xstd = np.std(X, 1).reshape((-1, 1)) X = X / xstd assert np.allclose(np.mean(X, 1), 0) assert np.allclose(np.std(X, 1), 1) S = np.cov(X) Lam, P = la.eig(S) Lam = np.real_if_close(Lam) order = np.argsort(-1 * Lam) Lam = Lam[order] P = P[:, order] # Plot cumulative variance of eigenvectors # cum_eig = np.cumsum(Lam) / np.sum(Lam) # plt.plot(cum_eig) # plt.show() principal_vectors = 3 alpha = 0.01 # Confidence = (1 - alpha) x 100% P_resid = P[:, principal_vectors:] Lam_resid = Lam[principal_vectors:] P = P[:, :principal_vectors] Lam = Lam[:principal_vectors] D = P @ np.diag(Lam ** -1) @ P.T # Generate faults faults = np.zeros((num_vars, num_faults)) for fault_sample in range(num_faults): fault_var = random.sample(range(num_vars), 1)[0] faults[fault_var, fault_sample] = 5.0 * stats.uniform.rvs() X_faulty = example_process_model(num_faults) + faults X_faulty = (X_faulty - xmean) / xstd T_sqr = [0] * num_faults for i in range(num_faults): T_sqr[i] = X_faulty[:, i].T @ D @ X_faulty[:, i] T_sqr_limit = [stats.chi2.ppf(1 - alpha, principal_vectors)] * num_faults detected_faults = [] for i in range(num_faults): if T_sqr[i] > T_sqr_limit[i]: detected_faults.append(i) fault_detect_rate = len(detected_faults) / num_faults * 100 print(f"T^2 Detected Faults: {fault_detect_rate:.2f} %") # plt.plot(T_sqr, label="\$T^2\$") # plt.plot(T_sqr_limit, label="Limit") # plt.legend() # plt.show() all_indices = ['CDC', 'rCDC', 'PDC', 'rPDC', 'DC', 'rDC', 'RBC', 'rRBC'] FDModel = GenericFaultDiagnosisModel(D, S) cont_rates = dict() for ind in all_indices: # Tracks number of correct diagnoses and false diagnoses cont_rates[ind] = [0, 0, 0] for i in detected_faults: # Get index and limit for each fault sample cont = FDModel.get_contributions(X_faulty[:, i], all_indices) for ind in all_indices: highest_contrib = np.argmax(cont[ind]) if highest_contrib == np.argmax(faults[:, i]): cont_rates[ind][0] += 1 else: cont_rates[ind][1] += 1 for ind in all_indices: diag_rate = cont_rates[ind][0] / len(detected_faults) * 100 false_diag_rate = cont_rates[ind][1] / len(detected_faults) * 100 # missed_rate = cont_rates[ind][2] / len(detected_faults) * 100 print("--------------------------------") print(f"{ind} correct diagnosis: {diag_rate:.2f} %") print(f"{ind} false diagnosis: {false_diag_rate:.2f} %") # print(f"{ind} missed diagnosis: {missed_rate:.2f} %")
the-stack_0_1194
import sys if (sys.version_info[0] == 2 and sys.version_info[:2] >= (2,7)) or \ (sys.version_info[0] == 3 and sys.version_info[:2] >= (3,2)): import unittest else: import unittest2 as unittest import subprocess import shutil import time import os import signal from distutils.sysconfig import get_config_var import py2app import platform DIR_NAME=os.path.dirname(os.path.abspath(__file__)) class TestBasicPlugin (unittest.TestCase): plugin_dir = os.path.join(DIR_NAME, 'plugin_with_scripts') py2app_args = [] # Basic setup code # # The code in this block needs to be moved to # a base-class. @classmethod def setUpClass(cls): try: if os.path.exists(os.path.join(cls.plugin_dir, 'build')): shutil.rmtree(os.path.join(cls.plugin_dir, 'build')) if os.path.exists(os.path.join(cls.plugin_dir, 'dist')): shutil.rmtree(os.path.join(cls.plugin_dir, 'dist')) cmd = [ sys.executable, 'setup.py', 'py2app'] + cls.py2app_args env=os.environ.copy() pp = os.path.dirname(os.path.dirname(py2app.__file__)) if 'PYTHONPATH' in env: env['PYTHONPATH'] = pp + ':' + env['PYTHONPATH'] else: env['PYTHONPATH'] = pp if 'LANG' not in env: env['LANG'] = 'en_US.UTF-8' p = subprocess.Popen( cmd, cwd = cls.plugin_dir, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, close_fds=True, env=env) lines = p.communicate()[0] if p.wait() != 0: print (lines) raise AssertionError("Creating basic_plugin bundle failed") p = subprocess.Popen([ 'xcode-select', '-print-path' ], stdout = subprocess.PIPE) lines = p.communicate()[0] xit = p.wait() if p.wait() != 0: raise AssertionError("Fetching Xcode root failed") root = lines.strip() if sys.version_info[0] != 2: root = root.decode('utf-8') if platform.mac_ver()[0] < '10.7.': cc = [get_config_var('CC')] env = dict(os.environ) env['MACOSX_DEPLOYMENT_TARGET'] = get_config_var('MACOSX_DEPLOYMENT_TARGET') else: cc = ['xcrun', 'clang'] env = dict(os.environ) p = subprocess.Popen(cc + get_config_var('LDFLAGS').split() + get_config_var('CFLAGS').split() + [ '-o', 'bundle_loader', os.path.join(DIR_NAME, 'bundle_loader.m'), '-framework', 'Foundation'], env=env, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, close_fds=True) lines = p.communicate()[0] if p.wait() != 0: print (lines) raise AssertionError("Creating bundle_loader failed") except: cls.tearDownClass() raise @classmethod def tearDownClass(cls): if os.path.exists('bundle_loader'): os.unlink('bundle_loader') if os.path.exists(os.path.join(cls.plugin_dir, 'build')): shutil.rmtree(os.path.join(cls.plugin_dir, 'build')) if os.path.exists(os.path.join(cls.plugin_dir, 'dist')): shutil.rmtree(os.path.join(cls.plugin_dir, 'dist')) def start_app(self): # Start the test app, return a subprocess object where # stdin and stdout are connected to pipes. cmd = ['./bundle_loader', os.path.join(self.plugin_dir, 'dist/BasicPlugin.bundle'), ] p = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, close_fds=True, ) #stderr=subprocess.STDOUT) return p def wait_with_timeout(self, proc, timeout=10): for i in range(timeout): x = proc.poll() if x is None: time.sleep(1) else: return x os.kill(proc.pid, signal.SIGKILL) return proc.wait() def run_script(self, name): path = os.path.join( self.plugin_dir, 'dist/BasicPlugin.bundle/Contents/MacOS/%s'%(name,)) p = subprocess.Popen([path], stdin=subprocess.PIPE, stdout=subprocess.PIPE, close_fds=True, ) #stderr=subprocess.STDOUT) return p # # End of setup code # def test_helper1(self): p = self.run_script('helper1') lines = p.communicate()[0] p.wait() self.assertEqual(lines, b'Helper 1\n') def test_helper2(self): p = self.run_script('helper2') lines = p.communicate()[0] p.wait() self.assertEqual(lines, b'Helper 2\n') def test_basic_start(self): p = self.start_app() v = p.stdout.readline() self.assertFalse(v.startswith(b'** Cannot load bundle')) p.stdin.write('BasicPlugin.bundle:test startup\n'.encode('latin1')) p.stdin.flush() v = p.stdout.readline() self.assertEqual(v.strip(), b'+ test startup') p.stdin.close() p.stdout.close() exit = self.wait_with_timeout(p) self.assertEqual(exit, 0) class TestBasicAliasPlugin (TestBasicPlugin): py2app_args = [ '--alias' ] class TestBasicSemiStandalonePlugin (TestBasicPlugin): py2app_args = [ '--semi-standalone' ] class TestBasicPluginUnicodePath (TestBasicPlugin): if sys.version_info[0] == 2: plugin_dir = os.path.join(DIR_NAME, 'basic_plugin ' + unichr(2744).encode('utf-8')) else: plugin_dir = os.path.join(DIR_NAME, 'basic_plugin ' + chr(2744)) @classmethod def setUpClass(cls): try: if os.path.exists(cls.plugin_dir): shutil.rmtree(cls.plugin_dir) assert not os.path.exists(cls.plugin_dir) shutil.copytree(TestBasicPlugin.plugin_dir, cls.plugin_dir) super(TestBasicPluginUnicodePath, cls).setUpClass() except: if os.path.exists(cls.plugin_dir): shutil.rmtree(cls.plugin_dir) raise @classmethod def tearDownClass(cls): if os.path.exists(cls.plugin_dir): shutil.rmtree(cls.plugin_dir) super(TestBasicPluginUnicodePath, cls).tearDownClass() class TestBasicAliasPluginUnicodePath (TestBasicPluginUnicodePath): py2app_args = [ '--alias' ] class TestBasicSemiStandalonePluginUnicodePath (TestBasicPluginUnicodePath): py2app_args = [ '--semi-standalone' ] if __name__ == "__main__": unittest.main()
the-stack_0_1195
# -*- coding: utf-8 -*- """ Created on Mon Aug 5 15:59:51 2019 @author: 939035 Classifiers """ # %% 1)Importing packages import seaborn as sns import pandas as pd import numpy as np # Handling SSL error when trying to connect from the office! import ssl ssl._create_default_https_context = ssl._create_unverified_context # Handing sns not showing plot error import matplotlib.pyplot as plt # ML models # kernal SVM from sklearn.svm import SVC # RandomForrestModel from sklearn.ensemble import RandomForestClassifier # MLPClassifier (neural_network) from sklearn.neural_network import MLPClassifier # Gradient Boosting Tree from sklearn.ensemble import GradientBoostingClassifier # Training the model (speed) # Decision Tree Classificr from sklearn.tree import DecisionTreeClassifier # Logisitc Regression from sklearn.linear_model import LogisticRegression # Data Is too Large ##Import Gaussian Naive Bayes model from sklearn.naive_bayes import GaussianNB # other random ones # KNN from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report class machine_learning_classifier(): ''' A class that contains a classifier loop ''' def __init__(self): # Variables to alter self.df = sns.load_dataset('iris') # Give the string of the y variable self.y_var = 'species' # Do not alter self.df_feat = pd.DataFrame() self.dummies = pd.DataFrame def inital_variable_removal(self, inital_vars_to_drop): # Dropping duplicate variable e.g qualitative variable Class and quantitative equivalent pclass self.df = self.df.drop(inital_vars_to_drop, axis=1) return self.df def remove_na(self): # Dropping nan or na rows self.df = self.df.dropna().reset_index().drop('index', axis=1) return self.df def exploring_data(self, y_var_category, var1, var2): # ## Basic Pairplot pp = sns.pairplot(self.df, hue=self.y_var) plt.show() # creating kde plot of sepal_lenght vs sepal width for setosa species of flower kde = self.df[self.df[self.y_var] == y_var_category] kdeplot = sns.kdeplot(kde[var1], kde[var2], cmap='plasma', shade='true' , shade_lowest=False) plt.show() return pp, kdeplot def creating_dummies(self): # 4)Creating Dummys from qualitative variables (optional) self.dummies = pd.get_dummies(self.df[self.qualitative_vars]) ### dropping qualitative variables before standardising self.df = self.df.drop(self.qualitative_vars, axis=1) return self.df def standardising(self): # Splitting the DataFrame into the dummies and then the standard varibales from sklearn.preprocessing import StandardScaler # standardising the data to the same scale # why - larger scale data will have a greater effect on the results scaler = StandardScaler() # fitting the data minus the dependent variable scaler.fit(self.df.drop(self.y_var, axis=1)) # creating the variable scaled featers (returns a array) scaled_features = scaler.transform(self.df.drop(self.y_var, axis=1)) # Creating a df of the array'd scaled features self.df_feat = pd.DataFrame(scaled_features, columns=self.df.drop(self.y_var, axis=1).columns) return self.df_feat def readding_dummies(self): # %% 6) Re adding dummies after standardising ## adding dummies back on after standaridiation of the rest of the data self.df_feat = pd.concat([self.df_feat, self.dummies], axis=1) return self.df_feat def correlations(self): # %% 7) Find correlation among variables. # after standardising correlation_matrix = self.df_feat.corr() return correlation_matrix def dropping_highly_correlated_variables(self, list_of_vars_to_drop): self.df_feat = self.df_feat.drop(list_of_vars_to_drop, axis=1) return self.df_feat def setting_y(self): # Setting X and y self.y = self.df[self.y_var] return self.y def feature_selection(self): # https://scikit-learn.org/stable/modules/feature_selection.html import sklearn.feature_selection def model_loop(self): # model selection by cross validation. from sklearn.model_selection import cross_val_score models = [SVC(), RandomForestClassifier(), MLPClassifier(), GradientBoostingClassifier(), DecisionTreeClassifier(), LogisticRegression(), GaussianNB(), KNeighborsClassifier()] classification_results = pd.DataFrame(columns=['model', 'corss_val_scores', 'cvs_mean' ]) for m in models: model = m cvs = cross_val_score(model, self.df_feat, self.y, cv=10, scoring='accuracy') cvsm = cvs.mean() classification_results = classification_results.append({'model': m, 'corss_val_scores': cvs, 'cvs_mean': cvsm, } , ignore_index=True) return classification_results def model_tuning(self): param_grid = {'C': [0.1, 1, 10, 100], 'gamma': [1, 0.1, 0.01, 0.001]} grid = GridSearchCV(SVC(), param_grid, verbose=2) grid.fit(self.df_feat, self.y) grid_predictions = grid.predict(self.df_feat) cm = (confusion_matrix(self.y, grid_predictions)) cr = (classification_report(self.y, grid_predictions)) return cm, cr def main(): mlc = machine_learning_classifier() # mlc.inital_variable_removal(inital_vars_to_drop = ['']) mlc.remove_na() mlc.exploring_data(y_var_category = 'setosa', var1 = 'sepal_width', var2 = 'sepal_length') mlc.standardising() correlation_matrix = mlc.correlations() # mlc.dropping_highly_correlated_variables(list_of_vars_to_drop=['who_man']) mlc.setting_y() classification_results = mlc.model_loop() confusion_matrix, classification_report = mlc.model_tuning()
the-stack_0_1197
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import deque from typing import Dict, Iterable, Optional, Set, TypeVar import numpy as np from compiler_gym.datasets.benchmark import Benchmark from compiler_gym.datasets.dataset import Dataset from compiler_gym.datasets.uri import BENCHMARK_URI_RE, resolve_uri_protocol T = TypeVar("T") def round_robin_iterables(iters: Iterable[Iterable[T]]) -> Iterable[T]: """Yield from the given iterators in round robin order.""" # Use a queue of iterators to iterate over. Repeatedly pop an iterator from # the queue, yield the next value from it, then put it at the back of the # queue. The iterator is discarded once exhausted. iters = deque(iters) while len(iters) > 1: it = iters.popleft() try: yield next(it) iters.append(it) except StopIteration: pass # Once we have only a single iterator left, return it directly rather # continuing with the round robin. if len(iters) == 1: yield from iters.popleft() class Datasets: """A collection of datasets. This class provides a dictionary-like interface for indexing and iterating over multiple :class:`Dataset <compiler_gym.datasets.Dataset>` objects. Select a dataset by URI using: >>> env.datasets["benchmark://cbench-v1"] Check whether a dataset exists using: >>> "benchmark://cbench-v1" in env.datasets True Or iterate over the datasets using: >>> for dataset in env.datasets: ... print(dataset.name) benchmark://cbench-v1 benchmark://github-v0 benchmark://npb-v0 To select a benchmark from the datasets, use :meth:`benchmark()`: >>> env.datasets.benchmark("benchmark://a-v0/a") Use the :meth:`benchmarks()` method to iterate over every benchmark in the datasets in a stable round robin order: >>> for benchmark in env.datasets.benchmarks(): ... print(benchmark) benchmark://cbench-v1/1 benchmark://github-v0/1 benchmark://npb-v0/1 benchmark://cbench-v1/2 ... If you want to exclude a dataset, delete it: >>> del env.datasets["benchmark://b-v0"] """ def __init__( self, datasets: Iterable[Dataset], ): self._datasets: Dict[str, Dataset] = {d.name: d for d in datasets} self._visible_datasets: Set[str] = set( name for name, dataset in self._datasets.items() if not dataset.deprecated ) def datasets(self, with_deprecated: bool = False) -> Iterable[Dataset]: """Enumerate the datasets. Dataset order is consistent across runs. :param with_deprecated: If :code:`True`, include datasets that have been marked as deprecated. :return: An iterable sequence of :meth:`Dataset <compiler_gym.datasets.Dataset>` instances. """ datasets = self._datasets.values() if not with_deprecated: datasets = (d for d in datasets if not d.deprecated) yield from sorted(datasets, key=lambda d: (d.sort_order, d.name)) def __iter__(self) -> Iterable[Dataset]: """Iterate over the datasets. Dataset order is consistent across runs. Equivalent to :meth:`datasets.datasets() <compiler_gym.datasets.Dataset.datasets>`, but without the ability to iterate over the deprecated datasets. If the number of benchmarks in any of the datasets is infinite (:code:`len(dataset) == math.inf`), the iterable returned by this method will continue indefinitely. :return: An iterable sequence of :meth:`Dataset <compiler_gym.datasets.Dataset>` instances. """ return self.datasets() def dataset(self, dataset: str) -> Dataset: """Get a dataset. Return the corresponding :meth:`Dataset <compiler_gym.datasets.Dataset>`. Name lookup will succeed whether or not the dataset is deprecated. :param dataset: A dataset name. :return: A :meth:`Dataset <compiler_gym.datasets.Dataset>` instance. :raises LookupError: If :code:`dataset` is not found. """ dataset_name = resolve_uri_protocol(dataset) if dataset_name not in self._datasets: raise LookupError(f"Dataset not found: {dataset_name}") return self._datasets[dataset_name] def __getitem__(self, dataset: str) -> Dataset: """Lookup a dataset. :param dataset: A dataset name. :return: A :meth:`Dataset <compiler_gym.datasets.Dataset>` instance. :raises LookupError: If :code:`dataset` is not found. """ return self.dataset(dataset) def __setitem__(self, key: str, dataset: Dataset): """Add a dataset to the collection. :param key: The name of the dataset. :param dataset: The dataset to add. """ dataset_name = resolve_uri_protocol(key) self._datasets[dataset_name] = dataset if not dataset.deprecated: self._visible_datasets.add(dataset_name) def __delitem__(self, dataset: str): """Remove a dataset from the collection. This does not affect any underlying storage used by dataset. See :meth:`uninstall() <compiler_gym.datasets.Datasets.uninstall>` to clean up. :param dataset: The name of a dataset. :return: :code:`True` if the dataset was removed, :code:`False` if it was already removed. """ dataset_name = resolve_uri_protocol(dataset) if dataset_name in self._visible_datasets: self._visible_datasets.remove(dataset_name) del self._datasets[dataset_name] def __contains__(self, dataset: str) -> bool: """Returns whether the dataset is contained.""" try: self.dataset(dataset) return True except LookupError: return False def benchmarks(self, with_deprecated: bool = False) -> Iterable[Benchmark]: """Enumerate the (possibly infinite) benchmarks lazily. Benchmarks order is consistent across runs. One benchmark from each dataset is returned in round robin order until all datasets have been fully enumerated. The order of :meth:`benchmarks() <compiler_gym.datasets.Datasets.benchmarks>` and :meth:`benchmark_uris() <compiler_gym.datasets.Datasets.benchmark_uris>` is the same. If the number of benchmarks in any of the datasets is infinite (:code:`len(dataset) == math.inf`), the iterable returned by this method will continue indefinitely. :param with_deprecated: If :code:`True`, include benchmarks from datasets that have been marked deprecated. :return: An iterable sequence of :class:`Benchmark <compiler_gym.datasets.Benchmark>` instances. """ return round_robin_iterables( (d.benchmarks() for d in self.datasets(with_deprecated=with_deprecated)) ) def benchmark_uris(self, with_deprecated: bool = False) -> Iterable[str]: """Enumerate the (possibly infinite) benchmark URIs. Benchmark URI order is consistent across runs. URIs from datasets are returned in round robin order. The order of :meth:`benchmarks() <compiler_gym.datasets.Datasets.benchmarks>` and :meth:`benchmark_uris() <compiler_gym.datasets.Datasets.benchmark_uris>` is the same. If the number of benchmarks in any of the datasets is infinite (:code:`len(dataset) == math.inf`), the iterable returned by this method will continue indefinitely. :param with_deprecated: If :code:`True`, include benchmarks from datasets that have been marked deprecated. :return: An iterable sequence of benchmark URI strings. """ return round_robin_iterables( (d.benchmark_uris() for d in self.datasets(with_deprecated=with_deprecated)) ) def benchmark(self, uri: str) -> Benchmark: """Select a benchmark. Returns the corresponding :class:`Benchmark <compiler_gym.datasets.Benchmark>`, regardless of whether the containing dataset is installed or deprecated. :param uri: The URI of the benchmark to return. :return: A :class:`Benchmark <compiler_gym.datasets.Benchmark>` instance. """ uri = resolve_uri_protocol(uri) match = BENCHMARK_URI_RE.match(uri) if not match: raise ValueError(f"Invalid benchmark URI: '{uri}'") dataset_name = match.group("dataset") dataset = self._datasets[dataset_name] return dataset.benchmark(uri) def random_benchmark( self, random_state: Optional[np.random.Generator] = None ) -> Benchmark: """Select a benchmark randomly. First, a dataset is selected uniformly randomly using :code:`random_state.choice(list(datasets))`. The :meth:`random_benchmark() <compiler_gym.datasets.Dataset.random_benchmark>` method of that dataset is then called to select a benchmark. Note that the distribution of benchmarks selected by this method is not biased by the size of each dataset, since datasets are selected uniformly. This means that datasets with a small number of benchmarks will be overrepresented compared to datasets with many benchmarks. To correct for this bias, use the number of benchmarks in each dataset as a weight for the random selection: >>> rng = np.random.default_rng() >>> finite_datasets = [d for d in env.datasets if len(d) != math.inf] >>> dataset = rng.choice( finite_datasets, p=[len(d) for d in finite_datasets] ) >>> dataset.random_benchmark(random_state=rng) :param random_state: A random number generator. If not provided, a default :code:`np.random.default_rng()` is used. :return: A :class:`Benchmark <compiler_gym.datasets.Benchmark>` instance. """ random_state = random_state or np.random.default_rng() dataset = random_state.choice(list(self._visible_datasets)) return self[dataset].random_benchmark(random_state=random_state) @property def size(self) -> int: return len(self._visible_datasets) def __len__(self) -> int: """The number of datasets in the collection.""" return self.size
the-stack_0_1199
#!/usr/bin/env python # coding: utf-8 import argparse import os import ray from dotenv import load_dotenv from tqdm import tqdm from birdfsd_yolov5.label_studio_helpers.utils import get_all_projects_tasks from birdfsd_yolov5.model_utils.handlers import catch_keyboard_interrupt from birdfsd_yolov5.model_utils.utils import api_request @ray.remote def patch_anno(task, _from, to): for _entry in task['annotations']: entry_id = _entry['id'] for entry in _entry['result']: value = entry['value'] if not _from == value['rectanglelabels'][0]: print(f'Could not find the label `{_from}` in task ' f'`{task["id"]}`! Skipping...') return entry['value']['rectanglelabels'] = [to] url = f'{os.environ["LS_HOST"]}/api/annotations/{entry_id}/' api_request(url, method='patch', data=_entry) return @ray.remote def patch_pred(pred, _from, to): for result in pred['result']: label = result['value']['rectanglelabels'] if not _from == label[0]: print(f'Could not find the label `{_from}` in pred ' f'`{pred["id"]}`! Skipping...') return result['value']['rectanglelabels'] = [to] url = f'{os.environ["LS_HOST"]}/api/predictions/{pred["id"]}/' api_request(url, method='patch', data=pred) return def check_if_label_exists_in_task_annotations(task, label): labels = [] if not task.get('annotations'): return results = sum([x['result'] for x in task['annotations']], []) for result in results: labels.append(result['value']['rectanglelabels']) labels = sum(labels, []) if label in labels: return task return def opts() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('-f', '--from-label', help='Label to find and change (i.e., old label)', type=str, required=True) parser.add_argument( '-t', '--to-label', help='Label to use instead of the old label (i.e., new label)', type=str, required=True) return parser.parse_args() def patch(from_label, to_label): catch_keyboard_interrupt() # -------------------------------------------------------------- tasks = get_all_projects_tasks() tasks_with_label = [] for task in tqdm(tasks, desc='Scan tasks'): task = check_if_label_exists_in_task_annotations(task, label=from_label) if task: tasks_with_label.append(task) futures = [] for task in tasks_with_label: futures.append(patch_anno.remote(task, from_label, to_label)) for future in tqdm(futures, desc='Futures'): ray.get(future) # -------------------------------------------------------------- preds = get_all_projects_tasks(get_predictions_instead=True) preds_with_label = [] for pred in tqdm(preds, desc='Scan preds'): for result in pred['result']: label = result['value']['rectanglelabels'] if from_label in label: preds_with_label.append(pred) futures = [] for pred in preds_with_label: futures.append(patch_pred.remote(pred, from_label, to_label)) for future in tqdm(futures, desc='Futures'): ray.get(future) # -------------------------------------------------------------- ray.shutdown() if __name__ == '__main__': load_dotenv() args = opts() patch(from_label=args.from_label, to_label=args.to_label)
the-stack_0_1201
""" Copyright (c) 2016-2019 Keith Sterling http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from programy.utils.logging.ylogger import YLogger from programy.parser.pattern.nodes.base import PatternNode from programy.parser.pattern.equalsmatch import EqualsMatch from programy.parser.exceptions import ParserException class PatternBotNode(PatternNode): def __init__(self, attribs, text, userid='*'): PatternNode.__init__(self, userid) if 'name' in attribs: self._property = attribs['name'] elif 'property' in attribs: self._property = attribs['property'] elif text: self._property = text else: raise ParserException("Invalid bot node, neither name or property specified as attribute or text") def is_bot(self): return True @property def property(self): return self._property def to_xml(self, client_context, include_user=False): string = "" if include_user is True: string += '<bot userid="%s" property="%s">\n'%(self.userid, self.property) else: string += '<bot property="%s">\n' % self.property string += super(PatternBotNode, self).to_xml(client_context) string += "</bot>" return string def to_string(self, verbose=True): if verbose is True: return "BOT [%s] [%s] property=[%s]" % (self.userid, self._child_count(verbose), self.property) return "BOT property=[%s]" % (self.property) def equivalent(self, other): if other.is_bot(): if self.userid == other.userid: if self.property == other.property: return True return False def equals(self, client_context, words, word_no): word = words.word(word_no) if self.userid != '*': if self.userid != client_context.userid: return EqualsMatch(False, word_no) if client_context.brain.properties.has_property(self.property): if word == client_context.brain.properties.property(self.property): YLogger.debug(client_context, "Found word [%s] as bot property", word) return EqualsMatch(True, word_no, word) return EqualsMatch(False, word_no)
the-stack_0_1202
from django.test import TestCase from django.utils.timezone import now, timedelta from polls.models import Choice, Question from django.contrib.auth.models import User from django.urls import reverse # Create your tests here. class QuestionModelTests(TestCase): def test_was_published_recently_with_future_question(self): time = now() + timedelta(days=30) future_question = Question(pub_date=time) self.assertIs(future_question.was_published_recently(), False) def test_was_published_recently_with_old_question(self): time = now() - timedelta(days=1, seconds=1) old_question = Question(pub_date=time) self.assertIs(old_question.was_published_recently(), False) def test_was_published_recently_with_recent_question(self): time = now() - timedelta(hours=23, minutes=59, seconds=59) recent_question = Question(pub_date=time) self.assertIs(recent_question.was_published_recently(), True) class IndexViewTests(TestCase): def test_get_no_question(self): response = self.client.get(reverse('polls:index')) self.assertEqual(response.status_code, 200) # self.assertContains(response, 'No polls are available.') self.assertQuerysetEqual(response.context['latest_question_list'], []) def test_get_question(self): Question.objects.create(question_text='Demo question.') response = self.client.get(reverse('polls:index')) self.assertEqual(response.status_code, 200) self.assertQuerysetEqual(response.context['latest_question_list'], ['<Question: Demo question.>']) class DetailViewTests(TestCase): def setUp(self) -> None: self.user = User.objects.create_user(username='libin', password='123') self.question = Question.objects.create( question_text='unit_test question?') self.choice_good = Choice.objects.create(question=self.question, choice_text='good', votes=0) self.choice_soso = Choice.objects.create(question=self.question, choice_text='soso', votes=0) self.choice_bad = Choice.objects.create(question=self.question, choice_text='bad', votes=0) def tearDown(self) -> None: self.question.delete() self.user.delete() def test_get(self): self.client.login(username='libin', password='123') response = self.client.get( reverse('polls:detail', kwargs={'id': self.question.id})) self.assertEqual(response.status_code, 200) self.assertEqual(str(response.context['question']), self.question.question_text) def test_post(self): self.client.login(username='libin', password='123') response = self.client.post(reverse('polls:detail', kwargs={'id': self.question.id}), data={ 'choice': self.choice_good.id, }) self.assertEqual(response.status_code, 302) good_choice_votes = Choice.objects.get(id=self.choice_good.id).votes self.assertEqual(good_choice_votes, 1)
the-stack_0_1204
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2018 [email protected] # Licensed under the MIT license (http://opensource.org/licenses/MIT) from sexpr import sexp import pprint import copy import hexdump DEBUG = 0 def u8(x): return x & 0xff def i16(x): return x & 0xffff class LEDVMError(Exception): pass class OpCodeInfo(object): def __init__(self, name, data_len, arg_type): self.name = name self.data_len = data_len self.arg_type = arg_type ARG_NONE = 0 ARG_REFRENCES = 1 class OpCode(object): SHOW_HSV = 0x00 SHOW_RGB = 0x01 LOAD_PIXEL = 0x02 ADD_VEC3 = 0x03 SUB_VEC3 = 0x04 IF_EQ = 0x05 OP_CODE_TABLE = { # CODE , MENOMIC , DATA_SIZE SHOW_HSV : OpCodeInfo("SHOW_HSV" , 0 , OpCodeInfo.ARG_NONE) , SHOW_RGB : OpCodeInfo("SHOW_RGB" , 0 , OpCodeInfo.ARG_NONE) , LOAD_PIXEL : OpCodeInfo("LOAD_PIXEL" , 3 , OpCodeInfo.ARG_REFRENCES) , ADD_VEC3 : OpCodeInfo("ADD_VEC3" , 3 , OpCodeInfo.ARG_REFRENCES) , SUB_VEC3 : OpCodeInfo("SUB_VEC3" , 3 , OpCodeInfo.ARG_REFRENCES) , IF_EQ : OpCodeInfo("IF_EQ" , 3 , OpCodeInfo.ARG_REFRENCES) , } @staticmethod def to_string(code): if code in OpCode.OP_CODE_TABLE: name = OpCode.OP_CODE_TABLE[code].name return "{}<{}>".format(name, code) else: return "{}<{}>".format("UnknownOpCode", code) def __init__(self, name, data_len=0): self.name = name self.data_len = data_len class Register(object): # Register codes PIXEL_NUM = 0 OUTPUT_TYPE = 1 KEY_STATE = 2 MOUSE_X = 3 MOUSE_Y = 4 OUTPUT_TYPE_RGB = 0 OUTPUT_TYPE_HSV = 1 def __init__(self, name, default_value=0): self.name = name self.value = default_value self.default_value = default_value class LEDEffectVM(object): REGISTER_TABLE = { Register.PIXEL_NUM : Register("PIXEL_NUM", 0), Register.OUTPUT_TYPE : Register("OUTPUT_TYPE", 0), Register.KEY_STATE : Register("KEY_STATE", 0), Register.MOUSE_X : Register("MOUSE_X", 0), Register.MOUSE_Y : Register("MOUSE_Y", 0), } def __init__(self, led_program_table={'main': []}, num_pixels=None): self.pixels = [(0, 0, 0)] * num_pixels self.led_program_table = led_program_table self.set_active_progarm('main') self.instr_ptr = 0 self.registers = {} for reg in self.REGISTER_TABLE: self.registers[reg] = self.REGISTER_TABLE[reg].default_value def set_active_progarm(self, name): self._current_program_name = name self.current_program = self.led_program_table[name] def goto_start(self): self.instr_ptr = 0 def rel_jump(self, offset): self.instr_ptr += (offset) def get_next_word(self): if self.instr_ptr >= len(self.current_program): return None result = self.current_program[self.instr_ptr] self.instr_ptr += 1 return result def read_op_code(self): code = self.get_next_word() if code == None: return None, None self.vm_assert(code in OpCode.OP_CODE_TABLE, "Invalid OpCode: {}".format(code)) op_code = OpCode.OP_CODE_TABLE[code] data = [] for i in range(op_code.data_len): data.append(self.get_next_word()) # if DEBUG >= 1 if DEBUG >= 5: print("Instruction: {}".format(self.instr_ptr)) print("Current code: {}, data:{}".format( OpCode.to_string(code), data ) ) return code, data REFERENCE_TYPE_IMMEDIATE = 0 REFERENCE_TYPE_REGISTER = 1 REFERENCE_TYPE_PIXEL = 2 def lookup_refrence(self, ref): # Refrences either an immediate value or another register value # Format of refrence values (in hex): # * 00xx -> Single byte immediate value # * 01xx -> Single byte immediate value value = (ref >> 0) & 0xff ref_type = (ref >> 8) & 0xff if ref_type == self.REFERENCE_TYPE_IMMEDIATE: return value elif ref_type == self.REFERENCE_TYPE_PIXEL: assert(value < 3) return self.get_current_pixel()[value] elif ref_type == self.REFERENCE_TYPE_REGISTER: assert(value in self.REGISTER_TABLE) return self.registers[value] def get_pixel(self, pixel_num): return self.pixels[pixel_num] def get_pixel_type(self, pixel_num): return self.registers[Register.OUTPUT_TYPE] def get_current_pixel(self): return self.pixels[self.registers[Register.PIXEL_NUM]] def set_current_pixel(self, x, y, z): self.pixels[self.registers[Register.PIXEL_NUM]] = (x, y, z) def execute_op_code(self, code, data): """ Return True if the program has finished executing """ if code == OpCode.SHOW_HSV: self.registers[Register.OUTPUT_TYPE] = Register.OUTPUT_TYPE_HSV return True elif code == OpCode.SHOW_RGB: self.registers[Register.OUTPUT_TYPE] = Register.OUTPUT_TYPE_RGB return True elif code == OpCode.LOAD_PIXEL: self.set_current_pixel( self.lookup_refrence(data[0]), self.lookup_refrence(data[1]), self.lookup_refrence(data[2]) ) elif code == OpCode.ADD_VEC3: old_value = self.get_current_pixel() self.set_current_pixel( u8(old_value[0] + self.lookup_refrence(data[0])), u8(old_value[1] + self.lookup_refrence(data[1])), u8(old_value[2] + self.lookup_refrence(data[2])) ) elif code == OpCode.SUB_VEC3: old_value = self.get_current_pixel() self.set_current_pixel( u8(old_value[0] - self.lookup_refrence(data[0])), u8(old_value[1] - self.lookup_refrence(data[1])), u8(old_value[2] - self.lookup_refrence(data[2])) ) elif code == OpCode.IF_EQ: lhs = self.lookup_refrence(data[0]) rhs = self.lookup_refrence(data[1]) jmp_pos = self.lookup_refrence(data[2]) if DEBUG >= 5: print("lhs, rhs, == :", lhs, rhs, lhs == rhs) if lhs != rhs: self.rel_jump(jmp_pos) else: raise LEDVMError("Unknown opcode {}".format(code)) return False def execute_program(self, program_name): self.set_active_progarm(program_name) for (pixel_i, _) in enumerate(self.pixels): self.execute_program_pixel(pixel_i) def execute_program_pixel(self, pixel_number): self.goto_start() self.registers[Register.PIXEL_NUM] = pixel_number is_running = True if DEBUG: print("Starting program for pixel: {}".format(pixel_number)) while is_running: (code, data) = self.read_op_code() if code == None: break; if DEBUG: print("(OpCode {}, Data {})".format(code, data)) is_running = not self.execute_op_code(code, data) def vm_assert(self, exp, msg=""): if exp != True: self.print_core_dump(msg) if msg == "": LEDVMError("LEDVMError: unspecified error") else: LEDVMError("LEDVMError: {}".format(msg)) def print_core_dump(self, error_msg): print( "\n" "Core dump while executing program '{}':\n" "Error message: {}\n" "instr_ptr: {}\n" "program: {}\n" .format( self._current_program_name, error_msg, self.instr_ptr, self.current_program ) ) class LEDEffectVMParser(object): def __init__(self): # The Parser needs the inverse mappings of the op_code/register lookup # tables, so generate them here self.op_code_lookup_table = {} for code in OpCode.OP_CODE_TABLE: name = OpCode.OP_CODE_TABLE[code].name self.op_code_lookup_table[name] = code self.register_lookup_table = {} for reg in LEDEffectVM.REGISTER_TABLE: name = LEDEffectVM.REGISTER_TABLE[reg].name self.register_lookup_table[name] = reg # def exp_as_arrays(self, exp): # print(exp) # arr = exp[0] # result = [] # for child in arr: # result.append(self.exp_as_arrays(child)) # return result def parse_asm(self, program_str): sexpression = sexp.parseString(program_str, parseAll=True) if DEBUG: print(sexpression) pprint.pprint(sexpression) # sexpression = self.exp_as_arrays(sexpression) byte_code = [] byte_code += self.parse_program(sexpression) return byte_code def generate_ref(self, ref): if isinstance(ref, int): assert(ref <= 255) ref_type = LEDEffectVM.REFERENCE_TYPE_IMMEDIATE value = ref elif isinstance(ref, str): if ref in self.register_lookup_table: ref_type = LEDEffectVM.REFERENCE_TYPE_REGISTER value = self.register_lookup_table[ref] elif ref in ('r', 'g', 'b', 'h', 's', 'v'): ref_type = LEDEffectVM.REFERENCE_TYPE_PIXEL value = { 'r': 0, 'h': 0, 'g': 1, 's': 1, 'b': 2, 'v': 2, }[ref] else: raise LEDVMError("Unknown reference: {}".format(ref)) else: return None lo_byte = (value << 0) hi_byte = (ref_type << 8) return [lo_byte | hi_byte] def parse_instruction(self, exp): if DEBUG: print("Parse Instruction: ", exp) name = exp[0] result = [] if not name in self.op_code_lookup_table: raise LEDVMError("Unknown opcode menomic: {}".format(name)) op_code = self.op_code_lookup_table[name] op_info = OpCode.OP_CODE_TABLE[op_code] # Add the op_code to the result result += [op_code] OP_CODE_POS = 1 data = exp[OP_CODE_POS:] if len(data) != op_info.data_len: raise LEDVMError("Expected {} arguments to opcode {}, got {}".format( op_info.data_len, name, len(data) ) ) if op_code == OpCode.IF_EQ: print(data) print(data[0], data[1], data[2]) LHS_POS = 0 RHS_POS = 1 JUMP_POS = 2 result += self.generate_ref(data[LHS_POS]) result += self.generate_ref(data[RHS_POS]) if_block_exp = data[JUMP_POS] ref_data = self.generate_ref(if_block_exp) if ref_data != None: result += ref_data else: print('ifblock:', if_block_exp) if_block = self.parse_instruction_list(if_block_exp) jmp_offset = i16(len(if_block)) result += [jmp_offset] result += if_block print('ifBlockResult:', result) elif op_info.arg_type == OpCodeInfo.ARG_NONE: pass # Don't need to add data elif op_info.arg_type == OpCodeInfo.ARG_REFRENCES: for ref in data: result += self.generate_ref(ref) return result def parse_instruction_list(self, instruction_list): result = [] for instruction in instruction_list: result += self.parse_instruction(instruction) return result def parse_program(self, exp): if DEBUG: print("Parse program: ", exp) exp = exp[0] # pprint.pprint(exp) return self.parse_instruction_list(exp) if __name__ == "__main__": init_prog = """ ( (LOAD_PIXEL PIXEL_NUM 255 200) ) """ # main_prog = """ # ( # (LOAD_PIXEL r 255 200) # (ADD_VEC3 1 0 0) # (IF_EQ v 199 # ( # (ADD_VEC3 1 0 0) # ) # ) # (IF_EQ v 200 # ( # (SUB_VEC3 1 0 0) # ) # ) # (SHOW_HSV) # ) # """ main_prog = """ ( (IF_EQ h 0 ( (LOAD_PIXEL h 255 199) ) ) (IF_EQ h 255 ( (LOAD_PIXEL h 255 200) ) ) (IF_EQ v 200 ( (SUB_VEC3 1 0 0) ) ) (IF_EQ v 199 ( (ADD_VEC3 1 0 0) ) ) (SHOW_HSV) ) """ vm_parser = LEDEffectVMParser() led_programs = { "init": vm_parser.parse_asm(init_prog), "main": vm_parser.parse_asm(main_prog), } vm = LEDEffectVM(led_programs, num_pixels=64) for prog in led_programs: print(prog, led_programs[prog]) byte_code_as_bytes = bytes([]) for word in led_programs[prog]: byte_code_as_bytes += bytes([word & 0xff, word>>8 & 0xff]) hexdump.hexdump(byte_code_as_bytes) vm.execute_program('init') for i in range(300): vm.execute_program('main') print(vm.pixels)
the-stack_0_1205
import torch.nn as nn import torch.nn.functional as F import torch class Classifier(nn.Module): def __init__(self, input_nc=3, ndf=64, norm_layer=nn.BatchNorm2d): super(Classifier, self).__init__() kw = 3 sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2), nn.LeakyReLU(0.2, True) ] nf_mult = 1 nf_mult_prev = 1 for n in range(3): nf_mult_prev = nf_mult nf_mult = min(2**n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2), norm_layer(ndf * nf_mult, affine=True), nn.LeakyReLU(0.2, True) ] self.before_linear = nn.Sequential(*sequence) sequence = [ nn.Linear(ndf * nf_mult, 1024), nn.Linear(1024, 10) ] self.after_linear = nn.Sequential(*sequence) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, 0.01) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() self.criterionCLS = torch.nn.modules.CrossEntropyLoss() def forward(self, x, lbl=None, ita=1.5): bs = x.size(0) out = self.after_linear(self.before_linear(x).view(bs, -1)) x = out P = F.softmax(x, dim=1) # [B, 19, H, W] logP = F.log_softmax(x, dim=1) # [B, 19, H, W] PlogP = P * logP # [B, 19, H, W] ent = -1.0 * PlogP.sum(dim=1) # [B, 1, H, W] ent = ent / 2.9444 # chanage when classes is not 19 # compute robust entropy ent = ent ** 2.0 + 1e-8 ent = ent ** ita self.loss_ent = ent.mean() if lbl is not None: self.loss_cls = self.criterionCLS(x, lbl) return x def get_lr_params(self): b = [] b.append(self.before_linear.parameters()) b.append(self.after_linear.parameters()) for j in range(len(b)): for i in b[j]: yield i def optim_parameters(self, args): return [{'params': self.get_lr_params(), 'lr': args.learning_rate}] def adjust_learning_rate(self, args, optimizer, i): lr = args.learning_rate * ( (1-float(i)/args.num_steps) ** (args.power) ) optimizer.param_groups[0]['lr'] = lr if len(optimizer.param_groups) > 1: optimizer.param_groups[1]['lr'] = lr * 10 def CLSNet(restore_from=None): model = Classifier() if restore_from is not None: model.load_state_dict(torch.load(restore_from + '.pth', map_location=lambda storage, loc: storage)) return model
the-stack_0_1206
from Common import * from save_to_mysql import Save_MySQL # file_date_time = "2019-10-17" # stif_time = "201910170900" # 生成个人表 def make_stan_person(num): """字段列表 "busi_reg_no":"客户号", "ctnm":"客户名称", "cten":"拼音/英文名称", "client_tp":"客户类别",1客户,2商户 "account_tp":"账户分类",1/2/3代表1、2、3类账号 "busi_type":"业务类型", "smid":"主体特约商户编号", "citp":"证件类型", "citp_ori":"证件类型原值", "citp_nt":"证件类型说明", "ctid":"证件号码", "ctid_edt":"证件有效期", "sex":"性别", "country":"国籍", "nation":"民族", "birthday":"出生日期", "education":"学历", "ctvc":"主体的职业类别", "picm":"个人年收入", "ficm":"家庭年收入", "marriage":"婚姻状况", "ceml":"电子邮件", "rgdt":"开户日期", "cls_dt":"销户日期", "remark":"备注", "indu_code":"行业代码", "stat_flag_ori":"客户状态原值", "stat_flag":"客户状态", "mer_prov":"省", "mer_city":"市", "mer_area":"区县", "address":"详细地址", "tel":"联系电话", "mer_unit":"管理机构", "is_line":"是否线上{注册}", "certification ":"建立渠道", "cer_num":"通过身份验证渠道数量", "con_acc_name":"经营名称", "bord_flag":"境内外标识", "web_info":"网络支付商户网址信息", "con_nation":"商户所属国家或地区", "bind_card":"银行绑定标识", "ip_code":"注册地IP地址", "mac_info":"注册设备MAC或IMEI地址", "self_acc_no":"特约商户收单结算账号", "acc_type1":"账户类型", "bank_acc_name":"银行账户名称", "reals":"客户真实有效性", "batch_pay":"批量代付标识", "statement_type":"结算类型" :return: """ busi_reg_no = "p_{}".format(num) ctnm = make_name_data() cten = word_to_pinyin(ctnm) client_tp = random.choice(["1", "2"]) busi_type = make_busi_type_data() account_tp = make_account_tp_data(busi_type) if client_tp == "2": smid = random.randint(1000, 9999) # 该字段值待确定 smid = str(smid) else: smid = "" citp = make_citp_data() citp_ori = citp # 该值暂定 citp_nt = "有效证件" ctid = make_ctid_data() ctid_edt = make_Card_valid_date(ctid) sex = make_sex(ctid) country = choice_contry() nation = str(random.randint(1, 57)) birthday = ctid[6:14] education = str(random.randint(1, 7)) ctvc = random.choice(["1A", "1B", "1C", "1D", "1E", "1F", "1G", "1H"]) picm = "300000" ficm = "500000" marriage = make_marriage_data(ctid) ceml = make_email_data() rgdt = make_register_date() cls_dt = make_cls_dt_data(busi_reg_no) remark = "这是一个备注" indu_code = make_indu_code_data() stat_flag_ori = "888888" stat_flag = make_stat_flag_data(cls_dt) # mer_prov = get_province_data(ctid[:6]) mer_prov = get_province_code_data(ctid[:6]) # mer_city = make_province_city_data(ctid[:6])[0] mer_city = make_province_city_code_data(ctid[:6]) # mer_area = make_province_city_data(ctid[:6])[-1] mer_area = ctid[:6] address = make_address(ctid[:6]) tel = make_tel_num() mer_unit = make_mer_unit_data() is_line = random.choice(["0", "1"]) certification = random.choice(["1", "2", "3"]) cer_num = str(random.randint(0, 6)) con_acc_name = "默认经营名称" # 网络支付、预付卡、银行卡收单必须填写,暂为空 bord_flag = make_bord_flag_data() web_info = make_web_info_data(busi_type) # 非网络支付业务,无网址用户可不填 con_nation = make_con_nation_data(bord_flag) bind_card = make_bind_card_data(busi_type) # 仅需网络支付填写 ip_code = make_ip_data(busi_type) # 仅需网络支付填写 mac_info = make_mac_info_data(busi_type) # PC机填写MAC,移动终端填写IMEI(需网络支付,预付卡填写), 暂为空 self_acc_no = make_self_acc_no_data(client_tp) # 非商户不填,网络支付、预付卡、银行卡收单必须填写 acc_type1 = make_acc_type1_data(client_tp) # 非商户不填,网络支付、预付卡、银行卡收单必须填写 bank_acc_name = make_bank_acc_name_data(acc_type1) reals = make_reals_data() batch_pay = make_batch_pay_data(busi_type, client_tp) statement_type = make_statement_type_data(client_tp) # print(busi_reg_no, ctnm, cten, client_tp, account_tp, busi_type, smid, citp, citp_ori, citp_nt, ctid, ctid_edt, sex, # country, nation, birthday, education, ctvc, picm, ficm, marriage, ceml, rgdt, cls_dt, remark, indu_code, # stat_flag_ori, stat_flag, mer_prov, mer_city, mer_area, address, tel, mer_unit, is_line, certification, # cer_num, con_acc_name, bord_flag, web_info, con_nation, bind_card, ip_code, mac_info, self_acc_no, acc_type1, # bank_acc_name, reals, batch_pay, statement_type) # contect_data = make_connect_data([ # busi_reg_no, ctnm, cten, client_tp, account_tp, busi_type, smid, citp, citp_ori, citp_nt, ctid, ctid_edt, sex, # country, nation, birthday, education, ctvc, picm, ficm, marriage, ceml, rgdt, cls_dt, remark, indu_code, # stat_flag_ori, stat_flag, mer_prov, mer_city, mer_area, address, tel, mer_unit, is_line, certification, # cer_num, con_acc_name, bord_flag, web_info, con_nation, bind_card, ip_code, mac_info, self_acc_no, acc_type1, # bank_acc_name, reals, batch_pay, statement_type # ]) contect_data = "busi_reg_no,ctnm,cten,client_tp,account_tp,busi_type,smid,citp,citp_ori,citp_nt,ctid,ctid_edt,sex,country,nation,birthday,education,ctvc,picm,ficm,marriage,ceml,rgdt,cls_dt,remark,indu_code,stat_flag_ori,stat_flag,mer_prov,mer_city,mer_area,address,tel,mer_unit,is_line,certification,cer_num,con_acc_name,bord_flag,web_info,con_nation,bind_card,ip_code,mac_info,self_acc_no,acc_type1,bank_acc_name,reals,batch_pay,statement_type" return { "busi_reg_no": busi_reg_no, "ctnm": ctnm, "cten": cten, "client_tp": client_tp, "account_tp": account_tp, "busi_type": busi_type, "smid": smid, "citp": citp, "citp_ori": citp_ori, "citp_nt": citp_nt, "ctid": ctid, "ctid_edt": ctid_edt, "sex": sex, "country": country, "nation": nation, "birthday": birthday, "education": education, "ctvc": ctvc, "picm": picm, "ficm": ficm, "marriage": marriage, "ceml": ceml, "rgdt": rgdt, "cls_dt": cls_dt, "remark": remark, "indu_code": indu_code, "stat_flag_ori": stat_flag_ori, "stat_flag": stat_flag, "mer_prov": mer_prov, "mer_city": mer_city, "mer_area": mer_area, "address": address, "tel": tel, "mer_unit": mer_unit, "is_line": is_line, "certification": certification, "cer_num": cer_num, "con_acc_name": con_acc_name, "bord_flag": bord_flag, "web_info": web_info, "con_nation": con_nation, "bind_card": bind_card, "ip_code": ip_code, "mac_info": mac_info, "self_acc_no": self_acc_no, "acc_type1": acc_type1, "bank_acc_name": bank_acc_name, "reals": reals, "batch_pay": batch_pay, "statement_type": statement_type }, contect_data # 生成机构表 def make_stan_org(num): """ busi_reg_no: 客户号 ctnm: 客户名称 cten: 拼音/英文名称 client_tp: 客户类别 account_tp: 账户分类 busi_type: 业务类型 smid: 主体特约商户编号 citp: 证件类型_报送 citp_ori: 证件类型原值 ctid: 证件号码 ctid_edt: 证件有效期 citp_nt: 证件类型说明 id_type: 证件类型_现场检查 org_no: 组织机构代码 linkman: 联系人姓名 linktel: 联系人手机号 linkjob: 联系人职务 linkmail: 联系人邮箱 linkphone: 联系人固定电话 ceml: 电子邮件 ctvc: 主体的行业类别 crnm: 主体的法定代表人姓名 crit: 主体的法定代表人身份证件类型 crit_ori: 主体的法定代表人身份证件类型原值 crit_nt: 主体的法定代表人身份证件类型说明 crid: 主体的法定代表人身份证件号码 crid_edt: 主体的法定代表人证件有效期 rgdt: 开户日期 cls_dt: 销户日期 scale: 企业规模 country: 注册国家 crp_type: 组织机构类别 fud_date: 成立日期 reg_cptl: 注册资本 remark_ctvc: 经营范围 agency_ctnm: 代办理人姓名 agency_citp: 代办理人证件类型 agency_ctid: 代办理人证件号码 agency_edt: 代办理人证件有效期限 remark: 备注 indu_code: 行业代码 stat_flag_ori: 客户状态原值 stat_flag: 客户状态 mer_prov: 省 mer_city: 市 mer_area: 区县 address: 详细地址 tel: 联系电话 mer_unit: 管理机构 is_line: 是否线上 certification : 建立渠道 cer_num: 通过身份验证渠道数量 con_acc_name: 经营名称 bord_flag: 境内外标识 web_info: 网络支付商户网址信息 con_nation: 商户所属国家或地区 majority_shareholder_ctnm: 控股股东或实际控制人姓名 majority_shareholder_citp: 控股股东或实际控制人证件类型 majority_shareholder_citp_ori: 控股股东或实际控制人证件类型原值 majority_shareholder_ctid: 控股股东或实际控制人证件号码 majority_shareholder_edt: 控股股东或实际控制人证件有效期限 reg_cptl_code: 注册资本金币种 bind_card: 银行绑定标识 ip_code: 注册地IP地址 mac_info: 注册设备MAC或IMEI地址 self_acc_no: 特约商户收单结算账号 acc_type1: 账户类型 bank_acc_name: 银行账户名称 reals: 客户真实有效性 complex: 非自然人结构复杂度 clear: 非自然人股权可辨识度 batch_pay: 批量代付标识 statement_type: 结算类型 :return: """ busi_reg_no = "o_{}".format(num) ctnm = make_name_data() cten = word_to_pinyin(ctnm) client_tp = random.choice(["1", "2"]) busi_type = make_busi_type_data() account_tp = make_account_tp_data(busi_type) if client_tp == "2": smid = make_random_str(20) # 该字段值待确定 else: smid = "" citp = random.choice(["21", "29"]) citp_ori = citp # 该值暂定 ctid = make_ctid_data() ctid_edt = make_Card_valid_date(ctid) if citp == "29": citp_nt = random.choice(["营业执照", "统一社会信用代码"]) else: citp_nt = "证件类型" if citp_ori == "营业执照": id_type = "11" else: id_type = "12" org_no = make_random_num(9) # 统一社会信用代码9-17位 linkman = make_name_data() linktel = make_tel_num() linkjob = "联系人职务" linkmail = make_email_data() linkphone = make_random_num(9) ceml = make_email_data() ctvc = make_org_ctvc_data() crnm = make_name_data() crit = make_citp_data() crit_ori = "证件原值" if crit == "19": crit_nt = "证件类型说明" else: crit_nt = "" crid = make_ctid_data() crid_edt = make_Card_valid_date(crid) rgdt = make_register_date() cls_dt = make_cls_dt_data(busi_reg_no) scale = make_scale_data() country = make_country_data() crp_type = make_crp_type_data() fud_date = "20151111" # 成立日期,暂时写死 reg_cptl = "1000000.00" # 注册资金,暂时写死 remark_ctvc = "经营范围" agency_ctnm = make_name_data() agency_citp = make_citp_data() agency_ctid = make_ctid_data() agency_edt = make_Card_valid_date(agency_ctid) remark = "备注,暂时不填" indu_code = make_indu_code_data() # 支付机构行业代码,暂时默认为11111 stat_flag_ori = "11111" # 客户状态原值,可是用支付系统码表,根据客户业务系统修改 stat_flag = make_stat_flag_data(busi_reg_no) mer_prov = get_province_code_data(ctid[:6]) mer_city = make_province_city_code_data(ctid[:6]) mer_area = ctid[:6] address = make_address(ctid[:6]) tel = make_tel_num() mer_unit = make_mer_unit_data() is_line = random.choice(["0", "1"]) certification = random.choice(["1", "2", "3"]) cer_num = str(random.randint(0, 6)) con_acc_name = "默认经营名称" # 网络支付、预付卡、银行卡收单必须填写,暂为空 bord_flag = make_bord_flag_data() # 网络支付、预付卡、银行卡收单必须填写 web_info = make_web_info_data(busi_type) # 非网络支付业务,无网址用户可不填 con_nation = make_con_nation_data(bord_flag) # 网络支付、预付卡、银行卡收单必须填写 majority_shareholder_ctnm = make_name_data() majority_shareholder_citp = make_citp_data() majority_shareholder_citp_ori = "控股股东或实际控制人证件类型原值" majority_shareholder_ctid = make_ctid_data() majority_shareholder_edt = make_Card_valid_date(majority_shareholder_ctid) reg_cptl_code = "CNY" bind_card = make_bind_card_data(busi_type) # 仅需网络支付填写 ip_code = make_ip_data(busi_type) # 仅需网络支付填写 mac_info = make_mac_info_data(busi_type) # PC机填写MAC,移动终端填写IMEI(需网络支付,预付卡填写), 暂为空 self_acc_no = make_self_acc_no_data(client_tp) # 非商户不填,网络支付、预付卡、银行卡收单必须填写 acc_type1 = make_acc_type1_data(client_tp) # 非商户不填,网络支付、预付卡、银行卡收单必须填写 bank_acc_name = make_bank_acc_name_data(acc_type1) # 当acc_type1=12时填写,银行账号对应账户名称( 网络支付、预付卡、银行卡收单均需填写) reals = str(random.randint(1, 5)) complex = make_complex_data() clear = make_clear_data() batch_pay = make_batch_pay_data(busi_type, client_tp) statement_type = random.choice(["0", "1"]) # print(busi_reg_no, ctnm, cten, client_tp, account_tp, busi_type, smid, citp, citp_ori, ctid, ctid_edt, citp_nt, # id_type, org_no, linkman, linktel, linkjob, linkmail, linkphone, ceml, ctvc, crnm, crit, crit_ori, crit_nt, # crid, crid_edt, rgdt, cls_dt, scale, country, crp_type, fud_date, reg_cptl, remark_ctvc, agency_ctnm, # agency_citp, agency_ctid, agency_edt, remark, indu_code, stat_flag_ori, stat_flag, mer_prov, mer_city, # mer_area, address, tel, mer_unit, is_line, certification, cer_num, con_acc_name, bord_flag, web_info, # con_nation, majority_shareholder_ctnm, majority_shareholder_citp, majority_shareholder_citp_ori, # majority_shareholder_ctid, majority_shareholder_edt, reg_cptl_code, bind_card, ip_code, mac_info, self_acc_no, # acc_type1, bank_acc_name, reals, complex, clear, batch_pay, statement_type) # contect_data = make_connect_data([ # busi_reg_no, ctnm, cten, client_tp, account_tp, busi_type, smid, citp, citp_ori, ctid, ctid_edt, citp_nt, # id_type, org_no, linkman, linktel, linkjob, linkmail, linkphone, ceml, ctvc, crnm, crit, crit_ori, crit_nt, # crid, crid_edt, rgdt, cls_dt, scale, country, crp_type, fud_date, reg_cptl, remark_ctvc, agency_ctnm, # agency_citp, agency_ctid, agency_edt, remark, indu_code, stat_flag_ori, stat_flag, mer_prov, mer_city, mer_area, # address, tel, mer_unit, is_line, certification, cer_num, con_acc_name, bord_flag, web_info, con_nation, # majority_shareholder_ctnm, majority_shareholder_citp, majority_shareholder_citp_ori, majority_shareholder_ctid, # majority_shareholder_edt, reg_cptl_code, bind_card, ip_code, mac_info, self_acc_no, acc_type1, bank_acc_name, # reals, complex, clear, batch_pay, statement_type # ]) contect_data = "busi_reg_no,ctnm,cten,client_tp,account_tp,busi_type,smid,citp,citp_ori,ctid,ctid_edt,citp_nt,id_type,org_no,linkman,linktel,linkjob,linkmail,linkphone,ceml,ctvc,crnm,crit,crit_ori,crit_nt,crid,crid_edt,rgdt,cls_dt,scale,country,crp_type,fud_date,reg_cptl,remark_ctvc,agency_ctnm,agency_citp,agency_ctid,agency_edt,remark,indu_code,stat_flag_ori,stat_flag,mer_prov,mer_city,mer_area,address,tel,mer_unit,is_line,certification,cer_num,con_acc_name,bord_flag,web_info,con_nation,majority_shareholder_ctnm,majority_shareholder_citp,majority_shareholder_citp_ori,majority_shareholder_ctid,majority_shareholder_edt,reg_cptl_code,bind_card,ip_code,mac_info,self_acc_no,acc_type1,bank_acc_name,reals,complex,clear,batch_pay,statement_type" return { "busi_reg_no": busi_reg_no, "ctnm": ctnm, "cten": cten, "client_tp": client_tp, "account_tp": account_tp, "busi_type": busi_type, "smid": smid, "citp": citp, "citp_ori": citp_ori, "ctid": ctid, "ctid_edt": ctid_edt, "citp_nt": citp_nt, "id_type": id_type, "org_no": org_no, "linkman": linkman, "linktel": linktel, "linkjob": linkjob, "linkmail": linkmail, "linkphone": linkphone, "ceml": ceml, "ctvc": ctvc, "crnm": crnm, "crit": crit, "crit_ori": crit_ori, "crit_nt": crit_nt, "crid": crid, "crid_edt": crid_edt, "rgdt": rgdt, "cls_dt": cls_dt, "scale": scale, "country": country, "crp_type": crp_type, "fud_date": fud_date, "reg_cptl": reg_cptl, "remark_ctvc": remark_ctvc, "agency_ctnm": agency_ctnm, "agency_citp": agency_citp, "agency_ctid": agency_ctid, "agency_edt": agency_edt, "remark": remark, "indu_code": indu_code, "stat_flag_ori": stat_flag_ori, "stat_flag": stat_flag, "mer_prov": mer_prov, "mer_city": mer_city, "mer_area": mer_area, "address": address, "tel": tel, "mer_unit": mer_unit, "is_line": is_line, "certification": certification, "cer_num": cer_num, "con_acc_name": con_acc_name, "bord_flag": bord_flag, "web_info": web_info, "con_nation": con_nation, "majority_shareholder_ctnm": majority_shareholder_ctnm, "majority_shareholder_citp": majority_shareholder_citp, "majority_shareholder_citp_ori": majority_shareholder_citp_ori, "majority_shareholder_ctid": majority_shareholder_ctid, "majority_shareholder_edt": majority_shareholder_edt, "reg_cptl_code": reg_cptl_code, "bind_card": bind_card, "ip_code": ip_code, "mac_info": mac_info, "self_acc_no": self_acc_no, "acc_type1": acc_type1, "bank_acc_name": bank_acc_name, "reals": reals, "complex": complex, "clear": clear, "batch_pay": batch_pay, "statement_type": statement_type }, contect_data # 客户证件表 def make_stan_cert(infos): """ ctif_id:客户号 ctif_tp:主体类型 citp:证件类型 citp_ori:证件类型原值 citp_nt:证件类型说明 ctid:证件号码 iss_unt:证件签发机关 address:证件地址 ctid_edt:主体证件有效期 iss_dt:证件签发日期 iss_ctry:证件签发国家 is_rp:是否主证件 :return: """ ctif_id = infos.get("busi_reg_no") # 取值 ctif_tp = "1" citp = infos.get("citp") # 取值 citp_ori = infos.get("citp_ori") # 取值 citp_nt = infos.get("citp_nt") # 取值 ctid = infos.get("ctid") # 取值 iss_unt = make_province_city_process_data(ctid[:6])[:16] + "公安局" # 取值户籍所在地县级公安局 address = infos.get("address") # 取值 ctid_edt = infos.get("ctid_edt") # 取值, iss_dt = make_iss_dt_data(ctid_edt) iss_ctry = infos.get("country") # 取值, is_rp = "1" # 考虑添加副证件 # print(ctif_id, ctif_tp, citp, citp_ori, citp_nt, ctid, iss_unt, address, ctid_edt, iss_dt, iss_ctry, is_rp) # contect_data = make_connect_data([ # ctif_id, ctif_tp, citp, citp_ori, citp_nt, ctid, iss_unt, address, ctid_edt, iss_dt, iss_ctry, is_rp # ]) contect_data = "ctif_id,ctif_tp,citp,citp_ori,citp_nt,ctid,iss_unt,address,ctid_edt,iss_dt,iss_ctry,is_rp" return { "ctif_id": ctif_id, "ctif_tp": ctif_tp, "citp": citp, "citp_ori": citp_ori, "citp_nt": citp_nt, "ctid": ctid, "iss_unt": iss_unt, "address": address, "ctid_edt": ctid_edt, "iss_dt": iss_dt, "iss_ctry": iss_ctry, "is_rp": is_rp }, contect_data # 客户地址信息表 def make_stan_address(infos, ctif_tp_data): """ ctif_id: 客户号 ctif_tp: 主体类型 address_tp: 地址类型 address: 详细地址 ctry: 国家代码 county: 行政区划代码 prvc: 省 city: 市 area: 区县 postcode: 邮编 exp_dt: 地址的失效日 is_rp: 是否主地址 :return: """ ctif_id = infos.get("busi_reg_no") # 取值 ctif_tp = ctif_tp_data # 取值 address_tp = make_address_tp_data() address = infos.get("address") # ctry = infos.get("country") # 取值 # county = make_make_province_city_process_data(infos.get("ctid")[:6]) # 已从最新接口文档中移除 prvc = infos.get("mer_prov") # 取值 city = infos.get("mer_city") # 取值 area = infos.get("mer_area") # 取值 postcode = "" exp_dt = "" is_rp = "1" # print(ctif_id, ctif_tp, address_tp, address, ctry, prvc, city, area, postcode, exp_dt, is_rp) # contect_data = make_connect_data([ # ctif_id, ctif_tp, address_tp, address, ctry, prvc, city, area, postcode, exp_dt, is_rp # ]) contect_data = "ctif_id,ctif_tp,address_tp,address,ctry,prvc,city,area,postcode,exp_dt,is_rp" return { "ctif_id": ctif_id, "ctif_tp": ctif_tp, "address_tp": address_tp, "address": address, "ctry": ctry, "prvc": prvc, "city": city, "area": area, "postcode": postcode, "exp_dt": exp_dt, "is_rp": is_rp }, contect_data # 客户联系信息表 def make_stan_tel(infos): """ ctif_id:客户号 ctif_tp:主体类型 tel_tp:电话类型 tel:联系电话 is_rp:是否主电话 :param infos: :return: """ ctif_id = infos.get("busi_reg_no") ctif_tp = "1" tel_tp = random.choice(["11", "12", "21", "22", "23"]) tel = make_tel_num() is_rp = "1" # print(ctif_id, ctif_tp, tel_tp, tel, is_rp) # contect_data = make_connect_data([ # ctif_id, ctif_tp, tel_tp, tel, is_rp # ]) contect_data = 'ctif_id,ctif_tp,tel_tp,tel,is_rp' return { "ctif_id": ctif_id, "ctif_tp": ctif_tp, "tel_tp": tel_tp, "tel": tel, "is_rp": is_rp }, contect_data # 关系人信息表 def make_stan_relation(infos): """ 客户关系 ctif_id: 客户号 ctif_tp: 主体类型 rel_tp: 关系类型 rel_layer: 关系人层级 rel_ctif: 关系人客户号 rel_cstp: 关系人类别 rel_name: 关系人名称 rcnt: 关系人国籍/国家 citp: 关系人证件类型 citp_ori: 关系人证件类型原 ctid: 关系人证件号码 citp_nt: 关系人证件类型说 hold_per: 持股比例 hold_amt: 持股金额 ctid_edt: 关系人证件有效期 rel_prov: 关系人省 rel_city: 关系人市 rel_area: 关系人区县 rear: 关系人详细地址 retl: 关系人联系电话 :param infos: :return: """ ctif_id = infos.get("busi_reg_no") ctif_tp = "1" rel_tp = make_rel_tp_data() rel_layer = random.choice(["-1", "0", "1", "2", "3", "4", "5"]) rel_ctif = make_random_num(6) rel_cstp = random.choice(["1", "2"]) rel_name = make_name_data() rcnt = "CHE" # make_country_data() 默认中国 citp = make_citp_data() citp_ori = "证件类型原值" ctid = make_ctid_data() citp_nt = "证件类型说明" hold_per = 0.05 # 持股比例 hold_amt = 0.05 # 持股金额 ctid_edt = make_Card_valid_date(ctid) rel_prov = get_province_code_data(ctid[:6]) rel_city = make_province_city_code_data(ctid[:6]) rel_area = ctid[:6] rear = make_address(ctid[:6]) retl = make_tel_num() # print(ctif_id, ctif_tp, rel_tp, rel_layer, rel_ctif, rel_cstp, rel_name, rcnt, citp, citp_ori, ctid, citp_nt, # hold_per, hold_amt, ctid_edt, rel_prov, rel_city, rel_area, rear, retl) # contect_data = make_connect_data([ # ctif_id, ctif_tp, rel_tp, rel_layer, rel_ctif, rel_cstp, rel_name, rcnt, citp, citp_ori, ctid, citp_nt, # hold_per, hold_amt, ctid_edt, rel_prov, rel_city, rel_area, rear, retl # ]) contect_data = "ctif_id,ctif_tp,rel_tp,rel_layer,rel_ctif,rel_cstp,rel_name,rcnt,citp,citp_ori,ctid,citp_nt,hold_per,hold_amt,ctid_edt,rel_prov,rel_city,rel_area,rear,retl" return { "ctif_id": ctif_id, "ctif_tp": ctif_tp, "rel_tp": rel_tp, "rel_layer": rel_layer, "rel_ctif": rel_ctif, "rel_cstp": rel_cstp, "rel_name": rel_name, "rcnt": rcnt, "citp": citp, "citp_ori": citp_ori, "ctid": ctid, "citp_nt": citp_nt, "hold_per": hold_per, "hold_amt": hold_amt, "ctid_edt": ctid_edt, "rel_prov": rel_prov, "rel_city": rel_city, "rel_area": rel_area, "rear": rear, "retl": retl }, contect_data # 支付账户表 def make_stan_pact(infos): """ ctif_id: 客户号 ctif_tp: 主体类型 act_tp: 账户类型 act_cd: 支付账户号 act_typ: 账号类别 act_limit: 支付账户交易限额 is_self_acc: 是否特约商户收单结算账号 sales_name: 预付卡办卡人 cst_sex: 预付卡办卡人性别 nation: 预付卡办卡人国籍 occupation: 预付卡办卡人职业 id_type: 预付卡办卡人证件种类 id_type_ori: 预付卡办卡人证件种类原值 id_no: 预付卡办卡人证件号码 id_deadline: 预付卡办卡人证件有效期截至日 contact: 预付卡办卡人联系方式 address: 预付卡办卡人住所地或工作单位地址 sales_flag: 预付卡代直销标识 bind_mob: 绑定的手机号码 mer_unit: 管理机构 cls_dt: 账户状态 rgdt: 开户日期 cls_stat: 销户日期 :param infos: :return: """ if infos.get("busi_type") == "02": ctif_id = "" ctif_tp = "" act_tp = "" act_cd = "" act_typ = "" act_limit = 0 is_self_acc = "" sales_name = "" cst_sex = "" nation = "" occupation = "" id_type = "" id_type_ori = "" id_no = "" id_deadline = "" contact = "" address = "" sales_flag = "" bind_mob = "" mer_unit = "" cls_dt = "" rgdt = "" cls_stat = "" else: ctif_id = infos.get("busi_reg_no") ctif_tp = "1" act_tp = random.choice(['11', "211", "212"]) act_cd = make_act_cd_data(act_tp) act_typ = make_act_type_data(act_tp) act_limit = make_act_limit_data(act_tp, act_typ) is_self_acc = random.choice(["0", "1"]) sales_name, cst_sex, nation, occupation, id_type, id_type_ori, id_no, id_deadline, contact, address, sales_flag \ = make_prepaid_card_data(infos) bind_mob = make_bind_mob_data(infos) mer_unit = make_mer_unit_data() cls_dt = make_cls_dt_data(infos.get("busi_reg_no")) rgdt = make_register_date() if cls_dt == "C": cls_stat = make_register_date() else: cls_stat = "" # print(ctif_id, ctif_tp, act_tp, act_cd, act_typ, act_limit, is_self_acc, sales_name, "性别:", cst_sex, nation, # occupation, id_type, id_type_ori, id_no, id_deadline, contact, address, sales_flag, bind_mob, mer_unit, # cls_dt, rgdt, cls_stat) # contect_data = make_connect_data([ # ctif_id, ctif_tp, act_tp, act_cd, act_typ, act_limit, is_self_acc, sales_name, cst_sex, nation, occupation, # id_type, id_type_ori, id_no, id_deadline, contact, address, sales_flag, bind_mob, mer_unit, cls_dt, rgdt, # cls_stat # ]) contect_data = "ctif_id,ctif_tp,act_tp,act_cd,act_typ,act_limit,is_self_acc,sales_name,cst_sex,nation,occupation,id_type,id_type_ori,id_no,id_deadline,contact,address,sales_flag,bind_mob,mer_unit,cls_dt,rgdt,cls_stat" return { "ctif_id": ctif_id, "ctif_tp": ctif_tp, "act_tp": act_tp, "act_cd": act_cd, "act_typ": act_typ, "act_limit": act_limit, "is_self_acc": is_self_acc, "sales_name": sales_name, "cst_sex": cst_sex, "nation": nation, "occupation": occupation, "id_type": id_type, "id_type_ori": id_type_ori, "id_no": id_no, "id_deadline": id_deadline, "contact": contact, "address": address, "sales_flag": sales_flag, "bind_mob": bind_mob, "mer_unit": mer_unit, "cls_dt": cls_dt, "rgdt": rgdt, "cls_stat": cls_stat }, contect_data # 银行账户表 def make_stan_bact(infos, t_stan_pact): """ ctif_id: 客户号 ctif_tp: 主体类型 act_tp: 银行账号种类 act_flag: 银行账号种类-现场检查 act_cd: 银行账户号 cabm: 银行账号开户行名称 pay_id: 关联支付账户 is_self_acc: 是否特约商户收单结算账号 bank_acc_name: 银行账户名称 mer_unit: 管理机构 :param infos: :return: """ ctif_id = infos.get("busi_reg_no") ctif_tp = "1" act_tp = make_bank_act_tp_data(ctif_tp) act_flag = random.choice(["11", "12"]) act_cd = "62" + make_random_num(17) cabm = make_cabm_data(infos.get("ctid")[:6]) pay_id = make_pay_id_data(infos.get("busi_type"), t_stan_pact.get("act_cd")) is_self_acc = t_stan_pact.get("is_self_acc") bank_acc_name = "" # 没明白是什么,暂空 mer_unit = t_stan_pact.get("mer_unit") # print(ctif_id, ctif_tp, act_tp, act_flag, act_cd, cabm, pay_id, is_self_acc, bank_acc_name, mer_unit) # contect_data = make_connect_data([ # ctif_id, ctif_tp, act_tp, act_flag, act_cd, cabm, pay_id, is_self_acc, bank_acc_name, mer_unit # ]) contect_data = "ctif_id,ctif_tp,act_tp,act_flag,act_cd,cabm,pay_id,is_self_acc,bank_acc_name,mer_unit" return { "ctif_id": ctif_id, "ctif_tp": ctif_tp, "act_tp": act_tp, "act_flag": act_flag, "act_cd": act_cd, "cabm": cabm, "pay_id": pay_id, "is_self_acc": is_self_acc, "bank_acc_name": bank_acc_name, "mer_unit": mer_unit }, contect_data # 标准交易表 def make_stan_stif(infos, stan_bact, ctif_tp_num, stif_time): """ ctif_id: 主体客户号 ctif_tp: 主体类别 client_tp: 客户类别 smid: 主体特约商户编码 ctnm: 主体姓名/名称 citp: 主体身份证件/证明文件类型 citp_ori: 主体身份证件/证明文件类型原值 citp_nt: 主体身份证件/证明文件类型说明 ctid: 主体身份证件/证明文件号码 cbat: 主体的银行账号种类 cbac: 主体的银行账号 cabm: 主体银行账号的开户行名称 ctat: 主体的交易账号种类 ctac: 主体的交易账号 cpin: 主体所在支付机构的名称 cpba: 主体所在支付机构的银行账号 cpbn: 主体所在支付机构的银行账号的开户行名称 ctip: 主体的交易IP地址 tstm: 交易时间 cttp: 货币资金转移方式 tsdr: 资金收付标志 crpp: 资金用途 crtp: 交易币种 crat: 交易金额 tcif_id: 交易对手ID tcnm: 交易对手姓名/名称 tsmi: 交易对手特约商户编码 tcit: 交易对手证件/证明文件类型 tcit_ori: 交易对手证件/证明文件类型原值 tcit_nt: 交易对手证件/证明文件类型说明 tcid: 交易对手证件/证明文件号码 tcat: 交易对手的银行账号种类 tcba: 交易对手的银行账号 tcbn: 交易对手银行账号的开户行名称 tctt: 交易对手的交易账号种类 tcta: 交易对手的交易账号 tcpn: 交易对手所在支付机构的名称 tcpa: 交易对手所在支付机构的银行账号 tpbn: 交易对手所在支付机构银行账号的开户行名称 tcip: 交易对手的交易IP地址 tmnm: 交易商品名称 bptc: 银行与支付机构之间的业务交易编码 pmtc: 支付机构与商户之间的业务交易编码 ticd: 业务标识号 busi_type: 业务类型 trans_type: 交易类型 pos_dev_id: 交易终端号或IMEI号等设备标识 trans_stat: 交易状态 bank_stat: 银行状态 mer_prov: 地区省 mer_area: 地区县 pos_prov: 交易省 pos_area: 交易县 mer_unit: 管理机构 extend1: 转换标识 iofg: 境内外标识 trans_channel: 交易渠道 ctmac: 交易发生的mac地址 balance: 主体支付账户的余额 acc_flag: 交易对方账户类型 ctid_edt: 主体身份证件/证明文件有效期截止日 tran_flag: 对手账号标识 trans_order: 交易订单号 trans_cst_type: 交易类型(客户定义) crat_u: 交易金额折合美元 crat_c: 交易金额折合人民币 trans_way: 交易方式 agency_ctnm: 代办人姓名 agency_citp: 代办人身份证件(证明文件)类型 agency_ctid: 代办人身份证件(证明文件)号码 agency_country: 代办人国籍 :param infos: :return: """ ctif_id = infos.get("busi_reg_no") ctif_tp = ctif_tp_num client_tp = infos.get("client_tp") smid = infos.get("smid") ctnm = infos.get("ctnm") citp = infos.get("citp") citp_ori = infos.get("citp_ori") citp_nt = infos.get("citp_nt") ctid = infos.get("ctid") cbat = stan_bact.get("act_tp") cbac = stan_bact.get("act_cd") cabm = stan_bact.get("cabm") busi_type = make_busi_type_data() ctat = make_ctat_data(busi_type) ctac = make_random_num(17) cpin = "默认机构名称" cpba = make_random_num(17) cpbn = make_cabm_data(make_province_code_data()) ctip = make_ip_data(busi_type) # tstm = make_trade_time_data() tstm = stif_time cttp = make_cttp_data() tsdr = random.choice(["01", "02"]) crpp = "资金用途" crtp = "CNY" crat = make_crat_data() tcif_id = make_tcif_id_data(busi_type) tcnm = make_name_data() tsmi = make_random_num(20) tcit = make_cert_type_data() tcit_ori = "证件原值,需提供支付系统码表?" tcit_nt = "证件类型说明" tcid = make_random_num(20) tcat = random.choice(["01", "02", "03"]) tcba = make_random_num(19) tcbn = make_cabm_data(make_province_code_data()) tctt = random.choice(["01", "02"]) tcta = make_random_num(19) tcpn = "默认支付机构名称" tcpa = make_random_num(19) tpbn = make_cabm_data(make_province_code_data()) tcip = make_ip_data(busi_type) tmnm = "默认商品名称" bptc = make_random_num(25) pmtc = make_random_num(25) ticd = make_ticd_data() trans_type = make_trans_type_data(busi_type) pos_dev_id = make_pos_dev_id_data(busi_type) trans_stat = "交易状态" # 交易状态,需提供支付系统码表 bank_stat = "银行状态" # 银行状态,需提供支付系统码表 province_code = make_province_code_data() mer_prov = province_code mer_area = make_province_city_code_data(province_code) province_code2 = make_province_code_data() pos_prov = province_code2 pos_area = make_province_city_code_data(province_code2) mer_unit = make_mer_unit_data() # 需提供支付系统代码表 extend1 = "" # rate_rmb = "" # 老接口字段 # rate_usa = "" # 老接口字段 iofg = "0" # 暂时默认境内交易 trans_channel = make_trans_channel_data() ctmac = make_mac_info_data(busi_type) balance = "10000" acc_flag = make_acc_flag_data(busi_type) ctid_edt = infos.get("ctid_edt") tran_flag = make_tran_flag_data(busi_type) trans_order = make_trans_order_data(busi_type) trans_cst_type = make_trans_cst_type_data() crat_u = make_crat_u_data(crat) crat_c = make_crat_r_data(crat) trans_way = make_random_str(6) # 详见交易方式代码表(目前未收到人行的接口文件,暂定6位) agency_ctnm = make_name_data() agency_citp = make_citp_data() agency_ctid = make_ctid_data() agency_country = "CHN" # print(ctif_id, ctif_tp, client_tp, smid, ctnm, citp, citp_ori, citp_nt, ctid, cbat, cbac, cabm, ctat, ctac, cpin, # cpba, cpbn, ctip, tstm, cttp, tsdr, crpp, crtp, crat, tcif_id, tcnm, tsmi, tcit, tcit_ori, tcit_nt, tcid, # tcat, # tcba, tcbn, tctt, tcta, tcpn, tcpa, tpbn, tcip, tmnm, bptc, pmtc, ticd, busi_type, trans_type, pos_dev_id, # trans_stat, bank_stat, mer_prov, mer_area, pos_prov, pos_area, mer_unit, extend1, iofg, trans_channel, ctmac, # balance, acc_flag, ctid_edt, tran_flag, trans_order, trans_cst_type, crat_u, crat_c, trans_way, agency_ctnm, # agency_citp, agency_ctid, agency_country) # contect_data = make_connect_data([ # ctif_id, ctif_tp, client_tp, smid, ctnm, citp, citp_ori, citp_nt, ctid, cbat, cbac, cabm, ctat, ctac, cpin, # cpba, cpbn, ctip, tstm, cttp, tsdr, crpp, crtp, crat, tcif_id, tcnm, tsmi, tcit, tcit_ori, tcit_nt, tcid, tcat, # tcba, tcbn, tctt, tcta, tcpn, tcpa, tpbn, tcip, tmnm, bptc, pmtc, ticd, busi_type, trans_type, pos_dev_id, # trans_stat, bank_stat, mer_prov, mer_area, pos_prov, pos_area, mer_unit, extend1, iofg, trans_channel, ctmac, # balance, acc_flag, ctid_edt, tran_flag, trans_order, trans_cst_type, crat_u, crat_c, trans_way, agency_ctnm, # agency_citp, agency_ctid, agency_country # ]) contect_data = "ctif_id,ctif_tp,client_tp,smid,ctnm,citp,citp_ori,citp_nt,ctid,cbat,cbac,cabm,ctat,ctac,cpin,cpba,cpbn,ctip,tstm,cttp,tsdr,crpp,crtp,crat,tcif_id,tcnm,tsmi,tcit,tcit_ori,tcit_nt,tcid,tcat,tcba,tcbn,tctt,tcta,tcpn,tcpa,tpbn,tcip,tmnm,bptc,pmtc,ticd,busi_type,trans_type,pos_dev_id,trans_stat,bank_stat,mer_prov,mer_area,pos_prov,pos_area,mer_unit,extend1,iofg,trans_channel,ctmac,balance,acc_flag,ctid_edt,tran_flag,trans_order,trans_cst_type,crat_u,crat_c,trans_way,agency_ctnm,agency_citp,agency_ctid,agency_country" return { "ctif_id": ctif_id, "ctif_tp": ctif_tp, "client_tp": client_tp, "smid": smid, "ctnm": ctnm, "citp": citp, "citp_ori": citp_ori, "citp_nt": citp_nt, "ctid": ctid, "cbat": cbat, "cbac": cbac, "cabm": cabm, "ctat": ctat, "ctac": ctac, "cpin": cpin, "cpba": cpba, "cpbn": cpbn, "ctip": ctip, "tstm": tstm, "cttp": cttp, "tsdr": tsdr, "crpp": crpp, "crtp": crtp, "crat": crat, "tcif_id": tcif_id, "tcnm": tcnm, "tsmi": tsmi, "tcit": tcit, "tcit_ori": tcit_ori, "tcit_nt": tcit_nt, "tcid": tcid, "tcat": tcat, "tcba": tcba, "tcbn": tcbn, "tctt": tctt, "tcta": tcta, "tcpn": tcpn, "tcpa": tcpa, "tpbn": tpbn, "tcip": tcip, "tmnm": tmnm, "bptc": bptc, "pmtc": pmtc, "ticd": ticd, "busi_type": busi_type, "trans_type": trans_type, "pos_dev_id": pos_dev_id, "trans_stat": trans_stat, "bank_stat": bank_stat, "mer_prov": mer_prov, "mer_area": mer_area, "pos_prov": pos_prov, "pos_area": pos_area, "mer_unit": mer_unit, "extend1": extend1, "iofg": iofg, "trans_channel": trans_channel, "ctmac": ctmac, "balance": balance, "acc_flag": acc_flag, "ctid_edt": ctid_edt, "tran_flag": tran_flag, "trans_order": trans_order, "trans_cst_type": trans_cst_type, "crat_u": crat_u, "crat_c": crat_c, "trans_way": trans_way, "agency_ctnm": agency_ctnm, "agency_citp": agency_citp, "agency_ctid": agency_ctid, "agency_country": agency_country }, contect_data def person(num, connect, stif_num, stif_time): # print("个人") t_stan_person, stan_person_connect = make_stan_person(num) t_stan_cert, stan_cert_connect = make_stan_cert(t_stan_person) t_stan_address, stan_address_connect = make_stan_address(t_stan_person, "1") t_stan_tel, stan_tel_connect = make_stan_tel(t_stan_person) t_stan_pact, stan_pact_connect = make_stan_pact(t_stan_person) t_stan_bact, stan_bact_connect = make_stan_bact(t_stan_person, t_stan_pact) t_stan_relation, stan_relation_connect = make_stan_relation(t_stan_person) # 交易表数据单独写入,一个主体写入10条数据 # for num in range(10): # t_stan_stif, stan_stif_connect = make_stan_stif(t_stan_person, t_stan_bact, '1') # # data = eval("t_stan_stif"[2:] + "_connect") # data = stan_stif_connect # file_name = "t_stan_stif".split("_")[-1] + "_" + file_date_time # print(stan_stif_connect) # write_to_csv(file_name + ".csv", data) # for num in range(stif_num): # t_stan_stif, stan_stif_connect = make_stan_stif(t_stan_person, t_stan_bact, '1', stif_time) # print("t_stan_stif", t_stan_stif) # connect.save("t_stan_stif", stan_stif_connect, t_stan_stif) # connect.commit() # print("stan_person_connect", stan_person_connect) # print("stan_cert_connect", stan_cert_connect) # print("stan_address_connect", stan_address_connect) # print("stan_tel_connect", stan_tel_connect) # print("stan_pact_connect", stan_pact_connect) # print("stan_bact_connect", stan_bact_connect) # print("stan_relation_connect", stan_relation_connect) name = ["t_stan_person", "t_stan_cert", "t_stan_address", "t_stan_tel", "t_stan_relation", "t_stan_pact", "t_stan_bact"] for file_name in name: data = eval(file_name[2:] + "_connect") # file_name = file_name.split("_")[-1] + "_" + file_date_time # write_to_csv(file_name + ".csv", data) # write_to_csv(file_name + ".txt", data) connect.save(file_name, data, eval(file_name)) connect.commit() def org(num, connect,stif_num, stif_time): # print("机构") t_stan_org, stan_org_connect = make_stan_org(num) t_stan_cert, stan_cert_connect = make_stan_cert(t_stan_org) t_stan_address, stan_address_connect = make_stan_address(t_stan_org, "2") t_stan_tel, stan_tel_connect = make_stan_tel(t_stan_org) t_stan_pact, stan_pact_connect = make_stan_pact(t_stan_org) t_stan_bact, stan_bact_connect = make_stan_bact(t_stan_org, t_stan_pact) t_stan_relation, stan_relation_connect = make_stan_relation(t_stan_org) # 交易表数据单独写入,一个主体写入10条数据 # for num in range(stif_num): # t_stan_stif, stan_stif_connect = make_stan_stif(t_stan_org, t_stan_bact, '2', stif_time) # print("t_stan_stif", t_stan_stif) # # data = eval("t_stan_stif"[2:] + "_connect") # data = stan_stif_connect # file_name = "t_stan_stif".split("_")[-1] + "_" + file_date_time # print(stan_stif_connect) # write_to_csv(file_name + ".csv", data) # connect.save("t_stan_stif", stan_stif_connect, t_stan_stif) # connect.commit() # print("stan_org_connect", stan_org_connect) # print("stan_cert_connect", stan_cert_connect) # print("stan_address_connect", stan_address_connect) # print("stan_tel_connect", stan_tel_connect) # print("stan_pact_connect", stan_pact_connect) # print("stan_bact_connect", stan_bact_connect) # print("stan_relation_connect", stan_relation_connect) name = ["t_stan_org", "t_stan_cert", "t_stan_address", "t_stan_tel", "t_stan_relation", "t_stan_pact", "t_stan_bact"] for file_name in name: data = eval(file_name[2:] + "_connect") # file_name = file_name.split("_")[-1] + "_" + file_date_time # write_to_csv(file_name + ".csv", data) # write_to_csv(file_name + ".txt", data) connect.save(file_name, data, eval(file_name)) connect.commit() # def main(num): # person(num) # org(num) def main(begin, end, stif_num, stif_time): connect = Save_MySQL() for num in range(begin, end): person(num, connect, stif_num, stif_time) org(num, connect, stif_num, stif_time) connect.quit() # 修改日期 # trade_date if __name__ == "__main__": # pinyin = word_to_pinyin("张三") # print(pinyin) # res = make_ctid_data() # print(res) # res = read_province_data() # print(res) # add = make_make_province_city_process_data("150722") # print(add) # address = make_address("230183") # print(address) # trade_data = make_trade_amount_data() # print(trade_data) # ticd = make_ticd_data() # print(ticd) # data = make_make_province_city_process_data(make_province_code_data()) # make_province_city_data(data)[-1] # data2 = make_province_code_data() # province = get_province_data(data2[:2]) # print(province) # read_excel() # header = "&#@".join(t_stan_tel_header) # write_to_csv("t_stan_tel.csv", header) # date = time.strftime("%Y-%m-%d", time.localtime()) # -------------------------多线程 from threading import Thread # make_trade_time_data() start_time = time.time() # threads = [] # for count in range(10): # t = Thread(target=main, args=(count*10, (count+1)*10)) # t.start() # threads.append(t) # for t in threads: # t.join() # -------------------------单线程 # file_date_time = "2019-10-17" # stif_time = "201910170900" # main(1000, 1500) end_time = time.time() print(end_time-start_time) # 13 # for i in range(100): # # tt = make_register_date() # ss = random.choice([ # "01", # 互联网支付 # "02", # 银行卡收单 # "03", # 预付卡发行与受理 # "04", # 移动电话支付 # "05", # 固定电话支付 # "06", # 数字电视支付 # "07" # 货币汇兑 # ]) # print(ss) # tt = make_tcif_id_data(ss) # # print(tt) # ctid_edt = "20170506" # ctid_edt = "99991231" # tt = make_iss_dt_data(ctid_edt) # print(tt) # # dd = make_country_data() # print(dd) # tt = make_province_city_process_data("412825") # print(tt)
the-stack_0_1207
import platform import sys from helper import executable_exists PackageManager = { "macos": "brew install", "linux": { "readhat": "sudo yum", "arch": "sudo packman -S", "gentoo": "sudo emerge --ask --verbose", "suse": "sudo zypper install", "debian": "sudo apt-get install" } } LinuxDistroRecognition = { "yum": "redhat", "packman": "arch", "emerge": "gentoo", "zypper": "suse", "apt-get": "debian" } PortAudio = { "name": "Voice Recorder", "pip": [ 'SpeechRecognition', "pyaudio --global-option='build_ext' --global-option='-I/usr/local/include' --global-option='-L/usr/local/lib'"], "package_guess": { "macos": 'portaudio', "linux": { 'redhat': 'python3-pyaudio python3-devel', 'arch': 'python-pyaudio', 'gentoo': 'pyaudio', 'suse': 'python3-PyAudio python3-devel', 'debian': 'python3-pyaudio python3-dev' }}, "description": "Required for voice control", "instruction": """\ Please install python-binding 'pyaudio' manually." For more details go to the below link: https://people.csail.mit.edu/hubert/pyaudio/"""} RequestsSecurity = { "name": "Requests security", "pip": ['requests[security]'], "description": "Better/saver https", "instruction": "https://stackoverflow.com/questions/31811949/pip-install-requestssecurity-vs-pip-install-requests-difference" } NativeNotification = { "name": "Notification", "executable": ['notify-send'], "description": "Native linux notifications", "instruction": "Please install 'notify-send' manually using your local package manager!", "package_guess": { "linux": { 'redhat': 'libnotify', 'arch': 'libnotify', 'gentoo': 'eselect-notify-send', 'suse': 'libnotify-tools', 'debian': 'libnotify-bin' } } } FFMPEG = { "name": "ffmpeg", "executable": ['ffmpeg'], "description": "Download music as .mp3 instead .webm", "instruction": "Please install 'ffmpeg' manually using your local package manager!", "package_guess": { "macos": "ffmpeg", "linux": { 'redhat': 'ffmpeg', 'arch': 'ffmpeg', 'gentoo': 'ffmpeg', 'suse': 'ffmpeg', 'debian': 'ffmpeg' } } } ESPEAK = { "name": "espeak", "executable": ['espeak'], "description": "Text To Speech for Jarvis to talk out loud (alternatives: sapi5 or nsss will work, too)", "instruction": "Please install 'espeak' manually using your local package manager!", "package_guess": { "linux": { 'redhat': 'espeak', 'arch': 'espeak', 'gentoo': 'espeak', 'suse': 'espeak', 'debian': 'espeak' } } } OPTIONAL_REQUIREMENTS = [PortAudio, RequestsSecurity, FFMPEG, ESPEAK] if not sys.platform == "darwin": OPTIONAL_REQUIREMENTS += [NativeNotification] def get_guess(data): if sys.platform == "darwin": if 'macos' in data: return data['macos'] else: return False elif platform.system().lower() == "linux": if 'linux' in data: data = data['linux'] else: return False for executable, distro in LinuxDistroRecognition.items(): if executable_exists(executable): if distro in data: return data[distro] return False
the-stack_0_1208
import sdi_utils.gensolution as gs import sdi_utils.set_logging as slog import sdi_utils.textfield_parser as tfp import sdi_utils.tprogress as tp import pandas as pd EXAMPLE_ROWS = 5 try: api except NameError: class api: class Message: def __init__(self,body = None,attributes = ""): self.body = body self.attributes = attributes def send(port,msg) : if isinstance(msg,api.Message) : print('Port: ', port) print('Attributes: ', msg.attributes) print('Body: ', str(msg.body)) else : print(str(msg)) return msg def call(config,msg): api.config = config return process(msg) def set_port_callback(port, callback) : df = pd.DataFrame( {'icol': [1, 2, 3, 4, 5], 'xcol2': ['A', 'A', 'B', 'B', 'C'], \ 'xcol3': ['K', 'L', 'M', 'N', 'O'], 'xcol4': ['a1', 'a1', 'b1', 'b1', 'b1']}) default_msg = api.Message(attributes = {'format': 'pandas', 'name': 'test','process_list':[]}, body=df) callback(default_msg) class config: ## Meta data config_params = dict() version = '0.0.17' tags = {'pandas': '','sdi_utils':''} operator_description = "Sample from Dataframe" operator_description_long = "Sampling over a DataFrame but keeps datasets with the same value of the \ defined column as set and not splitting them, e.g. sampling with the invariant_column='date' samples \ but ensures that all datasets of a certain date are taken or none. This leads to the fact that the \ sample_size is only a guiding target. Depending on the size of the datasets with the same value of \ the *invariant_column* compared to the *sample_size* this could deviate a lot. " add_readme = dict() add_readme["References"] = "[pandas doc: sample](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sample.html)" debug_mode = True config_params['debug_mode'] = {'title': 'Debug mode', 'description': 'Sending debug level information to log port', 'type': 'boolean'} sample_size = 0.1 config_params['sample_size'] = {'title': 'Sample size', 'description': 'Sample size', 'type': 'number'} random_state = 1 config_params['random_state'] = {'title': 'Random state', 'description': 'Random state', 'type': 'integer'} invariant_column = '' config_params['invariant_column'] = {'title': 'Invariant column', 'description': 'Column where all the same value records should be kept as a whole in a sample', 'type': 'string'} def process(msg) : att_dict = msg.attributes att_dict['operator'] = 'sample' if api.config.debug_mode == True: logger, log_stream = slog.set_logging(att_dict['operator'], loglevel='DEBUG') else: logger, log_stream = slog.set_logging(att_dict['operator'], loglevel='INFO') logger.info("Process started") time_monitor = tp.progress() # start custom process definition # test if body refers to a DataFrame type prev_att = msg.attributes df = msg.body if not isinstance(df, pd.DataFrame): logger.error('Message body does not contain a pandas DataFrame') raise TypeError('Message body does not contain a pandas DataFrame') ###### start calculation sample_size = api.config.sample_size if sample_size < 1 : sample_size = int(sample_size * df.shape[0]) if sample_size < 1 : sample_size = 1 logger.warning("Fraction of sample size too small. Set sample size to 1.") elif sample_size > df.shape[0]: logger.warning("Sample size larger than number of rows") logger.debug("Samples_size: {}/() ({})".format(sample_size,df.shape[0],sample_size/df.shape[0])) random_state = api.config.random_state invariant_column = tfp.read_value(api.config.invariant_column) if invariant_column and sample_size < df.shape[0]: # get the average number of records for each value of invariant sc_df = df.groupby(invariant_column)[invariant_column].count() sample_size_invariant = int(sample_size / sc_df.mean()) sample_size_invariant = 1 if sample_size_invariant == 0 else sample_size_invariant # ensure minimum sc_df = sc_df.sample(n=sample_size_invariant, random_state=random_state).to_frame() sc_df.rename(columns={invariant_column: 'sum'}, inplace=True) # sample the df by merge 2 df df = pd.merge(df, sc_df, how='inner', right_index=True, left_on=invariant_column) df.drop(columns=['sum'], inplace=True) else: df = df.sample(n=sample_size, random_state=random_state) # end custom process definition if df.empty : raise ValueError('DataFrame is empty') logger.debug('Columns: {}'.format(str(df.columns))) logger.debug('Shape (#rows - #columns): {} - {}'.format(df.shape[0],df.shape[1])) logger.debug('Memory: {} kB'.format(df.memory_usage(deep=True).sum() / 1024 ** 2)) example_rows = EXAMPLE_ROWS if df.shape[0] > EXAMPLE_ROWS else df.shape[0] for i in range(0, example_rows): logger.debug('Row {}: {}'.format(i,str([str(i)[:10].ljust(10) for i in df.iloc[i, :].tolist()]))) progress_str = '<BATCH ENDED><1>' if 'storage.fileIndex' in att_dict and 'storage.fileCount' in att_dict and 'storage.endOfSequence' in att_dict: if att_dict['storage.fileIndex'] + 1 == att_dict['storage.fileCount']: progress_str = '<BATCH ENDED><{}>'.format(att_dict['storage.fileCount']) else: progress_str = '<BATCH IN-PROCESS><{}/{}>'.format(att_dict['storage.fileIndex'] + 1, att_dict['storage.fileCount']) att_dict['process_list'].append(att_dict['operator']) logger.debug('Process ended: {} - {} '.format(progress_str, time_monitor.elapsed_time())) logger.debug('Past process steps: {}'.format(att_dict['process_list'])) return log_stream.getvalue(), api.Message(attributes=att_dict,body=df) inports = [{'name': 'data', 'type': 'message.DataFrame',"description":"Input data"}] outports = [{'name': 'log', 'type': 'string',"description":"Logging data"}, \ {'name': 'data', 'type': 'message.DataFrame',"description":"Output data"}] def call_on_input(msg) : log, msg = process(msg) api.send(outports[0]['name'], log) api.send(outports[1]['name'], msg) #api.set_port_callback([inports[0]['name']], call_on_input) def main() : print('Test: Default') api.set_port_callback([inports[0]['name']], call_on_input) if __name__ == '__main__': main() #gs.gensolution(os.path.realpath(__file__), config, inports, outports)
the-stack_0_1209
import os import sys import time from circus.process import Process, RUNNING from circus.tests.support import TestCircus, skipIf, EasyTestSuite import circus.py3compat from circus.py3compat import StringIO, PY3 RLIMIT = """\ import resource, sys with open(sys.argv[1], 'w') as f: for limit in ('NOFILE', 'NPROC'): res = getattr(resource, 'RLIMIT_%s' % limit) f.write('%s=%s\\n' % (limit, resource.getrlimit(res))) """ VERBOSE = """\ import sys for i in range(1000): for stream in (sys.stdout, sys.stderr): stream.write(str(i)) stream.flush() """ def _nose_no_s(): if PY3: return isinstance(sys.stdout, StringIO) else: return not hasattr(sys.stdout, 'fileno') class TestProcess(TestCircus): def test_base(self): cmd = sys.executable args = "-c 'import time; time.sleep(2)'" process = Process('test', cmd, args=args, shell=False) try: info = process.info() self.assertEqual(process.pid, info['pid']) age = process.age() self.assertTrue(age > 0.) self.assertFalse(process.is_child(0)) finally: process.stop() def test_rlimits(self): script_file = self.get_tmpfile(RLIMIT) output_file = self.get_tmpfile() cmd = sys.executable args = [script_file, output_file] rlimits = {'nofile': 20, 'nproc': 20} process = Process('test', cmd, args=args, rlimits=rlimits) try: # wait for the process to finish while process.status == RUNNING: time.sleep(1) finally: process.stop() with open(output_file, 'r') as f: output = {} for line in f.readlines(): limit, value = line.rstrip().split('=', 1) output[limit] = value def srt2ints(val): return [circus.py3compat.long(key) for key in val[1:-1].split(',')] wanted = [circus.py3compat.long(20), circus.py3compat.long(20)] self.assertEqual(srt2ints(output['NOFILE']), wanted) self.assertEqual(srt2ints(output['NPROC']), wanted) def test_comparison(self): cmd = sys.executable args = ['import time; time.sleep(2)', ] p1 = Process('1', cmd, args=args) p2 = Process('2', cmd, args=args) self.assertTrue(p1 < p2) self.assertFalse(p1 == p2) self.assertTrue(p1 == p1) p1.stop() p2.stop() def test_process_parameters(self): # all the options passed to the process should be available by the # command / process p1 = Process('1', 'make-me-a-coffee', '$(circus.wid) --type $(circus.env.type)', shell=False, spawn=False, env={'type': 'macchiato'}) self.assertEqual(['make-me-a-coffee', '1', '--type', 'macchiato'], p1.format_args()) p2 = Process('1', 'yeah $(CIRCUS.WID)', spawn=False) self.assertEqual(['yeah', '1'], p2.format_args()) os.environ['coffee_type'] = 'american' p3 = Process('1', 'yeah $(circus.env.type)', shell=False, spawn=False, env={'type': 'macchiato'}) self.assertEqual(['yeah', 'macchiato'], p3.format_args()) os.environ.pop('coffee_type') @skipIf(_nose_no_s(), 'Nose runs without -s') def test_streams(self): script_file = self.get_tmpfile(VERBOSE) cmd = sys.executable args = [script_file] # 1. streams sent to /dev/null process = Process('test', cmd, args=args, close_child_stdout=True, close_child_stderr=True) try: # wait for the process to finish while process.status == RUNNING: time.sleep(1) # the pipes should be empty self.assertEqual(process.stdout.read(), b'') self.assertEqual(process.stderr.read(), b'') finally: process.stop() # 2. streams sent to /dev/null, no PIPEs process = Process('test', cmd, args=args, close_child_stdout=True, close_child_stderr=True, pipe_stdout=False, pipe_stderr=False) try: # wait for the process to finish while process.status == RUNNING: time.sleep(1) # the pipes should be unexistant self.assertTrue(process.stdout is None) self.assertTrue(process.stderr is None) finally: process.stop() # 3. streams & pipes open process = Process('test', cmd, args=args) try: # wait for the process to finish while process.status == RUNNING: time.sleep(1) # the pipes should be unexistant self.assertEqual(len(process.stdout.read()), 2890) self.assertEqual(len(process.stderr.read()), 2890) finally: process.stop() test_suite = EasyTestSuite(__name__)
the-stack_0_1210
""" # Mobius Software LTD # Copyright 2015-2018, Mobius Software LTD # # This is free software; you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation; either version 2.1 of # the License, or (at your option) any later version. # # This software is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this software; if not, write to the Free # Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA, or see the FSF site: http://www.fsf.org. """ from iot.classes.IoTClient import * from iot.mqtt.MQParser import MQParser from iot.mqtt.mqtt_classes.MQConnackCode import * from iot.mqtt.mqtt_classes.MQTopic import * from iot.mqtt.mqtt_classes.Will import * from iot.mqtt.mqtt_messages.MQConnect import * from iot.mqtt.mqtt_messages.MQDisconnect import * from iot.mqtt.mqtt_messages.MQPuback import * from iot.mqtt.mqtt_messages.MQPubcomp import * from iot.mqtt.mqtt_messages.MQPubrec import * from iot.mqtt.mqtt_messages.MQPubrel import * from iot.mqtt.mqtt_messages.MQSubscribe import * from iot.mqtt.mqtt_messages.MQUnsubscribe import * from iot.network.TCPClient import * from iot.timers.TimersMap import * class MQTTclient(IoTClient): def __init__(self, account, client): self.account = account self.clientGUI = client self.parser = MQParser(None) self.resendperiod = 3000 self.connectionState = None self.data = None self.timers = TimersMap(self) self.publishPackets = {} self.can_connect = True def send(self, message): if self.connectionState == ConnectionState.CONNECTION_ESTABLISHED: self.parser.setMessage(message) message = self.parser.encode() self.clientFactory.send(message) else: return False def dataReceived(self, data): messages = [] index = 1 while len(data) - index > 0: length = self.parser.next(data, index) if length < 0: break part = data[index - 1:index + length] message = self.parser.decode(part) messages.append(message) index += length for message in messages: process_messageType_method(self, message.getType(), message) def setState(self, ConnectionState): self.connectionState = ConnectionState def isConnected(self): return self.connectionState == ConnectionState.CONNECTION_ESTABLISHED def closeChannel(self): if self.client is not None: self.client.stop() def goConnect(self): self.setState(ConnectionState.CONNECTING) if self.account.willTopic is not None: topic = MQTopic(self.account.willTopic, self.account.qos) will = Will(topic, self.account.will, self.account.isRetain) else: will = None connect = MQConnect(self.account.username, self.account.password, self.account.clientID, self.account.cleanSession, self.account.keepAlive, will) if self.timers is not None: self.timers.stopAllTimers() self.timers.goConnectTimer(connect) self.parser.setMessage(connect) self.clientFactory = ClientFactory(self.parser.encode(), self) if self.account.isSecure: ctx = CtxFactory(self.account.certificate, self.account.certPasw) self.connector = reactor.connectSSL(self.account.serverHost, self.account.port, self.clientFactory, ctx) else: self.connector = reactor.connectTCP(self.account.serverHost, self.account.port, self.clientFactory) def publish(self, name, qos, content, retain, dup): topic = MQTopic(name, qos) publish = MQPublish(0, topic, content, retain, dup) if (qos == 0): self.send(publish) else: if (qos in [1, 2]): self.timers.goMessageTimer(publish) def unsubscribeFrom(self, topicName): listTopics = [] listTopics.append(topicName) unsubscribe = MQUnsubscribe(0, listTopics) self.timers.goMessageTimer(unsubscribe) def subscribeTo(self, name, qos): topic = MQTopic(name, qos) listMQTopics = [topic] subscribe = MQSubscribe(0, listMQTopics) self.timers.goMessageTimer(subscribe) def pingreq(self): self.send(MQPingreq()) def disconnectWith(self, duration): self.send(MQDisconnect()) self.timers.stopAllTimers() self.clientFactory.client_close_connection() def timeoutMethod(self): if self.can_connect: self.can_connect = False self.timers.stopAllTimers() reactor.callFromThread(self.clientGUI.timeout) def connectTimeoutMethod(self): if self.can_connect: self.can_connect = False self.timers.stopAllTimers() reactor.callFromThread(self.clientGUI.show_error_message, "Connect Error", "Connection timeout") reactor.callFromThread(self.clientGUI.timeout) def ConnectionLost(self): if self.can_connect: self.can_connect = False if self.timers is not None: self.timers.stopAllTimers() self.connector.disconnect() reactor.callFromThread(self.clientGUI.errorReceived) # _____________________________________________________________________________________ def processConnack(self, message): self.timers.stopConnectTimer() if message.returnCode == 0: # MQ_ACCEPTED self.setState(ConnectionState.CONNECTION_ESTABLISHED) self.timers.goPingTimer(MQPingreq(), self.account.keepAlive) self.clientGUI.connackReceived(message.returnCode) else: messagebox.showinfo("Connect error", MQConnackCode(message.returnCode).readable_name()) self.clientGUI.errorReceived() def processSuback(self, message): subscribe = self.timers.removeTimer(message.packetID) if subscribe is not None: size = len(subscribe.listMQTopics) topic = subscribe.listMQTopics[size - 1] qos = topic.getQoS() self.clientGUI.subackReceived(topic, qos, 0) def processUnsuback(self, message): unsubscribe = self.timers.removeTimer(message.packetID) if unsubscribe is not None: self.clientGUI.unsubackReceived(unsubscribe.listTopics) def processPublish(self, message): publisherQoS = message.topic.qos.getValue() if publisherQoS.getValue() == 0: self.clientGUI.publishReceived(message.topic, publisherQoS, message.content, message.dup, message.retain) if publisherQoS.getValue() == 1: # AT_LEAST_ONCE puback = MQPuback(message.packetID) self.send(puback) self.clientGUI.publishReceived(message.topic, publisherQoS, message.content, message.dup, message.retain) if publisherQoS.getValue() == 2: # EXACTLY_ONCE pubrec = MQPubrec(message.packetID) self.send(pubrec) self.publishPackets[message.packetID] = message def processPuback(self, message): publish = self.timers.removeTimer(message.packetID) if publish is not None: self.clientGUI.pubackReceived(publish.topic, publish.topic.getQoS(), publish.content, publish.dup, publish.retain, 0) def processPubrec(self, message): publish = self.timers.removeTimer(message.packetID) if publish is not None: self.timers.goMessageTimer(MQPubrel(publish.packetID)) self.publishPackets[publish.packetID] = publish def processPubrel(self, message): publish = self.publishPackets.get(message.packetID) if publish is not None: self.clientGUI.publishReceived(publish.topic, publish.topic.getQoS().getValue(), publish.content, publish.dup, publish.retain) self.send(MQPubcomp(message.packetID)) def processPubcomp(self, message): pubrel = self.timers.removeTimer(message.packetID) if pubrel is not None: publish = self.publishPackets.get(message.packetID) self.clientGUI.pubackReceived(publish.topic, publish.topic.getQoS(), publish.content, publish.dup, publish.retain, 0) def processPingresp(self, message): self.clientGUI.pingrespReceived(False) def processSubscribe(self, message): self.clientGUI.errorReceived('received invalid message subscribe') def processConnect(self, message): self.clientGUI.errorReceived('received invalid message connect') def processPingreq(self, message): self.clientGUI.errorReceived('received invalid message pingreq') def processDisconnect(self, message): self.timers.stopAllTimers() self.clientGUI.disconnectReceived() def processUnsubscribe(self, message): raise ValueError('received invalid message unsubscribe') switcherProcess = { 1: processConnect, 2: processConnack, 3: processPublish, 4: processPuback, 5: processPubrec, 6: processPubrel, 7: processPubcomp, 8: processSubscribe, 9: processSuback, 10: processUnsubscribe, 11: processUnsuback, 12: processPingreq, 13: processPingresp, 14: processDisconnect, } def process_messageType_method(self, argument, message): return switcherProcess[argument].__call__(self, message)
the-stack_0_1212
# Copyright 2017 QuantRocket - All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse def add_subparser(subparsers): _parser = subparsers.add_parser("countdown", description="QuantRocket cron service CLI", help="Manage crontabs") _subparsers = _parser.add_subparsers(title="subcommands", dest="subcommand") _subparsers.required = True examples = """ Upload a new crontab, or return the current crontab. Examples: Upload a new crontab to a service called countdown-australia (replaces current crontab): quantrocket countdown crontab mycron.crontab -s countdown-australia Show current crontab for a service called countdown-australia: quantrocket countdown crontab -s countdown-australia """ parser = _subparsers.add_parser( "crontab", help="upload a new crontab, or return the current crontab", epilog=examples, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( "filename", nargs="?", metavar="FILENAME", help="the crontab file to upload (if omitted, return the current crontab)") parser.add_argument( "-s", "--service", metavar="SERVICE_NAME", help="the name of the countdown service (default 'countdown')") parser.set_defaults(func="quantrocket.countdown._load_or_show_crontab") examples = """ Set or show the countdown service timezone. Examples: Set the timezone of the countdown service to America/New_York: quantrocket countdown timezone America/New_York Show the current timezone of the countdown service: quantrocket countdown timezone Show the timezone for a service called countdown-australia: quantrocket countdown timezone -s countdown-australia """ parser = _subparsers.add_parser( "timezone", help="set or show the countdown service timezone", epilog=examples, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( "tz", nargs="?", metavar="TZ", help="the timezone to set (pass a partial timezone string such as 'newyork' " "or 'europe' to see close matches, or pass '?' to see all choices)") parser.add_argument( "-s", "--service", metavar="SERVICE_NAME", help="the name of the countdown service, (default 'countdown')") parser.set_defaults(func="quantrocket.countdown._cli_get_or_set_timezone")
the-stack_0_1213
__author__ = "Junhee Yoon" __version__ = "1.0.0" __maintainer__ = "Junhee Yoon" __email__ = "[email protected]" """ Description: This is batch job for transforming data to DESeq input """ import pandas as pd import numpy as np import os import glob import argparse from libraries.botoClass import botoHandler from libraries.externalHandler import handlers as dataHandler ## argparse setting parser = argparse.ArgumentParser(prog='step1_get_DESeq2_input.py') parser.add_argument('-c','--ctype', type=str, dest='celltype', required=True,\ choices=['CD4','CD8','CD14'],help='Cell type for extraction, default = CD8') parser.add_argument('-v','--condcolumn', type=str, dest='condcolumn', required=True,\ help='Column name which is using for condition value') parser.add_argument('-x','--cond1', type=str, dest='cond1', required=True,\ help='condition1 for metadata') parser.add_argument('-y','--cond2', type=str, dest='cond2', required=True,\ help='condition2 for metadata') args = parser.parse_args() # Main function if __name__ == "__main__": ### Get ENV variables mainDataBucket = os.environ['mainbucket'] # openkbc-ms-maindata-bucket metaName = os.environ['metafile'] # EPIC_HCvB_metadata_baseline_updated-share.csv outputPath = os.environ['efspoint'] # /output/ ### Error handling here ### Data prepration s3 = botoHandler(mainDataBucket) # Call boto3 COUNT_PATH = "/data/" # Main data path META_PATH = s3.getFile([metaName]) ## This is FIXED parameter s3.getDirFiles('rsem_counts/', destpath=COUNT_PATH) # Download all count files filelist = glob.glob(COUNT_PATH+"*-"+args.celltype+".genes.results") # File path filelist = [os.path.basename(cursor) for cursor in filelist] # Extracting base file name sampleName = dataHandler.get_samplename(filelist) result_arr = [] # result array # sampleName and filelist have same order, and appending to result array for filename in filelist: sampleValues = dataHandler.get_column(COUNT_PATH+filename, 'expected_count') result_arr.append(sampleValues) result_df = pd.concat(result_arr, axis=1) result_df.columns = sampleName # Change column name by using sample names metadata = pd.read_csv(META_PATH) # read meta data # get meta result meta_result_df = dataHandler.get_condtionMatrix_by_category(metadata, 'HCVB_ID', args.condcolumn, [args.cond1, args.cond2]) overlapped_samples = list(set(meta_result_df.index.tolist()).intersection(set(result_df.columns.tolist()))) # Overlapped samples # Extract overlapped samples meta_result_df = meta_result_df.loc[overlapped_samples] result_df = result_df[overlapped_samples] result_df.astype(int).to_csv(outputPath+args.celltype+"_output.csv") # Output meta_result_df.to_csv(outputPath+args.celltype+"_meta_output.csv")
the-stack_0_1214
from rest_framework.views import * from apps.core.exceptions import CustomAPIException from apps.utils.response import simple_response from apps.core import response_code ## # 重写异常handler, 满足现有response 格式, # 方便编码 ### def custom_exception_handler(exc, context): """ Returns the response that should be used for any given exception. By default we handle the REST framework `APIException`, and also Django's built-in `Http404` and `PermissionDenied` exceptions. Any unhandled exceptions may return `None`, which will cause a 500 error to be raised. """ if isinstance(exc, Http404): exc = exceptions.NotFound() elif isinstance(exc, PermissionDenied): exc = exceptions.PermissionDenied() if isinstance(exc, exceptions.APIException): headers = {} if getattr(exc, 'auth_header', None): headers['WWW-Authenticate'] = exc.auth_header if getattr(exc, 'wait', None): headers['Retry-After'] = '%d' % exc.wait if isinstance(exc.detail, (list, dict)): data = exc.detail else: data = {'detail': exc.detail} set_rollback() if exc.status_code == 400: code, message = response_code.ERR_PARAM_ERROR elif exc.status_code == 401: code, message = response_code.ERR_AUTH_ERROR elif exc.status_code == 403: code, message = response_code.ERR_PERMISSION_ERROR elif exc.status_code == 404: code, message = response_code.ERR_NOT_FOUND_ERROR elif exc.status_code == 500: code, message = response_code.ERR_SERVER_ERROR elif exc.status_code == 405: code, message = response_code.ERR_METHOD_NOT_ALLOWED else: code, message = response_code.ERR_UNKNOWN_ERROR return simple_response(code=code, data=data, message=message, headers=headers) elif isinstance(exc, CustomAPIException): # 捕获自定义的异常 set_rollback() return simple_response(code=exc.get_code(), message=exc.get_message(), data=exc.get_data()) return None
the-stack_0_1217
from collections import namedtuple import itertools import networkx as nx import numpy as np from pgmpy.factors.discrete import factor_product from pgmpy.inference import Inference from pgmpy.models import BayesianModel, MarkovChain, MarkovModel from pgmpy.utils.mathext import sample_discrete from pgmpy.extern.six.moves import map, range from pgmpy.sampling import _return_samples State = namedtuple('State', ['var', 'state']) class BayesianModelSampling(Inference): """ Class for sampling methods specific to Bayesian Models Parameters ---------- model: instance of BayesianModel model on which inference queries will be computed Public Methods -------------- forward_sample(size) """ def __init__(self, model): if not isinstance(model, BayesianModel): raise TypeError("Model expected type: BayesianModel, got type: ", type(model)) self.topological_order = list(nx.topological_sort(model)) super(BayesianModelSampling, self).__init__(model) def forward_sample(self, size=1, return_type='dataframe'): """ Generates sample(s) from joint distribution of the bayesian network. Parameters ---------- size: int size of sample to be generated return_type: string (dataframe | recarray) Return type for samples, either of 'dataframe' or 'recarray'. Defaults to 'dataframe' Returns ------- sampled: A pandas.DataFrame or a numpy.recarray object depending upon return_type argument the generated samples Examples -------- >>> from pgmpy.models.BayesianModel import BayesianModel >>> from pgmpy.factors.discrete import TabularCPD >>> from pgmpy.sampling import BayesianModelSampling >>> student = BayesianModel([('diff', 'grade'), ('intel', 'grade')]) >>> cpd_d = TabularCPD('diff', 2, [[0.6], [0.4]]) >>> cpd_i = TabularCPD('intel', 2, [[0.7], [0.3]]) >>> cpd_g = TabularCPD('grade', 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, ... 0.08, 0.3], [0.3, 0.7, 0.02, 0.2]], ... ['intel', 'diff'], [2, 2]) >>> student.add_cpds(cpd_d, cpd_i, cpd_g) >>> inference = BayesianModelSampling(student) >>> inference.forward_sample(size=2, return_type='recarray') rec.array([(0, 0, 1), (1, 0, 2)], dtype=[('diff', '<i8'), ('intel', '<i8'), ('grade', '<i8')]) """ types = [(var_name, 'int') for var_name in self.topological_order] sampled = np.zeros(size, dtype=types).view(np.recarray) for node in self.topological_order: cpd = self.model.get_cpds(node) states = range(self.cardinality[node]) evidence = cpd.variables[:0:-1] if evidence: cached_values = self.pre_compute_reduce(variable=node) evidence = np.vstack([sampled[i] for i in evidence]) weights = list(map(lambda t: cached_values[tuple(t)], evidence.T)) else: weights = cpd.values sampled[node] = sample_discrete(states, weights, size) return _return_samples(return_type, sampled) def pre_compute_reduce(self, variable): variable_cpd = self.model.get_cpds(variable) variable_evid = variable_cpd.variables[:0:-1] cached_values = {} for state_combination in itertools.product(*[range(self.cardinality[var]) for var in variable_evid]): states = list(zip(variable_evid, state_combination)) cached_values[state_combination] = variable_cpd.reduce(states, inplace=False).values return cached_values def rejection_sample(self, evidence=None, size=1, return_type="dataframe"): """ Generates sample(s) from joint distribution of the bayesian network, given the evidence. Parameters ---------- evidence: list of `pgmpy.factor.State` namedtuples None if no evidence size: int size of sample to be generated return_type: string (dataframe | recarray) Return type for samples, either of 'dataframe' or 'recarray'. Defaults to 'dataframe' Returns ------- sampled: A pandas.DataFrame or a numpy.recarray object depending upon return_type argument the generated samples Examples -------- >>> from pgmpy.models.BayesianModel import BayesianModel >>> from pgmpy.factors.discrete import TabularCPD >>> from pgmpy.factors.discrete import State >>> from pgmpy.sampling import BayesianModelSampling >>> student = BayesianModel([('diff', 'grade'), ('intel', 'grade')]) >>> cpd_d = TabularCPD('diff', 2, [[0.6], [0.4]]) >>> cpd_i = TabularCPD('intel', 2, [[0.7], [0.3]]) >>> cpd_g = TabularCPD('grade', 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, ... 0.08, 0.3], [0.3, 0.7, 0.02, 0.2]], ... ['intel', 'diff'], [2, 2]) >>> student.add_cpds(cpd_d, cpd_i, cpd_g) >>> inference = BayesianModelSampling(student) >>> evidence = [State(var='diff', state=0)] >>> inference.rejection_sample(evidence=evidence, size=2, return_type='dataframe') intel diff grade 0 0 0 1 1 0 0 1 """ if evidence is None: return self.forward_sample(size) types = [(var_name, 'int') for var_name in self.topological_order] sampled = np.zeros(0, dtype=types).view(np.recarray) prob = 1 i = 0 while i < size: _size = int(((size - i) / prob) * 1.5) _sampled = self.forward_sample(_size, 'recarray') for evid in evidence: _sampled = _sampled[_sampled[evid[0]] == evid[1]] prob = max(len(_sampled) / _size, 0.01) sampled = np.append(sampled, _sampled)[:size] i += len(_sampled) return _return_samples(return_type, sampled) def likelihood_weighted_sample(self, evidence=None, size=1, return_type="dataframe"): """ Generates weighted sample(s) from joint distribution of the bayesian network, that comply with the given evidence. 'Probabilistic Graphical Model Principles and Techniques', Koller and Friedman, Algorithm 12.2 pp 493. Parameters ---------- evidence: list of `pgmpy.factor.State` namedtuples None if no evidence size: int size of sample to be generated return_type: string (dataframe | recarray) Return type for samples, either of 'dataframe' or 'recarray'. Defaults to 'dataframe' Returns ------- sampled: A pandas.DataFrame or a numpy.recarray object depending upon return_type argument the generated samples with corresponding weights Examples -------- >>> from pgmpy.factors.discrete import State >>> from pgmpy.models.BayesianModel import BayesianModel >>> from pgmpy.factors.discrete import TabularCPD >>> from pgmpy.sampling import BayesianModelSampling >>> student = BayesianModel([('diff', 'grade'), ('intel', 'grade')]) >>> cpd_d = TabularCPD('diff', 2, [[0.6], [0.4]]) >>> cpd_i = TabularCPD('intel', 2, [[0.7], [0.3]]) >>> cpd_g = TabularCPD('grade', 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, ... 0.08, 0.3], [0.3, 0.7, 0.02, 0.2]], ... ['intel', 'diff'], [2, 2]) >>> student.add_cpds(cpd_d, cpd_i, cpd_g) >>> inference = BayesianModelSampling(student) >>> evidence = [State('diff', 0)] >>> inference.likelihood_weighted_sample(evidence=evidence, size=2, return_type='recarray') rec.array([(0, 0, 1, 0.6), (0, 0, 2, 0.6)], dtype=[('diff', '<i8'), ('intel', '<i8'), ('grade', '<i8'), ('_weight', '<f8')]) """ types = [(var_name, 'int') for var_name in self.topological_order] types.append(('_weight', 'float')) sampled = np.zeros(size, dtype=types).view(np.recarray) sampled['_weight'] = np.ones(size) evidence_dict = {var: st for var, st in evidence} for node in self.topological_order: cpd = self.model.get_cpds(node) states = range(self.cardinality[node]) evidence = cpd.get_evidence() if evidence: evidence_values = np.vstack([sampled[i] for i in evidence]) cached_values = self.pre_compute_reduce(node) weights = list(map(lambda t: cached_values[tuple(t)], evidence_values.T)) if node in evidence_dict: sampled[node] = evidence_dict[node] for i in range(size): sampled['_weight'][i] *= weights[i][evidence_dict[node]] else: sampled[node] = sample_discrete(states, weights) else: if node in evidence_dict: sampled[node] = evidence_dict[node] for i in range(size): sampled['_weight'][i] *= cpd.values[evidence_dict[node]] else: sampled[node] = sample_discrete(states, cpd.values, size) return _return_samples(return_type, sampled) class GibbsSampling(MarkovChain): """ Class for performing Gibbs sampling. Parameters: ----------- model: BayesianModel or MarkovModel Model from which variables are inherited and transition probabilites computed. Public Methods: --------------- set_start_state(state) sample(start_state, size) generate_sample(start_state, size) Examples: --------- Initialization from a BayesianModel object: >>> from pgmpy.factors.discrete import TabularCPD >>> from pgmpy.models import BayesianModel >>> intel_cpd = TabularCPD('intel', 2, [[0.7], [0.3]]) >>> sat_cpd = TabularCPD('sat', 2, [[0.95, 0.2], [0.05, 0.8]], evidence=['intel'], evidence_card=[2]) >>> student = BayesianModel() >>> student.add_nodes_from(['intel', 'sat']) >>> student.add_edge('intel', 'sat') >>> student.add_cpds(intel_cpd, sat_cpd) >>> from pgmpy.inference import GibbsSampling >>> gibbs_chain = GibbsSampling(student) Sample from it: >>> gibbs_chain.sample(size=3) intel sat 0 0 0 1 0 0 2 1 1 """ def __init__(self, model=None): super(GibbsSampling, self).__init__() if isinstance(model, BayesianModel): self._get_kernel_from_bayesian_model(model) elif isinstance(model, MarkovModel): self._get_kernel_from_markov_model(model) def _get_kernel_from_bayesian_model(self, model): """ Computes the Gibbs transition models from a Bayesian Network. 'Probabilistic Graphical Model Principles and Techniques', Koller and Friedman, Section 12.3.3 pp 512-513. Parameters: ----------- model: BayesianModel The model from which probabilities will be computed. """ self.variables = np.array(model.nodes()) self.cardinalities = {var: model.get_cpds(var).variable_card for var in self.variables} for var in self.variables: other_vars = [v for v in self.variables if var != v] other_cards = [self.cardinalities[v] for v in other_vars] cpds = [cpd for cpd in model.cpds if var in cpd.scope()] prod_cpd = factor_product(*cpds) kernel = {} scope = set(prod_cpd.scope()) for tup in itertools.product(*[range(card) for card in other_cards]): states = [State(v, s) for v, s in zip(other_vars, tup) if v in scope] prod_cpd_reduced = prod_cpd.reduce(states, inplace=False) kernel[tup] = prod_cpd_reduced.values / sum(prod_cpd_reduced.values) self.transition_models[var] = kernel def _get_kernel_from_markov_model(self, model): """ Computes the Gibbs transition models from a Markov Network. 'Probabilistic Graphical Model Principles and Techniques', Koller and Friedman, Section 12.3.3 pp 512-513. Parameters: ----------- model: MarkovModel The model from which probabilities will be computed. """ self.variables = np.array(model.nodes()) factors_dict = {var: [] for var in self.variables} for factor in model.get_factors(): for var in factor.scope(): factors_dict[var].append(factor) # Take factor product factors_dict = {var: factor_product(*factors) if len(factors) > 1 else factors[0] for var, factors in factors_dict.items()} self.cardinalities = {var: factors_dict[var].get_cardinality([var])[var] for var in self.variables} for var in self.variables: other_vars = [v for v in self.variables if var != v] other_cards = [self.cardinalities[v] for v in other_vars] kernel = {} factor = factors_dict[var] scope = set(factor.scope()) for tup in itertools.product(*[range(card) for card in other_cards]): states = [State(var, s) for var, s in zip(other_vars, tup) if var in scope] reduced_factor = factor.reduce(states, inplace=False) kernel[tup] = reduced_factor.values / sum(reduced_factor.values) self.transition_models[var] = kernel def sample(self, start_state=None, size=1, return_type="dataframe"): """ Sample from the Markov Chain. Parameters: ----------- start_state: dict or array-like iterable Representing the starting states of the variables. If None is passed, a random start_state is chosen. size: int Number of samples to be generated. return_type: string (dataframe | recarray) Return type for samples, either of 'dataframe' or 'recarray'. Defaults to 'dataframe' Returns ------- sampled: A pandas.DataFrame or a numpy.recarray object depending upon return_type argument the generated samples Examples: --------- >>> from pgmpy.factors import DiscreteFactor >>> from pgmpy.inference import GibbsSampling >>> from pgmpy.models import MarkovModel >>> model = MarkovModel([('A', 'B'), ('C', 'B')]) >>> factor_ab = DiscreteFactor(['A', 'B'], [2, 2], [1, 2, 3, 4]) >>> factor_cb = DiscreteFactor(['C', 'B'], [2, 2], [5, 6, 7, 8]) >>> model.add_factors(factor_ab, factor_cb) >>> gibbs = GibbsSampling(model) >>> gibbs.sample(size=4, return_tupe='dataframe') A B C 0 0 1 1 1 1 0 0 2 1 1 0 3 1 1 1 """ if start_state is None and self.state is None: self.state = self.random_state() elif start_state is not None: self.set_start_state(start_state) types = [(var_name, 'int') for var_name in self.variables] sampled = np.zeros(size, dtype=types).view(np.recarray) sampled[0] = np.array([st for var, st in self.state]) for i in range(size - 1): for j, (var, st) in enumerate(self.state): other_st = tuple(st for v, st in self.state if var != v) next_st = sample_discrete(list(range(self.cardinalities[var])), self.transition_models[var][other_st])[0] self.state[j] = State(var, next_st) sampled[i + 1] = np.array([st for var, st in self.state]) return _return_samples(return_type, sampled) def generate_sample(self, start_state=None, size=1): """ Generator version of self.sample Return Type: ------------ List of State namedtuples, representing the assignment to all variables of the model. Examples: --------- >>> from pgmpy.factors.discrete import DiscreteFactor >>> from pgmpy.sampling import GibbsSampling >>> from pgmpy.models import MarkovModel >>> model = MarkovModel([('A', 'B'), ('C', 'B')]) >>> factor_ab = DiscreteFactor(['A', 'B'], [2, 2], [1, 2, 3, 4]) >>> factor_cb = DiscreteFactor(['C', 'B'], [2, 2], [5, 6, 7, 8]) >>> model.add_factors(factor_ab, factor_cb) >>> gibbs = GibbsSampling(model) >>> gen = gibbs.generate_sample(size=2) >>> [sample for sample in gen] [[State(var='C', state=1), State(var='B', state=1), State(var='A', state=0)], [State(var='C', state=0), State(var='B', state=1), State(var='A', state=1)]] """ if start_state is None and self.state is None: self.state = self.random_state() elif start_state is not None: self.set_start_state(start_state) for i in range(size): for j, (var, st) in enumerate(self.state): other_st = tuple(st for v, st in self.state if var != v) next_st = sample_discrete(list(range(self.cardinalities[var])), self.transition_models[var][other_st])[0] self.state[j] = State(var, next_st) yield self.state[:]
the-stack_0_1219
""" ============================================= :mod:`archivers` -- Solution archival methods ============================================= This module provides pre-defined archivers for evoluationary computations. All archiver functions have the following arguments: - *random* -- the random number generator object - *population* -- the population of individuals - *archive* -- the current archive of individuals - *args* -- a dictionary of keyword arguments Each archiver function returns the updated archive. .. note:: The *population* is really a shallow copy of the actual population of the evolutionary computation. This means that any activities like sorting will not affect the actual population. .. Copyright 2012 Aaron Garrett .. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: .. The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. .. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. .. module:: archivers .. moduleauthor:: Aaron Garrett <[email protected]> """ import math def default_archiver(random, population, archive, args): """Do nothing. This function just returns the existing archive (which is probably empty) with no changes. .. Arguments: random -- the random number generator object population -- the population of individuals archive -- the current archive of individuals args -- a dictionary of keyword arguments """ return archive def population_archiver(random, population, archive, args): """Archive the current population. This function replaces the archive with the individuals of the current population. .. Arguments: random -- the random number generator object population -- the population of individuals archive -- the current archive of individuals args -- a dictionary of keyword arguments """ new_archive = [] for ind in population: new_archive.append(ind) return new_archive def best_archiver(random, population, archive, args): """Archive only the best individual(s). This function archives the best solutions and removes inferior ones. If the comparison operators have been overloaded to define Pareto preference (as in the ``Pareto`` class), then this archiver will form a Pareto archive. .. Arguments: random -- the random number generator object population -- the population of individuals archive -- the current archive of individuals args -- a dictionary of keyword arguments """ new_archive = archive for ind in population: if len(new_archive) == 0: new_archive.append(ind) else: should_remove = [] should_add = True for a in new_archive: if ind.candidate == a.candidate: should_add = False break elif ind < a: should_add = False elif ind > a: should_remove.append(a) for r in should_remove: new_archive.remove(r) if should_add: new_archive.append(ind) return new_archive def adaptive_grid_archiver(random, population, archive, args): """Archive only the best individual(s) using a fixed size grid. This function archives the best solutions by using a fixed-size grid to determine which existing solutions should be removed in order to make room for new ones. This archiver is designed specifically for use with the Pareto Archived Evolution Strategy (PAES). .. Arguments: random -- the random number generator object population -- the population of individuals archive -- the current archive of individuals args -- a dictionary of keyword arguments Optional keyword arguments in args: - *max_archive_size* -- the maximum number of individuals in the archive (default len(population)) - *num_grid_divisions* -- the number of grid divisions (default 1) """ def get_grid_location(fitness, num_grid_divisions, global_smallest, global_largest): loc = 0 n = 1 num_objectives = len(fitness) inc = [0 for _ in range(num_objectives)] width = [0 for _ in range(num_objectives)] local_smallest = global_smallest[:] for i, f in enumerate(fitness): if f < local_smallest[i] or f > local_smallest[i] + global_largest[i] - global_smallest[i]: return -1 for i in range(num_objectives): inc[i] = n n *= 2 width[i] = global_largest[i] - global_smallest[i] for d in range(num_grid_divisions): for i, f in enumerate(fitness): if f < width[i] / 2.0 + local_smallest[i]: loc += inc[i] else: local_smallest[i] += width[i] / 2.0 for i in range(num_objectives): inc[i] *= num_objectives * 2 width[i] /= 2.0 return loc def update_grid(individual, archive, num_grid_divisions, global_smallest, global_largest, grid_population): if len(archive) == 0: num_objectives = len(individual.fitness) smallest = [individual.fitness[o] for o in range(num_objectives)] largest = [individual.fitness[o] for o in range(num_objectives)] else: num_objectives = min(min([len(a.fitness) for a in archive]), len(individual.fitness)) smallest = [min(min([a.fitness[o] for a in archive]), individual.fitness[o]) for o in range(num_objectives)] largest = [max(max([a.fitness[o] for a in archive]), individual.fitness[o]) for o in range(num_objectives)] for i in range(num_objectives): global_smallest[i] = smallest[i] - abs(0.2 * smallest[i]) global_largest[i] = largest[i] + abs(0.2 * largest[i]) for i in range(len(grid_population)): grid_population[i] = 0 for a in archive: loc = get_grid_location(a.fitness, num_grid_divisions, global_smallest, global_largest) a.grid_location = loc grid_population[loc] += 1 loc = get_grid_location(individual.fitness, num_grid_divisions, global_smallest, global_largest) individual.grid_location = loc grid_population[loc] += 1 max_archive_size = args.setdefault('max_archive_size', len(population)) num_grid_divisions = args.setdefault('num_grid_divisions', 1) if not 'grid_population' in dir(adaptive_grid_archiver): adaptive_grid_archiver.grid_population = [0 for _ in range(2**(min([len(p.fitness) for p in population]) * num_grid_divisions))] if not 'global_smallest' in dir(adaptive_grid_archiver): adaptive_grid_archiver.global_smallest = [0 for _ in range(min([len(p.fitness) for p in population]))] if not 'global_largest' in dir(adaptive_grid_archiver): adaptive_grid_archiver.global_largest = [0 for _ in range(min([len(p.fitness) for p in population]))] new_archive = archive for ind in population: update_grid(ind, new_archive, num_grid_divisions, adaptive_grid_archiver.global_smallest, adaptive_grid_archiver.global_largest, adaptive_grid_archiver.grid_population) should_be_added = True for a in new_archive: if ind == a or a > ind: should_be_added = False if should_be_added: if len(new_archive) == 0: new_archive.append(ind) else: join = False nondominated = True removal_set = [] for i, a in enumerate(new_archive): if ind > a and not join: new_archive[i] = ind join = True elif ind > a: if not a in removal_set: removal_set.append(a) # Otherwise, the individual is nondominated against this archive member. # We can't use set difference because Individual objects are not hashable. # We'd like to say... # new_archive = list(set(new_archive) - set(removal_set)) # So this code gets that same result without using sets. temp_archive = [] for ind in new_archive: if ind not in removal_set: temp_archive.append(ind) new_archive = temp_archive if not join and nondominated: if len(new_archive) == max_archive_size: replaced_index = 0 found_replacement = False loc = get_grid_location(ind.fitness, num_grid_divisions, adaptive_grid_archiver.global_smallest, adaptive_grid_archiver.global_largest) ind.grid_location = loc if ind.grid_location >= 0: most = adaptive_grid_archiver.grid_population[ind.grid_location] else: most = -1 for i, a in enumerate(new_archive): pop_at_a = adaptive_grid_archiver.grid_population[a.grid_location] if pop_at_a > most: most = pop_at_a replaced_index = i found_replacement = True if found_replacement: new_archive[replaced_index] = ind else: new_archive.append(ind) return new_archive
the-stack_0_1220
import pandas as pd import numpy as np if __name__ == '__main__': df = pd.read_csv(snakemake.input[0], sep="\t", index_col=0) mc_df = pd.read_csv(snakemake.input[1], sep="\t", index_col=0) # sum the rows of the mutation count matrix to get the number of mutations per sample n_mutations = mc_df.sum(axis=1) # df is samples-by-signatures # n_mutations is vector of length samples df = df.transpose().multiply(n_mutations).transpose() #df.index = [i-1 for i in df.index] df.to_csv(snakemake.output[0], sep="\t")
the-stack_0_1221
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """A setuptools based setup module. See: https://packaging.python.org/tutorials/packaging-projects/ https://github.com/pypa/sampleproject """ # Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path __version__ = "1.0.6" description = "Analysis Correlation Engine (ACE) API Python Bindings." here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='ace_api', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version=__version__, description=description, long_description=long_description, long_description_content_type='text/markdown', # The project's main homepage. url='https://github.com/IntegralDefense/ACE/_api_package', # Author details author='John Davison', author_email='[email protected]', # Choose your license license='Apache-2.0', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', # Indicate who your project is intended for 'Intended Audience :: Developers', "Intended Audience :: Information Technology", "Intended Audience :: Telecommunications Industry", 'Operating System :: OS Independent', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: Apache Software License', #'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.0', 'Programming Language :: Python :: 3.1', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], # What does your project relate to? keywords='Cyber Security,Information Security,InfoSec,Detection,Response,SOAR', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). #packages=[], include_package_data=True, # Alternatively, if you want to distribute just a my_module.py, uncomment # this: py_modules=["ace_api"], # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=['tzlocal', 'requests', 'pytz'], entry_points={ 'console_scripts': ['ace_api=ace_api:main'], } )
the-stack_0_1222
""" batch 模块实现了 fastNLP 所需的 :class:`~fastNLP.core.batch.DataSetIter` 类。 """ __all__ = [ "BatchIter", "DataSetIter", "TorchLoaderIter", ] import atexit from numbers import Number import numpy as np import torch import torch.utils.data from ._logger import logger from .dataset import DataSet from .sampler import SequentialSampler _python_is_exit = False def _set_python_is_exit(): global _python_is_exit _python_is_exit = True atexit.register(_set_python_is_exit) class DataSetGetter: def __init__(self, dataset: DataSet, as_numpy=False): self.dataset = dataset self.inputs = {n: f for n, f in dataset.get_all_fields().items() if f.is_input} self.targets = {n: f for n, f in dataset.get_all_fields().items() if f.is_target} self.as_numpy = as_numpy self.idx_list = list(range(len(dataset))) def __getitem__(self, idx: int): # mapping idx to sampled idx idx = self.idx_list[idx] inputs = {n:f.get(idx) for n, f in self.inputs.items()} targets = {n:f.get(idx) for n, f in self.targets.items()} return idx, inputs, targets def __len__(self): return len(self.dataset) def collate_fn(self, batch: list): """ :param batch: [[idx1, x_dict1, y_dict1], [idx2, x_dict2, y_dict2], [xx, xx, xx]] :return: """ # TODO 支持在DataSet中定义collate_fn,因为有时候可能需要不同的field之间融合,比如BERT的场景 batch_x = {n:[] for n in self.inputs.keys()} batch_y = {n:[] for n in self.targets.keys()} indices = [] for idx, x, y in batch: indices.append(idx) for n, v in x.items(): batch_x[n].append(v) for n, v in y.items(): batch_y[n].append(v) def pad_batch(batch_dict, field_array): for n, vlist in batch_dict.items(): f = field_array[n] if f.padder is None: batch_dict[n] = np.array(vlist) else: data = f.pad(vlist) if not self.as_numpy: try: data, flag = _to_tensor(data, f.dtype) except TypeError as e: logger.error(f"Field {n} cannot be converted to torch.tensor.") raise e batch_dict[n] = data return batch_dict return (indices, pad_batch(batch_x, self.inputs), pad_batch(batch_y, self.targets)) def set_idx_list(self, idx_list): if len(idx_list) != len(self.idx_list): raise ValueError self.idx_list = idx_list def __getattr__(self, item): if hasattr(self.dataset, item): return getattr(self.dataset, item) else: raise AttributeError("'DataSetGetter' object has no attribute '{}'".format(item)) class SamplerAdapter(torch.utils.data.Sampler): def __init__(self, sampler, dataset): super().__init__(dataset) self.sampler = sampler self.dataset = dataset def __len__(self): return len(self.dataset) def __iter__(self): return iter(self.sampler(self.dataset)) class BatchIter: def __init__(self): self.dataiter = None self.num_batches = None self.cur_batch_indices = None self.batch_size = None def init_iter(self): pass @staticmethod def get_num_batches(num_samples, batch_size, drop_last): num_batches = num_samples // batch_size if not drop_last and (num_samples % batch_size > 0): num_batches += 1 return num_batches def __iter__(self): self.init_iter() for indices, batch_x, batch_y in self.dataiter: self.cur_batch_indices = indices yield batch_x, batch_y def get_batch_indices(self): return self.cur_batch_indices def __len__(self): return self.num_batches @property def dataset(self): return self.dataiter.dataset class DataSetIter(BatchIter): """ DataSetIter 用于从 `DataSet` 中按一定的顺序, 依次按 ``batch_size`` 的大小将数据取出, 组成 `x` 和 `y`:: batch = DataSetIter(data_set, batch_size=16, sampler=SequentialSampler()) num_batch = len(batch) for batch_x, batch_y in batch: # do stuff ... """ def __init__(self, dataset, batch_size=1, sampler=None, as_numpy=False, num_workers=0, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None): """ :param dataset: :class:`~fastNLP.DataSet` 对象, 数据集 :param int batch_size: 取出的batch大小 :param sampler: 规定使用的 :class:`~fastNLP.Sampler` 方式. 若为 ``None`` , 使用 :class:`~fastNLP.SequentialSampler`. Default: ``None`` :param bool as_numpy: 若为 ``True`` , 输出batch为 numpy.array. 否则为 :class:`torch.Tensor`. Default: ``False`` :param int num_workers: 使用多少个进程来预处理数据 :param bool pin_memory: 是否将产生的tensor使用pin memory, 可能会加快速度。 :param bool drop_last: 如果最后一个batch没有batch_size这么多sample,就扔掉最后一个 :param timeout: :param worker_init_fn: 在每个worker启动时调用该函数,会传入一个值,该值是worker的index。 """ super().__init__() assert isinstance(dataset, DataSet) if not isinstance(sampler, torch.utils.data.Sampler): self.sampler = SamplerAdapter(sampler=sampler or SequentialSampler(), dataset=dataset) else: self.sampler = sampler dataset = DataSetGetter(dataset, as_numpy) collate_fn = dataset.collate_fn if hasattr(dataset, 'collate_fn') else None self.dataiter = torch.utils.data.DataLoader( dataset=dataset, batch_size=batch_size, sampler=self.sampler, collate_fn=collate_fn, num_workers=num_workers, pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn) # 以sampler的数量为准,因为DistributedSampler的时候每个进程上并不是所有的数据都用上了 self.num_batches = self.get_num_batches(len(self.dataiter.sampler), batch_size, drop_last) self.batch_size = batch_size class TorchLoaderIter(BatchIter): def __init__(self, dataset): super().__init__() assert isinstance(dataset, torch.utils.data.DataLoader) self.dataiter = dataset self.num_batches = self.get_num_batches(len(dataset.sampler), dataset.batch_size, dataset.drop_last) self.batch_size = dataset.batch_size def _to_tensor(batch, field_dtype): """ :param batch: np.array() :param field_dtype: 数据类型 :return: batch, flag. 如果传入的数据支持转为tensor,返回的batch就是tensor,且flag为True;如果传入的数据不支持转为tensor, 返回的batch就是原来的数据,且flag为False """ try: if field_dtype is not None and isinstance(field_dtype, type)\ and issubclass(field_dtype, Number) \ and not isinstance(batch, torch.Tensor): if issubclass(batch.dtype.type, np.floating): new_batch = torch.as_tensor(batch).float() # 默认使用float32 elif issubclass(batch.dtype.type, np.integer): new_batch = torch.as_tensor(batch).long() # 复用内存地址,避免复制 else: new_batch = torch.as_tensor(batch) return new_batch, True else: return batch, False except Exception as e: raise e
the-stack_0_1224
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig = plt.figure() ax = fig.add_subplot(111) line, = ax.plot(np.random.rand(10)) ax.set_ylim(0, 1) def update(data): line.set_ydata(data) return line, def data_gen(): while True: yield np.random.rand(10) ani = animation.FuncAnimation(fig, update, data_gen, interval=100) plt.show()
the-stack_0_1225
from .views import * from django.urls import path app_name = 'product' urlpatterns = [ # Category path('category/', CategoryList.as_view(), name='categoryList'), path('category/<int:pk>/', CategoryDetail.as_view(), name='categoryDetail'), # Subject path('subject/', SubjectList.as_view(), name='subjectList'), path('subject/<int:pk>/', SubjectDetail.as_view(), name='subjectDetail'), # Product path('product/', ProductList.as_view(), name='productList'), path('product/<int:pk>/', ProductDetail.as_view(), name='productDetail'), # Nested (Category) path( 'category/<int:cat>/product/', CategoryProductList.as_view(), name='categoryProductList' ), # Nested (Subject) path( 'subject/<int:sub>/product/', SubjectProductList.as_view(), name='subjectProductList' ), # Nested (Category Subject) path( 'category/<int:cat>/subject/<int:sub>/product/', CategorySubjectProductList.as_view(), name='categorySubjectProductList' ), ]
the-stack_0_1228
import os from string import Template import psycopg2 import argparse parser = argparse.ArgumentParser() args_general = parser.add_argument_group(title="General Options") args_general.add_argument('-t', '--table_name', default='test', help='table to be copied. target table with have _copy as a suffix') args_general.add_argument('-c', '--columns', default='id', help='list the columns to be converted to bigint eg. col1,col2,col3') args_general.add_argument('-p', '--primary_key', default='id', help='primary key of the table for which a new sequence is created in the copy table') args = parser.parse_args() table_name = args.table_name if not os.path.exists('generated/{}'.format(table_name)): os.makedirs('generated/{}'.format(table_name)) pk = args.primary_key columns = args.columns raw_convert = columns.split(',') convert = [] for c in raw_convert: convert.append('ALTER TABLE {} ALTER COLUMN {} TYPE bigint'.format(table_name+"_copy", c)) def create_clone(table_name, pk, convert): template = open('templates/clone.sql') src = Template(template.read()) d = {'source': table_name, 'target': table_name+"_copy", 'pk': pk, 'seq_name': table_name+"_copy"+"_id"+"_seq", 'convert': '\n'.join(convert)} result = src.substitute(d) f = open("generated/{0}/{0}_clone.sql".format(table_name), "a") f.write(result) f.close def create_indexes(table_name): try: conn = psycopg2.connect("dbname=postgres") except psycopg2.Error as e: print("Failed to connect to the database: ", e.pgcode) template = open('templates/trigger.sql') src = Template(template.read()) query = "select replace(indexdef,'INDEX', 'INDEX CONCURRENTLY') from pg_indexes where tablename = '{}'".format(table_name) cur = conn.cursor() cur.execute(query) rows = cur.fetchall() template = open('templates/indexes.sql') src = Template(template.read()) d = {'indexes': '\n'.join(list(str(row) for row in rows))} result = src.substitute(d) f = open("generated/{0}/{0}_indexes.sql".format(table_name), "a") f.write(result) f.close def create_trigger(table_name, pk): template = open('templates/trigger.sql') src = Template(template.read()) d = {'source': table_name, 'target': table_name+"_copy", 'pk': pk, 'tname': table_name+"_trig", 'b': "$BODY$"} result = src.substitute(d) f = open("generated/{0}/{0}_trig.sql".format(table_name), "a") f.write(result) f.close def grant_acl(table_name): try: conn = psycopg2.connect("dbname=postgres") except psycopg2.Error as e: print("Failed to connect to the database: ", e.pgcode) query = "select 'GRANT ' || privilege_type || ' ON ' || table_name || ' TO ' || grantee || ';' from information_schema.role_table_grants where table_name = '{}' and grantee <> grantor;".format(table_name, table_name) cur = conn.cursor() cur.execute(query) rows = cur.fetchall() template = open('templates/acl.sql') src = Template(template.read()) d = {'acl': '\n'.join(str(row) for row in rows)} result = src.substitute(d) f = open("generated/{0}/{0}_acl.sql".format(table_name), "a") f.write(result) f.close def main(): create_trigger(table_name, pk) create_clone(table_name, pk, convert) grant_acl(table_name) create_indexes(table_name) if __name__ == "__main__": main()
the-stack_0_1229
""" weasyprint.tests.test_presentational_hints ------------------------------------------ Test the HTML presentational hints. """ from weasyprint import CSS, HTML from .testing_utils import BASE_URL, assert_no_logs PH_TESTING_CSS = CSS(string=''' @page {margin: 0; size: 1000px 1000px} body {margin: 0} ''') @assert_no_logs def test_no_ph(): # Test both CSS and non-CSS rules document = HTML(string=''' <hr size=100 /> <table align=right width=100><td>0</td></table> ''').render(stylesheets=[PH_TESTING_CSS]) page, = document.pages html, = page._page_box.children body, = html.children hr, table = body.children assert hr.border_height() != 100 assert table.position_x == 0 @assert_no_logs def test_ph_page(): document = HTML(string=''' <body marginheight=2 topmargin=3 leftmargin=5 bgcolor=red text=blue /> ''').render(stylesheets=[PH_TESTING_CSS], presentational_hints=True) page, = document.pages html, = page._page_box.children body, = html.children assert body.margin_top == 2 assert body.margin_bottom == 2 assert body.margin_left == 5 assert body.margin_right == 0 assert body.style['background_color'] == (1, 0, 0, 1) assert body.style['color'] == (0, 0, 1, 1) @assert_no_logs def test_ph_flow(): document = HTML(string=''' <pre wrap></pre> <center></center> <div align=center></div> <div align=middle></div> <div align=left></div> <div align=right></div> <div align=justify></div> ''').render(stylesheets=[PH_TESTING_CSS], presentational_hints=True) page, = document.pages html, = page._page_box.children body, = html.children pre, center, div1, div2, div3, div4, div5 = body.children assert pre.style['white_space'] == 'pre-wrap' assert center.style['text_align'] == 'center' assert div1.style['text_align'] == 'center' assert div2.style['text_align'] == 'center' assert div3.style['text_align'] == 'left' assert div4.style['text_align'] == 'right' assert div5.style['text_align'] == 'justify' @assert_no_logs def test_ph_phrasing(): document = HTML(string=''' <style>@font-face { src: url(AHEM____.TTF); font-family: ahem }</style> <br clear=left> <br clear=right /> <br clear=both /> <br clear=all /> <font color=red face=ahem size=7></font> <Font size=4></Font> <font size=+5 ></font> <font size=-5 ></font> ''', base_url=BASE_URL).render( stylesheets=[PH_TESTING_CSS], presentational_hints=True) page, = document.pages html, = page._page_box.children body, = html.children line1, line2, line3, line4, line5 = body.children br1, = line1.children br2, = line2.children br3, = line3.children br4, = line4.children font1, font2, font3, font4 = line5.children assert br1.style['clear'] == 'left' assert br2.style['clear'] == 'right' assert br3.style['clear'] == 'both' assert br4.style['clear'] == 'both' assert font1.style['color'] == (1, 0, 0, 1) assert font1.style['font_family'] == ('ahem',) assert font1.style['font_size'] == 1.5 * 2 * 16 assert font2.style['font_size'] == 6 / 5 * 16 assert font3.style['font_size'] == 1.5 * 2 * 16 assert font4.style['font_size'] == 8 / 9 * 16 @assert_no_logs def test_ph_lists(): document = HTML(string=''' <ol> <li type=A></li> <li type=1></li> <li type=a></li> <li type=i></li> <li type=I></li> </ol> <ul> <li type=circle></li> <li type=disc></li> <li type=square></li> </ul> ''').render(stylesheets=[PH_TESTING_CSS], presentational_hints=True) page, = document.pages html, = page._page_box.children body, = html.children ol, ul = body.children oli1, oli2, oli3, oli4, oli5 = ol.children uli1, uli2, uli3 = ul.children assert oli1.style['list_style_type'] == 'upper-alpha' assert oli2.style['list_style_type'] == 'decimal' assert oli3.style['list_style_type'] == 'lower-alpha' assert oli4.style['list_style_type'] == 'lower-roman' assert oli5.style['list_style_type'] == 'upper-roman' assert uli1.style['list_style_type'] == 'circle' assert uli2.style['list_style_type'] == 'disc' assert uli3.style['list_style_type'] == 'square' @assert_no_logs def test_ph_lists_types(): document = HTML(string=''' <ol type=A></ol> <ol type=1></ol> <ol type=a></ol> <ol type=i></ol> <ol type=I></ol> <ul type=circle></ul> <ul type=disc></ul> <ul type=square></ul> ''').render(stylesheets=[PH_TESTING_CSS], presentational_hints=True) page, = document.pages html, = page._page_box.children body, = html.children ol1, ol2, ol3, ol4, ol5, ul1, ul2, ul3 = body.children assert ol1.style['list_style_type'] == 'upper-alpha' assert ol2.style['list_style_type'] == 'decimal' assert ol3.style['list_style_type'] == 'lower-alpha' assert ol4.style['list_style_type'] == 'lower-roman' assert ol5.style['list_style_type'] == 'upper-roman' assert ul1.style['list_style_type'] == 'circle' assert ul2.style['list_style_type'] == 'disc' assert ul3.style['list_style_type'] == 'square' @assert_no_logs def test_ph_tables(): document = HTML(string=''' <table align=left rules=none></table> <table align=right rules=groups></table> <table align=center rules=rows></table> <table border=10 cellspacing=3 bordercolor=green> <thead> <tr> <th valign=top></th> </tr> </thead> <tr> <td nowrap><h1 align=right></h1><p align=center></p></td> </tr> <tr> </tr> <tfoot align=justify> <tr> <td></td> </tr> </tfoot> </table> ''').render(stylesheets=[PH_TESTING_CSS], presentational_hints=True) page, = document.pages html, = page._page_box.children body, = html.children wrapper1, wrapper2, wrapper3, wrapper4, = body.children assert wrapper1.style['float'] == 'left' assert wrapper2.style['float'] == 'right' assert wrapper3.style['margin_left'] == 'auto' assert wrapper3.style['margin_right'] == 'auto' assert wrapper1.children[0].style['border_left_style'] == 'hidden' assert wrapper1.style['border_collapse'] == 'collapse' assert wrapper2.children[0].style['border_left_style'] == 'hidden' assert wrapper2.style['border_collapse'] == 'collapse' assert wrapper3.children[0].style['border_left_style'] == 'hidden' assert wrapper3.style['border_collapse'] == 'collapse' table4, = wrapper4.children assert table4.style['border_top_style'] == 'outset' assert table4.style['border_top_width'] == 10 assert table4.style['border_spacing'] == (3, 3) r, g, b, a = table4.style['border_left_color'] assert g > r and g > b head_group, rows_group, foot_group = table4.children head, = head_group.children th, = head.children assert th.style['vertical_align'] == 'top' line1, line2 = rows_group.children td, = line1.children assert td.style['white_space'] == 'nowrap' assert td.style['border_top_width'] == 1 assert td.style['border_top_style'] == 'inset' h1, p = td.children assert h1.style['text_align'] == 'right' assert p.style['text_align'] == 'center' foot, = foot_group.children tr, = foot.children assert tr.style['text_align'] == 'justify' @assert_no_logs def test_ph_hr(): document = HTML(string=''' <hr align=left> <hr align=right /> <hr align=both color=red /> <hr align=center noshade size=10 /> <hr align=all size=8 width=100 /> ''').render(stylesheets=[PH_TESTING_CSS], presentational_hints=True) page, = document.pages html, = page._page_box.children body, = html.children hr1, hr2, hr3, hr4, hr5 = body.children assert hr1.margin_left == 0 assert hr1.style['margin_right'] == 'auto' assert hr2.style['margin_left'] == 'auto' assert hr2.margin_right == 0 assert hr3.style['margin_left'] == 'auto' assert hr3.style['margin_right'] == 'auto' assert hr3.style['color'] == (1, 0, 0, 1) assert hr4.style['margin_left'] == 'auto' assert hr4.style['margin_right'] == 'auto' assert hr4.border_height() == 10 assert hr4.style['border_top_width'] == 5 assert hr5.border_height() == 8 assert hr5.height == 6 assert hr5.width == 100 assert hr5.style['border_top_width'] == 1 @assert_no_logs def test_ph_embedded(): document = HTML(string=''' <object data="data:image/svg+xml,<svg></svg>" align=top hspace=10 vspace=20></object> <img src="data:image/svg+xml,<svg></svg>" alt=text align=right width=10 height=20 /> <embed src="data:image/svg+xml,<svg></svg>" align=texttop /> ''').render(stylesheets=[PH_TESTING_CSS], presentational_hints=True) page, = document.pages html, = page._page_box.children body, = html.children line, = body.children object_, text1, img, embed, text2 = line.children assert embed.style['vertical_align'] == 'text-top' assert object_.style['vertical_align'] == 'top' assert object_.margin_top == 20 assert object_.margin_left == 10 assert img.style['float'] == 'right' assert img.width == 10 assert img.height == 20
the-stack_0_1230
import subprocess import sys import re import os import setup_util from os.path import expanduser home = expanduser("~") def start(args, logfile, errfile): setup_util.replace_text("sinatra/hello_world.rb", ":host => '.*'", ":host => '" + args.database_host + "'") try: subprocess.check_call("rvm ruby-2.0.0-p0 do bundle install --gemfile=Gemfile-ruby", shell=True, cwd="sinatra", stderr=errfile, stdout=logfile) subprocess.check_call("cp Gemfile-ruby Gemfile", shell=True, cwd="sinatra", stderr=errfile, stdout=logfile) subprocess.check_call("cp Gemfile-ruby.lock Gemfile.lock", shell=True, cwd="sinatra", stderr=errfile, stdout=logfile) subprocess.check_call("sudo /usr/local/nginx/sbin/nginx -c " + home + "/FrameworkBenchmarks/sinatra/config/nginx.conf", shell=True, stderr=errfile, stdout=logfile) subprocess.Popen("rvm ruby-2.0.0-p0 do bundle exec unicorn_rails -E production -c config/unicorn.rb", shell=True, cwd="sinatra", stderr=errfile, stdout=logfile) return 0 except subprocess.CalledProcessError: return 1 def stop(logfile, errfile): subprocess.call("sudo /usr/local/nginx/sbin/nginx -s stop", shell=True, stderr=errfile, stdout=logfile) try: p = subprocess.Popen(['ps', 'aux'], stdout=subprocess.PIPE) out, err = p.communicate() for line in out.splitlines(): if 'unicorn' in line and 'master' in line: pid = int(line.split(None, 2)[1]) os.kill(pid, 9) # subprocess.check_call("rvm ruby-2.0.0-p0 do bundle exec passenger stop --pid-file=$HOME/FrameworkBenchmarks/rack/rack.pid", shell=True, cwd='rack') subprocess.check_call("rm Gemfile", shell=True, cwd="sinatra", stderr=errfile, stdout=logfile) subprocess.check_call("rm Gemfile.lock", shell=True, cwd="sinatra", stderr=errfile, stdout=logfile) return 0 except subprocess.CalledProcessError: return 1
the-stack_0_1231
# Copyright (c) 2020 Rocky Bernstein from uncompyle6.parsers.treenode import SyntaxTree def tryelsestmtl3(self, lhs, n, rule, ast, tokens, first, last): # Check the end of the except handler that there isn't a jump from # inside the except handler to the end. If that happens # then this is a "try" with no "else". except_handler = ast[3] if except_handler == "except_handler_else": except_handler = except_handler[0] come_from = except_handler[-1] # We only care about the *first* come_from because that is the # the innermost one. So if the "tryelse" is invalid (should be a "try") # it will be invalid here. if come_from == "COME_FROM": first_come_from = except_handler[-1] elif come_from == "END_FINALLY": return False elif come_from == "except_return": return False else: assert come_from in ("come_froms", "opt_come_from_except") first_come_from = come_from[0] if not hasattr(first_come_from, "attr"): # optional come from return False leading_jump = except_handler[0] if not hasattr(leading_jump, "offset"): return False # We really don't care that this is a jump per-se. But # we could also check that this jumps to the end of the except if # desired. if isinstance(leading_jump, SyntaxTree): except_handler_first_offset = leading_jump.first_child().off2int() else: except_handler_first_offset = leading_jump.off2int() return first_come_from.attr > except_handler_first_offset
the-stack_0_1232
from __future__ import unicode_literals import time import hmac import hashlib import re from .common import InfoExtractor from ..compat import compat_str from ..utils import ( ExtractorError, float_or_none, int_or_none, sanitized_Request, urlencode_postdata, xpath_text, ) class AtresPlayerIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?atresplayer\.com/television/[^/]+/[^/]+/[^/]+/(?P<id>.+?)_\d+\.html' _NETRC_MACHINE = 'atresplayer' _TESTS = [ { 'url': 'http://www.atresplayer.com/television/programas/el-club-de-la-comedia/temporada-4/capitulo-10-especial-solidario-nochebuena_2014122100174.html', 'md5': 'efd56753cda1bb64df52a3074f62e38a', 'info_dict': { 'id': 'capitulo-10-especial-solidario-nochebuena', 'ext': 'mp4', 'title': 'Especial Solidario de Nochebuena', 'description': 'md5:e2d52ff12214fa937107d21064075bf1', 'duration': 5527.6, 'thumbnail': r're:^https?://.*\.jpg$', }, 'skip': 'This video is only available for registered users' }, { 'url': 'http://www.atresplayer.com/television/especial/videoencuentros/temporada-1/capitulo-112-david-bustamante_2014121600375.html', 'md5': '6e52cbb513c405e403dbacb7aacf8747', 'info_dict': { 'id': 'capitulo-112-david-bustamante', 'ext': 'flv', 'title': 'David Bustamante', 'description': 'md5:f33f1c0a05be57f6708d4dd83a3b81c6', 'duration': 1439.0, 'thumbnail': r're:^https?://.*\.jpg$', }, }, { 'url': 'http://www.atresplayer.com/television/series/el-secreto-de-puente-viejo/el-chico-de-los-tres-lunares/capitulo-977-29-12-14_2014122400174.html', 'only_matching': True, }, ] _USER_AGENT = 'Dalvik/1.6.0 (Linux; U; Android 4.3; GT-I9300 Build/JSS15J' _MAGIC = 'QWtMLXs414Yo+c#_+Q#K@NN)' _TIMESTAMP_SHIFT = 30000 _TIME_API_URL = 'http://servicios.atresplayer.com/api/admin/time.json' _URL_VIDEO_TEMPLATE = 'https://servicios.atresplayer.com/api/urlVideo/{1}/{0}/{1}|{2}|{3}.json' _PLAYER_URL_TEMPLATE = 'https://servicios.atresplayer.com/episode/getplayer.json?episodePk=%s' _EPISODE_URL_TEMPLATE = 'http://www.atresplayer.com/episodexml/%s' _LOGIN_URL = 'https://servicios.atresplayer.com/j_spring_security_check' _ERRORS = { 'UNPUBLISHED': 'We\'re sorry, but this video is not yet available.', 'DELETED': 'This video has expired and is no longer available for online streaming.', 'GEOUNPUBLISHED': 'We\'re sorry, but this video is not available in your region due to right restrictions.', # 'PREMIUM': 'PREMIUM', } def _real_initialize(self): self._login() def _login(self): (username, password) = self._get_login_info() if username is None: return login_form = { 'j_username': username, 'j_password': password, } request = sanitized_Request( self._LOGIN_URL, urlencode_postdata(login_form)) request.add_header('Content-Type', 'application/x-www-form-urlencoded') response = self._download_webpage( request, None, 'Logging in') error = self._html_search_regex( r'(?s)<ul[^>]+class="[^"]*\blist_error\b[^"]*">(.+?)</ul>', response, 'error', default=None) if error: raise ExtractorError( 'Unable to login: %s' % error, expected=True) def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) episode_id = self._search_regex( r'episode="([^"]+)"', webpage, 'episode id') request = sanitized_Request( self._PLAYER_URL_TEMPLATE % episode_id, headers={'User-Agent': self._USER_AGENT}) player = self._download_json(request, episode_id, 'Downloading player JSON') episode_type = player.get('typeOfEpisode') error_message = self._ERRORS.get(episode_type) if error_message: raise ExtractorError( '%s returned error: %s' % (self.IE_NAME, error_message), expected=True) formats = [] video_url = player.get('urlVideo') if video_url: format_info = { 'url': video_url, 'format_id': 'http', } mobj = re.search(r'(?P<bitrate>\d+)K_(?P<width>\d+)x(?P<height>\d+)', video_url) if mobj: format_info.update({ 'width': int_or_none(mobj.group('width')), 'height': int_or_none(mobj.group('height')), 'tbr': int_or_none(mobj.group('bitrate')), }) formats.append(format_info) timestamp = int_or_none(self._download_webpage( self._TIME_API_URL, video_id, 'Downloading timestamp', fatal=False), 1000, time.time()) timestamp_shifted = compat_str(timestamp + self._TIMESTAMP_SHIFT) token = hmac.new( self._MAGIC.encode('ascii'), (episode_id + timestamp_shifted).encode('utf-8'), hashlib.md5 ).hexdigest() request = sanitized_Request( self._URL_VIDEO_TEMPLATE.format('windows', episode_id, timestamp_shifted, token), headers={'User-Agent': self._USER_AGENT}) fmt_json = self._download_json( request, video_id, 'Downloading windows video JSON') result = fmt_json.get('resultDes') if result.lower() != 'ok': raise ExtractorError( '%s returned error: %s' % (self.IE_NAME, result), expected=True) for format_id, video_url in fmt_json['resultObject'].items(): if format_id == 'token' or not video_url.startswith('http'): continue if 'geodeswowsmpra3player' in video_url: # f4m_path = video_url.split('smil:', 1)[-1].split('free_', 1)[0] # f4m_url = 'http://drg.antena3.com/{0}hds/es/sd.f4m'.format(f4m_path) # this videos are protected by DRM, the f4m downloader doesn't support them continue video_url_hd = video_url.replace('free_es', 'es') formats.extend(self._extract_f4m_formats( video_url_hd[:-9] + '/manifest.f4m', video_id, f4m_id='hds', fatal=False)) formats.extend(self._extract_mpd_formats( video_url_hd[:-9] + '/manifest.mpd', video_id, mpd_id='dash', fatal=False)) self._sort_formats(formats) path_data = player.get('pathData') episode = self._download_xml( self._EPISODE_URL_TEMPLATE % path_data, video_id, 'Downloading episode XML') duration = float_or_none(xpath_text( episode, './media/asset/info/technical/contentDuration', 'duration')) art = episode.find('./media/asset/info/art') title = xpath_text(art, './name', 'title') description = xpath_text(art, './description', 'description') thumbnail = xpath_text(episode, './media/asset/files/background', 'thumbnail') subtitles = {} subtitle_url = xpath_text(episode, './media/asset/files/subtitle', 'subtitle') if subtitle_url: subtitles['es'] = [{ 'ext': 'srt', 'url': subtitle_url, }] return { 'id': video_id, 'title': title, 'description': description, 'thumbnail': thumbnail, 'duration': duration, 'formats': formats, 'subtitles': subtitles, }
the-stack_0_1235
#!/usr/bin/env python3 import sys with open(sys.argv[1]) as input: lines = input.readlines() numbers = [int(line.strip()) for line in lines] # Part 1 print(sum(y > x for x, y in zip(numbers[:-1], numbers[1:]))) # Part 2 print(sum(y > x for x, y in zip(numbers[:-3], numbers[3:])))
the-stack_0_1236
def evalRPN(tokens): OPS = { "-" : lambda x,y : x-y, "+" : lambda x,y : x+y, "*" : lambda x,y : x*y, "/" : lambda x,y : int(x/y) } s= [] for item in tokens: if len(s)>=2 and item in OPS: y = s.pop() x = s.pop() s.append(OPS[item](x,y)) else: s.append(int(item)) #print(s) return s.pop() if __name__=='__main__': tokens = ["2","1","+","3","*"] #Output: 9 #print(evalRPN(tokens)) tokens = ["4","13","5","/","+"] #6 print(evalRPN(tokens)) tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"] #Output: 22 print(evalRPN(tokens))
the-stack_0_1239
try: from cyordereddict import OrderedDict except: from collections import OrderedDict from . import util from .pprint import PrettyPrinter class AttrTree(object): """ An AttrTree offers convenient, multi-level attribute access for collections of objects. AttrTree objects may also be combined together using the update method or merge classmethod. Here is an example of adding a ViewableElement to an AttrTree and accessing it: >>> t = AttrTree() >>> t.Example.Path = 1 >>> t.Example.Path #doctest: +ELLIPSIS 1 """ _disabled_prefixes = [] # Underscore attributes that should be _sanitizer = util.sanitize_identifier @classmethod def merge(cls, trees): """ Merge a collection of AttrTree objects. """ first = trees[0] for tree in trees: first.update(tree) return first def __dir__(self): """ The _dir_mode may be set to 'default' or 'user' in which case only the child nodes added by the user are listed. """ dict_keys = self.__dict__.keys() if self.__dict__['_dir_mode'] == 'user': return self.__dict__['children'] else: return dir(type(self)) + list(dict_keys) def __init__(self, items=None, identifier=None, parent=None, dir_mode='default'): """ identifier: A string identifier for the current node (if any) parent: The parent node (if any) items: Items as (path, value) pairs to construct (sub)tree down to given leaf values. Note that the root node does not have a parent and does not require an identifier. """ self.__dict__['parent'] = parent self.__dict__['identifier'] = type(self)._sanitizer(identifier, escape=False) self.__dict__['children'] = [] self.__dict__['_fixed'] = False self.__dict__['_dir_mode'] = dir_mode # Either 'default' or 'user' fixed_error = 'No attribute %r in this AttrTree, and none can be added because fixed=True' self.__dict__['_fixed_error'] = fixed_error self.__dict__['data'] = OrderedDict() items = items.items() if isinstance(items, OrderedDict) else items # Python 3 items = list(items) if items else items items = [] if not items else items for path, item in items: self.set_path(path, item) @property def path(self): "Returns the path up to the root for the current node." if self.parent: return '.'.join([self.parent.path, str(self.identifier)]) else: return self.identifier if self.identifier else self.__class__.__name__ @property def fixed(self): "If fixed, no new paths can be created via attribute access" return self.__dict__['_fixed'] @fixed.setter def fixed(self, val): self.__dict__['_fixed'] = val def update(self, other): """ Updated the contents of the current AttrTree with the contents of a second AttrTree. """ if not isinstance(other, AttrTree): raise Exception('Can only update with another AttrTree type.') fixed_status = (self.fixed, other.fixed) (self.fixed, other.fixed) = (False, False) for identifier, element in other.items(): if identifier not in self.data: self[identifier] = element else: self[identifier].update(element) (self.fixed, other.fixed) = fixed_status def set_path(self, path, val): """ Set the given value at the supplied path where path is either a tuple of strings or a string in A.B.C format. """ path = tuple(path.split('.')) if isinstance(path , str) else tuple(path) disallowed = [p for p in path if not type(self)._sanitizer.allowable(p)] if any(disallowed): raise Exception("Attribute strings in path elements cannot be " "correctly escaped : %s" % ','.join(repr(el) for el in disallowed)) if len(path) > 1: attrtree = self.__getattr__(path[0]) attrtree.set_path(path[1:], val) else: self.__setattr__(path[0], val) def filter(self, path_filters): """ Filters the loaded AttrTree using the supplied path_filters. """ if not path_filters: return self # Convert string path filters path_filters = [tuple(pf.split('.')) if not isinstance(pf, tuple) else pf for pf in path_filters] # Search for substring matches between paths and path filters new_attrtree = self.__class__() for path, item in self.data.items(): if any([all([subpath in path for subpath in pf]) for pf in path_filters]): new_attrtree.set_path(path, item) return new_attrtree def _propagate(self, path, val): """ Propagate the value up to the root node. """ self.data[path] = val if self.parent is not None: self.parent._propagate((self.identifier,)+path, val) def __setitem__(self, identifier, val): """ Set a value at a child node with given identifier. If at a root node, multi-level path specifications is allowed (i.e. 'A.B.C' format or tuple format) in which case the behaviour matches that of set_path. """ if isinstance(identifier, str) and '.' not in identifier: self.__setattr__(identifier, val) elif isinstance(identifier, str) and self.parent is None: self.set_path(tuple(identifier.split('.')), val) elif isinstance(identifier, tuple) and self.parent is None: self.set_path(identifier, val) else: raise Exception("Multi-level item setting only allowed from root node.") def __getitem__(self, identifier): """ For a given non-root node, access a child element by identifier. If the node is a root node, you may also access elements using either tuple format or the 'A.B.C' string format. """ split_label = (tuple(identifier.split('.')) if isinstance(identifier, str) else tuple(identifier)) if len(split_label) == 1: identifier = split_label[0] if identifier in self.children: return self.__dict__[identifier] else: raise KeyError(identifier) path_item = self for identifier in split_label: path_item = path_item[identifier] return path_item def __setattr__(self, identifier, val): # Getattr is skipped for root and first set of children shallow = (self.parent is None or self.parent.parent is None) if identifier[0].isupper() and self.fixed and shallow: raise AttributeError(self._fixed_error % identifier) super(AttrTree, self).__setattr__(identifier, val) if identifier[0].isupper(): if not identifier in self.children: self.children.append(identifier) self._propagate((identifier,), val) def __getattr__(self, identifier): """ Access a identifier from the AttrTree or generate a new AttrTree with the chosen attribute path. """ try: return super(AttrTree, self).__getattr__(identifier) except AttributeError: pass # Attributes starting with __ get name mangled if identifier.startswith('_' + type(self).__name__) or identifier.startswith('__'): raise AttributeError('Attribute %s not found.' % identifier) elif self.fixed==True: raise AttributeError(self._fixed_error % identifier) if not any(identifier.startswith(prefix) for prefix in type(self)._disabled_prefixes): identifier = type(self)._sanitizer(identifier, escape=False) if identifier in self.children: return self.__dict__[identifier] if not identifier.startswith('_'): self.children.append(identifier) dir_mode = self.__dict__['_dir_mode'] child_tree = self.__class__(identifier=identifier, parent=self, dir_mode=dir_mode) self.__dict__[identifier] = child_tree return child_tree else: raise AttributeError def __iter__(self): return iter(self.data.values()) def __contains__(self, name): return name in self.children or name in self.data def __len__(self): return len(self.data) def get(self, identifier, default=None): split_label = (tuple(identifier.split('.')) if isinstance(identifier, str) else tuple(identifier)) if len(split_label) == 1: identifier = split_label[0] return self.__dict__.get(identifier, default) path_item = self for identifier in split_label: if path_item == default or path_item is None: return default path_item = path_item.get(identifier, default) return path_item def keys(self): return list(self.data.keys()) def items(self): return list(self.data.items()) def values(self): return list(self.data.values()) def pop(self, identifier, default=None): if identifier in self.children: item = self[identifier] self.__delitem__(identifier) return item else: return default def __repr__(self): return PrettyPrinter.pprint(self) __all__ = ['AttrTree']
the-stack_0_1240
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import google.api_core.grpc_helpers import google.api_core.operations_v1 from google.cloud.automl_v1beta1.proto import prediction_service_pb2_grpc class PredictionServiceGrpcTransport(object): """gRPC transport class providing stubs for google.cloud.automl.v1beta1 PredictionService API. The transport provides access to the raw gRPC stubs, which can be used to take advantage of advanced features of gRPC. """ # The scopes needed to make gRPC calls to all of the methods defined # in this service. _OAUTH_SCOPES = ("https://www.googleapis.com/auth/cloud-platform",) def __init__( self, channel=None, credentials=None, address="automl.googleapis.com:443" ): """Instantiate the transport class. Args: channel (grpc.Channel): A ``Channel`` instance through which to make calls. This argument is mutually exclusive with ``credentials``; providing both will raise an exception. credentials (google.auth.credentials.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. address (str): The address where the service is hosted. """ # If both `channel` and `credentials` are specified, raise an # exception (channels come with credentials baked in already). if channel is not None and credentials is not None: raise ValueError( "The `channel` and `credentials` arguments are mutually " "exclusive." ) # Create the channel. if channel is None: channel = self.create_channel(address=address, credentials=credentials) self._channel = channel # gRPC uses objects called "stubs" that are bound to the # channel and provide a basic method for each RPC. self._stubs = { "prediction_service_stub": prediction_service_pb2_grpc.PredictionServiceStub( channel ) } # Because this API includes a method that returns a # long-running operation (proto: google.longrunning.Operation), # instantiate an LRO client. self._operations_client = google.api_core.operations_v1.OperationsClient( channel ) @classmethod def create_channel(cls, address="automl.googleapis.com:443", credentials=None): """Create and return a gRPC channel object. Args: address (str): The host for the channel to use. credentials (~.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. Returns: grpc.Channel: A gRPC channel object. """ return google.api_core.grpc_helpers.create_channel( address, credentials=credentials, scopes=cls._OAUTH_SCOPES ) @property def channel(self): """The gRPC channel used by the transport. Returns: grpc.Channel: A gRPC channel object. """ return self._channel @property def predict(self): """Return the gRPC stub for :meth:`PredictionServiceClient.predict`. Perform an online prediction. The prediction result will be directly returned in the response. Available for following ML problems, and their expected request payloads: - Image Classification - Image in .JPEG, .GIF or .PNG format, image\_bytes up to 30MB. - Image Object Detection - Image in .JPEG, .GIF or .PNG format, image\_bytes up to 30MB. - Text Classification - TextSnippet, content up to 10,000 characters, UTF-8 encoded. - Text Extraction - TextSnippet, content up to 30,000 characters, UTF-8 NFC encoded. \* Translation - TextSnippet, content up to 25,000 characters, UTF-8 encoded. - Tables - Row, with column values matching the columns of the model, up to 5MB. - Text Sentiment - TextSnippet, content up 500 characters, UTF-8 encoded. Returns: Callable: A callable which accepts the appropriate deserialized request object and returns a deserialized response object. """ return self._stubs["prediction_service_stub"].Predict @property def batch_predict(self): """Return the gRPC stub for :meth:`PredictionServiceClient.batch_predict`. Perform a batch prediction. Unlike the online ``Predict``, batch prediction result won't be immediately available in the response. Instead, a long running operation object is returned. User can poll the operation result via ``GetOperation`` method. Once the operation is done, ``BatchPredictResult`` is returned in the ``response`` field. Available for following ML problems: - Video Classification - Text Extraction - Tables Returns: Callable: A callable which accepts the appropriate deserialized request object and returns a deserialized response object. """ return self._stubs["prediction_service_stub"].BatchPredict
the-stack_0_1244
""" Tests for AttMap. """ import itertools import os import pickle import numpy as np import pytest import yaml from attmap import AttMap, AttMapEcho __author__ = "Vince Reuter" __email__ = "[email protected]" # Provide some basic atomic-type data for models tests. _BASE_KEYS = ("epigenomics", "H3K", "ac", "EWS", "FLI1") _BASE_VALUES = \ ("topic", "residue", "acetylation", "RNA binding protein", "FLI1") _ENTRIES_PROVISION_MODES = ["gen", "dict", "zip", "list", "items"] _SEASON_HIERARCHY = { "spring": {"February": 28, "March": 31, "April": 30, "May": 31}, "summer": {"June": 30, "July": 31, "August": 31}, "fall": {"September": 30, "October": 31, "November": 30}, "winter": {"December": 31, "January": 31} } ADDITIONAL_NON_NESTED = {"West Complex": {"CPHG": 6}, "BIG": {"MR-4": 6}} ADDITIONAL_NESTED = {"JPA": {"West Complex": {"CPHG": 6}}, "Lane": {"BIG": {"MR-4": 6}}} ADDITIONAL_VALUES_BY_NESTING = { False: ADDITIONAL_NON_NESTED, True: ADDITIONAL_NESTED } COMPARISON_FUNCTIONS = ["__eq__", "__ne__", "__len__", "keys", "values", "items"] def pytest_generate_tests(metafunc): """ Centralize dynamic test case parameterization. """ if "empty_collection" in metafunc.fixturenames: # Test case strives to validate expected behavior on empty container. collection_types = [tuple, list, set, dict] metafunc.parametrize( "empty_collection", argvalues=[ctype() for ctype in collection_types], ids=[ctype.__name__ for ctype in collection_types]) def basic_entries(): """ AttMap data that lack nested structure. """ for k, v in zip(_BASE_KEYS, _BASE_VALUES): yield k, v def nested_entries(): """ AttributeDict data with some nesting going on. """ for k, v in _SEASON_HIERARCHY.items(): yield k, v @pytest.mark.parametrize("base", ["random", "irrelevant", "arbitrary"]) @pytest.mark.parametrize("protect", [False, True]) def test_echo_is_conditional(base, protect): """ Protected member isn't echoed. """ m = AttMapEcho({}) if protect: with pytest.raises(AttributeError): m.__getattr__("__{}__".format(base)) else: assert base == m.__getattr__(base) class AttributeConstructionDictTests: """Tests for the AttMap ADT. Note that the implementation of the equality comparison operator is tested indirectly via the mechanism of many of the assertion statements used throughout these test cases. Some test cases are parameterized by comparison function to test for equivalence, rather than via input data as is typically the case. This avoids some overhead, This is to ensure that the implemented `collections.MutableMapping` or `collections.abc.MutableMapping` methods are valid. """ # Refer to tail of class definition for # data and fixtures specific to this class. def test_null_construction(self): """ Null entries value creates empty AttMap. """ assert AttMap({}) == AttMap(None) def test_empty_construction(self, empty_collection): """ Empty entries container create empty AttMap. """ m = AttMap(empty_collection) assert AttMap(None) == m assert m != dict() @pytest.mark.parametrize( argnames="entries_gen,entries_provision_type", argvalues=itertools.product([basic_entries, nested_entries], _ENTRIES_PROVISION_MODES), ids=["{entries}-{mode}".format(entries=gen.__name__, mode=mode) for gen, mode in itertools.product([basic_entries, nested_entries], _ENTRIES_PROVISION_MODES)] ) def test_construction_modes_supported( self, entries_gen, entries_provision_type): """ Construction wants key-value pairs; wrapping doesn't matter. """ entries_mapping = dict(entries_gen()) if entries_provision_type == "dict": entries = entries_mapping elif entries_provision_type == "zip": keys, values = zip(*entries_gen()) entries = zip(keys, values) elif entries_provision_type == "items": entries = entries_mapping.items() elif entries_provision_type == "list": entries = list(entries_gen()) elif entries_provision_type == "gen": entries = entries_gen else: raise ValueError("Unexpected entries type: {}". format(entries_provision_type)) expected = AttMap(entries_mapping) observed = AttMap(entries) assert expected == observed @staticmethod def _validate_mapping_function_implementation(entries_gen, name_comp_func): data = dict(entries_gen()) attrdict = AttMap(data) if __name__ == '__main__': if name_comp_func in ["__eq__", "__ne__"]: are_equal = getattr(attrdict, name_comp_func).__call__(data) assert are_equal if name_comp_func == "__eq__" \ else (not are_equal) else: raw_dict_comp_func = getattr(data, name_comp_func) attrdict_comp_func = getattr(attrdict, name_comp_func) expected = raw_dict_comp_func.__call__() observed = attrdict_comp_func.__call__() try: # Most comparison methods are returning iterables. assert set(expected) == set(observed) except TypeError: # Could be int or other non-iterable that we're comparing. assert expected == observed class AttMapUpdateTests: """Validate behavior of post-construction addition of entries. Though entries may and often will be provided at instantiation time, AttMap is motivated to support inheritance by domain-specific data types for which use cases are likely to be unable to provide all relevant data at construction time. So let's verify that we get the expected behavior when entries are added after initial construction. """ _TOTALLY_ARBITRARY_VALUES = [ "abc", 123, (4, "text", ("nes", "ted")), list("-101") ] _GETTERS = ["__getattr__", "__getitem__"] _SETTERS = ["__setattr__", "__setitem__"] @pytest.mark.parametrize( argnames="setter_name,getter_name,is_novel", argvalues=itertools.product(_SETTERS, _GETTERS, (False, True))) def test_set_get_atomic(self, setter_name, getter_name, is_novel): """ For new and existing items, validate set/get behavior. """ # Establish the AttMap for the test case. data = dict(basic_entries()) ad = AttMap(basic_entries()) # Establish a ground truth and select name/value(s) based on # whether or not the test case wants to test a new or existing item. if is_novel: item_name = "awesome_novel_attribute" assert item_name not in ad with pytest.raises(AttributeError): getattr(ad, item_name) item_values = self._TOTALLY_ARBITRARY_VALUES else: item_name = np.random.choice(a=list(data.keys()), size=1)[0] item_value = data[item_name] assert ad[item_name] == item_value assert getattr(ad, item_name) == item_value item_values = [item_value] # Determine which functions to use to make the set/get calls. setter = getattr(ad, setter_name) getter = getattr(ad, getter_name) # Validate set/get for each value. for value in item_values: setter(item_name, value) assert getter(item_name) == value class AttMapCollisionTests: """ Tests for proper merging and type conversion of mappings. AttMap converts a mapping being inserted as a value to an AttMap. """ @pytest.mark.parametrize( argnames="name_update_func", argvalues=["add_entries", "__setattr__", "__setitem__"]) def test_squash_existing(self, name_update_func): """ When a value that's a mapping is assigned to existing key with non-mapping value, the new value overwrites the old. """ ad = AttMap({"MR": 4}) assert 4 == ad.MR assert 4 == ad["MR"] new_value = [4, 5, 6] args = ("MR", new_value) setter = getattr(ad, name_update_func) if name_update_func == "add_entries": setter([args]) else: setter(*args) assert new_value == ad.MR assert new_value == ad["MR"] @pytest.mark.parametrize( argnames="name_update_func", argvalues=["add_entries", "__setattr__", "__setitem__"]) @pytest.mark.parametrize( argnames="name_fetch_func", argvalues=["__getattr__", "__getitem__"]) class AttMapNullTests: """ AttMap has configurable behavior regarding null values. """ def test_new_null(self, name_update_func, name_fetch_func): """ When a key/item, isn't known, null is allowed. """ ad = AttMap() setter = getattr(ad, name_update_func) args = ("new_key", None) self._do_update(name_update_func, setter, args) getter = getattr(ad, name_fetch_func) assert getter("new_key") is None def test_replace_null(self, name_update_func, name_fetch_func): """ Null can be replaced by non-null. """ ad = AttMap({"lone_attr": None}) assert getattr(ad, name_fetch_func)("lone_attr") is None setter = getattr(ad, name_update_func) non_null_value = AttMap({"was_null": "not_now"}) self._do_update(name_update_func, setter, ("lone_attr", non_null_value)) assert non_null_value == getattr(ad, name_fetch_func)("lone_attr") @staticmethod def _do_update(name_setter_func, setter_bound_method, args): if name_setter_func == "add_entries": setter_bound_method([args]) else: setter_bound_method(*args) class AttMapItemAccessTests: """ Tests for access of items (key- or attribute- style). """ @pytest.mark.parametrize(argnames="missing", argvalues=["att", ""]) def test_missing_getattr(self, missing): attrd = AttMap() with pytest.raises(AttributeError): getattr(attrd, missing) @pytest.mark.parametrize(argnames="missing", argvalues=["", "b", "missing"]) def test_missing_getitem(self, missing): attrd = AttMap() with pytest.raises(KeyError): attrd[missing] def test_numeric_key(self): """ Attribute request must be string. """ ad = AttMap({1: 'a'}) assert 'a' == ad[1] with pytest.raises(TypeError): getattr(ad, 1) class AttMapSerializationTests: """ Tests for AttMap serialization. """ DATA_PAIRS = [('a', 1), ('b', False), ('c', range(5)), ('d', {'A': None, 'T': []}), ('e', AttMap({'G': 1, 'C': [False, None]})), ('f', [AttMap({"DNA": "deoxyribose", "RNA": "ribose"}), AttMap({"DNA": "thymine", "RNA": "uracil"})])] @pytest.mark.parametrize( argnames="data", argvalues=itertools.combinations(DATA_PAIRS, 2), ids=lambda data: " data = {}".format(str(data))) @pytest.mark.parametrize( argnames="data_type", argvalues=[list, dict], ids=lambda data_type: " data_type = {}".format(data_type)) def test_pickle_restoration(self, tmpdir, data, data_type): """ Pickled and restored AttMap objects are identical. """ # Type the AttMap input data argument according to parameter. data = data_type(data) original_attrdict = AttMap(data) filename = "attrdict-test.pkl" # Allow either Path or raw string. try: dirpath = tmpdir.strpath except AttributeError: dirpath = tmpdir # Serialize AttMap and write to disk. filepath = os.path.join(dirpath, filename) with open(filepath, 'wb') as pkl: pickle.dump(original_attrdict, pkl) # Validate equivalence between original and restored versions. with open(filepath, 'rb') as pkl: restored_attrdict = AttMap(pickle.load(pkl)) assert restored_attrdict == original_attrdict class AttMapObjectSyntaxAccessTests: """ Test behavior of dot attribute access / identity setting. """ DEFAULT_VALUE = "totally-arbitrary" NORMAL_ITEM_ARG_VALUES = \ ["__getattr__", "__getitem__", "__dict__", "__repr__", "__str__"] PICKLE_ITEM_ARG_VALUES = ["__getstate__", "__setstate__"] ATTR_DICT_DATA = {"a": 0, "b": range(1, 3), "c": {"CO": 70, "WA": 5}} UNMAPPED = ["arb-att-1", "random-attribute-2"] @pytest.fixture(scope="function") def attrdict(self, request): """ Provide a test case with an AttMap. """ d = self.ATTR_DICT_DATA return AttMapEcho(d) if request.getfixturevalue("return_identity") \ else AttMap(d) @pytest.mark.parametrize( argnames="return_identity", argvalues=[False, True], ids=lambda ret_id: " identity setting={} ".format(ret_id)) @pytest.mark.parametrize( argnames="attr_to_request", argvalues=NORMAL_ITEM_ARG_VALUES + PICKLE_ITEM_ARG_VALUES + UNMAPPED + list(ATTR_DICT_DATA.keys()), ids=lambda attr: " requested={} ".format(attr)) def test_attribute_access( self, return_identity, attr_to_request, attrdict): """ Access behavior depends on request and behavior toggle. """ if attr_to_request == "__dict__": # The underlying mapping is still accessible. assert attrdict.__dict__ is getattr(attrdict, "__dict__") elif attr_to_request in self.NORMAL_ITEM_ARG_VALUES: # Request for common protected function returns the function. assert callable(getattr(attrdict, attr_to_request)) elif attr_to_request in self.PICKLE_ITEM_ARG_VALUES: # We don't tinker with the pickle-relevant attributes. with pytest.raises(AttributeError): print("Should have failed, but got result: {}". format(getattr(attrdict, attr_to_request))) elif attr_to_request in self.UNMAPPED: # Unmapped request behavior depends on parameterization. if return_identity: assert attr_to_request == getattr(attrdict, attr_to_request) else: with pytest.raises(AttributeError): getattr(attrdict, attr_to_request) else: # A mapped attribute returns its known value. expected = self.ATTR_DICT_DATA[attr_to_request] if isinstance(expected, dict): expected = type(attrdict)(expected) observed = getattr(attrdict, attr_to_request) print("AD (below):\n{}".format(attrdict)) assert expected == observed class NullityTests: """ Tests of null/non-null values """ _KEYNAMES = ["sample_name", "protocol", "arbitrary_attribute"] @pytest.mark.parametrize(argnames="item", argvalues=_KEYNAMES) def test_missing_is_neither_null_nor_non_null(self, item): """ Value of absent key is neither null nor non-null """ ad = AttMap() assert not ad.is_null(item) and not ad.non_null(item) @pytest.mark.parametrize(argnames="item", argvalues=_KEYNAMES) def test_is_null(self, item): """ Null-valued key/item evaluates as such. """ ad = AttMap() ad[item] = None assert ad.is_null(item) and not ad.non_null(item) @pytest.mark.parametrize( argnames=["k", "v"], argvalues=list(zip(_KEYNAMES, ["sampleA", "WGBS", "random"]))) def test_non_null(self, k, v): """ AD is sensitive to value updates """ ad = AttMap() assert not ad.is_null(k) and not ad.non_null(k) ad[k] = None assert ad.is_null(k) and not ad.non_null(k) ad[k] = v assert not ad.is_null(k) and ad.non_null(k) @pytest.mark.usefixtures("write_project_files") class SampleYamlTests: """ AttMap metadata only appear in YAML if non-default. """ @staticmethod def _yaml_data(sample, filepath, section_to_change=None, attr_to_change=None, newval=None): """ Serialize a Sample, possibly tweaking it first, write, and parse. :param models.Sample sample: what to serialize and write :param str filepath: where to write the data :param str section_to_change: name of section in which to change attribute :param str attr_to_change: name of attribute to change :param object newval: value to set for targeted attribute :return (Iterable[str], dict): raw lines and parsed version (YAML) """ if section_to_change: getattr(sample, section_to_change)[attr_to_change] = newval sample.to_yaml(filepath) with open(filepath, 'r') as f: data = yaml.safe_load(f) with open(filepath, 'r') as f: lines = f.readlines() return lines, data @pytest.mark.parametrize( ["func", "exp"], [(repr, "AttMap: {}"), (str, "AttMap: {}")]) def test_text_repr_empty(func, exp): """ Empty AttMap is correctly represented as text. """ assert exp == func(AttMap())
the-stack_0_1245
# Copyright (c) 2020 Yubico AB # All rights reserved. # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from .core import ( require_version as _require_version, int2bytes, bytes2int, Version, Tlv, AID, CommandError, NotSupportedError, BadResponseError, ) from .core.smartcard import ( SmartCardConnection, SmartCardProtocol, ApduError, SW, ApduFormat, ) from cryptography import x509 from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.primitives.constant_time import bytes_eq from cryptography.hazmat.primitives.serialization import Encoding, PublicFormat from cryptography.hazmat.primitives.asymmetric import rsa, ec from cryptography.hazmat.primitives.asymmetric.padding import AsymmetricPadding from cryptography.hazmat.backends import default_backend from dataclasses import dataclass from enum import Enum, IntEnum, unique from typing import Optional, Union, Type, cast import logging import os import re logger = logging.getLogger(__name__) @unique class ALGORITHM(str, Enum): EC = "ec" RSA = "rsa" # Don't treat pre 1.0 versions as "developer builds". def require_version(my_version: Version, *args, **kwargs): if my_version <= (0, 1, 3): # Last pre 1.0 release of ykneo-piv my_version = Version(1, 0, 0) _require_version(my_version, *args, **kwargs) @unique class KEY_TYPE(IntEnum): RSA1024 = 0x06 RSA2048 = 0x07 ECCP256 = 0x11 ECCP384 = 0x14 @property def algorithm(self): return ALGORITHM.EC if self.name.startswith("ECC") else ALGORITHM.RSA @property def bit_len(self): match = re.search(r"\d+$", self.name) if match: return int(match.group()) raise ValueError("No bit_len") @classmethod def from_public_key(cls, key): if isinstance(key, rsa.RSAPublicKey): try: return getattr(cls, "RSA%d" % key.key_size) except AttributeError: raise ValueError("Unsupported RSA key size: %d" % key.key_size) pass # Fall through to ValueError elif isinstance(key, ec.EllipticCurvePublicKey): curve_name = key.curve.name if curve_name == "secp256r1": return cls.ECCP256 elif curve_name == "secp384r1": return cls.ECCP384 raise ValueError(f"Unsupported EC curve: {curve_name}") raise ValueError(f"Unsupported key type: {type(key).__name__}") @unique class MANAGEMENT_KEY_TYPE(IntEnum): TDES = 0x03 AES128 = 0x08 AES192 = 0x0A AES256 = 0x0C @property def key_len(self): if self.name == "TDES": return 24 # AES return int(self.name[3:]) // 8 @property def challenge_len(self): if self.name == "TDES": return 8 return 16 def _parse_management_key(key_type, management_key): if key_type == MANAGEMENT_KEY_TYPE.TDES: return algorithms.TripleDES(management_key) else: return algorithms.AES(management_key) # The card management slot is special, we don't include it in SLOT below SLOT_CARD_MANAGEMENT = 0x9B @unique class SLOT(IntEnum): AUTHENTICATION = 0x9A SIGNATURE = 0x9C KEY_MANAGEMENT = 0x9D CARD_AUTH = 0x9E RETIRED1 = 0x82 RETIRED2 = 0x83 RETIRED3 = 0x84 RETIRED4 = 0x85 RETIRED5 = 0x86 RETIRED6 = 0x87 RETIRED7 = 0x88 RETIRED8 = 0x89 RETIRED9 = 0x8A RETIRED10 = 0x8B RETIRED11 = 0x8C RETIRED12 = 0x8D RETIRED13 = 0x8E RETIRED14 = 0x8F RETIRED15 = 0x90 RETIRED16 = 0x91 RETIRED17 = 0x92 RETIRED18 = 0x93 RETIRED19 = 0x94 RETIRED20 = 0x95 ATTESTATION = 0xF9 @unique class OBJECT_ID(IntEnum): CAPABILITY = 0x5FC107 CHUID = 0x5FC102 AUTHENTICATION = 0x5FC105 # cert for 9a key FINGERPRINTS = 0x5FC103 SECURITY = 0x5FC106 FACIAL = 0x5FC108 PRINTED = 0x5FC109 SIGNATURE = 0x5FC10A # cert for 9c key KEY_MANAGEMENT = 0x5FC10B # cert for 9d key CARD_AUTH = 0x5FC101 # cert for 9e key DISCOVERY = 0x7E KEY_HISTORY = 0x5FC10C IRIS = 0x5FC121 RETIRED1 = 0x5FC10D RETIRED2 = 0x5FC10E RETIRED3 = 0x5FC10F RETIRED4 = 0x5FC110 RETIRED5 = 0x5FC111 RETIRED6 = 0x5FC112 RETIRED7 = 0x5FC113 RETIRED8 = 0x5FC114 RETIRED9 = 0x5FC115 RETIRED10 = 0x5FC116 RETIRED11 = 0x5FC117 RETIRED12 = 0x5FC118 RETIRED13 = 0x5FC119 RETIRED14 = 0x5FC11A RETIRED15 = 0x5FC11B RETIRED16 = 0x5FC11C RETIRED17 = 0x5FC11D RETIRED18 = 0x5FC11E RETIRED19 = 0x5FC11F RETIRED20 = 0x5FC120 ATTESTATION = 0x5FFF01 @classmethod def from_slot(cls, slot): return getattr(cls, SLOT(slot).name) @unique class PIN_POLICY(IntEnum): DEFAULT = 0x0 NEVER = 0x1 ONCE = 0x2 ALWAYS = 0x3 @unique class TOUCH_POLICY(IntEnum): DEFAULT = 0x0 NEVER = 0x1 ALWAYS = 0x2 CACHED = 0x3 # 010203040506070801020304050607080102030405060708 DEFAULT_MANAGEMENT_KEY = ( b"\x01\x02\x03\x04\x05\x06\x07\x08" + b"\x01\x02\x03\x04\x05\x06\x07\x08" + b"\x01\x02\x03\x04\x05\x06\x07\x08" ) PIN_LEN = 8 # Instruction set INS_VERIFY = 0x20 INS_CHANGE_REFERENCE = 0x24 INS_RESET_RETRY = 0x2C INS_GENERATE_ASYMMETRIC = 0x47 INS_AUTHENTICATE = 0x87 INS_GET_DATA = 0xCB INS_PUT_DATA = 0xDB INS_GET_METADATA = 0xF7 INS_ATTEST = 0xF9 INS_SET_PIN_RETRIES = 0xFA INS_RESET = 0xFB INS_GET_VERSION = 0xFD INS_IMPORT_KEY = 0xFE INS_SET_MGMKEY = 0xFF # Tags for parsing responses and preparing requests TAG_AUTH_WITNESS = 0x80 TAG_AUTH_CHALLENGE = 0x81 TAG_AUTH_RESPONSE = 0x82 TAG_AUTH_EXPONENTIATION = 0x85 TAG_GEN_ALGORITHM = 0x80 TAG_OBJ_DATA = 0x53 TAG_OBJ_ID = 0x5C TAG_CERTIFICATE = 0x70 TAG_CERT_INFO = 0x71 TAG_DYN_AUTH = 0x7C TAG_LRC = 0xFE TAG_PIN_POLICY = 0xAA TAG_TOUCH_POLICY = 0xAB # Metadata tags TAG_METADATA_ALGO = 0x01 TAG_METADATA_POLICY = 0x02 TAG_METADATA_ORIGIN = 0x03 TAG_METADATA_PUBLIC_KEY = 0x04 TAG_METADATA_IS_DEFAULT = 0x05 TAG_METADATA_RETRIES = 0x06 ORIGIN_GENERATED = 1 ORIGIN_IMPORTED = 2 INDEX_PIN_POLICY = 0 INDEX_TOUCH_POLICY = 1 INDEX_RETRIES_TOTAL = 0 INDEX_RETRIES_REMAINING = 1 PIN_P2 = 0x80 PUK_P2 = 0x81 class InvalidPinError(CommandError): def __init__(self, attempts_remaining): super(InvalidPinError, self).__init__( "Invalid PIN/PUK. Remaining attempts: %d" % attempts_remaining ) self.attempts_remaining = attempts_remaining def _pin_bytes(pin): pin = pin.encode() if len(pin) > PIN_LEN: raise ValueError("PIN/PUK must be no longer than 8 bytes") return pin.ljust(PIN_LEN, b"\xff") def _retries_from_sw(version, sw): if sw == SW.AUTH_METHOD_BLOCKED: return 0 if version < (1, 0, 4): if 0x6300 <= sw <= 0x63FF: return sw & 0xFF else: if 0x63C0 <= sw <= 0x63CF: return sw & 0x0F return None @dataclass class PinMetadata: default_value: bool total_attempts: int attempts_remaining: int @dataclass class ManagementKeyMetadata: key_type: MANAGEMENT_KEY_TYPE default_value: bool touch_policy: TOUCH_POLICY @dataclass class SlotMetadata: key_type: KEY_TYPE pin_policy: PIN_POLICY touch_policy: TOUCH_POLICY generated: bool public_key_encoded: bytes @property def public_key(self): return _parse_device_public_key(self.key_type, self.public_key_encoded) def _pad_message(key_type, message, hash_algorithm, padding): if key_type.algorithm == ALGORITHM.EC: h = hashes.Hash(hash_algorithm, default_backend()) h.update(message) hashed = h.finalize() byte_len = key_type.bit_len // 8 if len(hashed) < byte_len: return hashed.rjust(byte_len // 8, b"\0") return hashed[:byte_len] elif key_type.algorithm == ALGORITHM.RSA: # Sign with a dummy key, then encrypt the signature to get the padded message e = 65537 dummy = rsa.generate_private_key(e, key_type.bit_len, default_backend()) signature = dummy.sign(message, padding, hash_algorithm) # Raw (textbook) RSA encrypt n = dummy.public_key().public_numbers().n return int2bytes(pow(bytes2int(signature), e, n), key_type.bit_len // 8) def _unpad_message(padded, padding): e = 65537 dummy = rsa.generate_private_key(e, len(padded) * 8, default_backend()) # Raw (textbook) RSA encrypt n = dummy.public_key().public_numbers().n encrypted = int2bytes(pow(bytes2int(padded), e, n), len(padded)) return dummy.decrypt(encrypted, padding) def check_key_support( version: Version, key_type: KEY_TYPE, pin_policy: PIN_POLICY, touch_policy: TOUCH_POLICY, generate: bool = True, ) -> None: """Check if a key type is supported by a specific YubiKey firmware version. This method will return None if the key (with PIN and touch policies) is supported, or it will raise a NotSupportedError if it is not. """ if version[0] == 0 and version > (0, 1, 3): return # Development build, skip version checks if version < (4, 0, 0): if key_type == KEY_TYPE.ECCP384: raise NotSupportedError("ECCP384 requires YubiKey 4 or later") if touch_policy != TOUCH_POLICY.DEFAULT or pin_policy != PIN_POLICY.DEFAULT: raise NotSupportedError("PIN/Touch policy requires YubiKey 4 or later") if version < (4, 3, 0) and touch_policy == TOUCH_POLICY.CACHED: raise NotSupportedError("Cached touch policy requires YubiKey 4.3 or later") # ROCA if (4, 2, 0) <= version < (4, 3, 5): if generate and key_type.algorithm == ALGORITHM.RSA: raise NotSupportedError("RSA key generation not supported on this YubiKey") # FIPS if (4, 4, 0) <= version < (4, 5, 0): if key_type == KEY_TYPE.RSA1024: raise NotSupportedError("RSA 1024 not supported on YubiKey FIPS") if pin_policy == PIN_POLICY.NEVER: raise NotSupportedError("PIN_POLICY.NEVER not allowed on YubiKey FIPS") def _parse_device_public_key(key_type, encoded): data = Tlv.parse_dict(encoded) if key_type.algorithm == ALGORITHM.RSA: modulus = bytes2int(data[0x81]) exponent = bytes2int(data[0x82]) return rsa.RSAPublicNumbers(exponent, modulus).public_key(default_backend()) else: if key_type == KEY_TYPE.ECCP256: curve: Type[ec.EllipticCurve] = ec.SECP256R1 else: curve = ec.SECP384R1 try: # Added in cryptography 2.5 return ec.EllipticCurvePublicKey.from_encoded_point(curve(), data[0x86]) except AttributeError: return ec.EllipticCurvePublicNumbers.from_encoded_point( curve(), data[0x86] ).public_key(default_backend()) class PivSession: def __init__(self, connection: SmartCardConnection): self.protocol = SmartCardProtocol(connection) self.protocol.select(AID.PIV) self._version = Version.from_bytes( self.protocol.send_apdu(0, INS_GET_VERSION, 0, 0) ) self.protocol.enable_touch_workaround(self.version) if self.version >= (4, 0, 0): self.protocol.apdu_format = ApduFormat.EXTENDED self._current_pin_retries = 3 self._max_pin_retries = 3 @property def version(self) -> Version: return self._version def reset(self) -> None: # Block PIN counter = self.get_pin_attempts() while counter > 0: try: self.verify_pin("") except InvalidPinError as e: counter = e.attempts_remaining # Block PUK counter = 1 while counter > 0: try: self._change_reference(INS_RESET_RETRY, PIN_P2, "", "") except InvalidPinError as e: counter = e.attempts_remaining # Reset self.protocol.send_apdu(0, INS_RESET, 0, 0) self._current_pin_retries = 3 self._max_pin_retries = 3 def authenticate( self, key_type: MANAGEMENT_KEY_TYPE, management_key: bytes ) -> None: key_type = MANAGEMENT_KEY_TYPE(key_type) response = self.protocol.send_apdu( 0, INS_AUTHENTICATE, key_type, SLOT_CARD_MANAGEMENT, Tlv(TAG_DYN_AUTH, Tlv(TAG_AUTH_WITNESS)), ) witness = Tlv.unpack(TAG_AUTH_WITNESS, Tlv.unpack(TAG_DYN_AUTH, response)) challenge = os.urandom(key_type.challenge_len) backend = default_backend() cipher_key = _parse_management_key(key_type, management_key) cipher = Cipher(cipher_key, modes.ECB(), backend) # nosec decryptor = cipher.decryptor() decrypted = decryptor.update(witness) + decryptor.finalize() response = self.protocol.send_apdu( 0, INS_AUTHENTICATE, key_type, SLOT_CARD_MANAGEMENT, Tlv( TAG_DYN_AUTH, Tlv(TAG_AUTH_WITNESS, decrypted) + Tlv(TAG_AUTH_CHALLENGE, challenge), ), ) encrypted = Tlv.unpack(TAG_AUTH_RESPONSE, Tlv.unpack(TAG_DYN_AUTH, response)) encryptor = cipher.encryptor() expected = encryptor.update(challenge) + encryptor.finalize() if not bytes_eq(expected, encrypted): raise BadResponseError("Device response is incorrect") def set_management_key( self, key_type: MANAGEMENT_KEY_TYPE, management_key: bytes, require_touch: bool = False, ) -> None: key_type = MANAGEMENT_KEY_TYPE(key_type) if key_type != MANAGEMENT_KEY_TYPE.TDES: require_version(self.version, (5, 4, 0)) if len(management_key) != key_type.key_len: raise ValueError("Management key must be %d bytes" % key_type.key_len) self.protocol.send_apdu( 0, INS_SET_MGMKEY, 0xFF, 0xFE if require_touch else 0xFF, int2bytes(key_type) + Tlv(SLOT_CARD_MANAGEMENT, management_key), ) def verify_pin(self, pin: str) -> None: try: self.protocol.send_apdu(0, INS_VERIFY, 0, PIN_P2, _pin_bytes(pin)) self._current_pin_retries = self._max_pin_retries except ApduError as e: retries = _retries_from_sw(self.version, e.sw) if retries is None: raise self._current_pin_retries = retries raise InvalidPinError(retries) def get_pin_attempts(self) -> int: try: return self.get_pin_metadata().attempts_remaining except NotSupportedError: try: self.protocol.send_apdu(0, INS_VERIFY, 0, PIN_P2) # Already verified, no way to know true count return self._current_pin_retries except ApduError as e: retries = _retries_from_sw(self.version, e.sw) if retries is None: raise self._current_pin_retries = retries return retries def change_pin(self, old_pin: str, new_pin: str) -> None: self._change_reference(INS_CHANGE_REFERENCE, PIN_P2, old_pin, new_pin) def change_puk(self, old_puk: str, new_puk: str) -> None: self._change_reference(INS_CHANGE_REFERENCE, PUK_P2, old_puk, new_puk) def unblock_pin(self, puk: str, new_pin: str) -> None: self._change_reference(INS_RESET_RETRY, PIN_P2, puk, new_pin) def set_pin_attempts(self, pin_attempts: int, puk_attempts: int) -> None: self.protocol.send_apdu(0, INS_SET_PIN_RETRIES, pin_attempts, puk_attempts) self._max_pin_retries = pin_attempts self._current_pin_retries = pin_attempts def get_pin_metadata(self) -> PinMetadata: return self._get_pin_puk_metadata(PIN_P2) def get_puk_metadata(self) -> PinMetadata: return self._get_pin_puk_metadata(PUK_P2) def get_management_key_metadata(self) -> ManagementKeyMetadata: require_version(self.version, (5, 3, 0)) data = Tlv.parse_dict( self.protocol.send_apdu(0, INS_GET_METADATA, 0, SLOT_CARD_MANAGEMENT) ) policy = data[TAG_METADATA_POLICY] return ManagementKeyMetadata( MANAGEMENT_KEY_TYPE(data.get(TAG_METADATA_ALGO, b"\x03")[0]), data[TAG_METADATA_IS_DEFAULT] != b"\0", TOUCH_POLICY(policy[INDEX_TOUCH_POLICY]), ) def get_slot_metadata(self, slot: SLOT) -> SlotMetadata: require_version(self.version, (5, 3, 0)) data = Tlv.parse_dict(self.protocol.send_apdu(0, INS_GET_METADATA, 0, slot)) policy = data[TAG_METADATA_POLICY] return SlotMetadata( KEY_TYPE(data[TAG_METADATA_ALGO][0]), PIN_POLICY(policy[INDEX_PIN_POLICY]), TOUCH_POLICY(policy[INDEX_TOUCH_POLICY]), data[TAG_METADATA_ORIGIN][0] == ORIGIN_GENERATED, data[TAG_METADATA_PUBLIC_KEY], ) def sign( self, slot: SLOT, key_type: KEY_TYPE, message: bytes, hash_algorithm: hashes.HashAlgorithm, padding: Optional[AsymmetricPadding] = None, ) -> bytes: key_type = KEY_TYPE(key_type) padded = _pad_message(key_type, message, hash_algorithm, padding) return self._use_private_key(slot, key_type, padded, False) def decrypt( self, slot: SLOT, cipher_text: bytes, padding: AsymmetricPadding ) -> bytes: if len(cipher_text) == 1024 // 8: key_type = KEY_TYPE.RSA1024 elif len(cipher_text) == 2048 // 8: key_type = KEY_TYPE.RSA2048 else: raise ValueError("Invalid length of ciphertext") padded = self._use_private_key(slot, key_type, cipher_text, False) return _unpad_message(padded, padding) def calculate_secret( self, slot: SLOT, peer_public_key: ec.EllipticCurvePublicKey ) -> bytes: key_type = KEY_TYPE.from_public_key(peer_public_key) if key_type.algorithm != ALGORITHM.EC: raise ValueError("Unsupported key type") data = peer_public_key.public_bytes( Encoding.X962, PublicFormat.UncompressedPoint ) return self._use_private_key(slot, key_type, data, True) def get_object(self, object_id: int) -> bytes: if object_id == OBJECT_ID.DISCOVERY: expected: int = OBJECT_ID.DISCOVERY else: expected = TAG_OBJ_DATA try: return Tlv.unpack( expected, self.protocol.send_apdu( 0, INS_GET_DATA, 0x3F, 0xFF, Tlv(TAG_OBJ_ID, int2bytes(object_id)), ), ) except ValueError as e: raise BadResponseError("Malformed object data", e) def put_object(self, object_id: int, data: Optional[bytes] = None) -> None: self.protocol.send_apdu( 0, INS_PUT_DATA, 0x3F, 0xFF, Tlv(TAG_OBJ_ID, int2bytes(object_id)) + Tlv(TAG_OBJ_DATA, data or b""), ) def get_certificate(self, slot: SLOT) -> x509.Certificate: try: data = Tlv.parse_dict(self.get_object(OBJECT_ID.from_slot(slot))) except ValueError: raise BadResponseError("Malformed certificate data object") cert_info = data.get(TAG_CERT_INFO) if cert_info and cert_info[0] != 0: raise NotSupportedError("Compressed certificates are not supported") try: return x509.load_der_x509_certificate( data[TAG_CERTIFICATE], default_backend() ) except Exception as e: raise BadResponseError("Invalid certificate", e) def put_certificate(self, slot: SLOT, certificate: x509.Certificate) -> None: cert_data = certificate.public_bytes(Encoding.DER) data = ( Tlv(TAG_CERTIFICATE, cert_data) + Tlv(TAG_CERT_INFO, b"\0") + Tlv(TAG_LRC) ) self.put_object(OBJECT_ID.from_slot(slot), data) def delete_certificate(self, slot: SLOT) -> None: self.put_object(OBJECT_ID.from_slot(slot)) def put_key( self, slot: SLOT, private_key: Union[ rsa.RSAPrivateKeyWithSerialization, ec.EllipticCurvePrivateKeyWithSerialization, ], pin_policy: PIN_POLICY = PIN_POLICY.DEFAULT, touch_policy: TOUCH_POLICY = TOUCH_POLICY.DEFAULT, ) -> None: key_type = KEY_TYPE.from_public_key(private_key.public_key()) check_key_support(self.version, key_type, pin_policy, touch_policy, False) ln = key_type.bit_len // 8 numbers = private_key.private_numbers() if key_type.algorithm == ALGORITHM.RSA: numbers = cast(rsa.RSAPrivateNumbers, numbers) if numbers.public_numbers.e != 65537: raise NotSupportedError("RSA exponent must be 65537") ln //= 2 data = ( Tlv(0x01, int2bytes(numbers.p, ln)) + Tlv(0x02, int2bytes(numbers.q, ln)) + Tlv(0x03, int2bytes(numbers.dmp1, ln)) + Tlv(0x04, int2bytes(numbers.dmq1, ln)) + Tlv(0x05, int2bytes(numbers.iqmp, ln)) ) else: numbers = cast(ec.EllipticCurvePrivateNumbers, numbers) data = Tlv(0x06, int2bytes(numbers.private_value, ln)) if pin_policy: data += Tlv(TAG_PIN_POLICY, int2bytes(pin_policy)) if touch_policy: data += Tlv(TAG_TOUCH_POLICY, int2bytes(touch_policy)) self.protocol.send_apdu(0, INS_IMPORT_KEY, key_type, slot, data) return key_type def generate_key( self, slot: SLOT, key_type: KEY_TYPE, pin_policy: PIN_POLICY = PIN_POLICY.DEFAULT, touch_policy: TOUCH_POLICY = TOUCH_POLICY.DEFAULT, ) -> Union[rsa.RSAPublicKey, ec.EllipticCurvePublicKey]: key_type = KEY_TYPE(key_type) check_key_support(self.version, key_type, pin_policy, touch_policy, True) data: bytes = Tlv(TAG_GEN_ALGORITHM, int2bytes(key_type)) if pin_policy: data += Tlv(TAG_PIN_POLICY, int2bytes(pin_policy)) if touch_policy: data += Tlv(TAG_TOUCH_POLICY, int2bytes(touch_policy)) response = self.protocol.send_apdu( 0, INS_GENERATE_ASYMMETRIC, 0, slot, Tlv(0xAC, data) ) return _parse_device_public_key(key_type, Tlv.unpack(0x7F49, response)) def attest_key(self, slot: SLOT) -> x509.Certificate: require_version(self.version, (4, 3, 0)) response = self.protocol.send_apdu(0, INS_ATTEST, slot, 0) return x509.load_der_x509_certificate(response, default_backend()) def _change_reference(self, ins, p2, value1, value2): try: self.protocol.send_apdu( 0, ins, 0, p2, _pin_bytes(value1) + _pin_bytes(value2) ) except ApduError as e: retries = _retries_from_sw(self.version, e.sw) if retries is None: raise if p2 == PIN_P2: self._current_pin_retries = retries raise InvalidPinError(retries) def _get_pin_puk_metadata(self, p2): require_version(self.version, (5, 3, 0)) data = Tlv.parse_dict(self.protocol.send_apdu(0, INS_GET_METADATA, 0, p2)) attempts = data[TAG_METADATA_RETRIES] return PinMetadata( data[TAG_METADATA_IS_DEFAULT] != b"\0", attempts[INDEX_RETRIES_TOTAL], attempts[INDEX_RETRIES_REMAINING], ) def _use_private_key(self, slot, key_type, message, exponentiation): try: response = self.protocol.send_apdu( 0, INS_AUTHENTICATE, key_type, slot, Tlv( TAG_DYN_AUTH, Tlv(TAG_AUTH_RESPONSE) + Tlv( TAG_AUTH_EXPONENTIATION if exponentiation else TAG_AUTH_CHALLENGE, message, ), ), ) return Tlv.unpack( TAG_AUTH_RESPONSE, Tlv.unpack( TAG_DYN_AUTH, response, ), ) except ApduError as e: if e.sw == SW.INCORRECT_PARAMETERS: raise e # TODO: Different error, No key? raise
the-stack_0_1247
# Tencent is pleased to support the open source community by making ncnn available. # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import torch import torchvision.models as models def test(): net = models.resnet18().half().float() net.eval() torch.manual_seed(0) x = torch.rand(1, 3, 224, 224) a = net(x) # export torchscript mod = torch.jit.trace(net, x) mod.save("test_resnet18.pt") # torchscript to pnnx import os os.system("../../src/pnnx test_resnet18.pt inputshape=[1,3,224,224]") # ncnn inference import test_resnet18_ncnn b = test_resnet18_ncnn.test_inference() return torch.allclose(a, b, 1e-2, 1e-2) if __name__ == "__main__": if test(): exit(0) else: exit(1)
the-stack_0_1248
from pydyn.operations.binary_tree import has_nested_add from pydyn.operations.geometry import Dot, Cross, Vee, Hat from pydyn.operations.addition import Add, VAdd, MAdd from pydyn.operations.multiplication import Mul, SMMul, SVMul, MVMul, VVMul, MMMul from pydyn.base.matrices import MatrixExpr from pydyn.base.scalars import ScalarExpr from pydyn.base.vectors import VectorExpr from pydyn.utils.errors import UndefinedCaseError def expand_scalar(expr): if isinstance(expr, Add): expanded_expr = Add() for n in expr.nodes: expanded_expr += expand(n) return expanded_expr elif isinstance(expr, Mul): if isinstance(expr.left, Add) and isinstance(expr.right, Add): """(a+b)(c+d) = ac + ad + bc + bd""" expanded_expr = Add() for nl in expr.left.nodes: for nr in expr.right.nodes: expanded_expr += expand(nl * nr) return expanded_expr elif isinstance(expr.left, Add): """(a+b)c = ac + bc""" expanded_expr = Add() for n in expr.left.nodes: expanded_expr += expand(n * expr.right) return expanded_expr elif isinstance(expr.right, Add): """a(b+c) = ab + ac""" expanded_expr = Add() for n in expr.right.nodes: expanded_expr += expand(expr.left * n) return expanded_expr else: if has_nested_add(expr): return expand(expand(expr.left) * expand(expr.right)) else: return expr elif isinstance(expr, Dot): if isinstance(expr.left, VAdd) and isinstance(expr.right, VAdd): """(x+y).(u+v) = x.u + x.v + y.u + y.v""" expanded_expr = Add() for nl in expr.left.nodes: for nr in expr.right.nodes: expanded_expr += expand(Dot(nl, nr)) return expanded_expr elif isinstance(expr.right, VAdd): """x.(u+v) = x.u + x.v""" expanded_expr = Add() for n in expr.right.nodes: expanded_expr += expand(Dot(expr.left, n)) return expanded_expr elif isinstance(expr.left, VAdd): """(x+y).u = x.u + y.u""" expanded_expr = Add() for n in expr.left.nodes: expanded_expr += expand(Dot(n, expr.right)) return expanded_expr else: if has_nested_add(expr): return expand(Dot(expand(expr.left), expand(expr.right))) else: return Dot(expand(expr.left), expand(expr.right)) elif isinstance(expr, VVMul): raise NotImplementedError return expr def expand_vector(expr): if isinstance(expr, VAdd): expanded_expr = VAdd() for n in expr.nodes: expanded_expr += expand(n) return expanded_expr elif isinstance(expr, MVMul): if isinstance(expr.left, MAdd): """(A+B)x = Ax+Bx""" expanded_expr = VAdd() for n in expr.left.nodes: expanded_expr += expand(MVMul(n, expr.right)) return expanded_expr elif isinstance(expr.right, VAdd): """A(x+y) = Ax + Ay""" expanded_expr = VAdd() for n in expr.right.nodes: expanded_expr += expand(MVMul(expr.left, n)) return expanded_expr else: if has_nested_add(expr): return expand(MVMul(expand(expr.left), expand(expr.right))) else: return expr elif isinstance(expr, SVMul): if isinstance(expr.left, VAdd): """(x+y)a=xa+ya""" expanded_expr = VAdd() for n in expr.left.nodes: expanded_expr += expand(SVMul(n, expr.right)) return expanded_expr else: if has_nested_add(expr): return expand(SVMul(expand(expr.left), expand(expr.right))) else: return expr pass elif isinstance(expr, Cross): if isinstance(expr.left, VAdd) and isinstance(expr.right, VAdd): expanded_expr = VAdd() for nl in expr.left.nodes: for nr in expr.right.nodes: expanded_expr += expand(Cross(nl, nr)) return expanded_expr elif isinstance(expr.left, VAdd): expanded_expr = VAdd() for n in expr.left.nodes: expanded_expr += expand(Cross(n, expr.right)) return expanded_expr elif isinstance(expr.right, VAdd): """x.(u+v) = x.u + x.v""" expanded_expr = VAdd() for n in expr.right.nodes: expanded_expr += expand(Cross(expr.left, n)) return expanded_expr else: if has_nested_add(expr): return expand(Cross(expand(expr.left), expand(expr.right))) else: return expr elif isinstance(expr, Vee): return Vee(expand(expr)) return expr def expand_matrix(expr): if isinstance(expr, MAdd): expanded_expr = MAdd() for n in expr.nodes: expanded_expr += expand(n) return expanded_expr elif isinstance(expr, MMMul): if isinstance(expr.left, MAdd) and isinstance(expr.right, MAdd): expanded_expr = MAdd() for nl in expr.left.nodes: for nr in expr.right.nodes: expanded_expr += expand(nl * nr) return expanded_expr elif isinstance(expr.left, MAdd): expanded_expr = MAdd() for nl in expr.left.nodes: expanded_expr += expand(nl * expr.right) return expanded_expr elif isinstance(expr.right, MAdd): expanded_expr = MAdd() for nr in expr.right.nodes: expanded_expr += expand(expr.left * nr) return expanded_expr else: if has_nested_add(expr): return expand(MMMul(expand(expr.left), expand(expr.right))) else: return expr elif isinstance(expr, SMMul): raise Exception('SSMul in expand_matrix is not implemented') elif isinstance(expr, VVMul): raise Exception('VVMul in expand_matrix is not implemented') elif isinstance(expr, Hat): return Hat(expand(expr.expr)) return expr def expand(expr): # TODO add expand functionality to the Expr class directly if isinstance(expr, ScalarExpr): return expand_scalar(expr) elif isinstance(expr, VectorExpr): return expand_vector(expr) elif isinstance(expr, MatrixExpr): return expand_matrix(expr) else: raise UndefinedCaseError
the-stack_0_1249
import matplotlib.pyplot as plt import pprint from string import ascii_lowercase as letters def read_and_count_letters(to_read): # Open the file that is passed in as an argument to the function with open(to_read, encoding='utf-8') as f: text = f.read().lower() text_count = dict((l, text.count(l)) for l in letters) # Sorting the returned data to be processed further text_sort = sorted(text_count.items(), key=lambda x: x[1], reverse=True) # Printing the returned data to the command line pprint.pprint(text_sort) # Initialising a new matplotlib bar graph illustrating the occurrences of letters detected in the text file plt.bar(*zip(*text_count.items())) plt.show() # Enter the .txt document you wish to process between the two apostrophes below to_read = '' read_and_count_letters(to_read)
the-stack_0_1250
""" The MIT License (MIT) Copyright (c) 2015-2021 Rapptz Copyright (c) 2021-present Pycord Development Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations import copy import unicodedata from typing import ( Any, ClassVar, Dict, List, NamedTuple, Sequence, Set, Literal, Optional, TYPE_CHECKING, Tuple, Union, overload, ) from . import utils, abc from .role import Role from .member import Member, VoiceState from .emoji import Emoji from .errors import InvalidData from .permissions import PermissionOverwrite from .colour import Colour from .errors import InvalidArgument, ClientException from .channel import * from .channel import _guild_channel_factory from .channel import _threaded_guild_channel_factory from .enums import ( AuditLogAction, VideoQualityMode, VoiceRegion, ChannelType, try_enum, VerificationLevel, ContentFilter, NotificationLevel, NSFWLevel, ) from .mixins import Hashable from .user import User from .invite import Invite from .iterators import AuditLogIterator, MemberIterator from .widget import Widget from .asset import Asset from .flags import SystemChannelFlags from .integrations import Integration, _integration_factory from .stage_instance import StageInstance from .threads import Thread, ThreadMember from .sticker import GuildSticker from .file import File from .welcome_screen import WelcomeScreen, WelcomeScreenChannel __all__ = ( 'Guild', ) MISSING = utils.MISSING if TYPE_CHECKING: from .abc import Snowflake, SnowflakeTime from .types.guild import Ban as BanPayload, Guild as GuildPayload, MFALevel, GuildFeature from .types.threads import ( Thread as ThreadPayload, ) from .types.voice import GuildVoiceState from .permissions import Permissions from .channel import VoiceChannel, StageChannel, TextChannel, CategoryChannel, StoreChannel from .template import Template from .webhook import Webhook from .state import ConnectionState from .voice_client import VoiceProtocol import datetime VocalGuildChannel = Union[VoiceChannel, StageChannel] GuildChannel = Union[VoiceChannel, StageChannel, TextChannel, CategoryChannel, StoreChannel] ByCategoryItem = Tuple[Optional[CategoryChannel], List[GuildChannel]] class BanEntry(NamedTuple): reason: Optional[str] user: User class _GuildLimit(NamedTuple): emoji: int stickers: int bitrate: float filesize: int class Guild(Hashable): """Represents a Discord guild. This is referred to as a "server" in the official Discord UI. .. container:: operations .. describe:: x == y Checks if two guilds are equal. .. describe:: x != y Checks if two guilds are not equal. .. describe:: hash(x) Returns the guild's hash. .. describe:: str(x) Returns the guild's name. Attributes ---------- name: :class:`str` The guild name. emojis: Tuple[:class:`Emoji`, ...] All emojis that the guild owns. stickers: Tuple[:class:`GuildSticker`, ...] All stickers that the guild owns. .. versionadded:: 2.0 region: :class:`VoiceRegion` The region the guild belongs on. There is a chance that the region will be a :class:`str` if the value is not recognised by the enumerator. afk_timeout: :class:`int` The timeout to get sent to the AFK channel. afk_channel: Optional[:class:`VoiceChannel`] The channel that denotes the AFK channel. ``None`` if it doesn't exist. id: :class:`int` The guild's ID. owner_id: :class:`int` The guild owner's ID. Use :attr:`Guild.owner` instead. unavailable: :class:`bool` Indicates if the guild is unavailable. If this is ``True`` then the reliability of other attributes outside of :attr:`Guild.id` is slim and they might all be ``None``. It is best to not do anything with the guild if it is unavailable. Check the :func:`on_guild_unavailable` and :func:`on_guild_available` events. max_presences: Optional[:class:`int`] The maximum amount of presences for the guild. max_members: Optional[:class:`int`] The maximum amount of members for the guild. .. note:: This attribute is only available via :meth:`.Client.fetch_guild`. max_video_channel_users: Optional[:class:`int`] The maximum amount of users in a video channel. .. versionadded:: 1.4 description: Optional[:class:`str`] The guild's description. mfa_level: :class:`int` Indicates the guild's two factor authorisation level. If this value is 0 then the guild does not require 2FA for their administrative members. If the value is 1 then they do. verification_level: :class:`VerificationLevel` The guild's verification level. explicit_content_filter: :class:`ContentFilter` The guild's explicit content filter. default_notifications: :class:`NotificationLevel` The guild's notification settings. features: List[:class:`str`] A list of features that the guild has. The features that a guild can have are subject to arbitrary change by Discord. They are currently as follows: - ``ANIMATED_BANNER``: Guild can upload an animated banner. - ``ANIMATED_ICON``: Guild can upload an animated icon. - ``BANNER``: Guild can upload and use a banner. (i.e. :attr:`.banner`) - ``CHANNEL_BANNER``: Guild can upload and use a channel banners. - ``COMMERCE``: Guild can sell things using store channels. - ``COMMUNITY``: Guild is a community server. - ``DISCOVERABLE``: Guild shows up in Server Discovery. - ``FEATURABLE``: Guild is able to be featured in Server Discovery. - ``HAS_DIRECTORY_ENTRY``: Unknown. - ``HUB``: Hubs contain a directory channel that let you find school-related, student-run servers for your school or university. - ``INTERNAL_EMPLOYEE_ONLY``: Indicates that only users with the staff badge can join the guild. - ``INVITE_SPLASH``: Guild's invite page can have a special splash. - ``LINKED_TO_HUB``: 'Guild is linked to a hub. - ``MEMBER_PROFILES``: Unknown. - ``MEMBER_VERIFICATION_GATE_ENABLED``: Guild has Membership Screening enabled. - ``MONETIZATION_ENABLED``: Guild has enabled monetization. - ``MORE_EMOJI``: Guild has increased custom emoji slots. - ``MORE_STICKERS``: Guild has increased custom sticker slots. - ``NEWS``: Guild can create news channels. - ``NEW_THREAD_PERMISSIONS``: Guild has new thread permissions. - ``PARTNERED``: Guild is a partnered server. - ``PREMIUM_TIER_3_OVERRIDE``: Forces the server to server boosting level 3 (specifically created by Discord Staff Member "Jethro" for their personal server). - ``PREVIEW_ENABLED``: Guild can be viewed before being accepted via Membership Screening. - ``PRIVATE_THREADS``: Guild has access to create private threads. - ``ROLE_ICONS``: Guild can set an image or emoji as a role icon. - ``ROLE_SUBSCRIPTIONS_AVAILABLE_FOR_PURCHASE``: Role subscriptions are available for purchasing. - ``ROLE_SUBSCRIPTIONS_ENABLED``: Guild is able to view and manage role subscriptions. - ``SEVEN_DAY_THREAD_ARCHIVE``: Guild has access to the seven day archive time for threads. - ``TEXT_IN_VOICE_ENABLED``: Guild has a chat button inside voice channels that opens a dedicated text channel in a sidebar similar to thread view. - ``THREAD_DEFAULT_AUTO_ARCHIVE_DURATION``: Unknown, presumably used for testing changes to the thread default auto archive duration.. - ``THREADS_ENABLED_TESTING``: Used by bot developers to test their bots with threads in guilds with 5 or less members and a bot. Also gives the premium thread features. - ``THREE_DAY_THREAD_ARCHIVE``: Guild has access to the three day archive time for threads. - ``TICKETED_EVENTS_ENABLED``: Guild has enabled ticketed events. - ``VANITY_URL``: Guild can have a vanity invite URL (e.g. discord.gg/discord-api). - ``VERIFIED``: Guild is a verified server. - ``VIP_REGIONS``: Guild has VIP voice regions. - ``WELCOME_SCREEN_ENABLED``: Guild has enabled the welcome screen. premium_tier: :class:`int` The premium tier for this guild. Corresponds to "Nitro Server" in the official UI. The number goes from 0 to 3 inclusive. premium_subscription_count: :class:`int` The number of "boosts" this guild currently has. premium_progress_bar_enabled: :class:`bool` Indicates if the guild has premium progress bar enabled. .. versionadded:: 2.0 preferred_locale: Optional[:class:`str`] The preferred locale for the guild. Used when filtering Server Discovery results to a specific language. nsfw_level: :class:`NSFWLevel` The guild's NSFW level. .. versionadded:: 2.0 approximate_member_count: Optional[:class:`int`] The approximate number of members in the guild. This is ``None`` unless the guild is obtained using :meth:`Client.fetch_guild` with ``with_counts=True``. .. versionadded:: 2.0 approximate_presence_count: Optional[:class:`int`] The approximate number of members currently active in the guild. This includes idle, dnd, online, and invisible members. Offline members are excluded. This is ``None`` unless the guild is obtained using :meth:`Client.fetch_guild` with ``with_counts=True``. .. versionadded:: 2.0 """ __slots__ = ( 'afk_timeout', 'afk_channel', 'name', 'id', 'unavailable', 'region', 'owner_id', 'mfa_level', 'emojis', 'stickers', 'features', 'verification_level', 'explicit_content_filter', 'default_notifications', 'description', 'max_presences', 'max_members', 'max_video_channel_users', 'premium_tier', 'premium_subscription_count', 'premium_progress_bar_enabled', 'preferred_locale', 'nsfw_level', '_members', '_channels', '_icon', '_banner', '_state', '_roles', '_member_count', '_large', '_splash', '_voice_states', '_system_channel_id', '_system_channel_flags', '_discovery_splash', '_rules_channel_id', '_public_updates_channel_id', '_stage_instances', '_threads', "approximate_member_count", "approximate_presence_count", ) _PREMIUM_GUILD_LIMITS: ClassVar[Dict[Optional[int], _GuildLimit]] = { None: _GuildLimit(emoji=50, stickers=0, bitrate=96e3, filesize=8388608), 0: _GuildLimit(emoji=50, stickers=0, bitrate=96e3, filesize=8388608), 1: _GuildLimit(emoji=100, stickers=15, bitrate=128e3, filesize=8388608), 2: _GuildLimit(emoji=150, stickers=30, bitrate=256e3, filesize=52428800), 3: _GuildLimit(emoji=250, stickers=60, bitrate=384e3, filesize=104857600), } def __init__(self, *, data: GuildPayload, state: ConnectionState): self._channels: Dict[int, GuildChannel] = {} self._members: Dict[int, Member] = {} self._voice_states: Dict[int, VoiceState] = {} self._threads: Dict[int, Thread] = {} self._state: ConnectionState = state self._from_data(data) def _add_channel(self, channel: GuildChannel, /) -> None: self._channels[channel.id] = channel def _remove_channel(self, channel: Snowflake, /) -> None: self._channels.pop(channel.id, None) def _voice_state_for(self, user_id: int, /) -> Optional[VoiceState]: return self._voice_states.get(user_id) def _add_member(self, member: Member, /) -> None: self._members[member.id] = member def _store_thread(self, payload: ThreadPayload, /) -> Thread: thread = Thread(guild=self, state=self._state, data=payload) self._threads[thread.id] = thread return thread def _remove_member(self, member: Snowflake, /) -> None: self._members.pop(member.id, None) def _add_thread(self, thread: Thread, /) -> None: self._threads[thread.id] = thread def _remove_thread(self, thread: Snowflake, /) -> None: self._threads.pop(thread.id, None) def _clear_threads(self) -> None: self._threads.clear() def _remove_threads_by_channel(self, channel_id: int) -> None: to_remove = [k for k, t in self._threads.items() if t.parent_id == channel_id] for k in to_remove: del self._threads[k] def _filter_threads(self, channel_ids: Set[int]) -> Dict[int, Thread]: to_remove: Dict[int, Thread] = {k: t for k, t in self._threads.items() if t.parent_id in channel_ids} for k in to_remove: del self._threads[k] return to_remove def __str__(self) -> str: return self.name or '' def __repr__(self) -> str: attrs = ( ('id', self.id), ('name', self.name), ('shard_id', self.shard_id), ('chunked', self.chunked), ('member_count', getattr(self, '_member_count', None)), ) inner = ' '.join('%s=%r' % t for t in attrs) return f'<Guild {inner}>' def _update_voice_state(self, data: GuildVoiceState, channel_id: int) -> Tuple[Optional[Member], VoiceState, VoiceState]: user_id = int(data['user_id']) channel = self.get_channel(channel_id) try: # check if we should remove the voice state from cache if channel is None: after = self._voice_states.pop(user_id) else: after = self._voice_states[user_id] before = copy.copy(after) after._update(data, channel) except KeyError: # if we're here then we're getting added into the cache after = VoiceState(data=data, channel=channel) before = VoiceState(data=data, channel=None) self._voice_states[user_id] = after member = self.get_member(user_id) if member is None: try: member = Member(data=data['member'], state=self._state, guild=self) except KeyError: member = None return member, before, after def _add_role(self, role: Role, /) -> None: # roles get added to the bottom (position 1, pos 0 is @everyone) # so since self.roles has the @everyone role, we can't increment # its position because it's stuck at position 0. Luckily x += False # is equivalent to adding 0. So we cast the position to a bool and # increment it. for r in self._roles.values(): r.position += not r.is_default() self._roles[role.id] = role def _remove_role(self, role_id: int, /) -> Role: # this raises KeyError if it fails.. role = self._roles.pop(role_id) # since it didn't, we can change the positions now # basically the same as above except we only decrement # the position if we're above the role we deleted. for r in self._roles.values(): r.position -= r.position > role.position return role def _from_data(self, guild: GuildPayload) -> None: # according to Stan, this is always available even if the guild is unavailable # I don't have this guarantee when someone updates the guild. member_count = guild.get('member_count', None) if member_count is not None: self._member_count: int = member_count self.name: str = guild.get('name') self.region: VoiceRegion = try_enum(VoiceRegion, guild.get('region')) self.verification_level: VerificationLevel = try_enum(VerificationLevel, guild.get('verification_level')) self.default_notifications: NotificationLevel = try_enum( NotificationLevel, guild.get('default_message_notifications') ) self.explicit_content_filter: ContentFilter = try_enum(ContentFilter, guild.get('explicit_content_filter', 0)) self.afk_timeout: int = guild.get('afk_timeout') self._icon: Optional[str] = guild.get('icon') self._banner: Optional[str] = guild.get('banner') self.unavailable: bool = guild.get('unavailable', False) self.id: int = int(guild['id']) self._roles: Dict[int, Role] = {} state = self._state # speed up attribute access for r in guild.get('roles', []): role = Role(guild=self, data=r, state=state) self._roles[role.id] = role self.mfa_level: MFALevel = guild.get('mfa_level') self.emojis: Tuple[Emoji, ...] = tuple(map(lambda d: state.store_emoji(self, d), guild.get('emojis', []))) self.stickers: Tuple[GuildSticker, ...] = tuple( map(lambda d: state.store_sticker(self, d), guild.get('stickers', [])) ) self.features: List[GuildFeature] = guild.get('features', []) self._splash: Optional[str] = guild.get('splash') self._system_channel_id: Optional[int] = utils._get_as_snowflake(guild, 'system_channel_id') self.description: Optional[str] = guild.get('description') self.max_presences: Optional[int] = guild.get('max_presences') self.max_members: Optional[int] = guild.get('max_members') self.max_video_channel_users: Optional[int] = guild.get('max_video_channel_users') self.premium_tier: int = guild.get('premium_tier', 0) self.premium_subscription_count: int = guild.get('premium_subscription_count') or 0 self.premium_progress_bar_enabled: bool = guild.get('premium_progress_bar_enabled') or False self._system_channel_flags: int = guild.get('system_channel_flags', 0) self.preferred_locale: Optional[str] = guild.get('preferred_locale') self._discovery_splash: Optional[str] = guild.get('discovery_splash') self._rules_channel_id: Optional[int] = utils._get_as_snowflake(guild, 'rules_channel_id') self._public_updates_channel_id: Optional[int] = utils._get_as_snowflake(guild, 'public_updates_channel_id') self.nsfw_level: NSFWLevel = try_enum(NSFWLevel, guild.get('nsfw_level', 0)) self.approximate_presence_count = guild.get('approximate_presence_count') self.approximate_member_count = guild.get('approximate_member_count') self._stage_instances: Dict[int, StageInstance] = {} for s in guild.get('stage_instances', []): stage_instance = StageInstance(guild=self, data=s, state=state) self._stage_instances[stage_instance.id] = stage_instance cache_joined = self._state.member_cache_flags.joined self_id = self._state.self_id for mdata in guild.get('members', []): member = Member(data=mdata, guild=self, state=state) if cache_joined or member.id == self_id: self._add_member(member) self._sync(guild) self._large: Optional[bool] = None if member_count is None else self._member_count >= 250 self.owner_id: Optional[int] = utils._get_as_snowflake(guild, 'owner_id') self.afk_channel: Optional[VocalGuildChannel] = self.get_channel(utils._get_as_snowflake(guild, 'afk_channel_id')) # type: ignore for obj in guild.get('voice_states', []): self._update_voice_state(obj, int(obj['channel_id'])) # TODO: refactor/remove? def _sync(self, data: GuildPayload) -> None: try: self._large = data['large'] except KeyError: pass empty_tuple = tuple() for presence in data.get('presences', []): user_id = int(presence['user']['id']) member = self.get_member(user_id) if member is not None: member._presence_update(presence, empty_tuple) # type: ignore if 'channels' in data: channels = data['channels'] for c in channels: factory, ch_type = _guild_channel_factory(c['type']) if factory: self._add_channel(factory(guild=self, data=c, state=self._state)) # type: ignore if 'threads' in data: threads = data['threads'] for thread in threads: self._add_thread(Thread(guild=self, state=self._state, data=thread)) @property def channels(self) -> List[GuildChannel]: """List[:class:`abc.GuildChannel`]: A list of channels that belongs to this guild.""" return list(self._channels.values()) @property def threads(self) -> List[Thread]: """List[:class:`Thread`]: A list of threads that you have permission to view. .. versionadded:: 2.0 """ return list(self._threads.values()) @property def large(self) -> bool: """:class:`bool`: Indicates if the guild is a 'large' guild. A large guild is defined as having more than ``large_threshold`` count members, which for this library is set to the maximum of 250. """ if self._large is None: try: return self._member_count >= 250 except AttributeError: return len(self._members) >= 250 return self._large @property def voice_channels(self) -> List[VoiceChannel]: """List[:class:`VoiceChannel`]: A list of voice channels that belongs to this guild. This is sorted by the position and are in UI order from top to bottom. """ r = [ch for ch in self._channels.values() if isinstance(ch, VoiceChannel)] r.sort(key=lambda c: (c.position, c.id)) return r @property def stage_channels(self) -> List[StageChannel]: """List[:class:`StageChannel`]: A list of stage channels that belongs to this guild. .. versionadded:: 1.7 This is sorted by the position and are in UI order from top to bottom. """ r = [ch for ch in self._channels.values() if isinstance(ch, StageChannel)] r.sort(key=lambda c: (c.position, c.id)) return r @property def me(self) -> Member: """:class:`Member`: Similar to :attr:`Client.user` except an instance of :class:`Member`. This is essentially used to get the member version of yourself. """ self_id = self._state.user.id # The self member is *always* cached return self.get_member(self_id) # type: ignore @property def voice_client(self) -> Optional[VoiceProtocol]: """Optional[:class:`VoiceProtocol`]: Returns the :class:`VoiceProtocol` associated with this guild, if any.""" return self._state._get_voice_client(self.id) @property def text_channels(self) -> List[TextChannel]: """List[:class:`TextChannel`]: A list of text channels that belongs to this guild. This is sorted by the position and are in UI order from top to bottom. """ r = [ch for ch in self._channels.values() if isinstance(ch, TextChannel)] r.sort(key=lambda c: (c.position, c.id)) return r @property def categories(self) -> List[CategoryChannel]: """List[:class:`CategoryChannel`]: A list of categories that belongs to this guild. This is sorted by the position and are in UI order from top to bottom. """ r = [ch for ch in self._channels.values() if isinstance(ch, CategoryChannel)] r.sort(key=lambda c: (c.position, c.id)) return r def by_category(self) -> List[ByCategoryItem]: """Returns every :class:`CategoryChannel` and their associated channels. These channels and categories are sorted in the official Discord UI order. If the channels do not have a category, then the first element of the tuple is ``None``. Returns -------- List[Tuple[Optional[:class:`CategoryChannel`], List[:class:`abc.GuildChannel`]]]: The categories and their associated channels. """ grouped: Dict[Optional[int], List[GuildChannel]] = {} for channel in self._channels.values(): if isinstance(channel, CategoryChannel): grouped.setdefault(channel.id, []) continue try: grouped[channel.category_id].append(channel) except KeyError: grouped[channel.category_id] = [channel] def key(t: ByCategoryItem) -> Tuple[Tuple[int, int], List[GuildChannel]]: k, v = t return ((k.position, k.id) if k else (-1, -1), v) _get = self._channels.get as_list: List[ByCategoryItem] = [(_get(k), v) for k, v in grouped.items()] # type: ignore as_list.sort(key=key) for _, channels in as_list: channels.sort(key=lambda c: (c._sorting_bucket, c.position, c.id)) return as_list def _resolve_channel(self, id: Optional[int], /) -> Optional[Union[GuildChannel, Thread]]: if id is None: return return self._channels.get(id) or self._threads.get(id) def get_channel_or_thread(self, channel_id: int, /) -> Optional[Union[Thread, GuildChannel]]: """Returns a channel or thread with the given ID. .. versionadded:: 2.0 Parameters ----------- channel_id: :class:`int` The ID to search for. Returns -------- Optional[Union[:class:`Thread`, :class:`.abc.GuildChannel`]] The returned channel or thread or ``None`` if not found. """ return self._channels.get(channel_id) or self._threads.get(channel_id) def get_channel(self, channel_id: int, /) -> Optional[GuildChannel]: """Returns a channel with the given ID. .. note:: This does *not* search for threads. Parameters ----------- channel_id: :class:`int` The ID to search for. Returns -------- Optional[:class:`.abc.GuildChannel`] The returned channel or ``None`` if not found. """ return self._channels.get(channel_id) def get_thread(self, thread_id: int, /) -> Optional[Thread]: """Returns a thread with the given ID. .. versionadded:: 2.0 Parameters ----------- thread_id: :class:`int` The ID to search for. Returns -------- Optional[:class:`Thread`] The returned thread or ``None`` if not found. """ return self._threads.get(thread_id) @property def system_channel(self) -> Optional[TextChannel]: """Optional[:class:`TextChannel`]: Returns the guild's channel used for system messages. If no channel is set, then this returns ``None``. """ channel_id = self._system_channel_id return channel_id and self._channels.get(channel_id) # type: ignore @property def system_channel_flags(self) -> SystemChannelFlags: """:class:`SystemChannelFlags`: Returns the guild's system channel settings.""" return SystemChannelFlags._from_value(self._system_channel_flags) @property def rules_channel(self) -> Optional[TextChannel]: """Optional[:class:`TextChannel`]: Return's the guild's channel used for the rules. The guild must be a Community guild. If no channel is set, then this returns ``None``. .. versionadded:: 1.3 """ channel_id = self._rules_channel_id return channel_id and self._channels.get(channel_id) # type: ignore @property def public_updates_channel(self) -> Optional[TextChannel]: """Optional[:class:`TextChannel`]: Return's the guild's channel where admins and moderators of the guilds receive notices from Discord. The guild must be a Community guild. If no channel is set, then this returns ``None``. .. versionadded:: 1.4 """ channel_id = self._public_updates_channel_id return channel_id and self._channels.get(channel_id) # type: ignore @property def emoji_limit(self) -> int: """:class:`int`: The maximum number of emoji slots this guild has.""" more_emoji = 200 if 'MORE_EMOJI' in self.features else 50 return max(more_emoji, self._PREMIUM_GUILD_LIMITS[self.premium_tier].emoji) @property def sticker_limit(self) -> int: """:class:`int`: The maximum number of sticker slots this guild has. .. versionadded:: 2.0 """ more_stickers = 60 if 'MORE_STICKERS' in self.features else 0 return max(more_stickers, self._PREMIUM_GUILD_LIMITS[self.premium_tier].stickers) @property def bitrate_limit(self) -> float: """:class:`float`: The maximum bitrate for voice channels this guild can have.""" vip_guild = self._PREMIUM_GUILD_LIMITS[1].bitrate if 'VIP_REGIONS' in self.features else 96e3 return max(vip_guild, self._PREMIUM_GUILD_LIMITS[self.premium_tier].bitrate) @property def filesize_limit(self) -> int: """:class:`int`: The maximum number of bytes files can have when uploaded to this guild.""" return self._PREMIUM_GUILD_LIMITS[self.premium_tier].filesize @property def members(self) -> List[Member]: """List[:class:`Member`]: A list of members that belong to this guild.""" return list(self._members.values()) def get_member(self, user_id: int, /) -> Optional[Member]: """Returns a member with the given ID. Parameters ----------- user_id: :class:`int` The ID to search for. Returns -------- Optional[:class:`Member`] The member or ``None`` if not found. """ return self._members.get(user_id) @property def premium_subscribers(self) -> List[Member]: """List[:class:`Member`]: A list of members who have "boosted" this guild.""" return [member for member in self.members if member.premium_since is not None] @property def roles(self) -> List[Role]: """List[:class:`Role`]: Returns a :class:`list` of the guild's roles in hierarchy order. The first element of this list will be the lowest role in the hierarchy. """ return sorted(self._roles.values()) def get_role(self, role_id: int, /) -> Optional[Role]: """Returns a role with the given ID. Parameters ----------- role_id: :class:`int` The ID to search for. Returns -------- Optional[:class:`Role`] The role or ``None`` if not found. """ return self._roles.get(role_id) @property def default_role(self) -> Role: """:class:`Role`: Gets the @everyone role that all members have by default.""" # The @everyone role is *always* given return self.get_role(self.id) # type: ignore @property def premium_subscriber_role(self) -> Optional[Role]: """Optional[:class:`Role`]: Gets the premium subscriber role, AKA "boost" role, in this guild. .. versionadded:: 1.6 """ for role in self._roles.values(): if role.is_premium_subscriber(): return role return None @property def self_role(self) -> Optional[Role]: """Optional[:class:`Role`]: Gets the role associated with this client's user, if any. .. versionadded:: 1.6 """ self_id = self._state.self_id for role in self._roles.values(): tags = role.tags if tags and tags.bot_id == self_id: return role return None @property def stage_instances(self) -> List[StageInstance]: """List[:class:`StageInstance`]: Returns a :class:`list` of the guild's stage instances that are currently running. .. versionadded:: 2.0 """ return list(self._stage_instances.values()) def get_stage_instance(self, stage_instance_id: int, /) -> Optional[StageInstance]: """Returns a stage instance with the given ID. .. versionadded:: 2.0 Parameters ----------- stage_instance_id: :class:`int` The ID to search for. Returns -------- Optional[:class:`StageInstance`] The stage instance or ``None`` if not found. """ return self._stage_instances.get(stage_instance_id) @property def owner(self) -> Optional[Member]: """Optional[:class:`Member`]: The member that owns the guild.""" return self.get_member(self.owner_id) # type: ignore @property def icon(self) -> Optional[Asset]: """Optional[:class:`Asset`]: Returns the guild's icon asset, if available.""" if self._icon is None: return None return Asset._from_guild_icon(self._state, self.id, self._icon) @property def banner(self) -> Optional[Asset]: """Optional[:class:`Asset`]: Returns the guild's banner asset, if available.""" if self._banner is None: return None return Asset._from_guild_image(self._state, self.id, self._banner, path='banners') @property def splash(self) -> Optional[Asset]: """Optional[:class:`Asset`]: Returns the guild's invite splash asset, if available.""" if self._splash is None: return None return Asset._from_guild_image(self._state, self.id, self._splash, path='splashes') @property def discovery_splash(self) -> Optional[Asset]: """Optional[:class:`Asset`]: Returns the guild's discovery splash asset, if available.""" if self._discovery_splash is None: return None return Asset._from_guild_image(self._state, self.id, self._discovery_splash, path='discovery-splashes') @property def member_count(self) -> int: """:class:`int`: Returns the true member count regardless of it being loaded fully or not. .. warning:: Due to a Discord limitation, in order for this attribute to remain up-to-date and accurate, it requires :attr:`Intents.members` to be specified. """ return self._member_count @property def chunked(self) -> bool: """:class:`bool`: Returns a boolean indicating if the guild is "chunked". A chunked guild means that :attr:`member_count` is equal to the number of members stored in the internal :attr:`members` cache. If this value returns ``False``, then you should request for offline members. """ count = getattr(self, '_member_count', None) if count is None: return False return count == len(self._members) @property def shard_id(self) -> int: """:class:`int`: Returns the shard ID for this guild if applicable.""" count = self._state.shard_count if count is None: return 0 return (self.id >> 22) % count @property def created_at(self) -> datetime.datetime: """:class:`datetime.datetime`: Returns the guild's creation time in UTC.""" return utils.snowflake_time(self.id) def get_member_named(self, name: str, /) -> Optional[Member]: """Returns the first member found that matches the name provided. The name can have an optional discriminator argument, e.g. "Jake#0001" or "Jake" will both do the lookup. However the former will give a more precise result. Note that the discriminator must have all 4 digits for this to work. If a nickname is passed, then it is looked up via the nickname. Note however, that a nickname + discriminator combo will not lookup the nickname but rather the username + discriminator combo due to nickname + discriminator not being unique. If no member is found, ``None`` is returned. Parameters ----------- name: :class:`str` The name of the member to lookup with an optional discriminator. Returns -------- Optional[:class:`Member`] The member in this guild with the associated name. If not found then ``None`` is returned. """ result = None members = self.members if len(name) > 5 and name[-5] == '#': # The 5 length is checking to see if #0000 is in the string, # as a#0000 has a length of 6, the minimum for a potential # discriminator lookup. potential_discriminator = name[-4:] # do the actual lookup and return if found # if it isn't found then we'll do a full name lookup below. result = utils.get(members, name=name[:-5], discriminator=potential_discriminator) if result is not None: return result def pred(m: Member) -> bool: return m.nick == name or m.name == name return utils.find(pred, members) def _create_channel( self, name: str, channel_type: ChannelType, overwrites: Dict[Union[Role, Member], PermissionOverwrite] = MISSING, category: Optional[Snowflake] = None, **options: Any, ): if overwrites is MISSING: overwrites = {} elif not isinstance(overwrites, dict): raise InvalidArgument('overwrites parameter expects a dict.') perms = [] for target, perm in overwrites.items(): if not isinstance(perm, PermissionOverwrite): raise InvalidArgument(f'Expected PermissionOverwrite received {perm.__class__.__name__}') allow, deny = perm.pair() payload = {'allow': allow.value, 'deny': deny.value, 'id': target.id} if isinstance(target, Role): payload['type'] = abc._Overwrites.ROLE else: payload['type'] = abc._Overwrites.MEMBER perms.append(payload) parent_id = category.id if category else None return self._state.http.create_channel( self.id, channel_type.value, name=name, parent_id=parent_id, permission_overwrites=perms, **options ) async def create_text_channel( self, name: str, *, reason: Optional[str] = None, category: Optional[CategoryChannel] = None, position: int = MISSING, topic: str = MISSING, slowmode_delay: int = MISSING, nsfw: bool = MISSING, overwrites: Dict[Union[Role, Member], PermissionOverwrite] = MISSING, ) -> TextChannel: """|coro| Creates a :class:`TextChannel` for the guild. Note that you need the :attr:`~Permissions.manage_channels` permission to create the channel. The ``overwrites`` parameter can be used to create a 'secret' channel upon creation. This parameter expects a :class:`dict` of overwrites with the target (either a :class:`Member` or a :class:`Role`) as the key and a :class:`PermissionOverwrite` as the value. .. note:: Creating a channel of a specified position will not update the position of other channels to follow suit. A follow-up call to :meth:`~TextChannel.edit` will be required to update the position of the channel in the channel list. Examples ---------- Creating a basic channel: .. code-block:: python3 channel = await guild.create_text_channel('cool-channel') Creating a "secret" channel: .. code-block:: python3 overwrites = { guild.default_role: discord.PermissionOverwrite(read_messages=False), guild.me: discord.PermissionOverwrite(read_messages=True) } channel = await guild.create_text_channel('secret', overwrites=overwrites) Parameters ----------- name: :class:`str` The channel's name. overwrites: Dict[Union[:class:`Role`, :class:`Member`], :class:`PermissionOverwrite`] A :class:`dict` of target (either a role or a member) to :class:`PermissionOverwrite` to apply upon creation of a channel. Useful for creating secret channels. category: Optional[:class:`CategoryChannel`] The category to place the newly created channel under. The permissions will be automatically synced to category if no overwrites are provided. position: :class:`int` The position in the channel list. This is a number that starts at 0. e.g. the top channel is position 0. topic: :class:`str` The new channel's topic. slowmode_delay: :class:`int` Specifies the slowmode rate limit for user in this channel, in seconds. The maximum value possible is `21600`. nsfw: :class:`bool` To mark the channel as NSFW or not. reason: Optional[:class:`str`] The reason for creating this channel. Shows up on the audit log. Raises ------- Forbidden You do not have the proper permissions to create this channel. HTTPException Creating the channel failed. InvalidArgument The permission overwrite information is not in proper form. Returns ------- :class:`TextChannel` The channel that was just created. """ options = {} if position is not MISSING: options['position'] = position if topic is not MISSING: options['topic'] = topic if slowmode_delay is not MISSING: options['rate_limit_per_user'] = slowmode_delay if nsfw is not MISSING: options['nsfw'] = nsfw data = await self._create_channel( name, overwrites=overwrites, channel_type=ChannelType.text, category=category, reason=reason, **options ) channel = TextChannel(state=self._state, guild=self, data=data) # temporarily add to the cache self._channels[channel.id] = channel return channel async def create_voice_channel( self, name: str, *, reason: Optional[str] = None, category: Optional[CategoryChannel] = None, position: int = MISSING, bitrate: int = MISSING, user_limit: int = MISSING, rtc_region: Optional[VoiceRegion] = MISSING, video_quality_mode: VideoQualityMode = MISSING, overwrites: Dict[Union[Role, Member], PermissionOverwrite] = MISSING, ) -> VoiceChannel: """|coro| This is similar to :meth:`create_text_channel` except makes a :class:`VoiceChannel` instead. Parameters ----------- name: :class:`str` The channel's name. overwrites: Dict[Union[:class:`Role`, :class:`Member`], :class:`PermissionOverwrite`] A :class:`dict` of target (either a role or a member) to :class:`PermissionOverwrite` to apply upon creation of a channel. Useful for creating secret channels. category: Optional[:class:`CategoryChannel`] The category to place the newly created channel under. The permissions will be automatically synced to category if no overwrites are provided. position: :class:`int` The position in the channel list. This is a number that starts at 0. e.g. the top channel is position 0. bitrate: :class:`int` The channel's preferred audio bitrate in bits per second. user_limit: :class:`int` The channel's limit for number of members that can be in a voice channel. rtc_region: Optional[:class:`VoiceRegion`] The region for the voice channel's voice communication. A value of ``None`` indicates automatic voice region detection. .. versionadded:: 1.7 video_quality_mode: :class:`VideoQualityMode` The camera video quality for the voice channel's participants. .. versionadded:: 2.0 reason: Optional[:class:`str`] The reason for creating this channel. Shows up on the audit log. Raises ------ Forbidden You do not have the proper permissions to create this channel. HTTPException Creating the channel failed. InvalidArgument The permission overwrite information is not in proper form. Returns ------- :class:`VoiceChannel` The channel that was just created. """ options = {} if position is not MISSING: options['position'] = position if bitrate is not MISSING: options['bitrate'] = bitrate if user_limit is not MISSING: options['user_limit'] = user_limit if rtc_region is not MISSING: options['rtc_region'] = None if rtc_region is None else str(rtc_region) if video_quality_mode is not MISSING: options['video_quality_mode'] = video_quality_mode.value data = await self._create_channel( name, overwrites=overwrites, channel_type=ChannelType.voice, category=category, reason=reason, **options ) channel = VoiceChannel(state=self._state, guild=self, data=data) # temporarily add to the cache self._channels[channel.id] = channel return channel async def create_stage_channel( self, name: str, *, topic: str, position: int = MISSING, overwrites: Dict[Union[Role, Member], PermissionOverwrite] = MISSING, category: Optional[CategoryChannel] = None, reason: Optional[str] = None, ) -> StageChannel: """|coro| This is similar to :meth:`create_text_channel` except makes a :class:`StageChannel` instead. .. versionadded:: 1.7 Parameters ----------- name: :class:`str` The channel's name. topic: :class:`str` The new channel's topic. overwrites: Dict[Union[:class:`Role`, :class:`Member`], :class:`PermissionOverwrite`] A :class:`dict` of target (either a role or a member) to :class:`PermissionOverwrite` to apply upon creation of a channel. Useful for creating secret channels. category: Optional[:class:`CategoryChannel`] The category to place the newly created channel under. The permissions will be automatically synced to category if no overwrites are provided. position: :class:`int` The position in the channel list. This is a number that starts at 0. e.g. the top channel is position 0. reason: Optional[:class:`str`] The reason for creating this channel. Shows up on the audit log. Raises ------ Forbidden You do not have the proper permissions to create this channel. HTTPException Creating the channel failed. InvalidArgument The permission overwrite information is not in proper form. Returns ------- :class:`StageChannel` The channel that was just created. """ options: Dict[str, Any] = { 'topic': topic, } if position is not MISSING: options['position'] = position data = await self._create_channel( name, overwrites=overwrites, channel_type=ChannelType.stage_voice, category=category, reason=reason, **options ) channel = StageChannel(state=self._state, guild=self, data=data) # temporarily add to the cache self._channels[channel.id] = channel return channel async def create_category( self, name: str, *, overwrites: Dict[Union[Role, Member], PermissionOverwrite] = MISSING, reason: Optional[str] = None, position: int = MISSING, ) -> CategoryChannel: """|coro| Same as :meth:`create_text_channel` except makes a :class:`CategoryChannel` instead. .. note:: The ``category`` parameter is not supported in this function since categories cannot have categories. Raises ------ Forbidden You do not have the proper permissions to create this channel. HTTPException Creating the channel failed. InvalidArgument The permission overwrite information is not in proper form. Returns ------- :class:`CategoryChannel` The channel that was just created. """ options: Dict[str, Any] = {} if position is not MISSING: options['position'] = position data = await self._create_channel( name, overwrites=overwrites, channel_type=ChannelType.category, reason=reason, **options ) channel = CategoryChannel(state=self._state, guild=self, data=data) # temporarily add to the cache self._channels[channel.id] = channel return channel create_category_channel = create_category async def leave(self) -> None: """|coro| Leaves the guild. .. note:: You cannot leave the guild that you own, you must delete it instead via :meth:`delete`. Raises -------- HTTPException Leaving the guild failed. """ await self._state.http.leave_guild(self.id) async def delete(self) -> None: """|coro| Deletes the guild. You must be the guild owner to delete the guild. Raises -------- HTTPException Deleting the guild failed. Forbidden You do not have permissions to delete the guild. """ await self._state.http.delete_guild(self.id) async def edit( self, *, reason: Optional[str] = MISSING, name: str = MISSING, description: Optional[str] = MISSING, icon: Optional[bytes] = MISSING, banner: Optional[bytes] = MISSING, splash: Optional[bytes] = MISSING, discovery_splash: Optional[bytes] = MISSING, community: bool = MISSING, region: Optional[Union[str, VoiceRegion]] = MISSING, afk_channel: Optional[VoiceChannel] = MISSING, owner: Snowflake = MISSING, afk_timeout: int = MISSING, default_notifications: NotificationLevel = MISSING, verification_level: VerificationLevel = MISSING, explicit_content_filter: ContentFilter = MISSING, vanity_code: str = MISSING, system_channel: Optional[TextChannel] = MISSING, system_channel_flags: SystemChannelFlags = MISSING, preferred_locale: str = MISSING, rules_channel: Optional[TextChannel] = MISSING, public_updates_channel: Optional[TextChannel] = MISSING, premium_progress_bar_enabled: bool = MISSING, ) -> Guild: r"""|coro| Edits the guild. You must have the :attr:`~Permissions.manage_guild` permission to edit the guild. .. versionchanged:: 1.4 The `rules_channel` and `public_updates_channel` keyword-only parameters were added. .. versionchanged:: 2.0 The `discovery_splash` and `community` keyword-only parameters were added. .. versionchanged:: 2.0 The newly updated guild is returned. Parameters ---------- name: :class:`str` The new name of the guild. description: Optional[:class:`str`] The new description of the guild. Could be ``None`` for no description. This is only available to guilds that contain ``PUBLIC`` in :attr:`Guild.features`. icon: :class:`bytes` A :term:`py:bytes-like object` representing the icon. Only PNG/JPEG is supported. GIF is only available to guilds that contain ``ANIMATED_ICON`` in :attr:`Guild.features`. Could be ``None`` to denote removal of the icon. banner: :class:`bytes` A :term:`py:bytes-like object` representing the banner. Could be ``None`` to denote removal of the banner. This is only available to guilds that contain ``BANNER`` in :attr:`Guild.features`. splash: :class:`bytes` A :term:`py:bytes-like object` representing the invite splash. Only PNG/JPEG supported. Could be ``None`` to denote removing the splash. This is only available to guilds that contain ``INVITE_SPLASH`` in :attr:`Guild.features`. discovery_splash: :class:`bytes` A :term:`py:bytes-like object` representing the discovery splash. Only PNG/JPEG supported. Could be ``None`` to denote removing the splash. This is only available to guilds that contain ``DISCOVERABLE`` in :attr:`Guild.features`. community: :class:`bool` Whether the guild should be a Community guild. If set to ``True``\, both ``rules_channel`` and ``public_updates_channel`` parameters are required. region: Union[:class:`str`, :class:`VoiceRegion`] The new region for the guild's voice communication. afk_channel: Optional[:class:`VoiceChannel`] The new channel that is the AFK channel. Could be ``None`` for no AFK channel. afk_timeout: :class:`int` The number of seconds until someone is moved to the AFK channel. owner: :class:`Member` The new owner of the guild to transfer ownership to. Note that you must be owner of the guild to do this. verification_level: :class:`VerificationLevel` The new verification level for the guild. default_notifications: :class:`NotificationLevel` The new default notification level for the guild. explicit_content_filter: :class:`ContentFilter` The new explicit content filter for the guild. vanity_code: :class:`str` The new vanity code for the guild. system_channel: Optional[:class:`TextChannel`] The new channel that is used for the system channel. Could be ``None`` for no system channel. system_channel_flags: :class:`SystemChannelFlags` The new system channel settings to use with the new system channel. preferred_locale: :class:`str` The new preferred locale for the guild. Used as the primary language in the guild. If set, this must be an ISO 639 code, e.g. ``en-US`` or ``ja`` or ``zh-CN``. rules_channel: Optional[:class:`TextChannel`] The new channel that is used for rules. This is only available to guilds that contain ``PUBLIC`` in :attr:`Guild.features`. Could be ``None`` for no rules channel. public_updates_channel: Optional[:class:`TextChannel`] The new channel that is used for public updates from Discord. This is only available to guilds that contain ``PUBLIC`` in :attr:`Guild.features`. Could be ``None`` for no public updates channel. premium_progress_bar_enabled: :class:`bool` Whether the guild should have premium progress bar enabled. reason: Optional[:class:`str`] The reason for editing this guild. Shows up on the audit log. Raises ------- Forbidden You do not have permissions to edit the guild. HTTPException Editing the guild failed. InvalidArgument The image format passed in to ``icon`` is invalid. It must be PNG or JPG. This is also raised if you are not the owner of the guild and request an ownership transfer. Returns -------- :class:`Guild` The newly updated guild. Note that this has the same limitations as mentioned in :meth:`Client.fetch_guild` and may not have full data. """ http = self._state.http if vanity_code is not MISSING: await http.change_vanity_code(self.id, vanity_code, reason=reason) fields: Dict[str, Any] = {} if name is not MISSING: fields['name'] = name if description is not MISSING: fields['description'] = description if preferred_locale is not MISSING: fields['preferred_locale'] = preferred_locale if afk_timeout is not MISSING: fields['afk_timeout'] = afk_timeout if icon is not MISSING: if icon is None: fields['icon'] = icon else: fields['icon'] = utils._bytes_to_base64_data(icon) if banner is not MISSING: if banner is None: fields['banner'] = banner else: fields['banner'] = utils._bytes_to_base64_data(banner) if splash is not MISSING: if splash is None: fields['splash'] = splash else: fields['splash'] = utils._bytes_to_base64_data(splash) if discovery_splash is not MISSING: if discovery_splash is None: fields['discovery_splash'] = discovery_splash else: fields['discovery_splash'] = utils._bytes_to_base64_data(discovery_splash) if default_notifications is not MISSING: if not isinstance(default_notifications, NotificationLevel): raise InvalidArgument('default_notifications field must be of type NotificationLevel') fields['default_message_notifications'] = default_notifications.value if afk_channel is not MISSING: if afk_channel is None: fields['afk_channel_id'] = afk_channel else: fields['afk_channel_id'] = afk_channel.id if system_channel is not MISSING: if system_channel is None: fields['system_channel_id'] = system_channel else: fields['system_channel_id'] = system_channel.id if rules_channel is not MISSING: if rules_channel is None: fields['rules_channel_id'] = rules_channel else: fields['rules_channel_id'] = rules_channel.id if public_updates_channel is not MISSING: if public_updates_channel is None: fields['public_updates_channel_id'] = public_updates_channel else: fields['public_updates_channel_id'] = public_updates_channel.id if owner is not MISSING: if self.owner_id != self._state.self_id: raise InvalidArgument('To transfer ownership you must be the owner of the guild.') fields['owner_id'] = owner.id if region is not MISSING: fields['region'] = str(region) if verification_level is not MISSING: if not isinstance(verification_level, VerificationLevel): raise InvalidArgument('verification_level field must be of type VerificationLevel') fields['verification_level'] = verification_level.value if explicit_content_filter is not MISSING: if not isinstance(explicit_content_filter, ContentFilter): raise InvalidArgument('explicit_content_filter field must be of type ContentFilter') fields['explicit_content_filter'] = explicit_content_filter.value if system_channel_flags is not MISSING: if not isinstance(system_channel_flags, SystemChannelFlags): raise InvalidArgument('system_channel_flags field must be of type SystemChannelFlags') fields['system_channel_flags'] = system_channel_flags.value if community is not MISSING: features = [] if community: if 'rules_channel_id' in fields and 'public_updates_channel_id' in fields: features.append('COMMUNITY') else: raise InvalidArgument( 'community field requires both rules_channel and public_updates_channel fields to be provided' ) fields['features'] = features if premium_progress_bar_enabled is not MISSING: fields['premium_progress_bar_enabled'] = premium_progress_bar_enabled data = await http.edit_guild(self.id, reason=reason, **fields) return Guild(data=data, state=self._state) async def fetch_channels(self) -> Sequence[GuildChannel]: """|coro| Retrieves all :class:`abc.GuildChannel` that the guild has. .. note:: This method is an API call. For general usage, consider :attr:`channels` instead. .. versionadded:: 1.2 Raises ------- InvalidData An unknown channel type was received from Discord. HTTPException Retrieving the channels failed. Returns ------- Sequence[:class:`abc.GuildChannel`] All channels in the guild. """ data = await self._state.http.get_all_guild_channels(self.id) def convert(d): factory, ch_type = _guild_channel_factory(d['type']) if factory is None: raise InvalidData('Unknown channel type {type} for channel ID {id}.'.format_map(d)) channel = factory(guild=self, state=self._state, data=d) return channel return [convert(d) for d in data] async def active_threads(self) -> List[Thread]: """|coro| Returns a list of active :class:`Thread` that the client can access. This includes both private and public threads. .. versionadded:: 2.0 Raises ------ HTTPException The request to get the active threads failed. Returns -------- List[:class:`Thread`] The active threads """ data = await self._state.http.get_active_threads(self.id) threads = [Thread(guild=self, state=self._state, data=d) for d in data.get('threads', [])] thread_lookup: Dict[int, Thread] = {thread.id: thread for thread in threads} for member in data.get('members', []): thread = thread_lookup.get(int(member['id'])) if thread is not None: thread._add_member(ThreadMember(parent=thread, data=member)) return threads # TODO: Remove Optional typing here when async iterators are refactored def fetch_members(self, *, limit: int = 1000, after: Optional[SnowflakeTime] = None) -> MemberIterator: """Retrieves an :class:`.AsyncIterator` that enables receiving the guild's members. In order to use this, :meth:`Intents.members` must be enabled. .. note:: This method is an API call. For general usage, consider :attr:`members` instead. .. versionadded:: 1.3 All parameters are optional. Parameters ---------- limit: Optional[:class:`int`] The number of members to retrieve. Defaults to 1000. Pass ``None`` to fetch all members. Note that this is potentially slow. after: Optional[Union[:class:`.abc.Snowflake`, :class:`datetime.datetime`]] Retrieve members after this date or object. If a datetime is provided, it is recommended to use a UTC aware datetime. If the datetime is naive, it is assumed to be local time. Raises ------ ClientException The members intent is not enabled. HTTPException Getting the members failed. Yields ------ :class:`.Member` The member with the member data parsed. Examples -------- Usage :: async for member in guild.fetch_members(limit=150): print(member.name) Flattening into a list :: members = await guild.fetch_members(limit=150).flatten() # members is now a list of Member... """ if not self._state._intents.members: raise ClientException('Intents.members must be enabled to use this.') return MemberIterator(self, limit=limit, after=after) async def fetch_member(self, member_id: int, /) -> Member: """|coro| Retrieves a :class:`Member` from a guild ID, and a member ID. .. note:: This method is an API call. If you have :attr:`Intents.members` and member cache enabled, consider :meth:`get_member` instead. Parameters ----------- member_id: :class:`int` The member's ID to fetch from. Raises ------- Forbidden You do not have access to the guild. HTTPException Fetching the member failed. Returns -------- :class:`Member` The member from the member ID. """ data = await self._state.http.get_member(self.id, member_id) return Member(data=data, state=self._state, guild=self) async def fetch_ban(self, user: Snowflake) -> BanEntry: """|coro| Retrieves the :class:`BanEntry` for a user. You must have the :attr:`~Permissions.ban_members` permission to get this information. Parameters ----------- user: :class:`abc.Snowflake` The user to get ban information from. Raises ------ Forbidden You do not have proper permissions to get the information. NotFound This user is not banned. HTTPException An error occurred while fetching the information. Returns ------- :class:`BanEntry` The :class:`BanEntry` object for the specified user. """ data: BanPayload = await self._state.http.get_ban(user.id, self.id) return BanEntry(user=User(state=self._state, data=data['user']), reason=data['reason']) async def fetch_channel(self, channel_id: int, /) -> Union[GuildChannel, Thread]: """|coro| Retrieves a :class:`.abc.GuildChannel` or :class:`.Thread` with the specified ID. .. note:: This method is an API call. For general usage, consider :meth:`get_channel_or_thread` instead. .. versionadded:: 2.0 Raises ------- :exc:`.InvalidData` An unknown channel type was received from Discord or the guild the channel belongs to is not the same as the one in this object points to. :exc:`.HTTPException` Retrieving the channel failed. :exc:`.NotFound` Invalid Channel ID. :exc:`.Forbidden` You do not have permission to fetch this channel. Returns -------- Union[:class:`.abc.GuildChannel`, :class:`.Thread`] The channel from the ID. """ data = await self._state.http.get_channel(channel_id) factory, ch_type = _threaded_guild_channel_factory(data['type']) if factory is None: raise InvalidData('Unknown channel type {type} for channel ID {id}.'.format_map(data)) if ch_type in (ChannelType.group, ChannelType.private): raise InvalidData('Channel ID resolved to a private channel') guild_id = int(data['guild_id']) if self.id != guild_id: raise InvalidData('Guild ID resolved to a different guild') channel: GuildChannel = factory(guild=self, state=self._state, data=data) # type: ignore return channel async def bans(self) -> List[BanEntry]: """|coro| Retrieves all the users that are banned from the guild as a :class:`list` of :class:`BanEntry`. You must have the :attr:`~Permissions.ban_members` permission to get this information. Raises ------- Forbidden You do not have proper permissions to get the information. HTTPException An error occurred while fetching the information. Returns -------- List[:class:`BanEntry`] A list of :class:`BanEntry` objects. """ data: List[BanPayload] = await self._state.http.get_bans(self.id) return [BanEntry(user=User(state=self._state, data=e['user']), reason=e['reason']) for e in data] async def prune_members( self, *, days: int, compute_prune_count: bool = True, roles: List[Snowflake] = MISSING, reason: Optional[str] = None, ) -> Optional[int]: r"""|coro| Prunes the guild from its inactive members. The inactive members are denoted if they have not logged on in ``days`` number of days and they have no roles. You must have the :attr:`~Permissions.kick_members` permission to use this. To check how many members you would prune without actually pruning, see the :meth:`estimate_pruned_members` function. To prune members that have specific roles see the ``roles`` parameter. .. versionchanged:: 1.4 The ``roles`` keyword-only parameter was added. Parameters ----------- days: :class:`int` The number of days before counting as inactive. reason: Optional[:class:`str`] The reason for doing this action. Shows up on the audit log. compute_prune_count: :class:`bool` Whether to compute the prune count. This defaults to ``True`` which makes it prone to timeouts in very large guilds. In order to prevent timeouts, you must set this to ``False``. If this is set to ``False``\, then this function will always return ``None``. roles: List[:class:`abc.Snowflake`] A list of :class:`abc.Snowflake` that represent roles to include in the pruning process. If a member has a role that is not specified, they'll be excluded. Raises ------- Forbidden You do not have permissions to prune members. HTTPException An error occurred while pruning members. InvalidArgument An integer was not passed for ``days``. Returns --------- Optional[:class:`int`] The number of members pruned. If ``compute_prune_count`` is ``False`` then this returns ``None``. """ if not isinstance(days, int): raise InvalidArgument(f'Expected int for ``days``, received {days.__class__.__name__} instead.') if roles: role_ids = [str(role.id) for role in roles] else: role_ids = [] data = await self._state.http.prune_members( self.id, days, compute_prune_count=compute_prune_count, roles=role_ids, reason=reason ) return data['pruned'] async def templates(self) -> List[Template]: """|coro| Gets the list of templates from this guild. Requires :attr:`~.Permissions.manage_guild` permissions. .. versionadded:: 1.7 Raises ------- Forbidden You don't have permissions to get the templates. Returns -------- List[:class:`Template`] The templates for this guild. """ from .template import Template data = await self._state.http.guild_templates(self.id) return [Template(data=d, state=self._state) for d in data] async def webhooks(self) -> List[Webhook]: """|coro| Gets the list of webhooks from this guild. Requires :attr:`~.Permissions.manage_webhooks` permissions. Raises ------- Forbidden You don't have permissions to get the webhooks. Returns -------- List[:class:`Webhook`] The webhooks for this guild. """ from .webhook import Webhook data = await self._state.http.guild_webhooks(self.id) return [Webhook.from_state(d, state=self._state) for d in data] async def estimate_pruned_members(self, *, days: int, roles: List[Snowflake] = MISSING) -> int: """|coro| Similar to :meth:`prune_members` except instead of actually pruning members, it returns how many members it would prune from the guild had it been called. Parameters ----------- days: :class:`int` The number of days before counting as inactive. roles: List[:class:`abc.Snowflake`] A list of :class:`abc.Snowflake` that represent roles to include in the estimate. If a member has a role that is not specified, they'll be excluded. .. versionadded:: 1.7 Raises ------- Forbidden You do not have permissions to prune members. HTTPException An error occurred while fetching the prune members estimate. InvalidArgument An integer was not passed for ``days``. Returns --------- :class:`int` The number of members estimated to be pruned. """ if not isinstance(days, int): raise InvalidArgument(f'Expected int for ``days``, received {days.__class__.__name__} instead.') if roles: role_ids = [str(role.id) for role in roles] else: role_ids = [] data = await self._state.http.estimate_pruned_members(self.id, days, role_ids) return data['pruned'] async def invites(self) -> List[Invite]: """|coro| Returns a list of all active instant invites from the guild. You must have the :attr:`~Permissions.manage_guild` permission to get this information. Raises ------- Forbidden You do not have proper permissions to get the information. HTTPException An error occurred while fetching the information. Returns ------- List[:class:`Invite`] The list of invites that are currently active. """ data = await self._state.http.invites_from(self.id) result = [] for invite in data: channel = self.get_channel(int(invite['channel']['id'])) result.append(Invite(state=self._state, data=invite, guild=self, channel=channel)) return result async def create_template(self, *, name: str, description: str = MISSING) -> Template: """|coro| Creates a template for the guild. You must have the :attr:`~Permissions.manage_guild` permission to do this. .. versionadded:: 1.7 Parameters ----------- name: :class:`str` The name of the template. description: :class:`str` The description of the template. """ from .template import Template payload = {'name': name} if description: payload['description'] = description data = await self._state.http.create_template(self.id, payload) return Template(state=self._state, data=data) async def create_integration(self, *, type: str, id: int) -> None: """|coro| Attaches an integration to the guild. You must have the :attr:`~Permissions.manage_guild` permission to do this. .. versionadded:: 1.4 Parameters ----------- type: :class:`str` The integration type (e.g. Twitch). id: :class:`int` The integration ID. Raises ------- Forbidden You do not have permission to create the integration. HTTPException The account could not be found. """ await self._state.http.create_integration(self.id, type, id) async def integrations(self) -> List[Integration]: """|coro| Returns a list of all integrations attached to the guild. You must have the :attr:`~Permissions.manage_guild` permission to do this. .. versionadded:: 1.4 Raises ------- Forbidden You do not have permission to create the integration. HTTPException Fetching the integrations failed. Returns -------- List[:class:`Integration`] The list of integrations that are attached to the guild. """ data = await self._state.http.get_all_integrations(self.id) def convert(d): factory, _ = _integration_factory(d['type']) if factory is None: raise InvalidData('Unknown integration type {type!r} for integration ID {id}'.format_map(d)) return factory(guild=self, data=d) return [convert(d) for d in data] async def fetch_stickers(self) -> List[GuildSticker]: r"""|coro| Retrieves a list of all :class:`Sticker`\s for the guild. .. versionadded:: 2.0 .. note:: This method is an API call. For general usage, consider :attr:`stickers` instead. Raises --------- HTTPException An error occurred fetching the stickers. Returns -------- List[:class:`GuildSticker`] The retrieved stickers. """ data = await self._state.http.get_all_guild_stickers(self.id) return [GuildSticker(state=self._state, data=d) for d in data] async def fetch_sticker(self, sticker_id: int, /) -> GuildSticker: """|coro| Retrieves a custom :class:`Sticker` from the guild. .. versionadded:: 2.0 .. note:: This method is an API call. For general usage, consider iterating over :attr:`stickers` instead. Parameters ------------- sticker_id: :class:`int` The sticker's ID. Raises --------- NotFound The sticker requested could not be found. HTTPException An error occurred fetching the sticker. Returns -------- :class:`GuildSticker` The retrieved sticker. """ data = await self._state.http.get_guild_sticker(self.id, sticker_id) return GuildSticker(state=self._state, data=data) async def create_sticker( self, *, name: str, description: Optional[str] = None, emoji: str, file: File, reason: Optional[str] = None, ) -> GuildSticker: """|coro| Creates a :class:`Sticker` for the guild. You must have :attr:`~Permissions.manage_emojis_and_stickers` permission to do this. .. versionadded:: 2.0 Parameters ----------- name: :class:`str` The sticker name. Must be at least 2 characters. description: Optional[:class:`str`] The sticker's description. Can be ``None``. emoji: :class:`str` The name of a unicode emoji that represents the sticker's expression. file: :class:`File` The file of the sticker to upload. reason: :class:`str` The reason for creating this sticker. Shows up on the audit log. Raises ------- Forbidden You are not allowed to create stickers. HTTPException An error occurred creating a sticker. Returns -------- :class:`GuildSticker` The created sticker. """ payload = { 'name': name, } if description: payload['description'] = description try: emoji = unicodedata.name(emoji) except TypeError: pass else: emoji = emoji.replace(' ', '_') payload['tags'] = emoji data = await self._state.http.create_guild_sticker(self.id, payload, file, reason) return self._state.store_sticker(self, data) async def delete_sticker(self, sticker: Snowflake, *, reason: Optional[str] = None) -> None: """|coro| Deletes the custom :class:`Sticker` from the guild. You must have :attr:`~Permissions.manage_emojis_and_stickers` permission to do this. .. versionadded:: 2.0 Parameters ----------- sticker: :class:`abc.Snowflake` The sticker you are deleting. reason: Optional[:class:`str`] The reason for deleting this sticker. Shows up on the audit log. Raises ------- Forbidden You are not allowed to delete stickers. HTTPException An error occurred deleting the sticker. """ await self._state.http.delete_guild_sticker(self.id, sticker.id, reason) async def fetch_emojis(self) -> List[Emoji]: r"""|coro| Retrieves all custom :class:`Emoji`\s from the guild. .. note:: This method is an API call. For general usage, consider :attr:`emojis` instead. Raises --------- HTTPException An error occurred fetching the emojis. Returns -------- List[:class:`Emoji`] The retrieved emojis. """ data = await self._state.http.get_all_custom_emojis(self.id) return [Emoji(guild=self, state=self._state, data=d) for d in data] async def fetch_emoji(self, emoji_id: int, /) -> Emoji: """|coro| Retrieves a custom :class:`Emoji` from the guild. .. note:: This method is an API call. For general usage, consider iterating over :attr:`emojis` instead. Parameters ------------- emoji_id: :class:`int` The emoji's ID. Raises --------- NotFound The emoji requested could not be found. HTTPException An error occurred fetching the emoji. Returns -------- :class:`Emoji` The retrieved emoji. """ data = await self._state.http.get_custom_emoji(self.id, emoji_id) return Emoji(guild=self, state=self._state, data=data) async def create_custom_emoji( self, *, name: str, image: bytes, roles: List[Role] = MISSING, reason: Optional[str] = None, ) -> Emoji: r"""|coro| Creates a custom :class:`Emoji` for the guild. There is currently a limit of 50 static and animated emojis respectively per guild, unless the guild has the ``MORE_EMOJI`` feature which extends the limit to 200. You must have the :attr:`~Permissions.manage_emojis` permission to do this. Parameters ----------- name: :class:`str` The emoji name. Must be at least 2 characters. image: :class:`bytes` The :term:`py:bytes-like object` representing the image data to use. Only JPG, PNG and GIF images are supported. roles: List[:class:`Role`] A :class:`list` of :class:`Role`\s that can use this emoji. Leave empty to make it available to everyone. reason: Optional[:class:`str`] The reason for creating this emoji. Shows up on the audit log. Raises ------- Forbidden You are not allowed to create emojis. HTTPException An error occurred creating an emoji. Returns -------- :class:`Emoji` The created emoji. """ img = utils._bytes_to_base64_data(image) if roles: role_ids = [role.id for role in roles] else: role_ids = [] data = await self._state.http.create_custom_emoji(self.id, name, img, roles=role_ids, reason=reason) return self._state.store_emoji(self, data) async def delete_emoji(self, emoji: Snowflake, *, reason: Optional[str] = None) -> None: """|coro| Deletes the custom :class:`Emoji` from the guild. You must have :attr:`~Permissions.manage_emojis` permission to do this. Parameters ----------- emoji: :class:`abc.Snowflake` The emoji you are deleting. reason: Optional[:class:`str`] The reason for deleting this emoji. Shows up on the audit log. Raises ------- Forbidden You are not allowed to delete emojis. HTTPException An error occurred deleting the emoji. """ await self._state.http.delete_custom_emoji(self.id, emoji.id, reason=reason) async def fetch_roles(self) -> List[Role]: """|coro| Retrieves all :class:`Role` that the guild has. .. note:: This method is an API call. For general usage, consider :attr:`roles` instead. .. versionadded:: 1.3 Raises ------- HTTPException Retrieving the roles failed. Returns ------- List[:class:`Role`] All roles in the guild. """ data = await self._state.http.get_roles(self.id) return [Role(guild=self, state=self._state, data=d) for d in data] @overload async def create_role( self, *, reason: Optional[str] = ..., name: str = ..., permissions: Permissions = ..., colour: Union[Colour, int] = ..., hoist: bool = ..., mentionable: bool = ..., ) -> Role: ... @overload async def create_role( self, *, reason: Optional[str] = ..., name: str = ..., permissions: Permissions = ..., color: Union[Colour, int] = ..., hoist: bool = ..., mentionable: bool = ..., ) -> Role: ... async def create_role( self, *, name: str = MISSING, permissions: Permissions = MISSING, color: Union[Colour, int] = MISSING, colour: Union[Colour, int] = MISSING, hoist: bool = MISSING, mentionable: bool = MISSING, reason: Optional[str] = None, ) -> Role: """|coro| Creates a :class:`Role` for the guild. All fields are optional. You must have the :attr:`~Permissions.manage_roles` permission to do this. .. versionchanged:: 1.6 Can now pass ``int`` to ``colour`` keyword-only parameter. Parameters ----------- name: :class:`str` The role name. Defaults to 'new role'. permissions: :class:`Permissions` The permissions to have. Defaults to no permissions. colour: Union[:class:`Colour`, :class:`int`] The colour for the role. Defaults to :meth:`Colour.default`. This is aliased to ``color`` as well. hoist: :class:`bool` Indicates if the role should be shown separately in the member list. Defaults to ``False``. mentionable: :class:`bool` Indicates if the role should be mentionable by others. Defaults to ``False``. reason: Optional[:class:`str`] The reason for creating this role. Shows up on the audit log. Raises ------- Forbidden You do not have permissions to create the role. HTTPException Creating the role failed. InvalidArgument An invalid keyword argument was given. Returns -------- :class:`Role` The newly created role. """ fields: Dict[str, Any] = {} if permissions is not MISSING: fields['permissions'] = str(permissions.value) else: fields['permissions'] = '0' actual_colour = colour or color or Colour.default() if isinstance(actual_colour, int): fields['color'] = actual_colour else: fields['color'] = actual_colour.value if hoist is not MISSING: fields['hoist'] = hoist if mentionable is not MISSING: fields['mentionable'] = mentionable if name is not MISSING: fields['name'] = name data = await self._state.http.create_role(self.id, reason=reason, **fields) role = Role(guild=self, data=data, state=self._state) # TODO: add to cache return role async def edit_role_positions(self, positions: Dict[Snowflake, int], *, reason: Optional[str] = None) -> List[Role]: """|coro| Bulk edits a list of :class:`Role` in the guild. You must have the :attr:`~Permissions.manage_roles` permission to do this. .. versionadded:: 1.4 Example: .. code-block:: python3 positions = { bots_role: 1, # penultimate role tester_role: 2, admin_role: 6 } await guild.edit_role_positions(positions=positions) Parameters ----------- positions A :class:`dict` of :class:`Role` to :class:`int` to change the positions of each given role. reason: Optional[:class:`str`] The reason for editing the role positions. Shows up on the audit log. Raises ------- Forbidden You do not have permissions to move the roles. HTTPException Moving the roles failed. InvalidArgument An invalid keyword argument was given. Returns -------- List[:class:`Role`] A list of all the roles in the guild. """ if not isinstance(positions, dict): raise InvalidArgument('positions parameter expects a dict.') role_positions: List[Dict[str, Any]] = [] for role, position in positions.items(): payload = {'id': role.id, 'position': position} role_positions.append(payload) data = await self._state.http.move_role_position(self.id, role_positions, reason=reason) roles: List[Role] = [] for d in data: role = Role(guild=self, data=d, state=self._state) roles.append(role) self._roles[role.id] = role return roles async def kick(self, user: Snowflake, *, reason: Optional[str] = None) -> None: """|coro| Kicks a user from the guild. The user must meet the :class:`abc.Snowflake` abc. You must have the :attr:`~Permissions.kick_members` permission to do this. Parameters ----------- user: :class:`abc.Snowflake` The user to kick from their guild. reason: Optional[:class:`str`] The reason the user got kicked. Raises ------- Forbidden You do not have the proper permissions to kick. HTTPException Kicking failed. """ await self._state.http.kick(user.id, self.id, reason=reason) async def ban( self, user: Snowflake, *, reason: Optional[str] = None, delete_message_days: Literal[0, 1, 2, 3, 4, 5, 6, 7] = 1, ) -> None: """|coro| Bans a user from the guild. The user must meet the :class:`abc.Snowflake` abc. You must have the :attr:`~Permissions.ban_members` permission to do this. Parameters ----------- user: :class:`abc.Snowflake` The user to ban from their guild. delete_message_days: :class:`int` The number of days worth of messages to delete from the user in the guild. The minimum is 0 and the maximum is 7. reason: Optional[:class:`str`] The reason the user got banned. Raises ------- Forbidden You do not have the proper permissions to ban. HTTPException Banning failed. """ await self._state.http.ban(user.id, self.id, delete_message_days, reason=reason) async def unban(self, user: Snowflake, *, reason: Optional[str] = None) -> None: """|coro| Unbans a user from the guild. The user must meet the :class:`abc.Snowflake` abc. You must have the :attr:`~Permissions.ban_members` permission to do this. Parameters ----------- user: :class:`abc.Snowflake` The user to unban. reason: Optional[:class:`str`] The reason for doing this action. Shows up on the audit log. Raises ------- Forbidden You do not have the proper permissions to unban. HTTPException Unbanning failed. """ await self._state.http.unban(user.id, self.id, reason=reason) async def vanity_invite(self) -> Optional[Invite]: """|coro| Returns the guild's special vanity invite. The guild must have ``VANITY_URL`` in :attr:`~Guild.features`. You must have the :attr:`~Permissions.manage_guild` permission to use this as well. Raises ------- Forbidden You do not have the proper permissions to get this. HTTPException Retrieving the vanity invite failed. Returns -------- Optional[:class:`Invite`] The special vanity invite. If ``None`` then the guild does not have a vanity invite set. """ # we start with { code: abc } payload = await self._state.http.get_vanity_code(self.id) if not payload['code']: return None # get the vanity URL channel since default channels aren't # reliable or a thing anymore data = await self._state.http.get_invite(payload['code']) channel = self.get_channel(int(data['channel']['id'])) payload['revoked'] = False payload['temporary'] = False payload['max_uses'] = 0 payload['max_age'] = 0 payload['uses'] = payload.get('uses', 0) return Invite(state=self._state, data=payload, guild=self, channel=channel) # TODO: use MISSING when async iterators get refactored def audit_logs( self, *, limit: Optional[int] = 100, before: Optional[SnowflakeTime] = None, after: Optional[SnowflakeTime] = None, oldest_first: Optional[bool] = None, user: Snowflake = None, action: AuditLogAction = None, ) -> AuditLogIterator: """Returns an :class:`AsyncIterator` that enables receiving the guild's audit logs. You must have the :attr:`~Permissions.view_audit_log` permission to use this. Examples ---------- Getting the first 100 entries: :: async for entry in guild.audit_logs(limit=100): print(f'{entry.user} did {entry.action} to {entry.target}') Getting entries for a specific action: :: async for entry in guild.audit_logs(action=discord.AuditLogAction.ban): print(f'{entry.user} banned {entry.target}') Getting entries made by a specific user: :: entries = await guild.audit_logs(limit=None, user=guild.me).flatten() await channel.send(f'I made {len(entries)} moderation actions.') Parameters ----------- limit: Optional[:class:`int`] The number of entries to retrieve. If ``None`` retrieve all entries. before: Union[:class:`abc.Snowflake`, :class:`datetime.datetime`] Retrieve entries before this date or entry. If a datetime is provided, it is recommended to use a UTC aware datetime. If the datetime is naive, it is assumed to be local time. after: Union[:class:`abc.Snowflake`, :class:`datetime.datetime`] Retrieve entries after this date or entry. If a datetime is provided, it is recommended to use a UTC aware datetime. If the datetime is naive, it is assumed to be local time. oldest_first: :class:`bool` If set to ``True``, return entries in oldest->newest order. Defaults to ``True`` if ``after`` is specified, otherwise ``False``. user: :class:`abc.Snowflake` The moderator to filter entries from. action: :class:`AuditLogAction` The action to filter with. Raises ------- Forbidden You are not allowed to fetch audit logs HTTPException An error occurred while fetching the audit logs. Yields -------- :class:`AuditLogEntry` The audit log entry. """ if user is not None: user_id = user.id else: user_id = None if action: action = action.value return AuditLogIterator( self, before=before, after=after, limit=limit, oldest_first=oldest_first, user_id=user_id, action_type=action ) async def widget(self) -> Widget: """|coro| Returns the widget of the guild. .. note:: The guild must have the widget enabled to get this information. Raises ------- Forbidden The widget for this guild is disabled. HTTPException Retrieving the widget failed. Returns -------- :class:`Widget` The guild's widget. """ data = await self._state.http.get_widget(self.id) return Widget(state=self._state, data=data) async def edit_widget(self, *, enabled: bool = MISSING, channel: Optional[Snowflake] = MISSING) -> None: """|coro| Edits the widget of the guild. You must have the :attr:`~Permissions.manage_guild` permission to use this .. versionadded:: 2.0 Parameters ----------- enabled: :class:`bool` Whether to enable the widget for the guild. channel: Optional[:class:`~discord.abc.Snowflake`] The new widget channel. ``None`` removes the widget channel. Raises ------- Forbidden You do not have permission to edit the widget. HTTPException Editing the widget failed. """ payload = {} if channel is not MISSING: payload['channel_id'] = None if channel is None else channel.id if enabled is not MISSING: payload['enabled'] = enabled await self._state.http.edit_widget(self.id, payload=payload) async def chunk(self, *, cache: bool = True) -> None: """|coro| Requests all members that belong to this guild. In order to use this, :meth:`Intents.members` must be enabled. This is a websocket operation and can be slow. .. versionadded:: 1.5 Parameters ----------- cache: :class:`bool` Whether to cache the members as well. Raises ------- ClientException The members intent is not enabled. """ if not self._state._intents.members: raise ClientException('Intents.members must be enabled to use this.') if not self._state.is_guild_evicted(self): return await self._state.chunk_guild(self, cache=cache) async def query_members( self, query: Optional[str] = None, *, limit: int = 5, user_ids: Optional[List[int]] = None, presences: bool = False, cache: bool = True, ) -> List[Member]: """|coro| Request members that belong to this guild whose username starts with the query given. This is a websocket operation and can be slow. .. versionadded:: 1.3 Parameters ----------- query: Optional[:class:`str`] The string that the username's start with. limit: :class:`int` The maximum number of members to send back. This must be a number between 5 and 100. presences: :class:`bool` Whether to request for presences to be provided. This defaults to ``False``. .. versionadded:: 1.6 cache: :class:`bool` Whether to cache the members internally. This makes operations such as :meth:`get_member` work for those that matched. user_ids: Optional[List[:class:`int`]] List of user IDs to search for. If the user ID is not in the guild then it won't be returned. .. versionadded:: 1.4 Raises ------- asyncio.TimeoutError The query timed out waiting for the members. ValueError Invalid parameters were passed to the function ClientException The presences intent is not enabled. Returns -------- List[:class:`Member`] The list of members that have matched the query. """ if presences and not self._state._intents.presences: raise ClientException('Intents.presences must be enabled to use this.') if query is None: if query == '': raise ValueError('Cannot pass empty query string.') if user_ids is None: raise ValueError('Must pass either query or user_ids') if user_ids is not None and query is not None: raise ValueError('Cannot pass both query and user_ids') if user_ids is not None and not user_ids: raise ValueError('user_ids must contain at least 1 value') limit = min(100, limit or 5) return await self._state.query_members( self, query=query, limit=limit, user_ids=user_ids, presences=presences, cache=cache ) async def change_voice_state( self, *, channel: Optional[VocalGuildChannel], self_mute: bool = False, self_deaf: bool = False ): """|coro| Changes client's voice state in the guild. .. versionadded:: 1.4 Parameters ----------- channel: Optional[:class:`VoiceChannel`] Channel the client wants to join. Use ``None`` to disconnect. self_mute: :class:`bool` Indicates if the client should be self-muted. self_deaf: :class:`bool` Indicates if the client should be self-deafened. """ ws = self._state._get_websocket(self.id) channel_id = channel.id if channel else None await ws.voice_state(self.id, channel_id, self_mute, self_deaf) async def welcome_screen(self): """|coro| Returns the :class:`WelcomeScreen` of the guild. The guild must have ``COMMUNITY`` in :attr:`~Guild.features`. You must have the :attr:`~Permissions.manage_guild` permission in order to get this. .. versionadded:: 2.0 Raises ------- Forbidden You do not have the proper permissions to get this. HTTPException Retrieving the welcome screen failed somehow. NotFound The guild doesn't has a welcome screen or community feature is disabled. Returns -------- :class:`WelcomeScreen` The welcome screen of guild. """ data = await self._state.http.get_welcome_screen(self.id) return WelcomeScreen(data=data, guild=self) @overload async def edit_welcome_screen( self, *, description: Optional[str] = ..., welcome_channels: Optional[List[WelcomeScreenChannel]] = ..., enabled: Optional[bool] = ..., ) -> WelcomeScreen: ... @overload async def edit_welcome_screen(self) -> None: ... async def edit_welcome_screen(self, **options): """|coro| A shorthand for :attr:`WelcomeScreen.edit` without fetching the welcome screen. You must have the :attr:`~Permissions.manage_guild` permission in the guild to do this. The guild must have ``COMMUNITY`` in :attr:`Guild.features` Parameters ------------ description: Optional[:class:`str`] The new description of welcome screen. welcome_channels: Optional[List[:class:`WelcomeChannel`]] The welcome channels. The order of the channels would be same as the passed list order. enabled: Optional[:class:`bool`] Whether the welcome screen should be displayed. reason: Optional[:class:`str`] The reason that shows up on audit log. Raises ------- HTTPException Editing the welcome screen failed somehow. Forbidden You don't have permissions to edit the welcome screen. NotFound This welcome screen does not exist. Returns -------- :class:`WelcomeScreen` The edited welcome screen. """ welcome_channels = options.get('welcome_channels', []) welcome_channels_data = [] for channel in welcome_channels: if not isinstance(channel, WelcomeScreenChannel): raise TypeError('welcome_channels parameter must be a list of WelcomeScreenChannel.') welcome_channels_data.append(channel.to_dict()) options['welcome_channels'] = welcome_channels_data if options: new = await self._state.http.edit_welcome_screen(self.id, options, reason=options.get('reason')) return WelcomeScreen(data=new, guild=self)
the-stack_0_1251
import sys import xlrd import csv from main.model.model import db_save template = {'fecha_hora': '', 'vereda': '', 'PM2_5_CC_ICA': -9999.0, 'altitud': -9999.0, 'estado': '', 'online': '', 'longitude': -9999.0, 'barrio': '', 'ciudad': '', 'temperatura': -9999.0, 'humedad_relativa': -9999.0, 'latitude': -9999.0, 'nombre': '', 'PM2_5_last': -9999.0, 'PM2_5_mean': -9999.0, 'codigo': -9999.0} def load_xlsx(datafile): workbook = xlrd.open_workbook(datafile) worksheet = workbook.sheet_by_index(0) print(">Msg: Reading '"+datafile+"'") print("- Filas: "+str(worksheet.nrows)) print("- Columnas: "+str(worksheet.ncols)) for fila in range(worksheet.nrows): #Almacenará unicamente una medicion a la vez medicion = [] for columna in range(worksheet.ncols): medicion.append(worksheet.cell(fila,columna).value) print(medicion) #print("aquí se guardaría el dato") def load_csv(datafile): censors = [] with open(datafile,'r') as csvfile: reader = csv.reader(csvfile) #cont = 0 row1 = True for row in reader: if row1 == True: censors = row row1 = False continue #cont += 1 index = 0 date = '' for field in row: if index == 0: date = field index += 1 else: # censors[index] = numero identificacion de sensor # date = fecha de la medicion # field = medicion #print(censors[index],date,field) if field != '': medicion = template medicion['nombre'] = str(censors[index]) medicion['codigo'] = int(censors[index]) medicion['fecha_hora'] = str(date[:10]) + "T" + str(date[11:]) medicion['PM2_5_last'] = float(field) save_response = db_save('mediciones', medicion) if save_response == False: print("- Hubo un problema almacenando el dato: ") print(sensor,"\n") #print(medicion['fecha_hora']) index += 1 #if cont == 2: # break def main(): for datafile in sys.argv[1:]: ext="" i=datafile.rfind(".") if i == -1: print(">Error: Los ficheros no tienen extención '"+datafile+"'\n") else: if datafile[i:] == ".csv": load_csv(datafile) else: if datafile[i:] == ".xlsx" or datafile[i:] == ".xls" or datafile[i:] == ".xlsm": #load_xlsx(datafile) pass else: print(">Warning: Extención de fichero no soportado '"+datafile+"'\n") main()
the-stack_0_1253
import os import numpy as np from simplegrid.abstractcreature import MAX_ENERGY, Action, AbstractCreature from simplegrid.dqn_agent import DQNAgent from simplegrid.map_feature import MapFeature HISTORY_FILE = 'deep_cow_history.jsonl' WEIGHTS_FILE = 'deep_cow_model_weights.h5' MODEL_FILE = 'deep_cow_model.json' class DeepCow(AbstractCreature): agent = None COLOR = (240, 240, 20) IS_PREDATOR = False def __init__(self, x, y, settings, energy=None): super().__init__(x, y, settings, energy) self.prev_state = None self.prev_reward = None self.prev_action_idx = None self.state = None self.reward = None self.done = None self.action_idx = 0 @staticmethod def to_internal_state(observation): """Convert state to an internal representation. The input state is a (2 x d + 1, 2 x d + 1) matrix with for each cell either a 1 for food, 0 for nothing or -x for another animal. The center cell is always "us". Only the largest diamond fitting the matrix is actually visible. """ size = observation.shape[0] view_distance = size // 2 if view_distance == 1: diamond = observation.flatten() diamond = [diamond[3], diamond[7], diamond[5], diamond[1]] else: diamond = [] for x in range(size): for y in range(size): if 0 < abs(x - size // 2) + abs(y - size // 2) <= view_distance: diamond.append(observation[x][y]) diamond = np.asarray(diamond) grass = MapFeature.GRASS.to_feature_vector(diamond) rock = MapFeature.ROCK.to_feature_vector(diamond) water = MapFeature.ROCK.to_feature_vector(diamond) wolves = MapFeature.WOLF.to_feature_vector(diamond) return np.concatenate((grass, rock, water, wolves)) def step(self, observation): if self.energy > MAX_ENERGY: return Action.SPLIT self.prev_state = self.state self.prev_reward = self.reward self.prev_action_idx = self.action_idx self.state = self.to_internal_state(observation) if not DeepCow.agent: DeepCow.agent = DQNAgent.from_dimensions(len(self.state), layers=self.settings.layers, action_size=4) self.action_idx = DeepCow.agent.act(self.state) return Action(self.action_idx + 1) def learn(self, reward, done): self.reward = reward if self.prev_state is not None and self.state is not None: DeepCow.agent.remember(self.prev_state, self.prev_action_idx, self.prev_reward, self.state) DeepCow.agent.replay() if done: DeepCow.agent.remember(self.state, self.action_idx, self.reward, None) @classmethod def restore_state(cls, settings): model_file = settings.get_path(MODEL_FILE) if model_file and os.path.isfile(model_file): DeepCow.agent = DQNAgent.from_stored_model(model_file) weights_file = settings.get_path(WEIGHTS_FILE) if weights_file and os.path.isfile(weights_file): DeepCow.agent.load_weights(weights_file) @classmethod def save_state(cls, settings): weights_file = settings.get_path(WEIGHTS_FILE) if weights_file: cls.agent.save_weights(weights_file) cls.agent.save_history(settings.get_path(HISTORY_FILE)) cls.agent.save_model(settings.get_path(MODEL_FILE))
the-stack_0_1254
"""Add meta field to Task table Revision ID: a4a031f74720 Revises: 860c6ff76ea8 Create Date: 2019-06-08 14:12:10.983247 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = 'a4a031f74720' down_revision = '860c6ff76ea8' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('task', sa.Column('meta', postgresql.JSON( astext_type=sa.Text()), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('task', 'meta') # ### end Alembic commands ###
the-stack_0_1257
# Copyright 2018 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Partial implementation for AppleDynamicFrameworkInfo configuration.""" load( "@bazel_skylib//lib:partial.bzl", "partial", ) load( "@bazel_skylib//lib:paths.bzl", "paths", ) # TODO(b/161370390): Remove ctx from the args when ctx is removed from all partials. def _framework_provider_partial_impl( *, ctx, actions, bin_root_path, binary_provider, bundle_name, rule_label): """Implementation for the framework provider partial.""" binary_file = binary_provider.binary # Create a directory structure that the linker can use to reference this # framework. It follows the pattern of # any_path/MyFramework.framework/MyFramework. The absolute path and files are # propagated using the AppleDynamicFrameworkInfo provider. framework_dir = paths.join("frameworks", "%s.framework" % bundle_name) framework_file = actions.declare_file( paths.join(framework_dir, bundle_name), ) actions.symlink( target_file = binary_file, output = framework_file, ) absolute_framework_dir = paths.join( bin_root_path, rule_label.package, framework_dir, ) # TODO(cparsons): These will no longer be necessary once apple_binary # uses the values in the dynamic framework provider. legacy_objc_provider = apple_common.new_objc_provider( dynamic_framework_file = depset([framework_file]), providers = [binary_provider.objc], ) framework_provider = apple_common.new_dynamic_framework_provider( binary = binary_file, framework_dirs = depset([absolute_framework_dir]), framework_files = depset([framework_file]), objc = legacy_objc_provider, ) return struct( providers = [framework_provider], ) def framework_provider_partial( *, actions, bin_root_path, binary_provider, bundle_name, rule_label): """Constructor for the framework provider partial. This partial propagates the AppleDynamicFrameworkInfo provider required by the linking step. It contains the necessary files and configuration so that the framework can be linked against. This is only required for dynamic framework bundles. Args: actions: The actions provider from `ctx.actions`. bin_root_path: The path to the root `-bin` directory. binary_provider: The AppleDylibBinary provider containing this target's binary. bundle_name: The name of the output bundle. rule_label: The label of the target being analyzed. Returns: A partial that returns the AppleDynamicFrameworkInfo provider used to link this framework into the final binary. """ return partial.make( _framework_provider_partial_impl, actions = actions, bin_root_path = bin_root_path, binary_provider = binary_provider, bundle_name = bundle_name, rule_label = rule_label, )
the-stack_0_1258
# -*- coding: UTF-8 -*- import olympe from olympe.messages.ardrone3.Piloting import TakeOff, moveBy, Landing drone = olympe.Drone("10.202.0.1") drone.connect() drone(TakeOff()).wait() drone(moveBy(10, 0, 0, 0)).wait() drone(Landing()).wait() drone.disconnect()
the-stack_0_1259
"""This package enables saving and loading of python objects to disk while also backing to S3 storage. """ import os import datetime import ntpath # to extract file name from path, OS-independent import traceback # for printing full stacktraces of errors import concurrent.futures # for asynchronous file uploads import pickle # for pickling files try: # for automatic caching of return values of functions from functools import lru_cache except ImportError: from functools32 import lru_cache # pylint: disable=E0401 import pandas as pd import boto3 # to interact with AWS S3 from botocore.exceptions import ClientError import dateutil # to make local change-time datetime objects time-aware import yaml # to read the s3bp config import feather # to read/write pandas dataframes as feather objects CFG_FILE_NAME = 's3bp_cfg.yml' DEFAULT_MAX_WORKERS = 5 EXECUTOR = None # === Reading configuration === def _s3bp_cfg_file_path(): return os.path.abspath(os.path.join( os.path.dirname(os.path.realpath(__file__)), CFG_FILE_NAME)) def _get_s3bp_cfg(): try: with open(_s3bp_cfg_file_path(), 'r') as cfg_file: cfg = yaml.safe_load(cfg_file) if not isinstance(cfg, dict): cfg = {'base_dir_to_bucket_map': {}}, return cfg except FileNotFoundError: with open(_s3bp_cfg_file_path(), 'w') as outfile: outfile.write(yaml.dump( {'base_dir_to_bucket_map': {}}, default_flow_style=False )) return _get_s3bp_cfg() def _max_workers(): try: return _get_s3bp_cfg()['max_workers'] except KeyError: return DEFAULT_MAX_WORKERS def _default_bucket(): return _get_s3bp_cfg()['default_bucket'] def _base_dir_to_bucket_map(): return _get_s3bp_cfg()['base_dir_to_bucket_map'] def _base_dirs(): return list(_get_s3bp_cfg()['base_dir_to_bucket_map'].keys()) # === Setting configuration === def _set_s3bp_cfg(cfg): with open(_s3bp_cfg_file_path(), 'w') as outfile: outfile.write(yaml.dump(cfg, default_flow_style=False)) def set_max_workers(max_workers): """Sets the maximum number of workers in the thread pool used to asynchronously upload files. NOTE: Resets the current thread pool!""" cfg = _get_s3bp_cfg() cfg['max_workers'] = max_workers _set_s3bp_cfg(cfg) _get_executor(reset=True) def set_default_bucket(bucket_name): """Sets the given string as the default bucket name.""" cfg = _get_s3bp_cfg() cfg['default_bucket'] = bucket_name _set_s3bp_cfg(cfg) def unset_default_bucket(): """Unsets the currently set default bucket, if set.""" cfg = _get_s3bp_cfg() cfg.pop('default_bucket', None) _set_s3bp_cfg(cfg) def _parse_dir_path(dir_path): if '~' in dir_path: return os.path.expanduser(dir_path) return dir_path def set_default_base_directory(base_directory): """Sets the given string as the default base directory name.""" cfg = _get_s3bp_cfg() cfg['default_base_dir'] = _parse_dir_path(base_directory) _set_s3bp_cfg(cfg) def map_base_directory_to_bucket(base_directory, bucket_name): """Maps the given directory as a base directory of the given bucket. Arguments --------- base_directory : str The full path, from root, to the desired base directory. bucket_name : str The name of the bucket to map the given directory to. """ cfg = _get_s3bp_cfg() parsed_path = _parse_dir_path(base_directory) if not isinstance(cfg['base_dir_to_bucket_map'], dict): cfg['base_dir_to_bucket_map'] = {} cfg['base_dir_to_bucket_map'][parsed_path] = bucket_name _set_s3bp_cfg(cfg) def remove_base_directory_mapping(base_directory): """Remove the mapping associated with the given directory, if exists.""" cfg = _get_s3bp_cfg() parsed_path = _parse_dir_path(base_directory) cfg['base_dir_to_bucket_map'].pop(parsed_path, None) _set_s3bp_cfg(cfg) # === Getting parameters === def _get_executor(reset=False): if reset: _get_executor.executor = concurrent.futures.ThreadPoolExecutor( _max_workers()) try: return _get_executor.executor except AttributeError: _get_executor.executor = concurrent.futures.ThreadPoolExecutor( _max_workers()) return _get_executor.executor @lru_cache(maxsize=32) def _get_bucket_by_name(bucket_name): s3_rsc = boto3.resource('s3') return s3_rsc.Bucket(bucket_name) @lru_cache(maxsize=32) def _get_base_dir_by_file_path_and_bucket_name(filepath, bucket_name): try: for directory in _base_dirs(): if (directory in filepath) and ( _base_dir_to_bucket_map()[directory] == bucket_name): return directory except (KeyError, AttributeError): return None return None def _bucket_name_and_base_dir_by_filepath(filepath): try: for directory in _base_dirs(): if directory in filepath: return _base_dir_to_bucket_map()[directory], directory except (KeyError, AttributeError): pass try: return _default_bucket(), None except KeyError: raise ValueError( "No bucket name was given, and neither a default was defined " "nor could one be interpreted from the file path. Please " "provide one explicitly, or define an appropriate bucket.") return None, None def _get_key(filepath, namekey, base_directory): if namekey or not base_directory: return ntpath.basename(filepath) index = filepath.find(base_directory[base_directory.rfind('/'):]) return filepath[index + 1:] @lru_cache(maxsize=32) def _get_bucket_and_key(filepath, bucket_name, namekey): base_directory = None if bucket_name is None: bucket_name, base_directory = _bucket_name_and_base_dir_by_filepath( filepath) elif not namekey: base_directory = _get_base_dir_by_file_path_and_bucket_name( filepath, bucket_name) os.makedirs(base_directory, exist_ok=True) bucket = _get_bucket_by_name(bucket_name) key = _get_key(filepath, namekey, base_directory) return bucket, key # === Uploading/Downloading files === def _parse_file_path(filepath): if '~' in filepath: return os.path.expanduser(filepath) return filepath def _file_upload_thread(bucket, filepath, key): try: bucket.upload_file(filepath, key) except BaseException as exc: # pylint: disable=W0703 print( 'File upload failed with following exception:\n{}'.format(exc), flush=True ) def upload_file(filepath, bucket_name=None, namekey=None, wait=False): """Uploads the given file to S3 storage. Arguments --------- filepath : str The full path, from root, to the desired file. bucket_name (optional) : str The name of the bucket to upload the file to. If not given, it will be inferred from any defined base directory that is present on the path (there is no guarentee which base directory will be used if several are present in the given path). If base directory inferrence fails the default bukcet will be used, if defined, else the operation will fail. namekey (optional) : bool Indicate whether to use the name of the file as the key when uploading to the bucket. If set, or if no base directory is found in the filepath, the file name will be used as key. Otherwise, the path rooted at the detected base directory will be used, resulting in a directory-like structure in the S3 bucket. wait (optional) : bool Defaults to False. If set to True, the function will wait on the upload operation. Otherwise, the upload will be performed asynchronously in a separate thread. """ filepath = _parse_file_path(filepath) bucket, key = _get_bucket_and_key(filepath, bucket_name, namekey) if wait: bucket.upload_file(filepath, key) else: _get_executor().submit(_file_upload_thread, bucket, filepath, key) def _file_time_modified(filepath): timestamp = os.path.getmtime(filepath) dt_obj = datetime.datetime.utcfromtimestamp(timestamp) # this is correct only because the non-time-aware obj is in UTC! dt_obj = dt_obj.replace(tzinfo=dateutil.tz.tzutc()) return dt_obj def download_file(filepath, bucket_name=None, namekey=None, verbose=False): """Downloads the most recent version of the given file from S3, if needed. Arguments --------- filepath : str The full path, from root, to the desired file. bucket_name (optional) : str The name of the bucket to download the file from. If not given, it will be inferred from any defined base directory that is present on the path (there is no guarentee which base directory will be used if several are present in the given path). If base directory inferrence fails the default bukcet will be used, if defined, else the operation will fail. namekey (optional) : bool Indicate whether to use the name of the file as the key when downloading from the bucket. If set, or if no base directory is found in the filepath, the file name will be used as key. Otherwise, the path rooted at the detected base directory will be used, resulting in a directory-like structure in the S3 bucket. verbose (optional) : bool Defaults to False. If set to True, some informative messages will be printed. """ filepath = _parse_file_path(filepath) bucket, key = _get_bucket_and_key(filepath, bucket_name, namekey) try: if os.path.isfile(filepath): if verbose: print('File %s found on disk.' % key) # this datetime object has tzinfo=dateutil.tz.utc() s3_last_modified = bucket.Object(key).get()['LastModified'] if s3_last_modified > _file_time_modified(filepath): if verbose: print('But S3 has an updated version. Downloading...') bucket.download_file(key, filepath) else: if verbose: print('File %s NOT found on disk. Downloading...' % key) # creating non-existing dirs on the path if not os.path.exists(filepath): os.makedirs(filepath[:filepath.rfind('/')]) bucket.download_file(key, filepath) except ClientError: if verbose: print('Loading dataframe failed with the following exception:') print(traceback.format_exc()) raise ValueError('No dataframe found with key %s' % key) # === Saving/loading Python objects === def _pickle_serialiazer(pyobject, filepath): pickle.dump(pyobject, open(filepath, 'wb')) def save_object(pyobject, filepath, bucket_name=None, serializer=_pickle_serialiazer, namekey=None, wait=False): """Saves the given object to S3 storage, caching it as the given file. Arguments --------- pyobject : object The python object to save. filepath : str The full path, from root, to the desired cache file. bucket_name (optional) : str The name of the bucket to upload the file to. If not given, it will be inferred from any defined base directory that is present on the path (there is no guarentee which base directory will be used if several are present in the given path). If base directory inferrence fails the default bukcet will be used, if defined, else the operation will fail. serializer (optional) : callable A callable that takes two positonal arguments, a Python object and a path to a file, and dumps the object to the given file. Defaults to a wrapper of pickle.dump. namekey (optional) : bool Indicate whether to use the name of the file as the key when uploading to the bucket. If set, or if no base directory is found in the filepath, the file name will be used as key. Otherwise, the path rooted at the detected base directory will be used, resulting in a directory-like structure in the S3 bucket. wait (optional) : bool Defaults to False. If set to True, the function will wait on the upload operation. Otherwise, the upload will be performed asynchronously in a separate thread. """ serializer(pyobject, filepath) upload_file(filepath, bucket_name, namekey, wait) def _picke_deserializer(filepath): return pickle.load(open(filepath, 'rb')) def load_object(filepath, bucket_name=None, deserializer=_picke_deserializer, namekey=None, verbose=False): """Loads the most recent version of the object cached in the given file. Arguments --------- filepath : str The full path, from root, to the desired file. bucket_name (optional) : str The name of the bucket to download the file from. If not given, it will be inferred from any defined base directory that is present on the path (there is no guarentee which base directory will be used if several are present in the given path). If base directory inferrence fails the default bukcet will be used, if defined, else the operation will fail. deserializer (optional) : callable A callable that takes one positonal argument, a path to a file, and returns the object stored in it. Defaults to a wrapper of pickle.load. namekey (optional) : bool Indicate whether to use the name of the file as the key when downloading from the bucket. If set, or if no base directory is found in the filepath, the file name will be used as key. Otherwise, the path rooted at the detected base directory will be used, resulting in a directory-like structure in the S3 bucket. verbose (optional) : bool Defaults to False. If set to True, some informative messages will be printed. """ download_file(filepath, bucket_name=bucket_name, namekey=namekey, verbose=verbose) return deserializer(filepath) # === Saving/loading dataframes === def _pandas_df_csv_serializer(pyobject, filepath): pyobject.to_csv(filepath) def _pandas_df_excel_serializer(pyobject, filepath): pyobject.to_excel(filepath) def _pandas_df_feather_serializer(pyobject, filepath): feather.write_dataframe(pyobject, filepath) def _get_pandas_df_serializer(dformat): dformat = dformat.lower() if dformat == 'csv': return _pandas_df_csv_serializer if dformat == 'excel': return _pandas_df_excel_serializer if dformat == 'feather': return _pandas_df_feather_serializer def save_dataframe(df, filepath, bucket_name=None, dformat='csv', namekey=None, wait=False): """Writes the given dataframe as a CSV file to disk and S3 storage. Arguments --------- df : pandas.Dataframe The pandas Dataframe object to save. filepath : str The full path, from root, to the desired file. bucket_name (optional) : str The name of the bucket to upload the file to. If not given, it will be inferred from any defined base directory that is present on the path (there is no guarentee which base directory will be used if several are present in the given path). If base directory inferrence fails the default bukcet will be used, if defined, else the operation will fail. dformat (optional) : str The storage format for the Dataframe. One of 'csv','excel' and 'feather'. Defaults to 'csv'. namekey (optional) : bool Indicate whether to use the name of the file as the key when uploading to the bucket. If set, or if no base directory is found in the filepath, the file name will be used as key. Otherwise, the path rooted at the detected base directory will be used, resulting in a directory-like structure in the S3 bucket. wait (optional) : bool Defaults to False. If set to True, the function will wait on the upload operation. Otherwise, the upload will be performed asynchronously in a separate thread. """ save_object(df, filepath, serializer=_get_pandas_df_serializer(dformat), bucket_name=bucket_name, namekey=namekey, wait=wait) def _pandas_df_csv_deserializer(filepath): return pd.read_csv(filepath) def _pandas_df_excel_deserializer(filepath): return pd.read_excel(filepath) def _pandas_df_feather_deserializer(filepath): return feather.read_dataframe(filepath) def _get_pandf_defserializer(dformat): dformat = dformat.lower() if dformat == 'csv': return _pandas_df_csv_deserializer if dformat == 'excel': return _pandas_df_excel_deserializer if dformat == 'feather': return _pandas_df_feather_deserializer def load_dataframe(filepath, bucket_name=None, dformat='csv', namekey=None, verbose=False): """Loads the most updated version of a dataframe from file, fetching it from S3 storage if necessary. Arguments --------- filepath : str The full path, from root, to the desired file. bucket_name (optional) : str The name of the bucket to download the file from. If not given, it will be inferred from any defined base directory that is present on the path (there is no guarentee which base directory will be used if several are present in the given path). If base directory inferrence fails the default bukcet will be used, if defined, else the operation will fail. dformat (optional) : str The storage format for the Dataframe. One of 'csv','excel' and 'feather'. Defaults to 'csv'. namekey (optional) : bool Indicate whether to use the name of the file as the key when downloading from the bucket. If set, or if no base directory is found in the filepath, the file name will be used as key. Otherwise, the path rooted at the detected base directory will be used, resulting in a directory-like structure in the S3 bucket. verbose (optional) : bool Defaults to False. If set to True, some informative messages will be printed. """ return load_object( filepath, deserializer=_get_pandf_defserializer(dformat), bucket_name=bucket_name, namekey=namekey, verbose=verbose)
the-stack_0_1260
"""Dependency injector base providers unit tests.""" import unittest2 as unittest from dependency_injector import ( containers, providers, errors, ) class ProviderTests(unittest.TestCase): def setUp(self): self.provider = providers.Provider() def test_is_provider(self): self.assertTrue(providers.is_provider(self.provider)) def test_call(self): self.assertRaises(NotImplementedError, self.provider.__call__) def test_delegate(self): delegate1 = self.provider.delegate() self.assertIsInstance(delegate1, providers.Delegate) self.assertIs(delegate1(), self.provider) delegate2 = self.provider.delegate() self.assertIsInstance(delegate2, providers.Delegate) self.assertIs(delegate2(), self.provider) self.assertIsNot(delegate1, delegate2) def test_provider(self): delegate1 = self.provider.provider self.assertIsInstance(delegate1, providers.Delegate) self.assertIs(delegate1(), self.provider) delegate2 = self.provider.provider self.assertIsInstance(delegate2, providers.Delegate) self.assertIs(delegate2(), self.provider) self.assertIsNot(delegate1, delegate2) def test_override(self): overriding_provider = providers.Provider() self.provider.override(overriding_provider) self.assertTrue(self.provider.overridden) self.assertIs(self.provider.last_overriding, overriding_provider) def test_double_override(self): overriding_provider1 = providers.Object(1) overriding_provider2 = providers.Object(2) self.provider.override(overriding_provider1) overriding_provider1.override(overriding_provider2) self.assertEqual(self.provider(), overriding_provider2()) def test_overriding_context(self): overriding_provider = providers.Provider() with self.provider.override(overriding_provider): self.assertTrue(self.provider.overridden) self.assertFalse(self.provider.overridden) def test_override_with_itself(self): self.assertRaises(errors.Error, self.provider.override, self.provider) def test_override_with_not_provider(self): obj = object() self.provider.override(obj) self.assertIs(self.provider(), obj) def test_reset_last_overriding(self): overriding_provider1 = providers.Provider() overriding_provider2 = providers.Provider() self.provider.override(overriding_provider1) self.provider.override(overriding_provider2) self.assertIs(self.provider.overridden[-1], overriding_provider2) self.assertIs(self.provider.last_overriding, overriding_provider2) self.provider.reset_last_overriding() self.assertIs(self.provider.overridden[-1], overriding_provider1) self.assertIs(self.provider.last_overriding, overriding_provider1) self.provider.reset_last_overriding() self.assertFalse(self.provider.overridden) self.assertIsNone(self.provider.last_overriding) def test_reset_last_overriding_of_not_overridden_provider(self): self.assertRaises(errors.Error, self.provider.reset_last_overriding) def test_reset_override(self): overriding_provider = providers.Provider() self.provider.override(overriding_provider) self.assertTrue(self.provider.overridden) self.assertEqual(self.provider.overridden, (overriding_provider,)) self.provider.reset_override() self.assertEqual(self.provider.overridden, tuple()) def test_deepcopy(self): provider = providers.Provider() provider_copy = providers.deepcopy(provider) self.assertIsNot(provider, provider_copy) self.assertIsInstance(provider, providers.Provider) def test_deepcopy_from_memo(self): provider = providers.Provider() provider_copy_memo = providers.Provider() provider_copy = providers.deepcopy( provider, memo={id(provider): provider_copy_memo}) self.assertIs(provider_copy, provider_copy_memo) def test_deepcopy_overridden(self): provider = providers.Provider() overriding_provider = providers.Provider() provider.override(overriding_provider) provider_copy = providers.deepcopy(provider) overriding_provider_copy = provider_copy.overridden[0] self.assertIsNot(provider, provider_copy) self.assertIsInstance(provider, providers.Provider) self.assertIsNot(overriding_provider, overriding_provider_copy) self.assertIsInstance(overriding_provider_copy, providers.Provider) def test_repr(self): self.assertEqual(repr(self.provider), '<dependency_injector.providers.' 'Provider() at {0}>'.format(hex(id(self.provider)))) class ObjectProviderTests(unittest.TestCase): def test_is_provider(self): self.assertTrue(providers.is_provider(providers.Object(object()))) def test_provided_instance_provider(self): provider = providers.Object(object()) self.assertIsInstance(provider.provided, providers.ProvidedInstance) def test_call_object_provider(self): obj = object() self.assertIs(providers.Object(obj)(), obj) def test_call_overridden_object_provider(self): obj1 = object() obj2 = object() provider = providers.Object(obj1) provider.override(providers.Object(obj2)) self.assertIs(provider(), obj2) def test_deepcopy(self): provider = providers.Object(1) provider_copy = providers.deepcopy(provider) self.assertIsNot(provider, provider_copy) self.assertIsInstance(provider, providers.Object) def test_deepcopy_from_memo(self): provider = providers.Object(1) provider_copy_memo = providers.Provider() provider_copy = providers.deepcopy( provider, memo={id(provider): provider_copy_memo}) self.assertIs(provider_copy, provider_copy_memo) def test_deepcopy_overridden(self): provider = providers.Object(1) overriding_provider = providers.Provider() provider.override(overriding_provider) provider_copy = providers.deepcopy(provider) overriding_provider_copy = provider_copy.overridden[0] self.assertIsNot(provider, provider_copy) self.assertIsInstance(provider, providers.Object) self.assertIsNot(overriding_provider, overriding_provider_copy) self.assertIsInstance(overriding_provider_copy, providers.Provider) def test_deepcopy_doesnt_copy_provided_object(self): # Fixes bug #231 # Details: https://github.com/ets-labs/python-dependency-injector/issues/231 some_object = object() provider = providers.Object(some_object) provider_copy = providers.deepcopy(provider) self.assertIs(provider(), some_object) self.assertIs(provider_copy(), some_object) def test_repr(self): some_object = object() provider = providers.Object(some_object) self.assertEqual(repr(provider), '<dependency_injector.providers.' 'Object({0}) at {1}>'.format( repr(some_object), hex(id(provider)))) class DelegateTests(unittest.TestCase): def setUp(self): self.delegated = providers.Provider() self.delegate = providers.Delegate(self.delegated) def test_is_provider(self): self.assertTrue(providers.is_provider(self.delegate)) def test_init_with_not_provider(self): self.assertRaises(errors.Error, providers.Delegate, object()) def test_call(self): delegated1 = self.delegate() delegated2 = self.delegate() self.assertIs(delegated1, self.delegated) self.assertIs(delegated2, self.delegated) def test_repr(self): self.assertEqual(repr(self.delegate), '<dependency_injector.providers.' 'Delegate({0}) at {1}>'.format( repr(self.delegated), hex(id(self.delegate)))) class DependencyTests(unittest.TestCase): def setUp(self): self.provider = providers.Dependency(instance_of=list) def test_init_with_not_class(self): self.assertRaises(TypeError, providers.Dependency, object()) def test_with_abc(self): try: import collections.abc as collections_abc except ImportError: import collections as collections_abc provider = providers.Dependency(collections_abc.Mapping) provider.provided_by(providers.Factory(dict)) self.assertIsInstance(provider(), collections_abc.Mapping) self.assertIsInstance(provider(), dict) def test_is_provider(self): self.assertTrue(providers.is_provider(self.provider)) def test_provided_instance_provider(self): self.assertIsInstance(self.provider.provided, providers.ProvidedInstance) def test_call_overridden(self): self.provider.provided_by(providers.Factory(list)) self.assertIsInstance(self.provider(), list) def test_call_overridden_but_not_instance_of(self): self.provider.provided_by(providers.Factory(dict)) self.assertRaises(errors.Error, self.provider) def test_call_not_overridden(self): self.assertRaises(errors.Error, self.provider) def test_deepcopy(self): provider = providers.Dependency(int) provider_copy = providers.deepcopy(provider) self.assertIsNot(provider, provider_copy) self.assertIsInstance(provider, providers.Dependency) def test_deepcopy_from_memo(self): provider = providers.Dependency(int) provider_copy_memo = providers.Provider() provider_copy = providers.deepcopy( provider, memo={id(provider): provider_copy_memo}) self.assertIs(provider_copy, provider_copy_memo) def test_deepcopy_overridden(self): provider = providers.Dependency(int) overriding_provider = providers.Provider() provider.override(overriding_provider) provider_copy = providers.deepcopy(provider) overriding_provider_copy = provider_copy.overridden[0] self.assertIsNot(provider, provider_copy) self.assertIsInstance(provider, providers.Dependency) self.assertIsNot(overriding_provider, overriding_provider_copy) self.assertIsInstance(overriding_provider_copy, providers.Provider) def test_repr(self): self.assertEqual(repr(self.provider), '<dependency_injector.providers.' 'Dependency({0}) at {1}>'.format( repr(list), hex(id(self.provider)))) class ExternalDependencyTests(unittest.TestCase): def setUp(self): self.provider = providers.ExternalDependency(instance_of=list) def test_is_instance(self): self.assertIsInstance(self.provider, providers.Dependency) class DependenciesContainerTests(unittest.TestCase): class Container(containers.DeclarativeContainer): dependency = providers.Provider() def setUp(self): self.provider = providers.DependenciesContainer() self.container = self.Container() def test_getattr(self): has_dependency = hasattr(self.provider, 'dependency') dependency = self.provider.dependency self.assertIsInstance(dependency, providers.Dependency) self.assertIs(dependency, self.provider.dependency) self.assertTrue(has_dependency) self.assertIsNone(dependency.last_overriding) def test_getattr_with_container(self): self.provider.override(self.container) dependency = self.provider.dependency self.assertTrue(dependency.overridden) self.assertIs(dependency.last_overriding, self.container.dependency) def test_providers(self): dependency1 = self.provider.dependency1 dependency2 = self.provider.dependency2 self.assertEqual(self.provider.providers, {'dependency1': dependency1, 'dependency2': dependency2}) def test_override(self): dependency = self.provider.dependency self.provider.override(self.container) self.assertTrue(dependency.overridden) self.assertIs(dependency.last_overriding, self.container.dependency) def test_reset_last_overriding(self): dependency = self.provider.dependency self.provider.override(self.container) self.provider.reset_last_overriding() self.assertIsNone(dependency.last_overriding) self.assertIsNone(dependency.last_overriding) def test_reset_override(self): dependency = self.provider.dependency self.provider.override(self.container) self.provider.reset_override() self.assertFalse(dependency.overridden) self.assertFalse(dependency.overridden)
the-stack_0_1261
import random import threading import time from statistics import mean from typing import Optional from cereal import log from common.params import Params, put_nonblocking from common.realtime import sec_since_boot from selfdrive.hardware import HARDWARE from selfdrive.swaglog import cloudlog PANDA_OUTPUT_VOLTAGE = 5.28 CAR_VOLTAGE_LOW_PASS_K = 0.091 # LPF gain for 5s tau (dt/tau / (dt/tau + 1)) # A C2 uses about 1W while idling, and 30h seens like a good shutoff for most cars # While driving, a battery charges completely in about 30-60 minutes CAR_BATTERY_CAPACITY_uWh = 30e6 CAR_CHARGING_RATE_W = 45 VBATT_PAUSE_CHARGING = 11.0 # Lower limit on the LPF car battery voltage VBATT_INSTANT_PAUSE_CHARGING = 7.0 # Lower limit on the instant car battery voltage measurements to avoid triggering on instant power loss MAX_TIME_OFFROAD_S = 30*3600 MIN_ON_TIME_S = 3600 # Parameters def get_battery_capacity(): return _read_param("/sys/class/power_supply/battery/capacity", int) # Helpers def _read_param(path, parser, default=0): try: with open(path) as f: return parser(f.read()) except Exception: return default def panda_current_to_actual_current(panda_current): # From white/grey panda schematic return (3.3 - (panda_current * 3.3 / 4096)) / 8.25 class PowerMonitoring: def __init__(self): self.params = Params() self.last_measurement_time = None # Used for integration delta self.last_save_time = 0 # Used for saving current value in a param self.power_used_uWh = 0 # Integrated power usage in uWh since going into offroad self.next_pulsed_measurement_time = None self.car_voltage_mV = 12e3 # Low-passed version of pandaState voltage self.car_voltage_instant_mV = 12e3 # Last value of pandaState voltage self.integration_lock = threading.Lock() self.ts_last_charging_ctrl = None car_battery_capacity_uWh = self.params.get("CarBatteryCapacity") if car_battery_capacity_uWh is None: car_battery_capacity_uWh = 0 # Reset capacity if it's low self.car_battery_capacity_uWh = max((CAR_BATTERY_CAPACITY_uWh / 10), int(car_battery_capacity_uWh)) # Calculation tick def calculate(self, pandaState): try: now = sec_since_boot() # If pandaState is None, we're probably not in a car, so we don't care if pandaState is None or pandaState.pandaState.pandaType == log.PandaState.PandaType.unknown: with self.integration_lock: self.last_measurement_time = None self.next_pulsed_measurement_time = None self.power_used_uWh = 0 return # Low-pass battery voltage self.car_voltage_instant_mV = pandaState.pandaState.voltage self.car_voltage_mV = ((pandaState.pandaState.voltage * CAR_VOLTAGE_LOW_PASS_K) + (self.car_voltage_mV * (1 - CAR_VOLTAGE_LOW_PASS_K))) # Cap the car battery power and save it in a param every 10-ish seconds self.car_battery_capacity_uWh = max(self.car_battery_capacity_uWh, 0) self.car_battery_capacity_uWh = min(self.car_battery_capacity_uWh, CAR_BATTERY_CAPACITY_uWh) if now - self.last_save_time >= 10: put_nonblocking("CarBatteryCapacity", str(int(self.car_battery_capacity_uWh))) self.last_save_time = now # First measurement, set integration time with self.integration_lock: if self.last_measurement_time is None: self.last_measurement_time = now return if (pandaState.pandaState.ignitionLine or pandaState.pandaState.ignitionCan): # If there is ignition, we integrate the charging rate of the car with self.integration_lock: self.power_used_uWh = 0 integration_time_h = (now - self.last_measurement_time) / 3600 if integration_time_h < 0: raise ValueError(f"Negative integration time: {integration_time_h}h") self.car_battery_capacity_uWh += (CAR_CHARGING_RATE_W * 1e6 * integration_time_h) self.last_measurement_time = now else: # No ignition, we integrate the offroad power used by the device is_uno = pandaState.pandaState.pandaType == log.PandaState.PandaType.uno # Get current power draw somehow current_power = HARDWARE.get_current_power_draw() # pylint: disable=assignment-from-none if current_power is not None: pass elif HARDWARE.get_battery_status() == 'Discharging': # If the battery is discharging, we can use this measurement # On C2: this is low by about 10-15%, probably mostly due to UNO draw not being factored in current_power = ((HARDWARE.get_battery_voltage() / 1000000) * (HARDWARE.get_battery_current() / 1000000)) elif (pandaState.pandaState.pandaType in (log.PandaState.PandaType.whitePanda, log.PandaState.PandaType.greyPanda)) and (pandaState.pandaState.current > 1): # If white/grey panda, use the integrated current measurements if the measurement is not 0 # If the measurement is 0, the current is 400mA or greater, and out of the measurement range of the panda # This seems to be accurate to about 5% current_power = (PANDA_OUTPUT_VOLTAGE * panda_current_to_actual_current(pandaState.pandaState.current)) elif (self.next_pulsed_measurement_time is not None) and (self.next_pulsed_measurement_time <= now): # TODO: Figure out why this is off by a factor of 3/4??? FUDGE_FACTOR = 1.33 # Turn off charging for about 10 sec in a thread that does not get killed on SIGINT, and perform measurement here to avoid blocking thermal def perform_pulse_measurement(now): try: HARDWARE.set_battery_charging(False) time.sleep(5) # Measure for a few sec to get a good average voltages = [] currents = [] for _ in range(6): voltages.append(HARDWARE.get_battery_voltage()) currents.append(HARDWARE.get_battery_current()) time.sleep(1) current_power = ((mean(voltages) / 1000000) * (mean(currents) / 1000000)) self._perform_integration(now, current_power * FUDGE_FACTOR) # Enable charging again HARDWARE.set_battery_charging(True) except Exception: cloudlog.exception("Pulsed power measurement failed") # Start pulsed measurement and return threading.Thread(target=perform_pulse_measurement, args=(now,)).start() self.next_pulsed_measurement_time = None return elif self.next_pulsed_measurement_time is None and not is_uno: # On a charging EON with black panda, or drawing more than 400mA out of a white/grey one # Only way to get the power draw is to turn off charging for a few sec and check what the discharging rate is # We shouldn't do this very often, so make sure it has been some long-ish random time interval self.next_pulsed_measurement_time = now + random.randint(120, 180) return else: # Do nothing return # Do the integration self._perform_integration(now, current_power) except Exception: cloudlog.exception("Power monitoring calculation failed") def _perform_integration(self, t: float, current_power: float) -> None: with self.integration_lock: try: if self.last_measurement_time: integration_time_h = (t - self.last_measurement_time) / 3600 power_used = (current_power * 1000000) * integration_time_h if power_used < 0: raise ValueError(f"Negative power used! Integration time: {integration_time_h} h Current Power: {power_used} uWh") self.power_used_uWh += power_used self.car_battery_capacity_uWh -= power_used self.last_measurement_time = t except Exception: cloudlog.exception("Integration failed") # Get the power usage def get_power_used(self) -> int: return int(self.power_used_uWh) def get_car_battery_capacity(self) -> int: return int(self.car_battery_capacity_uWh) # See if we need to disable charging def should_disable_charging(self, pandaState, offroad_timestamp: Optional[float]) -> bool: if pandaState is None or offroad_timestamp is None: return False now = sec_since_boot() disable_charging = False disable_charging |= (now - offroad_timestamp) > MAX_TIME_OFFROAD_S disable_charging |= (self.car_voltage_mV < (VBATT_PAUSE_CHARGING * 1e3)) and (self.car_voltage_instant_mV > (VBATT_INSTANT_PAUSE_CHARGING * 1e3)) disable_charging |= (self.car_battery_capacity_uWh <= 0) disable_charging &= (not pandaState.pandaState.ignitionLine and not pandaState.pandaState.ignitionCan) disable_charging &= (not self.params.get_bool("DisablePowerDown")) disable_charging &= (pandaState.pandaState.harnessStatus != log.PandaState.HarnessStatus.notConnected) disable_charging |= self.params.get_bool("ForcePowerDown") return disable_charging # See if we need to shutdown def should_shutdown(self, pandaState, offroad_timestamp, started_seen): if pandaState is None or offroad_timestamp is None: return False now = sec_since_boot() panda_charging = (pandaState.pandaState.usbPowerMode != log.PandaState.UsbPowerMode.client) BATT_PERC_OFF = 10 should_shutdown = False # Wait until we have shut down charging before powering down should_shutdown |= (not panda_charging and self.should_disable_charging(pandaState, offroad_timestamp)) should_shutdown |= ((HARDWARE.get_battery_capacity() < BATT_PERC_OFF) and (not HARDWARE.get_battery_charging()) and ((now - offroad_timestamp) > 60)) should_shutdown &= started_seen or (now > MIN_ON_TIME_S) return should_shutdown def charging_ctrl(self, msg, ts, to_discharge, to_charge ): if self.ts_last_charging_ctrl is None or (ts - self.ts_last_charging_ctrl) >= 300.: battery_changing = HARDWARE.get_battery_charging() if self.ts_last_charging_ctrl: if msg.deviceState.batteryPercent >= to_discharge and battery_changing: HARDWARE.set_battery_charging(False) elif msg.deviceState.batteryPercent <= to_charge and not battery_changing: HARDWARE.set_battery_charging(True) self.ts_last_charging_ctrl = ts
the-stack_0_1264
""" Provides a `scantree` function which recurses a given directory, yielding (pathname, os.stat(pathname)) pairs. Attempts to use the more efficient `scandir` function if this is available, falling back to `os.listdir` otherwise. """ import os import stat try: from os import scandir except ImportError: try: from scandir import scandir except ImportError: scandir = None if scandir: def scantree(root): for entry in scandir(root): if entry.is_dir(): for item in scantree(entry.path): yield item else: yield entry.path, entry.stat() else: def scantree(root): for filename in os.listdir(root): path = os.path.join(root, filename) stat_result = os.stat(path) if stat.S_ISDIR(stat_result.st_mode): for item in scantree(path): yield item else: yield path, stat_result
the-stack_0_1265
# original implementation: https://github.com/odegeasslbc/FastGAN-pytorch/blob/main/models.py # # modified by Axel Sauer for "Projected GANs Converge Faster" # import torch.nn as nn from pg_modules.blocks import (InitLayer, UpBlockBig, UpBlockBigCond, UpBlockSmall, UpBlockSmallCond, SEBlock, conv2d) def normalize_second_moment(x, dim=1, eps=1e-8): return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt() class DummyMapping(nn.Module): def __init__(self): super().__init__() def forward(self, z, c, **kwargs): return z.unsqueeze(1) # to fit the StyleGAN API class FastganSynthesis(nn.Module): def __init__(self, ngf=128, z_dim=256, nc=3, img_resolution=256, lite=False): super().__init__() self.img_resolution = img_resolution self.z_dim = z_dim # channel multiplier nfc_multi = {2: 16, 4:16, 8:8, 16:4, 32:2, 64:2, 128:1, 256:0.5, 512:0.25, 1024:0.125} nfc = {} for k, v in nfc_multi.items(): nfc[k] = int(v*ngf) # layers self.init = InitLayer(z_dim, channel=nfc[2], sz=4) UpBlock = UpBlockSmall if lite else UpBlockBig self.feat_8 = UpBlock(nfc[4], nfc[8]) self.feat_16 = UpBlock(nfc[8], nfc[16]) self.feat_32 = UpBlock(nfc[16], nfc[32]) self.feat_64 = UpBlock(nfc[32], nfc[64]) self.feat_128 = UpBlock(nfc[64], nfc[128]) self.feat_256 = UpBlock(nfc[128], nfc[256]) self.se_64 = SEBlock(nfc[4], nfc[64]) self.se_128 = SEBlock(nfc[8], nfc[128]) self.se_256 = SEBlock(nfc[16], nfc[256]) self.to_big = conv2d(nfc[img_resolution], nc, 3, 1, 1, bias=True) if img_resolution > 256: self.feat_512 = UpBlock(nfc[256], nfc[512]) self.se_512 = SEBlock(nfc[32], nfc[512]) if img_resolution > 512: self.feat_1024 = UpBlock(nfc[512], nfc[1024]) def forward(self, input, c, **kwargs): # map noise to hypersphere as in "Progressive Growing of GANS" input = normalize_second_moment(input[:, 0]) feat_4 = self.init(input) feat_8 = self.feat_8(feat_4) feat_16 = self.feat_16(feat_8) feat_32 = self.feat_32(feat_16) feat_64 = self.se_64(feat_4, self.feat_64(feat_32)) feat_128 = self.se_128(feat_8, self.feat_128(feat_64)) if self.img_resolution >= 128: feat_last = feat_128 if self.img_resolution >= 256: feat_last = self.se_256(feat_16, self.feat_256(feat_last)) if self.img_resolution >= 512: feat_last = self.se_512(feat_32, self.feat_512(feat_last)) if self.img_resolution >= 1024: feat_last = self.feat_1024(feat_last) return self.to_big(feat_last) class FastganSynthesisCond(nn.Module): def __init__(self, ngf=64, z_dim=256, nc=3, img_resolution=256, num_classes=1000, lite=False): super().__init__() self.z_dim = z_dim nfc_multi = {2: 16, 4:16, 8:8, 16:4, 32:2, 64:2, 128:1, 256:0.5, 512:0.25, 1024:0.125, 2048:0.125} nfc = {} for k, v in nfc_multi.items(): nfc[k] = int(v*ngf) self.img_resolution = img_resolution self.init = InitLayer(z_dim, channel=nfc[2], sz=4) UpBlock = UpBlockSmallCond if lite else UpBlockBigCond self.feat_8 = UpBlock(nfc[4], nfc[8], z_dim) self.feat_16 = UpBlock(nfc[8], nfc[16], z_dim) self.feat_32 = UpBlock(nfc[16], nfc[32], z_dim) self.feat_64 = UpBlock(nfc[32], nfc[64], z_dim) self.feat_128 = UpBlock(nfc[64], nfc[128], z_dim) self.feat_256 = UpBlock(nfc[128], nfc[256], z_dim) self.se_64 = SEBlock(nfc[4], nfc[64]) self.se_128 = SEBlock(nfc[8], nfc[128]) self.se_256 = SEBlock(nfc[16], nfc[256]) self.to_big = conv2d(nfc[img_resolution], nc, 3, 1, 1, bias=True) if img_resolution > 256: self.feat_512 = UpBlock(nfc[256], nfc[512]) self.se_512 = SEBlock(nfc[32], nfc[512]) if img_resolution > 512: self.feat_1024 = UpBlock(nfc[512], nfc[1024]) self.embed = nn.Embedding(num_classes, z_dim) def forward(self, input, c, update_emas=False): c = self.embed(c.argmax(1)) # map noise to hypersphere as in "Progressive Growing of GANS" input = normalize_second_moment(input[:, 0]) feat_4 = self.init(input) feat_8 = self.feat_8(feat_4, c) feat_16 = self.feat_16(feat_8, c) feat_32 = self.feat_32(feat_16, c) feat_64 = self.se_64(feat_4, self.feat_64(feat_32, c)) feat_128 = self.se_128(feat_8, self.feat_128(feat_64, c)) if self.img_resolution >= 128: feat_last = feat_128 if self.img_resolution >= 256: feat_last = self.se_256(feat_16, self.feat_256(feat_last, c)) if self.img_resolution >= 512: feat_last = self.se_512(feat_32, self.feat_512(feat_last, c)) if self.img_resolution >= 1024: feat_last = self.feat_1024(feat_last, c) return self.to_big(feat_last) class Generator(nn.Module): def __init__( self, z_dim=256, c_dim=0, w_dim=0, img_resolution=256, img_channels=3, ngf=128, cond=0, mapping_kwargs={}, synthesis_kwargs={} ): super().__init__() self.z_dim = z_dim self.c_dim = c_dim self.w_dim = w_dim self.img_resolution = img_resolution self.img_channels = img_channels # Mapping and Synthesis Networks self.mapping = DummyMapping() # to fit the StyleGAN API Synthesis = FastganSynthesisCond if cond else FastganSynthesis self.synthesis = Synthesis(ngf=ngf, z_dim=z_dim, nc=img_channels, img_resolution=img_resolution, **synthesis_kwargs) def forward(self, z, c, **kwargs): w = self.mapping(z, c) img = self.synthesis(w, c) return img
the-stack_0_1266
import webbrowser from liquid import Liquid from pathlib import Path DATA_DIRECTORY = Path.home() / ".acm_dl_data" SEARCH_STRING = "https://dl.acm.org/action/doSearch?LimitedContentGroupKey={key}&pageSize=50&startPage={page_id}" def _ensure_data_directory_exists(sub_dir=None): """Makes sure the data directory exists and returns the data directory path""" if sub_dir: path = DATA_DIRECTORY / sub_dir else: path = DATA_DIRECTORY if not path.exists(): path.mkdir(parents=True) return path def _display_results_html(pattern, search_results): with open(Path(__file__).parent / "templates/search_result.html") as f: ret = Liquid(f).render(tempName = f"Results for : {pattern} (found {len(search_results)})", items = search_results) out_file = _ensure_data_directory_exists("temp") / "search_results.html" with open(out_file, "w") as f: f.write(ret) webbrowser.open("file://" + str(out_file.absolute()))
the-stack_0_1268
""" pygments.formatters.img ~~~~~~~~~~~~~~~~~~~~~~~ Formatter for Pixmap output. :copyright: Copyright 2006-2021 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import os import subprocess import sys from pygments.formatter import Formatter from pygments.util import get_bool_opt from pygments.util import get_choice_opt from pygments.util import get_int_opt from pygments.util import get_list_opt # Import this carefully try: from PIL import Image from PIL import ImageDraw from PIL import ImageFont pil_available = True except ImportError: pil_available = False try: import _winreg except ImportError: try: import winreg as _winreg except ImportError: _winreg = None __all__ = ['ImageFormatter', 'GifImageFormatter', 'JpgImageFormatter', 'BmpImageFormatter'] # For some unknown reason every font calls it something different STYLES = { 'NORMAL': ['', 'Roman', 'Book', 'Normal', 'Regular', 'Medium'], 'ITALIC': ['Oblique', 'Italic'], 'BOLD': ['Bold'], 'BOLDITALIC': ['Bold Oblique', 'Bold Italic'], } # A sane default for modern systems DEFAULT_FONT_NAME_NIX = 'DejaVu Sans Mono' DEFAULT_FONT_NAME_WIN = 'Courier New' DEFAULT_FONT_NAME_MAC = 'Menlo' class PilNotAvailable(ImportError): """When Python imaging library is not available""" class FontNotFound(Exception): """When there are no usable fonts specified""" class FontManager: """ Manages a set of fonts: normal, italic, bold, etc... """ def __init__(self, font_name, font_size=14): self.font_name = font_name self.font_size = font_size self.fonts = {} self.encoding = None if sys.platform.startswith('win'): if not font_name: self.font_name = DEFAULT_FONT_NAME_WIN self._create_win() elif sys.platform.startswith('darwin'): if not font_name: self.font_name = DEFAULT_FONT_NAME_MAC self._create_mac() else: if not font_name: self.font_name = DEFAULT_FONT_NAME_NIX self._create_nix() def _get_nix_font_path(self, name, style): proc = subprocess.Popen(['fc-list', "%s:style=%s" % (name, style), 'file'], stdout=subprocess.PIPE, stderr=None) stdout, _ = proc.communicate() if proc.returncode == 0: lines = stdout.splitlines() for line in lines: if line.startswith(b'Fontconfig warning:'): continue path = line.decode().strip().strip(':') if path: return path return None def _create_nix(self): for name in STYLES['NORMAL']: path = self._get_nix_font_path(self.font_name, name) if path is not None: self.fonts['NORMAL'] = ImageFont.truetype(path, self.font_size) break else: raise FontNotFound('No usable fonts named: "%s"' % self.font_name) for style in ('ITALIC', 'BOLD', 'BOLDITALIC'): for stylename in STYLES[style]: path = self._get_nix_font_path(self.font_name, stylename) if path is not None: self.fonts[style] = ImageFont.truetype(path, self.font_size) break else: if style == 'BOLDITALIC': self.fonts[style] = self.fonts['BOLD'] else: self.fonts[style] = self.fonts['NORMAL'] def _get_mac_font_path(self, font_map, name, style): return font_map.get((name + ' ' + style).strip().lower()) def _create_mac(self): font_map = {} for font_dir in (os.path.join(os.getenv("HOME"), 'Library/Fonts/'), '/Library/Fonts/', '/System/Library/Fonts/'): font_map.update( (os.path.splitext(f)[0].lower(), os.path.join(font_dir, f)) for f in os.listdir(font_dir) if f.lower().endswith(('ttf', 'ttc'))) for name in STYLES['NORMAL']: path = self._get_mac_font_path(font_map, self.font_name, name) if path is not None: self.fonts['NORMAL'] = ImageFont.truetype(path, self.font_size) break else: raise FontNotFound('No usable fonts named: "%s"' % self.font_name) for style in ('ITALIC', 'BOLD', 'BOLDITALIC'): for stylename in STYLES[style]: path = self._get_mac_font_path(font_map, self.font_name, stylename) if path is not None: self.fonts[style] = ImageFont.truetype(path, self.font_size) break else: if style == 'BOLDITALIC': self.fonts[style] = self.fonts['BOLD'] else: self.fonts[style] = self.fonts['NORMAL'] def _lookup_win(self, key, basename, styles, fail=False): for suffix in ('', ' (TrueType)'): for style in styles: try: valname = '%s%s%s' % (basename, style and ' '+style, suffix) val, _ = _winreg.QueryValueEx(key, valname) return val except OSError: continue else: if fail: raise FontNotFound('Font %s (%s) not found in registry' % (basename, styles[0])) return None def _create_win(self): lookuperror = None keynames = [ (_winreg.HKEY_CURRENT_USER, r'Software\Microsoft\Windows NT\CurrentVersion\Fonts'), (_winreg.HKEY_CURRENT_USER, r'Software\Microsoft\Windows\CurrentVersion\Fonts'), (_winreg.HKEY_LOCAL_MACHINE, r'Software\Microsoft\Windows NT\CurrentVersion\Fonts'), (_winreg.HKEY_LOCAL_MACHINE, r'Software\Microsoft\Windows\CurrentVersion\Fonts') ] for keyname in keynames: try: key = _winreg.OpenKey(*keyname) try: path = self._lookup_win(key, self.font_name, STYLES['NORMAL'], True) self.fonts['NORMAL'] = ImageFont.truetype(path, self.font_size) for style in ('ITALIC', 'BOLD', 'BOLDITALIC'): path = self._lookup_win(key, self.font_name, STYLES[style]) if path: self.fonts[style] = ImageFont.truetype(path, self.font_size) else: if style == 'BOLDITALIC': self.fonts[style] = self.fonts['BOLD'] else: self.fonts[style] = self.fonts['NORMAL'] return except FontNotFound as err: lookuperror = err finally: _winreg.CloseKey(key) except OSError: pass else: # If we get here, we checked all registry keys and had no luck # We can be in one of two situations now: # * All key lookups failed. In this case lookuperror is None and we # will raise a generic error # * At least one lookup failed with a FontNotFound error. In this # case, we will raise that as a more specific error if lookuperror: raise lookuperror raise FontNotFound('Can\'t open Windows font registry key') def get_char_size(self): """ Get the character size. """ return self.fonts['NORMAL'].getsize('M') def get_text_size(self, text): """ Get the text size(width, height). """ return self.fonts['NORMAL'].getsize(text) def get_font(self, bold, oblique): """ Get the font based on bold and italic flags. """ if bold and oblique: return self.fonts['BOLDITALIC'] elif bold: return self.fonts['BOLD'] elif oblique: return self.fonts['ITALIC'] else: return self.fonts['NORMAL'] class ImageFormatter(Formatter): """ Create a PNG image from source code. This uses the Python Imaging Library to generate a pixmap from the source code. .. versionadded:: 0.10 Additional options accepted: `image_format` An image format to output to that is recognised by PIL, these include: * "PNG" (default) * "JPEG" * "BMP" * "GIF" `line_pad` The extra spacing (in pixels) between each line of text. Default: 2 `font_name` The font name to be used as the base font from which others, such as bold and italic fonts will be generated. This really should be a monospace font to look sane. Default: "Courier New" on Windows, "Menlo" on Mac OS, and "DejaVu Sans Mono" on \\*nix `font_size` The font size in points to be used. Default: 14 `image_pad` The padding, in pixels to be used at each edge of the resulting image. Default: 10 `line_numbers` Whether line numbers should be shown: True/False Default: True `line_number_start` The line number of the first line. Default: 1 `line_number_step` The step used when printing line numbers. Default: 1 `line_number_bg` The background colour (in "#123456" format) of the line number bar, or None to use the style background color. Default: "#eed" `line_number_fg` The text color of the line numbers (in "#123456"-like format). Default: "#886" `line_number_chars` The number of columns of line numbers allowable in the line number margin. Default: 2 `line_number_bold` Whether line numbers will be bold: True/False Default: False `line_number_italic` Whether line numbers will be italicized: True/False Default: False `line_number_separator` Whether a line will be drawn between the line number area and the source code area: True/False Default: True `line_number_pad` The horizontal padding (in pixels) between the line number margin, and the source code area. Default: 6 `hl_lines` Specify a list of lines to be highlighted. .. versionadded:: 1.2 Default: empty list `hl_color` Specify the color for highlighting lines. .. versionadded:: 1.2 Default: highlight color of the selected style """ # Required by the pygments mapper name = 'img' aliases = ['img', 'IMG', 'png'] filenames = ['*.png'] unicodeoutput = False default_image_format = 'png' def __init__(self, **options): """ See the class docstring for explanation of options. """ if not pil_available: raise PilNotAvailable( 'Python Imaging Library is required for this formatter') Formatter.__init__(self, **options) self.encoding = 'latin1' # let pygments.format() do the right thing # Read the style self.styles = dict(self.style) if self.style.background_color is None: self.background_color = '#fff' else: self.background_color = self.style.background_color # Image options self.image_format = get_choice_opt( options, 'image_format', ['png', 'jpeg', 'gif', 'bmp'], self.default_image_format, normcase=True) self.image_pad = get_int_opt(options, 'image_pad', 10) self.line_pad = get_int_opt(options, 'line_pad', 2) # The fonts fontsize = get_int_opt(options, 'font_size', 14) self.fonts = FontManager(options.get('font_name', ''), fontsize) self.fontw, self.fonth = self.fonts.get_char_size() # Line number options self.line_number_fg = options.get('line_number_fg', '#886') self.line_number_bg = options.get('line_number_bg', '#eed') self.line_number_chars = get_int_opt(options, 'line_number_chars', 2) self.line_number_bold = get_bool_opt(options, 'line_number_bold', False) self.line_number_italic = get_bool_opt(options, 'line_number_italic', False) self.line_number_pad = get_int_opt(options, 'line_number_pad', 6) self.line_numbers = get_bool_opt(options, 'line_numbers', True) self.line_number_separator = get_bool_opt(options, 'line_number_separator', True) self.line_number_step = get_int_opt(options, 'line_number_step', 1) self.line_number_start = get_int_opt(options, 'line_number_start', 1) if self.line_numbers: self.line_number_width = (self.fontw * self.line_number_chars + self.line_number_pad * 2) else: self.line_number_width = 0 self.hl_lines = [] hl_lines_str = get_list_opt(options, 'hl_lines', []) for line in hl_lines_str: try: self.hl_lines.append(int(line)) except ValueError: pass self.hl_color = options.get('hl_color', self.style.highlight_color) or '#f90' self.drawables = [] def get_style_defs(self, arg=''): raise NotImplementedError('The -S option is meaningless for the image ' 'formatter. Use -O style=<stylename> instead.') def _get_line_height(self): """ Get the height of a line. """ return self.fonth + self.line_pad def _get_line_y(self, lineno): """ Get the Y coordinate of a line number. """ return lineno * self._get_line_height() + self.image_pad def _get_char_width(self): """ Get the width of a character. """ return self.fontw def _get_char_x(self, linelength): """ Get the X coordinate of a character position. """ return linelength + self.image_pad + self.line_number_width def _get_text_pos(self, linelength, lineno): """ Get the actual position for a character and line position. """ return self._get_char_x(linelength), self._get_line_y(lineno) def _get_linenumber_pos(self, lineno): """ Get the actual position for the start of a line number. """ return (self.image_pad, self._get_line_y(lineno)) def _get_text_color(self, style): """ Get the correct color for the token from the style. """ if style['color'] is not None: fill = '#' + style['color'] else: fill = '#000' return fill def _get_text_bg_color(self, style): """ Get the correct background color for the token from the style. """ if style['bgcolor'] is not None: bg_color = '#' + style['bgcolor'] else: bg_color = None return bg_color def _get_style_font(self, style): """ Get the correct font for the style. """ return self.fonts.get_font(style['bold'], style['italic']) def _get_image_size(self, maxlinelength, maxlineno): """ Get the required image size. """ return (self._get_char_x(maxlinelength) + self.image_pad, self._get_line_y(maxlineno + 0) + self.image_pad) def _draw_linenumber(self, posno, lineno): """ Remember a line number drawable to paint later. """ self._draw_text( self._get_linenumber_pos(posno), str(lineno).rjust(self.line_number_chars), font=self.fonts.get_font(self.line_number_bold, self.line_number_italic), text_fg=self.line_number_fg, text_bg=None, ) def _draw_text(self, pos, text, font, text_fg, text_bg): """ Remember a single drawable tuple to paint later. """ self.drawables.append((pos, text, font, text_fg, text_bg)) def _create_drawables(self, tokensource): """ Create drawables for the token content. """ lineno = charno = maxcharno = 0 maxlinelength = linelength = 0 for ttype, value in tokensource: while ttype not in self.styles: ttype = ttype.parent style = self.styles[ttype] # TODO: make sure tab expansion happens earlier in the chain. It # really ought to be done on the input, as to do it right here is # quite complex. value = value.expandtabs(4) lines = value.splitlines(True) # print lines for i, line in enumerate(lines): temp = line.rstrip('\n') if temp: self._draw_text( self._get_text_pos(linelength, lineno), temp, font = self._get_style_font(style), text_fg = self._get_text_color(style), text_bg = self._get_text_bg_color(style), ) temp_width, temp_hight = self.fonts.get_text_size(temp) linelength += temp_width maxlinelength = max(maxlinelength, linelength) charno += len(temp) maxcharno = max(maxcharno, charno) if line.endswith('\n'): # add a line for each extra line in the value linelength = 0 charno = 0 lineno += 1 self.maxlinelength = maxlinelength self.maxcharno = maxcharno self.maxlineno = lineno def _draw_line_numbers(self): """ Create drawables for the line numbers. """ if not self.line_numbers: return for p in range(self.maxlineno): n = p + self.line_number_start if (n % self.line_number_step) == 0: self._draw_linenumber(p, n) def _paint_line_number_bg(self, im): """ Paint the line number background on the image. """ if not self.line_numbers: return if self.line_number_fg is None: return draw = ImageDraw.Draw(im) recth = im.size[-1] rectw = self.image_pad + self.line_number_width - self.line_number_pad draw.rectangle([(0, 0), (rectw, recth)], fill=self.line_number_bg) if self.line_number_separator: draw.line([(rectw, 0), (rectw, recth)], fill=self.line_number_fg) del draw def format(self, tokensource, outfile): """ Format ``tokensource``, an iterable of ``(tokentype, tokenstring)`` tuples and write it into ``outfile``. This implementation calculates where it should draw each token on the pixmap, then calculates the required pixmap size and draws the items. """ self._create_drawables(tokensource) self._draw_line_numbers() im = Image.new( 'RGB', self._get_image_size(self.maxlinelength, self.maxlineno), self.background_color ) self._paint_line_number_bg(im) draw = ImageDraw.Draw(im) # Highlight if self.hl_lines: x = self.image_pad + self.line_number_width - self.line_number_pad + 1 recth = self._get_line_height() rectw = im.size[0] - x for linenumber in self.hl_lines: y = self._get_line_y(linenumber - 1) draw.rectangle([(x, y), (x + rectw, y + recth)], fill=self.hl_color) for pos, value, font, text_fg, text_bg in self.drawables: if text_bg: text_size = draw.textsize(text=value, font=font) draw.rectangle([pos[0], pos[1], pos[0] + text_size[0], pos[1] + text_size[1]], fill=text_bg) draw.text(pos, value, font=font, fill=text_fg) im.save(outfile, self.image_format.upper()) # Add one formatter per format, so that the "-f gif" option gives the correct result # when used in pygmentize. class GifImageFormatter(ImageFormatter): """ Create a GIF image from source code. This uses the Python Imaging Library to generate a pixmap from the source code. .. versionadded:: 1.0 """ name = 'img_gif' aliases = ['gif'] filenames = ['*.gif'] default_image_format = 'gif' class JpgImageFormatter(ImageFormatter): """ Create a JPEG image from source code. This uses the Python Imaging Library to generate a pixmap from the source code. .. versionadded:: 1.0 """ name = 'img_jpg' aliases = ['jpg', 'jpeg'] filenames = ['*.jpg'] default_image_format = 'jpeg' class BmpImageFormatter(ImageFormatter): """ Create a bitmap image from source code. This uses the Python Imaging Library to generate a pixmap from the source code. .. versionadded:: 1.0 """ name = 'img_bmp' aliases = ['bmp', 'bitmap'] filenames = ['*.bmp'] default_image_format = 'bmp'
the-stack_0_1270
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2020, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import skbio.stats.ordination import pandas as pd def pcoa(distance_matrix: skbio.DistanceMatrix, number_of_dimensions: int = None) -> skbio.OrdinationResults: if number_of_dimensions is None: # calculate full decomposition using eigh return skbio.stats.ordination.pcoa(distance_matrix, method='eigh', inplace=False) else: # calculate the decomposition only for the `number_of_dimensions` # using fast heuristic eigendecomposition (fsvd) return skbio.stats.ordination.pcoa( distance_matrix, method='fsvd', number_of_dimensions=number_of_dimensions, inplace=True) def pcoa_biplot(pcoa: skbio.OrdinationResults, features: pd.DataFrame) -> skbio.OrdinationResults: return skbio.stats.ordination.pcoa_biplot(pcoa, features)
the-stack_0_1272
import asyncio import json import logging import os.path import random import click import sounddevice as sd import soundfile as sf from chmp.label import write_label, find_unlabeled from chmp.app.kwdetect.aio import detect as _async_detect from chmp.app.kwdetect.util import load_optional_model _logger = logging.getLogger(__name__) @click.group() def main(): pass @main.command() @click.argument('target') @click.option('--model') def detect(target, model): """Continuously detect keywords and save extracted samples to disk.""" loop = asyncio.get_event_loop() # TODO: add better exception handler loop.set_exception_handler(print) loop.run_until_complete(_detect(target, model)) async def _detect(target, model): _logger.info('load model') model = load_optional_model(model) _logger.info('enter detection loop') async for label in _async_detect(model, sample_target=target): print('detected: ', label) @main.command() @click.argument('path') @click.option('--labels') def label(path, labels): """Generate labels in an interactive fashion.""" with open(labels, 'rt') as fobj: labels = json.load(fobj) label_decoding = {int(key): label for label, key in labels.items()} label_decoding[-1] = '<repeat>' unlabeled_files = find_unlabeled(os.path.join(path, '*.ogg')) if not unlabeled_files: print('No files to label :)') return random.shuffle(unlabeled_files) print(f'Found {len(unlabeled_files)} unlabeled files') print('Start labelling ...') while unlabeled_files: try: fname = unlabeled_files.pop() _label_example(fname, label_decoding) except KeyboardInterrupt: print('Stop labelling ...') raise SystemExit(0) print('No more files to label :)') def _label_example(fname, label_decoding): print(f'Processing: {fname}') sample, _ = sf.read(fname) while True: sd.play(sample, blocking=True) label = _get_label_from_user(label_decoding) if label == '<skip>': print('Skip sample') return elif label == '<repeat>': continue else: write_label(fname, label=label, file=os.path.basename(fname)) return def _get_label_from_user(label_decoding): print('Chose label:', ' '.join(f'{label!r} ({code})' for code, label in label_decoding.items())) while True: user_input = input('Label [empty to skip]: > ') if not user_input.strip(): return '<skip>' try: user_input = int(user_input) except ValueError: print('Invalid input ...') else: if user_input not in label_decoding: print('Invalid input ...') continue return label_decoding[user_input] if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main()
the-stack_0_1274
#!/usr/bin/env python # encoding: utf-8 ''' @author: Jason Lee @license: (C) Copyright @ Jason Lee @contact: [email protected] @file: 334.py @time: 2019/6/10 19:14 @desc: ''' class Solution: def increasingTriplet(self, nums: List[int]) -> bool: if len(nums) < 3: return False # first < second < third first = second = float('inf') for i in nums: if i <= first: first = i elif i <= second: # 第二个数比第一个数大 second = i else: return True # 第三个数比前两个都大 return False
the-stack_0_1275
from gi.repository import Gtk import face_functions import face_recognizer import barcode import string import os.path class TableWindow(Gtk.Window): def __init__(self): Gtk.Window.__init__(self, title="FACE RECOGNIZER") self.set_size_request(500, 300) table = Gtk.Table(6, 3, True) self.add(table) hbox = Gtk.Box(spacing=6) self.take_picture_normal = Gtk.Button(label="NORMAL") hbox.pack_start(self.take_picture_normal, True, True, 0) self.take_picture_normal.connect("clicked", self.on_normal_clicked) self.take_picture_happy = Gtk.Button(label="HAPPY") hbox.pack_start(self.take_picture_happy, True, True, 0) self.take_picture_happy.connect("clicked", self.on_happy_clicked) self.take_picture_surprised = Gtk.Button(label="SURPRISED") hbox.pack_start(self.take_picture_surprised, True, True, 0) self.take_picture_surprised.connect("clicked", self.on_surprised_clicked) self.take_picture_wink = Gtk.Button(label="WINK") hbox.pack_start(self.take_picture_wink, True, True, 0) self.take_picture_wink.connect("clicked", self.on_wink_clicked) self.take_picture_sleepy = Gtk.Button(label="SLEEPY") hbox.pack_start(self.take_picture_sleepy, True, True, 0) self.take_picture_sleepy.connect("clicked", self.on_sleepy_clicked) self.take_picture_sad = Gtk.Button(label="SAD") hbox.pack_start(self.take_picture_sad, True, True, 0) self.take_picture_sad.connect("clicked", self.on_sad_clicked) self.Entry_ID = Gtk.Entry() self.Entry_ID.set_text("Enter your ID") Detection_Button = Gtk.Button(label="Start Detector") Detection_Button.connect("clicked", self.on_start_clicked) Label_Admin = Gtk.Label("Admin Menu") Label_User = Gtk.Label("User Menu") table.attach(self.Entry_ID, 0, 1, 1, 2) table.attach(hbox, 1, 3, 1, 2) table.attach(Detection_Button, 0, 3, 3, 6) table.attach(Label_Admin, 0, 3, 0, 1) table.attach(Label_User, 0, 3, 2, 3) def on_start_clicked(self, button): self.recognizer = face_recognizer.train_recognizer("./Database") img = face_functions.snap() predicted,conf = face_recognizer.recognize_face(self.recognizer, img) if(predicted==-1 or conf>50): message = Gtk.MessageDialog(self, 0, Gtk.MessageType.WARNING,Gtk.ButtonsType.CANCEL, "Face not recognized.") message.run() message.destroy() return message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.CANCEL, "Face recognized!") message.format_secondary_text("Recognized as subject "+str(predicted)+" with a doubt rating of "+str(conf)) message.run() message.destroy() d_barcode = barcode.get_barcode(img) if (len(d_barcode)>0): d_barcode=self.trim_barcode(d_barcode[0]) message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.CANCEL, "Barcode Detection") print(predicted) print("Barcode data found in this picture: " + str(d_barcode)) if (len(d_barcode)==0): message.format_secondary_text("Barcode not detected.") elif (int(predicted)==int(d_barcode)): message.format_secondary_text("Barcode detected:" + d_barcode + "\nMatches with face.") else: message.format_secondary_text("Barcode detected:" + d_barcode + "\nDoes not match face.") message.run() message.destroy() #print("\"Click me\" button was clicked") def id_is_valid(self): text = self.Entry_ID.get_text() if len(text)!=7: error_message = Gtk.MessageDialog(self, 0, Gtk.MessageType.ERROR,Gtk.ButtonsType.CANCEL, "ID must be exactly 7 digits long!") error_message.run() error_message.destroy() return False for ch in text: if(ch not in string.digits): error_message = Gtk.MessageDialog(self, 0, Gtk.MessageType.ERROR,Gtk.ButtonsType.CANCEL, "ID must contain numbers only!") error_message.run() error_message.destroy() return False return True def trim_barcode(self, barcode): return barcode[:7] def on_normal_clicked(self, button): if(self.id_is_valid()): face_functions.take_picture("./Database/subject"+self.Entry_ID.get_text()+".normal.png") if(os.path.isfile("./Database/subject"+self.Entry_ID.get_text()+".normal.png")): message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.OK, "Picture taken") message.run() message.destroy() else: message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.OK, "Error saving file - try again!") message.run() message.destroy() def on_happy_clicked(self, button): if(self.id_is_valid()): face_functions.take_picture("./Database/subject"+self.Entry_ID.get_text()+".happy.png") if(os.path.isfile("./Database/subject"+self.Entry_ID.get_text()+".happy.png")): message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.OK, "Picture taken") message.run() message.destroy() else: message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.OK, "Error saving file - try again!") message.run() message.destroy() def on_surprised_clicked(self, button): if(self.id_is_valid()): face_functions.take_picture("./Database/subject"+self.Entry_ID.get_text()+".surprised.png") if(os.path.isfile("./Database/subject"+self.Entry_ID.get_text()+".surprised.png")): message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.OK, "Picture taken") message.run() message.destroy() else: message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.OK, "Error saving file - try again!") message.run() message.destroy() def on_wink_clicked(self, button): if(self.id_is_valid()): face_functions.take_picture("./Database/subject"+self.Entry_ID.get_text()+".wink.png") if(os.path.isfile("./Database/subject"+self.Entry_ID.get_text()+".wink.png")): message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.OK, "Picture taken") message.run() message.destroy() else: message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.OK, "Error saving file - try again!") message.run() message.destroy() def on_sleepy_clicked(self, button): if(self.id_is_valid()): face_functions.take_picture("./Database/subject"+self.Entry_ID.get_text()+".sleepy.png") if(os.path.isfile("./Database/subject"+self.Entry_ID.get_text()+".sleepy.png")): message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.OK, "Picture taken") message.run() message.destroy() else: message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.OK, "Error saving file - try again!") message.run() message.destroy() def on_sad_clicked(self, button): if(self.id_is_valid()): face_functions.take_picture("./Database/subject"+self.Entry_ID.get_text()+".sad.png") if(os.path.isfile("./Database/subject"+self.Entry_ID.get_text()+".sad.png")): message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.OK, "Picture taken") message.run() message.destroy() else: message = Gtk.MessageDialog(self, 0, Gtk.MessageType.INFO,Gtk.ButtonsType.OK, "Error saving file - try again!") message.run() message.destroy() win = TableWindow() win.connect("delete-event", Gtk.main_quit) win.show_all() Gtk.main()
the-stack_0_1276
import numpy as np import tensorflow as tf import yolo.config as cfg import tensorflow.contrib.slim as slim #slim = tf.contrib.slim class YOLONet(object): def __init__(self, is_training=True): self.classes = cfg.CLASSES self.num_class = len(self.classes) self.image_size = cfg.IMAGE_SIZE self.cell_size = cfg.CELL_SIZE self.boxes_per_cell = cfg.BOXES_PER_CELL self.output_size = (self.cell_size * self.cell_size) *\ (self.num_class + self.boxes_per_cell * 5) self.scale = 1.0 * self.image_size / self.cell_size # 7*7*20(表示类别)转换为相应的矩阵形式 (类别向量) self.boundary1 = self.cell_size * self.cell_size * self.num_class # + 7*7*2 转换为相应的矩阵形式 (尺度向量) self.boundary2 = self.boundary1 +\ self.cell_size * self.cell_size * self.boxes_per_cell self.object_scale = cfg.OBJECT_SCALE self.noobject_scale = cfg.NOOBJECT_SCALE self.class_scale = cfg.CLASS_SCALE self.coord_scale = cfg.COORD_SCALE self.learning_rate = cfg.LEARNING_RATE self.batch_size = cfg.BATCH_SIZE self.alpha = cfg.ALPHA self.offset = np.transpose(np.reshape(np.array( [np.arange(self.cell_size)] * self.cell_size * self.boxes_per_cell), (self.boxes_per_cell, self.cell_size, self.cell_size)), (1, 2, 0) ) self.images = tf.placeholder( tf.float32, [None, self.image_size, self.image_size, 3], name='images' ) self.logits = self.build_network( self.images, num_outputs=self.output_size, alpha=self.alpha, is_training=is_training ) if is_training: self.labels = tf.placeholder( tf.float32, [None, self.cell_size, self.cell_size, 5 + self.num_class] ) self.loss_layer(self.logits, self.labels) self.total_loss = tf.losses.get_total_loss() tf.summary.scalar('total_loss', self.total_loss) def build_network(self, images, num_outputs, alpha, keep_prob=0.5, is_training=True, scope='yolo'): with tf.variable_scope(scope): with slim.arg_scope( [slim.conv2d, slim.fully_connected], activation_fn=leaky_relu(alpha), weights_regularizer=slim.l2_regularizer(0.0005), weights_initializer=tf.truncated_normal_initializer(0.0, 0.01) ): # conv2d(input, num_output, filter_size, stride=1, padding='SAME') # maxpool(input, kernel_size, stride=2, padding='VAILD') net = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, 0]]), name='pad_1') net = slim.conv2d(net, 64, 7, 2, padding='VALID', scope='conv_2') net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_3') net = slim.conv2d(net, 192, 3, scope='conv_4') net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_5') net = slim.conv2d(net, 128, 1, scope='conv_6') net = slim.conv2d(net, 256, 3, scope='conv_7') net = slim.conv2d(net, 256, 1, scope='conv_8') net = slim.conv2d(net, 512, 3, scope='conv_9') net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_10') net = slim.conv2d(net, 256, 1, scope='conv_11') net = slim.conv2d(net, 512, 3, scope='conv_12') net = slim.conv2d(net, 256, 1, scope='conv_13') net = slim.conv2d(net, 512, 3, scope='conv_14') net = slim.conv2d(net, 256, 1, scope='conv_15') net = slim.conv2d(net, 512, 3, scope='conv_16') net = slim.conv2d(net, 256, 1, scope='conv_17') net = slim.conv2d(net, 512, 3, scope='conv_18') net = slim.conv2d(net, 512, 1, scope='conv_19') net = slim.conv2d(net, 1024, 3, scope='conv_20') net = slim.max_pool2d(net, 2, padding='SAME', scope='pool_21') net = slim.conv2d(net, 512, 1, scope='conv_22') net = slim.conv2d(net, 1024, 3, scope='conv_23') net = slim.conv2d(net, 512, 1, scope='conv_24') net = slim.conv2d(net, 1024, 3, scope='conv_25') net = slim.conv2d(net, 1024, 3, scope='conv_26') net = tf.pad( net, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]), name='pad_27') net = slim.conv2d( net, 1024, 3, 2, padding='VALID', scope='conv_28') net = slim.conv2d(net, 1024, 3, scope='conv_29') net = slim.conv2d(net, 1024, 3, scope='conv_30') net = tf.transpose(net, [0, 3, 1, 2], name='trans_31') net = slim.flatten(net, scope='flat_32') net = slim.fully_connected(net, 512, scope='fc_33') net = slim.fully_connected(net, 4096, scope='fc_34') net = slim.dropout( net, keep_prob=keep_prob, is_training=is_training, scope='dropout_35') net = slim.fully_connected( net, num_outputs, activation_fn=None, scope='fc_36') return net def calc_iou(self, boxes1, boxes2, scope='iou'): """calculate ious Args: boxes1: 5-D tensor [BATCH_SIZE, CELL_SIZE, CELL_SIZE, BOXES_PER_CELL, 4] => (x_center, y_center, w, h) boxes2: 5-D tensor [BATCH_SIZE, CELL_SIZE, CELL_SIZE, BOXES_PER_CELL, 4] => (x_center, y_center, w, h) Return: iou: 4-D tensor [BATCH_SIZE, CELL_SIZE, CELL_SIZE, BOXES_PER_CELL] 这里没有极大值抑制,raw output """ with tf.variable_scope(scope): # transform (x_center, y_center, w, h) to (x1, y1, x2, y2) # stack 可以从n维变成n+1维,给最后一维加箱子,再叠起来 boxes1_t = tf.stack([boxes1[..., 0] - boxes1[..., 2] / 2.0, boxes1[..., 1] - boxes1[..., 3] / 2.0, boxes1[..., 0] + boxes1[..., 2] / 2.0, boxes1[..., 1] + boxes1[..., 3] / 2.0], axis=-1) boxes2_t = tf.stack([boxes2[..., 0] - boxes2[..., 2] / 2.0, boxes2[..., 1] - boxes2[..., 3] / 2.0, boxes2[..., 0] + boxes2[..., 2] / 2.0, boxes2[..., 1] + boxes2[..., 3] / 2.0], axis=-1) # calculate the left up point & right down point # 我觉得这里找的是intersection的左下角和右上角! lu = tf.maximum(boxes1_t[..., :2], boxes2_t[..., :2]) rd = tf.minimum(boxes1_t[..., 2:], boxes2_t[..., 2:]) # intersection intersection = tf.maximum(0.0, rd - lu) inter_square = intersection[..., 0] * intersection[..., 1] # calculate the boxs1 square and boxs2 square # 未变换前的w * h square1 = boxes1[..., 2] * boxes1[..., 3] square2 = boxes2[..., 2] * boxes2[..., 3] union_square = tf.maximum(square1 + square2 - inter_square, 1e-10) return tf.clip_by_value(inter_square / union_square, 0.0, 1.0) def loss_layer(self, predicts, labels, scope='loss_layer'): """ :param predicts: 卷积后得到的tensor :param labels: 待解码的真实标注 :param scope: :return: loss """ with tf.variable_scope(scope): # 类别向量 shape为(45, 7, 7, 20) # 这里的classes是20种类型的概率值, C个条件概率: P(Class_i | Object) predict_classes = tf.reshape( predicts[:, :self.boundary1], [self.batch_size, self.cell_size, self.cell_size, self.num_class] ) # 是confidence-score shape为(45, 7, 7, 2) predict_scales = tf.reshape( predicts[:, self.boundary1:self.boundary2], [self.batch_size, self.cell_size, self.cell_size, self.boxes_per_cell] ) # boxes 所在的位置坐标 shape为(45, 7, 7, 2, 4) predict_boxes = tf.reshape( predicts[:, self.boundary2:], [self.batch_size, self.cell_size, self.cell_size, self.boxes_per_cell, 4] ) # 将真实的 labels 转换为相应的矩阵形式 # response是7*7的矩阵,除了目标中心所在网格对应位置为1,其余为0 # response = 1_obj_i response = tf.reshape( labels[..., 0], [self.batch_size, self.cell_size, self.cell_size, 1] ) # 定位 boxes = tf.reshape( labels[..., 1:5], [self.batch_size, self.cell_size, self.cell_size, 1, 4] ) # boxes 所在的位置坐标 shape (45, 7, 7, 2, 4) boxes = tf.tile(boxes, [1, 1, 1, self.boxes_per_cell, 1]) / self.image_size # 对类别信息进行one-hot编码,除了实际目标类别为1,其余为0 ??? classes = labels[..., 5:] offset = tf.reshape( tf.constant(self.offset, dtype=tf.float32), [1, self.cell_size, self.cell_size, self.boxes_per_cell] ) offset = tf.tile(offset, [self.batch_size, 1, 1, 1]) offset_tran = tf.transpose(offset, (0, 2, 1, 3)) # shape为 [batch_size, 7, 7, 2, 4] # 给中心点加offset predict_boxes_tran = tf.stack( [(predict_boxes[..., 0] + offset) / self.cell_size, (predict_boxes[..., 1] + offset_tran) / self.cell_size, tf.square(predict_boxes[..., 2]), tf.square(predict_boxes[..., 3])], axis=-1 ) # shape: batch*7*7*2 iou_predict_truth = self.calc_iou(predict_boxes_tran, boxes) # calculate I tensor [BATCH_SIZE, CELL_SIZE, CELL_SIZE, BOXES_PER_CELL] # 1_obj_ij: 第i格子,第j个bbox是否有obj # object_mask是response加强版,在格子中细分bbox object_mask = tf.reduce_max(iou_predict_truth, 3, keep_dims=True) # response是Pr(object)(是否有obj,01matrix) 在这里把这个值乘上放进object_mask里,后面就只用考虑IoU了 object_mask = tf.cast((iou_predict_truth >= object_mask), tf.float32) * response # calculate no_I tensor [BATCH_SIZE, CELL_SIZE, CELL_SIZE, BOXES_PER_CELL] # 全1矩阵减1,剩下的1就是noobject noobject_mask = tf.ones_like(object_mask, dtype=tf.float32) - object_mask # 参数中加上平方根是对 w 和 h 进行开平方操作,原因在论文中有说明 # shape为(4, batch_size, 7, 7, 2) boxes_tran = tf.stack( [boxes[..., 0] * self.cell_size - offset, boxes[..., 1] * self.cell_size - offset_tran, tf.sqrt(boxes[..., 2]), tf.sqrt(boxes[..., 3])], axis=-1 ) # 类别损失,predict是概率,classes是one-hot的label class_delta = response * (predict_classes - classes) class_loss = tf.reduce_mean( tf.reduce_sum(tf.square(class_delta), axis=[1, 2, 3]), name='class_loss') * self.class_scale # 置信度损失 # object_loss object_delta = object_mask * (predict_scales - iou_predict_truth) object_loss = tf.reduce_mean( tf.reduce_sum(tf.square(object_delta), axis=[1, 2, 3]), name='object_loss') * self.object_scale # noobject_loss noobject_delta = noobject_mask * predict_scales noobject_loss = tf.reduce_mean( tf.reduce_sum(tf.square(noobject_delta), axis=[1, 2, 3]), name='noobject_loss') * self.noobject_scale # coord_loss,也要用到object_mask! coord_mask = tf.expand_dims(object_mask, 4) boxes_delta = coord_mask * (predict_boxes - boxes_tran) coord_loss = tf.reduce_mean( tf.reduce_sum(tf.square(boxes_delta), axis=[1, 2, 3, 4]), name='coord_loss') * self.coord_scale tf.losses.add_loss(class_loss) tf.losses.add_loss(object_loss) tf.losses.add_loss(noobject_loss) tf.losses.add_loss(coord_loss) tf.summary.scalar('class_loss', class_loss) tf.summary.scalar('object_loss', object_loss) tf.summary.scalar('noobject_loss', noobject_loss) tf.summary.scalar('coord_loss', coord_loss) tf.summary.histogram('boxes_delta_x', boxes_delta[..., 0]) tf.summary.histogram('boxes_delta_y', boxes_delta[..., 1]) tf.summary.histogram('boxes_delta_w', boxes_delta[..., 2]) tf.summary.histogram('boxes_delta_h', boxes_delta[..., 3]) tf.summary.histogram('iou', iou_predict_truth) def leaky_relu(alpha): def op(inputs): return tf.nn.leaky_relu(inputs, alpha=alpha, name='leaky_relu') return op
the-stack_0_1277
""" Functions that can are used to modify XBlock fragments for use in the LMS and Studio """ import datetime import hashlib import json import logging import re import uuid import markupsafe import webpack_loader.utils from django.conf import settings from django.contrib.auth.models import User # lint-amnesty, pylint: disable=imported-auth-user from django.contrib.staticfiles.storage import staticfiles_storage from django.urls import reverse from django.utils.html import escape from edx_django_utils.plugins import pluggable_override from lxml import etree, html from opaque_keys.edx.asides import AsideUsageKeyV1, AsideUsageKeyV2 from pytz import UTC from web_fragments.fragment import Fragment from xblock.core import XBlock from xblock.exceptions import InvalidScopeError from xblock.scorable import ScorableXBlockMixin from common.djangoapps import static_replace from common.djangoapps.edxmako.shortcuts import render_to_string from xmodule.seq_module import SequenceBlock from xmodule.util.xmodule_django import add_webpack_to_fragment from xmodule.vertical_block import VerticalBlock from xmodule.x_module import ( PREVIEW_VIEWS, STUDENT_VIEW, STUDIO_VIEW, XModule, XModuleDescriptor, shim_xmodule_js, ) log = logging.getLogger(__name__) def wrap_fragment(fragment, new_content): """ Returns a new Fragment that has `new_content` and all as its content, and all of the resources from fragment """ wrapper_frag = Fragment(content=new_content) wrapper_frag.add_fragment_resources(fragment) return wrapper_frag def request_token(request): """ Return a unique token for the supplied request. This token will be the same for all calls to `request_token` made on the same request object. """ # pylint: disable=protected-access if not hasattr(request, '_xblock_token'): request._xblock_token = uuid.uuid1().hex return request._xblock_token def wrap_xblock( runtime_class, block, view, frag, context, usage_id_serializer, request_token, # pylint: disable=redefined-outer-name display_name_only=False, extra_data=None ): """ Wraps the results of rendering an XBlock view in a standard <section> with identifying data so that the appropriate javascript module can be loaded onto it. :param runtime_class: The name of the javascript runtime class to use to load this block :param block: An XBlock (that may be an XModule or XModuleDescriptor) :param view: The name of the view that rendered the fragment being wrapped :param frag: The :class:`Fragment` to be wrapped :param context: The context passed to the view being rendered :param usage_id_serializer: A function to serialize the block's usage_id for use by the front-end Javascript Runtime. :param request_token: An identifier that is unique per-request, so that only xblocks rendered as part of this request will have their javascript initialized. :param display_name_only: If true, don't render the fragment content at all. Instead, just render the `display_name` of `block` :param extra_data: A dictionary with extra data values to be set on the wrapper """ if extra_data is None: extra_data = {} # If any mixins have been applied, then use the unmixed class class_name = getattr(block, 'unmixed_class', block.__class__).__name__ data = {} data.update(extra_data) if context: data.update(context.get('wrap_xblock_data', {})) css_classes = [ 'xblock', f'xblock-{markupsafe.escape(view)}', 'xblock-{}-{}'.format( markupsafe.escape(view), markupsafe.escape(block.scope_ids.block_type), ) ] if view == STUDENT_VIEW and getattr(block, 'HIDDEN', False): css_classes.append('is-hidden') if isinstance(block, (XModule, XModuleDescriptor)) or getattr(block, 'uses_xmodule_styles_setup', False): if view in PREVIEW_VIEWS: # The block is acting as an XModule css_classes.append('xmodule_display') elif view == STUDIO_VIEW: # The block is acting as an XModuleDescriptor css_classes.append('xmodule_edit') css_classes.append('xmodule_' + markupsafe.escape(class_name)) if isinstance(block, (XModule, XModuleDescriptor)): data['type'] = block.js_module_name shim_xmodule_js(frag, block.js_module_name) if frag.js_init_fn: data['init'] = frag.js_init_fn data['runtime-class'] = runtime_class data['runtime-version'] = frag.js_init_version data['block-type'] = block.scope_ids.block_type data['usage-id'] = usage_id_serializer(block.scope_ids.usage_id) data['request-token'] = request_token data['graded'] = getattr(block, 'graded', False) data['has-score'] = getattr(block, 'has_score', False) if block.name: data['name'] = block.name template_context = { 'content': block.display_name if display_name_only else frag.content, 'classes': css_classes, 'display_name': block.display_name_with_default_escaped, # xss-lint: disable=python-deprecated-display-name 'data_attributes': ' '.join(f'data-{markupsafe.escape(key)}="{markupsafe.escape(value)}"' for key, value in data.items()), } if hasattr(frag, 'json_init_args') and frag.json_init_args is not None: template_context['js_init_parameters'] = frag.json_init_args else: template_context['js_init_parameters'] = "" if isinstance(block, (XModule, XModuleDescriptor)): # Add the webpackified asset tags add_webpack_to_fragment(frag, class_name) return wrap_fragment(frag, render_to_string('xblock_wrapper.html', template_context)) def wrap_xblock_aside( runtime_class, aside, view, frag, context, # pylint: disable=unused-argument usage_id_serializer, request_token, # pylint: disable=redefined-outer-name extra_data=None, extra_classes=None ): """ Wraps the results of rendering an XBlockAside view in a standard <section> with identifying data so that the appropriate javascript module can be loaded onto it. :param runtime_class: The name of the javascript runtime class to use to load this block :param aside: An XBlockAside :param view: The name of the view that rendered the fragment being wrapped :param frag: The :class:`Fragment` to be wrapped :param context: The context passed to the view being rendered :param usage_id_serializer: A function to serialize the block's usage_id for use by the front-end Javascript Runtime. :param request_token: An identifier that is unique per-request, so that only xblocks rendered as part of this request will have their javascript initialized. :param extra_data: A dictionary with extra data values to be set on the wrapper :param extra_classes: A list with extra classes to be set on the wrapper element """ if extra_data is None: extra_data = {} data = {} data.update(extra_data) css_classes = [ f'xblock-{markupsafe.escape(view)}', 'xblock-{}-{}'.format( markupsafe.escape(view), markupsafe.escape(aside.scope_ids.block_type), ), 'xblock_asides-v1' ] if extra_classes: css_classes.extend(extra_classes) if frag.js_init_fn: data['init'] = frag.js_init_fn data['runtime-class'] = runtime_class data['runtime-version'] = frag.js_init_version data['block-type'] = aside.scope_ids.block_type data['usage-id'] = usage_id_serializer(aside.scope_ids.usage_id) data['request-token'] = request_token template_context = { 'content': frag.content, 'classes': css_classes, 'data_attributes': ' '.join(f'data-{markupsafe.escape(key)}="{markupsafe.escape(value)}"' for key, value in data.items()), } if hasattr(frag, 'json_init_args') and frag.json_init_args is not None: template_context['js_init_parameters'] = frag.json_init_args else: template_context['js_init_parameters'] = "" return wrap_fragment(frag, render_to_string('xblock_wrapper.html', template_context)) def replace_jump_to_id_urls(course_id, jump_to_id_base_url, block, view, frag, context): # pylint: disable=unused-argument """ This will replace a link between courseware in the format /jump_to_id/<id> with a URL for a page that will correctly redirect This is similar to replace_course_urls, but much more flexible and durable for Studio authored courses. See more comments in static_replace.replace_jump_to_urls course_id: The course_id in which this rewrite happens jump_to_id_base_url: A app-tier (e.g. LMS) absolute path to the base of the handler that will perform the redirect. e.g. /courses/<org>/<course>/<run>/jump_to_id. NOTE the <id> will be appended to the end of this URL at re-write time output: a new :class:`~web_fragments.fragment.Fragment` that modifies `frag` with content that has been update with /jump_to_id links replaced """ return wrap_fragment(frag, static_replace.replace_jump_to_id_urls(frag.content, course_id, jump_to_id_base_url)) def replace_course_urls(course_id, block, view, frag, context): # pylint: disable=unused-argument """ Updates the supplied module with a new get_html function that wraps the old get_html function and substitutes urls of the form /course/... with urls that are /courses/<course_id>/... """ return wrap_fragment(frag, static_replace.replace_course_urls(frag.content, course_id)) def replace_static_urls(data_dir, block, view, frag, context, course_id=None, static_asset_path=''): # pylint: disable=unused-argument """ Updates the supplied module with a new get_html function that wraps the old get_html function and substitutes urls of the form /static/... with urls that are /static/<prefix>/... """ return wrap_fragment(frag, static_replace.replace_static_urls( frag.content, data_dir, course_id, static_asset_path=static_asset_path )) def grade_histogram(module_id): ''' Print out a histogram of grades on a given problem in staff member debug info. Warning: If a student has just looked at an xmodule and not attempted it, their grade is None. Since there will always be at least one such student this function almost always returns []. ''' from django.db import connection cursor = connection.cursor() query = """\ SELECT courseware_studentmodule.grade, COUNT(courseware_studentmodule.student_id) FROM courseware_studentmodule WHERE courseware_studentmodule.module_id=%s GROUP BY courseware_studentmodule.grade""" # Passing module_id this way prevents sql-injection. cursor.execute(query, [str(module_id)]) grades = list(cursor.fetchall()) grades.sort(key=lambda x: x[0]) # Add ORDER BY to sql query? if len(grades) >= 1 and grades[0][0] is None: return [] return grades def sanitize_html_id(html_id): """ Template uses element_id in js function names, so can't allow dashes and colons. """ sanitized_html_id = re.sub(r'[:-]', '_', html_id) return sanitized_html_id def add_staff_markup(user, disable_staff_debug_info, block, view, frag, context): # pylint: disable=unused-argument """ Updates the supplied module with a new get_html function that wraps the output of the old get_html function with additional information for admin users only, including a histogram of student answers, the definition of the xmodule, and a link to view the module in Studio if it is a Studio edited, mongo stored course. Does nothing if module is a SequenceBlock. """ if context and context.get('hide_staff_markup', False): # If hide_staff_markup is passed, don't add the markup return frag # TODO: make this more general, eg use an XModule attribute instead if isinstance(block, VerticalBlock) and (not context or not context.get('child_of_vertical', False)): return frag if isinstance(block, SequenceBlock) or getattr(block, 'HIDDEN', False): return frag block_id = block.location if block.has_score and settings.FEATURES.get('DISPLAY_HISTOGRAMS_TO_STAFF'): histogram = grade_histogram(block_id) render_histogram = len(histogram) > 0 else: histogram = None render_histogram = False if settings.FEATURES.get('ENABLE_LMS_MIGRATION') and hasattr(block.runtime, 'filestore'): [filepath, filename] = getattr(block, 'xml_attributes', {}).get('filename', ['', None]) osfs = block.runtime.filestore if filename is not None and osfs.exists(filename): # if original, unmangled filename exists then use it (github # doesn't like symlinks) filepath = filename data_dir = block.static_asset_path or osfs.root_path.rsplit('/')[-1] giturl = block.giturl or 'https://github.com/MITx' edit_link = f"{giturl}/{data_dir}/tree/master/{filepath}" else: edit_link = False # Need to define all the variables that are about to be used giturl = "" data_dir = "" source_file = block.source_file # source used to generate the problem XML, eg latex or word # Useful to indicate to staff if problem has been released or not. # TODO (ichuang): use _has_access_descriptor.can_load in lms.courseware.access, # instead of now>mstart comparison here. now = datetime.datetime.now(UTC) is_released = "unknown" mstart = block.start if mstart is not None: is_released = "<font color='red'>Yes!</font>" if (now > mstart) else "<font color='green'>Not yet</font>" field_contents = [] for name, field in block.fields.items(): try: field_contents.append((name, field.read_from(block))) except InvalidScopeError: log.warning("Unable to read field in Staff Debug information", exc_info=True) field_contents.append((name, "WARNING: Unable to read field")) staff_context = { 'fields': field_contents, 'xml_attributes': getattr(block, 'xml_attributes', {}), 'tags': block._class_tags, # pylint: disable=protected-access 'location': block.location, 'xqa_key': block.xqa_key, 'source_file': source_file, 'source_url': f'{giturl}/{data_dir}/tree/master/{source_file}', 'category': str(block.__class__.__name__), 'element_id': sanitize_html_id(block.location.html_id()), 'edit_link': edit_link, 'user': user, 'xqa_server': settings.FEATURES.get('XQA_SERVER', "http://your_xqa_server.com"), 'histogram': json.dumps(histogram), 'render_histogram': render_histogram, 'block_content': frag.content, 'is_released': is_released, 'can_reset_attempts': 'attempts' in block.fields, 'can_rescore_problem': hasattr(block, 'rescore'), 'can_override_problem_score': isinstance(block, ScorableXBlockMixin), 'disable_staff_debug_info': disable_staff_debug_info, } if isinstance(block, ScorableXBlockMixin): staff_context['max_problem_score'] = block.max_score() return wrap_fragment(frag, render_to_string("staff_problem_info.html", staff_context)) def get_course_update_items(course_updates, provided_index=0): """ Returns list of course_updates data dictionaries either from new format if available or from old. This function don't modify old data to new data (in db), instead returns data in common old dictionary format. New Format: {"items" : [{"id": computed_id, "date": date, "content": html-string}], "data": "<ol>[<li><h2>date</h2>content</li>]</ol>"} Old Format: {"data": "<ol>[<li><h2>date</h2>content</li>]</ol>"} """ def _course_info_content(html_parsed): """ Constructs the HTML for the course info update, not including the header. """ if len(html_parsed) == 1: # could enforce that update[0].tag == 'h2' content = html_parsed[0].tail else: content = html_parsed[0].tail if html_parsed[0].tail is not None else "" content += "\n".join([html.tostring(ele).decode('utf-8') for ele in html_parsed[1:]]) return content if course_updates and getattr(course_updates, "items", None): if provided_index and 0 < provided_index <= len(course_updates.items): return course_updates.items[provided_index - 1] else: # return list in reversed order (old format: [4,3,2,1]) for compatibility return list(reversed(course_updates.items)) course_update_items = [] if course_updates: # old method to get course updates # purely to handle free formed updates not done via editor. Actually kills them, but at least doesn't break. try: course_html_parsed = html.fromstring(course_updates.data) except (etree.XMLSyntaxError, etree.ParserError): log.error("Cannot parse: " + course_updates.data) # lint-amnesty, pylint: disable=logging-not-lazy escaped = escape(course_updates.data) # xss-lint: disable=python-concat-html course_html_parsed = html.fromstring("<ol><li>" + escaped + "</li></ol>") # confirm that root is <ol>, iterate over <li>, pull out <h2> subs and then rest of val if course_html_parsed.tag == 'ol': # 0 is the newest for index, update in enumerate(course_html_parsed): if len(update) > 0: content = _course_info_content(update) # make the id on the client be 1..len w/ 1 being the oldest and len being the newest computed_id = len(course_html_parsed) - index payload = { "id": computed_id, "date": update.findtext("h2"), "content": content } if provided_index == 0: course_update_items.append(payload) elif provided_index == computed_id: return payload return course_update_items def xblock_local_resource_url(block, uri): """ Returns the URL for an XBlock's local resource. Note: when running with the full Django pipeline, the file will be accessed as a static asset which will use a CDN in production. """ xblock_class = getattr(block.__class__, 'unmixed_class', block.__class__) if settings.PIPELINE['PIPELINE_ENABLED'] or not settings.REQUIRE_DEBUG: return staticfiles_storage.url('xblock/resources/{package_name}/{path}'.format( package_name=xblock_resource_pkg(xblock_class), path=uri )) else: return reverse('xblock_resource_url', kwargs={ 'block_type': block.scope_ids.block_type, 'uri': uri, }) def xblock_resource_pkg(block): """ Return the module name needed to find an XBlock's shared static assets. This method will return the full module name that is one level higher than the one the block is in. For instance, problem_builder.answer.AnswerBlock has a __module__ value of 'problem_builder.answer'. This method will return 'problem_builder' instead. However, for edx-ora2's openassessment.xblock.openassessmentblock.OpenAssessmentBlock, the value returned is 'openassessment.xblock'. XModules are special cased because they're local to this repo and they actually don't share their resource files when compiled out as part of the XBlock asset pipeline. This only covers XBlocks and XModules using the XBlock-style of asset specification. If they use the XModule bundling part of the asset pipeline (xmodule_assets), their assets are compiled through an entirely separate mechanism and put into lms-modules.js/css. """ # XModules are a special case because they map to different dirs for # sub-modules. module_name = block.__module__ if module_name.startswith('xmodule.'): return module_name return module_name.rsplit('.', 1)[0] def is_xblock_aside(usage_key): """ Returns True if the given usage key is for an XBlock aside Args: usage_key (opaque_keys.edx.keys.UsageKey): A usage key Returns: bool: Whether or not the usage key is an aside key type """ return isinstance(usage_key, (AsideUsageKeyV1, AsideUsageKeyV2)) def get_aside_from_xblock(xblock, aside_type): """ Gets an instance of an XBlock aside from the XBlock that it's decorating. This also configures the aside instance with the runtime and fields of the given XBlock. Args: xblock (xblock.core.XBlock): The XBlock that the desired aside is decorating aside_type (str): The aside type Returns: xblock.core.XBlockAside: Instance of an xblock aside """ return xblock.runtime.get_aside_of_type(xblock, aside_type) def hash_resource(resource): """ Hash a :class:`web_fragments.fragment.FragmentResource Those hash values are used to avoid loading the resources multiple times. """ md5 = hashlib.md5() for data in resource: if isinstance(data, bytes): md5.update(data) elif isinstance(data, str): md5.update(data.encode('utf-8')) else: md5.update(repr(data).encode('utf-8')) return md5.hexdigest() @pluggable_override('OVERRIDE_GET_UNIT_ICON') def get_icon(block): """ A function that returns the CSS class representing an icon to use for this particular XBlock (in the courseware navigation bar). Mostly used for Vertical/Unit XBlocks. It can be overridden by setting `GET_UNIT_ICON_IMPL` to an alternative implementation. """ return block.get_icon_class()
the-stack_0_1278
import subprocess, os, re from mycroft import MycroftSkill, intent_handler class SystemControl(MycroftSkill): def __init__(self): MycroftSkill.__init__(self) self.log.info("System Control Skill loaded") @intent_handler('ShutDown.intent') def handle_shut_down_intent(self, message): self.speak_dialog('shutdown') @intent_handler('OpenApp.intent') def handle_open_app_intent(self, message): app_name = message.data.get('app') ls = subprocess.run(['ls ~/.local/share/applications/*.desktop'], shell=True, stdout=subprocess.PIPE, universal_newlines=True) user_apps = ls.stdout.splitlines() matches = [app for app in user_apps if app_name in app] #print(user_apps) #print(sorted(matches, key=len)) if matches: with open(os.path.join('~/.local/share/applications/', sorted(matches, key=len)[0])) as f: lines = f.readlines() for line in lines: path = re.match(r'^Exec=(.*)', line) if path: self.log.info('Executing ' + path.group(1)) launch = subprocess.run('exec ' + path.group(1), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) if not launch.stderr: self.speak_dialog('open.app', data={'app': app_name}) else: self.speak(launch.stderr) else: self.speak('I did not find ' + app_name) def create_skill(): return SystemControl()
the-stack_0_1280
import pyxel class Hero: def __init__(self): self.x = 0 self.y = 52 self.walk_counter = 0 self.state = 'idle_right' self.models = { 'idle_right': [ [0, 0, 0, 16, 16, 0] ], 'idle_left': [ [0, 0, 0, -16, 16, 0] ], 'walk_right': [ [0, 0, 0, 16, 16, 0] ], 'walk_left': [ [0, 0, 0, -16, 16, 0] ], 'walk_down': [ [0, 0, 0, 16, 16, 0] ], 'walk_up': [ [0, 0, 0, 16, 16, 0] ] } def draw(self): if self.state[:4] == 'walk': pyxel.blt(self.x, self.y, *self.models[self.state][self.walk_counter]) else: pyxel.blt(self.x, self.y, *self.models[self.state][self.walk_counter]) class OneBit: def __init__(self): pyxel.image(0).load(0, 0, 'assets.png') self.models = { 'pine_group_1': [0, 80, 128, 32, 48, 0], 'pine_group_2': [0, 208, 48, 32, 48, 0], 'pine_single': [0, 48, 144, 32, 32, 0], 'pine_single_bare': [0, 112, 144, 32, 32, 0], 'grass_2': [0, 80, 0, 16, 16, 0], 'grass_4': [0, 80, 16, 16, 16, 0], 'tower_cone': [0, 144, 128, 16, 48, 0], 'tower_broken': [0, 208, 96, 32, 64, 0], 'rock_wall_1': [0, 16, 96, 16, 16, 0], 'rock_wall_2': [0, 32, 96, 16, 16, 0] } def draw(self): pyxel.blt(40, 40, *self.models['pine_single']) pyxel.blt(70, 0, *self.models['pine_single_bare']) pyxel.blt(10, 176, *self.models['pine_single']) pyxel.blt(20, 40, *self.models['grass_2']) pyxel.blt(60, 38, *self.models['grass_2']) pyxel.blt(20, 60, *self.models['grass_4']) pyxel.blt(30, 80, *self.models['grass_4'])
the-stack_0_1281
class ROBConfig(Config): """Configuration for training on the toy shapes dataset. Derives from the base Config class and overrides values specific to the toy shapes dataset. """ # Give the configuration a recognizable name NAME = "rob" # Train on 1 GPU and 8 images per GPU. We can put multiple images on each # GPU because the images are small. Batch size is 8 (GPUs * images/GPU). GPU_COUNT = 1 # IMAGES_PER_GPU = 8 # Default is 2 IMAGES_PER_GPU = 2 # Number of classes (including background) NUM_CLASSES = 1 + 4 # background + 4 class labels # Use small images for faster training. Set the limits of the small side # the large side, and that determines the image shape. # IMAGE_MIN_DIM = 128 # IMAGE_MAX_DIM = 128 # Default is 800 x 1024 # Use smaller anchors because our image and objects are small # RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) # anchor side in pixels # DEFAULT: RPN_ANCHOR_SCALES = (32, 64, 128, 256, 512) # Reduce training ROIs per image because the images are small and have # few objects. Aim to allow ROI sampling to pick 33% positive ROIs. TRAIN_ROIS_PER_IMAGE = 32 # Default is 200 # Use a small epoch since the data is simple # STEPS_PER_EPOCH = 100 # Default is 1000 STEPS_PER_EPOCH = int(5561/(GPU_COUNT*IMAGES_PER_GPU)) # use small validation steps since the epoch is small # VALIDATION_STEPS = 5 # Max number of final detections DETECTION_MAX_INSTANCES = 5 # Minimum probability value to accept a detected instance # ROIs below this threshold are skipped DETECTION_MIN_CONFIDENCE = 0.6 # Run these lines in the co-lab cell where this is imported: # config = ROBConfig() # config.display() class InferenceConfig(ROBConfig): GPU_COUNT = 1 IMAGES_PER_GPU = 1
the-stack_0_1283
import time, datetime print("Importing OpenShift/Kubernetes packages ...") import kubernetes import ocp_resources import openshift from ocp_resources.node import Node from ocp_resources.machine import Machine from ocp_resources.node import Node from openshift.dynamic import DynamicClient try: client_k8s = DynamicClient(client=kubernetes.config.new_client_from_config()) except Exception: client_k8s = None print("WARNING: kubernetes not available.") print("Importing AWS boto3 ...") import boto3 # https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html client_ec2 = boto3.client('ec2') resource_ec2 = boto3.resource('ec2') print("Ready.") def wait_openshift(): first = True print("Waiting for OpenShift cluster to be ready ...") import urllib3 while True: try: global client_k8s client_k8s = DynamicClient(client=kubernetes.config.new_client_from_config()) nodes = [m for m in Node.get(dyn_client=client_k8s)] if len(nodes) != 0: print(f"Found {len(nodes)} node, OpenShift Cluster is ready!") break except urllib3.exceptions.MaxRetryError: pass except kubernetes.client.exceptions.ApiException: pass time.sleep(10) def get_machine_props(): if not client_k8s: return None, None machines = [m for m in Machine.get(dyn_client=client_k8s)] if len(machines) != 1: raise RuntimeError("Should be only one machine ...") machine = machines[0] cluster_name = machine.cluster_name print(f"Cluster name: {cluster_name}") instance = resource_ec2.Instance(machine.instance.status.providerStatus.instanceId) instance.load() print(f"Instance Id: {instance.id}") zone = machine.instance.spec.providerSpec.value.placement.availabilityZone print(f"Availability zone: {zone}") return cluster_name, instance, zone def get_instance_root_volume(instance): volumes = [v for v in instance.volumes.all()] if len(volumes) > 1: print("WARNING: more than 1 volume found ...") return volumes[0] def get_cluster_snapshot(cluster_name, instance, zone): resp = client_ec2.describe_snapshots( Filters=[{ 'Name': f'tag:kubernetes.io/cluster/{cluster_name}', 'Values': ['owned'] }]) snapshots = resp["Snapshots"] if len(snapshots) == 0: return None if len(snapshots) > 1: print("WARNING: more than 1 snapshot found ... taking the first one.") snapshot = resource_ec2.Snapshot(snapshots[0]['SnapshotId']) snapshot.load() return snapshot def await_snapshot(snapshot): prev = "" if snapshot.progress == "100%": print(f"Snapshot {snapshot.id} is ready.") while not snapshot.progress == "100%": if prev == "": print(f"Awaiting for the completion of snapshot {snapshot.id} ...") print(snapshot.progress) prev = snapshot.progress time.sleep(10) snapshot.reload() if prev != snapshot.progress: prev = snapshot.progress print(snapshot.progress) def human_ts(): return datetime.datetime.now().strftime("%Y-%m-%dT%H:%M")
the-stack_0_1288
from typing import List, Dict, Tuple from collections import Counter from datasets import translation class Node: def __init__(self, key: str, counter: int, parent_node) -> None: self.key = key self.counter = counter self.parent = parent_node self.childs: Dict[str, Node] = {} self.link = None def increment_counter(self): pass def display(self, index: int=0) -> None: # print("{} [{}: {}]\n".format(" -"*(index), translation.get(self.key, self.key), self.counter)) print("{} [{}: {}]\n".format(" -"*(index), self.key, self.counter)) for child in self.childs.values(): child.display(index+1) def display_linked(self): current_node = self while current_node != None: print("[Key = {}]".format(current_node.key), end='') if current_node.link: print(" => ", end='') current_node = current_node.link print() class FPG: def __init__(self, min_support: int=2) -> None: self.minimum_support = min_support self.root_node = None self.support = None self.clean_dataset = None self.header_table: Dict[str, list] = {} self.conditional_pattern_base = {} self.fis = None def run(self, dataset: List[list]) -> Tuple[List[list], Dict[frozenset, int]]: self.initial_dataset = dataset wset = self.initial_dataset wset = [list(set(transaction)) for transaction in wset] # Make sure that items in transaction are uniqe ui = self.get_unique_items(wset) self.support = self.get_support(wset, ui) self.clean_dataset = self.preprocess_dataset(wset) return self.clean_dataset def display_info(self) -> None: # print("Initial dataset (minimum support = {}):".format(self.minimum_support), *self.initial_dataset, sep='\n') # print("Support:", *{list(k)[0]:v for k,v in self.support.items()}.items(), sep='\n') print("Cleaned and sorted dataset:", *self.clean_dataset, sep='\n') # print("Support table:") # print(*self.support.items(), sep='\n') print("\nTree:") self.print_tree() if self.header_table != {}: print("Header Table:") print(*self.header_table.items(), sep='\n') # print("Linked nodes:") # for v in self.header_table.values(): # v['nodes'][0].display_linked() if self.conditional_pattern_base != {}: print("Conditional pattern base:") print(*self.conditional_pattern_base.items(), sep='\n') if self.fis: print("Frequent item sets:", len(self.fis)) print(*self.fis, sep='\n') def print_tree(self) -> None: try: self.root_node.display() except: print("\tNo root node.\n") def get_unique_items(self, wset: List[list]) -> List[set]: unique_items = list(set(sum(wset, []))) return [frozenset([x]) for x in unique_items] def get_support(self, dataset: List[list], candidates: List[frozenset]) -> Dict[frozenset, int]: # support = {} # for transaction in dataset: # for item in candidates: # if item.issubset(transaction): # sub = frozenset(item) # if sub in support.keys(): # support[sub] += 1 # else: # support[sub] = 1 # support = sorted(support.items(), key=lambda x: x[1], reverse=True) # Sorting by value # support = {k:v for k, v in support if v >= self.minimum_support} # Filtering by minimum support value support = Counter(item for item in sum(dataset, [])) support = filter(lambda item: item[1]>=self.minimum_support, support.items()) support = sorted(support, key=lambda x:x[0]) support = sorted(support, key=lambda x:x[1], reverse=True) # support = {frozenset([k]):v for k,v in support} support = dict(support) return support def preprocess_dataset(self, dataset: List[list]) -> List[list]: # Cleaning and sorting dataset clean_dataset = [] # mask = [x for x in list(self.support)] mask = list(self.support.keys()) for transaction in dataset: clean_dataset.append(list(filter(lambda item: item in mask, transaction))) clean_dataset[-1].sort(key=lambda i: mask.index(i)) return clean_dataset def build_tree(self, dataset: List[list]) -> None: for k in self.support: self.header_table[k] = {'support': self.support[k], 'nodes': []} self.root_node = Node('NULL', 0, None) for transaction in dataset: self.insert_transaction(transaction, self.root_node) # Linking nodes for v in self.header_table.values(): if len(v['nodes']) > 1: for i in range(len(v['nodes'])-1): v['nodes'][i].link = v['nodes'][i+1] def insert_transaction(self, transaction: List[str], node: Node) -> None: if len(transaction) < 1: return key = transaction[0] if key in node.childs.keys(): node.childs[key].counter += 1 ################################################## increment by support else: node.childs[key] = Node(key, 1, node) self.header_table[key]['nodes'].append(node.childs[key]) if len(transaction) > 1: self.insert_transaction(transaction[1:], node.childs[key]) def get_prefix(self, node: Node): paths = [] while node: path = self.traverse_root(node) if len(path) > 1: paths.append([path[1:], node.counter]) node = node.link return paths def traverse_root(self, node: Node) -> list: tmp = node path = [] while tmp is not self.root_node: path.append(tmp.key) tmp = tmp.parent return path def get_CPB(self, key:str) -> List[list]: start_node = self.header_table[key]['nodes'][0] paths = self.get_prefix(start_node) dataset = [] for item in paths: dataset.append(item[0]) self.conditional_pattern_base[key] = dataset return dataset def mine_fis(self, header_parent, prefix, fis): reverse_header_keys = list(header_parent.keys())[::-1] for key in reverse_header_keys: new_fis = prefix.copy() new_fis.add(key) fis.append(new_fis) CPB = self.get_CPB(key) # Generate sub-tree tmp_fpg = FPG(self.minimum_support) tmp_clean_dataset = tmp_fpg.run(CPB) tmp_fpg.build_tree(tmp_clean_dataset) if tmp_fpg.header_table != {}: self.mine_fis(tmp_fpg.header_table, new_fis, fis) self.fis = fis
the-stack_0_1289
import gzip import math import numpy as np import os from PIL import Image import random import torch import torch.utils.data as data def load_fixed_set(root, is_train): # Load the fixed dataset if is_train==False: filename = 'testA_100.npy' elif is_train==True: filename = 'train.npy' else: print('Please choose is_train ture or False') path = os.path.join(root, filename) dataset = np.load(path) return dataset class Radar(data.Dataset): def __init__(self, root, is_train, n_frames_input, n_frames_output, num_objects, transform=None): ''' param num_objects: a list of number of possible objects. ''' super(Radar, self).__init__() self.dataset = load_fixed_set(root, is_train) self.length = self.dataset.shape[1] self.is_train = is_train self.num_objects = num_objects self.n_frames_input = n_frames_input self.n_frames_output = n_frames_output self.n_frames_total = self.n_frames_input + self.n_frames_output self.transform = transform def __getitem__(self, idx): length = self.n_frames_input + self.n_frames_output #20 images = self.dataset[:, idx, ...] # [20,64,64,1] #(14,100,100,1) images = images[:,:,:,0] #(14,100,100) images=images[:,np.newaxis,:,:] #(14,1,100,100) input = images[:self.n_frames_input] #10,1,64,64 output = images[self.n_frames_input:length] frozen = input[-1] # add a wall to input data # pad = np.zeros_like(input[:, 0]) # pad[:, 0] = 1 # pad[:, pad.shape[1] - 1] = 1 # pad[:, :, 0] = 1 # pad[:, :, pad.shape[2] - 1] = 1 # # input = np.concatenate((input, np.expand_dims(pad, 1)), 1) output = torch.from_numpy(output / 255.0).contiguous().float() #除以255?Normalize into 0-1 input = torch.from_numpy(input / 255.0).contiguous().float() # print() # print(input.size()) # print(output.size()) out = [idx, output, input, frozen, np.zeros(1)] return out def __len__(self): return self.length if __name__ == "__main__": trainFolder = Radar(is_train=False, root='data/', n_frames_input=7, n_frames_output=7, num_objects=[2]) trainLoader = torch.utils.data.DataLoader(trainFolder, batch_size=4, shuffle=False) # #S B OUTPUT INPUT FORZEN 0 for i, (idx, targetVar, inputVar, _, _) in enumerate(trainLoader): inputs = inputVar # B,S,1,64,64 print("runing") break print("inputs.shape",inputs.shape) print("inputs[0].shape",inputs[0].shape) # S,1,H,W Aim: 3S,1,H,W print("inputs[0,0].shape",inputs[0,0].shape)
the-stack_0_1290
#!/usr/bin/env python # # Electrum - lightweight Avian client # Copyright (C) 2015 Thomas Voegtlin # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # This module uses code from TLSLlite # TLSLite Author: Trevor Perrin) import binascii from .x509 import ASN1_Node, bytestr_to_int, decode_OID def a2b_base64(s): try: b = bytearray(binascii.a2b_base64(s)) except Exception as e: raise SyntaxError("base64 error: %s" % e) return b def b2a_base64(b): return binascii.b2a_base64(b) def dePem(s, name): """Decode a PEM string into a bytearray of its payload. The input must contain an appropriate PEM prefix and postfix based on the input name string, e.g. for name="CERTIFICATE": -----BEGIN CERTIFICATE----- MIIBXDCCAUSgAwIBAgIBADANBgkqhkiG9w0BAQUFADAPMQ0wCwYDVQQDEwRUQUNL ... KoZIhvcNAQEFBQADAwA5kw== -----END CERTIFICATE----- The first such PEM block in the input will be found, and its payload will be base64 decoded and returned. """ prefix = "-----BEGIN %s-----" % name postfix = "-----END %s-----" % name start = s.find(prefix) if start == -1: raise SyntaxError("Missing PEM prefix") end = s.find(postfix, start+len(prefix)) if end == -1: raise SyntaxError("Missing PEM postfix") s = s[start+len("-----BEGIN %s-----" % name) : end] retBytes = a2b_base64(s) # May raise SyntaxError return retBytes def dePemList(s, name): """Decode a sequence of PEM blocks into a list of bytearrays. The input must contain any number of PEM blocks, each with the appropriate PEM prefix and postfix based on the input name string, e.g. for name="TACK BREAK SIG". Arbitrary text can appear between and before and after the PEM blocks. For example: " Created by TACK.py 0.9.3 Created at 2012-02-01T00:30:10Z -----BEGIN TACK BREAK SIG----- ATKhrz5C6JHJW8BF5fLVrnQss6JnWVyEaC0p89LNhKPswvcC9/s6+vWLd9snYTUv YMEBdw69PUP8JB4AdqA3K6Ap0Fgd9SSTOECeAKOUAym8zcYaXUwpk0+WuPYa7Zmm SkbOlK4ywqt+amhWbg9txSGUwFO5tWUHT3QrnRlE/e3PeNFXLx5Bckg= -----END TACK BREAK SIG----- Created by TACK.py 0.9.3 Created at 2012-02-01T00:30:11Z -----BEGIN TACK BREAK SIG----- ATKhrz5C6JHJW8BF5fLVrnQss6JnWVyEaC0p89LNhKPswvcC9/s6+vWLd9snYTUv YMEBdw69PUP8JB4AdqA3K6BVCWfcjN36lx6JwxmZQncS6sww7DecFO/qjSePCxwM +kdDqX/9/183nmjx6bf0ewhPXkA0nVXsDYZaydN8rJU1GaMlnjcIYxY= -----END TACK BREAK SIG----- " All such PEM blocks will be found, decoded, and return in an ordered list of bytearrays, which may have zero elements if not PEM blocks are found. """ bList = [] prefix = "-----BEGIN %s-----" % name postfix = "-----END %s-----" % name while 1: start = s.find(prefix) if start == -1: return bList end = s.find(postfix, start+len(prefix)) if end == -1: raise SyntaxError("Missing PEM postfix") s2 = s[start+len(prefix) : end] retBytes = a2b_base64(s2) # May raise SyntaxError bList.append(retBytes) s = s[end+len(postfix) : ] def pem(b, name): """Encode a payload bytearray into a PEM string. The input will be base64 encoded, then wrapped in a PEM prefix/postfix based on the name string, e.g. for name="CERTIFICATE": -----BEGIN CERTIFICATE----- MIIBXDCCAUSgAwIBAgIBADANBgkqhkiG9w0BAQUFADAPMQ0wCwYDVQQDEwRUQUNL ... KoZIhvcNAQEFBQADAwA5kw== -----END CERTIFICATE----- """ s1 = b2a_base64(b)[:-1] # remove terminating \n s2 = b"" while s1: s2 += s1[:64] + b"\n" s1 = s1[64:] s = ("-----BEGIN %s-----\n" % name).encode('ascii') + s2 + \ ("-----END %s-----\n" % name).encode('ascii') return s def pemSniff(inStr, name): searchStr = "-----BEGIN %s-----" % name return searchStr in inStr def parse_private_key(s): """Parse a string containing a PEM-encoded <privateKey>.""" if pemSniff(s, "PRIVATE KEY"): bytes = dePem(s, "PRIVATE KEY") return _parsePKCS8(bytes) elif pemSniff(s, "RSA PRIVATE KEY"): bytes = dePem(s, "RSA PRIVATE KEY") return _parseSSLeay(bytes) else: raise SyntaxError("Not a PEM private key file") def _parsePKCS8(_bytes): s = ASN1_Node(_bytes) root = s.root() version_node = s.first_child(root) version = bytestr_to_int(s.get_value_of_type(version_node, 'INTEGER')) if version != 0: raise SyntaxError("Unrecognized PKCS8 version") rsaOID_node = s.next_node(version_node) ii = s.first_child(rsaOID_node) rsaOID = decode_OID(s.get_value_of_type(ii, 'OBJECT IDENTIFIER')) if rsaOID != '1.2.840.113549.1.1.1': raise SyntaxError("Unrecognized AlgorithmIdentifier") privkey_node = s.next_node(rsaOID_node) value = s.get_value_of_type(privkey_node, 'OCTET STRING') return _parseASN1PrivateKey(value) def _parseSSLeay(bytes): return _parseASN1PrivateKey(ASN1_Node(bytes)) def bytesToNumber(s): return int(binascii.hexlify(s), 16) def _parseASN1PrivateKey(s): s = ASN1_Node(s) root = s.root() version_node = s.first_child(root) version = bytestr_to_int(s.get_value_of_type(version_node, 'INTEGER')) if version != 0: raise SyntaxError("Unrecognized RSAPrivateKey version") n = s.next_node(version_node) e = s.next_node(n) d = s.next_node(e) p = s.next_node(d) q = s.next_node(p) dP = s.next_node(q) dQ = s.next_node(dP) qInv = s.next_node(dQ) return list(map(lambda x: bytesToNumber(s.get_value_of_type(x, 'INTEGER')), [n, e, d, p, q, dP, dQ, qInv]))
the-stack_0_1292
import argparse import lbann import lbann.models import lbann.models.resnet import lbann.contrib.args import lbann.contrib.models.wide_resnet import lbann.contrib.launcher import data.imagenet # Command-line arguments desc = ('Construct and run ResNet on ImageNet-1K data. ' 'Running the experiment is only supported on LC systems.') parser = argparse.ArgumentParser(description=desc) lbann.contrib.args.add_scheduler_arguments(parser) parser.add_argument( '--job-name', action='store', default='lbann_resnet', type=str, help='scheduler job name (default: lbann_resnet)') parser.add_argument( '--resnet', action='store', default=50, type=int, choices=(18, 34, 50, 101, 152), help='ResNet variant (default: 50)') parser.add_argument( '--width', action='store', default=1, type=float, help='Wide ResNet width factor (default: 1)') parser.add_argument( '--block-type', action='store', default=None, type=str, choices=('basic', 'bottleneck'), help='ResNet block type') parser.add_argument( '--blocks', action='store', default=None, type=str, help='ResNet block counts (comma-separated list)') parser.add_argument( '--block-channels', action='store', default=None, type=str, help='Internal channels in each ResNet block (comma-separated list)') parser.add_argument( '--bn-statistics-group-size', action='store', default=1, type=int, help=('Group size for aggregating batch normalization statistics ' '(default: 1)')) parser.add_argument( '--warmup', action='store_true', help='use a linear warmup') parser.add_argument( '--mini-batch-size', action='store', default=256, type=int, help='mini-batch size (default: 256)', metavar='NUM') parser.add_argument( '--num-epochs', action='store', default=90, type=int, help='number of epochs (default: 90)', metavar='NUM') parser.add_argument( '--num-classes', action='store', default=1000, type=int, help='number of ImageNet classes (default: 1000)', metavar='NUM') parser.add_argument( '--random-seed', action='store', default=0, type=int, help='random seed for LBANN RNGs', metavar='NUM') lbann.contrib.args.add_optimizer_arguments(parser, default_learning_rate=0.1) args = parser.parse_args() # Due to a data reader limitation, the actual model realization must be # hardcoded to 1000 labels for ImageNet. imagenet_labels = 1000 # Choose ResNet variant resnet_variant_dict = {18: lbann.models.ResNet18, 34: lbann.models.ResNet34, 50: lbann.models.ResNet50, 101: lbann.models.ResNet101, 152: lbann.models.ResNet152} wide_resnet_variant_dict = {50: lbann.contrib.models.wide_resnet.WideResNet50_2} block_variant_dict = { 'basic': lbann.models.resnet.BasicBlock, 'bottleneck': lbann.models.resnet.BottleneckBlock } if (any([args.block_type, args.blocks, args.block_channels]) and not all([args.block_type, args.blocks, args.block_channels])): raise RuntimeError('Must specify all of --block-type, --blocks, --block-channels') if args.block_type and args.blocks and args.block_channels: # Build custom ResNet. resnet = lbann.models.ResNet( block_variant_dict[args.block_type], imagenet_labels, list(map(int, args.blocks.split(','))), list(map(int, args.block_channels.split(','))), zero_init_residual=True, bn_statistics_group_size=args.bn_statistics_group_size, name='custom_resnet', width=args.width) elif args.width == 1: # Vanilla ResNet. resnet = resnet_variant_dict[args.resnet]( imagenet_labels, bn_statistics_group_size=args.bn_statistics_group_size) elif args.width == 2 and args.resnet == 50: # Use pre-defined WRN-50-2. resnet = wide_resnet_variant_dict[args.resnet]( imagenet_labels, bn_statistics_group_size=args.bn_statistics_group_size) else: # Some other Wide ResNet. resnet = resnet_variant_dict[args.resnet]( imagenet_labels, bn_statistics_group_size=args.bn_statistics_group_size, width=args.width) # Construct layer graph input_ = lbann.Input() images = lbann.Identity(input_) labels = lbann.Identity(input_) preds = resnet(images) probs = lbann.Softmax(preds) cross_entropy = lbann.CrossEntropy(probs, labels) top1 = lbann.CategoricalAccuracy(probs, labels) top5 = lbann.TopKCategoricalAccuracy(probs, labels, k=5) layers = list(lbann.traverse_layer_graph(input_)) # Setup objective function l2_reg_weights = set() for l in layers: if type(l) == lbann.Convolution or type(l) == lbann.FullyConnected: l2_reg_weights.update(l.weights) l2_reg = lbann.L2WeightRegularization(weights=l2_reg_weights, scale=1e-4) obj = lbann.ObjectiveFunction([cross_entropy, l2_reg]) # Setup model metrics = [lbann.Metric(top1, name='top-1 accuracy', unit='%'), lbann.Metric(top5, name='top-5 accuracy', unit='%')] callbacks = [lbann.CallbackPrint(), lbann.CallbackTimer(), lbann.CallbackDropFixedLearningRate( drop_epoch=[30, 60, 80], amt=0.1)] if args.warmup: callbacks.append( lbann.CallbackLinearGrowthLearningRate( target=0.1 * args.mini_batch_size / 256, num_epochs=5)) model = lbann.Model(args.mini_batch_size, args.num_epochs, layers=layers, objective_function=obj, metrics=metrics, callbacks=callbacks) # Setup optimizer opt = lbann.contrib.args.create_optimizer(args) # Setup data reader data_reader = data.imagenet.make_data_reader(num_classes=args.num_classes) # Setup trainer trainer = lbann.Trainer(random_seed=args.random_seed) # Run experiment kwargs = lbann.contrib.args.get_scheduler_kwargs(args) lbann.contrib.launcher.run(trainer, model, data_reader, opt, job_name=args.job_name, **kwargs)
the-stack_0_1295
import argparse from configparser import ConfigParser import shlex parser = argparse.ArgumentParser(description='Short sample app') parser.add_argument('-a', action="store_true", default=False) parser.add_argument('-b', action="store", dest="b") parser.add_argument('-c', action="store", dest="c", type=int) config = ConfigParser() config.read('argparse_with_shlex.ini') config_value = config.get('cli', 'options') print('Config :', config_value) argument_list = shlex.split(config_value) print('Arg List:', argument_list) print('Results :', parser.parse_args(argument_list))
the-stack_0_1299
# coding=utf-8 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from abc import ABC, abstractmethod from azure.core.exceptions import HttpResponseError from knack.util import CLIError from knack.log import get_logger from azext_iot.common.shared import AuthenticationTypeDataplane from typing import Any, Dict, List from types import SimpleNamespace logger = get_logger(__name__) POLICY_ERROR_TEMPLATE = ( "Unable to discover a priviledged policy for {0}: {1}, in subscription {2}. " "When interfacing with an {0}, the IoT extension requires any single policy with " "{3} rights." ) def _format_policy_set(inputs: set) -> str: inputs = list(f"'{x}'" for x in inputs) if len(inputs) == 1: return inputs[0] elif len(inputs) == 2: return inputs[0] + " and " + inputs[1] inputs[-1] = "and " + inputs[-1] return ", ".join(inputs) # Abstract base class class BaseDiscovery(ABC): """BaseDiscovery to support resource and policy auto discovery. Eliminates the need to provide the resource group and policy name to find a specific target resource. :ivar cmd: The cmd object :vartype cmd: :ivar client: The client object :vartype client: :ivar sub_id: Subscription id :vartype sub_id: str :ivar track2: Whether the client uses track2. :vartype track2: bool :ivar resource_type: Type of the resources the client fetches. Used to abstract error messages. :vartype resource_type: DiscoveryResourceType :ivar necessary_rights_set: Set of policy names needed for the Iot Extension to run commands against the DPS instance. :vartype necessary_rights_set: Set[str] """ def __init__(self, cmd, necessary_rights_set: set = None, resource_type: str = None): self.cmd = cmd self.client = None self.sub_id = "unknown" self.resource_type = resource_type self.track2 = False self.necessary_rights_set = necessary_rights_set @abstractmethod def _initialize_client(self): """Creates the client if not created already.""" pass @abstractmethod def _make_kwargs(self, **kwargs) -> Dict[str, Any]: """Returns the correct kwargs for the client operations.""" pass def get_resources(self, rg: str = None) -> List: """ Returns a list of all raw resources that are present within the subscription (and resource group if provided). The resources are the raw data returned by the client and will be used to build target objects. :param rg: Resource Group :type rg: str :return: List of resources :rtype: List """ self._initialize_client() resource_list = [] if not rg: resource_pager = self.client.list_by_subscription() else: resource_pager = self.client.list_by_resource_group(resource_group_name=rg) if self.track2: for resource in resource_pager.by_page(): resource_list.extend(resource) else: try: while True: resource_list.extend(resource_pager.advance_page()) except StopIteration: pass return resource_list def get_policies(self, resource_name: str, rg: str) -> List: """ Returns a list of all policies for a given resource in a given resource group. :param resource_name: Resource Name :type resource_name: str :param rg: Resource Group :type rg: str :return: List of policies :rtype: List """ self._initialize_client() policy_pager = self.client.list_keys( **self._make_kwargs(resource_name=resource_name, resource_group_name=rg) ) policy_list = [] if self.track2: for policy in policy_pager.by_page(): policy_list.extend(policy) else: try: while True: policy_list.extend(policy_pager.advance_page()) except StopIteration: pass return policy_list def find_resource(self, resource_name: str, rg: str = None): """ Returns the resource with the given resource_name. If the resource group is not provided, will look through all resources within the subscription and return first match. This functionality will only work for resource types that require unique names within the subscription. Raises CLIError if no resource is found. :param resource_name: Resource Name :type resource_name: str :param rg: Resource Group :type rg: str :return: Resource :rtype: dict representing self.resource_type """ self._initialize_client() if rg: try: return self.client.get( **self._make_kwargs( resource_name=resource_name, resource_group_name=rg ) ) except: # pylint: disable=broad-except raise CLIError( "Unable to find {}: {} in resource group: {}".format( self.resource_type, resource_name, rg ) ) resource_list = self.get_resources() if resource_list: target = next( (resource for resource in resource_list if resource_name.lower() == resource.name.lower()), None ) if target: return target raise CLIError( "Unable to find {}: {} in current subscription {}.".format( self.resource_type, resource_name, self.sub_id ) ) def find_policy(self, resource_name: str, rg: str, policy_name: str = "auto"): """ Returns the policy with the policy_name for the given resource. If the policy name is not provided, will look through all policies for the given resource and return the first usable policy (the first policy that the IoT extension can use). Raises CLIError if no usable policy is found. :param resource_name: Resource Name :type resource_name: str :param rg: Resource Group :type rg: str :param policy_name: Policy Name :type policy_name: str :return: Policy :rtype: policy """ self._initialize_client() if policy_name.lower() != "auto": return self.client.get_keys_for_key_name( **self._make_kwargs( resource_name=resource_name, resource_group_name=rg, key_name=policy_name ) ) policy_list = self.get_policies(resource_name=resource_name, rg=rg) for policy in policy_list: rights_set = set(policy.rights.split(", ")) if self.necessary_rights_set.issubset(rights_set): logger.info( "Using policy '%s' for %s interaction.", policy.key_name, self.resource_type ) return policy raise CLIError( POLICY_ERROR_TEMPLATE.format( self.resource_type, resource_name, self.sub_id, _format_policy_set(self.necessary_rights_set) ) ) @classmethod @abstractmethod def get_target_by_cstring(cls, connection_string): """Returns target inforation needed from a connection string.""" pass def get_target( self, resource_name: str, resource_group_name: str = None, **kwargs ) -> Dict[str, str]: """ Returns a dictionary of the given resource's connection string parts to be used by the extension. This function finds the target resource and builds up a dictionary of connection string parts needed for IoT extension operation. In future iteration we will return a 'Target' object rather than dict but that will be better served aligning with vNext pattern for Iot Hub/DPS. If the resource group is not provided, will look through all resources within the subscription and return first match. This functionality will only work for resource types that require unique names within the subscription. If the policy name is not provided, will look through all policies for the given resource and return the first usable policy (the first policy that the IoT extension can use). Raises CLIError if no resource is found. :param resource_name: Resource Name :type resource_name: str :param rg: Resource Group :type rg: str :keyword str login: Connection string for the target resource :keyword str key_type: Key type to use in connection string construction :keyword auth_type: Authentication Type for the Dataplane :paramtype auth_type: AuthenticationTypeDataplane :keyword str policy_name: Policy name to use :return: Resource :rtype: dict representing self.resource_type """ cstring = kwargs.get("login") if cstring: return self.get_target_by_cstring(connection_string=cstring) resource_group_name = resource_group_name or kwargs.get("rg") resource = self.find_resource(resource_name=resource_name, rg=resource_group_name) key_type = kwargs.get("key_type", "primary") # Azure AD auth path auth_type = kwargs.get("auth_type", AuthenticationTypeDataplane.key.value) if auth_type == AuthenticationTypeDataplane.login.value: logger.info("Using AAD access token for %s interaction.", self.resource_type) policy = SimpleNamespace() policy.key_name = AuthenticationTypeDataplane.login.value policy.primary_key = AuthenticationTypeDataplane.login.value policy.secondary_key = AuthenticationTypeDataplane.login.value return self._build_target( resource=resource, policy=policy, key_type="primary", **kwargs ) policy_name = kwargs.get("policy_name", "auto") rg = resource.additional_properties.get("resourcegroup") resource_policy = self.find_policy( resource_name=resource.name, rg=rg, policy_name=policy_name, ) return self._build_target( resource=resource, policy=resource_policy, key_type=key_type, **kwargs ) def get_targets(self, resource_group_name: str = None, **kwargs) -> List[Dict[str, str]]: """ Returns a list of targets (dicts representing a resource's connection string parts) that are usable by the extension within the subscription (and resource group if provided). :param rg: Resource Group :type rg: str :return: Resources :rtype: list[dict] """ targets = [] resources = self.get_resources(rg=resource_group_name) if resources: for resource in resources: try: targets.append( self.get_target( resource_name=resource.name, resource_group_name=resource.additional_properties.get("resourcegroup"), **kwargs ) ) except HttpResponseError as e: logger.warning("Could not access %s. %s", resource, e) return targets @abstractmethod def _build_target(self, resource, policy, key_type=None, **kwargs): """Returns a dictionary representing the resource connection string parts to be used by the IoT extension.""" pass
the-stack_0_1300
"""Sensor platform for Brottsplatskartan information.""" from __future__ import annotations from collections import defaultdict from datetime import timedelta import logging import uuid import brottsplatskartan import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA, SensorEntity from homeassistant.const import ( ATTR_ATTRIBUTION, CONF_LATITUDE, CONF_LONGITUDE, CONF_NAME, ) from homeassistant.core import HomeAssistant import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType _LOGGER = logging.getLogger(__name__) CONF_AREA = "area" DEFAULT_NAME = "Brottsplatskartan" SCAN_INTERVAL = timedelta(minutes=30) AREAS = [ "Blekinge län", "Dalarnas län", "Gotlands län", "Gävleborgs län", "Hallands län", "Jämtlands län", "Jönköpings län", "Kalmar län", "Kronobergs län", "Norrbottens län", "Skåne län", "Stockholms län", "Södermanlands län", "Uppsala län", "Värmlands län", "Västerbottens län", "Västernorrlands län", "Västmanlands län", "Västra Götalands län", "Örebro län", "Östergötlands län", ] PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Inclusive(CONF_LATITUDE, "coordinates"): cv.latitude, vol.Inclusive(CONF_LONGITUDE, "coordinates"): cv.longitude, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_AREA, default=[]): vol.All(cv.ensure_list, [vol.In(AREAS)]), } ) def setup_platform( hass: HomeAssistant, config: ConfigType, add_entities: AddEntitiesCallback, discovery_info: DiscoveryInfoType | None = None, ) -> None: """Set up the Brottsplatskartan platform.""" area = config.get(CONF_AREA) latitude = config.get(CONF_LATITUDE, hass.config.latitude) longitude = config.get(CONF_LONGITUDE, hass.config.longitude) name = config[CONF_NAME] # Every Home Assistant instance should have their own unique # app parameter: https://brottsplatskartan.se/sida/api app = f"ha-{uuid.getnode()}" bpk = brottsplatskartan.BrottsplatsKartan( app=app, area=area, latitude=latitude, longitude=longitude ) add_entities([BrottsplatskartanSensor(bpk, name)], True) class BrottsplatskartanSensor(SensorEntity): """Representation of a Brottsplatskartan Sensor.""" def __init__(self, bpk, name): """Initialize the Brottsplatskartan sensor.""" self._brottsplatskartan = bpk self._attr_name = name def update(self): """Update device state.""" incident_counts = defaultdict(int) incidents = self._brottsplatskartan.get_incidents() if incidents is False: _LOGGER.debug("Problems fetching incidents") return for incident in incidents: incident_type = incident.get("title_type") incident_counts[incident_type] += 1 self._attr_extra_state_attributes = { ATTR_ATTRIBUTION: brottsplatskartan.ATTRIBUTION } self._attr_extra_state_attributes.update(incident_counts) self._attr_native_value = len(incidents)
the-stack_0_1301
import torch def images_to_levels(target, num_levels): """Convert targets by image to targets by feature level. [target_img0, target_img1] -> [target_level0, target_level1, ...] """ target = torch.stack(target, 0) level_targets = [] start = 0 for n in num_levels: end = start + n # level_targets.append(target[:, start:end].squeeze(0)) level_targets.append(target[:, start:end]) start = end return level_targets def anchor_inside_flags(flat_anchors, valid_flags, img_shape, allowed_border=0): img_h, img_w = img_shape[:2] if allowed_border >= 0: inside_flags = valid_flags & \ (flat_anchors[:, 0] >= -allowed_border) & \ (flat_anchors[:, 1] >= -allowed_border) & \ (flat_anchors[:, 2] < img_w + allowed_border) & \ (flat_anchors[:, 3] < img_h + allowed_border) else: inside_flags = valid_flags return inside_flags def calc_region(bbox, ratio, featmap_size=None): """Calculate a proportional bbox region. The bbox center are fixed and the new h' and w' is h * ratio and w * ratio. Args: bbox (Tensor): Bboxes to calculate regions, shape (n, 4) ratio (float): Ratio of the output region. featmap_size (tuple): Feature map size used for clipping the boundary. Returns: tuple: x1, y1, x2, y2 """ x1 = torch.round((1 - ratio) * bbox[0] + ratio * bbox[2]).long() y1 = torch.round((1 - ratio) * bbox[1] + ratio * bbox[3]).long() x2 = torch.round(ratio * bbox[0] + (1 - ratio) * bbox[2]).long() y2 = torch.round(ratio * bbox[1] + (1 - ratio) * bbox[3]).long() if featmap_size is not None: x1 = x1.clamp(min=0, max=featmap_size[1]) y1 = y1.clamp(min=0, max=featmap_size[0]) x2 = x2.clamp(min=0, max=featmap_size[1]) y2 = y2.clamp(min=0, max=featmap_size[0]) return (x1, y1, x2, y2)
the-stack_0_1302
import argparse import json import os import sys from datetime import datetime from pathlib import Path from shlex import quote import fuckit import mutagen import pandas as pd from joblib import Parallel, delayed from rich import inspect, print from tinytag import TinyTag from db import fetchall_dict, sqlite_con from subtitle import get_subtitle from utils import chunks, cmd, get_video_files, log def parse_mutagen_tags(m, tiny_tags): def c(l): if isinstance(l, str): l = [l] if l is None or len(l) == 0: return None no_comma = sum([s.split(",") for s in l], []) no_semicol = sum([s.split(";") for s in no_comma], []) no_unknown = [x for x in no_semicol if x.lower() not in ["unknown", ""]] return ";".join(no_unknown) def ss(idx, l): if l is None: return None try: return l[idx] except IndexError: return None return { "albumgenre": c(m.tags.get("albumgenre")), "albumgrouping": c(m.tags.get("albumgrouping")), "mood": c( list( set( (m.tags.get("albummood") or []) + (m.tags.get("MusicMatch_Situation") or []) + (m.tags.get("Songs-DB_Occasion") or []) ) ) ), "genre": c(list(set((m.tags.get("genre") or []) + list(filter(None, [tiny_tags["genre"]]))))), "year": ss( 0, ss( 0, list( filter( None, [ m.tags.get("originalyear"), m.tags.get("TDOR"), m.tags.get("TORY"), m.tags.get("date"), m.tags.get("TDRC"), m.tags.get("TDRL"), ], ) ), ), ), "bpm": ss( 0, ss( 0, list( filter( None, [m.tags.get("fBPM"), m.tags.get("bpm_accuracy")], ) ), ), ), "key": ss( 0, ss( 0, list( filter( None, [ m.tags.get("TIT1"), m.tags.get("key_accuracy"), m.tags.get("TKEY"), ], ) ), ), ), "gain": ss(0, m.tags.get("replaygain_track_gain")), "time": c(ss(0, m.tags.get("time_signature"))), "decade": ss(0, m.tags.get("Songs-DB_Custom1")), "categories": ss(0, m.tags.get("Songs-DB_Custom2")), "city": ss(0, m.tags.get("Songs-DB_Custom3")), "country": c( ss( 0, list( filter( None, [ m.tags.get("Songs-DB_Custom4"), m.tags.get("MusicBrainz Album Release Country"), ], ) ), ) ), } def extract_metadata(args, f): try: ffprobe = json.loads( cmd( f"ffprobe -loglevel quiet -print_format json=compact=1 -show_entries format {quote(f)}", quiet=True ).stdout ) except: try: cmd(f"trash-put {quote(f)}") print(f"Failed reading {f}", file=sys.stderr) except: pass return if not "format" in ffprobe: print(f"Failed reading format {f}", file=sys.stderr) print(ffprobe) return stat = os.stat(f) blocks_allocated = stat.st_blocks * 512 if "tags" in ffprobe["format"]: del ffprobe["format"]["tags"] if "size" in ffprobe["format"]: ffprobe["format"]["size"] = int(ffprobe["format"]["size"]) if blocks_allocated == 0: sparseness = 0 else: sparseness = ffprobe["format"]["size"] / blocks_allocated media = dict( **ffprobe["format"], # streams=ffprobe["streams"], sparseness=sparseness, time_created=datetime.fromtimestamp(stat.st_ctime), time_modified=datetime.fromtimestamp(stat.st_mtime), ) if args.audio: media = {**media, "listen_count": 0} try: tiny_tags = TinyTag.get(f).as_dict() mutagen_tags = mutagen.File(f) assert mutagen_tags.tags if "extra" in tiny_tags: del tiny_tags["extra"] except: return media mutagen_tags_p = parse_mutagen_tags(mutagen_tags, tiny_tags) audio = { **media, **tiny_tags, **mutagen_tags_p, } # print(audio) @fuckit def get_rid_of_known_tags(): del mutagen_tags.tags["encoder"] del mutagen_tags.tags["TMED"] del mutagen_tags.tags["TSO2"] del mutagen_tags.tags["artist-sort"] del mutagen_tags.tags["ASIN"] del mutagen_tags.tags["Acoustid Id"] del mutagen_tags.tags["Artists"] del mutagen_tags.tags["BARCODE"] del mutagen_tags.tags["CATALOGNUMBER"] del mutagen_tags.tags["MusicBrainz Album Artist Id"] del mutagen_tags.tags["MusicBrainz Album Id"] del mutagen_tags.tags["MusicBrainz Album Release Country"] del mutagen_tags.tags["MusicBrainz Album Status"] del mutagen_tags.tags["MusicBrainz Album Type"] del mutagen_tags.tags["MusicBrainz Artist Id"] del mutagen_tags.tags["MusicBrainz Release Group Id"] del mutagen_tags.tags["MusicBrainz Release Track Id"] del mutagen_tags.tags["SCRIPT"] del mutagen_tags.tags["originalyear"] del mutagen_tags.tags["artist"] del mutagen_tags.tags["album"] del mutagen_tags.tags["ALBUMARTIST"] del mutagen_tags.tags["title"] del mutagen_tags.tags["TORY"] del mutagen_tags.tags["TDOR"] del mutagen_tags.tags["publisher"] del mutagen_tags.tags["TRACKNUMBER"] del mutagen_tags.tags["DISCNUMBER"] del mutagen_tags.tags["replaygain_track_peak"] del mutagen_tags.tags["replaygain_track_gain"] del mutagen_tags.tags["date"] return mutagen_tags.tags new_tags = get_rid_of_known_tags() if new_tags is not None: print(new_tags) return audio return media def main(): parser = argparse.ArgumentParser() parser.add_argument("db") parser.add_argument("paths", nargs="*") parser.add_argument("-a", "--audio", action="store_true") parser.add_argument("-s", "--subtitle", action="store_true") parser.add_argument("-yt", "--youtube-only", action="store_true") parser.add_argument("-sl", "--subliminal-only", action="store_true") parser.add_argument("-f", "--force-rescan", action="store_true") parser.add_argument("-v", "--verbose", action="count", default=0) args = parser.parse_args() if args.force_rescan: Path(args.db).unlink(missing_ok=True) if Path(args.db).exists(): cmd(f"sqlite-utils optimize {args.db}") columns = cmd(f"sqlite-utils tables {args.db} --columns | jq -r '.[0].columns[]' ", quiet=True).stdout.splitlines() for column in columns: cmd(f"sqlite-utils create-index --if-not-exists --analyze {args.db} media {column}") con = sqlite_con(args.db) for path in args.paths: path = Path(path).resolve() print(f"{path} : Scanning...") video_files = get_video_files(path) new_files = set(video_files) try: existing = set( map( lambda x: x["filename"], fetchall_dict(con, f"select filename from media where filename like '{path}%'"), ) ) except: video_files = list(new_files) else: video_files = list(new_files - existing) deleted_files = list(existing - new_files) if len(deleted_files) > 0: print(f"Removing {len(deleted_files)} orphaned metadata") df_chunked = chunks(deleted_files, 32765) # sqlite_param_limit for l in df_chunked: con.execute( "delete from media where filename in (" + ",".join(["?"] * len(l)) + ")", (*l,), ) con.commit() if len(video_files) > 0: print(f"Adding {len(video_files)} new media") log.info(video_files) metadata = ( Parallel(n_jobs=-1 if args.verbose == 0 else 1, backend="threading")( delayed(extract_metadata)(args, file) for file in video_files ) or [] ) DF = pd.DataFrame(list(filter(None, metadata))) if args.audio: if DF.get(["year"]) is not None: DF.year = DF.year.astype(str) DF.apply(pd.to_numeric, errors="ignore").convert_dtypes().to_sql( # type: ignore "media", con=con, if_exists="append", index=False, chunksize=70, method="multi", ) if args.subtitle: Parallel(n_jobs=5)(delayed(get_subtitle)(args, file) for file in video_files) if __name__ == "__main__": main()
the-stack_0_1304
import math import csv import numpy as np from math import sin, cos from numpy.random.mtrand import seed import kalman import matplotlib.pyplot as plt import particle magic_coeff = 0.047 wheel_radius = 2.7 wheel_base_half = 7.5 sonar_zero_distance = 13.8 init_x = 0.0 init_y = 0.0 init_angle = 0.0 x_cam_noise = (0.0, 49.0) y_cam_noise = (0.0, 49.0) gyro_noise = (0.0, math.radians(16.0)) sonar_normal_noise = (0.0, 4.0) sonar_invalid_noise = (0.0, 1e+6) def print_plot(plots=None, coords=None, bounded=True, title=None): if plots is not None: (t_plot, x_plot, y_plot) = plots else: t_plot = [] x_plot = [] y_plot = [] for tuple in coords: t_plot.append(tuple[0]) x_plot.append(tuple[2]) y_plot.append(tuple[1]) def print_p(xlabel, t_plot, y_axis, boundary=None): plt.ylabel(xlabel) plt.xlabel("y(t)") plt.plot(t_plot, y_axis) if title is not None: plt.title(title) if boundary is not None: plt.axis(boundary) plt.show() # print_p("x(t)", t_plot, x_plot, [1509976324.240, 1509976340.20860, 0, 140] if bounded else None) # print_p("y(t)", t_plot, y_plot, [1509976324.240, 1509976340.20860, -10, 40] if bounded else None) print_p("x(t)", y_plot, x_plot, [-10, 40, 0, 140] if bounded else None) def follow_by_wheels(): coords = [] with open('log_robot_2.csv') as csvfile: spamreader = csv.reader(csvfile, delimiter=';') x = init_x y = init_y angle = init_angle t_prev = 0 is_init = False for row in spamreader: try: t = float(row[0]) if not is_init: t_prev = t vl = float(row[3]) * magic_coeff vr = float(row[4]) * magic_coeff is_init = True dt = t - t_prev if abs(vr - vl) < 0.0001: x_next = x + vl * dt * cos(angle) y_next = y + vl * dt * sin(angle) angle_next = angle else: R = wheel_base_half * (vl + vr) / (vr - vl) wt = (vr - vl) / (wheel_base_half * 2) * dt ICCx = x - R * sin(angle) ICCy = y + R * cos(angle) x_next = cos(wt) * (x - ICCx) - sin(wt) * (y - ICCy) + ICCx y_next = sin(wt) * (x - ICCx) + cos(wt) * (y - ICCy) + ICCy angle_next = angle + wt x = x_next y = y_next angle = angle_next vl = float(row[3]) * magic_coeff vr = float(row[4]) * magic_coeff t_prev = t coords.append((t, -y, x)) except ValueError: pass print_plot(coords=coords, title="By wheels") def follow_by_gyro(): coords = [] with open('log_robot_2.csv') as csvfile: spamreader = csv.reader(csvfile, delimiter=';') x = init_x y = init_y # angle = init_angle t_prev = 0 is_init = False for row in spamreader: try: t = float(row[0]) angle = float(row[2]) * math.pi / 180 if not is_init: t_prev = t vl = float(row[3]) * magic_coeff vr = float(row[4]) * magic_coeff is_init = True # print(t, d, a, vl, vr, sep=', ') dt = t - t_prev avg_speed = (vr + vl) / 2 x_next = x + avg_speed * dt * sin(angle) y_next = y + avg_speed * dt * cos(angle) x = x_next y = y_next vl = float(row[3]) * magic_coeff vr = float(row[4]) * magic_coeff t_prev = t coords.append((t, x, y)) except ValueError: pass print_plot(coords=coords, title="By gyro") def print_log_camera(): t_plot = [] x_plot = [] y_plot = [] with open('log_camera_2.csv') as csvfile: spamreader = csv.reader(csvfile, delimiter=';') k = False for row in spamreader: if not k: k = True continue t_plot.append(float(row[0])) x_plot.append(float(row[1])) y_plot.append(float(row[2])) print_plot(plots=(t_plot, x_plot, y_plot), title="From camera") def print_log_camera_kalman(): t_plot = [] x_plot = [] y_plot = [] with open('log_camera_2.csv') as csvfile: spamreader = csv.reader(csvfile, delimiter=';') k = False for row in spamreader: if not k: k = True continue t_plot.append(float(row[0])) x_plot.append(float(row[1])) y_plot.append(float(row[2])) Q = 1 x_plot = kalman.apply_filter(x_plot, Q, x_cam_noise[1]) y_plot = kalman.apply_filter(y_plot, Q, y_cam_noise[1]) print_plot(plots=(t_plot, x_plot, y_plot), title="From camera with Kalman Q=" + str(Q)) def follow_by_gyro_kalman(): coords = [] v = [] t = [] angle = [0] Q = 0.05 with open('log_robot_2.csv') as csvfile: spamreader = csv.reader(csvfile, delimiter=';') x = init_x y = init_y is_init = False for row in spamreader: try: t.append(float(row[0])) if not is_init: t.append(float(row[0])) v.append((float(row[4]) + float(row[3])) * magic_coeff / 2) is_init = True angle.append(float(row[2]) * math.pi / 180) v.append((float(row[4]) + float(row[3])) * magic_coeff / 2) except ValueError: pass angle = kalman.apply_filter(angle, Q=Q, R=gyro_noise[1]) for i in range(1, len(t)): dt = t[i] - t[i - 1] x_next = x + v[i - 1] * dt * sin(angle[i]) y_next = y + v[i - 1] * dt * cos(angle[i]) x = x_next y = y_next coords.append((t[i], x, y)) print_plot(coords=coords, title="By gyro with Kalman, Q=" + str(Q)) def sensor_fusion(): coords_gyro = [] coords_wheels = [] vl = [] vr = [] t = [] angle = [0] Q = 0.1 with open('log_robot_2.csv') as csvfile: spamreader = csv.reader(csvfile, delimiter=';') x = init_x y = init_y is_init = False for row in spamreader: try: t.append(float(row[0])) if not is_init: t.append(float(row[0])) vl.append((float(row[3])) * magic_coeff) vr.append((float(row[4])) * magic_coeff) is_init = True angle.append(float(row[2]) * math.pi / 180) vl.append((float(row[3])) * magic_coeff) vr.append((float(row[4])) * magic_coeff) except ValueError: pass for i in range(1, len(t)): dt = t[i] - t[i - 1] avg_speed = (vl[i - 1] + vr[i - 1]) / 2 x_next = x + avg_speed * dt * sin(angle[i]) y_next = y + avg_speed * dt * cos(angle[i]) x = x_next y = y_next coords_gyro.append((t[i], x, y)) a = init_angle x = init_x y = init_y for i in range(1, len(t)): dt = t[i] - t[i - 1] if abs(vr[i - 1] - vl[i - 1]) < 0.0001: x_next = x + vl[i - 1] * dt * cos(a) y_next = y + vl[i - 1] * dt * sin(a) angle_next = a else: R = wheel_base_half * (vl[i - 1] + vr[i - 1]) / (vr[i - 1] - vl[i - 1]) wt = (vr[i - 1] - vl[i - 1]) / (wheel_base_half * 2) * dt ICCx = x - R * sin(a) ICCy = y + R * cos(a) x_next = cos(wt) * (x - ICCx) - sin(wt) * (y - ICCy) + ICCx y_next = sin(wt) * (x - ICCx) + cos(wt) * (y - ICCy) + ICCy angle_next = a + wt x = x_next y = y_next a = angle_next coords_wheels.append((t[i], -y, x)) x_w = [0] x_g = [0] for i in range(0, len(coords_gyro)): x_w.append(coords_wheels[i][1]) x_g.append(coords_gyro[i][1]) x_matrix = np.matrix([x_w, x_g]).transpose() Q = 0.5 R = np.matrix([[100, 0], [0, 100]]).transpose() y_w = [0] y_g = [0] for i in range(0, len(coords_gyro)): y_w.append(coords_wheels[i][2]) y_g.append(coords_gyro[i][2]) y_matrix = np.matrix([y_w, y_g]).transpose() x_kalman = kalman.apply_filter_x(x_matrix, Q, R, (len(x_w),)).tolist() y_kalman = kalman.apply_filter_x(y_matrix, Q, R, (len(y_w),)).tolist() print_plot(plots=(t, y_kalman, x_kalman), title="Kalman with 2 sensors") def particle_filter(): vl = [] vr = [] t = [] dist = [sonar_zero_distance] angle = [0] with open('log_robot_2.csv') as csvfile: spamreader = csv.reader(csvfile, delimiter=';') is_init = False for row in spamreader: try: t.append(float(row[0])) if not is_init: t.append(float(row[0])) vl.append((float(row[3])) * magic_coeff) vr.append((float(row[4])) * magic_coeff) is_init = True dist.append(float(row[1])) angle.append(float(row[2]) * math.pi / 180) vl.append((float(row[3])) * magic_coeff) vr.append((float(row[4])) * magic_coeff) except ValueError: pass particle.run_pf1(N=5000, plot_particles=True, vl=vl, vr=vr, t=t, angle=angle, dist=dist, initial_x=(10, 10, np.pi / 4)) if __name__ == '__main__': follow_by_wheels() follow_by_gyro() follow_by_gyro_kalman() print_log_camera() print_log_camera_kalman() sensor_fusion() # seed(2) # particle_filter()
the-stack_0_1307
#! /usr/local/bin/python3 # Consume and display messages from a Kafka topic import argparse from kafka import KafkaConsumer def parse(): """Parse command line""" parser = argparse.ArgumentParser() parser.add_argument('-b', '--brokers', default='kafka:9092', help='Kafka bootstrap brokers') parser.add_argument('-t', '--topic', default='test-topic', help='Name of topic to consume from') return parser.parse_args() if __name__ == '__main__': args = parse() # Create Kafka consumer client consumer = KafkaConsumer(bootstrap_servers=args.brokers) # Subscribe to topic print('Subscribing to topic {}'.format(args.topic)) consumer.subscribe(args.topic) try: # Poll the topic for new messages for msg in consumer: # Decode the value for display decoded_val = msg.value.decode('utf-8') # Display the value of the message that was consumed print('Consumed message from {}: "{}"'.format(args.topic, decoded_val)) except KeyboardInterrupt: consumer.close()
the-stack_0_1308
import json from sqlalchemy import Column, Integer, SmallInteger, String, ForeignKey, Text, JSON, Boolean from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship from ...policy import Policy, ALLOW_ACCESS, DENY_ACCESS, TYPE_STRING_BASED from ...rules.base import Rule from ...parser import compile_regex Base = declarative_base() class PolicySubjectModel(Base): """Storage model for policy subjects""" __tablename__ = 'vakt_policy_subjects' id = Column(Integer, primary_key=True) uid = Column(String(255), ForeignKey('vakt_policies.uid', ondelete='CASCADE')) subject = Column(JSON(), comment='JSON value for rule-based policies') subject_string = Column(String(255), index=True, comment='Initial string value for string-based policies') subject_regex = Column(String(520), index=True, comment='Regexp from initial string value for string-based policies') class PolicyResourceModel(Base): """Storage model for policy resources""" __tablename__ = 'vakt_policy_resources' id = Column(Integer, primary_key=True) uid = Column(String(255), ForeignKey('vakt_policies.uid', ondelete='CASCADE')) resource = Column(JSON(), comment='JSON value for rule-based policies') resource_string = Column(String(255), index=True, comment='Initial string value for string-based policies') resource_regex = Column(String(520), index=True, comment='Regexp from initial string value for string-based policies') class PolicyActionModel(Base): """Storage model for policy actions""" __tablename__ = 'vakt_policy_actions' id = Column(Integer, primary_key=True) uid = Column(String(255), ForeignKey('vakt_policies.uid', ondelete='CASCADE')) action = Column(JSON(), comment='JSON value for rule-based policies') action_string = Column(String(255), index=True, comment='Initial string value for string-based policies') action_regex = Column(String(520), index=True, comment='Regexp from initial string value for string-based policies') class PolicyModel(Base): """Storage model for policy""" __tablename__ = 'vakt_policies' uid = Column(String(255), primary_key=True) type = Column(SmallInteger) description = Column(Text()) effect = Column(Boolean()) context = Column(JSON()) subjects = relationship(PolicySubjectModel, passive_deletes=True, lazy='joined') resources = relationship(PolicyResourceModel, passive_deletes=True, lazy='joined') actions = relationship(PolicyActionModel, passive_deletes=True, lazy='joined') @classmethod def from_policy(cls, policy): """ Instantiate from policy object :param policy: object of type policy """ rvalue = cls() return cls._save(policy, model=rvalue) def update(self, policy): """ Update object attributes to match given policy :param policy: object of type policy """ self._save(policy, model=self) def to_policy(self): """ Create a policy object :return: object of type `Policy` """ return Policy(uid=self.uid, effect=ALLOW_ACCESS if self.effect else DENY_ACCESS, description=self.description, context=Rule.from_json(self.context), subjects=[ self._policy_element_from_db(self.type, x.subject, x.subject_string) for x in self.subjects ], resources=[ self._policy_element_from_db(self.type, x.resource, x.resource_string) for x in self.resources ], actions=[ self._policy_element_from_db(self.type, x.action, x.action_string) for x in self.actions ]) @classmethod def _save(cls, policy, model): """ Helper to create PolicyModel from Policy object for add and update operations. :param policy: object of type Policy :param model: object of type PolicyModel """ policy_json = policy.to_json() policy_dict = json.loads(policy_json) model.uid = policy_dict['uid'] model.type = policy_dict['type'] model.effect = policy_dict['effect'] == ALLOW_ACCESS model.description = policy_dict['description'] model.context = json.dumps(policy_dict['context']) model.subjects = [ PolicySubjectModel(subject=x, subject_string=string, subject_regex=compiled) for y in policy_dict['subjects'] for (x, string, compiled) in cls._policy_element_to_db(policy, y) ] model.resources = [ PolicyResourceModel(resource=x, resource_string=string, resource_regex=compiled) for y in policy_dict['resources'] for (x, string, compiled) in cls._policy_element_to_db(policy, y) ] model.actions = [ PolicyActionModel(action=x, action_string=string, action_regex=compiled) for y in policy_dict['actions'] for (x, string, compiled) in cls._policy_element_to_db(policy, y) ] return model @classmethod def _policy_element_to_db(cls, policy, el): json_value, string_value, compiled = None, None, None if policy.type == TYPE_STRING_BASED: string_value = el if policy.start_tag in el and policy.end_tag in el: compiled = compile_regex(el, policy.start_tag, policy.end_tag).pattern else: # it's a rule-based policy and it's value is a json json_value = json.dumps(el) yield (json_value, string_value, compiled) @classmethod def _policy_element_from_db(cls, policy_type, element_json, element_string): if policy_type == TYPE_STRING_BASED: return element_string return Rule.from_json(element_json)
the-stack_0_1309
import collections import contextlib import inspect import json import jsonschema import numpy as np import pandas as pd # If DEBUG_MODE is True, then schema objects are converted to dict and # validated at creation time. This slows things down, particularly for # larger specs, but leads to much more useful tracebacks for the user. # Individual schema classes can override this by setting the # class-level _class_is_valid_at_instantiation attribute to False DEBUG_MODE = True def enable_debug_mode(): global DEBUG_MODE DEBUG_MODE = True def disable_debug_mode(): global DEBUG_MODE DEBUG_MODE = True @contextlib.contextmanager def debug_mode(arg): global DEBUG_MODE original = DEBUG_MODE DEBUG_MODE = arg try: yield finally: DEBUG_MODE = original def _subclasses(cls): """Breadth-first sequence of all classes which inherit from cls.""" seen = set() current_set = {cls} while current_set: seen |= current_set current_set = set.union(*(set(cls.__subclasses__()) for cls in current_set)) for cls in current_set - seen: yield cls def _todict(obj, validate, context): """Convert an object to a dict representation.""" if isinstance(obj, SchemaBase): return obj.to_dict(validate=validate, context=context) elif isinstance(obj, (list, tuple, np.ndarray)): return [_todict(v, validate, context) for v in obj] elif isinstance(obj, dict): return { k: _todict(v, validate, context) for k, v in obj.items() if v is not Undefined } elif hasattr(obj, "to_dict"): return obj.to_dict() elif isinstance(obj, np.number): return float(obj) elif isinstance(obj, (pd.Timestamp, np.datetime64)): return pd.Timestamp(obj).isoformat() else: return obj def _resolve_references(schema, root=None): """Resolve schema references.""" resolver = jsonschema.RefResolver.from_schema(root or schema) while "$ref" in schema: with resolver.resolving(schema["$ref"]) as resolved: schema = resolved return schema class SchemaValidationError(jsonschema.ValidationError): """A wrapper for jsonschema.ValidationError with friendlier traceback""" def __init__(self, obj, err): super(SchemaValidationError, self).__init__(**self._get_contents(err)) self.obj = obj @staticmethod def _get_contents(err): """Get a dictionary with the contents of a ValidationError""" try: # works in jsonschema 2.3 or later contents = err._contents() except AttributeError: try: # works in Python >=3.4 spec = inspect.getfullargspec(err.__init__) except AttributeError: # works in Python <3.4 spec = inspect.getargspec(err.__init__) contents = {key: getattr(err, key) for key in spec.args[1:]} return contents def __str__(self): cls = self.obj.__class__ schema_path = ["{}.{}".format(cls.__module__, cls.__name__)] schema_path.extend(self.schema_path) schema_path = "->".join( str(val) for val in schema_path[:-1] if val not in ("properties", "additionalProperties", "patternProperties") ) return """Invalid specification {}, validating {!r} {} """.format( schema_path, self.validator, self.message ) class UndefinedType(object): """A singleton object for marking undefined attributes""" __instance = None def __new__(cls, *args, **kwargs): if not isinstance(cls.__instance, cls): cls.__instance = object.__new__(cls, *args, **kwargs) return cls.__instance def __repr__(self): return "Undefined" Undefined = UndefinedType() class SchemaBase(object): """Base class for schema wrappers. Each derived class should set the _schema class attribute (and optionally the _rootschema class attribute) which is used for validation. """ _schema = None _rootschema = None _class_is_valid_at_instantiation = True def __init__(self, *args, **kwds): # Two valid options for initialization, which should be handled by # derived classes: # - a single arg with no kwds, for, e.g. {'type': 'string'} # - zero args with zero or more kwds for {'type': 'object'} if self._schema is None: raise ValueError( "Cannot instantiate object of type {}: " "_schema class attribute is not defined." "".format(self.__class__) ) if kwds: assert len(args) == 0 else: assert len(args) in [0, 1] # use object.__setattr__ because we override setattr below. object.__setattr__(self, "_args", args) object.__setattr__(self, "_kwds", kwds) if DEBUG_MODE and self._class_is_valid_at_instantiation: self.to_dict(validate=True) def copy(self, deep=True, ignore=()): """Return a copy of the object Parameters ---------- deep : boolean or list, optional If True (default) then return a deep copy of all dict, list, and SchemaBase objects within the object structure. If False, then only copy the top object. If a list or iterable, then only copy the listed attributes. ignore : list, optional A list of keys for which the contents should not be copied, but only stored by reference. """ def _shallow_copy(obj): if isinstance(obj, SchemaBase): return obj.copy(deep=False) elif isinstance(obj, list): return obj[:] elif isinstance(obj, dict): return obj.copy() else: return obj def _deep_copy(obj, ignore=()): if isinstance(obj, SchemaBase): args = tuple(_deep_copy(arg) for arg in obj._args) kwds = { k: (_deep_copy(v, ignore=ignore) if k not in ignore else v) for k, v in obj._kwds.items() } with debug_mode(False): return obj.__class__(*args, **kwds) elif isinstance(obj, list): return [_deep_copy(v, ignore=ignore) for v in obj] elif isinstance(obj, dict): return { k: (_deep_copy(v, ignore=ignore) if k not in ignore else v) for k, v in obj.items() } else: return obj try: deep = list(deep) except TypeError: deep_is_list = False else: deep_is_list = True if deep and not deep_is_list: return _deep_copy(self, ignore=ignore) with debug_mode(False): copy = self.__class__(*self._args, **self._kwds) if deep_is_list: for attr in deep: copy[attr] = _shallow_copy(copy._get(attr)) return copy def _get(self, attr, default=Undefined): """Get an attribute, returning default if not present.""" attr = self._kwds.get(attr, Undefined) if attr is Undefined: attr = default return attr def __getattr__(self, attr): # reminder: getattr is called after the normal lookups if attr == "_kwds": raise AttributeError() if attr in self._kwds: return self._kwds[attr] else: try: _getattr = super(SchemaBase, self).__getattr__ except AttributeError: _getattr = super(SchemaBase, self).__getattribute__ return _getattr(attr) def __setattr__(self, item, val): self._kwds[item] = val def __getitem__(self, item): return self._kwds[item] def __setitem__(self, item, val): self._kwds[item] = val def __repr__(self): if self._kwds: args = ( "{}: {!r}".format(key, val) for key, val in sorted(self._kwds.items()) if val is not Undefined ) args = "\n" + ",\n".join(args) return "{0}({{{1}\n}})".format( self.__class__.__name__, args.replace("\n", "\n ") ) else: return "{}({!r})".format(self.__class__.__name__, self._args[0]) def __eq__(self, other): return ( type(self) is type(other) and self._args == other._args and self._kwds == other._kwds ) def to_dict(self, validate=True, ignore=None, context=None): """Return a dictionary representation of the object Parameters ---------- validate : boolean or string If True (default), then validate the output dictionary against the schema. If "deep" then recursively validate all objects in the spec. This takes much more time, but it results in friendlier tracebacks for large objects. ignore : list A list of keys to ignore. This will *not* passed to child to_dict function calls. context : dict (optional) A context dictionary that will be passed to all child to_dict function calls Returns ------- dct : dictionary The dictionary representation of this object Raises ------ jsonschema.ValidationError : if validate=True and the dict does not conform to the schema """ if context is None: context = {} if ignore is None: ignore = [] sub_validate = "deep" if validate == "deep" else False if self._args and not self._kwds: result = _todict(self._args[0], validate=sub_validate, context=context) elif not self._args: result = _todict( {k: v for k, v in self._kwds.items() if k not in ignore}, validate=sub_validate, context=context, ) else: raise ValueError( "{} instance has both a value and properties : " "cannot serialize to dict".format(self.__class__) ) if validate: try: self.validate(result) except jsonschema.ValidationError as err: raise SchemaValidationError(self, err) return result def to_json( self, validate=True, ignore=[], context={}, indent=2, sort_keys=True, **kwargs ): """Emit the JSON representation for this object as a string. Parameters ---------- validate : boolean or string If True (default), then validate the output dictionary against the schema. If "deep" then recursively validate all objects in the spec. This takes much more time, but it results in friendlier tracebacks for large objects. ignore : list A list of keys to ignore. This will *not* passed to child to_dict function calls. context : dict (optional) A context dictionary that will be passed to all child to_dict function calls indent : integer, default 2 the number of spaces of indentation to use sort_keys : boolean, default True if True, sort keys in the output **kwargs Additional keyword arguments are passed to ``json.dumps()`` Returns ------- spec : string The JSON specification of the chart object. """ dct = self.to_dict(validate=validate, ignore=ignore, context=context) return json.dumps(dct, indent=indent, sort_keys=sort_keys, **kwargs) @classmethod def _default_wrapper_classes(cls): """Return the set of classes used within cls.from_dict()""" return _subclasses(SchemaBase) @classmethod def from_dict(cls, dct, validate=True, _wrapper_classes=None): """Construct class from a dictionary representation Parameters ---------- dct : dictionary The dict from which to construct the class validate : boolean If True (default), then validate the input against the schema. _wrapper_classes : list (optional) The set of SchemaBase classes to use when constructing wrappers of the dict inputs. If not specified, the result of cls._default_wrapper_classes will be used. Returns ------- obj : Schema object The wrapped schema Raises ------ jsonschema.ValidationError : if validate=True and dct does not conform to the schema """ if validate: cls.validate(dct) if _wrapper_classes is None: _wrapper_classes = cls._default_wrapper_classes() converter = _FromDict(_wrapper_classes) return converter.from_dict(dct, cls) @classmethod def from_json(cls, json_string, validate=True, **kwargs): """Instantiate the object from a valid JSON string Parameters ---------- json_string : string The string containing a valid JSON chart specification. validate : boolean If True (default), then validate the input against the schema. **kwargs : Additional keyword arguments are passed to json.loads Returns ------- chart : Chart object The altair Chart object built from the specification. """ dct = json.loads(json_string, **kwargs) return cls.from_dict(dct, validate=validate) @classmethod def validate(cls, instance, schema=None): """ Validate the instance against the class schema in the context of the rootschema. """ if schema is None: schema = cls._schema resolver = jsonschema.RefResolver.from_schema(cls._rootschema or cls._schema) return jsonschema.validate(instance, schema, resolver=resolver) @classmethod def resolve_references(cls, schema=None): """Resolve references in the context of this object's schema or root schema.""" return _resolve_references( schema=(schema or cls._schema), root=(cls._rootschema or cls._schema or schema), ) @classmethod def validate_property(cls, name, value, schema=None): """ Validate a property against property schema in the context of the rootschema """ value = _todict(value, validate=False, context={}) props = cls.resolve_references(schema or cls._schema).get("properties", {}) resolver = jsonschema.RefResolver.from_schema(cls._rootschema or cls._schema) return jsonschema.validate(value, props.get(name, {}), resolver=resolver) def __dir__(self): return list(self._kwds.keys()) class _FromDict(object): """Class used to construct SchemaBase class hierarchies from a dict The primary purpose of using this class is to be able to build a hash table that maps schemas to their wrapper classes. The candidate classes are specified in the ``class_list`` argument to the constructor. """ _hash_exclude_keys = ("definitions", "title", "description", "$schema", "id") def __init__(self, class_list): # Create a mapping of a schema hash to a list of matching classes # This lets us quickly determine the correct class to construct self.class_dict = collections.defaultdict(list) for cls in class_list: if cls._schema is not None: self.class_dict[self.hash_schema(cls._schema)].append(cls) @classmethod def hash_schema(cls, schema, use_json=True): """ Compute a python hash for a nested dictionary which properly handles dicts, lists, sets, and tuples. At the top level, the function excludes from the hashed schema all keys listed in `exclude_keys`. This implements two methods: one based on conversion to JSON, and one based on recursive conversions of unhashable to hashable types; the former seems to be slightly faster in several benchmarks. """ if cls._hash_exclude_keys and isinstance(schema, dict): schema = { key: val for key, val in schema.items() if key not in cls._hash_exclude_keys } if use_json: s = json.dumps(schema, sort_keys=True) return hash(s) else: def _freeze(val): if isinstance(val, dict): return frozenset((k, _freeze(v)) for k, v in val.items()) elif isinstance(val, set): return frozenset(map(_freeze, val)) elif isinstance(val, list) or isinstance(val, tuple): return tuple(map(_freeze, val)) else: return val return hash(_freeze(schema)) def from_dict(self, dct, cls=None, schema=None, rootschema=None): """Construct an object from a dict representation""" if (schema is None) == (cls is None): raise ValueError("Must provide either cls or schema, but not both.") if schema is None: schema = schema or cls._schema rootschema = rootschema or cls._rootschema rootschema = rootschema or schema def _passthrough(*args, **kwds): return args[0] if args else kwds if isinstance(dct, SchemaBase): return dct if cls is None: # If there are multiple matches, we use the first one in the dict. # Our class dict is constructed breadth-first from top to bottom, # so the first class that matches is the most general match. matches = self.class_dict[self.hash_schema(schema)] cls = matches[0] if matches else _passthrough schema = _resolve_references(schema, rootschema) if "anyOf" in schema or "oneOf" in schema: schemas = schema.get("anyOf", []) + schema.get("oneOf", []) for possible_schema in schemas: resolver = jsonschema.RefResolver.from_schema(rootschema) try: jsonschema.validate(dct, possible_schema, resolver=resolver) except jsonschema.ValidationError: continue else: return self.from_dict( dct, schema=possible_schema, rootschema=rootschema, ) if isinstance(dct, dict): # TODO: handle schemas for additionalProperties/patternProperties props = schema.get("properties", {}) kwds = {} for key, val in dct.items(): if key in props: val = self.from_dict(val, schema=props[key], rootschema=rootschema) kwds[key] = val return cls(**kwds) elif isinstance(dct, list): item_schema = schema.get("items", {}) dct = [ self.from_dict(val, schema=item_schema, rootschema=rootschema) for val in dct ] return cls(dct) else: return cls(dct)
the-stack_0_1310
#!/usr/bin/python # -_- encoding: utf8 -_- import sys import time sys.path.append('./t') from http_utils import * VERBOSE = False BASE_URL = 'http://0.0.0.0:8081' # ============= # print('[+] Test status codes') http_codes = [ 200, 201, 202, # NO-Content !!! # 204, 206, # Moved !!! [[ # 300, # 301, # 302, # ]] # See others !!! [[ # 303, # ]] # Not modified [[ # 304, # ]] # Temorary redirected [[ # 307, # ]] 400, 401, 403, 404, 405, 408, 409, 411, 412, 413, 414, 415, 416, 421, 500, 501, 502, 503, 504, 507 ] def do_post(url, code, headers): return post_2(url, {'params':[1, 2]}, headers) def do_get(url, code, headers): # Python's urllib2 does not suppor these codes! [[ if code > 200: return (True, []) # ]] return get_2(url, [], headers) methods = [ [do_post, 'POST'], [do_get, 'GET'] ] prev_result = None for method in methods: for code in http_codes: curl = BASE_URL + '/lua?status_code=' + str(code) (rcode, result) = method[0](curl, code, {'X-From': 'eval_basic'}) # Python does not work if server returns some codes! if rcode == True: continue; assert(code == rcode) print('[+] OK')
the-stack_0_1311
import nltk from nltk.model import build_vocabulary, count_ngrams, LaplaceNgramModel, LidstoneNgramModel ''' lincoln_address_file = open('files/FirstInauguralAddress.txt') raw_lincoln_address = lincoln_address_file.read().lower() # lb_train_1 = raw_lincoln_address.lower().split() lb_train_1_sents = nltk.sent_tokenize(raw_lincoln_address, language="english") lb_train_1_words = nltk.word_tokenize(raw_lincoln_address, language='english') ''' ''' gettysburg_address_file = open('files/Gettysburg.txt') raw_gettysburg_address = gettysburg_address_file.read().lower() # lb_train_2 = raw_gettysburg_address.lower().split() lb_train_2_sents = nltk.sent_tokenize(raw_gettysburg_address, language="english") lb_train_2_words = nltk.word_tokenize(raw_gettysburg_address, language='english') ''' lb_train_file = open('files/LB-Train.txt') raw_lb_train_file = lb_train_file.read().lower() lb_train_words = nltk.word_tokenize(raw_lb_train_file, language='english') lb_vocab = build_vocabulary(2, lb_train_words) # lb_vocab = build_vocabulary(1, lb_train_1_words, lb_train_2_words) # print(lb_vocab) lb_train = [] lb_train.append(lb_train_words) ''' lb_train.append(lb_train_1_words) lb_train.append(lb_train_2_words) ''' # print(lb_train) lb_bigram_counts = count_ngrams(2, lb_vocab, lb_train) # print(lb_bigram_counts.ngrams[2]) # print(sorted(lb_bigram_counts.ngrams[2].conditions())) lb = LidstoneNgramModel(0.2, lb_bigram_counts) # print("lincoln score ", lb.score("never", ["had"])) lincoln_address_file_2 = open('files/SecondInauguralAddress.txt') lb_test = lincoln_address_file_2.read().lower() lb_test_words = nltk.word_tokenize(lb_test) print("Perplexity of LB on LB-Test = ", lb.perplexity(lb_test_words)) ''' for ngram in lb_bigram_counts.to_ngrams(lb_test_words): print(ngram) ''' ''' nelson_address_file = open('files/IamPreparedToDie.txt') raw_nelson_address = nelson_address_file.read().lower() # mb_train_1 = raw_nelson_address.lower().split() mb_train_1_sents = nltk.sent_tokenize(raw_nelson_address, language="english") mb_train_1_words = nltk.word_tokenize(raw_nelson_address, language="english") freedom_award_file = open('files/InternationalFreedomAward.txt') raw_freedom_award = freedom_award_file.read().lower() # mb_train_2 = raw_freedom_award.lower().split() mb_train_2_sents = nltk.sent_tokenize(raw_freedom_award, language='english') mb_train_2_words = nltk.word_tokenize(raw_freedom_award, language='english') ''' mb_train_file = open('files/MB-Train.txt') raw_mb_train_file = mb_train_file.read().lower() mb_train_words = nltk.word_tokenize(raw_mb_train_file, language='english') mb_vocab = build_vocabulary(2, mb_train_words) # mb_vocab = build_vocabulary(1, mb_train_1_words, mb_train_2_words) mb_train = [] mb_train.append(mb_train_words) ''' mb_train.append(lb_train_1_words) mb_train.append(lb_train_2_words) ''' mb_bigram_counts = count_ngrams(2, mb_vocab, mb_train) mb = LidstoneNgramModel(0.2, mb_bigram_counts) # print("mandela score ", mb.score("the", ["and"])) nelson_address_file_2 = open('files/AfricanNationalCongress.txt') mb_test = nelson_address_file_2.read() mb_test_words = nltk.word_tokenize(mb_test) print("Perplexity of MB on MB-Test = ", mb.perplexity(mb_test_words)) # print("Perplexity of MB on LB-Test = ", mb.perplexity(lb_test_words)) # print("Perplexity of LB on MB-Test = ", lb.perplexity(mb_test_words)) print("Perplexity of LB on LB-Train = ", lb.perplexity(lb_train_words)) print("Perplexity of MB on MB-Train = ", mb.perplexity(mb_train_words)) print("Perplexity of MB on LB-Train = ", mb.perplexity(lb_train_words)) print("Perplexity of LB on MB-Train = ", lb.perplexity(mb_train_words))
the-stack_0_1313
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) autodoc_mock_imports = ['numpy', 'tifffile'] # -- Project information ----------------------------------------------------- project = 'pyCUDAdecon' copyright = '2019, Talley Lambert' author = 'Talley Lambert' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '0.1.0' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'pyCUDAdecondoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'pyCUDAdecon.tex', 'pyCUDAdecon Documentation', 'Talley Lambert', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pycudadecon', 'pyCUDAdecon Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'pyCUDAdecon', 'pyCUDAdecon Documentation', author, 'pyCUDAdecon', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration -------------------------------------------------
the-stack_0_1314
# Copyright The IETF Trust 2013-2020, All Rights Reserved # -*- coding: utf-8 -*- import io import os import debug # pyflakes:ignore from pyquery import PyQuery from io import StringIO from textwrap import wrap from django.conf import settings from django.urls import reverse as urlreverse from ietf.doc.factories import DocumentFactory, IndividualRfcFactory, WgRfcFactory from ietf.doc.models import ( Document, DocAlias, State, DocEvent, BallotPositionDocEvent, NewRevisionDocEvent, TelechatDocEvent, WriteupDocEvent ) from ietf.doc.utils import create_ballot_if_not_open from ietf.doc.views_status_change import default_approval_text from ietf.group.models import Person from ietf.iesg.models import TelechatDate from ietf.utils.test_utils import TestCase from ietf.utils.mail import outbox, empty_outbox, get_payload_text from ietf.utils.test_utils import login_testing_unauthorized class StatusChangeTests(TestCase): def test_start_review(self): url = urlreverse('ietf.doc.views_status_change.start_rfc_status_change') login_testing_unauthorized(self, "secretary", url) # normal get should succeed and get a reasonable form r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q('form select[name=create_in_state]')),1) ad_strpk = str(Person.objects.get(name='Areað Irector').pk) state_strpk = str(State.objects.get(slug='adrev',type__slug='statchg').pk) # faulty posts ## Must set a responsible AD r = self.client.post(url,dict(document_name="bogus",title="Bogus Title",ad="",create_in_state=state_strpk,notify='[email protected]')) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertTrue(len(q('form .is-invalid')) > 0) ## Must set a name r = self.client.post(url,dict(document_name="",title="Bogus Title",ad=ad_strpk,create_in_state=state_strpk,notify='[email protected]')) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertTrue(len(q('form .is-invalid')) > 0) ## Must not choose a document name that already exists r = self.client.post(url,dict(document_name="imaginary-mid-review",title="Bogus Title",ad=ad_strpk,create_in_state=state_strpk,notify='[email protected]')) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertTrue(len(q('form .is-invalid')) > 0) ## Must set a title r = self.client.post(url,dict(document_name="bogus",title="",ad=ad_strpk,create_in_state=state_strpk,notify='[email protected]')) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertTrue(len(q('form .is-invalid')) > 0) # successful status change start r = self.client.post(url,dict(document_name="imaginary-new",title="A new imaginary status change",ad=ad_strpk, create_in_state=state_strpk,notify='[email protected]',new_relation_row_blah="rfc9999", statchg_relation_row_blah="tois")) self.assertEqual(r.status_code, 302) status_change = Document.objects.get(name='status-change-imaginary-new') self.assertEqual(status_change.get_state('statchg').slug,'adrev') self.assertEqual(status_change.rev,'00') self.assertEqual(status_change.ad.name,'Areað Irector') self.assertEqual(status_change.notify,'[email protected]') self.assertTrue(status_change.relateddocument_set.filter(relationship__slug='tois',target__docs__name='draft-ietf-random-thing')) def test_change_state(self): doc = Document.objects.get(name='status-change-imaginary-mid-review') url = urlreverse('ietf.doc.views_status_change.change_state',kwargs=dict(name=doc.name)) login_testing_unauthorized(self, "ad", url) # normal get r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q('form select[name=new_state]')),1) # faulty post r = self.client.post(url,dict(new_state="")) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertTrue(len(q('form .is-invalid')) > 0) # successful change to AD Review adrev_pk = str(State.objects.get(slug='adrev',type__slug='statchg').pk) r = self.client.post(url,dict(new_state=adrev_pk,comment='RDNK84ZD')) self.assertEqual(r.status_code, 302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertEqual(doc.get_state('statchg').slug,'adrev') self.assertTrue(doc.latest_event(DocEvent,type="added_comment").desc.startswith('RDNK84ZD')) self.assertFalse(doc.active_ballot()) # successful change to Last Call Requested messages_before = len(outbox) doc.ad = Person.objects.get(user__username='ad') doc.save_with_history([DocEvent.objects.create(doc=doc, rev=doc.rev, type="changed_document", by=Person.objects.get(user__username="secretary"), desc="Test")]) lc_req_pk = str(State.objects.get(slug='lc-req',type__slug='statchg').pk) r = self.client.post(url,dict(new_state=lc_req_pk)) self.assertEqual(r.status_code, 200) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertEqual(doc.get_state('statchg').slug,'lc-req') self.assertEqual(len(outbox), messages_before + 1) self.assertTrue('Last Call:' in outbox[-1]['Subject']) # successful change to IESG Evaluation iesgeval_pk = str(State.objects.get(slug='iesgeval',type__slug='statchg').pk) r = self.client.post(url,dict(new_state=iesgeval_pk,comment='TGmZtEjt')) self.assertEqual(r.status_code, 302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertEqual(doc.get_state('statchg').slug,'iesgeval') self.assertTrue(doc.latest_event(DocEvent,type="added_comment").desc.startswith('TGmZtEjt')) self.assertTrue(doc.active_ballot()) self.assertEqual(doc.latest_event(BallotPositionDocEvent, type="changed_ballot_position").pos_id,'yes') def test_edit_notices(self): doc = Document.objects.get(name='status-change-imaginary-mid-review') url = urlreverse('ietf.doc.views_doc.edit_notify;status-change',kwargs=dict(name=doc.name)) login_testing_unauthorized(self, "ad", url) # normal get r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q('form input[name=notify]')),1) self.assertEqual(doc.notify,q('form input[name=notify]')[0].value) # change notice list newlist = '"Foo Bar" <[email protected]>' r = self.client.post(url,dict(notify=newlist,save_addresses="1")) self.assertEqual(r.status_code,302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertEqual(doc.notify,newlist) self.assertTrue(doc.latest_event(DocEvent,type="added_comment").desc.startswith('Notification list changed')) # Some additional setup so there's something to put in a generated notify list doc.relateddocument_set.create(target=DocAlias.objects.get(name='rfc9999'),relationship_id='tois') doc.relateddocument_set.create(target=DocAlias.objects.get(name='rfc9998'),relationship_id='tohist') # Ask the form to regenerate the list r = self.client.post(url,dict(regenerate_addresses="1")) self.assertEqual(r.status_code,200) doc = Document.objects.get(name='status-change-imaginary-mid-review') # Regenerate does not save! self.assertEqual(doc.notify,newlist) q = PyQuery(r.content) formlist = q('form input[name=notify]')[0].value self.assertEqual(None,formlist) def test_edit_title(self): doc = Document.objects.get(name='status-change-imaginary-mid-review') url = urlreverse('ietf.doc.views_status_change.edit_title',kwargs=dict(name=doc.name)) login_testing_unauthorized(self, "ad", url) # normal get r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q('input[name=title]')),1) # change title r = self.client.post(url,dict(title='New title')) self.assertEqual(r.status_code,302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertEqual(doc.title,'New title') self.assertTrue(doc.latest_event(DocEvent,type="added_comment").desc.startswith('Title changed')) def test_edit_ad(self): doc = Document.objects.get(name='status-change-imaginary-mid-review') url = urlreverse('ietf.doc.views_status_change.edit_ad',kwargs=dict(name=doc.name)) login_testing_unauthorized(self, "ad", url) # normal get r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q('select[name=ad]')),1) # change ads ad2 = Person.objects.get(name='Ad No2') r = self.client.post(url,dict(ad=str(ad2.pk))) self.assertEqual(r.status_code,302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertEqual(doc.ad,ad2) self.assertTrue(doc.latest_event(DocEvent,type="added_comment").desc.startswith('Shepherding AD changed')) def test_edit_telechat_date(self): doc = Document.objects.get(name='status-change-imaginary-mid-review') url = urlreverse('ietf.doc.views_doc.telechat_date;status-change',kwargs=dict(name=doc.name)) login_testing_unauthorized(self, "ad", url) # normal get r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q('select[name=telechat_date]')),1) # set a date self.assertFalse(doc.latest_event(TelechatDocEvent, "scheduled_for_telechat")) telechat_date = TelechatDate.objects.active().order_by('date')[0].date r = self.client.post(url,dict(telechat_date=telechat_date.isoformat())) self.assertEqual(r.status_code,302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertEqual(doc.latest_event(TelechatDocEvent, "scheduled_for_telechat").telechat_date,telechat_date) # move it forward a telechat (this should NOT set the returning item bit) telechat_date = TelechatDate.objects.active().order_by('date')[1].date r = self.client.post(url,dict(telechat_date=telechat_date.isoformat())) self.assertEqual(r.status_code,302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertFalse(doc.returning_item()) # set the returning item bit without changing the date r = self.client.post(url,dict(telechat_date=telechat_date.isoformat(),returning_item="on")) self.assertEqual(r.status_code,302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertTrue(doc.returning_item()) # clear the returning item bit r = self.client.post(url,dict(telechat_date=telechat_date.isoformat())) self.assertEqual(r.status_code,302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertFalse(doc.returning_item()) # Take the doc back off any telechat r = self.client.post(url,dict(telechat_date="")) self.assertEqual(r.status_code, 302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertEqual(doc.latest_event(TelechatDocEvent, "scheduled_for_telechat").telechat_date,None) def test_edit_lc(self): doc = Document.objects.get(name='status-change-imaginary-mid-review') url = urlreverse('ietf.doc.views_status_change.last_call',kwargs=dict(name=doc.name)) login_testing_unauthorized(self, "ad", url) # additional setup doc.relateddocument_set.create(target=DocAlias.objects.get(name='rfc9999'),relationship_id='tois') doc.relateddocument_set.create(target=DocAlias.objects.get(name='rfc9998'),relationship_id='tohist') doc.ad = Person.objects.get(name='Ad No2') doc.save_with_history([DocEvent.objects.create(doc=doc, rev=doc.rev, type="changed_document", by=Person.objects.get(user__username="secretary"), desc="Test")]) # get r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q('form.edit-last-call-text')),1) self.assertContains(r, 'RFC9999 from Proposed Standard to Internet Standard') self.assertContains(r, 'RFC9998 from Informational to Historic') # save r = self.client.post(url,dict(last_call_text="Bogus last call text",save_last_call_text="1")) self.assertEqual(r.status_code, 200) last_call_event = doc.latest_event(WriteupDocEvent, type="changed_last_call_text") self.assertEqual(last_call_event.text,"Bogus last call text") # reset r = self.client.post(url,dict(regenerate_last_call_text="1")) self.assertEqual(r.status_code,200) self.assertContains(r, 'RFC9999 from Proposed Standard to Internet Standard') self.assertContains(r, 'RFC9998 from Informational to Historic') # request last call messages_before = len(outbox) r = self.client.post(url,dict(last_call_text='stuff',send_last_call_request='Save+and+Request+Last+Call')) self.assertEqual(r.status_code,200) self.assertContains(r, 'Last call requested') self.assertEqual(len(outbox), messages_before + 1) self.assertTrue('Last Call:' in outbox[-1]['Subject']) self.assertTrue('Last Call Request has been submitted' in ''.join(wrap(outbox[-1].as_string(), width=2**16))) def test_approve(self): doc = Document.objects.get(name='status-change-imaginary-mid-review') url = urlreverse('ietf.doc.views_status_change.approve',kwargs=dict(name=doc.name)) login_testing_unauthorized(self, "secretary", url) # Some additional setup doc.relateddocument_set.create(target=DocAlias.objects.get(name='rfc9999'),relationship_id='tois') doc.relateddocument_set.create(target=DocAlias.objects.get(name='rfc9998'),relationship_id='tohist') create_ballot_if_not_open(None, doc, Person.objects.get(user__username="secretary"), "statchg") doc.set_state(State.objects.get(slug='appr-pend',type='statchg')) # get r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q('[type=submit]:contains("Send announcement")')), 1) # There should be two messages to edit self.assertEqual(q('input#id_form-TOTAL_FORMS').val(),'2') self.assertContains(r, '(rfc9999) to Internet Standard') self.assertContains(r, '(rfc9998) to Historic') # submit messages_before = len(outbox) msg0=default_approval_text(doc,doc.relateddocument_set.all()[0]) msg1=default_approval_text(doc,doc.relateddocument_set.all()[1]) r = self.client.post(url,{'form-0-announcement_text':msg0,'form-1-announcement_text':msg1,'form-TOTAL_FORMS':'2','form-INITIAL_FORMS':'2','form-MAX_NUM_FORMS':''}) self.assertEqual(r.status_code, 302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertEqual(doc.get_state_slug(),'appr-sent') self.assertFalse(doc.ballot_open("statchg")) self.assertEqual(len(outbox), messages_before + 2) self.assertTrue('Action:' in outbox[-1]['Subject']) self.assertTrue('ietf-announce' in outbox[-1]['To']) self.assertTrue('rfc-editor' in outbox[-1]['Cc']) self.assertTrue('(rfc9998) to Historic' in ''.join(wrap(outbox[-1].as_string()+outbox[-2].as_string(), 2**16))) self.assertTrue('(rfc9999) to Internet Standard' in ''.join(wrap(outbox[-1].as_string()+outbox[-2].as_string(),2**16))) self.assertTrue(doc.latest_event(DocEvent,type="added_comment").desc.startswith('The following approval message was sent')) def approval_pend_notice_test_helper(self, role): """Test notification email when review state changed to the appr-pend state""" doc = Document.objects.get(name='status-change-imaginary-mid-review') url = urlreverse('ietf.doc.views_status_change.change_state',kwargs=dict(name=doc.name)) # Add some status change related documents doc.relateddocument_set.create(target=DocAlias.objects.get(name='rfc9999'),relationship_id='tois') doc.relateddocument_set.create(target=DocAlias.objects.get(name='rfc9998'),relationship_id='tohist') # And a non-status change related document doc.relateddocument_set.create(target=DocAlias.objects.get(name='rfc14'),relationship_id='updates') login_testing_unauthorized(self, role, url) empty_outbox() # Issue the request appr_pend_pk = str(State.objects.get(used=True, slug='appr-pend', type__slug='statchg').pk) r = self.client.post(url,dict(new_state=appr_pend_pk,comment='some comment or other')) # Check the results self.assertEqual(r.status_code, 302) if role == 'ad': self.assertEqual(len(outbox), 1) notification = outbox[0] self.assertIn(doc.title, notification['Subject']) self.assertIn('[email protected]', notification['To']) self.assertTrue(notification['Subject'].startswith('Approved:')) notification_text = get_payload_text(notification) self.assertIn('The AD has approved changing the status', notification_text) self.assertIn(DocAlias.objects.get(name='rfc9999').document.canonical_name(), notification_text) self.assertIn(DocAlias.objects.get(name='rfc9998').document.canonical_name(), notification_text) self.assertNotIn(DocAlias.objects.get(name='rfc14').document.canonical_name(), notification_text) self.assertNotIn('No value found for', notification_text) # make sure all interpolation values were set else: self.assertEqual(len(outbox), 0) def test_approval_pend_notice_ad(self): """Test that an approval notice is sent to secretariat when AD approves status change""" self.approval_pend_notice_test_helper('ad') def test_no_approval_pend_notice_secr(self): """Test that no approval notice is sent when secretariat approves status change""" self.approval_pend_notice_test_helper('secretariat') def test_edit_relations(self): doc = Document.objects.get(name='status-change-imaginary-mid-review') url = urlreverse('ietf.doc.views_status_change.edit_relations',kwargs=dict(name=doc.name)) login_testing_unauthorized(self, "secretary", url) # Some additional setup doc.relateddocument_set.create(target=DocAlias.objects.get(name='rfc9999'),relationship_id='tois') doc.relateddocument_set.create(target=DocAlias.objects.get(name='rfc9998'),relationship_id='tohist') # get r = self.client.get(url) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertEqual(len(q('#content [type=submit]:contains("Save")')),1) # There should be three rows on the form self.assertEqual(len(q('#content .input-group')),3) # Try to add a relation to an RFC that doesn't exist r = self.client.post(url,dict(new_relation_row_blah="rfc9997", statchg_relation_row_blah="tois")) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertTrue(len(q('form ul.errorlist')) > 0) # Try to add a relation leaving the relation type blank r = self.client.post(url,dict(new_relation_row_blah="rfc9999", statchg_relation_row_blah="")) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertTrue(len(q('form ul.errorlist')) > 0) # Try to add a relation with an unknown relationship type r = self.client.post(url,dict(new_relation_row_blah="rfc9999", statchg_relation_row_blah="badslug")) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertTrue(len(q('form ul.errorlist')) > 0) # Successful change of relations r = self.client.post(url,dict(new_relation_row_blah="rfc9999", statchg_relation_row_blah="toexp", new_relation_row_foo="rfc9998", statchg_relation_row_foo="tobcp", new_relation_row_nob="rfc14", statchg_relation_row_nob="tohist")) self.assertEqual(r.status_code, 302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertEqual(doc.relateddocument_set.count(),3) def verify_relations(doc,target_name,status): target_doc=doc.relateddocument_set.filter(target__name=target_name) self.assertTrue(target_doc) self.assertEqual(target_doc.count(),1) self.assertEqual(target_doc[0].relationship.slug,status) verify_relations(doc,'rfc9999','toexp' ) verify_relations(doc,'rfc9998','tobcp' ) verify_relations(doc,'rfc14' ,'tohist') self.assertTrue(doc.latest_event(DocEvent,type="added_comment").desc.startswith('Affected RFC list changed.')) def setUp(self): super().setUp() IndividualRfcFactory(alias2__name='rfc14',name='draft-was-never-issued',std_level_id='unkn') WgRfcFactory(alias2__name='rfc9999',name='draft-ietf-random-thing',std_level_id='ps') WgRfcFactory(alias2__name='rfc9998',name='draft-ietf-random-other-thing',std_level_id='inf') DocumentFactory(type_id='statchg',name='status-change-imaginary-mid-review',notify='[email protected]') class StatusChangeSubmitTests(TestCase): settings_temp_path_overrides = TestCase.settings_temp_path_overrides + ['STATUS_CHANGE_PATH'] def test_initial_submission(self): doc = Document.objects.get(name='status-change-imaginary-mid-review') url = urlreverse('ietf.doc.views_status_change.submit',kwargs=dict(name=doc.name)) login_testing_unauthorized(self, "ad", url) # normal get r = self.client.get(url) self.assertEqual(r.status_code,200) q = PyQuery(r.content) self.assertTrue(q('textarea')[0].text.strip().startswith("Provide a description")) # Faulty posts using textbox # Right now, nothing to test - we let people put whatever the web browser will let them put into that textbox # sane post using textbox path = os.path.join(settings.STATUS_CHANGE_PATH, '%s-%s.txt' % (doc.canonical_name(), doc.rev)) self.assertEqual(doc.rev,'00') self.assertFalse(os.path.exists(path)) r = self.client.post(url,dict(content="Some initial review text\n",submit_response="1")) self.assertEqual(r.status_code,302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertEqual(doc.rev,'00') with io.open(path) as f: self.assertEqual(f.read(),"Some initial review text\n") self.assertTrue( "mid-review-00" in doc.latest_event(NewRevisionDocEvent).desc) def test_subsequent_submission(self): doc = Document.objects.get(name='status-change-imaginary-mid-review') url = urlreverse('ietf.doc.views_status_change.submit',kwargs=dict(name=doc.name)) login_testing_unauthorized(self, "ad", url) # A little additional setup # doc.rev is u'00' per the test setup - double-checking that here - if it fails, the breakage is in setUp self.assertEqual(doc.rev,'00') path = os.path.join(settings.STATUS_CHANGE_PATH, '%s-%s.txt' % (doc.canonical_name(), doc.rev)) with io.open(path,'w') as f: f.write('This is the old proposal.') f.close() # Put the old proposal into IESG review (exercises ballot tab when looking at an older revision below) state_change_url = urlreverse('ietf.doc.views_status_change.change_state',kwargs=dict(name=doc.name)) iesgeval_pk = str(State.objects.get(slug='iesgeval',type__slug='statchg').pk) r = self.client.post(state_change_url,dict(new_state=iesgeval_pk)) self.assertEqual(r.status_code, 302) # normal get r = self.client.get(url) self.assertEqual(r.status_code,200) q = PyQuery(r.content) self.assertTrue(q('textarea')[0].text.strip().startswith("This is the old proposal.")) # faulty posts trying to use file upload # Copied from wgtracker tests - is this really testing the server code, or is it testing # how client.post populates Content-Type? test_file = StringIO("\x10\x11\x12") # post binary file test_file.name = "unnamed" r = self.client.post(url, dict(txt=test_file,submit_response="1")) self.assertEqual(r.status_code, 200) self.assertContains(r, "does not appear to be a text file") # sane post uploading a file test_file = StringIO("This is a new proposal.") test_file.name = "unnamed" r = self.client.post(url,dict(txt=test_file,submit_response="1")) self.assertEqual(r.status_code, 302) doc = Document.objects.get(name='status-change-imaginary-mid-review') self.assertEqual(doc.rev,'01') path = os.path.join(settings.STATUS_CHANGE_PATH, '%s-%s.txt' % (doc.canonical_name(), doc.rev)) with io.open(path) as f: self.assertEqual(f.read(),"This is a new proposal.") f.close() self.assertTrue( "mid-review-01" in doc.latest_event(NewRevisionDocEvent).desc) # verify reset text button works r = self.client.post(url,dict(reset_text="1")) self.assertEqual(r.status_code, 200) q = PyQuery(r.content) self.assertTrue(q('textarea')[0].text.strip().startswith("Provide a description")) # make sure we can see the old revision url = urlreverse('ietf.doc.views_doc.document_main',kwargs=dict(name=doc.name,rev='00')) r = self.client.get(url) self.assertEqual(r.status_code,200) self.assertContains(r, "This is the old proposal.") def setUp(self): super().setUp() DocumentFactory(type_id='statchg',name='status-change-imaginary-mid-review',notify='[email protected]')
the-stack_0_1317
#!/usr/bin/python3 # -*- coding: utf-8 -*- # # Author : Viacheslav Zamaraev # email : [email protected] # Script Name : 02_csv2xlsx.py # Created : 25th September 2019 # Last Modified : 25th September 2019 # Version : 1.0 # PIP : pip install pandas openpyxl # RESULT : Excel File # Modifications : 1.1 - # : 1.2 - # # Description : This script will conver csv file to Excel file import os.path from datetime import datetime from sys import platform as _platform import os.path try: import pandas as pd except: print("we need pands. try: pip install pandas") #some global configurations import cfg def get_output_directory(): dir_out = str(os.getcwd()) # Linux platform if _platform == "linux" or _platform == "linux2" or _platform == "darwin": dir_out = cfg.folder_out_linux if os.path.exists(dir_out) and os.path.isdir(dir_out): print('Using Output directory: ' + dir_out) return dir_out if _platform == "win32" or _platform == "win64": # Windows or Windows 64-bit dir_out = cfg.folder_out_win if os.path.exists(dir_out) and os.path.isdir(dir_out): print('Using Output directory: ' + dir_out) return dir_out else: dir_out = str(os.getcwd()) print('Output directories from config wrong: ' + cfg.folder_out_win + ' or ' + cfg.folder_out_linux + ' Using current directory: ' + dir_out) print('Using Output directory: ' + dir_out) return dir_out def csv2xls(filename=''): if (os.path.exists(filename) and os.path.isfile(filename)): file_excel = filename.split('.')[0] + '.xlsx' df_new = pd.read_csv(filename, sep=cfg.csv_delimiter) writer = pd.ExcelWriter(file_excel) df_new.to_excel(writer, index=False) writer.save() else: print('ERROR! can\'t read a file OR file does not exist. File: ' + filename) # ---------------- do main -------------------------------- def main(): time1 = datetime.now() print('Starting at :' + str(time1)) file_csv = str(os.path.join(get_output_directory(), cfg.file_csv)) csv2xls(file_csv) time2 = datetime.now() print('Finishing at :' + str(time2)) print('Total time : ' + str(time2 - time1)) print('DONE !!!!') if __name__ == '__main__': main()
the-stack_0_1318
# %% [markdown] from tensorflow.keras.models import load_model from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from tensorflow.keras.layers import Dense, GRU, Embedding from tensorflow.keras.models import Sequential from tensorflow.keras.preprocessing.sequence import pad_sequences import re import matplotlib.pyplot as plt import numpy as np from tensorflow.keras import models from tensorflow.keras.datasets import imdb (X_train, y_train), (X_test, y_test) = imdb.load_data() print(X_train[0]) print(y_train[0]) # %% [markdown] word_to_index = imdb.get_word_index() index_to_word = {} for key, value in word_to_index.items(): index_to_word[value + 3] = key # %% vocab_size = 10000 (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=vocab_size) max_len = 500 X_train = pad_sequences(sequences=X_train, maxlen=max_len) X_test = pad_sequences(sequences=X_test, maxlen=max_len) # %% [markdown] model = Sequential() model.add(Embedding(input_dim=vocab_size, output_dim=100)) model.add(GRU(units=128)) model.add(Dense(units=1, activation="sigmoid")) es = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=4) mc = ModelCheckpoint( "GRU_model.h5", monitor="val_acc", mode="max", verbose=1, save_best_only=True ) model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["acc"]) history = model.fit( X_train, y_train, epochs=15, callbacks=[es, mc], batch_size=60, validation_split=0.2 ) # %% loaded_model = load_model("GRU_model.h5") print("\n 테스트 정확도: %.4f" % (loaded_model.evaluate(X_test, y_test)[1])) # %% def sentiment_predict(new_sentence): # 알파벳과 숫자를 제외하고 모두 제거 및 알파벳 소문자화 new_sentence = re.sub("[^0-9a-zA-Z ]", "", new_sentence).lower() # 정수 인코딩 encoded = [] for word in new_sentence.split(): # 단어 집합의 크기를 10,000으로 제한. try: if word_to_index[word] <= 10000: encoded.append(word_to_index[word] + 3) else: # 10,000 이상의 숫자는 <unk> 토큰으로 취급. encoded.append(2) # 단어 집합에 없는 단어는 <unk> 토큰으로 취급. except KeyError: encoded.append(2) pad_new = pad_sequences([encoded], maxlen=max_len) # 패딩 score = float(loaded_model.predict(pad_new)) # 예측 if score > 0.5: print("{:.2f}% 확률로 긍정 리뷰입니다.".format(score * 100)) else: print("{:.2f}% 확률로 부정 리뷰입니다.".format((1 - score) * 100)) # %% a = "This movie was just way too overrated. The fighting was not professional and in slow motion. I was expecting more from a 200 million budget movie. The little sister of T.Challa was just trying too hard to be funny. The story was really dumb as well. Don't watch this movie if you are going because others say its great unless you are a Black Panther fan or Marvels fan." sentiment_predict(a)
the-stack_0_1320
from pocketsphinx import * import pyaudio from time import sleep import requests import json from configobj import ConfigObj import os.path import wave #pyaudio needed to open a audio stream needed for pyAudio = pyaudio.PyAudio() headers = {'Content-Type':'application/json'} config = None commandAudioFile = None class CommandListener: def __init__(self): #config self.hmm = config['pocketsphinx']['hmm'] self.lm = config['pocketsphinx']['lm'] self.dict = config['pocketsphinx']['dict'] self.log = config['pocketsphinx']['log'] self.bitsize = int(config['audio']['bitsize']) self.bufferSize = int(config['audio']['buffersize']) self.channels = int(config['audio']['channels']) self.sampleRate = int(config['audio']['samplerate']) #set decoder configuration self.config = Decoder.default_config() self.config.set_string('-hmm',self.hmm) self.config.set_string('-lm',self.lm) self.config.set_string('-dict',self.dict) self.config.set_string('-logfn', self.log) self.config.set_boolean("-allphone_ci", True) self.decoder = Decoder(self.config) def fromAudio(self): config = { 'hmm':self.hmm, 'lm': self.lm, 'dict':self.dict } ps = Pocketsphinx(**config) ps.decode( audio_file= commandAudioFile, buffer_size= self.bufferSize, no_search= False, full_utt= False, ) return ps.hypothesis() def listen(self): # get stream from pyAudio # open stream self.stream = pyAudio.open(format=pyaudio.paInt16, channels=self.channels, rate=self.sampleRate, input=True, frames_per_buffer=self.bitsize) utterance = False #start utterance self.decoder.start_utt() print("Listening...") # now we are starting to listen while True: #check if an external command is used by the user if os.path.isfile(commandAudioFile): #stop the utterance self.decoder.end_utt() print("external command detected - Processing...") #get the command from the audio file commandFromAudio = self.fromAudio() #check if a command is detected if not commandFromAudio: commandFromAudio = "" print("No command found in file!") #audio file not needed anymore os.remove(commandAudioFile) print("external command processed - Deleting...") self.stream.stop_stream() self.stream.close() #return the command from the audio return commandFromAudio try: soundBite = self.stream.read(self.bitsize) except Exception as e: pass if soundBite: self.decoder.process_raw(soundBite, False, False) inSpeech = self.decoder.get_in_speech() if inSpeech and not utterance: utterance = True if utterance: #end utterance self.decoder.end_utt() utterance = False #get hypothesis of from the decoder hypothesis = self.decoder.hyp() if hypothesis is not None: bestGuess = hypothesis.hypstr #check for empty command if not bestGuess.strip(): #restart utterance sleep(0.5) self.decoder.start_utt() else: #stop the stream self.stream.stop_stream() self.stream.close() #return the bestGuess of the decoder return bestGuess if __name__ == "__main__": config = ConfigObj('pihome.conf') #get path to audio file commandAudioFile = config['audio']['audiofile'] #get backend url backendUrl = config['backend']['url'] #Listener for the commands the user is speaking out listener = CommandListener() while True: #listen for the next command of the user command = listener.listen() print("command:" + command) #let the backend know what the user said try: res = requests.post(backendUrl, data=json.dumps({'command':command}), headers=headers); except Exception as ex: print(ex) pass
the-stack_0_1321
"""Reader is module to read the url list and return shards""" import pandas as pd import math import fsspec class Reader: """ The reader class reads an url list and returns shards It provides an iter method It provides attributes: - column_list: the list of columns to read - input_format: the format of the input file - url_col: the column name of the url - caption_col: the column name of the caption - save_additional_columns: the list of additional columns to save - number_sample_per_shard: the number of samples per shard - start_shard_id: the id of the first shard """ def __init__( self, url_list, input_format, url_col, caption_col, save_additional_columns, number_sample_per_shard, start_shard_id, tmp_path, ) -> None: self.input_format = input_format self.url_col = url_col self.caption_col = caption_col self.save_additional_columns = save_additional_columns self.number_sample_per_shard = number_sample_per_shard self.start_shard_id = start_shard_id fs, url_path = fsspec.core.url_to_fs(url_list) self.fs = fs self.tmp_path = tmp_path if fs.isdir(url_path): self.input_files = sorted(fs.glob(url_path + "/*." + input_format)) else: self.input_files = [url_path] if self.input_format == "txt": self.column_list = ["url"] elif self.input_format in ["json", "csv", "tsv", "tsv.gz", "parquet"]: self.column_list = self.save_additional_columns if self.save_additional_columns is not None else [] if self.caption_col is not None: self.column_list = self.column_list + ["caption", "url"] else: self.column_list = self.column_list + ["url"] def _save_to_arrow(self, input_file): """Read the input file and save to arrow files in a temporary directory""" if self.input_format in ["txt", "json", "csv", "tsv"]: with self.fs.open(input_file, encoding="utf-8", mode="r") as file: if self.input_format == "txt": df = pd.DataFrame([(url.rstrip(),) for url in file.readlines()], columns=self.column_list) elif self.input_format == "json": df = pd.read_json(file) elif self.input_format == "csv": df = pd.read_csv(file) elif self.input_format == "tsv": df = pd.read_table(file) elif self.input_format in ["tsv", "tsv.gz", "parquet"]: with self.fs.open(input_file, mode="rb") as file: if self.input_format == "tsv.gz": df = pd.read_table(file, compression="gzip") elif self.input_format == "parquet": columns_to_read = [self.url_col] if self.caption_col is not None: columns_to_read += [self.caption_col] if self.save_additional_columns is not None: columns_to_read += self.save_additional_columns df = pd.read_parquet(file, columns=columns_to_read) else: assert False, f"Unexpected input format ({self.input_format})." df = df.rename(columns={self.caption_col: "caption", self.url_col: "url"}) df = df.where(pd.notnull(df), None) number_samples = len(df) number_shards = math.ceil(len(df) / self.number_sample_per_shard) shards = [] for shard_id in range(number_shards): begin_shard = shard_id * self.number_sample_per_shard end_shard = min(number_samples, (1 + shard_id) * self.number_sample_per_shard) df_shard = df[begin_shard:end_shard][self.column_list] df_shard = df_shard.reset_index(drop=True) tmp_file = self.tmp_path + f"/{shard_id + self.start_shard_id}.feather" fs, tmp_path = fsspec.core.url_to_fs(tmp_file) with fs.open(tmp_path, "wb") as file: df_shard.to_feather(file) shards.append((shard_id, tmp_file)) del df return shards def __iter__(self): """ Iterate over shards, yield shards of size number_sample_per_shard or less for the last one Each shard is a tuple (shard_id, shard) shard is a tuple (sample id, sample) sample is a tuple of the columns """ for i, input_file in enumerate(self.input_files): print( "Downloading file number " + str(i + 1) + " of " + str(len(self.input_files)) + " called " + input_file ) shards = self._save_to_arrow(input_file) num_shard = 0 for num_shard, arrow_file in shards: yield ( num_shard + self.start_shard_id, arrow_file, ) num_shard += 1 self.start_shard_id += num_shard
the-stack_0_1323
""" Demonstrates the use of the ProgressMeter class. Author: Tucker Beck Last Tested: 3/2/2009 Verified with: Python 2.6, Tkinter 8.4 """ from __future__ import division from Tkinter import * from random import randint from time import sleep class ProgressMeter( Frame ): """ The ProgressMeter is-a Frame widget provides a progress bar and accompanying information to a user regarding a long, computationaly intensive process. A ProgressMetar can control any generator function that returns string message or None after each iteration. Furthermore, the ProgressMeter can interrupt the process at any time. """ def __init__( self, parent, height=30 ): """ Initializes this ProgressMeter Arguments: parent: The master widget for this ProgressMeter height: The desired height of the progress bar """ self.parent = parent Frame.__init__( self, parent ) self.columnconfigure( 0, weight=1 ) # Forces the canv object to resize any time this widget is resized self.rowconfigure( 0, weight=1 ) self.statusMessage = 'Normal' self.w = 0 self.h = 0 self.canv = Canvas( self, height=height) # This canvas will display the progress bar and accompanying percentage text self.canv.grid( row=1, column=0, sticky=N+S+E+W ) self.canv.bind( '<Configure>', lambda e: self.resize( e.width, e.height ) ) # When the canvas is resized the progress bar should be redrawn. self.killVar = IntVar() # The killBtn can cancel execution self.killVar.set( 0 ) self.killBtn = Button( self, text='Cancel', command=lambda: self.killVar.set(1) ) self.killBtn.configure( state=DISABLED ) self.killBtn.grid( row=1, column=1 ) self.targetGen = None # Placekeeper for the generator function that will be metered self.targetArgs = [] # Argument list for the generator function self.targetKwds = {} # Keyword dictionary for the generator funciton self.targetIdx = 0 # Keeps track of which step in iteration is currently being executed self.targetLen = 0 # Total number of steps in exectuion def resize( self, w, h ): """ Handles resize events for the canv widget. Adjusts the height and width of the canvas for the progress bar calculations. Arguments: w: The new width h: The new height """ self.w = w self.h = h self.canv.delete( 'frame' ) self.canv.create_rectangle( 1, 1, self.w, self.h, outline='black', fill='gray75', tag='frame' ) def reset( self ): """ Resets the control values or the generator function and also clears the progress bar """ self.canv.delete( 'bar' ) self.canv.delete( 'text' ) self.killBtn.configure( state=DISABLED ) self.targetGen = None self.targetArgs = [] self.targetKwds = [] self.killVar.set( 0 ) self.targetIdx = 0 self.targetLen = 0 def clearStatus( self ): """" Clears the statusMessage member. Might be used by parent GUI that reports child status. """ self.statusMessage = 'Normal' def drawBar( self ): """ Updates the status bar for the percentage of completion. """ pct = self.targetIdx / self.targetLen # The percentage of completion x0 = 2 # The bar is inset by 2 pixels x1 = pct * ( self.w - 3 ) + 2 y0 = 2 y1 = self.h self.canv.delete( 'bar' ) self.canv.create_rectangle( x0, y0, x1, y1, fill='SteelBlue3', outline='', tag='bar' ) self.canv.delete( 'text' ) pctTxt = '%02.2f%%' % ( pct*100, ) self.canv.create_text( self.w/2, self.h/2, text=pctTxt, anchor=CENTER, tag='text' ) def startGen( self, targetGen, targetLen, targetArgs=[], targetKwds={} ): """ Initializes the target generator function with supplied arguments and keyword. Requests Tk to call iterGen after all idle events have been handled. Arguments: targetGen: The target generator function targetLen: The number of iterations in the target generator targetArgs: The arguments for the generator function targetKwds: The keyword arguments fo the generator function Note: Having iterGen called by Tk ensures that redraws and other sorts of normal Tkinter events can be processed. Results in the status bar updating real-time with execution while allowing the GUI to function normally. """ self.targetGen = targetGen( *targetArgs, **targetKwds ) self.targetLen = targetLen self.killBtn.configure( state=NORMAL ) self.after_idle( self.iterGen ) def iterGen( self ): """ Iterates through the target generator using delayed self referencing funcition calls to allow GUI updates between iterations """ try: msg = self.targetGen.next() # Execute the next iteration of the genrator except StopIteration: self.reset() # When the generator is finished, a StopIteration exception is raised. This signals a normal finish in the generator self.statusMessage = 'Completed' self.event_generate( '<<Finished>>' ) # A <<Finished>> virtual event signals the GUI that the progress meter is finished return self.targetIdx += 1 self.drawBar() if msg == None: pass elif msg.startswith( 'AbortIteration' ): # The target generator can signal that something irrevocable has happend by yielding a value of 'AbortIteration' self.reset() self.statusMessage = msg self.event_generate( '<<Finished>>' ) return else: self.statusMessage = msg # If the generator yields a value other than None or 'AbortIteration', this message will be sent out to the controlling gui self.event_generate( '<<StatusRequest>>' ) if self.killVar.get() == 1: # Occurs if the user clicks the killBtn self.reset() self.statusMessage = 'Canceled' self.event_generate( '<<Finished>>' ) return self.update_idletasks() self.after_idle( self.iterGen ) def dummy_gen( alices, bobs ): """ A simple, stupid example of a ProgressMeter iterable generator function """ for alice in alices: for bob in bobs: if bob==alice: yield 'Match: %s==%s' % ( str(alice), str(bob) ) else: yield 'No Match: %s!=%s' % ( str(alice), str(bob) ) def main(): root = Tk() root.title( 'ProgressMeter Demo' ) pgress = ProgressMeter( root ) # Initialize the ProgressMeter with default arguments pgress.grid( row=1 ) alices = range( 53 ) bobs = [ randint( 0,53 ) for i in range( 53 ) ] btn = Button( root, text="Go!", command=lambda: pgress.startGen( dummy_gen, len(alices) * len(bobs), [alices, bobs] ) )# Starts the ProgressMeter going when the button is clicked btn.grid( row=0 ) statusVar = StringVar( root, 'None' ) status = Label( root, textvariable=statusVar ) status.grid( row=2 ) # This label will be used to display status messages from the ProgressMeter root.bind( '<<StatusRequest>>', lambda event: statusVar.set(pgress.statusMessage) ) root.bind( '<<Finished>>', lambda event: statusVar.set( pgress.statusMessage ) ) root.mainloop() if __name__=='__main__': main()
the-stack_0_1324
from bs4 import BeautifulSoup import requests def get_articles_from_page_data(page, depth = 1): base_url = page.url.replace("http://","").replace("www.","") print(base_url) soup = BeautifulSoup(page.content(), 'html.parser') url_strings = [link.get('href') for link in soup.find_all('a')] internal_url_strings = [link for link in url_strings if possible_article_link(link,base_url)] return internal_url_strings def possible_article_link(url, base_url): is_part_of_site = base_url in url or './' in url ends_as_webpage = ".htm" in url not_an_index_page = "index.html" not in url return is_part_of_site and ends_as_webpage and not_an_index_page
the-stack_0_1325
""" Test for management command generating exchange rates """ from unittest.mock import patch from django.test import TestCase from django.test.utils import override_settings from financialaid.constants import get_currency_exchange_rate_api_request_url from financialaid.management.commands import update_exchange_rates from financialaid.models import CurrencyExchangeRate @patch('financialaid.tasks.requests.get') class GenerateExchangeRatesTest(TestCase): """ Tests for generate_exchange_rates management command """ @classmethod def setUpTestData(cls): cls.command = update_exchange_rates.Command() def setUp(self): super(GenerateExchangeRatesTest, self).setUp() self.data = { "extraneous information": "blah blah blah", "rates": { "CBA": "3.5", "FED": "1.9", "RQP": "0.5" } } @override_settings(OPEN_EXCHANGE_RATES_APP_ID='foo_id', OPEN_EXCHANGE_RATES_URL='http://foo.bar.com') def test_currency_exchange_rate_command(self, mocked_request): """ Assert currency exchange rates are created using management command """ mocked_request.return_value.json.return_value = self.data mocked_request.return_value.status_code = 200 assert CurrencyExchangeRate.objects.count() == 0 self.command.handle("generate_exchange_rates") called_args, _ = mocked_request.call_args assert called_args[0] == get_currency_exchange_rate_api_request_url() assert CurrencyExchangeRate.objects.count() == 3 currency_cba = CurrencyExchangeRate.objects.get(currency_code="CBA") assert currency_cba.exchange_rate == 3.5 currency_fed = CurrencyExchangeRate.objects.get(currency_code="FED") assert currency_fed.exchange_rate == 1.9 currency_rqp = CurrencyExchangeRate.objects.get(currency_code="RQP") assert currency_rqp.exchange_rate == 0.5
the-stack_0_1327
import os from setuptools import setup, find_packages from relationships import VERSION f = open(os.path.join(os.path.dirname(__file__), 'README.rst')) readme = f.read() f.close() setup( name='django-relationships', version=".".join(map(str, VERSION)), description='descriptive relationships between auth.User', long_description=readme, author='Charles Leifer', author_email='[email protected]', url='http://github.com/coleifer/django-relationships/tree/master', packages=find_packages(), package_data={ 'relationships': [ 'fixtures/*.json', 'templates/*.html', 'templates/*/*.html', 'locale/*/LC_MESSAGES/*', 'relationships_tests/fixtures/*.json', ], }, classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Framework :: Django', ], test_suite='runtests.runtests', )
the-stack_0_1328
# Copyright (c) 2014 The Bitcoin Core developers # Copyright (c) 2014-2015 The Dash developers # Copyright (c) 2015-2017 The PIVX developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Helpful routines for regression testing # # Add python-bitcoinrpc to module search path: import os import sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "python-bitcoinrpc")) from decimal import Decimal, ROUND_DOWN import json import random import shutil import subprocess import time import re from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException from util import * def p2p_port(n): return 11000 + n + os.getpid()%999 def rpc_port(n): return 12000 + n + os.getpid()%999 def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def sync_blocks(rpc_connections): """ Wait until everybody has the same block count """ while True: counts = [ x.getblockcount() for x in rpc_connections ] if counts == [ counts[0] ]*len(counts): break time.sleep(1) def sync_mempools(rpc_connections): """ Wait until everybody has the same transactions in their memory pools """ while True: pool = set(rpc_connections[0].getrawmempool()) num_match = 1 for i in range(1, len(rpc_connections)): if set(rpc_connections[i].getrawmempool()) == pool: num_match = num_match+1 if num_match == len(rpc_connections): break time.sleep(1) bitcoind_processes = {} def initialize_datadir(dirname, n): datadir = os.path.join(dirname, "node"+str(n)) if not os.path.isdir(datadir): os.makedirs(datadir) with open(os.path.join(datadir, "praxis.conf"), 'w') as f: f.write("regtest=1\n"); f.write("rpcuser=rt\n"); f.write("rpcpassword=rt\n"); f.write("port="+str(p2p_port(n))+"\n"); f.write("rpcport="+str(rpc_port(n))+"\n"); return datadir def initialize_chain(test_dir): """ Create (or copy from cache) a 200-block-long chain and 4 wallets. praxisd and praxis-cli must be in search path. """ if not os.path.isdir(os.path.join("cache", "node0")): devnull = open("/dev/null", "w+") # Create cache directories, run praxisd: for i in range(4): datadir=initialize_datadir("cache", i) args = [ os.getenv("BITCOIND", "praxisd"), "-keypool=1", "-datadir="+datadir, "-discover=0" ] if i > 0: args.append("-connect=127.0.0.1:"+str(p2p_port(0))) bitcoind_processes[i] = subprocess.Popen(args) subprocess.check_call([ os.getenv("BITCOINCLI", "praxis-cli"), "-datadir="+datadir, "-rpcwait", "getblockcount"], stdout=devnull) devnull.close() rpcs = [] for i in range(4): try: url = "http://rt:[email protected]:%d"%(rpc_port(i),) rpcs.append(AuthServiceProxy(url)) except: sys.stderr.write("Error connecting to "+url+"\n") sys.exit(1) # Create a 200-block-long chain; each of the 4 nodes # gets 25 mature blocks and 25 immature. # blocks are created with timestamps 10 minutes apart, starting # at 1 Jan 2014 block_time = 1388534400 for i in range(2): for peer in range(4): for j in range(25): set_node_times(rpcs, block_time) rpcs[peer].setgenerate(True, 1) block_time += 10*60 # Must sync before next peer starts generating blocks sync_blocks(rpcs) # Shut them down, and clean up cache directories: stop_nodes(rpcs) wait_bitcoinds() for i in range(4): os.remove(log_filename("cache", i, "debug.log")) os.remove(log_filename("cache", i, "db.log")) os.remove(log_filename("cache", i, "peers.dat")) os.remove(log_filename("cache", i, "fee_estimates.dat")) for i in range(4): from_dir = os.path.join("cache", "node"+str(i)) to_dir = os.path.join(test_dir, "node"+str(i)) shutil.copytree(from_dir, to_dir) initialize_datadir(test_dir, i) # Overwrite port/rpcport in praxis.conf def initialize_chain_clean(test_dir, num_nodes): """ Create an empty blockchain and num_nodes wallets. Useful if a test case wants complete control over initialization. """ for i in range(num_nodes): datadir=initialize_datadir(test_dir, i) def _rpchost_to_args(rpchost): '''Convert optional IP:port spec to rpcconnect/rpcport args''' if rpchost is None: return [] match = re.match('(\[[0-9a-fA-f:]+\]|[^:]+)(?::([0-9]+))?$', rpchost) if not match: raise ValueError('Invalid RPC host spec ' + rpchost) rpcconnect = match.group(1) rpcport = match.group(2) if rpcconnect.startswith('['): # remove IPv6 [...] wrapping rpcconnect = rpcconnect[1:-1] rv = ['-rpcconnect=' + rpcconnect] if rpcport: rv += ['-rpcport=' + rpcport] return rv def start_node(i, dirname, extra_args=None, rpchost=None): """ Start a praxisd and return RPC connection to it """ datadir = os.path.join(dirname, "node"+str(i)) args = [ os.getenv("BITCOIND", "praxisd"), "-datadir="+datadir, "-keypool=1", "-discover=0", "-rest" ] if extra_args is not None: args.extend(extra_args) bitcoind_processes[i] = subprocess.Popen(args) devnull = open("/dev/null", "w+") subprocess.check_call([ os.getenv("BITCOINCLI", "praxis-cli"), "-datadir="+datadir] + _rpchost_to_args(rpchost) + ["-rpcwait", "getblockcount"], stdout=devnull) devnull.close() url = "http://rt:rt@%s:%d" % (rpchost or '127.0.0.1', rpc_port(i)) proxy = AuthServiceProxy(url) proxy.url = url # store URL on proxy for info return proxy def start_nodes(num_nodes, dirname, extra_args=None, rpchost=None): """ Start multiple praxisds, return RPC connections to them """ if extra_args is None: extra_args = [ None for i in range(num_nodes) ] return [ start_node(i, dirname, extra_args[i], rpchost) for i in range(num_nodes) ] def log_filename(dirname, n_node, logname): return os.path.join(dirname, "node"+str(n_node), "regtest", logname) def stop_node(node, i): node.stop() bitcoind_processes[i].wait() del bitcoind_processes[i] def stop_nodes(nodes): for node in nodes: node.stop() del nodes[:] # Emptying array closes connections as a side effect def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def wait_bitcoinds(): # Wait for all bitcoinds to cleanly exit for bitcoind in bitcoind_processes.values(): bitcoind.wait() bitcoind_processes.clear() def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:"+str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()): time.sleep(0.1) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def find_output(node, txid, amount): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found"%(txid,str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): """ Return a random set of unspent txouts that are enough to pay amount_needed """ assert(confirmations_required >=0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"], "address" : t["address"] } ) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d"%(amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out+fee change = amount_in - amount if change > amount*2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal(change/2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def send_zeropri_transaction(from_node, to_node, amount, fee): """ Create&broadcast a zero-priority transaction. Returns (txid, hex-encoded-txdata) Ensures transaction is zero-priority by first creating a send-to-self, then using it's output """ # Create a send-to-self with confirmed inputs: self_address = from_node.getnewaddress() (total_in, inputs) = gather_inputs(from_node, amount+fee*2) outputs = make_change(from_node, total_in, amount+fee, fee) outputs[self_address] = float(amount+fee) self_rawtx = from_node.createrawtransaction(inputs, outputs) self_signresult = from_node.signrawtransaction(self_rawtx) self_txid = from_node.sendrawtransaction(self_signresult["hex"], True) vout = find_output(from_node, self_txid, amount+fee) # Now immediately spend the output to create a 1-input, 1-output # zero-priority transaction: inputs = [ { "txid" : self_txid, "vout" : vout } ] outputs = { to_node.getnewaddress() : float(amount) } rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"]) def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random zero-priority transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee) return (txid, txhex, fee) def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (total_in, inputs) = gather_inputs(from_node, amount+fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) def assert_equal(thing1, thing2): if thing1 != thing2: raise AssertionError("%s != %s"%(str(thing1),str(thing2))) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("%s <= %s"%(str(thing1),str(thing2))) def assert_raises(exc, fun, *args, **kwds): try: fun(*args, **kwds) except exc: pass except Exception as e: raise AssertionError("Unexpected exception raised: "+type(e).__name__) else: raise AssertionError("No exception raised")
the-stack_0_1331
import json from kubernetes import client from django.conf import settings from libs.paths.data_paths import get_data_paths from libs.paths.jobs import get_job_logs_path, get_job_outputs_path from libs.utils import get_list from polyaxon_k8s import constants as k8s_constants from polyaxon_schemas.exceptions import PolyaxonConfigurationError from polyaxon_schemas.utils import to_list from scheduler.spawners.templates import constants from scheduler.spawners.templates.env_vars import ( get_env_var, get_job_env_vars, get_resources_env_vars ) from scheduler.spawners.templates.gpu_volumes import get_gpu_volumes_def from scheduler.spawners.templates.init_containers import InitCommands, get_output_args from scheduler.spawners.templates.node_selectors import get_node_selector from scheduler.spawners.templates.resources import get_resources from scheduler.spawners.templates.sidecars import get_sidecar_args, get_sidecar_container from scheduler.spawners.templates.volumes import get_pod_outputs_volume class PodManager(object): def __init__(self, namespace, name, project_name, project_uuid, job_name, job_uuid, job_docker_image, job_container_name=None, sidecar_container_name=None, sidecar_docker_image=None, init_container_name=None, init_docker_image=None, role_label=None, type_label=None, ports=None, use_sidecar=False, sidecar_config=None, log_level=None): self.namespace = namespace self.name = name self.project_name = project_name self.project_uuid = project_uuid self.job_name = job_name self.job_uuid = job_uuid self.job_container_name = job_container_name or settings.CONTAINER_NAME_JOB self.job_docker_image = job_docker_image self.sidecar_container_name = sidecar_container_name or settings.CONTAINER_NAME_SIDECAR self.sidecar_docker_image = sidecar_docker_image or settings.JOB_SIDECAR_DOCKER_IMAGE self.init_container_name = init_container_name or settings.CONTAINER_NAME_INIT self.init_docker_image = init_docker_image or settings.JOB_INIT_DOCKER_IMAGE self.role_label = role_label or settings.ROLE_LABELS_WORKER self.type_label = type_label or settings.TYPE_LABELS_EXPERIMENT self.app_label = settings.APP_LABELS_JOB self.labels = self.get_labels() self.k8s_job_name = self.get_k8s_job_name() self.ports = to_list(ports) if ports else [] self.use_sidecar = use_sidecar if use_sidecar and not sidecar_config: raise PolyaxonConfigurationError( 'In order to use a `sidecar_config` is required. ' 'The `sidecar_config` must correspond to the sidecar docker image used.') self.sidecar_config = sidecar_config self.log_level = log_level def get_k8s_job_name(self): return constants.JOB_NAME.format(name=self.name, job_uuid=self.job_uuid) def get_labels(self): labels = { 'project_name': self.project_name, 'project_uuid': self.project_uuid, 'job_name': self.job_name, 'job_uuid': self.job_uuid, 'role': self.role_label, 'type': self.type_label, 'app': self.app_label } return labels def get_pod_container(self, volume_mounts, persistence_outputs, persistence_data, outputs_refs_jobs=None, outputs_refs_experiments=None, env_vars=None, command=None, args=None, resources=None): """Pod job container for task.""" env_vars = get_list(env_vars) env_vars += get_job_env_vars( log_level=self.log_level, outputs_path=get_job_outputs_path(persistence_outputs=persistence_outputs, job_name=self.job_name), data_paths=get_data_paths(persistence_data), logs_path=get_job_logs_path(job_name=self.job_name), outputs_refs_jobs=outputs_refs_jobs, outputs_refs_experiments=outputs_refs_experiments ) env_vars += [ get_env_var(name=constants.CONFIG_MAP_JOB_INFO_KEY_NAME, value=json.dumps(self.labels)), ] env_vars += get_resources_env_vars(resources=resources) ports = [client.V1ContainerPort(container_port=port) for port in self.ports] return client.V1Container(name=self.job_container_name, image=self.job_docker_image, command=command, args=args, ports=ports or None, env=env_vars, resources=get_resources(resources), volume_mounts=volume_mounts) def get_sidecar_container(self): """Pod sidecar container for job logs.""" return get_sidecar_container( job_name=self.k8s_job_name, job_container_name=self.job_container_name, sidecar_container_name=self.sidecar_container_name, sidecar_docker_image=self.sidecar_docker_image, namespace=self.namespace, app_label=self.app_label, sidecar_config=self.sidecar_config, sidecar_args=get_sidecar_args(pod_id=self.k8s_job_name)) def get_init_container(self, persistence_outputs): """Pod init container for setting outputs path.""" outputs_path = get_job_outputs_path(persistence_outputs=persistence_outputs, job_name=self.job_name) _, outputs_volume_mount = get_pod_outputs_volume(persistence_outputs=persistence_outputs) return client.V1Container( name=self.init_container_name, image=self.init_docker_image, command=["/bin/sh", "-c"], args=to_list(get_output_args(command=InitCommands.CREATE, outputs_path=outputs_path)), volume_mounts=outputs_volume_mount) def get_task_pod_spec(self, volume_mounts, volumes, persistence_outputs=None, persistence_data=None, outputs_refs_jobs=None, outputs_refs_experiments=None, env_vars=None, command=None, args=None, resources=None, node_selector=None, restart_policy='OnFailure'): """Pod spec to be used to create pods for tasks: master, worker, ps.""" volume_mounts = get_list(volume_mounts) volumes = get_list(volumes) gpu_volume_mounts, gpu_volumes = get_gpu_volumes_def(resources) volume_mounts += gpu_volume_mounts volumes += gpu_volumes pod_container = self.get_pod_container(volume_mounts=volume_mounts, persistence_outputs=persistence_outputs, persistence_data=persistence_data, outputs_refs_jobs=outputs_refs_jobs, outputs_refs_experiments=outputs_refs_experiments, env_vars=env_vars, command=command, args=args, resources=resources) containers = [pod_container] if self.use_sidecar: sidecar_container = self.get_sidecar_container() containers.append(sidecar_container) node_selector = get_node_selector( node_selector=node_selector, default_node_selector=settings.NODE_SELECTORS_JOBS) service_account_name = None if settings.K8S_RBAC_ENABLED: service_account_name = settings.K8S_SERVICE_ACCOUNT_NAME return client.V1PodSpec( restart_policy=restart_policy, service_account_name=service_account_name, init_containers=to_list(self.get_init_container(persistence_outputs)), containers=containers, volumes=volumes, node_selector=node_selector) def get_pod(self, volume_mounts, volumes, persistence_outputs=None, persistence_data=None, outputs_refs_jobs=None, outputs_refs_experiments=None, env_vars=None, command=None, args=None, resources=None, node_selector=None, restart_policy=None): metadata = client.V1ObjectMeta(name=self.k8s_job_name, labels=self.labels, namespace=self.namespace) pod_spec = self.get_task_pod_spec( volume_mounts=volume_mounts, volumes=volumes, persistence_outputs=persistence_outputs, persistence_data=persistence_data, outputs_refs_jobs=outputs_refs_jobs, outputs_refs_experiments=outputs_refs_experiments, env_vars=env_vars, command=command, args=args, resources=resources, node_selector=node_selector, restart_policy=restart_policy) return client.V1Pod(api_version=k8s_constants.K8S_API_VERSION_V1, kind=k8s_constants.K8S_POD_KIND, metadata=metadata, spec=pod_spec)
the-stack_0_1333
# coding: utf-8 """ FlashBlade REST API A lightweight client for FlashBlade REST API 2.1, developed by Pure Storage, Inc. (http://www.purestorage.com/). OpenAPI spec version: 2.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flashblade.FB_2_1 import models class AdminApiTokenGetResponse(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'continuation_token': 'str', 'total_item_count': 'int', 'items': 'list[AdminApiToken]' } attribute_map = { 'continuation_token': 'continuation_token', 'total_item_count': 'total_item_count', 'items': 'items' } required_args = { } def __init__( self, continuation_token=None, # type: str total_item_count=None, # type: int items=None, # type: List[models.AdminApiToken] ): """ Keyword args: continuation_token (str): Continuation token that can be provided in the `continuation_token` query param to get the next page of data. If you use the `continuation_token` to page through data you are guaranteed to get all items exactly once regardless of how items are modified. If an item is added or deleted during the pagination then it may or may not be returned. The `continuation_token` is generated if the `limit` is less than the remaining number of items, and the default sort is used (no sort is specified). total_item_count (int): Total number of items after applying `filter` params. items (list[AdminApiToken]): A list of administrator API tokens. """ if continuation_token is not None: self.continuation_token = continuation_token if total_item_count is not None: self.total_item_count = total_item_count if items is not None: self.items = items def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `AdminApiTokenGetResponse`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): return None else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(AdminApiTokenGetResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AdminApiTokenGetResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_0_1335
""" This file offers the methods to automatically retrieve the graph Sodalis glossinidius. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def SodalisGlossinidius( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Sodalis glossinidius graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.0 - homology.v11.5 - physical.links.v11.0 - physical.links.v11.5 - links.v11.0 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Sodalis glossinidius graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="SodalisGlossinidius", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
the-stack_0_1336
# (c) 2019-2020 Mikhail Paulyshka # SPDX-License-Identifier: MIT import logging import json import os import random import string import sys import pprint import threading from urllib.parse import parse_qs from typing import Dict, List import common.mglx_http from .gw2_constants import GW2AuthorizationResult class GW2API(object): API_DOMAIN = 'https://api.guildwars2.com' API_URL_ACHIEVEMENTS = '/v2/achievements' API_URL_ACCOUNT = '/v2/account' API_URL_ACCOUNT_ACHIVEMENTS = '/v2/account/achievements' LOCALSERVER_HOST = '127.0.0.1' LOCALSERVER_PORT = 13338 RETRIES_COUNT = 5 def __init__(self, plugin_version): self.__http = common.mglx_http.MglxHttp(user_agent='gog_gw2/%s' % plugin_version, verify_ssl=False) self.__logger = logging.getLogger('gw2_api') self._api_key = None self._account_info = None async def shutdown(self): await self.__http.shutdown() # # Getters # def get_api_key(self) -> str: return self._api_key def get_account_id(self) -> str: if self._account_info is None: self.__logger.error('get_account_id: account info is None', exc_info=True) return None return self._account_info['id'] def get_account_name(self) -> str: if self._account_info is None: self.__logger.error('get_account_name: account info is None', exc_info=True) return None return self._account_info['name'] def get_owned_games(self) -> List[str]: if self._account_info is None: self.__logger.error('get_owned_games: account info is None', exc_info=True) return list() return self._account_info['access'] def get_account_age(self) -> int: if self._account_info is None: self.__logger.error('get_account_age: account info is None', exc_info=True) return None if 'age' not in self._account_info: return 0 return self._account_info['age'] async def get_account_achievements(self) -> List[int]: result = list() if not self._api_key: self.__logger.error('get_account_achievements: api_key is None', exc_info=True) return result (status, achievements_account) = await self.__api_get_response(self._api_key, self.API_URL_ACCOUNT_ACHIVEMENTS) if status != 200: self.__logger.warn('get_account_achievements: failed to get achievements %s' % status) return result for achievement in achievements_account: if achievement['done'] == True: result.append(achievement['id']) return result # # Authorization server # async def do_auth_apikey(self, api_key : str) -> GW2AuthorizationResult: self._api_key = None self._account_info = None if not api_key: self.__logger.warn('do_auth_apikey: api_key is is None') return GW2AuthorizationResult.FAILED (status_code, account_info) = await self.__api_get_response(api_key, self.API_URL_ACCOUNT) if status_code != 200: if (account_info is not None) and ('text' in account_info): if account_info['text'] == 'Invalid access token': return GW2AuthorizationResult.FAILED_INVALID_TOKEN elif account_info['text'] == 'invalid key': return GW2AuthorizationResult.FAILED_INVALID_KEY elif account_info['text'] == 'no game account': return GW2AuthorizationResult.FAILED_NO_ACCOUNT elif account_info['text'] == 'ErrBadData': return GW2AuthorizationResult.FAILED_BAD_DATA elif account_info['text'] == 'ErrTimeout': return GW2AuthorizationResult.FAILED_TIMEOUT else: self.__logger.error('do_auth_apikey: unknown error description %s, %s' % (status_code, account_info)) self.__logger.warn('do_auth_apikey: %s, %s' % (status_code, account_info)) return GW2AuthorizationResult.FAILED if account_info is None: self.__logger.warn('do_auth_apikey: account info is None') return GW2AuthorizationResult.FAILED self._api_key = api_key self._account_info = account_info return GW2AuthorizationResult.FINISHED async def __api_get_response(self, api_key, url, parameters = None): result = None #update authorization cookie self.__http.update_headers({'Authorization': 'Bearer ' + api_key}) #make request retries = self.RETRIES_COUNT while retries > 0: #decrement remaining retries counter retries = retries - 1 #send request resp = None try: resp = await self.__http.request_get(self.API_DOMAIN+url, params=parameters) except Exception: self.__logger.exception('__api_get_response: failed to perform GET request for url %s' % url) return (0, None) #log response status if resp.status == 400: self.__logger.warning('__api_get_response: TIMEOUT for url %s' % url) elif resp.status == 404: self.__logger.error('__api_get_response: NOT FOUND for url %s' % url) elif resp.status == 502: self.__logger.warning('__api_get_response: BAD GATEWAY for url %s' % url) elif resp.status == 504: self.__logger.warning('__api_get_response: GATEWAY TIMEOUT for url %s' % url) elif (resp.status == 200) and (resp.text is not None): try: result = json.loads(resp.text) except Exception: self.__logger.exception('__api_get_response: failed to parse response, url=%s, status=%s, text=%s' % (url, resp.status, resp.text)) else: self.__logger.error('__api_get_response: unknown error, url=%s, status=%s, text=%s' % (url, resp.status, resp.text)) return (resp.status, result)
the-stack_0_1341
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 29 09:56:48 2019 @author: adamreidsmith """ ''' Create datafiles of 1D solution to the Van der Pol equation: x'' - a*(1 - x^2)*x' + b*y = f(t). Datafiles include the computed solution, its fast Fourier transform, a histogram of x(t) vs t mod T where T is the first period of f, the phase(s) of f, and the parameters a and b. These datafiles are created for use in 'nn_hist.py', 'nn_ft.py', and 'nn_wavelet.py'. ''' import numpy as np from scipy.integrate import odeint from os import path, mkdir ############################################################################### ''' Inputs: tmax: The upper bound of the interval [0,tmax] on which to solve the Van der Pol equation. initial_cond: Initial condition. Can be set to 'random' or a list of length 2. n_points: The number of time steps to include in each solution. num_ab_pairs: The number of times to solve the equation, i.e. the number of data points. n_periods: Number of periodic terms in the forcing function. include_phase: Include or exclude a random phase in the forcing terms. C: Coefficients of the terms in the forcing function. Must be a list of length 'n_periods'. T: Periods of the terms in the forcing function. Must be a list of length 'n_periods'. file_name: Name of the datafile. ''' ############################################################################### def generate_data(tmax=500, initial_cond='random', n_points=2**10, num_ab_pairs=800, n_periods=3, include_phase=True, C=[1, np.sqrt(2), np.pi/3], T=[5, 10*np.sqrt(2)-2, 30*np.sqrt(3)], file_name=None): twopi = 2*np.pi #Create a directory to store datafiles if it doesn't aready exist if not path.exists('./datafiles'): mkdir('./datafiles') assert type(C) == type(T) == list and n_periods == len(C) == len(T), \ 'C and T must be lists of length \'n_periods\'.' #RHS def f(t, phi, C, T): val = 0 if include_phase: for i in range(n_periods): val += C[i] * np.cos(twopi/T[i]*t + phi[i]) return val else: for i in range(n_periods): val += C[i] * np.cos(twopi/T[i]*t) return val data = [] for i in range(num_ab_pairs): a = np.random.rand() #Random number in [0,1) b = np.random.rand() #Random number in [0,1) if initial_cond == 'random': ic = [2*np.random.rand() - 1, 2*np.random.rand() - 1] else: ic = initial_cond phi = [] if include_phase: for _ in range(n_periods): phi.append(twopi*np.random.rand()) #Van der Pol oscillator equation def vanderpol(ic,t): x = ic[0] y = ic[1] yd = f(t, phi, C, T) + a*(1 - x**2)*y - b*x xd = y return [xd,yd] #Solve the ivp numerically npoints = 10*n_points tfull = np.linspace(0,tmax,npoints) sol = odeint(vanderpol, ic, tfull) #Keep every tenth data point indices = [i for i in range(npoints) if i % 10 == 0] t = np.array([tfull[i] for i in indices]) tmodT1 = t % T[0] x = [sol[i][0] for i in indices] n_bins = 100 soln = np.array([[t[i],x[i]] for i in range(len(t))]) fftdata = np.fft.fft(x) FT = np.array([[t[i],fftdata[i]] for i in range(len(t))]) data.append(soln) data.append(FT) data.append(np.histogram2d(tmodT1, x, bins=n_bins)[0]) data.append(phi) data.append([a,b]) if i % 10 == 0 and __name__ == '__main__': print('Iteration:', i, 'of', num_ab_pairs) if file_name is None: file_name = 'vdp_data_' + str(num_ab_pairs) + 'pts_[soln,FT,hist,phase(' + \ str(include_phase) + '),param]' file_path = './datafiles/' + file_name print('Writing datafile to', file_path + '.npy') np.save(file_path, data) print('Done') if __name__ == '__main__': generate_data()
the-stack_0_1342
from collections import deque import numpy as np import time import os import json from isaac.utilities import * # set the current working directory to the deployed package folder. This is required by isaac. os.chdir("/home/davis/deploy/davis/rm_isaac_bridge-pkg") from engine.pyalice import Codelet from engine.pyalice.gui.composite_widget import CompositeWidget class IsaacEffector: def __init__(self, config): self.config = config self._timeout = config['timeout'] self._widgets = self.config['widgets'] self._stream_articulations = self.config['stream_articulations'] # Since isaac does not support closed kinematics (4-bar linkage), there are 4 dof, where # left_finger == left_finger_upper and right_finger == right_finger_upper self.joint_names = self._load_kinematics(config['effector_type']) self.joints = CompositeArray(self.joint_names, 'position', [0]*len(self.joint_names)) if self._widgets: self.finger_widget = CompositeWidget(self.joint_names, 'position', [[-np.pi/2, np.pi/2]]*6) self._command_queue = deque() def _load_kinematics(self, effector_type): valid_kinematics = ['smarthand'] if effector_type not in valid_kinematics: raise ValueError('No valid kinematic file found for '+effector_type+'. Valid kinematics exist for '+', '.join(valid_kinematics)) self._kinematic_file = "apps/assets/kinematic_trees/{}.kinematic.json".format(effector_type) joint_names = [] with open(self._kinematic_file,'r') as fd: kt = json.load(fd) for link in kt['links']: if 'motor' in link and link['motor']['type'] != 'constant': joint_names.append(link['name']) return joint_names def command(self, action, payload=None): if action not in ['get_articulation_angles', 'set_articulation_angles']: raise ValueError(action+' is not a valid action type') if type(payload) in [list, np.ndarray]: if len(list(payload)) == 2: payload = [payload[0], payload[0], payload[0], payload[1], payload[1], payload[1]] payload = CompositeArray(self.joint_names, 'position', payload) command = Command(action, payload) self._command_queue.append(command) elapsed = 0 while command.response is None and elapsed < self._timeout: elapsed += 0.01 time.sleep(0.01) return command.response def enable_articulation_stream(self): self._stream_articulations = True def disable_articulation_stream(self): self._stream_articulations = False def enable_all_streams(self): self._stream_articulations = True def disable_all_streams(self): self._stream_articulations = False def _JointReciever(self): parent = self class JointReciever(Codelet): def start(self): self.rx = self.isaac_proto_rx("CompositeProto", "state") self.tick_on_message(self.rx) def tick(self): if len(parent._command_queue) > 0 and parent._command_queue[0].action == 'get_articulation_angles': msg = self.rx.message parent.joints.composite = msg command = parent._command_queue.popleft() values = parent.joints.values command.response = values elif parent._stream_articulations: msg = self.rx.message parent.joints.composite = msg else: return if parent._widgets: parent.finger_widget.composite = msg return JointReciever def _JointTransmitter(self): parent = self class JointTransmitter(Codelet): def start(self): self.tx = self.isaac_proto_tx("CompositeProto", "command") self.tick_periodically(0.03) def tick(self): if len(parent._command_queue) > 0 and parent._command_queue[0].action == 'set_articulation_angles': self.tx._msg = parent._command_queue[0].payload.composite self.tx.publish() command = parent._command_queue.popleft() command.response = True elif parent._widgets and parent._stream_articulations: self.tx._msg = parent.finger_widget.composite self.tx.publish() return JointTransmitter def connect_app(self, app): # load dependency subgraphs app.load(filename="packages/planner/apps/multi_joint_lqr_control.subgraph.json", prefix="lqr_gripper") simulation_interface = app.nodes["simulation.interface"] lqr_interface = app.nodes["lqr_gripper.subgraph"]["interface"] # configs app.nodes["lqr_gripper.kinematic_tree"]["KinematicTree"].config.kinematic_file = self._kinematic_file lqr_planner = app.nodes["lqr_gripper.local_plan"]["MultiJointLqrPlanner"] lqr_planner.config.speed_min = [-self.config['joint_speed']] * len(self.joint_names) lqr_planner.config.speed_max = [self.config['joint_speed']] * len(self.joint_names) lqr_planner.config.acceleration_min = [-self.config['joint_accel']] * len(self.joint_names) lqr_planner.config.acceleration_max = [self.config['joint_accel']] * len(self.joint_names) # create nodes joints_in_node = app.add("joints_input") joints_in_node.add(self._JointReciever(), 'articulation_reciever') joints_out_node = app.add("joints_output") joints_out_node.add(self._JointTransmitter(), 'articulation_transmitter') # connect edges app.connect(simulation_interface["output"], "joint_state", lqr_interface, "joint_state") app.connect(simulation_interface["output"], "joint_state", joints_in_node['articulation_reciever'], "state") app.connect(joints_out_node['articulation_transmitter'], "command", lqr_interface, "joint_target") app.connect(lqr_interface, "joint_command", simulation_interface["input"], "joint_position") return app
the-stack_0_1344
# created April 2017 # by TEASER Development Team from teaser.logic.archetypebuildings.tabula.de.singlefamilyhouse import \ SingleFamilyHouse class ApartmentBlock(SingleFamilyHouse): """Archetype for TABULA Apartment Block Archetype according to TABULA building typology (http://webtool.building-typology.eu/#bm). Description of: - estimation factors - always 4 walls, 1 roof, 1 floor, 4 windows, one door (default orientation?) - how we calculate facade and window area - calculate u-values - zones (one zone) - differences between TABULA und our approach (net floor area, height and number of storeys) - how to proceed with rooftops (keep them as flat roofs or pitched roofs? what orientation?) Parameters ---------- parent: Project() The parent class of this object, the Project the Building belongs to. Allows for better control of hierarchical structures. If not None it adds this Building instance to Project.buildings. (default: None) name : str Individual name year_of_construction : int Year of first construction height_of_floors : float [m] Average height of the buildings' floors number_of_floors : int Number of building's floors above ground net_leased_area : float [m2] Total net leased area of building. This is area is NOT the footprint of a building with_ahu : Boolean If set to True, an empty instance of BuildingAHU is instantiated and assigned to attribute central_ahu. This instance holds information for central Air Handling units. Default is False. internal_gains_mode: int [1, 2, 3] mode for the internal gains calculation by persons: 1: Temperature and activity degree dependent calculation. The calculation is based on SIA 2024 (default) 2: Temperature and activity degree independent calculation, the max. heatflowrate is prescribed by the parameter fixed_heat_flow_rate_persons. 3: Temperature and activity degree dependent calculation with consideration of moisture. The calculation is based on SIA 2024 construction_type : str Construction type of used wall constructions default is "existing state" existing state: construction of walls according to existing state in TABULA usual refurbishment: construction of walls according to usual refurbishment in TABULA advanced refurbishment: construction of walls according to advanced refurbishment in TABULA """ def __init__( self, parent, name=None, year_of_construction=None, number_of_floors=None, height_of_floors=None, net_leased_area=None, with_ahu=False, internal_gains_mode=1, construction_type=None): super(ApartmentBlock, self).__init__( parent, name, year_of_construction, number_of_floors, height_of_floors, net_leased_area, with_ahu, internal_gains_mode, construction_type) self.construction_type = construction_type self.number_of_floors = number_of_floors self.height_of_floors = height_of_floors self._construction_type_1 = self.construction_type + '_1_AB' self._construction_type_2 = self.construction_type + '_2_AB' self.zone_area_factors = {"SingleDwelling": [1, "Living"]} self._outer_wall_names_1 = { "ExteriorFacadeNorth_1": [90.0, 0.0], "ExteriorFacadeEast_1": [90.0, 90.0], "ExteriorFacadeSouth_1": [90.0, 180.0], "ExteriorFacadeWest_1": [90.0, 270.0]} self._outer_wall_names_2 = { "ExteriorFacadeNorth_2": [90.0, 0.0], "ExteriorFacadeEast_2": [90.0, 90.0], "ExteriorFacadeSouth_2": [90.0, 180.0], "ExteriorFacadeWest_2": [90.0, 270.0]} self.roof_names_1 = {"Rooftop_1": [0, -1]} # [0, -1] self.roof_names_2 = {"Rooftop_2": [0, -1]} self.ground_floor_names_1 = { "GroundFloor_1": [0, -2]} # [0, -2] self.ground_floor_names_2 = { "GroundFloor_2": [0, -2]} self.door_names = {"Door": [90.0, 270]} self.window_names_1 = { "WindowFacadeNorth_1": [90.0, 0.0], "WindowFacadeEast_1": [90.0, 90.0], "WindowFacadeSouth_1": [90.0, 180.0], "WindowFacadeWest_1": [90.0, 270.0]} self.window_names_2 = { "WindowFacadeNorth_2": [90.0, 0.0], "WindowFacadeEast_2": [90.0, 90.0], "WindowFacadeSouth_2": [90.0, 180.0], "WindowFacadeWest_2": [90.0, 270.0]} # [tilt, orientation] self.inner_wall_names = {"InnerWall": [90.0, 0.0]} self.ceiling_names = {"Ceiling": [0.0, -1]} self.floor_names = {"Floor": [0.0, -2]} # Rooftop1, Rooftop2, Wall1, Wall2, GroundFloor1, GroundFloor2, # Window1, Window2, Door # Area/ReferenceFloorArea self.facade_estimation_factors = { (1860, 1918): { 'rt1': 0.27961, 'rt2': 0.0, 'ow1': 0.36840, 'ow2': 0.0, 'gf1': 0.19747, 'gf2': 0.0, 'win1': 0.16429, 'win2': 0.0, 'door': 0.00241}, (1919, 1948): { 'rt1': 0.25889, 'rt2': 0.0, 'ow1': 0.83827, 'ow2': 0.0, 'gf1': 0.26658, 'gf2': 0.0, 'win1': 0.18767, 'win2': 0.0, 'door': 0.00135}, (1949, 1957): { 'rt1': 0.22052, 'rt2': 0.0, 'ow1': 0.85839, 'ow2': 0.0, 'gf1': 0.22052, 'gf2': 0.0, 'win1': 0.18397, 'win2': 0.0, 'door': 0.00125}, (1958, 1968): { 'rt1': 0.12339, 'rt2': 0.0, 'ow1': 0.83555, 'ow2': 0.0, 'gf1': 0.11814, 'gf2': 0.0, 'win1': 0.17674, 'win2': 0.0, 'door': 0.00051}, (1969, 1978): { 'rt1': 0.16255, 'rt2': 0.0, 'ow1': 0.64118, 'ow2': 0.0, 'gf1': 0.16255, 'gf2': 0.0, 'win1': 0.16406, 'win2': 0.0, 'door': 0.0006}} self.building_age_group = None if self.with_ahu is True: self.central_ahu.temperature_profile = ( 7 * [293.15] + 12 * [295.15] + 6 * [293.15]) self.central_ahu.min_relative_humidity_profile = (25 * [0.45]) self.central_ahu.max_relative_humidity_profile = (25 * [0.55]) self.central_ahu.v_flow_profile = ( 7 * [0.0] + 12 * [1.0] + 6 * [0.0])
the-stack_0_1347
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 import os from numpy.testing import assert_allclose import pytest from jax import jit, random import jax.numpy as jnp import numpyro import numpyro.distributions as dist from numpyro.distributions.transforms import AffineTransform from numpyro.infer import MCMC, NUTS from numpyro.infer.reparam import TransformReparam def test_dist_pytree(): from tensorflow_probability.substrates.jax import distributions as tfd from numpyro.contrib.tfp.distributions import TFPDistribution @jit def f(x): with numpyro.handlers.seed(rng_seed=0), numpyro.handlers.trace() as tr: numpyro.sample("x", tfd.Normal(x, 1)) return tr["x"]["fn"] res = f(0.0) assert isinstance(res, TFPDistribution) assert res.loc == 0 assert res.scale == 1 @pytest.mark.filterwarnings("ignore:can't resolve package") def test_transformed_distributions(): from tensorflow_probability.substrates.jax import ( bijectors as tfb, distributions as tfd, ) d = dist.TransformedDistribution(dist.Normal(0, 1), dist.transforms.ExpTransform()) d1 = tfd.TransformedDistribution(tfd.Normal(0, 1), tfb.Exp()) x = random.normal(random.PRNGKey(0), (1000,)) d_x = d.log_prob(x).sum() d1_x = d1.log_prob(x).sum() assert_allclose(d_x, d1_x) @pytest.mark.filterwarnings("ignore:can't resolve package") def test_logistic_regression(): from tensorflow_probability.substrates.jax import distributions as tfd N, dim = 3000, 3 num_warmup, num_samples = (1000, 1000) data = random.normal(random.PRNGKey(0), (N, dim)) true_coefs = jnp.arange(1.0, dim + 1.0) logits = jnp.sum(true_coefs * data, axis=-1) labels = tfd.Bernoulli(logits=logits).sample(seed=random.PRNGKey(1)) def model(labels): coefs = numpyro.sample("coefs", tfd.Normal(jnp.zeros(dim), jnp.ones(dim))) logits = numpyro.deterministic("logits", jnp.sum(coefs * data, axis=-1)) return numpyro.sample("obs", tfd.Bernoulli(logits=logits), obs=labels) kernel = NUTS(model) mcmc = MCMC(kernel, num_warmup=num_warmup, num_samples=num_samples) mcmc.run(random.PRNGKey(2), labels) mcmc.print_summary() samples = mcmc.get_samples() assert samples["logits"].shape == (num_samples, N) expected_coefs = jnp.array([0.97, 2.05, 3.18]) assert_allclose(jnp.mean(samples["coefs"], 0), expected_coefs, atol=0.22) @pytest.mark.filterwarnings("ignore:can't resolve package") # TODO: remove after https://github.com/tensorflow/probability/issues/1072 is resolved @pytest.mark.filterwarnings("ignore:Explicitly requested dtype") def test_beta_bernoulli(): from tensorflow_probability.substrates.jax import distributions as tfd num_warmup, num_samples = (500, 2000) def model(data): alpha = jnp.array([1.1, 1.1]) beta = jnp.array([1.1, 1.1]) p_latent = numpyro.sample("p_latent", tfd.Beta(alpha, beta)) numpyro.sample("obs", tfd.Bernoulli(p_latent), obs=data) return p_latent true_probs = jnp.array([0.9, 0.1]) data = tfd.Bernoulli(true_probs).sample( seed=random.PRNGKey(1), sample_shape=(1000, 2) ) kernel = NUTS(model=model, trajectory_length=0.1) mcmc = MCMC(kernel, num_warmup=num_warmup, num_samples=num_samples) mcmc.run(random.PRNGKey(2), data) mcmc.print_summary() samples = mcmc.get_samples() assert_allclose(jnp.mean(samples["p_latent"], 0), true_probs, atol=0.05) def make_kernel_fn(target_log_prob_fn): import tensorflow_probability.substrates.jax as tfp return tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=target_log_prob_fn, step_size=0.5 / jnp.sqrt(0.5 ** jnp.arange(4)[..., None]), num_leapfrog_steps=5, ) @pytest.mark.parametrize( "kernel, kwargs", [ ("HamiltonianMonteCarlo", dict(step_size=0.05, num_leapfrog_steps=10)), ("NoUTurnSampler", dict(step_size=0.05)), ("RandomWalkMetropolis", dict()), ("SliceSampler", dict(step_size=1.0, max_doublings=5)), ( "UncalibratedHamiltonianMonteCarlo", dict(step_size=0.05, num_leapfrog_steps=10), ), ("UncalibratedRandomWalk", dict()), ], ) @pytest.mark.filterwarnings("ignore:can't resolve package") # TODO: remove after https://github.com/tensorflow/probability/issues/1072 is resolved @pytest.mark.filterwarnings("ignore:Explicitly requested dtype") def test_mcmc_kernels(kernel, kwargs): from numpyro.contrib.tfp import mcmc kernel_class = getattr(mcmc, kernel) true_coef = 0.9 num_warmup, num_samples = 1000, 1000 def model(data): alpha = numpyro.sample("alpha", dist.Uniform(0, 1)) with numpyro.handlers.reparam(config={"loc": TransformReparam()}): loc = numpyro.sample( "loc", dist.TransformedDistribution( dist.Uniform(0, 1), AffineTransform(0, alpha) ), ) numpyro.sample("obs", dist.Normal(loc, 0.1), obs=data) data = true_coef + random.normal(random.PRNGKey(0), (1000,)) tfp_kernel = kernel_class(model=model, **kwargs) mcmc = MCMC(tfp_kernel, num_warmup=num_warmup, num_samples=num_samples) mcmc.warmup(random.PRNGKey(2), data, collect_warmup=True) warmup_samples = mcmc.get_samples() mcmc.run(random.PRNGKey(3), data) samples = mcmc.get_samples() assert len(warmup_samples["loc"]) == num_warmup assert len(samples["loc"]) == num_samples assert_allclose(jnp.mean(samples["loc"], 0), true_coef, atol=0.05) @pytest.mark.parametrize( "kernel, kwargs", [ ("MetropolisAdjustedLangevinAlgorithm", dict(step_size=1.0)), ("RandomWalkMetropolis", dict()), ("SliceSampler", dict(step_size=1.0, max_doublings=5)), ("UncalibratedLangevin", dict(step_size=0.1)), ( "ReplicaExchangeMC", dict( inverse_temperatures=0.5 ** jnp.arange(4), make_kernel_fn=make_kernel_fn ), ), ], ) @pytest.mark.parametrize("num_chains", [1, 2]) @pytest.mark.skipif( "XLA_FLAGS" not in os.environ, reason="without this mark, we have duplicated tests in Travis", ) @pytest.mark.filterwarnings("ignore:There are not enough devices:UserWarning") @pytest.mark.filterwarnings("ignore:can't resolve package") # TODO: remove after https://github.com/tensorflow/probability/issues/1072 is resolved @pytest.mark.filterwarnings("ignore:Explicitly requested dtype") def test_unnormalized_normal_chain(kernel, kwargs, num_chains): from numpyro.contrib.tfp import mcmc # TODO: remove when this issue is fixed upstream # https://github.com/tensorflow/probability/pull/1087 if num_chains == 2 and kernel == "ReplicaExchangeMC": pytest.xfail("ReplicaExchangeMC is not fully compatible with omnistaging yet.") kernel_class = getattr(mcmc, kernel) true_mean, true_std = 1.0, 0.5 num_warmup, num_samples = (1000, 8000) def potential_fn(z): return 0.5 * ((z - true_mean) / true_std) ** 2 init_params = jnp.array(0.0) if num_chains == 1 else jnp.array([0.0, 2.0]) tfp_kernel = kernel_class(potential_fn=potential_fn, **kwargs) mcmc = MCMC( tfp_kernel, num_warmup=num_warmup, num_samples=num_samples, num_chains=num_chains, progress_bar=False, ) mcmc.run(random.PRNGKey(0), init_params=init_params) mcmc.print_summary() hmc_states = mcmc.get_samples() assert_allclose(jnp.mean(hmc_states), true_mean, rtol=0.07) assert_allclose(jnp.std(hmc_states), true_std, rtol=0.07) # test if sampling from tfp distributions works as expected using # numpyro sample function: numpyro.sample("name", dist) (bug) @pytest.mark.filterwarnings("ignore:can't resolve package") @pytest.mark.filterwarnings("ignore:Importing distributions") def test_sample_tfp_distributions(): from tensorflow_probability.substrates.jax import distributions as tfd from numpyro.contrib.tfp.distributions import TFPDistribution # test no error raised d = TFPDistribution[tfd.Normal](0, 1) with numpyro.handlers.seed(rng_seed=random.PRNGKey(0)): numpyro.sample("normal", d) # test intermediates are [] value, intermediates = d(sample_intermediates=True, rng_key=random.PRNGKey(0)) assert intermediates == [] # test that sampling from unwrapped tensorflow_probability distributions works as # expected using numpyro.sample primitive @pytest.mark.parametrize( "dist,args", [ ["Bernoulli", (0,)], ["Beta", (1, 1)], ["Binomial", (10, 0)], ["Categorical", ([0, 1, -1],)], ["Cauchy", (0, 1)], ["Dirichlet", ([1, 2, 0.5],)], ["Exponential", (1,)], ["InverseGamma", (1, 1)], ["Normal", (0, 1)], ["OrderedLogistic", ([0, 1], 0.5)], ["Pareto", (1,)], ], ) def test_sample_unwrapped_tfp_distributions(dist, args): from tensorflow_probability.substrates.jax import distributions as tfd # test no error is raised with numpyro.handlers.seed(rng_seed=random.PRNGKey(0)): # since we import tfd inside the test, distributions have to be parametrized as # strings, which is why we use getattr here numpyro.sample("sample", getattr(tfd, dist)(*args)) # test mixture distributions def test_sample_unwrapped_mixture_same_family(): from tensorflow_probability.substrates.jax import distributions as tfd # test no error is raised with numpyro.handlers.seed(rng_seed=random.PRNGKey(0)): numpyro.sample( "sample", tfd.MixtureSameFamily( mixture_distribution=tfd.Categorical(probs=[0.3, 0.7]), components_distribution=tfd.Normal( loc=[-1.0, 1], scale=[0.1, 0.5] # One for each component. ), ), ) # test that MCMC works with unwrapped tensorflow_probability distributions def test_mcmc_unwrapped_tfp_distributions(): from tensorflow_probability.substrates.jax import distributions as tfd def model(y): theta = numpyro.sample("p", tfd.Beta(1, 1)) with numpyro.plate("plate", y.size): numpyro.sample("y", tfd.Bernoulli(probs=theta), obs=y) mcmc = MCMC(NUTS(model), num_warmup=1000, num_samples=1000) mcmc.run(random.PRNGKey(0), jnp.array([0, 0, 1, 1, 1])) samples = mcmc.get_samples() assert_allclose(jnp.mean(samples["p"]), 4 / 7, atol=0.05)