filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_854
#!/usr/bin/env python3 # Write a program that simulates random BAC coverage over a genome # Command line arguments include # Genome size (e.g. 1000) # X coverage (e.g. 5) # Use assert() to check parameter bounds # Report min, max, and histogram of coverage # Note that your output may vary due to random function import sys import random assert(len(sys.argv) == 3) bins = int(sys.argv[1]) x = float(sys.argv[2]) assert(bins > 0) assert(x > 0) bacs = int(bins * x) genome = [0] * bins #1st array for i in range(bacs): r = random.randint(0, bins -1) genome[r] += 1 genome.sort() min = genome[0] max = genome[-1] #2nd array hist = [0] * (max + 1) for v in genome: hist[v] += 1 #output print(f'Size: {bins}') print(f'X: {x}') print(f'BACs: {bacs}') print(f'Min: {genome[0]}') print(f'Max: {genome[-1]}') print(f'Counts:') for i in range(len(hist)): print(i, hist[i]) """ Size: 1000 X: 5.0 BACs: 5000 Min: 0 Max: 13 Counts: 0 5 1 39 2 88 3 144 4 175 5 150 6 151 7 116 8 59 9 40 10 20 11 5 12 6 13 2 """
the-stack_0_855
import logging from typing import Any, Dict, List, TypedDict from utility import Utility log: logging.Logger = logging.getLogger(__name__) class CamoIDs(TypedDict): """Structure of loot/camo_ids.csv""" id: int ref: str rarity: int price: int salvage: int license: int premium: int # bool class CamoTable(TypedDict): """Structure of mp/camotable.csv""" index: int ref: str botValid: int # bool category: str unlockType: str unlockString: str hideInUI: int # bool name: str image: str availableOffline: int # bool platformExclusiveType: str class Camos: """Camo XAssets.""" def Compile(self: Any) -> None: """Compile the Camo XAssets.""" camos: List[Dict[str, Any]] = [] camos = Camos.IDs(self, camos) camos = Camos.Table(self, camos) Utility.WriteFile(self, f"{self.eXAssets}/camos.json", camos) log.info(f"Compiled {len(camos):,} Camos") def IDs(self: Any, camos: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Compile the loot/camo_ids.csv XAsset.""" ids: List[Dict[str, Any]] = Utility.ReadCSV( self, f"{self.iXAssets}/loot/camo_ids.csv", CamoIDs ) if ids is None: return camos for entry in ids: camos.append( { "id": entry.get("id"), "altId": entry.get("ref"), "name": None, "category": None, "type": self.ModernWarfare.GetLootType(entry.get("id")), "rarity": self.ModernWarfare.GetLootRarity(entry.get("rarity")), "season": self.ModernWarfare.GetLootSeason(entry.get("license")), "exclusive": None, "available": self.ModernWarfare.GetTitleAvailability( entry.get("id") ), "hidden": None, "image": None, } ) return camos def Table(self: Any, camos: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Compile the mp/camotable.csv XAsset.""" table: List[Dict[str, Any]] = Utility.ReadCSV( self, f"{self.iXAssets}/mp/camotable.csv", CamoTable ) if table is None: return camos for camo in camos: for entry in table: if camo.get("altId") != entry.get("ref"): continue camo["name"] = self.localize.get(entry.get("name")) camo["category"] = self.ModernWarfare.GetCamoCategory( entry.get("category") ) camo["exclusive"] = self.ModernWarfare.GetPlatformExclusivity( entry.get("platformExclusiveType") ) camo["hidden"] = bool(entry.get("hidden")) camo["image"] = entry.get("image") return camos
the-stack_0_856
class Pagelet(object): def __init__(self, parent_request, target_element_id, route_view, params, method: str = 'GET', depends_on: str= None): self.parent_request = parent_request self.target = target_element_id self.route_view = route_view self.params = params self.method = method self.depends_on = depends_on def render(self): return self.route_view(self.parent_request, **self.params)
the-stack_0_857
import numpy as np import pandas as pd from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.layers import Dense from tensorflow.keras.models import Sequential from sklearn.preprocessing import MultiLabelBinarizer from tensorflow.keras.preprocessing.sequence import skipgrams from keras.utils import np_utils from keras.preprocessing.sequence import make_sampling_table import scipy.io as sio import os def train(cleaned_tweets, tweets, hashtags, sentiment, source_idx, target_idx): # Obtain skipgram embedding only # Create feature representation: TFIDF-Variants and skipgram embedding with 1000 dimension and negative sampling # Output will be saved to disk # get_glove_embedding_matrix(cleaned_tweets) # get_skipgram_gensim_embedding_matrix(cleaned_tweets) # Sentence Skipgram is the base feature representation of the datatset X = get_skipgram_sentence_embedding_matrix(cleaned_tweets) # Create bytes file for the visualization X.dtype=np.float32 X.tofile("data/skipgram_tensors.bytes") create_domain_adaptation_dataset(X, tweets, source_idx, target_idx, sentiment) def get_skipgram_sentence_embedding_matrix(text, dim=200, batch_size=256, window_size=5, epochs=1): print("get_skipgram_sentence_embedding_matrix") if os.path.isfile("data/sentqs_skipgram_sentence_embedding.npz"): loaded_embedding = np.load("data/sentqs_skipgram_sentence_embedding.npz") loaded_embedding = loaded_embedding["embedding"] print('Loaded Skipgram embedding.') return loaded_embedding else: text = [''.join(x) for x in text] t = Tokenizer() t.fit_on_texts(text) corpus = t.texts_to_sequences(text) # print(corpus) V = len(t.word_index) step_size = len(corpus) // batch_size model = Sequential() model.add(Dense(units=dim, input_dim=V, activation="softmax")) model.add(Dense(units=V, input_dim=dim, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.summary() model.fit(generate_data(corpus, window_size, V), epochs=epochs, steps_per_epoch=step_size) # model.save("data/sentqs_full_skigram_arc.h5") mlb = MultiLabelBinarizer() enc = mlb.fit_transform(corpus) emb = enc @ model.get_weights()[0] np.savez_compressed("data/sentqs_skipgram_sentence_embedding", embedding=emb) return emb def create_domain_adaptation_dataset(X, tweets, source_idx, target_idx, sentiment): Xs = X[source_idx] Xt = X[target_idx] Ys = sentiment[source_idx] Yt = sentiment[target_idx] data = [Xs, Ys, Xt, Yt] np.savez('data/sentqs_dataset.npz', *data) sio.savemat('data/sentqs_dataset.mat', {'Xs': Xs, 'Xt': Xt, 'Ys': Ys, 'Yt': Yt}) source_tweets = [tweets[i] for i in source_idx] target_tweets = [tweets[i] for i in target_idx] pd.DataFrame(source_tweets).to_csv("data/sentqs_source_tweets.csv") pd.DataFrame(target_tweets).to_csv("data/sentqs_target_tweets.csv") return Xs, Ys, Xt, Yt def generate_data(corpus, window_size, V): for words in corpus: couples, labels = skipgrams(words, V, window_size, negative_samples=1, shuffle=True, sampling_table=make_sampling_table(V, sampling_factor=1e-05)) if couples: X, y = zip(*couples) X = np_utils.to_categorical(X, V) y = np_utils.to_categorical(y, V) yield X, y
the-stack_0_858
from commndata.models import TimeLinedTable from django.db import models from django.utils.translation import gettext_lazy as _ from enum import Enum class SalaryTable(TimeLinedTable): class SALARY_TABLE(models.IntegerChoices): GS1 = (1010, '行(一)') GS2 = (1020, '行(二)') SGS = (1110, '専門行政') ZM = (1210, '税務') KA1 = (1310, '公安(一)') KA2 = (1320, '公安(二)') KJ1 = (1410, '海(一)') KJ2 = (1420, '海(二)') KI1 = (1510, '教(一)') KI2 = (1520, '教(二)') KK = (1610, '研究') IR1 = (1710, '医(一)') IR2 = (1720, '医(二)') IR3 = (1730, '医(三)') FS = (1810, '福祉') NK1 = (1910, '任研(一)') # 任期付き研究員 NK2 = (1920, '任研(二)') TNK = (1930, '特任研') # 特定任期付き研究員 SS = (2010, '専門スタッフ') ST = (2110, '指定職') # 指定職 class STAFF_TYPE(models.IntegerChoices): TY = (1, '定員') SNY = (2, '再任用') salary_table = models.IntegerField(verbose_name=_('salary table'), blank=False, choices=SALARY_TABLE.choices, default=SALARY_TABLE.GS1) # 俸給表 salary_level = models.IntegerField(verbose_name=_('salary level')) # 級 salary_no = models.IntegerField(verbose_name=_('salary no')) # 号俸 salary_monthly = models.IntegerField(verbose_name=_('salary monthly')) # 俸給月額 salary_adjustment = models.IntegerField(verbose_name=_('salary adjustment')) # 俸給の調整額 @property def sny_salary_no(): """ 再任用職員の号俸 """ return 999 class Meta: permissions = [ ('import_salary_table', 'Can import salary_table'), ('export_salary_table', 'Can export salary_table'), ] verbose_name = _('salary table') verbose_name_plural = _('salary table') constraints = [ models.UniqueConstraint(name='salary_table_unique', fields = ['start_date', 'salary_table', 'salary_level', 'salary_adjustment']), ] ordering = ['-start_date', 'salary_table', 'salary_level', 'salary_no'] def __str__(self): return self.salary_table class SalaryTableExcel(TimeLinedTable): salary_table = models.IntegerField(verbose_name=_('salary table'), blank=False, choices=SalaryTable.SALARY_TABLE.choices, default=SalaryTable.SALARY_TABLE.GS1) # 俸給表 sheet_name = models.CharField(max_length=10, verbose_name=_('シート名')) rows = models.IntegerField(verbose_name=_('級'), default=1) cols = models.IntegerField(verbose_name=_('号俸'), default=1) sny_flg = models.BooleanField(verbose_name=_('再任用有無'), default=True) start_cell = models.CharField(max_length=10, verbose_name=_('データ開始セル')) class Meta: db_table = 'salary_table_excel' verbose_name = _('俸給表取込エクセル設定') verbose_name_plural = _('俸給表取込エクセル設定') constraints = [ models.UniqueConstraint(name='salary_table_excel_unique', fields = ['start_date', 'salary_table',]), ] ordering = ['-start_date', 'salary_table', ]
the-stack_0_860
""" fitpack --- curve and surface fitting with splines fitpack is based on a collection of Fortran routines DIERCKX by P. Dierckx (see http://www.netlib.org/dierckx/) transformed to double routines by Pearu Peterson. """ # Created by Pearu Peterson, June,August 2003 from __future__ import division, print_function, absolute_import __all__ = [ 'UnivariateSpline', 'InterpolatedUnivariateSpline', 'LSQUnivariateSpline', 'BivariateSpline', 'LSQBivariateSpline', 'SmoothBivariateSpline', 'LSQSphereBivariateSpline', 'SmoothSphereBivariateSpline', 'RectBivariateSpline', 'RectSphereBivariateSpline'] import warnings from numpy import zeros, concatenate, alltrue, ravel, all, diff, array, ones import numpy as np from . import fitpack from . import dfitpack ################ Univariate spline #################### _curfit_messages = {1:""" The required storage space exceeds the available storage space, as specified by the parameter nest: nest too small. If nest is already large (say nest > m/2), it may also indicate that s is too small. The approximation returned is the weighted least-squares spline according to the knots t[0],t[1],...,t[n-1]. (n=nest) the parameter fp gives the corresponding weighted sum of squared residuals (fp>s). """, 2:""" A theoretically impossible result was found during the iteration proces for finding a smoothing spline with fp = s: s too small. There is an approximation returned but the corresponding weighted sum of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""", 3:""" The maximal number of iterations maxit (set to 20 by the program) allowed for finding a smoothing spline with fp=s has been reached: s too small. There is an approximation returned but the corresponding weighted sum of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""", 10:""" Error on entry, no approximation returned. The following conditions must hold: xb<=x[0]<x[1]<...<x[m-1]<=xe, w[i]>0, i=0..m-1 if iopt=-1: xb<t[k+1]<t[k+2]<...<t[n-k-2]<xe""" } # UnivariateSpline, ext parameter can be an int or a string _extrap_modes = {0: 0, 'extrapolate': 0, 1: 1, 'zeros': 1, 2: 2, 'raise': 2, 3: 3, 'const': 3} class UnivariateSpline(object): """ One-dimensional smoothing spline fit to a given set of data points. Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `s` specifies the number of knots by specifying a smoothing condition. Parameters ---------- x : (N,) array_like 1-D array of independent input data. Must be increasing. y : (N,) array_like 1-D array of dependent input data, of the same length as `x`. w : (N,) array_like, optional Weights for spline fitting. Must be positive. If None (default), weights are all equal. bbox : (2,) array_like, optional 2-sequence specifying the boundary of the approximation interval. If None (default), ``bbox=[x[0], x[-1]]``. k : int, optional Degree of the smoothing spline. Must be <= 5. Default is k=3, a cubic spline. s : float or None, optional Positive smoothing factor used to choose the number of knots. Number of knots will be increased until the smoothing condition is satisfied:: sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) <= s If None (default), ``s = len(w)`` which should be a good value if ``1/w[i]`` is an estimate of the standard deviation of ``y[i]``. If 0, spline will interpolate through all data points. ext : int or str, optional Controls the extrapolation mode for elements not in the interval defined by the knot sequence. * if ext=0 or 'extrapolate', return the extrapolated value. * if ext=1 or 'zeros', return 0 * if ext=2 or 'raise', raise a ValueError * if ext=3 of 'const', return the boundary value. The default value is 0. check_finite : bool, optional Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination or non-sensical results) if the inputs do contain infinities or NaNs. Default is False. See Also -------- InterpolatedUnivariateSpline : Subclass with smoothing forced to 0 LSQUnivariateSpline : Subclass in which knots are user-selected instead of being set by smoothing condition splrep : An older, non object-oriented wrapping of FITPACK splev, sproot, splint, spalde BivariateSpline : A similar class for two-dimensional spline interpolation Notes ----- The number of data points must be larger than the spline degree `k`. **NaN handling**: If the input arrays contain ``nan`` values, the result is not useful, since the underlying spline fitting routines cannot deal with ``nan`` . A workaround is to use zero weights for not-a-number data points: >>> from scipy.interpolate import UnivariateSpline >>> x, y = np.array([1, 2, 3, 4]), np.array([1, np.nan, 3, 4]) >>> w = np.isnan(y) >>> y[w] = 0. >>> spl = UnivariateSpline(x, y, w=~w) Notice the need to replace a ``nan`` by a numerical value (precise value does not matter as long as the corresponding weight is zero.) Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.interpolate import UnivariateSpline >>> x = np.linspace(-3, 3, 50) >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50) >>> plt.plot(x, y, 'ro', ms=5) Use the default value for the smoothing parameter: >>> spl = UnivariateSpline(x, y) >>> xs = np.linspace(-3, 3, 1000) >>> plt.plot(xs, spl(xs), 'g', lw=3) Manually change the amount of smoothing: >>> spl.set_smoothing_factor(0.5) >>> plt.plot(xs, spl(xs), 'b', lw=3) >>> plt.show() """ def __init__(self, x, y, w=None, bbox=[None]*2, k=3, s=None, ext=0, check_finite=False): if check_finite: if not np.isfinite(x).all() or not np.isfinite(y).all(): raise ValueError("x and y array must not contain NaNs or infs.") # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier try: self.ext = _extrap_modes[ext] except KeyError: raise ValueError("Unknown extrapolation mode %s." % ext) data = dfitpack.fpcurf0(x,y,k,w=w, xb=bbox[0],xe=bbox[1],s=s) if data[-1] == 1: # nest too small, setting to maximum bound data = self._reset_nest(data) self._data = data self._reset_class() @classmethod def _from_tck(cls, tck, ext=0): """Construct a spline object from given tck""" self = cls.__new__(cls) t, c, k = tck self._eval_args = tck #_data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier self._data = (None,None,None,None,None,k,None,len(t),t, c,None,None,None,None) self.ext = ext return self def _reset_class(self): data = self._data n,t,c,k,ier = data[7],data[8],data[9],data[5],data[-1] self._eval_args = t[:n],c[:n],k if ier == 0: # the spline returned has a residual sum of squares fp # such that abs(fp-s)/s <= tol with tol a relative # tolerance set to 0.001 by the program pass elif ier == -1: # the spline returned is an interpolating spline self._set_class(InterpolatedUnivariateSpline) elif ier == -2: # the spline returned is the weighted least-squares # polynomial of degree k. In this extreme case fp gives # the upper bound fp0 for the smoothing factor s. self._set_class(LSQUnivariateSpline) else: # error if ier == 1: self._set_class(LSQUnivariateSpline) message = _curfit_messages.get(ier,'ier=%s' % (ier)) warnings.warn(message) def _set_class(self, cls): self._spline_class = cls if self.__class__ in (UnivariateSpline, InterpolatedUnivariateSpline, LSQUnivariateSpline): self.__class__ = cls else: # It's an unknown subclass -- don't change class. cf. #731 pass def _reset_nest(self, data, nest=None): n = data[10] if nest is None: k,m = data[5],len(data[0]) nest = m+k+1 # this is the maximum bound for nest else: if not n <= nest: raise ValueError("`nest` can only be increased") t, c, fpint, nrdata = [np.resize(data[j], nest) for j in [8,9,11,12]] args = data[:8] + (t,c,n,fpint,nrdata,data[13]) data = dfitpack.fpcurf1(*args) return data def set_smoothing_factor(self, s): """ Continue spline computation with the given smoothing factor s and with the knots found at the last call. This routine modifies the spline in place. """ data = self._data if data[6] == -1: warnings.warn('smoothing factor unchanged for' 'LSQ spline with fixed knots') return args = data[:6] + (s,) + data[7:] data = dfitpack.fpcurf1(*args) if data[-1] == 1: # nest too small, setting to maximum bound data = self._reset_nest(data) self._data = data self._reset_class() def __call__(self, x, nu=0, ext=None): """ Evaluate spline (or its nu-th derivative) at positions x. Parameters ---------- x : array_like A 1-D array of points at which to return the value of the smoothed spline or its derivatives. Note: x can be unordered but the evaluation is more efficient if x is (partially) ordered. nu : int The order of derivative of the spline to compute. ext : int Controls the value returned for elements of ``x`` not in the interval defined by the knot sequence. * if ext=0 or 'extrapolate', return the extrapolated value. * if ext=1 or 'zeros', return 0 * if ext=2 or 'raise', raise a ValueError * if ext=3 or 'const', return the boundary value. The default value is 0, passed from the initialization of UnivariateSpline. """ x = np.asarray(x) # empty input yields empty output if x.size == 0: return array([]) # if nu is None: # return dfitpack.splev(*(self._eval_args+(x,))) # return dfitpack.splder(nu=nu,*(self._eval_args+(x,))) if ext is None: ext = self.ext else: try: ext = _extrap_modes[ext] except KeyError: raise ValueError("Unknown extrapolation mode %s." % ext) return fitpack.splev(x, self._eval_args, der=nu, ext=ext) def get_knots(self): """ Return positions of interior knots of the spline. Internally, the knot vector contains ``2*k`` additional boundary knots. """ data = self._data k,n = data[5],data[7] return data[8][k:n-k] def get_coeffs(self): """Return spline coefficients.""" data = self._data k,n = data[5],data[7] return data[9][:n-k-1] def get_residual(self): """Return weighted sum of squared residuals of the spline approximation. This is equivalent to:: sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) """ return self._data[10] def integral(self, a, b): """ Return definite integral of the spline between two given points. Parameters ---------- a : float Lower limit of integration. b : float Upper limit of integration. Returns ------- integral : float The value of the definite integral of the spline between limits. Examples -------- >>> from scipy.interpolate import UnivariateSpline >>> x = np.linspace(0, 3, 11) >>> y = x**2 >>> spl = UnivariateSpline(x, y) >>> spl.integral(0, 3) 9.0 which agrees with :math:`\int x^2 dx = x^3 / 3` between the limits of 0 and 3. A caveat is that this routine assumes the spline to be zero outside of the data limits: >>> spl.integral(-1, 4) 9.0 >>> spl.integral(-1, 0) 0.0 """ return dfitpack.splint(*(self._eval_args+(a,b))) def derivatives(self, x): """ Return all derivatives of the spline at the point x. Parameters ---------- x : float The point to evaluate the derivatives at. Returns ------- der : ndarray, shape(k+1,) Derivatives of the orders 0 to k. Examples -------- >>> from scipy.interpolate import UnivariateSpline >>> x = np.linspace(0, 3, 11) >>> y = x**2 >>> spl = UnivariateSpline(x, y) >>> spl.derivatives(1.5) array([2.25, 3.0, 2.0, 0]) """ d,ier = dfitpack.spalde(*(self._eval_args+(x,))) if not ier == 0: raise ValueError("Error code returned by spalde: %s" % ier) return d def roots(self): """ Return the zeros of the spline. Restriction: only cubic splines are supported by fitpack. """ k = self._data[5] if k == 3: z,m,ier = dfitpack.sproot(*self._eval_args[:2]) if not ier == 0: raise ValueError("Error code returned by spalde: %s" % ier) return z[:m] raise NotImplementedError('finding roots unsupported for ' 'non-cubic splines') def derivative(self, n=1): """ Construct a new spline representing the derivative of this spline. Parameters ---------- n : int, optional Order of derivative to evaluate. Default: 1 Returns ------- spline : UnivariateSpline Spline of order k2=k-n representing the derivative of this spline. See Also -------- splder, antiderivative Notes ----- .. versionadded:: 0.13.0 Examples -------- This can be used for finding maxima of a curve: >>> from scipy.interpolate import UnivariateSpline >>> x = np.linspace(0, 10, 70) >>> y = np.sin(x) >>> spl = UnivariateSpline(x, y, k=4, s=0) Now, differentiate the spline and find the zeros of the derivative. (NB: `sproot` only works for order 3 splines, so we fit an order 4 spline): >>> spl.derivative().roots() / np.pi array([ 0.50000001, 1.5 , 2.49999998]) This agrees well with roots :math:`\pi/2 + n\pi` of `cos(x) = sin'(x)`. """ tck = fitpack.splder(self._eval_args, n) return UnivariateSpline._from_tck(tck, self.ext) def antiderivative(self, n=1): """ Construct a new spline representing the antiderivative of this spline. Parameters ---------- n : int, optional Order of antiderivative to evaluate. Default: 1 Returns ------- spline : UnivariateSpline Spline of order k2=k+n representing the antiderivative of this spline. Notes ----- .. versionadded:: 0.13.0 See Also -------- splantider, derivative Examples -------- >>> from scipy.interpolate import UnivariateSpline >>> x = np.linspace(0, np.pi/2, 70) >>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2) >>> spl = UnivariateSpline(x, y, s=0) The derivative is the inverse operation of the antiderivative, although some floating point error accumulates: >>> spl(1.7), spl.antiderivative().derivative()(1.7) (array(2.1565429877197317), array(2.1565429877201865)) Antiderivative can be used to evaluate definite integrals: >>> ispl = spl.antiderivative() >>> ispl(np.pi/2) - ispl(0) 2.2572053588768486 This is indeed an approximation to the complete elliptic integral :math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`: >>> from scipy.special import ellipk >>> ellipk(0.8) 2.2572053268208538 """ tck = fitpack.splantider(self._eval_args, n) return UnivariateSpline._from_tck(tck, self.ext) class InterpolatedUnivariateSpline(UnivariateSpline): """ One-dimensional interpolating spline for a given set of data points. Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. Spline function passes through all provided points. Equivalent to `UnivariateSpline` with s=0. Parameters ---------- x : (N,) array_like Input dimension of data points -- must be increasing y : (N,) array_like input dimension of data points w : (N,) array_like, optional Weights for spline fitting. Must be positive. If None (default), weights are all equal. bbox : (2,) array_like, optional 2-sequence specifying the boundary of the approximation interval. If None (default), ``bbox=[x[0], x[-1]]``. k : int, optional Degree of the smoothing spline. Must be 1 <= `k` <= 5. ext : int or str, optional Controls the extrapolation mode for elements not in the interval defined by the knot sequence. * if ext=0 or 'extrapolate', return the extrapolated value. * if ext=1 or 'zeros', return 0 * if ext=2 or 'raise', raise a ValueError * if ext=3 of 'const', return the boundary value. The default value is 0. check_finite : bool, optional Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination or non-sensical results) if the inputs do contain infinities or NaNs. Default is False. See Also -------- UnivariateSpline : Superclass -- allows knots to be selected by a smoothing condition LSQUnivariateSpline : spline for which knots are user-selected splrep : An older, non object-oriented wrapping of FITPACK splev, sproot, splint, spalde BivariateSpline : A similar class for two-dimensional spline interpolation Notes ----- The number of data points must be larger than the spline degree `k`. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.interpolate import InterpolatedUnivariateSpline >>> x = np.linspace(-3, 3, 50) >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50) >>> spl = InterpolatedUnivariateSpline(x, y) >>> plt.plot(x, y, 'ro', ms=5) >>> xs = np.linspace(-3, 3, 1000) >>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7) >>> plt.show() Notice that the ``spl(x)`` interpolates `y`: >>> spl.get_residual() 0.0 """ def __init__(self, x, y, w=None, bbox=[None]*2, k=3, ext=0, check_finite=False): if check_finite: if (not np.isfinite(x).all() or not np.isfinite(y).all() or not np.isfinite(w).all()): raise ValueError("Input must not contain NaNs or infs.") # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier self._data = dfitpack.fpcurf0(x,y,k,w=w, xb=bbox[0],xe=bbox[1],s=0) self._reset_class() try: self.ext = _extrap_modes[ext] except KeyError: raise ValueError("Unknown extrapolation mode %s." % ext) _fpchec_error_string = """The input parameters have been rejected by fpchec. \ This means that at least one of the following conditions is violated: 1) k+1 <= n-k-1 <= m 2) t(1) <= t(2) <= ... <= t(k+1) t(n-k) <= t(n-k+1) <= ... <= t(n) 3) t(k+1) < t(k+2) < ... < t(n-k) 4) t(k+1) <= x(i) <= t(n-k) 5) The conditions specified by Schoenberg and Whitney must hold for at least one subset of data points, i.e., there must be a subset of data points y(j) such that t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1 """ class LSQUnivariateSpline(UnivariateSpline): """ One-dimensional spline with explicit internal knots. Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `t` specifies the internal knots of the spline Parameters ---------- x : (N,) array_like Input dimension of data points -- must be increasing y : (N,) array_like Input dimension of data points t : (M,) array_like interior knots of the spline. Must be in ascending order and:: bbox[0] < t[0] < ... < t[-1] < bbox[-1] w : (N,) array_like, optional weights for spline fitting. Must be positive. If None (default), weights are all equal. bbox : (2,) array_like, optional 2-sequence specifying the boundary of the approximation interval. If None (default), ``bbox = [x[0], x[-1]]``. k : int, optional Degree of the smoothing spline. Must be 1 <= `k` <= 5. Default is k=3, a cubic spline. ext : int or str, optional Controls the extrapolation mode for elements not in the interval defined by the knot sequence. * if ext=0 or 'extrapolate', return the extrapolated value. * if ext=1 or 'zeros', return 0 * if ext=2 or 'raise', raise a ValueError * if ext=3 of 'const', return the boundary value. The default value is 0. check_finite : bool, optional Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination or non-sensical results) if the inputs do contain infinities or NaNs. Default is False. Raises ------ ValueError If the interior knots do not satisfy the Schoenberg-Whitney conditions See Also -------- UnivariateSpline : Superclass -- knots are specified by setting a smoothing condition InterpolatedUnivariateSpline : spline passing through all points splrep : An older, non object-oriented wrapping of FITPACK splev, sproot, splint, spalde BivariateSpline : A similar class for two-dimensional spline interpolation Notes ----- The number of data points must be larger than the spline degree `k`. Knots `t` must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points ``x[j]`` such that ``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``. Examples -------- >>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline >>> import matplotlib.pyplot as plt >>> x = np.linspace(-3, 3, 50) >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50) Fit a smoothing spline with a pre-defined internal knots: >>> t = [-1, 0, 1] >>> spl = LSQUnivariateSpline(x, y, t) >>> xs = np.linspace(-3, 3, 1000) >>> plt.plot(x, y, 'ro', ms=5) >>> plt.plot(xs, spl(xs), 'g-', lw=3) >>> plt.show() Check the knot vector: >>> spl.get_knots() array([-3., -1., 0., 1., 3.]) Constructing lsq spline using the knots from another spline: >>> x = np.arange(10) >>> s = UnivariateSpline(x, x, s=0) >>> s.get_knots() array([ 0., 2., 3., 4., 5., 6., 7., 9.]) >>> knt = s.get_knots() >>> s1 = LSQUnivariateSpline(x, x, knt[1:-1]) # Chop 1st and last knot >>> s1.get_knots() array([ 0., 2., 3., 4., 5., 6., 7., 9.]) """ def __init__(self, x, y, t, w=None, bbox=[None]*2, k=3, ext=0, check_finite=False): if check_finite: if (not np.isfinite(x).all() or not np.isfinite(y).all() or not np.isfinite(w).all() or not np.isfinite(t).all()): raise ValueError("Input(s) must not contain NaNs or infs.") # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier xb = bbox[0] xe = bbox[1] if xb is None: xb = x[0] if xe is None: xe = x[-1] t = concatenate(([xb]*(k+1), t, [xe]*(k+1))) n = len(t) if not alltrue(t[k+1:n-k]-t[k:n-k-1] > 0, axis=0): raise ValueError('Interior knots t must satisfy ' 'Schoenberg-Whitney conditions') if not dfitpack.fpchec(x, t, k) == 0: raise ValueError(_fpchec_error_string) data = dfitpack.fpcurfm1(x, y, k, t, w=w, xb=xb, xe=xe) self._data = data[:-3] + (None, None, data[-1]) self._reset_class() try: self.ext = _extrap_modes[ext] except KeyError: raise ValueError("Unknown extrapolation mode %s." % ext) ################ Bivariate spline #################### class _BivariateSplineBase(object): """ Base class for Bivariate spline s(x,y) interpolation on the rectangle [xb,xe] x [yb, ye] calculated from a given set of data points (x,y,z). See Also -------- bisplrep, bisplev : an older wrapping of FITPACK BivariateSpline : implementation of bivariate spline interpolation on a plane grid SphereBivariateSpline : implementation of bivariate spline interpolation on a spherical grid """ def get_residual(self): """ Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0) """ return self.fp def get_knots(self): """ Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively. """ return self.tck[:2] def get_coeffs(self): """ Return spline coefficients.""" return self.tck[2] def __call__(self, x, y, mth=None, dx=0, dy=0, grid=True): """ Evaluate the spline or its derivatives at given positions. Parameters ---------- x, y : array_like Input coordinates. If `grid` is False, evaluate the spline at points ``(x[i], y[i]), i=0, ..., len(x)-1``. Standard Numpy broadcasting is obeyed. If `grid` is True: evaluate spline at the grid points defined by the coordinate arrays x, y. The arrays must be sorted to increasing order. dx : int Order of x-derivative .. versionadded:: 0.14.0 dy : int Order of y-derivative .. versionadded:: 0.14.0 grid : bool Whether to evaluate the results on a grid spanned by the input arrays, or at points specified by the input arrays. .. versionadded:: 0.14.0 mth : str Deprecated argument. Has no effect. """ x = np.asarray(x) y = np.asarray(y) if mth is not None: warnings.warn("The `mth` argument is deprecated and will be removed", FutureWarning) tx, ty, c = self.tck[:3] kx, ky = self.degrees if grid: if x.size == 0 or y.size == 0: return np.zeros((x.size, y.size), dtype=self.tck[2].dtype) if dx or dy: z,ier = dfitpack.parder(tx,ty,c,kx,ky,dx,dy,x,y) if not ier == 0: raise ValueError("Error code returned by parder: %s" % ier) else: z,ier = dfitpack.bispev(tx,ty,c,kx,ky,x,y) if not ier == 0: raise ValueError("Error code returned by bispev: %s" % ier) else: # standard Numpy broadcasting if x.shape != y.shape: x, y = np.broadcast_arrays(x, y) shape = x.shape x = x.ravel() y = y.ravel() if x.size == 0 or y.size == 0: return np.zeros(shape, dtype=self.tck[2].dtype) if dx or dy: z,ier = dfitpack.pardeu(tx,ty,c,kx,ky,dx,dy,x,y) if not ier == 0: raise ValueError("Error code returned by pardeu: %s" % ier) else: z,ier = dfitpack.bispeu(tx,ty,c,kx,ky,x,y) if not ier == 0: raise ValueError("Error code returned by bispeu: %s" % ier) z = z.reshape(shape) return z _surfit_messages = {1:""" The required storage space exceeds the available storage space: nxest or nyest too small, or s too small. The weighted least-squares spline corresponds to the current set of knots.""", 2:""" A theoretically impossible result was found during the iteration process for finding a smoothing spline with fp = s: s too small or badly chosen eps. Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""", 3:""" the maximal number of iterations maxit (set to 20 by the program) allowed for finding a smoothing spline with fp=s has been reached: s too small. Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""", 4:""" No more knots can be added because the number of b-spline coefficients (nx-kx-1)*(ny-ky-1) already exceeds the number of data points m: either s or m too small. The weighted least-squares spline corresponds to the current set of knots.""", 5:""" No more knots can be added because the additional knot would (quasi) coincide with an old one: s too small or too large a weight to an inaccurate data point. The weighted least-squares spline corresponds to the current set of knots.""", 10:""" Error on entry, no approximation returned. The following conditions must hold: xb<=x[i]<=xe, yb<=y[i]<=ye, w[i]>0, i=0..m-1 If iopt==-1, then xb<tx[kx+1]<tx[kx+2]<...<tx[nx-kx-2]<xe yb<ty[ky+1]<ty[ky+2]<...<ty[ny-ky-2]<ye""", -3:""" The coefficients of the spline returned have been computed as the minimal norm least-squares solution of a (numerically) rank deficient system (deficiency=%i). If deficiency is large, the results may be inaccurate. Deficiency may strongly depend on the value of eps.""" } class BivariateSpline(_BivariateSplineBase): """ Base class for bivariate splines. This describes a spline ``s(x, y)`` of degrees ``kx`` and ``ky`` on the rectangle ``[xb, xe] * [yb, ye]`` calculated from a given set of data points ``(x, y, z)``. This class is meant to be subclassed, not instantiated directly. To construct these splines, call either `SmoothBivariateSpline` or `LSQBivariateSpline`. See Also -------- UnivariateSpline : a similar class for univariate spline interpolation SmoothBivariateSpline : to create a BivariateSpline through the given points LSQBivariateSpline : to create a BivariateSpline using weighted least-squares fitting SphereBivariateSpline : bivariate spline interpolation in spherical cooridinates bisplrep : older wrapping of FITPACK bisplev : older wrapping of FITPACK """ @classmethod def _from_tck(cls, tck): """Construct a spline object from given tck and degree""" self = cls.__new__(cls) if len(tck) != 5: raise ValueError("tck should be a 5 element tuple of tx, ty, c, kx, ky") self.tck = tck[:3] self.degrees = tck[3:] return self def ev(self, xi, yi, dx=0, dy=0): """ Evaluate the spline at points Returns the interpolated value at ``(xi[i], yi[i]), i=0,...,len(xi)-1``. Parameters ---------- xi, yi : array_like Input coordinates. Standard Numpy broadcasting is obeyed. dx : int, optional Order of x-derivative .. versionadded:: 0.14.0 dy : int, optional Order of y-derivative .. versionadded:: 0.14.0 """ return self.__call__(xi, yi, dx=dx, dy=dy, grid=False) def integral(self, xa, xb, ya, yb): """ Evaluate the integral of the spline over area [xa,xb] x [ya,yb]. Parameters ---------- xa, xb : float The end-points of the x integration interval. ya, yb : float The end-points of the y integration interval. Returns ------- integ : float The value of the resulting integral. """ tx,ty,c = self.tck[:3] kx,ky = self.degrees return dfitpack.dblint(tx,ty,c,kx,ky,xa,xb,ya,yb) class SmoothBivariateSpline(BivariateSpline): """ Smooth bivariate spline approximation. Parameters ---------- x, y, z : array_like 1-D sequences of data points (order is not important). w : array_like, optional Positive 1-D sequence of weights, of same length as `x`, `y` and `z`. bbox : array_like, optional Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, ``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``. kx, ky : ints, optional Degrees of the bivariate spline. Default is 3. s : float, optional Positive smoothing factor defined for estimation condition: ``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s`` Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an estimate of the standard deviation of ``z[i]``. eps : float, optional A threshold for determining the effective rank of an over-determined linear system of equations. `eps` should have a value between 0 and 1, the default is 1e-16. See Also -------- bisplrep : an older wrapping of FITPACK bisplev : an older wrapping of FITPACK UnivariateSpline : a similar class for univariate spline interpolation LSQUnivariateSpline : to create a BivariateSpline using weighted Notes ----- The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``. """ def __init__(self, x, y, z, w=None, bbox=[None] * 4, kx=3, ky=3, s=None, eps=None): xb,xe,yb,ye = bbox nx,tx,ny,ty,c,fp,wrk1,ier = dfitpack.surfit_smth(x,y,z,w, xb,xe,yb,ye, kx,ky,s=s, eps=eps,lwrk2=1) if ier > 10: # lwrk2 was to small, re-run nx,tx,ny,ty,c,fp,wrk1,ier = dfitpack.surfit_smth(x,y,z,w, xb,xe,yb,ye, kx,ky,s=s, eps=eps,lwrk2=ier) if ier in [0,-1,-2]: # normal return pass else: message = _surfit_messages.get(ier,'ier=%s' % (ier)) warnings.warn(message) self.fp = fp self.tck = tx[:nx],ty[:ny],c[:(nx-kx-1)*(ny-ky-1)] self.degrees = kx,ky class LSQBivariateSpline(BivariateSpline): """ Weighted least-squares bivariate spline approximation. Parameters ---------- x, y, z : array_like 1-D sequences of data points (order is not important). tx, ty : array_like Strictly ordered 1-D sequences of knots coordinates. w : array_like, optional Positive 1-D array of weights, of the same length as `x`, `y` and `z`. bbox : (4,) array_like, optional Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, ``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``. kx, ky : ints, optional Degrees of the bivariate spline. Default is 3. eps : float, optional A threshold for determining the effective rank of an over-determined linear system of equations. `eps` should have a value between 0 and 1, the default is 1e-16. See Also -------- bisplrep : an older wrapping of FITPACK bisplev : an older wrapping of FITPACK UnivariateSpline : a similar class for univariate spline interpolation SmoothBivariateSpline : create a smoothing BivariateSpline Notes ----- The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``. """ def __init__(self, x, y, z, tx, ty, w=None, bbox=[None]*4, kx=3, ky=3, eps=None): nx = 2*kx+2+len(tx) ny = 2*ky+2+len(ty) tx1 = zeros((nx,),float) ty1 = zeros((ny,),float) tx1[kx+1:nx-kx-1] = tx ty1[ky+1:ny-ky-1] = ty xb,xe,yb,ye = bbox tx1,ty1,c,fp,ier = dfitpack.surfit_lsq(x,y,z,tx1,ty1,w, xb,xe,yb,ye, kx,ky,eps,lwrk2=1) if ier > 10: tx1,ty1,c,fp,ier = dfitpack.surfit_lsq(x,y,z,tx1,ty1,w, xb,xe,yb,ye, kx,ky,eps,lwrk2=ier) if ier in [0,-1,-2]: # normal return pass else: if ier < -2: deficiency = (nx-kx-1)*(ny-ky-1)+ier message = _surfit_messages.get(-3) % (deficiency) else: message = _surfit_messages.get(ier, 'ier=%s' % (ier)) warnings.warn(message) self.fp = fp self.tck = tx1, ty1, c self.degrees = kx, ky class RectBivariateSpline(BivariateSpline): """ Bivariate spline approximation over a rectangular mesh. Can be used for both smoothing and interpolating data. Parameters ---------- x,y : array_like 1-D arrays of coordinates in strictly ascending order. z : array_like 2-D array of data with shape (x.size,y.size). bbox : array_like, optional Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, ``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``. kx, ky : ints, optional Degrees of the bivariate spline. Default is 3. s : float, optional Positive smoothing factor defined for estimation condition: ``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s`` Default is ``s=0``, which is for interpolation. See Also -------- SmoothBivariateSpline : a smoothing bivariate spline for scattered data bisplrep : an older wrapping of FITPACK bisplev : an older wrapping of FITPACK UnivariateSpline : a similar class for univariate spline interpolation """ def __init__(self, x, y, z, bbox=[None] * 4, kx=3, ky=3, s=0): x, y = ravel(x), ravel(y) if not all(diff(x) > 0.0): raise TypeError('x must be strictly increasing') if not all(diff(y) > 0.0): raise TypeError('y must be strictly increasing') if not ((x.min() == x[0]) and (x.max() == x[-1])): raise TypeError('x must be strictly ascending') if not ((y.min() == y[0]) and (y.max() == y[-1])): raise TypeError('y must be strictly ascending') if not x.size == z.shape[0]: raise TypeError('x dimension of z must have same number of ' 'elements as x') if not y.size == z.shape[1]: raise TypeError('y dimension of z must have same number of ' 'elements as y') z = ravel(z) xb, xe, yb, ye = bbox nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(x, y, z, xb, xe, yb, ye, kx, ky, s) if ier not in [0, -1, -2]: msg = _surfit_messages.get(ier, 'ier=%s' % (ier)) raise ValueError(msg) self.fp = fp self.tck = tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)] self.degrees = kx, ky _spherefit_messages = _surfit_messages.copy() _spherefit_messages[10] = """ ERROR. On entry, the input data are controlled on validity. The following restrictions must be satisfied: -1<=iopt<=1, m>=2, ntest>=8 ,npest >=8, 0<eps<1, 0<=teta(i)<=pi, 0<=phi(i)<=2*pi, w(i)>0, i=1,...,m lwrk1 >= 185+52*v+10*u+14*u*v+8*(u-1)*v**2+8*m kwrk >= m+(ntest-7)*(npest-7) if iopt=-1: 8<=nt<=ntest , 9<=np<=npest 0<tt(5)<tt(6)<...<tt(nt-4)<pi 0<tp(5)<tp(6)<...<tp(np-4)<2*pi if iopt>=0: s>=0 if one of these conditions is found to be violated,control is immediately repassed to the calling program. in that case there is no approximation returned.""" _spherefit_messages[-3] = """ WARNING. The coefficients of the spline returned have been computed as the minimal norm least-squares solution of a (numerically) rank deficient system (deficiency=%i, rank=%i). Especially if the rank deficiency, which is computed by 6+(nt-8)*(np-7)+ier, is large, the results may be inaccurate. They could also seriously depend on the value of eps.""" class SphereBivariateSpline(_BivariateSplineBase): """ Bivariate spline s(x,y) of degrees 3 on a sphere, calculated from a given set of data points (theta,phi,r). .. versionadded:: 0.11.0 See Also -------- bisplrep, bisplev : an older wrapping of FITPACK UnivariateSpline : a similar class for univariate spline interpolation SmoothUnivariateSpline : to create a BivariateSpline through the given points LSQUnivariateSpline : to create a BivariateSpline using weighted least-squares fitting """ def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True): """ Evaluate the spline or its derivatives at given positions. Parameters ---------- theta, phi : array_like Input coordinates. If `grid` is False, evaluate the spline at points ``(theta[i], phi[i]), i=0, ..., len(x)-1``. Standard Numpy broadcasting is obeyed. If `grid` is True: evaluate spline at the grid points defined by the coordinate arrays theta, phi. The arrays must be sorted to increasing order. dtheta : int, optional Order of theta-derivative .. versionadded:: 0.14.0 dphi : int Order of phi-derivative .. versionadded:: 0.14.0 grid : bool Whether to evaluate the results on a grid spanned by the input arrays, or at points specified by the input arrays. .. versionadded:: 0.14.0 """ theta = np.asarray(theta) phi = np.asarray(phi) if theta.size > 0 and (theta.min() < 0. or theta.max() > np.pi): raise ValueError("requested theta out of bounds.") if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi): raise ValueError("requested phi out of bounds.") return _BivariateSplineBase.__call__(self, theta, phi, dx=dtheta, dy=dphi, grid=grid) def ev(self, theta, phi, dtheta=0, dphi=0): """ Evaluate the spline at points Returns the interpolated value at ``(theta[i], phi[i]), i=0,...,len(theta)-1``. Parameters ---------- theta, phi : array_like Input coordinates. Standard Numpy broadcasting is obeyed. dtheta : int, optional Order of theta-derivative .. versionadded:: 0.14.0 dphi : int, optional Order of phi-derivative .. versionadded:: 0.14.0 """ return self.__call__(theta, phi, dtheta=dtheta, dphi=dphi, grid=False) class SmoothSphereBivariateSpline(SphereBivariateSpline): """ Smooth bivariate spline approximation in spherical coordinates. .. versionadded:: 0.11.0 Parameters ---------- theta, phi, r : array_like 1-D sequences of data points (order is not important). Coordinates must be given in radians. Theta must lie within the interval (0, pi), and phi must lie within the interval (0, 2pi). w : array_like, optional Positive 1-D sequence of weights. s : float, optional Positive smoothing factor defined for estimation condition: ``sum((w(i)*(r(i) - s(theta(i), phi(i))))**2, axis=0) <= s`` Default ``s=len(w)`` which should be a good value if 1/w[i] is an estimate of the standard deviation of r[i]. eps : float, optional A threshold for determining the effective rank of an over-determined linear system of equations. `eps` should have a value between 0 and 1, the default is 1e-16. Notes ----- For more information, see the FITPACK_ site about this function. .. _FITPACK: http://www.netlib.org/dierckx/sphere.f Examples -------- Suppose we have global data on a coarse grid (the input data does not have to be on a grid): >>> theta = np.linspace(0., np.pi, 7) >>> phi = np.linspace(0., 2*np.pi, 9) >>> data = np.empty((theta.shape[0], phi.shape[0])) >>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0. >>> data[1:-1,1], data[1:-1,-1] = 1., 1. >>> data[1,1:-1], data[-2,1:-1] = 1., 1. >>> data[2:-2,2], data[2:-2,-2] = 2., 2. >>> data[2,2:-2], data[-3,2:-2] = 2., 2. >>> data[3,3:-2] = 3. >>> data = np.roll(data, 4, 1) We need to set up the interpolator object >>> lats, lons = np.meshgrid(theta, phi) >>> from scipy.interpolate import SmoothSphereBivariateSpline >>> lut = SmoothSphereBivariateSpline(lats.ravel(), lons.ravel(), ... data.T.ravel(), s=3.5) As a first test, we'll see what the algorithm returns when run on the input coordinates >>> data_orig = lut(theta, phi) Finally we interpolate the data to a finer grid >>> fine_lats = np.linspace(0., np.pi, 70) >>> fine_lons = np.linspace(0., 2 * np.pi, 90) >>> data_smth = lut(fine_lats, fine_lons) >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax1 = fig.add_subplot(131) >>> ax1.imshow(data, interpolation='nearest') >>> ax2 = fig.add_subplot(132) >>> ax2.imshow(data_orig, interpolation='nearest') >>> ax3 = fig.add_subplot(133) >>> ax3.imshow(data_smth, interpolation='nearest') >>> plt.show() """ def __init__(self, theta, phi, r, w=None, s=0., eps=1E-16): if np.issubclass_(w, float): w = ones(len(theta)) * w nt_, tt_, np_, tp_, c, fp, ier = dfitpack.spherfit_smth(theta, phi, r, w=w, s=s, eps=eps) if ier not in [0, -1, -2]: message = _spherefit_messages.get(ier, 'ier=%s' % (ier)) raise ValueError(message) self.fp = fp self.tck = tt_[:nt_], tp_[:np_], c[:(nt_ - 4) * (np_ - 4)] self.degrees = (3, 3) class LSQSphereBivariateSpline(SphereBivariateSpline): """ Weighted least-squares bivariate spline approximation in spherical coordinates. .. versionadded:: 0.11.0 Parameters ---------- theta, phi, r : array_like 1-D sequences of data points (order is not important). Coordinates must be given in radians. Theta must lie within the interval (0, pi), and phi must lie within the interval (0, 2pi). tt, tp : array_like Strictly ordered 1-D sequences of knots coordinates. Coordinates must satisfy ``0 < tt[i] < pi``, ``0 < tp[i] < 2*pi``. w : array_like, optional Positive 1-D sequence of weights, of the same length as `theta`, `phi` and `r`. eps : float, optional A threshold for determining the effective rank of an over-determined linear system of equations. `eps` should have a value between 0 and 1, the default is 1e-16. Notes ----- For more information, see the FITPACK_ site about this function. .. _FITPACK: http://www.netlib.org/dierckx/sphere.f Examples -------- Suppose we have global data on a coarse grid (the input data does not have to be on a grid): >>> theta = np.linspace(0., np.pi, 7) >>> phi = np.linspace(0., 2*np.pi, 9) >>> data = np.empty((theta.shape[0], phi.shape[0])) >>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0. >>> data[1:-1,1], data[1:-1,-1] = 1., 1. >>> data[1,1:-1], data[-2,1:-1] = 1., 1. >>> data[2:-2,2], data[2:-2,-2] = 2., 2. >>> data[2,2:-2], data[-3,2:-2] = 2., 2. >>> data[3,3:-2] = 3. >>> data = np.roll(data, 4, 1) We need to set up the interpolator object. Here, we must also specify the coordinates of the knots to use. >>> lats, lons = np.meshgrid(theta, phi) >>> knotst, knotsp = theta.copy(), phi.copy() >>> knotst[0] += .0001 >>> knotst[-1] -= .0001 >>> knotsp[0] += .0001 >>> knotsp[-1] -= .0001 >>> from scipy.interpolate import LSQSphereBivariateSpline >>> lut = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), ... data.T.ravel(), knotst, knotsp) As a first test, we'll see what the algorithm returns when run on the input coordinates >>> data_orig = lut(theta, phi) Finally we interpolate the data to a finer grid >>> fine_lats = np.linspace(0., np.pi, 70) >>> fine_lons = np.linspace(0., 2*np.pi, 90) >>> data_lsq = lut(fine_lats, fine_lons) >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax1 = fig.add_subplot(131) >>> ax1.imshow(data, interpolation='nearest') >>> ax2 = fig.add_subplot(132) >>> ax2.imshow(data_orig, interpolation='nearest') >>> ax3 = fig.add_subplot(133) >>> ax3.imshow(data_lsq, interpolation='nearest') >>> plt.show() """ def __init__(self, theta, phi, r, tt, tp, w=None, eps=1E-16): if np.issubclass_(w, float): w = ones(len(theta)) * w nt_, np_ = 8 + len(tt), 8 + len(tp) tt_, tp_ = zeros((nt_,), float), zeros((np_,), float) tt_[4:-4], tp_[4:-4] = tt, tp tt_[-4:], tp_[-4:] = np.pi, 2. * np.pi tt_, tp_, c, fp, ier = dfitpack.spherfit_lsq(theta, phi, r, tt_, tp_, w=w, eps=eps) if ier < -2: deficiency = 6 + (nt_ - 8) * (np_ - 7) + ier message = _spherefit_messages.get(-3) % (deficiency, -ier) warnings.warn(message) elif ier not in [0, -1, -2]: message = _spherefit_messages.get(ier, 'ier=%s' % (ier)) raise ValueError(message) self.fp = fp self.tck = tt_, tp_, c self.degrees = (3, 3) _spfit_messages = _surfit_messages.copy() _spfit_messages[10] = """ ERROR: on entry, the input data are controlled on validity the following restrictions must be satisfied. -1<=iopt(1)<=1, 0<=iopt(2)<=1, 0<=iopt(3)<=1, -1<=ider(1)<=1, 0<=ider(2)<=1, ider(2)=0 if iopt(2)=0. -1<=ider(3)<=1, 0<=ider(4)<=1, ider(4)=0 if iopt(3)=0. mu >= mumin (see above), mv >= 4, nuest >=8, nvest >= 8, kwrk>=5+mu+mv+nuest+nvest, lwrk >= 12+nuest*(mv+nvest+3)+nvest*24+4*mu+8*mv+max(nuest,mv+nvest) 0< u(i-1)<u(i)< pi,i=2,..,mu, -pi<=v(1)< pi, v(1)<v(i-1)<v(i)<v(1)+2*pi, i=3,...,mv if iopt(1)=-1: 8<=nu<=min(nuest,mu+6+iopt(2)+iopt(3)) 0<tu(5)<tu(6)<...<tu(nu-4)< pi 8<=nv<=min(nvest,mv+7) v(1)<tv(5)<tv(6)<...<tv(nv-4)<v(1)+2*pi the schoenberg-whitney conditions, i.e. there must be subset of grid co-ordinates uu(p) and vv(q) such that tu(p) < uu(p) < tu(p+4) ,p=1,...,nu-4 (iopt(2)=1 and iopt(3)=1 also count for a uu-value tv(q) < vv(q) < tv(q+4) ,q=1,...,nv-4 (vv(q) is either a value v(j) or v(j)+2*pi) if iopt(1)>=0: s>=0 if s=0: nuest>=mu+6+iopt(2)+iopt(3), nvest>=mv+7 if one of these conditions is found to be violated,control is immediately repassed to the calling program. in that case there is no approximation returned.""" class RectSphereBivariateSpline(SphereBivariateSpline): """ Bivariate spline approximation over a rectangular mesh on a sphere. Can be used for smoothing data. .. versionadded:: 0.11.0 Parameters ---------- u : array_like 1-D array of latitude coordinates in strictly ascending order. Coordinates must be given in radians and lie within the interval (0, pi). v : array_like 1-D array of longitude coordinates in strictly ascending order. Coordinates must be given in radians, and must lie within (0, 2pi). r : array_like 2-D array of data with shape ``(u.size, v.size)``. s : float, optional Positive smoothing factor defined for estimation condition (``s=0`` is for interpolation). pole_continuity : bool or (bool, bool), optional Order of continuity at the poles ``u=0`` (``pole_continuity[0]``) and ``u=pi`` (``pole_continuity[1]``). The order of continuity at the pole will be 1 or 0 when this is True or False, respectively. Defaults to False. pole_values : float or (float, float), optional Data values at the poles ``u=0`` and ``u=pi``. Either the whole parameter or each individual element can be None. Defaults to None. pole_exact : bool or (bool, bool), optional Data value exactness at the poles ``u=0`` and ``u=pi``. If True, the value is considered to be the right function value, and it will be fitted exactly. If False, the value will be considered to be a data value just like the other data values. Defaults to False. pole_flat : bool or (bool, bool), optional For the poles at ``u=0`` and ``u=pi``, specify whether or not the approximation has vanishing derivatives. Defaults to False. See Also -------- RectBivariateSpline : bivariate spline approximation over a rectangular mesh Notes ----- Currently, only the smoothing spline approximation (``iopt[0] = 0`` and ``iopt[0] = 1`` in the FITPACK routine) is supported. The exact least-squares spline approximation is not implemented yet. When actually performing the interpolation, the requested `v` values must lie within the same length 2pi interval that the original `v` values were chosen from. For more information, see the FITPACK_ site about this function. .. _FITPACK: http://www.netlib.org/dierckx/spgrid.f Examples -------- Suppose we have global data on a coarse grid >>> lats = np.linspace(10, 170, 9) * np.pi / 180. >>> lons = np.linspace(0, 350, 18) * np.pi / 180. >>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T, ... np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T We want to interpolate it to a global one-degree grid >>> new_lats = np.linspace(1, 180, 180) * np.pi / 180 >>> new_lons = np.linspace(1, 360, 360) * np.pi / 180 >>> new_lats, new_lons = np.meshgrid(new_lats, new_lons) We need to set up the interpolator object >>> from scipy.interpolate import RectSphereBivariateSpline >>> lut = RectSphereBivariateSpline(lats, lons, data) Finally we interpolate the data. The `RectSphereBivariateSpline` object only takes 1-D arrays as input, therefore we need to do some reshaping. >>> data_interp = lut.ev(new_lats.ravel(), ... new_lons.ravel()).reshape((360, 180)).T Looking at the original and the interpolated data, one can see that the interpolant reproduces the original data very well: >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax1 = fig.add_subplot(211) >>> ax1.imshow(data, interpolation='nearest') >>> ax2 = fig.add_subplot(212) >>> ax2.imshow(data_interp, interpolation='nearest') >>> plt.show() Chosing the optimal value of ``s`` can be a delicate task. Recommended values for ``s`` depend on the accuracy of the data values. If the user has an idea of the statistical errors on the data, she can also find a proper estimate for ``s``. By assuming that, if she specifies the right ``s``, the interpolator will use a spline ``f(u,v)`` which exactly reproduces the function underlying the data, she can evaluate ``sum((r(i,j)-s(u(i),v(j)))**2)`` to find a good estimate for this ``s``. For example, if she knows that the statistical errors on her ``r(i,j)``-values are not greater than 0.1, she may expect that a good ``s`` should have a value not larger than ``u.size * v.size * (0.1)**2``. If nothing is known about the statistical error in ``r(i,j)``, ``s`` must be determined by trial and error. The best is then to start with a very large value of ``s`` (to determine the least-squares polynomial and the corresponding upper bound ``fp0`` for ``s``) and then to progressively decrease the value of ``s`` (say by a factor 10 in the beginning, i.e. ``s = fp0 / 10, fp0 / 100, ...`` and more carefully as the approximation shows more detail) to obtain closer fits. The interpolation results for different values of ``s`` give some insight into this process: >>> fig2 = plt.figure() >>> s = [3e9, 2e9, 1e9, 1e8] >>> for ii in xrange(len(s)): ... lut = RectSphereBivariateSpline(lats, lons, data, s=s[ii]) ... data_interp = lut.ev(new_lats.ravel(), ... new_lons.ravel()).reshape((360, 180)).T ... ax = fig2.add_subplot(2, 2, ii+1) ... ax.imshow(data_interp, interpolation='nearest') ... ax.set_title("s = %g" % s[ii]) >>> plt.show() """ def __init__(self, u, v, r, s=0., pole_continuity=False, pole_values=None, pole_exact=False, pole_flat=False): iopt = np.array([0, 0, 0], dtype=int) ider = np.array([-1, 0, -1, 0], dtype=int) if pole_values is None: pole_values = (None, None) elif isinstance(pole_values, (float, np.float32, np.float64)): pole_values = (pole_values, pole_values) if isinstance(pole_continuity, bool): pole_continuity = (pole_continuity, pole_continuity) if isinstance(pole_exact, bool): pole_exact = (pole_exact, pole_exact) if isinstance(pole_flat, bool): pole_flat = (pole_flat, pole_flat) r0, r1 = pole_values iopt[1:] = pole_continuity if r0 is None: ider[0] = -1 else: ider[0] = pole_exact[0] if r1 is None: ider[2] = -1 else: ider[2] = pole_exact[1] ider[1], ider[3] = pole_flat u, v = np.ravel(u), np.ravel(v) if not np.all(np.diff(u) > 0.0): raise TypeError('u must be strictly increasing') if not np.all(np.diff(v) > 0.0): raise TypeError('v must be strictly increasing') if not u.size == r.shape[0]: raise TypeError('u dimension of r must have same number of ' 'elements as u') if not v.size == r.shape[1]: raise TypeError('v dimension of r must have same number of ' 'elements as v') if pole_continuity[1] is False and pole_flat[1] is True: raise TypeError('if pole_continuity is False, so must be ' 'pole_flat') if pole_continuity[0] is False and pole_flat[0] is True: raise TypeError('if pole_continuity is False, so must be ' 'pole_flat') r = np.ravel(r) nu, tu, nv, tv, c, fp, ier = dfitpack.regrid_smth_spher(iopt, ider, u.copy(), v.copy(), r.copy(), r0, r1, s) if ier not in [0, -1, -2]: msg = _spfit_messages.get(ier, 'ier=%s' % (ier)) raise ValueError(msg) self.fp = fp self.tck = tu[:nu], tv[:nv], c[:(nu - 4) * (nv-4)] self.degrees = (3, 3)
the-stack_0_866
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import print_function import functools import os import pprint import re import sys import subprocess perr = functools.partial(print, file=sys.stderr) def dump_env_vars(prefix, pattern=None): if pattern is not None: match = lambda s: re.search(pattern, s) else: match = lambda s: True for name in sorted(os.environ): if name.startswith(prefix) and match(name): perr("- {0}: {1!r}".format(name, os.environ[name])) def run_cmd(cmdline): proc = subprocess.Popen(cmdline, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = proc.communicate() if proc.returncode != 0: raise RuntimeError("Command {cmdline} failed with code {returncode}, " "stderr was:\n{stderr}\n" .format(cmdline=cmdline, returncode=proc.returncode, stderr=err.decode())) return out def get_commit_description(commit): """ Return the textual description (title + body) of the given git commit. """ out = run_cmd(["git", "show", "--no-patch", "--pretty=format:%B", commit]) return out.decode('utf-8', 'ignore') def list_affected_files(commit_range): """ Return a list of files changed by the given git commit range. """ perr("Getting affected files from", repr(commit_range)) out = run_cmd(["git", "diff", "--name-only", commit_range]) return list(filter(None, (s.strip() for s in out.decode().splitlines()))) def get_travis_head_commit(): return os.environ['TRAVIS_COMMIT'] def get_travis_commit_range(): if os.environ['TRAVIS_EVENT_TYPE'] == 'pull_request': # TRAVIS_COMMIT_RANGE is too pessimistic for PRs, as it may contain # unrelated changes. Instead, use the same strategy as on AppVeyor # below. run_cmd(["git", "fetch", "-q", "origin", "+refs/heads/{0}".format(os.environ['TRAVIS_BRANCH'])]) merge_base = run_cmd(["git", "merge-base", "HEAD", "FETCH_HEAD"]).decode().strip() return "{0}..HEAD".format(merge_base) else: cr = os.environ['TRAVIS_COMMIT_RANGE'] # See # https://github.com/travis-ci/travis-ci/issues/4596#issuecomment-139811122 return cr.replace('...', '..') def get_travis_commit_description(): # Prefer this to get_commit_description(get_travis_head_commit()), # as rebasing or other repository events may make TRAVIS_COMMIT invalid # at the time we inspect it return os.environ['TRAVIS_COMMIT_MESSAGE'] def list_travis_affected_files(): """ Return a list of files affected in the current Travis build. """ commit_range = get_travis_commit_range() try: return list_affected_files(commit_range) except RuntimeError: # TRAVIS_COMMIT_RANGE can contain invalid revisions when # building a branch (not a PR) after rebasing: # https://github.com/travis-ci/travis-ci/issues/2668 if os.environ['TRAVIS_EVENT_TYPE'] == 'pull_request': raise # If it's a rebase, it's probably enough to use the last commit only commit_range = '{0}^..'.format(get_travis_head_commit()) return list_affected_files(commit_range) def list_appveyor_affected_files(): """ Return a list of files affected in the current AppVeyor build. This only works for PR builds. """ # Re-fetch PR base branch (e.g. origin/master), pointing FETCH_HEAD to it run_cmd(["git", "fetch", "-q", "origin", "+refs/heads/{0}".format(os.environ['APPVEYOR_REPO_BRANCH'])]) # Compute base changeset between FETCH_HEAD (PR base) and HEAD (PR head) merge_base = run_cmd(["git", "merge-base", "HEAD", "FETCH_HEAD"]).decode().strip() # Compute changes files between base changeset and HEAD return list_affected_files("{0}..HEAD".format(merge_base)) LANGUAGE_TOPICS = ['c_glib', 'cpp', 'docs', 'go', 'java', 'js', 'python', 'r', 'ruby', 'rust', 'csharp'] ALL_TOPICS = LANGUAGE_TOPICS + ['integration', 'site', 'dev'] AFFECTED_DEPENDENCIES = { 'java': ['integration', 'python'], 'js': ['integration'], 'ci': ALL_TOPICS, 'cpp': ['python', 'c_glib', 'r', 'ruby', 'integration'], 'format': LANGUAGE_TOPICS, '.travis.yml': ALL_TOPICS, 'c_glib': ['ruby'] } COMPONENTS = {'cpp', 'java', 'c_glib', 'r', 'ruby', 'integration', 'js', 'rust', 'csharp', 'site', 'go', 'docs', 'python', 'dev'} def get_affected_topics(affected_files): """ Return a dict of topics affected by the given files. Each dict value is True if affected, False otherwise. """ affected = dict.fromkeys(ALL_TOPICS, False) for path in affected_files: parts = [] head = path while head: head, tail = os.path.split(head) parts.append(tail) parts.reverse() assert parts p = parts[0] fn = parts[-1] if fn.startswith('README'): continue if p in COMPONENTS: affected[p] = True _path_already_affected = {} def _affect_dependencies(component): if component in _path_already_affected: # For circular dependencies, terminate return for topic in AFFECTED_DEPENDENCIES.get(component, ()): affected[topic] = True _affect_dependencies(topic) _path_already_affected[topic] = True _affect_dependencies(p) return affected def make_env_for_topics(affected): return {'ARROW_CI_{0}_AFFECTED'.format(k.upper()): '1' if v else '0' for k, v in affected.items()} def get_unix_shell_eval(env): """ Return a shell-evalable string to setup some environment variables. """ return "; ".join(("export {0}='{1}'".format(k, v) for k, v in env.items())) def get_windows_shell_eval(env): """ Return a shell-evalable string to setup some environment variables. """ return "\n".join(('set "{0}={1}"'.format(k, v) for k, v in env.items())) def run_from_travis(): perr("Environment variables (excerpt):") dump_env_vars('TRAVIS_', '(BRANCH|COMMIT|PULL)') if (os.environ['TRAVIS_REPO_SLUG'] == 'apache/arrow' and os.environ['TRAVIS_BRANCH'] == 'master' and os.environ['TRAVIS_EVENT_TYPE'] != 'pull_request'): # Never skip anything on master builds in the official repository affected = dict.fromkeys(ALL_TOPICS, True) else: desc = get_travis_commit_description() if '[skip travis]' in desc: # Skip everything affected = dict.fromkeys(ALL_TOPICS, False) elif '[force ci]' in desc or '[force travis]' in desc: # Test everything affected = dict.fromkeys(ALL_TOPICS, True) else: # Test affected topics affected_files = list_travis_affected_files() perr("Affected files:", affected_files) affected = get_affected_topics(affected_files) assert set(affected) <= set(ALL_TOPICS), affected perr("Affected topics:") perr(pprint.pformat(affected)) return get_unix_shell_eval(make_env_for_topics(affected)) def run_from_appveyor(): perr("Environment variables (excerpt):") dump_env_vars('APPVEYOR_', '(PULL|REPO)') if not os.environ.get('APPVEYOR_PULL_REQUEST_HEAD_COMMIT'): # Not a PR build, test everything affected = dict.fromkeys(ALL_TOPICS, True) else: affected_files = list_appveyor_affected_files() perr("Affected files:", affected_files) affected = get_affected_topics(affected_files) assert set(affected) <= set(ALL_TOPICS), affected perr("Affected topics:") perr(pprint.pformat(affected)) return get_windows_shell_eval(make_env_for_topics(affected)) def test_get_affected_topics(): affected_topics = get_affected_topics(['cpp/CMakeLists.txt']) assert affected_topics == { 'c_glib': True, 'cpp': True, 'docs': False, 'go': False, 'java': False, 'js': False, 'python': True, 'r': True, 'ruby': True, 'rust': False, 'csharp': False, 'integration': True, 'site': False, 'dev': False } affected_topics = get_affected_topics(['format/Schema.fbs']) assert affected_topics == { 'c_glib': True, 'cpp': True, 'docs': True, 'go': True, 'java': True, 'js': True, 'python': True, 'r': True, 'ruby': True, 'rust': True, 'csharp': True, 'integration': True, 'site': False, 'dev': False } if __name__ == "__main__": # This script should have its output evaluated by a shell, # e.g. "eval `python ci/detect-changes.py`" if os.environ.get('TRAVIS'): try: print(run_from_travis()) except Exception: # Make sure the enclosing eval will return an error print("exit 1") raise elif os.environ.get('APPVEYOR'): try: print(run_from_appveyor()) except Exception: print("exit 1") raise else: sys.exit("Script must be run under Travis-CI or AppVeyor")
the-stack_0_867
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from biocontainers_flask.server.models.base_model_ import Model from biocontainers_flask.server import util class Checksum(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, checksum: str=None, type: str=None): # noqa: E501 """Checksum - a model defined in Swagger :param checksum: The checksum of this Checksum. # noqa: E501 :type checksum: str :param type: The type of this Checksum. # noqa: E501 :type type: str """ self.swagger_types = { 'checksum': str, 'type': str } self.attribute_map = { 'checksum': 'checksum', 'type': 'type' } self._checksum = checksum self._type = type @classmethod def from_dict(cls, dikt) -> 'Checksum': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The Checksum of this Checksum. # noqa: E501 :rtype: Checksum """ return util.deserialize_model(dikt, cls) @property def checksum(self) -> str: """Gets the checksum of this Checksum. The hex-string encoded checksum for the data. # noqa: E501 :return: The checksum of this Checksum. :rtype: str """ return self._checksum @checksum.setter def checksum(self, checksum: str): """Sets the checksum of this Checksum. The hex-string encoded checksum for the data. # noqa: E501 :param checksum: The checksum of this Checksum. :type checksum: str """ if checksum is None: raise ValueError("Invalid value for `checksum`, must not be `None`") # noqa: E501 self._checksum = checksum @property def type(self) -> str: """Gets the type of this Checksum. The digest method used to create the checksum. The value (e.g. `sha-256`) SHOULD be listed as `Hash Name String` in the https://github.com/ga4gh-discovery/ga4gh-checksum/blob/master/hash-alg.csv[GA4GH Checksum Hash Algorithm Registry]. Other values MAY be used, as long as implementors are aware of the issues discussed in https://tools.ietf.org/html/rfc6920#section-9.4[RFC6920]. GA4GH may provide more explicit guidance for use of non-IANA-registered algorithms in the future. # noqa: E501 :return: The type of this Checksum. :rtype: str """ return self._type @type.setter def type(self, type: str): """Sets the type of this Checksum. The digest method used to create the checksum. The value (e.g. `sha-256`) SHOULD be listed as `Hash Name String` in the https://github.com/ga4gh-discovery/ga4gh-checksum/blob/master/hash-alg.csv[GA4GH Checksum Hash Algorithm Registry]. Other values MAY be used, as long as implementors are aware of the issues discussed in https://tools.ietf.org/html/rfc6920#section-9.4[RFC6920]. GA4GH may provide more explicit guidance for use of non-IANA-registered algorithms in the future. # noqa: E501 :param type: The type of this Checksum. :type type: str """ if type is None: raise ValueError("Invalid value for `type`, must not be `None`") # noqa: E501 self._type = type
the-stack_0_868
from .config import UTILS1_LOGLEVEL import logging from log_utils.utils import get_logger_with_file_handler formatter = 'logger name : %(name)s ,%(levelname)s , func : %(funcName)s , %(message)s , module : %(module)s ,line : %(lineno)d , %(asctime)s' logger = get_logger_with_file_handler(__name__,UTILS1_LOGLEVEL,formatter) stream_handler = logging.StreamHandler() logger.addHandler(stream_handler) def add(num1 : float,num2 : float)->float: logger.warning(f'args : {num1} , {num2}') return num1+num2
the-stack_0_869
import asyncio import contextlib from types import TracebackType from typing import Optional, Type, Dict, Any import aiojobs from aiojobs import Scheduler from .client import ChaosIQClient from .log import logger from .types import Config __all__ = ["Heartbeat"] class Heartbeat: def __init__(self, config: Config) -> None: self.sched: Scheduler = None self.config = config self._running = False self.aiojob = None async def __aenter__(self) -> 'Heartbeat': await self.setup() return self async def __aexit__(self, exc_type: Optional[Type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType]) -> None: await self.cleanup() @property def running(self) -> bool: """ Flag that is set when the heartbeat is active. """ return self._running async def setup(self) -> None: """ Create the underlying scheduler to periodically send the heartbeat. """ logger.info("Creating heartbeat loop") self.sched = await asyncio.wait_for( aiojobs.create_scheduler( exception_handler=self.aiojobs_exception), None) period = self.config.heartbeat_interval if not period: logger.critical(f"Heartbeat is not properly configured; " f"interval '{period}' is not valid") return logger.info("Spawning the heartbeat...") self.aiojob = await self.sched.spawn(self.send_pulse()) async def cleanup(self) -> None: """ Gracefully terminate the scheduler. """ if self.aiojob: logger.info("Stopping heartbeat pulse...") await self.aiojob.close() if not self.sched.closed: logger.info("Closing heartbeat loop") await asyncio.wait_for(self.sched.close(), None) self._running = False async def send_pulse(self) -> None: """ Sends its heartbeat periodically to the console This must be interrupted instantly and not until wait is complete !! We can NOT wait for end of iddle before leaving the loop """ self._running = True wait = self.config.heartbeat_interval logger.info(f"Sending heartbeat every {wait} seconds") while self._running and not self.sched.closed: await asyncio.sleep(wait) with contextlib.suppress(Exception): async with ChaosIQClient(self.config) as client: await client.post( "/agent/actions", json={"action": "heartbeat"}) @staticmethod def aiojobs_exception( scheduler: Scheduler, context: Dict[str, Any]) -> None: # pragma: no cover logger.error(context)
the-stack_0_874
# Copyright 2018-2019 The glTF-Blender-IO authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..com.gltf2_io import gltf_from_dict from ..com.gltf2_io_debug import Log import logging import json import struct import base64 from os.path import dirname, join, isfile, basename from urllib.parse import unquote class glTFImporter(): """glTF Importer class.""" def __init__(self, filename, import_settings): """initialization.""" self.filename = filename self.import_settings = import_settings self.glb_buffer = None self.buffers = {} self.accessor_cache = {} if 'loglevel' not in self.import_settings.keys(): self.import_settings['loglevel'] = logging.ERROR log = Log(import_settings['loglevel']) self.log = log.logger self.log_handler = log.hdlr self.SIMPLE = 1 self.TEXTURE = 2 self.TEXTURE_FACTOR = 3 # TODO: move to a com place? self.extensions_managed = [ 'KHR_materials_pbrSpecularGlossiness', 'KHR_lights_punctual', 'KHR_materials_unlit', 'KHR_texture_transform' ] # TODO : merge with io_constants self.fmt_char_dict = {} self.fmt_char_dict[5120] = 'b' # Byte self.fmt_char_dict[5121] = 'B' # Unsigned Byte self.fmt_char_dict[5122] = 'h' # Short self.fmt_char_dict[5123] = 'H' # Unsigned Short self.fmt_char_dict[5125] = 'I' # Unsigned Int self.fmt_char_dict[5126] = 'f' # Float self.component_nb_dict = {} self.component_nb_dict['SCALAR'] = 1 self.component_nb_dict['VEC2'] = 2 self.component_nb_dict['VEC3'] = 3 self.component_nb_dict['VEC4'] = 4 self.component_nb_dict['MAT2'] = 4 self.component_nb_dict['MAT3'] = 9 self.component_nb_dict['MAT4'] = 16 @staticmethod def bad_json_value(val): """Bad Json value.""" raise ValueError('Json contains some unauthorized values') def checks(self): """Some checks.""" if self.data.asset.version != "2.0": return False, "glTF version must be 2" if self.data.extensions_required is not None: for extension in self.data.extensions_required: if extension not in self.data.extensions_used: return False, "Extension required must be in Extension Used too" if extension not in self.extensions_managed: return False, "Extension " + extension + " is not available on this addon version" if self.data.extensions_used is not None: for extension in self.data.extensions_used: if extension not in self.extensions_managed: # Non blocking error #TODO log pass return True, None def load_glb(self): """Load binary glb.""" header = struct.unpack_from('<4sII', self.content) self.format = header[0] self.version = header[1] self.file_size = header[2] if self.format != b'glTF': return False, "This file is not a glTF/glb file" if self.version != 2: return False, "GLB version %d unsupported" % self.version if self.file_size != len(self.content): return False, "Bad GLB: file size doesn't match" offset = 12 # header size = 12 # JSON chunk is first type_, len_, json_bytes, offset = self.load_chunk(offset) if type_ != b"JSON": return False, "Bad GLB: first chunk not JSON" if len_ != len(json_bytes): return False, "Bad GLB: length of json chunk doesn't match" try: json_str = str(json_bytes, encoding='utf-8') json_ = json.loads(json_str, parse_constant=glTFImporter.bad_json_value) self.data = gltf_from_dict(json_) except ValueError as e: return False, e.args[0] # BIN chunk is second (if it exists) if offset < len(self.content): type_, len_, data, offset = self.load_chunk(offset) if type_ == b"BIN\0": if len_ != len(data): return False, "Bad GLB: length of BIN chunk doesn't match" self.glb_buffer = data return True, None def load_chunk(self, offset): """Load chunk.""" chunk_header = struct.unpack_from('<I4s', self.content, offset) data_length = chunk_header[0] data_type = chunk_header[1] data = self.content[offset + 8: offset + 8 + data_length] return data_type, data_length, data, offset + 8 + data_length def read(self): """Read file.""" # Check this is a file if not isfile(self.filename): return False, "Please select a file" # Check if file is gltf or glb with open(self.filename, 'rb') as f: self.content = memoryview(f.read()) self.is_glb_format = self.content[:4] == b'glTF' # glTF file if not self.is_glb_format: content = str(self.content, encoding='utf-8') self.content = None try: self.data = gltf_from_dict(json.loads(content, parse_constant=glTFImporter.bad_json_value)) return True, None except ValueError as e: return False, e.args[0] # glb file else: # Parsing glb file success, txt = self.load_glb() self.content = None return success, txt def is_node_joint(self, node_idx): """Check if node is a joint.""" if not self.data.skins: # if no skin in gltf file return False, None for skin_idx, skin in enumerate(self.data.skins): if node_idx in skin.joints: return True, skin_idx return False, None def load_buffer(self, buffer_idx): """Load buffer.""" buffer = self.data.buffers[buffer_idx] if buffer.uri: data, _file_name = self.load_uri(buffer.uri) if data is not None: self.buffers[buffer_idx] = data else: # GLB-stored buffer if buffer_idx == 0 and self.glb_buffer is not None: self.buffers[buffer_idx] = self.glb_buffer def load_uri(self, uri): """Loads a URI. Returns the data and the filename of the resource, if there is one. """ sep = ';base64,' if uri.startswith('data:'): idx = uri.find(sep) if idx != -1: data = uri[idx + len(sep):] return memoryview(base64.b64decode(data)), None path = join(dirname(self.filename), unquote(uri)) try: with open(path, 'rb') as f_: return memoryview(f_.read()), basename(path) except Exception: self.log.error("Couldn't read file: " + path) return None, None
the-stack_0_876
# Copyright (C) 2021-present MongoDB, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the Server Side Public License, version 1, # as published by MongoDB, Inc. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Server Side Public License for more details. # # You should have received a copy of the Server Side Public License # along with this program. If not, see # <http://www.mongodb.com/licensing/server-side-public-license>. # # As a special exception, the copyright holders give permission to link the # code of portions of this program with the OpenSSL library under certain # conditions as described in each individual source file and distribute # linked combinations including the program with the OpenSSL library. You # must comply with the Server Side Public License in all respects for # all of the code used other than as permitted herein. If you modify file(s) # with this exception, you may extend this exception to your version of the # file(s), but you are not obligated to do so. If you do not wish to do so, # delete this exception statement from your version. If you delete this # exception statement from all source files in the program, then also delete # it in the license file. # # pylint: disable=too-many-lines """Checks compatibility of old and new IDL files. In order to support user-selectable API versions for the server, server commands are now defined using IDL files. This script checks that old and new commands are compatible with each other, which allows commands to be updated without breaking the API specifications within a specific API version. This script accepts two directories as arguments, the "old" and the "new" IDL directory. Before running this script, run checkout_idl_files_from_past_releases.py to find and create directories containing the old IDL files from previous releases. """ import argparse import os import sys from dataclasses import dataclass from enum import Enum from typing import Dict, List, Set, Optional, Tuple, Union from idl import parser, syntax, errors, common from idl.compiler import CompilerImportResolver from idl_compatibility_errors import IDLCompatibilityContext, IDLCompatibilityErrorCollection ALLOW_ANY_TYPE_LIST: List[str] = [ # This list if only used in unit-tests. "commandAllowedAnyTypes", "commandAllowedAnyTypes-param-anyTypeParam", "commandAllowedAnyTypes-reply-anyTypeField", "oldTypeBsonAnyAllowList", "newTypeBsonAnyAllowList", "oldReplyFieldTypeBsonAnyAllowList-reply-oldBsonSerializationTypeAnyReplyField", "newReplyFieldTypeBsonAnyAllowList-reply-newBsonSerializationTypeAnyReplyField", "oldParamTypeBsonAnyAllowList-param-bsonTypeAnyParam", "newParamTypeBsonAnyAllowList-param-bsonTypeAnyParam", "commandAllowedAnyTypesWithVariant-reply-anyTypeField", "replyFieldTypeBsonAnyWithVariant-reply-bsonSerializationTypeAnyStructField", "replyFieldTypeBsonAnyWithVariantWithArray-reply-bsonSerializationTypeAnyStructField", "parameterFieldTypeBsonAnyWithVariant-param-bsonSerializationTypeAnyStructField", "parameterFieldTypeBsonAnyWithVariantWithArray-param-bsonSerializationTypeAnyStructField", "commandTypeBsonAnyWithVariant", "commandTypeBsonAnyWithVariantWithArray", "replyFieldCppTypeNotEqual-reply-cppTypeNotEqualReplyField", "commandCppTypeNotEqual", "commandParameterCppTypeNotEqual-param-cppTypeNotEqualParam", "replyFieldSerializerNotEqual-reply-serializerNotEqualReplyField", "commandSerializerNotEqual", "commandParameterSerializerNotEqual-param-serializerNotEqualParam", "replyFieldDeserializerNotEqual-reply-deserializerNotEqualReplyField", "commandDeserializerNotEqual", "commandParameterDeserializerNotEqual-param-deserializerNotEqualParam", "newlyAddedReplyFieldTypeBsonAnyAllowed-reply-newlyAddedBsonSerializationTypeAnyReplyField", "replyFieldTypeBsonAnyWithVariantUnstable-reply-bsonSerializationTypeWithVariantAnyUnstableReplyField", "newlyAddedParamBsonAnyAllowList-param-newlyAddedBsonAnyAllowListParam", "newlyAddedTypeFieldBsonAnyAllowList", "parameterFieldTypeBsonAnyWithVariantUnstable-param-bsonSerializationTypeAnyStructField", "commandTypeBsonAnyWithVariantUnstable", "commandParameterCppTypeNotEqualUnstable-param-cppTypeNotEqualParam", "replyFieldCppTypeNotEqualUnstable-reply-cppTypeNotEqualReplyUnstableField", "commandCppTypeNotEqualUnstable", "commandParameterSerializerNotEqualUnstable-param-serializerNotEqualParam", "replyFieldSerializerNotEqualUnstable-reply-serializerNotEqualReplyUnstableField", "commandSerializerNotEqualUnstable", "commandParameterDeserializerNotEqualUnstable-param-deserializerNotEqualParam", "replyFieldDeserializerNotEqualUnstable-reply-deserializerNotEqualReplyUnstableField", "commandDeserializerNotEqualUnstable", 'create-param-backwards', 'saslStart-param-payload', 'saslStart-param-payload', 'saslStart-reply-payload', 'saslContinue-param-payload', 'saslContinue-reply-payload', # These commands (aggregate, find, update, delete, findAndModify, explain) might contain some # fields with type `any`. Currently, it's not possible to avoid the `any` type in those cases. # Instead, here are the preventive measures in-place to catch unintentional breaking changes: # 1- Added comments on top of custom serializers/deserializers (related to these fields) to # let the future developers know that their modifications to these methods might lead to # a breaking change in the API. # 2- Added proper unit-tests to catch accidental changes to the custom serializers/deserializers # by over-fitting on the current implementation of these custom serializers/deserializers. # 3- Added further checks to the current script (idl_check_compatibility.py) to check for # changing a custom serializer/deserializer and considering it as a potential breaking # change. 'aggregate-param-pipeline', 'aggregate-param-explain', 'aggregate-param-allowDiskUse', 'aggregate-param-cursor', 'aggregate-param-hint', 'aggregate-param-needsMerge', 'aggregate-param-fromMongos', 'aggregate-param-$_requestReshardingResumeToken', 'aggregate-param-isMapReduceCommand', 'count-param-hint', 'count-param-limit', 'count-param-maxTimeMS', 'find-param-filter', 'find-param-projection', 'find-param-sort', 'find-param-hint', 'find-param-collation', 'find-param-singleBatch', 'find-param-allowDiskUse', 'find-param-min', 'find-param-max', 'find-param-returnKey', 'find-param-showRecordId', 'find-param-$queryOptions', 'find-param-tailable', 'find-param-oplogReplay', 'find-param-noCursorTimeout', 'find-param-awaitData', 'find-param-allowPartialResults', 'find-param-readOnce', 'find-param-allowSpeculativeMajorityRead', 'find-param-$_requestResumeToken', 'find-param-$_resumeAfter', 'find-param-maxTimeMS', 'update-param-u', 'update-param-hint', 'update-param-upsertSupplied', 'update-reply-_id', 'delete-param-limit', 'delete-param-hint', 'findAndModify-param-hint', 'findAndModify-param-update', 'findAndModify-reply-upserted', 'insert-reply-opTime', 'update-reply-opTime', 'delete-reply-opTime', 'aggregate-reply-partialResultsReturned', 'aggregate-reply-invalidated', 'find-reply-partialResultsReturned', 'find-reply-invalidated', 'getMore-reply-partialResultsReturned', 'getMore-reply-invalidated', ] # Do not add user visible fields already released in earlier versions. IGNORE_UNSTABLE_LIST: List[str] = [ # The 'originalSpec' field was introduced in v5.1 behind a disabled feature flag and is not user # visible. This is part of the listIndexes output when executed against system.bucket.* # collections, which users should avoid doing. 'listIndexes-reply-originalSpec', # The 'vars' field was introduced to facilitate communication between mongot and mongod and is # not user visible. 'find-reply-vars', 'aggregate-reply-vars', # The 'cursor' field is now optional in a reply, as inter-node communication in aggregation # can return one or more cursors. Multiple cursors are covered under the 'cursors' field. 'find-reply-cursor', 'aggregate-reply-cursor', # The 'recordPreImages' field is only used by Realm and is not documented to users. 'collMod-param-recordPreImages', # The 'ignoreUnknownIndexOptions' field is for internal use only and is not documented to users. 'createIndexes-param-ignoreUnknownIndexOptions', # The 'runtimeConstants' field is a legacy field for internal use only and is not documented to # users. 'delete-param-runtimeConstants', ] SKIPPED_FILES = [ "unittest.idl", "mozILocalization.idl", "mozILocaleService.idl", "mozIOSPreferences.idl", "nsICollation.idl", "nsIStringBundle.idl", "nsIScriptableUConv.idl", "nsITextToSubURI.idl" ] # Do not add commands that were visible to users in previously released versions. IGNORE_COMMANDS_LIST: List[str] = [ # The following commands were released behind a feature flag in 5.3 but were shelved in # favor of getClusterParameter and setClusterParameter. Since the feature flag was not enabled # in 5.3, they were effectively unusable and so can be safely removed from the strict API. 'getChangeStreamOptions', 'setChangeStreamOptions', ] class FieldCompatibility: """Information about a Field to check compatibility.""" def __init__(self, field_type: Optional[Union[syntax.Enum, syntax.Struct, syntax.Type]], idl_file: syntax.IDLParsedSpec, idl_file_path: str, unstable: Optional[bool], optional: bool) -> None: """Initialize data members and hand special cases, such as optionalBool type.""" self.field_type = field_type self.idl_file = idl_file self.idl_file_path = idl_file_path self.unstable = unstable self.optional = optional if isinstance(self.field_type, syntax.Type) and self.field_type.name == "optionalBool": # special case for optionalBool type, because it is compatible # with bool type, but has bson_serialization_type == 'any' # which is not supported by many checks self.field_type = syntax.Type(field_type.file_name, field_type.line, field_type.column) self.field_type.name = "bool" self.field_type.bson_serialization_type = ["bool"] self.optional = True @dataclass class FieldCompatibilityPair: """Information about an old and new Field pair to check compatibility.""" old: FieldCompatibility new: FieldCompatibility cmd_name: str field_name: str class ArrayTypeCheckResult(Enum): """Enumeration representing different return values of check_array_type.""" INVALID = 0 TRUE = 1 FALSE = 2 def get_new_commands( ctxt: IDLCompatibilityContext, new_idl_dir: str, import_directories: List[str] ) -> Tuple[Dict[str, syntax.Command], Dict[str, syntax.IDLParsedSpec], Dict[str, str]]: """Get new IDL commands and check validity.""" new_commands: Dict[str, syntax.Command] = dict() new_command_file: Dict[str, syntax.IDLParsedSpec] = dict() new_command_file_path: Dict[str, str] = dict() for dirpath, _, filenames in os.walk(new_idl_dir): for new_filename in filenames: if not new_filename.endswith('.idl') or new_filename in SKIPPED_FILES: continue new_idl_file_path = os.path.join(dirpath, new_filename) with open(new_idl_file_path) as new_file: new_idl_file = parser.parse( new_file, new_idl_file_path, CompilerImportResolver(import_directories + [new_idl_dir])) if new_idl_file.errors: new_idl_file.errors.dump_errors() raise ValueError(f"Cannot parse {new_idl_file_path}") for new_cmd in new_idl_file.spec.symbols.commands: # Ignore imported commands as they will be processed in their own file. if new_cmd.api_version == "" or new_cmd.imported: continue if new_cmd.api_version != "1": # We're not ready to handle future API versions yet. ctxt.add_command_invalid_api_version_error( new_cmd.command_name, new_cmd.api_version, new_idl_file_path) continue if new_cmd.command_name in new_commands: ctxt.add_duplicate_command_name_error(new_cmd.command_name, new_idl_dir, new_idl_file_path) continue new_commands[new_cmd.command_name] = new_cmd new_command_file[new_cmd.command_name] = new_idl_file new_command_file_path[new_cmd.command_name] = new_idl_file_path return new_commands, new_command_file, new_command_file_path def get_chained_type_or_struct( chained_type_or_struct: Union[syntax.ChainedType, syntax.ChainedStruct], idl_file: syntax.IDLParsedSpec, idl_file_path: str) -> Optional[Union[syntax.Enum, syntax.Struct, syntax.Type]]: """Resolve and get chained type or struct from the IDL file.""" parser_ctxt = errors.ParserContext(idl_file_path, errors.ParserErrorCollection()) resolved = idl_file.spec.symbols.resolve_type_from_name(parser_ctxt, chained_type_or_struct, chained_type_or_struct.name, chained_type_or_struct.name) if parser_ctxt.errors.has_errors(): parser_ctxt.errors.dump_errors() return resolved def get_field_type(field: Union[syntax.Field, syntax.Command], idl_file: syntax.IDLParsedSpec, idl_file_path: str) -> Optional[Union[syntax.Enum, syntax.Struct, syntax.Type]]: """Resolve and get field type of a field from the IDL file.""" parser_ctxt = errors.ParserContext(idl_file_path, errors.ParserErrorCollection()) field_type = idl_file.spec.symbols.resolve_field_type(parser_ctxt, field, field.name, field.type) if parser_ctxt.errors.has_errors(): parser_ctxt.errors.dump_errors() return field_type def check_subset(ctxt: IDLCompatibilityContext, cmd_name: str, field_name: str, type_name: str, sub_list: List[Union[str, syntax.EnumValue]], super_list: List[Union[str, syntax.EnumValue]], file_path: str): # pylint: disable=too-many-arguments """Check if sub_list is a subset of the super_list and log an error if not.""" if not set(sub_list).issubset(super_list): ctxt.add_reply_field_not_subset_error(cmd_name, field_name, type_name, file_path) def check_superset(ctxt: IDLCompatibilityContext, cmd_name: str, type_name: str, super_list: List[Union[str, syntax.EnumValue]], sub_list: List[Union[str, syntax.EnumValue]], file_path: str, param_name: Optional[str], is_command_parameter: bool): # pylint: disable=too-many-arguments """Check if super_list is a superset of the sub_list and log an error if not.""" if not set(super_list).issuperset(sub_list): ctxt.add_command_or_param_type_not_superset_error(cmd_name, type_name, file_path, param_name, is_command_parameter) def check_reply_field_type_recursive(ctxt: IDLCompatibilityContext, field_pair: FieldCompatibilityPair) -> None: # pylint: disable=too-many-branches """Check compatibility between old and new reply field type if old field type is a syntax.Type instance.""" old_field = field_pair.old new_field = field_pair.new old_field_type = old_field.field_type new_field_type = new_field.field_type cmd_name = field_pair.cmd_name field_name = field_pair.field_name # If the old field is unstable, we only add errors related to the use of 'any' as the # bson_serialization_type. For all other errors, we check that the old field is stable # before adding an error. if not isinstance(new_field_type, syntax.Type): if not old_field.unstable: ctxt.add_new_reply_field_type_enum_or_struct_error( cmd_name, field_name, new_field_type.name, old_field_type.name, new_field.idl_file_path) return # If bson_serialization_type switches from 'any' to non-any type. if "any" in old_field_type.bson_serialization_type and "any" not in new_field_type.bson_serialization_type: ctxt.add_old_reply_field_bson_any_error(cmd_name, field_name, old_field_type.name, new_field_type.name, old_field.idl_file_path) return # If bson_serialization_type switches from non-any to 'any' type. if "any" not in old_field_type.bson_serialization_type and "any" in new_field_type.bson_serialization_type: ctxt.add_new_reply_field_bson_any_error(cmd_name, field_name, old_field_type.name, new_field_type.name, new_field.idl_file_path) return allow_name: str = cmd_name + "-reply-" + field_name if "any" in old_field_type.bson_serialization_type: # If 'any' is not explicitly allowed as the bson_serialization_type. if allow_name not in ALLOW_ANY_TYPE_LIST: ctxt.add_old_reply_field_bson_any_not_allowed_error( cmd_name, field_name, old_field_type.name, old_field.idl_file_path) return # If cpp_type is changed, it's a potential breaking change. if old_field_type.cpp_type != new_field_type.cpp_type: ctxt.add_reply_field_cpp_type_not_equal_error(cmd_name, field_name, new_field_type.name, new_field.idl_file_path) # If serializer is changed, it's a potential breaking change. if (not old_field.unstable) and old_field_type.serializer != new_field_type.serializer: ctxt.add_reply_field_serializer_not_equal_error( cmd_name, field_name, new_field_type.name, new_field.idl_file_path) # If deserializer is changed, it's a potential breaking change. if (not old_field.unstable) and old_field_type.deserializer != new_field_type.deserializer: ctxt.add_reply_field_deserializer_not_equal_error( cmd_name, field_name, new_field_type.name, new_field.idl_file_path) if isinstance(old_field_type, syntax.VariantType): # If the new type is not variant just check the single type. new_variant_types = new_field_type.variant_types if isinstance( new_field_type, syntax.VariantType) else [new_field_type] old_variant_types = old_field_type.variant_types # Check that new variant types are a subset of old variant types. for new_variant_type in new_variant_types: for old_variant_type in old_variant_types: if old_variant_type.name == new_variant_type.name: # Check that the old and new version of each variant type is also compatible. old = FieldCompatibility(old_variant_type, old_field.idl_file, old_field.idl_file_path, old_field.unstable, old_field.optional) new = FieldCompatibility(new_variant_type, new_field.idl_file, new_field.idl_file_path, new_field.unstable, new_field.optional) check_reply_field_type(ctxt, FieldCompatibilityPair(old, new, cmd_name, field_name)) break else: # new_variant_type was not found in old_variant_types. if not old_field.unstable: ctxt.add_new_reply_field_variant_type_not_subset_error( cmd_name, field_name, new_variant_type.name, new_field.idl_file_path) # If new type is variant and has a struct as a variant type, compare old and new variant_struct_type. # Since enums can't be part of variant types, we don't explicitly check for enums. if isinstance(new_field_type, syntax.VariantType) and new_field_type.variant_struct_type is not None: if old_field_type.variant_struct_type is None and not old_field.unstable: ctxt.add_new_reply_field_variant_type_not_subset_error( cmd_name, field_name, new_field_type.variant_struct_type.name, new_field.idl_file_path) else: check_reply_fields(ctxt, old_field_type.variant_struct_type, new_field_type.variant_struct_type, cmd_name, old_field.idl_file, new_field.idl_file, old_field.idl_file_path, new_field.idl_file_path) elif not old_field.unstable: if isinstance(new_field_type, syntax.VariantType): ctxt.add_new_reply_field_variant_type_error(cmd_name, field_name, old_field_type.name, new_field.idl_file_path) else: check_subset(ctxt, cmd_name, field_name, new_field_type.name, new_field_type.bson_serialization_type, old_field_type.bson_serialization_type, new_field.idl_file_path) def check_reply_field_type(ctxt: IDLCompatibilityContext, field_pair: FieldCompatibilityPair): """Check compatibility between old and new reply field type.""" # pylint: disable=too-many-branches old_field = field_pair.old new_field = field_pair.new array_check = check_array_type(ctxt, "reply_field", old_field.field_type, new_field.field_type, field_pair.cmd_name, 'type', old_field.idl_file_path, new_field.idl_file_path, old_field.unstable) if array_check == ArrayTypeCheckResult.INVALID: return if array_check == ArrayTypeCheckResult.TRUE: old_field.field_type = old_field.field_type.element_type new_field.field_type = new_field.field_type.element_type old_field_type = old_field.field_type new_field_type = new_field.field_type cmd_name = field_pair.cmd_name field_name = field_pair.field_name if old_field_type is None: ctxt.add_reply_field_type_invalid_error(cmd_name, field_name, old_field.idl_file_path) ctxt.errors.dump_errors() sys.exit(1) if new_field_type is None: ctxt.add_reply_field_type_invalid_error(cmd_name, field_name, new_field.idl_file_path) ctxt.errors.dump_errors() sys.exit(1) if isinstance(old_field_type, syntax.Type): check_reply_field_type_recursive(ctxt, field_pair) elif isinstance(old_field_type, syntax.Enum) and not old_field.unstable: if isinstance(new_field_type, syntax.Enum): check_subset(ctxt, cmd_name, field_name, new_field_type.name, new_field_type.values, old_field_type.values, new_field.idl_file_path) else: ctxt.add_new_reply_field_type_not_enum_error(cmd_name, field_name, new_field_type.name, old_field_type.name, new_field.idl_file_path) elif isinstance(old_field_type, syntax.Struct): if isinstance(new_field_type, syntax.Struct): check_reply_fields(ctxt, old_field_type, new_field_type, cmd_name, old_field.idl_file, new_field.idl_file, old_field.idl_file_path, new_field.idl_file_path) else: if not old_field.unstable: ctxt.add_new_reply_field_type_not_struct_error( cmd_name, field_name, new_field_type.name, old_field_type.name, new_field.idl_file_path) def check_array_type(ctxt: IDLCompatibilityContext, symbol: str, old_type: Optional[Union[syntax.Enum, syntax.Struct, syntax.Type]], new_type: Optional[Union[syntax.Enum, syntax.Struct, syntax.Type]], cmd_name: str, symbol_name: str, old_idl_file_path: str, new_idl_file_path: str, old_field_unstable: bool) -> ArrayTypeCheckResult: """ Check compatibility between old and new ArrayTypes. :returns: - ArrayTypeCheckResult.TRUE : when the old type and new type are of array type. - ArrayTypeCheckResult.FALSE : when the old type and new type aren't of array type. - ArrayTypeCheckResult.INVALID : when one of the types is not of array type while the other one is. """ # pylint: disable=too-many-arguments,too-many-branches old_is_array = isinstance(old_type, syntax.ArrayType) new_is_array = isinstance(new_type, syntax.ArrayType) if not old_is_array and not new_is_array: return ArrayTypeCheckResult.FALSE if (not old_is_array or not new_is_array) and not old_field_unstable: ctxt.add_type_not_array_error(symbol, cmd_name, symbol_name, new_type.name, old_type.name, new_idl_file_path if old_is_array else old_idl_file_path) return ArrayTypeCheckResult.INVALID return ArrayTypeCheckResult.TRUE def check_reply_field(ctxt: IDLCompatibilityContext, old_field: syntax.Field, new_field: syntax.Field, cmd_name: str, old_idl_file: syntax.IDLParsedSpec, new_idl_file: syntax.IDLParsedSpec, old_idl_file_path: str, new_idl_file_path: str): """Check compatibility between old and new reply field.""" # pylint: disable=too-many-arguments old_field_type = get_field_type(old_field, old_idl_file, old_idl_file_path) new_field_type = get_field_type(new_field, new_idl_file, new_idl_file_path) old_field_optional = old_field.optional or (old_field_type and old_field_type.name == "optionalBool") new_field_optional = new_field.optional or (new_field_type and new_field_type.name == "optionalBool") field_name: str = cmd_name + "-reply-" + new_field.name if not old_field.unstable and field_name not in IGNORE_UNSTABLE_LIST: if new_field.unstable and field_name not in IGNORE_UNSTABLE_LIST: ctxt.add_new_reply_field_unstable_error(cmd_name, new_field.name, new_idl_file_path) if new_field_optional and not old_field_optional: ctxt.add_new_reply_field_optional_error(cmd_name, new_field.name, new_idl_file_path) if new_field.validator: if old_field.validator: if new_field.validator != old_field.validator: ctxt.add_reply_field_validators_not_equal_error(cmd_name, new_field.name, new_idl_file_path) else: ctxt.add_reply_field_contains_validator_error(cmd_name, new_field.name, new_idl_file_path) old_field_compatibility = FieldCompatibility(old_field_type, old_idl_file, old_idl_file_path, old_field.unstable, old_field.optional) new_field_compatibility = FieldCompatibility(new_field_type, new_idl_file, new_idl_file_path, new_field.unstable, new_field.optional) field_pair = FieldCompatibilityPair(old_field_compatibility, new_field_compatibility, cmd_name, old_field.name) check_reply_field_type(ctxt, field_pair) def check_reply_fields(ctxt: IDLCompatibilityContext, old_reply: syntax.Struct, new_reply: syntax.Struct, cmd_name: str, old_idl_file: syntax.IDLParsedSpec, new_idl_file: syntax.IDLParsedSpec, old_idl_file_path: str, new_idl_file_path: str): """Check compatibility between old and new reply fields.""" # pylint: disable=too-many-arguments,too-many-branches for new_chained_type in new_reply.chained_types or []: resolved_new_chained_type = get_chained_type_or_struct(new_chained_type, new_idl_file, new_idl_file_path) if resolved_new_chained_type is not None: for old_chained_type in old_reply.chained_types or []: resolved_old_chained_type = get_chained_type_or_struct( old_chained_type, old_idl_file, old_idl_file_path) if (resolved_old_chained_type is not None and resolved_old_chained_type.name == resolved_new_chained_type.name): # Check that the old and new version of each chained type is also compatible. old = FieldCompatibility(resolved_old_chained_type, old_idl_file, old_idl_file_path, unstable=False, optional=False) new = FieldCompatibility(resolved_new_chained_type, new_idl_file, new_idl_file_path, unstable=False, optional=False) check_reply_field_type( ctxt, FieldCompatibilityPair(old, new, cmd_name, old_reply.name)) break else: # new chained type was not found in old chained types. ctxt.add_new_reply_chained_type_not_subset_error( cmd_name, new_reply.name, resolved_new_chained_type.name, new_idl_file_path) old_reply_fields = get_all_struct_fields(old_reply, old_idl_file, old_idl_file_path) new_reply_fields = get_all_struct_fields(new_reply, new_idl_file, new_idl_file_path) for old_field in old_reply_fields or []: new_field_exists = False for new_field in new_reply_fields or []: if new_field.name == old_field.name: new_field_exists = True check_reply_field(ctxt, old_field, new_field, cmd_name, old_idl_file, new_idl_file, old_idl_file_path, new_idl_file_path) break if not new_field_exists and not old_field.unstable: ctxt.add_new_reply_field_missing_error(cmd_name, old_field.name, old_idl_file_path) for new_field in new_reply_fields or []: # Check that all fields in the new IDL have specified the 'unstable' field. if new_field.unstable is None: ctxt.add_new_reply_field_requires_unstable_error(cmd_name, new_field.name, new_idl_file_path) # Check that newly added fields do not have an unallowed use of 'any' as the # bson_serialization_type. newly_added = True for old_field in old_reply_fields or []: if new_field.name == old_field.name: newly_added = False if newly_added: allow_name: str = cmd_name + "-reply-" + new_field.name new_field_type = get_field_type(new_field, new_idl_file, new_idl_file_path) # If we encounter a bson_serialization_type of None, we skip checking if 'any' is used. if isinstance( new_field_type, syntax.Type ) and new_field_type.bson_serialization_type is not None and "any" in new_field_type.bson_serialization_type: # If 'any' is not explicitly allowed as the bson_serialization_type. any_allow = allow_name in ALLOW_ANY_TYPE_LIST or new_field_type.name == 'optionalBool' if not any_allow: ctxt.add_new_reply_field_bson_any_not_allowed_error( cmd_name, new_field.name, new_field_type.name, new_idl_file_path) def check_param_or_command_type_recursive(ctxt: IDLCompatibilityContext, field_pair: FieldCompatibilityPair, is_command_parameter: bool): # pylint: disable=too-many-branches,too-many-locals """ Check compatibility between old and new command or param type recursively. If the old type is a syntax.Type instance, check the compatibility between the old and new command type or parameter type recursively. """ old_field = field_pair.old new_field = field_pair.new old_type = old_field.field_type new_type = new_field.field_type cmd_name = field_pair.cmd_name param_name = field_pair.field_name # If the old field is unstable, we only add errors related to the use of 'any' as the # bson_serialization_type. For all other errors, we check that the old field is stable # before adding an error. if not isinstance(new_type, syntax.Type): if not old_field.unstable: ctxt.add_new_command_or_param_type_enum_or_struct_error( cmd_name, new_type.name, old_type.name, new_field.idl_file_path, param_name, is_command_parameter) return allow_name: str = cmd_name + "-param-" + param_name if is_command_parameter else cmd_name # If bson_serialization_type switches from 'any' to non-any type. if "any" in old_type.bson_serialization_type and "any" not in new_type.bson_serialization_type: ctxt.add_old_command_or_param_type_bson_any_error(cmd_name, old_type.name, new_type.name, old_field.idl_file_path, param_name, is_command_parameter) return # If bson_serialization_type switches from non-any to 'any' type. if "any" not in old_type.bson_serialization_type and "any" in new_type.bson_serialization_type: ctxt.add_new_command_or_param_type_bson_any_error(cmd_name, old_type.name, new_type.name, new_field.idl_file_path, param_name, is_command_parameter) return if "any" in old_type.bson_serialization_type: # If 'any' is not explicitly allowed as the bson_serialization_type. if allow_name not in ALLOW_ANY_TYPE_LIST: ctxt.add_old_command_or_param_type_bson_any_not_allowed_error( cmd_name, old_type.name, old_field.idl_file_path, param_name, is_command_parameter) return # If cpp_type is changed, it's a potential breaking change. if old_type.cpp_type != new_type.cpp_type: ctxt.add_command_or_param_cpp_type_not_equal_error( cmd_name, new_type.name, new_field.idl_file_path, param_name, is_command_parameter) # If serializer is changed, it's a potential breaking change. if (not old_field.unstable) and old_type.serializer != new_type.serializer: ctxt.add_command_or_param_serializer_not_equal_error( cmd_name, new_type.name, new_field.idl_file_path, param_name, is_command_parameter) # If deserializer is changed, it's a potential breaking change. if (not old_field.unstable) and old_type.deserializer != new_type.deserializer: ctxt.add_command_or_param_deserializer_not_equal_error( cmd_name, new_type.name, new_field.idl_file_path, param_name, is_command_parameter) if isinstance(old_type, syntax.VariantType): if not isinstance(new_type, syntax.VariantType): if not old_field.unstable: ctxt.add_new_command_or_param_type_not_variant_type_error( cmd_name, new_type.name, new_field.idl_file_path, param_name, is_command_parameter) else: new_variant_types = new_type.variant_types old_variant_types = old_type.variant_types # Check that new variant types are a superset of old variant types. for old_variant_type in old_variant_types: for new_variant_type in new_variant_types: # object->object_owned serialize to the same bson type. object_owned->object is # not always safe so we only limit this special case to object->object_owned. if (old_variant_type.name == "object" and new_variant_type.name == "object_owned") or \ old_variant_type.name == new_variant_type.name: # Check that the old and new version of each variant type is also compatible. old = FieldCompatibility(old_variant_type, old_field.idl_file, old_field.idl_file_path, old_field.unstable, old_field.optional) new = FieldCompatibility(new_variant_type, new_field.idl_file, new_field.idl_file_path, new_field.unstable, new_field.optional) check_param_or_command_type( ctxt, FieldCompatibilityPair(old, new, cmd_name, param_name), is_command_parameter) break else: if not old_field.unstable: # old_variant_type was not found in new_variant_types. ctxt.add_new_command_or_param_variant_type_not_superset_error( cmd_name, old_variant_type.name, new_field.idl_file_path, param_name, is_command_parameter) # If old and new types both have a struct as a variant type, compare old and new variant_struct_type. # Since enums can't be part of variant types, we don't explicitly check for enums. if old_type.variant_struct_type is not None: if new_type.variant_struct_type is not None: check_command_params_or_type_struct_fields( ctxt, old_type.variant_struct_type, new_type.variant_struct_type, cmd_name, old_field.idl_file, new_field.idl_file, old_field.idl_file_path, new_field.idl_file_path, is_command_parameter) # If old type has a variant struct type and new type does not have a variant struct type. elif not old_field.unstable: ctxt.add_new_command_or_param_variant_type_not_superset_error( cmd_name, old_type.variant_struct_type.name, new_field.idl_file_path, param_name, is_command_parameter) elif not old_field.unstable: check_superset(ctxt, cmd_name, new_type.name, new_type.bson_serialization_type, old_type.bson_serialization_type, new_field.idl_file_path, param_name, is_command_parameter) def check_param_or_command_type(ctxt: IDLCompatibilityContext, field_pair: FieldCompatibilityPair, is_command_parameter: bool): """Check compatibility between old and new command parameter type or command type.""" # pylint: disable=too-many-branches old_field = field_pair.old new_field = field_pair.new array_check = check_array_type( ctxt, "command_parameter" if is_command_parameter else "command_namespace", old_field.field_type, new_field.field_type, field_pair.cmd_name, field_pair.field_name if is_command_parameter else "type", old_field.idl_file_path, new_field.idl_file_path, old_field.unstable) if array_check == ArrayTypeCheckResult.INVALID: return if array_check == ArrayTypeCheckResult.TRUE: old_field.field_type = old_field.field_type.element_type new_field.field_type = new_field.field_type.element_type old_type = old_field.field_type new_type = new_field.field_type if old_type is None: ctxt.add_command_or_param_type_invalid_error(field_pair.cmd_name, old_field.idl_file_path, field_pair.field_name, is_command_parameter) ctxt.errors.dump_errors() sys.exit(1) if new_type is None: ctxt.add_command_or_param_type_invalid_error(field_pair.cmd_name, new_field.idl_file_path, field_pair.field_name, is_command_parameter) ctxt.errors.dump_errors() sys.exit(1) if isinstance(old_type, syntax.Type): check_param_or_command_type_recursive(ctxt, field_pair, is_command_parameter) # Only add type errors if the old field is stable. elif isinstance(old_type, syntax.Enum) and not old_field.unstable: if isinstance(new_type, syntax.Enum): check_superset(ctxt, field_pair.cmd_name, new_type.name, new_type.values, old_type.values, new_field.idl_file_path, field_pair.field_name, is_command_parameter) else: ctxt.add_new_command_or_param_type_not_enum_error( field_pair.cmd_name, new_type.name, old_type.name, new_field.idl_file_path, field_pair.field_name, is_command_parameter) elif isinstance(old_type, syntax.Struct): if isinstance(new_type, syntax.Struct): check_command_params_or_type_struct_fields( ctxt, old_type, new_type, field_pair.cmd_name, old_field.idl_file, new_field.idl_file, old_field.idl_file_path, new_field.idl_file_path, is_command_parameter) else: if not old_field.unstable: ctxt.add_new_command_or_param_type_not_struct_error( field_pair.cmd_name, new_type.name, old_type.name, new_field.idl_file_path, field_pair.field_name, is_command_parameter) def check_param_or_type_validator(ctxt: IDLCompatibilityContext, old_field: syntax.Field, new_field: syntax.Field, cmd_name: str, new_idl_file_path: str, type_name: Optional[str], is_command_parameter: bool): """ Check compatibility between old and new validators. Check compatibility between old and new validators in command parameter type and command type struct fields. """ # pylint: disable=too-many-arguments if new_field.validator: if old_field.validator: if new_field.validator != old_field.validator: ctxt.add_command_or_param_type_validators_not_equal_error( cmd_name, new_field.name, new_idl_file_path, type_name, is_command_parameter) else: ctxt.add_command_or_param_type_contains_validator_error( cmd_name, new_field.name, new_idl_file_path, type_name, is_command_parameter) def get_all_struct_fields(struct: syntax.Struct, idl_file: syntax.IDLParsedSpec, idl_file_path: str): """Get all the fields of a struct, including the chained struct fields.""" all_fields = struct.fields or [] for chained_struct in struct.chained_structs or []: resolved_chained_struct = get_chained_type_or_struct(chained_struct, idl_file, idl_file_path) if resolved_chained_struct is not None: for field in resolved_chained_struct.fields: all_fields.append(field) return all_fields def check_command_params_or_type_struct_fields( ctxt: IDLCompatibilityContext, old_struct: syntax.Struct, new_struct: syntax.Struct, cmd_name: str, old_idl_file: syntax.IDLParsedSpec, new_idl_file: syntax.IDLParsedSpec, old_idl_file_path: str, new_idl_file_path: str, is_command_parameter: bool): """Check compatibility between old and new parameters or command type fields.""" # pylint: disable=too-many-arguments,too-many-branches # Check chained types. for old_chained_type in old_struct.chained_types or []: resolved_old_chained_type = get_chained_type_or_struct(old_chained_type, old_idl_file, old_idl_file_path) if resolved_old_chained_type is not None: for new_chained_type in new_struct.chained_types or []: resolved_new_chained_type = get_chained_type_or_struct( new_chained_type, new_idl_file, new_idl_file_path) if (resolved_new_chained_type is not None and resolved_old_chained_type.name == resolved_new_chained_type.name): # Check that the old and new version of each chained type is also compatible. old = FieldCompatibility(resolved_old_chained_type, old_idl_file, old_idl_file_path, unstable=False, optional=False) new = FieldCompatibility(resolved_new_chained_type, new_idl_file, new_idl_file_path, unstable=False, optional=False) check_param_or_command_type( ctxt, FieldCompatibilityPair(old, new, cmd_name, old_struct.name), is_command_parameter=False) break else: # old chained type was not found in new chained types. ctxt.add_new_command_or_param_chained_type_not_superset_error( cmd_name, old_chained_type.name, new_idl_file_path, old_struct.name, is_command_parameter) old_struct_fields = get_all_struct_fields(old_struct, old_idl_file, old_idl_file_path) new_struct_fields = get_all_struct_fields(new_struct, new_idl_file, new_idl_file_path) # We need to special-case the stmtId parameter because it was removed. However, it's not a # breaking change to the API because it was added and removed behind a feature flag, so it was # never officially released. allow_list = ["endSessions-param-stmtId", "refreshSessions-param-stmtId"] for old_field in old_struct_fields or []: new_field_exists = False for new_field in new_struct_fields or []: if new_field.name == old_field.name: new_field_exists = True check_command_param_or_type_struct_field( ctxt, old_field, new_field, cmd_name, old_idl_file, new_idl_file, old_idl_file_path, new_idl_file_path, old_struct.name, is_command_parameter) break allow_name: str = cmd_name + "-param-" + old_field.name if not new_field_exists and not old_field.unstable and allow_name not in allow_list: ctxt.add_new_param_or_command_type_field_missing_error( cmd_name, old_field.name, old_idl_file_path, old_struct.name, is_command_parameter) # Check if a new field has been added to the parameters or type struct. # If so, it must be optional. for new_field in new_struct_fields or []: # Check that all fields in the new IDL have specified the 'unstable' field. if new_field.unstable is None: ctxt.add_new_param_or_command_type_field_requires_unstable_error( cmd_name, new_field.name, new_idl_file_path, is_command_parameter) newly_added = True for old_field in old_struct_fields or []: if new_field.name == old_field.name: newly_added = False if newly_added: new_field_type = get_field_type(new_field, new_idl_file, new_idl_file_path) new_field_optional = new_field.optional or (new_field_type and new_field_type.name == 'optionalBool') if not new_field_optional and not new_field.unstable: ctxt.add_new_param_or_command_type_field_added_required_error( cmd_name, new_field.name, new_idl_file_path, new_struct.name, is_command_parameter) # Check that a new field does not have an unallowed use of 'any' as the bson_serialization_type. any_allow_name: str = (cmd_name + "-param-" + new_field.name if is_command_parameter else cmd_name) # If we encounter a bson_serialization_type of None, we skip checking if 'any' is used. if isinstance( new_field_type, syntax.Type ) and new_field_type.bson_serialization_type is not None and "any" in new_field_type.bson_serialization_type: # If 'any' is not explicitly allowed as the bson_serialization_type. any_allow = any_allow_name in ALLOW_ANY_TYPE_LIST or new_field_type.name == 'optionalBool' if not any_allow: ctxt.add_new_command_or_param_type_bson_any_not_allowed_error( cmd_name, new_field_type.name, old_idl_file_path, new_field.name, is_command_parameter) def check_command_param_or_type_struct_field( ctxt: IDLCompatibilityContext, old_field: syntax.Field, new_field: syntax.Field, cmd_name: str, old_idl_file: syntax.IDLParsedSpec, new_idl_file: syntax.IDLParsedSpec, old_idl_file_path: str, new_idl_file_path: str, type_name: Optional[str], is_command_parameter: bool): """Check compatibility between the old and new command parameter or command type struct field.""" # pylint: disable=too-many-arguments field_name: str = cmd_name + "-param-" + new_field.name if not old_field.unstable and new_field.unstable and field_name not in IGNORE_UNSTABLE_LIST: ctxt.add_new_param_or_command_type_field_unstable_error( cmd_name, old_field.name, old_idl_file_path, type_name, is_command_parameter) # If old field is unstable and new field is stable, the new field should either be optional or # have a default value. old_field_type = get_field_type(old_field, old_idl_file, old_idl_file_path) new_field_type = get_field_type(new_field, new_idl_file, new_idl_file_path) old_field_optional = old_field.optional or (old_field_type and old_field_type.name == "optionalBool") new_field_optional = new_field.optional or (new_field_type and new_field_type.name == "optionalBool") if old_field.unstable and not new_field.unstable and not new_field_optional and new_field.default is None: ctxt.add_new_param_or_command_type_field_stable_required_no_default_error( cmd_name, old_field.name, old_idl_file_path, type_name, is_command_parameter) if old_field_optional and not new_field_optional: ctxt.add_new_param_or_command_type_field_required_error( cmd_name, old_field.name, old_idl_file_path, type_name, is_command_parameter) if not old_field.unstable: check_param_or_type_validator(ctxt, old_field, new_field, cmd_name, new_idl_file_path, type_name, is_command_parameter) old_field_compatibility = FieldCompatibility(old_field_type, old_idl_file, old_idl_file_path, old_field.unstable, old_field.optional) new_field_compatibility = FieldCompatibility(new_field_type, new_idl_file, new_idl_file_path, new_field.unstable, new_field.optional) field_pair = FieldCompatibilityPair(old_field_compatibility, new_field_compatibility, cmd_name, old_field.name) check_param_or_command_type(ctxt, field_pair, is_command_parameter) def check_namespace(ctxt: IDLCompatibilityContext, old_cmd: syntax.Command, new_cmd: syntax.Command, old_idl_file: syntax.IDLParsedSpec, new_idl_file: syntax.IDLParsedSpec, old_idl_file_path: str, new_idl_file_path: str): """Check compatibility between old and new namespace.""" # pylint: disable=too-many-arguments old_namespace = old_cmd.namespace new_namespace = new_cmd.namespace # IDL parser already checks that namespace must be one of these 4 types. if old_namespace == common.COMMAND_NAMESPACE_IGNORED: if new_namespace != common.COMMAND_NAMESPACE_IGNORED: ctxt.add_new_namespace_incompatible_error(old_cmd.command_name, old_namespace, new_namespace, new_idl_file_path) elif old_namespace == common.COMMAND_NAMESPACE_CONCATENATE_WITH_DB_OR_UUID: if new_namespace not in (common.COMMAND_NAMESPACE_IGNORED, common.COMMAND_NAMESPACE_CONCATENATE_WITH_DB_OR_UUID): ctxt.add_new_namespace_incompatible_error(old_cmd.command_name, old_namespace, new_namespace, new_idl_file_path) elif old_namespace == common.COMMAND_NAMESPACE_CONCATENATE_WITH_DB: if new_namespace == common.COMMAND_NAMESPACE_TYPE: ctxt.add_new_namespace_incompatible_error(old_cmd.command_name, old_namespace, new_namespace, new_idl_file_path) elif old_namespace == common.COMMAND_NAMESPACE_TYPE: old_type = get_field_type(old_cmd, old_idl_file, old_idl_file_path) if new_namespace == common.COMMAND_NAMESPACE_TYPE: new_type = get_field_type(new_cmd, new_idl_file, new_idl_file_path) old = FieldCompatibility(old_type, old_idl_file, old_idl_file_path, unstable=False, optional=False) new = FieldCompatibility(new_type, new_idl_file, new_idl_file_path, unstable=False, optional=False) check_param_or_command_type(ctxt, FieldCompatibilityPair(old, new, old_cmd.command_name, ""), is_command_parameter=False) # If old type is "namespacestring", the new namespace can be changed to any # of the other namespace types. elif old_type.name != "namespacestring": # Otherwise, the new namespace can only be changed to "ignored". if new_namespace != common.COMMAND_NAMESPACE_IGNORED: ctxt.add_new_namespace_incompatible_error(old_cmd.command_name, old_namespace, new_namespace, new_idl_file_path) else: assert False, 'unrecognized namespace option' def check_error_reply(old_basic_types_path: str, new_basic_types_path: str, old_import_directories: List[str], new_import_directories: List[str]) -> IDLCompatibilityErrorCollection: """Check IDL compatibility between old and new ErrorReply.""" old_idl_dir = os.path.dirname(old_basic_types_path) new_idl_dir = os.path.dirname(new_basic_types_path) ctxt = IDLCompatibilityContext(old_idl_dir, new_idl_dir, IDLCompatibilityErrorCollection()) with open(old_basic_types_path) as old_file: old_idl_file = parser.parse(old_file, old_basic_types_path, CompilerImportResolver(old_import_directories)) if old_idl_file.errors: old_idl_file.errors.dump_errors() raise ValueError(f"Cannot parse {old_basic_types_path}") old_error_reply_struct = old_idl_file.spec.symbols.get_struct("ErrorReply") if old_error_reply_struct is None: ctxt.add_missing_error_reply_struct_error(old_basic_types_path) else: with open(new_basic_types_path) as new_file: new_idl_file = parser.parse(new_file, new_basic_types_path, CompilerImportResolver(new_import_directories)) if new_idl_file.errors: new_idl_file.errors.dump_errors() raise ValueError(f"Cannot parse {new_basic_types_path}") new_error_reply_struct = new_idl_file.spec.symbols.get_struct("ErrorReply") if new_error_reply_struct is None: ctxt.add_missing_error_reply_struct_error(new_basic_types_path) else: check_reply_fields(ctxt, old_error_reply_struct, new_error_reply_struct, "n/a", old_idl_file, new_idl_file, old_basic_types_path, new_basic_types_path) ctxt.errors.dump_errors() return ctxt.errors def split_complex_checks( complex_checks: List[syntax.AccessCheck]) -> Tuple[List[str], List[syntax.Privilege]]: """Split a list of AccessCheck into checks and privileges.""" checks = [x.check for x in complex_checks if x.check is not None] privileges = [x.privilege for x in complex_checks if x.privilege is not None] # Sort the list of privileges by the length of the action_type list, in decreasing order # so that two lists of privileges can be compared later. return checks, sorted(privileges, key=lambda x: len(x.action_type), reverse=True) def check_complex_checks(ctxt: IDLCompatibilityContext, old_complex_checks: List[syntax.AccessCheck], new_complex_checks: List[syntax.AccessCheck], cmd: syntax.Command, new_idl_file_path: str) -> None: """Check the compatibility between complex access checks of the old and new command.""" cmd_name = cmd.command_name if len(new_complex_checks) > len(old_complex_checks): ctxt.add_new_additional_complex_access_check_error(cmd_name, new_idl_file_path) else: old_checks, old_privileges = split_complex_checks(old_complex_checks) new_checks, new_privileges = split_complex_checks(new_complex_checks) if not set(new_checks).issubset(old_checks): ctxt.add_new_complex_checks_not_subset_error(cmd_name, new_idl_file_path) if len(new_privileges) > len(old_privileges): ctxt.add_new_complex_privileges_not_subset_error(cmd_name, new_idl_file_path) else: # Check that each new_privilege matches an old_privilege (the resource_pattern is # equal and the action_types are a subset of the old action_types). for new_privilege in new_privileges: for old_privilege in old_privileges: if (new_privilege.resource_pattern == old_privilege.resource_pattern and set(new_privilege.action_type).issubset(old_privilege.action_type)): old_privileges.remove(old_privilege) break else: ctxt.add_new_complex_privileges_not_subset_error(cmd_name, new_idl_file_path) def split_complex_checks_agg_stages( complex_checks: List[syntax.AccessCheck]) -> Dict[str, List[syntax.AccessCheck]]: """Split a list of AccessChecks into a map keyed by aggregation stage (defaults to None).""" complex_checks_agg_stages: Dict[str, List[syntax.AccessCheck]] = dict() for access_check in complex_checks: agg_stage = None if access_check.privilege is not None: # x.privilege.agg_stage can still be None. agg_stage = access_check.privilege.agg_stage if agg_stage not in complex_checks_agg_stages: complex_checks_agg_stages[agg_stage] = [] complex_checks_agg_stages[agg_stage].append(access_check) return complex_checks_agg_stages def check_complex_checks_agg_stages(ctxt: IDLCompatibilityContext, old_complex_checks: List[syntax.AccessCheck], new_complex_checks: List[syntax.AccessCheck], cmd: syntax.Command, new_idl_file_path: str) -> None: """Check the compatibility between complex access checks of the old and new agggreation stages.""" new_complex_checks_agg_stages = split_complex_checks_agg_stages(new_complex_checks) old_complex_checks_agg_stages = split_complex_checks_agg_stages(old_complex_checks) for agg_stage in new_complex_checks_agg_stages: # Aggregation stages are considered separate commands in the context of validating the # Stable API. Therefore, it is okay to skip recently added aggregation stages that are # are not present in the previous release. if agg_stage not in old_complex_checks_agg_stages: continue check_complex_checks(ctxt, old_complex_checks_agg_stages[agg_stage], new_complex_checks_agg_stages[agg_stage], cmd, new_idl_file_path) def check_security_access_checks(ctxt: IDLCompatibilityContext, old_access_checks: syntax.AccessChecks, new_access_checks: syntax.AccessChecks, cmd: syntax.Command, new_idl_file_path: str) -> None: """Check the compatibility between security access checks of the old and new command.""" # pylint:disable=too-many-locals,too-many-branches,too-many-nested-blocks cmd_name = cmd.command_name if old_access_checks is not None and new_access_checks is not None: old_access_check_type = old_access_checks.get_access_check_type() new_access_check_type = new_access_checks.get_access_check_type() if old_access_check_type != new_access_check_type: ctxt.add_access_check_type_not_equal_error(cmd_name, old_access_check_type, new_access_check_type, new_idl_file_path) else: old_simple_check = old_access_checks.simple new_simple_check = new_access_checks.simple if old_simple_check is not None and new_simple_check is not None: if old_simple_check.check != new_simple_check.check: ctxt.add_check_not_equal_error(cmd_name, old_simple_check.check, new_simple_check.check, new_idl_file_path) else: old_privilege = old_simple_check.privilege new_privilege = new_simple_check.privilege if old_privilege is not None and new_privilege is not None: if old_privilege.resource_pattern != new_privilege.resource_pattern: ctxt.add_resource_pattern_not_equal_error( cmd_name, old_privilege.resource_pattern, new_privilege.resource_pattern, new_idl_file_path) if not set(new_privilege.action_type).issubset(old_privilege.action_type): ctxt.add_new_action_types_not_subset_error(cmd_name, new_idl_file_path) old_complex_checks = old_access_checks.complex new_complex_checks = new_access_checks.complex if old_complex_checks is not None and new_complex_checks is not None: check_complex_checks_agg_stages(ctxt, old_complex_checks, new_complex_checks, cmd, new_idl_file_path) elif new_access_checks is None and old_access_checks is not None: ctxt.add_removed_access_check_field_error(cmd_name, new_idl_file_path) elif old_access_checks is None and new_access_checks is not None and cmd.api_version == '1': ctxt.add_added_access_check_field_error(cmd_name, new_idl_file_path) def check_compatibility(old_idl_dir: str, new_idl_dir: str, old_import_directories: List[str], new_import_directories: List[str]) -> IDLCompatibilityErrorCollection: """Check IDL compatibility between old and new IDL commands.""" # pylint: disable=too-many-locals ctxt = IDLCompatibilityContext(old_idl_dir, new_idl_dir, IDLCompatibilityErrorCollection()) new_commands, new_command_file, new_command_file_path = get_new_commands( ctxt, new_idl_dir, new_import_directories) # Check new commands' compatibility with old ones. # Note, a command can be added to V1 at any time, it's ok if a # new command has no corresponding old command. old_commands: Dict[str, syntax.Command] = dict() for dirpath, _, filenames in os.walk(old_idl_dir): for old_filename in filenames: if not old_filename.endswith('.idl') or old_filename in SKIPPED_FILES: continue old_idl_file_path = os.path.join(dirpath, old_filename) with open(old_idl_file_path) as old_file: old_idl_file = parser.parse( old_file, old_idl_file_path, CompilerImportResolver(old_import_directories + [old_idl_dir])) if old_idl_file.errors: old_idl_file.errors.dump_errors() raise ValueError(f"Cannot parse {old_idl_file_path}") for old_cmd in old_idl_file.spec.symbols.commands: # Ignore imported commands as they will be processed in their own file. if old_cmd.api_version == "" or old_cmd.imported: continue # Ignore select commands that were removed after being added to the strict API. # Only commands that were never visible to the end-user in previous releases # (i.e., hidden behind a feature flag) should be allowed here. if old_cmd.command_name in IGNORE_COMMANDS_LIST: continue if old_cmd.api_version != "1": # We're not ready to handle future API versions yet. ctxt.add_command_invalid_api_version_error( old_cmd.command_name, old_cmd.api_version, old_idl_file_path) continue if old_cmd.command_name in old_commands: ctxt.add_duplicate_command_name_error(old_cmd.command_name, old_idl_dir, old_idl_file_path) continue old_commands[old_cmd.command_name] = old_cmd if old_cmd.command_name not in new_commands: # Can't remove a command from V1 ctxt.add_command_removed_error(old_cmd.command_name, old_idl_file_path) continue new_cmd = new_commands[old_cmd.command_name] new_idl_file = new_command_file[old_cmd.command_name] new_idl_file_path = new_command_file_path[old_cmd.command_name] if not old_cmd.strict and new_cmd.strict: ctxt.add_command_strict_true_error(new_cmd.command_name, new_idl_file_path) # Check compatibility of command's parameters. check_command_params_or_type_struct_fields( ctxt, old_cmd, new_cmd, old_cmd.command_name, old_idl_file, new_idl_file, old_idl_file_path, new_idl_file_path, is_command_parameter=True) check_namespace(ctxt, old_cmd, new_cmd, old_idl_file, new_idl_file, old_idl_file_path, new_idl_file_path) old_reply = old_idl_file.spec.symbols.get_struct(old_cmd.reply_type) new_reply = new_idl_file.spec.symbols.get_struct(new_cmd.reply_type) check_reply_fields(ctxt, old_reply, new_reply, old_cmd.command_name, old_idl_file, new_idl_file, old_idl_file_path, new_idl_file_path) check_security_access_checks(ctxt, old_cmd.access_check, new_cmd.access_check, old_cmd, new_idl_file_path) ctxt.errors.dump_errors() return ctxt.errors def get_generic_arguments(gen_args_file_path: str) -> Tuple[Set[str], Set[str]]: """Get arguments and reply fields from generic_argument.idl and check validity.""" arguments: Set[str] = set() reply_fields: Set[str] = set() with open(gen_args_file_path) as gen_args_file: parsed_idl_file = parser.parse(gen_args_file, gen_args_file_path, CompilerImportResolver([])) if parsed_idl_file.errors: parsed_idl_file.errors.dump_errors() raise ValueError(f"Cannot parse {gen_args_file_path}") for argument in parsed_idl_file.spec.symbols.get_generic_argument_list( "generic_args_api_v1").fields: arguments.add(argument.name) for reply_field in parsed_idl_file.spec.symbols.get_generic_reply_field_list( "generic_reply_fields_api_v1").fields: reply_fields.add(reply_field.name) return arguments, reply_fields def check_generic_arguments_compatibility(old_gen_args_file_path: str, new_gen_args_file_path: str ) -> IDLCompatibilityErrorCollection: """Check IDL compatibility between old and new generic_argument.idl files.""" # IDLCompatibilityContext takes in both 'old_idl_dir' and 'new_idl_dir', # but for generic_argument.idl, the parent directories aren't helpful for logging purposes. # Instead, we pass in "old generic_argument.idl" and "new generic_argument.idl" # to make error messages clearer. ctxt = IDLCompatibilityContext("old generic_argument.idl", "new generic_argument.idl", IDLCompatibilityErrorCollection()) old_arguments, old_reply_fields = get_generic_arguments(old_gen_args_file_path) new_arguments, new_reply_fields = get_generic_arguments(new_gen_args_file_path) for old_argument in old_arguments: if old_argument not in new_arguments: ctxt.add_generic_argument_removed(old_argument, new_gen_args_file_path) for old_reply_field in old_reply_fields: if old_reply_field not in new_reply_fields: ctxt.add_generic_argument_removed_reply_field(old_reply_field, new_gen_args_file_path) return ctxt.errors def main(): """Run the script.""" arg_parser = argparse.ArgumentParser(description=__doc__) arg_parser.add_argument("-v", "--verbose", action="count", help="Enable verbose logging") arg_parser.add_argument("--old-include", dest="old_include", type=str, action="append", default=[], help="Directory to search for old IDL import files") arg_parser.add_argument("--new-include", dest="new_include", type=str, action="append", default=[], help="Directory to search for new IDL import files") arg_parser.add_argument("old_idl_dir", metavar="OLD_IDL_DIR", help="Directory where old IDL files are located") arg_parser.add_argument("new_idl_dir", metavar="NEW_IDL_DIR", help="Directory where new IDL files are located") args = arg_parser.parse_args() error_coll = check_compatibility(args.old_idl_dir, args.new_idl_dir, args.old_include, args.new_include) if error_coll.has_errors(): sys.exit(1) old_basic_types_path = os.path.join(args.old_idl_dir, "mongo/idl/basic_types.idl") new_basic_types_path = os.path.join(args.new_idl_dir, "mongo/idl/basic_types.idl") error_reply_coll = check_error_reply(old_basic_types_path, new_basic_types_path, args.old_include, args.new_include) if error_reply_coll.has_errors(): sys.exit(1) old_generic_args_path = os.path.join(args.old_idl_dir, "mongo/idl/generic_argument.idl") new_generic_args_path = os.path.join(args.new_idl_dir, "mongo/idl/generic_argument.idl") error_gen_args_coll = check_generic_arguments_compatibility(old_generic_args_path, new_generic_args_path) if error_gen_args_coll.has_errors(): sys.exit(1) if __name__ == "__main__": main()
the-stack_0_878
# Copyright 2014-2017 Insight Software Consortium. # Copyright 2004-2009 Roman Yakovenko. # Distributed under the Boost Software License, Version 1.0. # See http://www.boost.org/LICENSE_1_0.txt import unittest import logging from . import parser_test_case from pygccxml import utils class Test(parser_test_case.parser_test_case_t): mock_logger = logging.getLogger("Test") def test_old_xml_generators(self): """ Tests for the xml_generators class. This is for gccxml and for castxml using the gccxml xml file format """ self._test_impl("0.6", False, "is_gccxml_06") self._test_impl("1.114", False, "is_gccxml_07") self._test_impl("1.115", False, "is_gccxml_09_buggy") self._test_impl("1.126", False, "is_gccxml_09_buggy") self._test_impl("1.127", False, "is_gccxml_09") self._test_impl("1.136", True, "is_castxml") def test_casxtml_epic_version_1(self): """ Test with the castxml epic version set to 1 """ gen = utils.xml_generators( self.mock_logger, castxml_format="1.1.0") self.assertFalse(gen.is_gccxml) self.assertTrue(gen.is_castxml) self.assertTrue(gen.is_castxml1) self.assertEqual(gen.xml_output_version, "1.1.0") self.assertRaises(RuntimeError, lambda: utils.xml_generators( self.mock_logger, "1.136", "1.1.0")) self.assertRaises(RuntimeError, lambda: utils.xml_generators( self.mock_logger, None, None)) def _test_impl( self, gccxml_cvs_revision, is_castxml, expected_gccxml_cvs_revision): """ Implementation detail for the test Args: gccxml_cvs_revision (str|None) : a known cvs revision is_castxml (bool): check for castxml expected_gccxml_cvs_revision (str): will be used to check if the attribute is set to True. """ gen = utils.xml_generators( self.mock_logger, gccxml_cvs_revision) if is_castxml: self.assertFalse(gen.is_gccxml) self.assertTrue(gen.is_castxml) else: self.assertTrue(gen.is_gccxml) self.assertFalse(gen.is_castxml) self.assertTrue(getattr(gen, expected_gccxml_cvs_revision)) self.assertEqual(gen.xml_output_version, gccxml_cvs_revision) def create_suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(Test)) return suite def run_suite(): unittest.TextTestRunner(verbosity=2).run(create_suite()) if __name__ == "__main__": run_suite()
the-stack_0_879
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # File: transformer.py import inspect import numpy as np import pprint import sys from abc import ABCMeta, abstractmethod from fvcore.transforms.transform import ( BlendTransform, CropTransform, HFlipTransform, NoOpTransform, Transform, TransformList, VFlipTransform, ) from PIL import Image from .transform import ExtentTransform, ResizeTransform, RotationTransform __all__ = [ "RandomApply", "RandomBrightness", "RandomContrast", "RandomCrop", "RandomExtent", "RandomFlip", "RandomSaturation", "RandomLighting", "RandomRotation", "Resize", "ResizeShortestEdge", "TransformGen", "apply_transform_gens", ] def check_dtype(img): assert isinstance(img, np.ndarray), "[TransformGen] Needs an numpy array, but got a {}!".format( type(img) ) assert not isinstance(img.dtype, np.integer) or ( img.dtype == np.uint8 ), "[TransformGen] Got image of type {}, use uint8 or floating points instead!".format( img.dtype ) assert img.ndim in [2, 3], img.ndim class TransformGen(metaclass=ABCMeta): """ TransformGen takes an image of type uint8 in range [0, 255], or floating point in range [0, 1] or [0, 255] as input. It creates a :class:`Transform` based on the given image, sometimes with randomness. The transform can then be used to transform images or other data (boxes, points, annotations, etc.) associated with it. The assumption made in this class is that the image itself is sufficient to instantiate a transform. When this assumption is not true, you need to create the transforms by your own. A list of `TransformGen` can be applied with :func:`apply_transform_gens`. """ def _init(self, params=None): if params: for k, v in params.items(): if k != "self" and not k.startswith("_"): setattr(self, k, v) @abstractmethod def get_transform(self, img): pass def _rand_range(self, low=1.0, high=None, size=None): """ Uniform float random number between low and high. """ if high is None: low, high = 0, low if size is None: size = [] return np.random.uniform(low, high, size) def __repr__(self): """ Produce something like: "MyTransformGen(field1={self.field1}, field2={self.field2})" """ try: sig = inspect.signature(self.__init__) classname = type(self).__name__ argstr = [] for name, param in sig.parameters.items(): assert ( param.kind != param.VAR_POSITIONAL and param.kind != param.VAR_KEYWORD ), "The default __repr__ doesn't support *args or **kwargs" assert hasattr(self, name), ( "Attribute {} not found! " "Default __repr__ only works if attributes match the constructor.".format(name) ) attr = getattr(self, name) default = param.default if default is attr: continue argstr.append("{}={}".format(name, pprint.pformat(attr))) return "{}({})".format(classname, ", ".join(argstr)) except AssertionError: return super().__repr__() __str__ = __repr__ class RandomApply(TransformGen): """ Randomly apply the wrapper transformation with a given probability. """ def __init__(self, transform, prob=0.5): """ Args: transform (Transform, TransformGen): the transform to be wrapped by the `RandomApply`. The `transform` can either be a `Transform` or `TransformGen` instance. prob (float): probability between 0.0 and 1.0 that the wrapper transformation is applied """ super().__init__() assert isinstance(transform, (Transform, TransformGen)), ( f"The given transform must either be a Transform or TransformGen instance. " f"Not {type(transform)}" ) assert 0.0 <= prob <= 1.0, f"Probablity must be between 0.0 and 1.0 (given: {prob})" self.prob = prob self.transform = transform def get_transform(self, img): do = self._rand_range() < self.prob if do: if isinstance(self.transform, TransformGen): return self.transform.get_transform(img) else: return self.transform else: return NoOpTransform() class RandomFlip(TransformGen): """ Flip the image horizontally or vertically with the given probability. """ def __init__(self, prob=0.5, *, horizontal=True, vertical=False): """ Args: prob (float): probability of flip. horizontal (boolean): whether to apply horizontal flipping vertical (boolean): whether to apply vertical flipping """ super().__init__() if horizontal and vertical: raise ValueError("Cannot do both horiz and vert. Please use two Flip instead.") if not horizontal and not vertical: raise ValueError("At least one of horiz or vert has to be True!") self._init(locals()) def get_transform(self, img): h, w = img.shape[:2] do = self._rand_range() < self.prob if do: if self.horizontal: return HFlipTransform(w) elif self.vertical: return VFlipTransform(h) else: return NoOpTransform() class Resize(TransformGen): """ Resize image to a target size""" def __init__(self, shape, interp=Image.BILINEAR): """ Args: shape: (h, w) tuple or a int interp: PIL interpolation method """ if isinstance(shape, int): shape = (shape, shape) shape = tuple(shape) self._init(locals()) def get_transform(self, img): return ResizeTransform( img.shape[0], img.shape[1], self.shape[0], self.shape[1], self.interp ) class ResizeShortestEdge(TransformGen): """ Scale the shorter edge to the given size, with a limit of `max_size` on the longer edge. If `max_size` is reached, then downscale so that the longer edge does not exceed max_size. """ def __init__( self, short_edge_length, max_size=sys.maxsize, sample_style="range", interp=Image.BILINEAR ): """ Args: short_edge_length (list[int]): If ``sample_style=="range"``, a [min, max] interval from which to sample the shortest edge length. If ``sample_style=="choice"``, a list of shortest edge lengths to sample from. max_size (int): maximum allowed longest edge length. sample_style (str): either "range" or "choice". """ super().__init__() assert sample_style in ["range", "choice"], sample_style self.is_range = sample_style == "range" if isinstance(short_edge_length, int): short_edge_length = (short_edge_length, short_edge_length) self._init(locals()) def get_transform(self, img): h, w = img.shape[:2] if self.is_range: size = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1) else: size = np.random.choice(self.short_edge_length) if size == 0: return NoOpTransform() scale = size * 1.0 / min(h, w) if h < w: newh, neww = size, scale * w else: newh, neww = scale * h, size if max(newh, neww) > self.max_size: scale = self.max_size * 1.0 / max(newh, neww) newh = newh * scale neww = neww * scale neww = int(neww + 0.5) newh = int(newh + 0.5) return ResizeTransform(h, w, newh, neww, self.interp) class RandomRotation(TransformGen): """ This method returns a copy of this image, rotated the given number of degrees counter clockwise around the given center. """ def __init__(self, angle, expand=True, center=None, sample_style="range", interp=None): """ Args: angle (list[float]): If ``sample_style=="range"``, a [min, max] interval from which to sample the angle (in degrees). If ``sample_style=="choice"``, a list of angles to sample from expand (bool): choose if the image should be resized to fit the whole rotated image (default), or simply cropped center (list[[float, float]]): If ``sample_style=="range"``, a [[minx, miny], [maxx, maxy]] relative interval from which to sample the center, [0, 0] being the top left of the image and [1, 1] the bottom right. If ``sample_style=="choice"``, a list of centers to sample from Default: None, which means that the center of rotation is the center of the image center has no effect if expand=True because it only affects shifting """ super().__init__() assert sample_style in ["range", "choice"], sample_style self.is_range = sample_style == "range" if isinstance(angle, (float, int)): angle = (angle, angle) if center is not None and isinstance(center[0], (float, int)): center = (center, center) self._init(locals()) def get_transform(self, img): h, w = img.shape[:2] center = None if self.is_range: angle = np.random.uniform(self.angle[0], self.angle[1]) if self.center is not None: center = ( np.random.uniform(self.center[0][0], self.center[1][0]), np.random.uniform(self.center[0][1], self.center[1][1]), ) else: angle = np.random.choice(self.angle) if self.center is not None: center = np.random.choice(self.center) if center is not None: center = (w * center[0], h * center[1]) # Convert to absolute coordinates return RotationTransform(h, w, angle, expand=self.expand, center=center, interp=self.interp) class RandomCrop(TransformGen): """ Randomly crop a subimage out of an image. """ def __init__(self, crop_type: str, crop_size): """ Args: crop_type (str): one of "relative_range", "relative", "absolute". See `config/defaults.py` for explanation. crop_size (tuple[float]): the relative ratio or absolute pixels of height and width """ super().__init__() assert crop_type in ["relative_range", "relative", "absolute"] self._init(locals()) def get_transform(self, img): h, w = img.shape[:2] croph, cropw = self.get_crop_size((h, w)) assert h >= croph and w >= cropw, "Shape computation in {} has bugs.".format(self) h0 = np.random.randint(h - croph + 1) w0 = np.random.randint(w - cropw + 1) return CropTransform(w0, h0, cropw, croph) def get_crop_size(self, image_size): """ Args: image_size (tuple): height, width Returns: crop_size (tuple): height, width in absolute pixels """ h, w = image_size if self.crop_type == "relative": ch, cw = self.crop_size return int(h * ch + 0.5), int(w * cw + 0.5) elif self.crop_type == "relative_range": crop_size = np.asarray(self.crop_size, dtype=np.float32) ch, cw = crop_size + np.random.rand(2) * (1 - crop_size) return int(h * ch + 0.5), int(w * cw + 0.5) elif self.crop_type == "absolute": return (min(self.crop_size[0], h), min(self.crop_size[1], w)) else: NotImplementedError("Unknown crop type {}".format(self.crop_type)) class RandomExtent(TransformGen): """ Outputs an image by cropping a random "subrect" of the source image. The subrect can be parameterized to include pixels outside the source image, in which case they will be set to zeros (i.e. black). The size of the output image will vary with the size of the random subrect. """ def __init__(self, scale_range, shift_range): """ Args: output_size (h, w): Dimensions of output image scale_range (l, h): Range of input-to-output size scaling factor shift_range (x, y): Range of shifts of the cropped subrect. The rect is shifted by [w / 2 * Uniform(-x, x), h / 2 * Uniform(-y, y)], where (w, h) is the (width, height) of the input image. Set each component to zero to crop at the image's center. """ super().__init__() self._init(locals()) def get_transform(self, img): img_h, img_w = img.shape[:2] # Initialize src_rect to fit the input image. src_rect = np.array([-0.5 * img_w, -0.5 * img_h, 0.5 * img_w, 0.5 * img_h]) # Apply a random scaling to the src_rect. src_rect *= np.random.uniform(self.scale_range[0], self.scale_range[1]) # Apply a random shift to the coordinates origin. src_rect[0::2] += self.shift_range[0] * img_w * (np.random.rand() - 0.5) src_rect[1::2] += self.shift_range[1] * img_h * (np.random.rand() - 0.5) # Map src_rect coordinates into image coordinates (center at corner). src_rect[0::2] += 0.5 * img_w src_rect[1::2] += 0.5 * img_h return ExtentTransform( src_rect=(src_rect[0], src_rect[1], src_rect[2], src_rect[3]), output_size=(int(src_rect[3] - src_rect[1]), int(src_rect[2] - src_rect[0])), ) class RandomContrast(TransformGen): """ Randomly transforms image contrast. Contrast intensity is uniformly sampled in (intensity_min, intensity_max). - intensity < 1 will reduce contrast - intensity = 1 will preserve the input image - intensity > 1 will increase contrast See: https://pillow.readthedocs.io/en/3.0.x/reference/ImageEnhance.html """ def __init__(self, intensity_min, intensity_max): """ Args: intensity_min (float): Minimum augmentation intensity_max (float): Maximum augmentation """ super().__init__() self._init(locals()) def get_transform(self, img): w = np.random.uniform(self.intensity_min, self.intensity_max) return BlendTransform(src_image=img.mean(), src_weight=1 - w, dst_weight=w) class RandomBrightness(TransformGen): """ Randomly transforms image brightness. Brightness intensity is uniformly sampled in (intensity_min, intensity_max). - intensity < 1 will reduce brightness - intensity = 1 will preserve the input image - intensity > 1 will increase brightness See: https://pillow.readthedocs.io/en/3.0.x/reference/ImageEnhance.html """ def __init__(self, intensity_min, intensity_max): """ Args: intensity_min (float): Minimum augmentation intensity_max (float): Maximum augmentation """ super().__init__() self._init(locals()) def get_transform(self, img): w = np.random.uniform(self.intensity_min, self.intensity_max) return BlendTransform(src_image=0, src_weight=1 - w, dst_weight=w) class RandomSaturation(TransformGen): """ Randomly transforms image saturation. Saturation intensity is uniformly sampled in (intensity_min, intensity_max). - intensity < 1 will reduce saturation (make the image more grayscale) - intensity = 1 will preserve the input image - intensity > 1 will increase saturation See: https://pillow.readthedocs.io/en/3.0.x/reference/ImageEnhance.html """ def __init__(self, intensity_min, intensity_max): """ Args: intensity_min (float): Minimum augmentation (1 preserves input). intensity_max (float): Maximum augmentation (1 preserves input). """ super().__init__() self._init(locals()) def get_transform(self, img): assert img.shape[-1] == 3, "Saturation only works on RGB images" w = np.random.uniform(self.intensity_min, self.intensity_max) grayscale = img.dot([0.299, 0.587, 0.114])[:, :, np.newaxis] return BlendTransform(src_image=grayscale, src_weight=1 - w, dst_weight=w) class RandomLighting(TransformGen): """ Randomly transforms image color using fixed PCA over ImageNet. The degree of color jittering is randomly sampled via a normal distribution, with standard deviation given by the scale parameter. """ def __init__(self, scale): """ Args: scale (float): Standard deviation of principal component weighting. """ super().__init__() self._init(locals()) self.eigen_vecs = np.array( [[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]] ) self.eigen_vals = np.array([0.2175, 0.0188, 0.0045]) def get_transform(self, img): assert img.shape[-1] == 3, "Saturation only works on RGB images" weights = np.random.normal(scale=self.scale, size=3) return BlendTransform( src_image=self.eigen_vecs.dot(weights * self.eigen_vals), src_weight=1.0, dst_weight=1.0 ) def apply_transform_gens(transform_gens, img): """ Apply a list of :class:`TransformGen` on the input image, and returns the transformed image and a list of transforms. We cannot simply create and return all transforms without applying it to the image, because a subsequent transform may need the output of the previous one. Args: transform_gens (list): list of :class:`TransformGen` instance to be applied. img (ndarray): uint8 or floating point images with 1 or 3 channels. Returns: ndarray: the transformed image TransformList: contain the transforms that's used. """ for g in transform_gens: assert isinstance(g, TransformGen), g check_dtype(img) tfms = [] for g in transform_gens: tfm = g.get_transform(img) assert isinstance( tfm, Transform ), "TransformGen {} must return an instance of Transform! Got {} instead".format(g, tfm) img = tfm.apply_image(img) tfms.append(tfm) return img, TransformList(tfms)
the-stack_0_882
# pylint: disable=C0302 """ @file @brief Implements a class able to compute the predictions from on an :epkg:`ONNX` model. """ from collections import OrderedDict from io import BytesIO from time import perf_counter import warnings import textwrap import pprint import numpy from scipy.sparse import coo_matrix from onnx import load, load_model, checker, shape_inference from onnx import onnx_pb as onnx_proto from onnx.helper import make_model from ..tools.code_helper import make_callable, print_code from ..onnx_tools.onnx2py_helper import ( _var_as_dict, numpy_min, numpy_max, guess_numpy_type_from_string) from ..onnx_tools.onnx_manipulations import ( select_model_inputs_outputs, enumerate_model_node_outputs, overwrite_opset, insert_results_into_onnx) from ..onnx_tools.optim import onnx_remove_node_unused from .onnx_inference_node import OnnxInferenceNode from .onnx_inference_exports import OnnxInferenceExport from .shape_object import ShapeObject from .type_object import SequenceType class OnnxInference: """ Loads an :epkg:`ONNX` file or object or stream. Computes the output of the :epkg:`ONNX` graph. Several runtimes are available. * ``'python'``: the runtime implements every onnx operator needed to run a :epkg:`scikit-learn` model by using :epkg:`numpy` or C++ code. * ``'python_compiled'``: it is the same runtime than the previous one except every operator is called from a compiled function (@see me _build_compile_run) instead for a method going through the list of operator * ``'onnxruntime1'``: uses :epkg:`onnxruntime` * ``'onnxruntime2'``: this mode is mostly used to debug as python handles calling every operator but :epkg:`onnxruntime` is called for every of them, this process may fail due to wrong inference type specially of the graph includes custom nodes, in that case, it is better to compute the output of intermediates nodes. It is much slower as fo every output, every node is computed but more robust. :param onnx_or_bytes_or_stream: :epkg:`onnx` object, bytes, or filename or stream :param runtime: runtime options :param skip_run: do not build the runtime :param inplace: use inplace computation as much as possible :param input_inplace: the computation is allowed to overwrite the input, see :meth:`_guess_inplace <mlprodict.onnxrt.onnx_inference.OnnxInference._guess_inplace>` :param ir_version: if not None, overwrite the default version :param target_opset: used to overwrite *target_opset* :param runtime_options: specific options for the runtime :param inside_loop: tells the runtime the graph is meant to be repeated multiple times (in that case, inputs and outputs may share the same name) :param static_inputs: Loop can use static variables, variables from the graph which runs the loop (enumerate of strings) :param new_outputs: if the loading fails, it might worth cutting the graph, if not None, the graph will be cut to have these new_outputs as the final outputs :param new_opset: overwrite the main opset and replaces by this new one :param device: device, a string `cpu`, `cuda`, `cuda:0`..., this option is only available with runtime *onnxruntime1* Among the possible runtime_options, there are: * *enable_profiling*: enables profiling for :epkg:`onnxruntime` * *session_options*: an instance of *SessionOptions* from :epkg:`onnxruntime` * *ir_version*: change ir_version .. versionchanged:: 0.7 Parameters *new_outputs*, *new_opset* were added. .. versionchanged:: 0.8 Parameters *static_inputs*, *device* were added. """ def __init__(self, onnx_or_bytes_or_stream, runtime=None, skip_run=False, inplace=True, input_inplace=False, ir_version=None, target_opset=None, runtime_options=None, session_options=None, inside_loop=False, static_inputs=None, new_outputs=None, new_opset=None, device=None): if isinstance(onnx_or_bytes_or_stream, bytes): self.obj = load_model(BytesIO(onnx_or_bytes_or_stream)) elif isinstance(onnx_or_bytes_or_stream, BytesIO): self.obj = load_model(onnx_or_bytes_or_stream) elif isinstance(onnx_or_bytes_or_stream, str): self.obj = load(onnx_or_bytes_or_stream) elif hasattr(onnx_or_bytes_or_stream, 'graph'): self.obj = onnx_or_bytes_or_stream elif isinstance(onnx_or_bytes_or_stream, onnx_proto.GraphProto): self.obj = make_model(onnx_or_bytes_or_stream, producer_name='mlprodict') else: raise TypeError("Unable to handle type {}.".format( # pragma: no cover type(onnx_or_bytes_or_stream))) if ir_version is not None: self.obj.ir_version = ir_version if new_outputs is not None: self.obj = select_model_inputs_outputs( self.obj, outputs=new_outputs, infer_shapes=True) if new_opset is not None: self.obj = overwrite_opset(self.obj, new_opset) if device is not None and runtime != 'onnxruntime1': raise ValueError( "Incompatible values, device can be specified with " "runtime 'onnxruntime1', not %r." % runtime) self.runtime = runtime self.skip_run = skip_run self.input_inplace = input_inplace self.inplace = inplace self.force_target_opset = target_opset self.runtime_options = runtime_options self.inside_loop = inside_loop self.static_inputs = static_inputs self.device = device self._init() def __getstate__(self): """ To pickle the object. """ return {'onnx': self.obj.SerializeToString(), 'runtime': self.runtime, 'runtime_options': self.runtime_options, 'skip_run': self.skip_run, 'input_inplace': self.input_inplace, 'inplace': self.inplace, 'force_target_opset': self.force_target_opset, 'static_inputs': self.static_inputs, 'inside_loop': self.inside_loop, 'device': self.device} def __setstate__(self, state): """ To unpickle the object. """ onx = state['onnx'] self.obj = load_model(BytesIO(onx)) self.runtime = state['runtime'] self.runtime_options = state['runtime_options'] self.skip_run = state['skip_run'] self.input_inplace = state['input_inplace'] self.inplace = state['inplace'] self.force_target_opset = state['force_target_opset'] self.static_inputs = state['static_inputs'] self.inside_loop = state['inside_loop'] self.device = state['device'] self._init() def _init(self): """ Prepares the instance to deliver predictions. """ self.graph_ = self.to_sequence() if len(self.graph_['sequence']) == 0: raise RuntimeError( # pragma: no cover "No runnable nodes was found in the ONNX graph.") self.outputs_ = self.graph_['outputs'] self.inputs_ = self.graph_['inputs'] for ino in [self.obj.graph.input, self.obj.graph.output]: for xy in ino: shape = xy.type.tensor_type.shape for d in shape.dim: if d.dim_value == 0 and "0" in str(d) and 'dim_param' not in str(d): # d.dim_value returns 0 whether is is 0 or empty. # it may be a parameter as well raise RuntimeError( # pragma: no cover "Wrong ONNX file, one input or output has an empty shape: " "{}.".format(xy)) self.target_opset_ = self.graph_['targets'] if self.force_target_opset is not None: if isinstance(self.force_target_opset, dict): self.target_opset_ = self.force_target_opset # pragma: no cover else: self.target_opset_ = {'': self.force_target_opset} self.ir_version_ = self.graph_['ir_version'] if not self.skip_run: if self.runtime == 'onnxruntime1': # Loads the onnx with onnxruntime as a single file. del self.graph_ from .ops_whole.session import OnnxWholeSession self._whole = OnnxWholeSession( self.obj, self.runtime, self.runtime_options, self.device) self._run = self._run_whole_runtime else: self.sequence_ = self.graph_['sequence'] self.inits_ = self.graph_['inits'] self.statics_ = self.graph_['statics'] dtype = self._guess_input_dtype() variables = self.inits_.copy() for node in self.sequence_: domain = node.onnx_node.domain target_opset = self.target_opset_.get(domain, None) if self.runtime in ('onnxruntime2', 'empty'): node.setup_runtime(self.runtime, variables, self.__class__, target_opset=target_opset, dtype=dtype, domain=domain, ir_version=self.ir_version_, runtime_options=self.runtime_options) else: node.setup_runtime(self.runtime, variables, self.__class__, target_opset=target_opset, domain=domain, ir_version=self.ir_version_, runtime_options=self.runtime_options) if hasattr(node, 'ops_') and hasattr(node.ops_, 'typed_outputs_'): for k, v in node.ops_.typed_outputs_: variables[k] = v self._run = self._run_sequence_runtime if not self.skip_run and self.runtime in ('python', None): self.shapes_ = self._set_shape_inference_runtime() if self.inplace: self.inplaces_ = self._guess_inplace(self.input_inplace) self.exporters_ = OnnxInferenceExport(self) self.to_json = self.exporters_.to_json self.to_dot = self.exporters_.to_dot self.to_python = self.exporters_.to_python self.to_text = self.exporters_.to_text self.to_onnx_code = self.exporters_.to_onnx_code if self.runtime in ('python_compiled', 'python_compiled_debug'): # switch the inference method to the compiled one _, fct, code = self._build_compile_run('debug' in self.runtime) setattr(self, '_run_compiled', fct) setattr(self, '_run_compiled_code', code) self._run = self._run_sequence_runtime_compiled def _run_sequence_runtime_compiled( self, inputs, clean_right_away=False, intermediate=False, verbose=0, node_time=False, yield_ops=None, fLOG=None): """ Executes a compiled version of @see me _run_sequence_runtime, compiled with method @see me _build_compile_run. Every parameter with a default value is ignored. Switch to ``runtime='python'`` to enable those. """ try: return self._run_compiled( # pylint: disable=E1101 inputs, yield_ops=yield_ops) except NameError as e: raise RuntimeError( # pragma: no cover "Unable to compute prediction due to %r. Code:\n%s" "" % (e, print_code( self._run_compiled_code))) from e # pylint: disable=E1101 def _guess_input_dtype(self): for _, v in self.graph_['inputs'].items(): if 'type' not in v: continue # pragma: no cover t = v['type'] if 'elem' not in t: continue if t['elem'] == 'double': return numpy.float64 return numpy.float32 def __str__(self): """ usual """ rows = ['OnnxInference(...)'] if hasattr(self, '_run_compiled_code'): rows.append( textwrap.indent( self._run_compiled_code, ' ')) # pylint: disable=E1101 else: rows.append(textwrap.indent(str(self.obj), ' ')) return "\n".join(rows) def __repr__(self): """ usual """ return "OnnxInference(...)" # pragma: no cover def check_model(self): """ Checks the model follow :epkg:`ONNX` conventions. """ checker.check_model(self.obj) def shape_inference(self): """ Infers the shape of the outputs with :epkg:`onnx` package. @return A new :epkg:`ONNX` graph which defined outputs. """ return shape_inference.infer_shapes(self.obj) @property def input_names(self): """ Returns the names of all inputs. It does not include the optional inputs. .. versionchanged:: 0.6 The list does not include optional inputs anymore. """ inits = set(_.name for _ in self.obj.graph.initializer) return [_.name for _ in self.obj.graph.input if _.name not in inits] @property def input_names_shapes(self): """ Returns the names and shapes of all inputs. This method assumes all inputs are tensors. It does not include the optional inputs. .. versionchanged:: 0.6 The list does not include optional inputs anymore. """ names = set(self.input_names) return [(_.name, _var_as_dict(_)['type']['shape']) for _ in self.obj.graph.input if _.name in names] @staticmethod def _get_type_property(info, prop): if prop in info: return info[prop] if 'kind' in info and info['kind'] == 'sequence': if prop == 'shape': return ('?', ) raise NotImplementedError( "Unable to retrieve property %r from %r." "" % (prop, info)) @property def input_names_shapes_types(self): """ Returns the names, shapes, types of all inputs. This method assumes all inputs are tensors. It does not include the optional inputs. .. versionchanged:: 0.6 The list does not include optional inputs anymore. """ f = OnnxInference._get_type_property names = set(self.input_names) return [(_.name, f(_var_as_dict(_)['type'], 'shape'), 'tensor(%s)' % f(_var_as_dict(_)['type'], 'elem')) for _ in self.obj.graph.input if _.name in names] @property def output_names(self): """ Returns the names of all outputs. """ return [_.name for _ in self.obj.graph.output] @property def output_names_shapes(self): """ Returns the names and shapes of all outputs. This method assumes all inputs are tensors. """ f = OnnxInference._get_type_property return [(_.name, f(_var_as_dict(_)['type'], 'shape')) for _ in self.obj.graph.output] @property def output_names_shapes_types(self): """ Returns the names, shapes, types of all outputs. This method assumes all inputs are tensors. It does not include the optional outputs. .. versionadd:: 0.7 """ names = set(self.output_names) f = OnnxInference._get_type_property return [(_.name, f(_var_as_dict(_)['type'], 'shape'), 'tensor(%s)' % f(_var_as_dict(_)['type'], 'elem')) for _ in self.obj.graph.output if _.name in names] def global_index(self, name): """ Maps every name to one integer to avoid using dictionaries when running the predictions. @param name outputs name @return integer """ if not hasattr(self, '_global_index'): self._global_index = {} if name in self._global_index: return self._global_index[name] self._global_index[name] = len(self._global_index) return self._global_index[name] def to_sequence(self): """ Produces a graph to facilitate the execution. One example: .. exref:: :title: Convert ONNX into graph An example on how to convert an :epkg:`ONNX` graph into a graph. .. runpython:: :showcode: :warningout: DeprecationWarning import pprint import numpy from skl2onnx.algebra.onnx_ops import OnnxLinearRegressor from skl2onnx.common.data_types import FloatTensorType from mlprodict.onnxrt import OnnxInference pars = dict(coefficients=numpy.array([1., 2.]), intercepts=numpy.array([1.]), post_transform='NONE') onx = OnnxLinearRegressor('X', output_names=['Y'], **pars) model_def = onx.to_onnx({'X': pars['coefficients'].astype(numpy.float32)}, outputs=[('Y', FloatTensorType([1]))], target_opset=12) oinf = OnnxInference(model_def) pprint.pprint(oinf.to_sequence()) See an example of representation in notebook :ref:`onnxvisualizationrst`. """ inits = {} variables = {} outputs = {} nodes = {} statics = {} targets = {} for o in self.obj.opset_import: targets[o.domain] = o.version # static variables if self.static_inputs is not None: for n in self.static_inputs: statics[n] = {'name': n} self.global_index(n) # inputs for obj in self.obj.graph.input: variables[obj.name] = _var_as_dict(obj) self.global_index(obj.name) # outputs for obj in self.obj.graph.output: if hasattr(obj, 'type') and str(obj.type) != '': outputs[obj.name] = _var_as_dict(obj) else: outputs[obj.name] = {'name': obj.name} self.global_index(obj.name) # initializer for obj in self.obj.graph.initializer: init_obj = _var_as_dict(obj) if init_obj is None: raise RuntimeError( # pragma: no cover "Unable to convert an initializer\n{}".format(obj)) inits[obj.name] = init_obj self.global_index(obj.name) if 'value' not in inits[obj.name]: raise RuntimeError( # pragma: no cover "One initializer has no value: '{}'\n{}\n{}".format( obj.name, inits[obj.name], obj)) # nodes for node in self.obj.graph.node: dobj = _var_as_dict(node) if dobj is None: raise RuntimeError( # pragma: no cover "Unable to convert a node\n{}".format(node)) if 'atts' in dobj: atts = dobj['atts'] for k, v in atts.items(): if not isinstance(v, dict) or 'value' not in v: raise RuntimeError( # pragma: no cover "A parameter has no (sparse) value '{}' " "for node '{}'\nv={}\ndobj=[{}]".format( k, node.name, v, node)) if node.name in nodes: # pragma: no cover i = 2 while True: new_name = "%s_n%i" % (node.name, i) if new_name not in nodes: break i += 1 else: new_name = node.name nodes[new_name] = OnnxInferenceNode(node, dobj, self.global_index) # names names = {} for k, v in statics.items(): if (k, 0) in names: raise RuntimeError( # pragma: no cover "Static variables '{}' already exists (tag='{}').".format( k, names[k, 0][0])) names[k, 0] = ('S', v) for k, v in inits.items(): if (k, 0) in names: raise RuntimeError( # pragma: no cover "Initializer '{}' already exists (tag='{}').".format( k, names[k, 0][0])) names[k, 0] = ('C', v) for k, v in variables.items(): if (k, 0) in names: if k in inits: # Kind of default value for an input continue raise RuntimeError( # pragma: no cover "Variable '{}' already exists (tag='{}').".format( k, names[k, 0][0])) names[k, 0] = ('I', v) for k, v in outputs.items(): if (k, 0) in names and self.runtime != 'empty': if not self.inside_loop or names[k, 0][0] != 'I': raise RuntimeError( # pragma: no cover "Output '{}' already exists (tag='{}').".format( k, names[k, 0][0])) else: # For input, output sharing the same name, we marked the name # as an input. continue names[k, 0] = ('O', v) for k, v in nodes.items(): if (k, 1) in names: raise RuntimeError( # pragma: no cover "Node '{}' already exists (tag='{}'). " "Use inside_loop=True to bypass this exception.".format( k, names[k, 0][0])) names[k, 1] = ('N', v) # ordering order = {} modif = 1 intermediate = {} while modif > 0: modif = 0 for (k, _), v in names.items(): if (k, 1) in order: # The operator node is already processed. continue if v[0] in {'I', 'C', 'S'}: if (k, 0) not in order: order[k, 0] = len(order) # A data node. modif += 1 continue if v[0] == 'O': continue if all((inp, 0) in order for inp in v[1].inputs): # If all inputs are available, # We tell the operator node is processed. order[k, 1] = len(order) modif += 1 for o in v[1].outputs: if (o, 0) in order: raise RuntimeError( # pragma: no cover "Two nodes share the same output '{}' " "or an operator and an output " "share the same name. " "(node: {}).".format(o, v[1])) # We add a data node. order[o, 0] = len(order) intermediate[o] = None modif += 1 # compute rev = [(v, k[0], k[1]) for k, v in order.items()] rev.sort() sequence = [] for _, name, node_kind in rev: if name not in nodes: continue if node_kind == 0: # It is an output which shares the same name # as a node. continue node = nodes[name] node.set_order(len(sequence)) sequence.append(node) if len(sequence) == 0: raise RuntimeError( # pragma: no cover "No runnable nodes was found in the ONNX graph" "\n--rev--\n{}" "\n--order--\n{}" "\n--nodes--\n{}" "\n---".format( "\n".join([str(_) for _ in names.items()]), "\n".join([str(_) for _ in order.items()]), "\n".join([str(_) for _ in nodes.items()]))) # defines where an intermediare output is not needed last_used = {} for node in sequence: for inp in node.inputs: last_used[inp] = node.order for k, ord in last_used.items(): sequence[ord].add_variable_to_clean(k) results = dict(inits=inits, inputs=variables, outputs=outputs, nodes=nodes, sequence=sequence, intermediate=intermediate, targets=targets, ir_version=self.obj.ir_version, statics=statics) if len(sequence) < len(nodes): # Not all node will be executed. raise RuntimeError( # pragma: no cover "Unable to run all nodes.\n--Nodes--\n%s\n--Sequence--\n%s" "\n--Inputs--\n%s\n--Inits--\n%s\n--Statics\n%s" "" % (pprint.pformat(nodes), pprint.pformat(sequence), pprint.pformat(list(variables)), pprint.pformat(list(inits)), pprint.pformat(list(statics)))) return results def run(self, inputs, clean_right_away=False, intermediate=False, verbose=0, node_time=False, overwrite_types=None, yield_ops=None, fLOG=None): """ Computes the predictions for this :epkg:`onnx` graph. :param inputs: inputs as dictionary or a dataframe :param clean_right_away: clean the intermediate outputs as soon as they are not needed :param intermediate: returns a dictionary of intermediate variables instead of the results only :param verbose: display information while predicting :param node_time: measure time of each node :param overwrite_types: shape inference does not work all the time, this allows to force types when building intermediate results, see @see fn select_model_inputs_outputs :param yield_ops: dictionary to overwrite the output of operator *YieldOp* :param fLOG: logging function if *verbose > 0* :return: outputs as dictionary and a second dictionary of the time spent in each node if *node_time* is True .. exref:: :title: Computes predictions with any runtime The following example compares predictions between :epkg:`scikit-learn` and this runtime for the python runtime. .. runpython:: :showcode: :warningout: DeprecationWarning import numpy from sklearn.linear_model import LinearRegression from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from mlprodict.onnxrt import OnnxInference from mlprodict.onnx_conv import to_onnx iris = load_iris() X, y = iris.data, iris.target X_train, X_test, y_train, _ = train_test_split(X, y) clr = LinearRegression() clr.fit(X_train, y_train) exp = clr.predict(X_test[:5]) print(exp) model_def = to_onnx(clr, X_train.astype(numpy.float32), target_opset=12) oinf = OnnxInference(model_def) y = oinf.run({'X': X_test[:5]}) print(y) The function returns all intermediate outputs if *intermediate* is True. In case of runtime *onnxruntime1*, if intermediate is True, the first class builds all :epkg:`ONNX` cut out to keep the one output and converted into *OnnxInference*. .. versionchanged:: 0.8 Parameter *yield_ops* was added. """ def retype(col_array): if (hasattr(col_array, 'categories') and hasattr(col_array, 'from_codes')): # isinstance(col_array, pandas.Categorical): return col_array.astype(numpy.int64) return col_array if hasattr(inputs, 'columns') and hasattr(inputs, 'iloc'): # == isinstance(inputs, pandas.DataFrame) inputs = OrderedDict(( name, retype(numpy.expand_dims(inputs[name].values, axis=1))) for name in inputs.columns) if intermediate: if self.inplace: raise RuntimeError( # pragma: no cover "inplace must be False if intermediate is True, a container " "might be used by several nodes.") return self._run(inputs, clean_right_away=False, intermediate=intermediate, verbose=verbose, node_time=node_time, overwrite_types=overwrite_types, yield_ops=yield_ops, fLOG=fLOG) if overwrite_types is not None: raise RuntimeError( # pragma: no cover "overwrite_types is not used if intermediate is False.") return self._run(inputs, clean_right_away=False, intermediate=intermediate, verbose=verbose, node_time=node_time, yield_ops=yield_ops, fLOG=fLOG) def run2onnx(self, inputs, verbose=0, fLOG=None, as_parameter=True, suffix='_DBG', param_name=None, node_type='DEBUG', domain='DEBUG', domain_opset=1): """ Executes the graphs with the given inputs, then adds the intermediate results into ONNX nodes in the original graph. Once saved, it can be looked with a tool such as :epkg:`netron`. :param inputs: inputs as dictionary or a dataframe :param verbose: display information while predicting :param fLOG: logging function if *verbose > 0* :param as_parameter: add new nodes with results as one parameter (True) or as initializer (False) :param suffix: suffix to add to new results :param param_name: name of the parameter to add (by default the result name), it can be a function `param_name(reult_name) -> parameter_name` :param node_type: type of the new node :param domain: domain the new node :param domain_opset: opset for *domain* :return: outputs as dictionary and the onnx graph with new nodes The following example shows how to use it. .. gdot:: :script: DOT-SECTION from sklearn.linear_model import LinearRegression from sklearn.datasets import load_iris from mlprodict.onnxrt import OnnxInference import numpy iris = load_iris() X = iris.data[:, :2] y = iris.target lr = LinearRegression() lr.fit(X, y) from mlprodict.onnx_conv import to_onnx model_onnx = to_onnx(lr, X.astype(numpy.float32)) oinf = OnnxInference(model_onnx, inplace=False) model_onnx_debug = oinf.run2onnx({'X': X[:3].astype(numpy.float32)}) oinf_debug = OnnxInference(model_onnx_debug[1]) print("DOT-SECTION", oinf_debug.to_dot()) .. versionadded:: 0.7 """ intermediate = self.run(inputs, verbose=verbose, fLOG=fLOG, intermediate=True) for name in self.input_names: del intermediate[name] new_onx = insert_results_into_onnx( self.obj, intermediate, as_parameter=as_parameter, suffix=suffix, param_name=param_name, node_type=node_type, domain=domain, domain_opset=domain_opset) return intermediate, new_onx def display_sequence(self, verbose=1): """ Shows the sequence of nodes to run if ``runtime=='python'``. """ rows = [] rows.append("#node: {}".format(len(self.sequence_))) for i, node in enumerate(self.sequence_): if verbose >= 1: rows.append("{}: {}".format(i, str(node))) return "\n".join(rows) def _run_sequence_runtime(self, inputs, clean_right_away=False, intermediate=False, verbose=0, node_time=False, overwrite_types=None, yield_ops=None, fLOG=None): if overwrite_types is not None: raise NotImplementedError( # pragma: no cover "overwrite_types != None not implemented.") if clean_right_away: raise NotImplementedError( # pragma: no cover "clean_right_away=true not implemented.") if node_time: mtime = [] if verbose >= 1 and fLOG is not None: printed = set() if hasattr(self, "_values_init"): values = self._values_init.copy() # pylint: disable=E0203 else: values = [None] * len(self._global_index) if verbose >= 1 and fLOG is not None: for k, v in self.inits_.items(): values[self._global_index[k]] = v['value'] if verbose < 3: fLOG("+ki='{}': {} (dtype={} min={} max={})".format( k, v['value'].shape, v['value'].dtype, numpy_min(v['value']), numpy_max(v['value']))) else: fLOG("+ki='{}': {} (dtype={} min={} max={}\n{}".format( k, v['value'].shape, v['value'].dtype, numpy_min(v['value']), numpy_max(v['value']), v['value'])) printed.add(k) else: for k, v in self.inits_.items(): values[self._global_index[k]] = v['value'] # stores the array to skip initialing a second time if verbose == 0 or fLOG is None: self._values_init = values.copy() for name, value in inputs.items(): values[self._global_index[name]] = value if verbose == 0 or fLOG is None: if node_time: for i, node in enumerate(self.sequence_): if yield_ops is not None and node.onnx_node.op_type == 'YieldOp': out = node.onnx_node.output[0] if out in yield_ops: values[out] = yield_ops[out] continue raise RuntimeError( # pragma: no cover "YieldOp output %r could not be found in " "yield_ops: %r (node=%r)." % ( out, list(sorted(yield_ops)), node.onnx_node)) t = perf_counter() node.run(values) t2 = perf_counter() mtime.append(dict(i=i, name=node.onnx_node.name, op_type=node.onnx_node.op_type, time=t2 - t)) else: for node in self.sequence_: node.run(values) else: def dispsimple(arr): if hasattr(arr, 'shape'): if len(arr.shape) <= 1: threshold = 8 else: threshold = min( 50, min(50 // max(arr.shape[1], 1), 8) * arr.shape[1]) if hasattr(arr, 'todense'): fLOG( # pragma: no cover numpy.array2string(arr.todense(), max_line_width=120, suppress_small=True, threshold=threshold)) else: fLOG(numpy.array2string(arr, max_line_width=120, suppress_small=True, threshold=threshold)) else: # pragma: no cover s = str(arr) if len(s) > 50: s = s[:50] + "..." fLOG(s) if verbose >= 2: for k in sorted(self._global_index): if values[self._global_index[k]] is None: continue obj = values[self._global_index[k]] if k not in printed: printed.add(k) if hasattr(obj, 'shape'): fLOG("-kv='{}' shape={} dtype={} min={} max={}{}".format( k, obj.shape, obj.dtype, numpy_min(obj), numpy_max(obj), ' (sparse)' if isinstance(obj, coo_matrix) else '')) elif (isinstance(obj, list) and len(obj) > 0 and not isinstance(obj[0], dict)): # pragma: no cover fLOG("-kv='{}' list len={}".format(k, len(obj))) if verbose >= 3 and len(obj) > 0: fLOG("first={} last={}".format( obj[0], obj[-1])) else: # pragma: no cover fLOG("-kv='{}' type={}".format(k, type(obj))) keys = set(k for k in range(len(values)) if values[k] is not None) if verbose >= 1: fLOG("-- OnnxInference: run {} nodes".format(len(self.sequence_))) for i, node in enumerate(self.sequence_): if verbose >= 1: fLOG(node) if yield_ops is not None and node.onnx_node.op_type == 'YieldOp': out = node.onnx_node.output[0] if out in yield_ops: fLOG("+yo=%r" % out) values[node.outputs_indices[0]] = yield_ops[out] else: raise RuntimeError( # pragma: no cover "YieldOp output %r could not be found in " "yield_ops: %r (node=%r)." % ( out, list(sorted(yield_ops)), node.onnx_node)) elif node_time: t = perf_counter() node.run(values) t2 = perf_counter() mtime.append(dict(i=i, name=node.onnx_node.name, op_type=node.onnx_node.op_type, time=t2 - t)) else: node.run(values) added = 0 for k in range(len(values)): # pylint: disable=C0200 if values[k] is None: continue if k not in keys and k not in printed: added += 1 printed.add(k) name = list( name for name in self._global_index # pylint: disable=C0206 if self._global_index[name] == k) if isinstance(values[k], (numpy.ndarray, coo_matrix)): name = name[0] mini = numpy_min(values[k]) maxi = numpy_max(values[k]) fLOG("+kr{}'{}': {} (dtype={} min={} max={}{})".format( "=" if len(values[k].shape) == 0 or min( values[k].shape) > 0 else "*", name, values[k].shape, values[k].dtype, mini, maxi, ' sparse' if isinstance(values[k], coo_matrix) else '')) if verbose >= 3: dispsimple(values[k]) else: fLOG("+kr='{}': {}".format( name, type(values[k]))) if verbose >= 3: # pragma: no cover dispsimple(values[k]) if added == 0: fLOG("? no new result") # pragma: no cover if intermediate: values = [(v, k, values[v]) for k, v in self._global_index.items()] values.sort() values = OrderedDict((k, v) for _, k, v in values) return (values, mtime) if node_time else values try: res = {k: values[self._global_index[k]] for k in self.outputs_} except KeyError as e: # pragma: no cover raise RuntimeError("Unable to find one output [{}]\n in [{}]" ".".format(", ".join(sorted(self.outputs_)), ", ".join(sorted(values)))) from e return (res, mtime) if node_time else res def build_intermediate(self, outputs=None, verbose=0, overwrite_types=None, fLOG=None): """ Builds every possible :epkg:`ONNX` file which computes one specific intermediate output from the inputs. :param outputs: subsets of outputs to get, None to get all outputs, :param overwrite_types: shape inference does not work all the time, this allows to force types when building intermediate results, see @see fn select_model_inputs_outputs :param verbose: displays intermediate information :param fLOG: logging function :return: :epkg:`*py:collections:OrderedDict` .. versionchanged: 0.6 """ if verbose > 0: fLOG('[build_intermediate] BEGIN.') if outputs is not None: if isinstance(outputs, str): outputs = [outputs] if not isinstance(outputs, set): outputs = set(outputs) ord = OrderedDict() for output in enumerate_model_node_outputs(self.obj, order=True): if outputs is not None and output not in outputs: continue subonx = select_model_inputs_outputs( self.obj, outputs=output, infer_shapes=True, overwrite=overwrite_types) subonx = onnx_remove_node_unused(subonx) if verbose > 0: fLOG( # pragma: no cover '[build_intermediate] + {}'.format(output)) ord[output] = OnnxInference(subonx, runtime=self.runtime, skip_run=self.skip_run, runtime_options=self.runtime_options, inplace=self.inplace, input_inplace=self.input_inplace) if verbose > 0: fLOG( # pragma: no cover '[build_intermediate] END.') return ord def _run_whole_runtime(self, inputs, clean_right_away=False, intermediate=False, verbose=0, node_time=False, overwrite_types=None, yield_ops=None, fLOG=None): # node_time is unused if clean_right_away: raise RuntimeError( # pragma: no cover "clean_right_away=true does not work with this runtime.") if intermediate: if hasattr(self, "intermediate_onnx_inference_"): inter_run = self.intermediate_onnx_inference_ # pylint: disable=E0203 else: if verbose > 0: fLOG( # pragma: no cover "-- OnnxInference: build intermediate") inter_run = self.build_intermediate( verbose=verbose, fLOG=fLOG, overwrite_types=overwrite_types) self.intermediate_onnx_inference_ = inter_run graph = self.to_sequence() self.inits_ = graph['inits'] if verbose >= 1: fLOG( # pragma: no cover "-- OnnxInference: run {} nodes".format( len(self.intermediate_onnx_inference_))) values = OrderedDict(inputs) for k, v in self.inits_.items(): values[k] = v['value'] if verbose >= 2: # pragma: no cover for k in sorted(values): fLOG("-k='{}' shape={} dtype={}".format( k, values[k].shape, values[k].dtype)) for node, oinf in self.intermediate_onnx_inference_.items(): if verbose >= 4: # pragma: no cover fLOG('[intermediate] %r' % node) if verbose >= 5: # pragma: no cover fLOG(oinf.obj) if yield_ops is not None and node.onnx_node.op_type == 'YieldOp': out = node.onnx_node.output[0] if out in yield_ops: values[out] = yield_ops[out] continue raise RuntimeError( # pragma: no cover "YieldOp output %r could not be found in " "yield_ops: %r (node=%r)." % ( out, list(sorted(yield_ops)), node.onnx_node)) output = oinf.run(inputs)[node] values[node] = output if verbose >= 1: if verbose >= 4: # pragma: no cover for k, v in inputs.items(): if isinstance(output, numpy.ndarray): fLOG("-i='{}': {} (dtype={}) {}".format( k, v.shape, v.dtype, v.ravel().tolist())) else: fLOG("-i='{}': {} (dtype={}) - ?".format( k, v.shape, v.dtype)) if isinstance(output, numpy.ndarray): fLOG("+k='{}': {} (dtype={})".format( node, output.shape, output.dtype)) if verbose >= 2: # pragma: no cover fLOG(output) else: fLOG("+k='{}': {}".format( # pragma: no cover node, type(output))) if verbose >= 2: # pragma: no cover fLOG(output) return values if verbose != 0: warnings.warn( "verbose option not implemented if runtime is 'onnxruntime1'") res = self._whole.run(inputs) return {k: v for k, v in zip(self.outputs_, res)} def __getitem__(self, item): """ Returns the ONNX verions of a node. """ if isinstance(item, tuple): node_name, att_name = item else: node_name = item att_name = None node_ = None for node in self.obj.graph.node: if node.name == node_name: node_ = node break if node_ is None: raise IndexError( # pragma: no cover "Unable to get node name '{}'.\n{}".format( node_name, "\n".join(node.name for node in self.obj.graph.node))) if att_name is None: return node_ for att in node_.attribute: if att.name == att_name: return att raise IndexError( # pragma: no cover "Unable to find attribute '{}' from node " "'{}'.".format(att_name, node_name)) def switch_initializers_dtype(self, model=None, dtype_in=numpy.float32, dtype_out=numpy.float64): """ Switches all initializers to ``numpy.float64``. If *model* is None, a simple cast is done. Otherwise, the function assumes the model is a :epkg:`scikit-learn` pipeline. This only works if the runtime is ``'python'``. @param model :epkg:`scikit-learn` model or None @param dtype_in previous type @param dtype_out next type @return done operations """ from ..onnx_tools.optim.sklearn_helper import enumerate_fitted_arrays, pairwise_array_distances if self.runtime != 'python': # pragma: no cover raise RuntimeError("Initializers can be casted only if the " "runtime is 'python' not '{}'.".format(self.runtime)) if hasattr(self, '_values_init'): del self._values_init # first pass: simple cast done = [] initializer = self.inits_ for k, v in initializer.items(): if isinstance(v['value'], numpy.ndarray): if v['value'].dtype == dtype_in: v['value'] = v['value'].astype(dtype_out) done.append(("pass1", "+", "init", k, v['value'])) else: done.append(("pass1", "-", "init", k, v['value'])) # pragma: no cover for k, v in self.graph_['nodes'].items(): res = v.switch_initializers_dtype(dtype_in=dtype_in, dtype_out=dtype_out) for r in res: done.append(("pass1", "node", k) + r) for k, v in self.graph_['intermediate'].items(): if v is None: continue res = v.switch_initializers_dtype(dtype_in=dtype_in, dtype_out=dtype_out) for r in res: done.append(("pass1", "sub", k) + r) if model is not None: # Second pass, we compare all arrays from the model # to the arrays in the converted models. def dist(a): cast = a.astype(dtype_in).astype(dtype_out) d = pairwise_array_distances([cast], [a])[0, 0] return d done_ = [(c, c[-1]) for c in done] moda_ = [(a, a[-2][-1]) for a in enumerate_fitted_arrays(model) if dist(a[-2][-1]) > 0] aconv = [_[-1] for _ in done_] amoda = [_[-1] for _ in moda_] distances = pairwise_array_distances(aconv, amoda) for i in range(distances.shape[0]): j = numpy.argmin(distances[i]) d = distances[i, j] if d < 0.1: numpy.copyto(aconv[i], amoda[j]) done.append(("pass2", d) + done_[i][0]) return done def _set_shape_inference_runtime(self): """ Set shapes based on shape inference relying on the runtime. The values are stored in every node. """ if not hasattr(self, 'sequence_') or not hasattr(self, 'inputs_'): raise RuntimeError( # pragma: no cover "This method only works if the runtime is 'python' not " "'{}'.".format(self.runtime)) values = OrderedDict() for k, v in self.inputs_.items(): # The function assumes the first dimension is unknown # and is the batch size. try: values[k] = ShapeObject(v, use_n1=True, name=k) except TypeError as e: # pragma: no cover raise TypeError( "Unable to guess shape for %r (shape=%r)." % (k, v)) from e impossible = False for k, v in self.statics_.items(): # static inputs should be known. if k not in values: try: values[k] = ShapeObject(v) except TypeError: # default value is wrong impossible = True values[k] = None for k, v in self.inits_.items(): values[k] = ShapeObject(v['value'], name=k) last = None for i, node in enumerate(self.sequence_): try: s = node._set_shape_inference_runtime(values) last = s except (IndexError, TypeError, KeyError, AttributeError) as e: # pragma: no cover rows = [] if last is not None: for k, v in last.items(): rows.append("{}: {}".format(k, v)) for k in range(i + 1): rows.append("{} --> {}".format(k, self.sequence_[k])) if not impossible: raise RuntimeError("Unable to infer shape of node {}\n{}".format( i, '\n'.join(rows))) from e return values def infer_shapes(self): """ Computes expected shapes. :return: dictionary of shapes """ return self._set_shape_inference_runtime() def _set_type_inference_runtime(self): """ Set types based on type inference relying on the runtime. The values are stored in every node. """ if not hasattr(self, 'sequence_') or not hasattr(self, 'inputs_'): raise RuntimeError( # pragma: no cover "This method only works if the runtime is 'python' not " "'{}'.".format(self.runtime)) values = OrderedDict() for k, v in self.statics_.items(): values[k] = None for k, v in self.inputs_.items(): # The function assumes the first dimension is unknown # and is the batch size. if isinstance(v['type']['elem'], dict): # sequence values[k] = SequenceType() else: values[k] = guess_numpy_type_from_string(v['type']['elem']) for k, v in self.inits_.items(): values[k] = v['value'].dtype last = None for i, node in enumerate(self.sequence_): try: s = node._set_type_inference_runtime(values) last = s except IndexError as e: # pragma: no cover rows = [] if last is not None: for k, v in last.items(): rows.append("{}: {}".format(k, v)) for k in range(i + 1): rows.append("{} --> {}".format(k, self.sequence_[k])) raise RuntimeError("Unable to infer type of node {}\n{}".format( i, '\n'.join(rows))) from e return values def infer_types(self): """ Computes expected shapes. :return: dictionary of types """ return self._set_type_inference_runtime() def _set_size_inference_runtime(self, inputs, context=None): """ Set sizes allocated during inference relying on the runtime. The values are stored in every node. """ if not hasattr(self, 'sequence_') or not hasattr(self, 'inputs_'): raise RuntimeError( # pragma: no cover "This method only works if the runtime is 'python' not " "'{}'.".format(self.runtime)) values = OrderedDict() for k, v in self.statics_.items(): if context is None: raise RuntimeError( # pragma: no cover "static variable but context is None.") values[k] = context[k] for k, v in self.inits_.items(): values[k] = v['value'] for k, v in self.inputs_.items(): if k in inputs: values[k] = inputs[k] last = None for i, node in enumerate(self.sequence_): try: s = node._set_size_inference_runtime(values) last = s except IndexError as e: # pragma: no cover rows = [] if last is not None: for k, v in last.items(): rows.append("{}: {}".format(k, v)) for k in range(i + 1): rows.append("{} --> {}".format(k, self.sequence_[k])) raise RuntimeError("Unable to infer size of node {}\n{}".format( i, '\n'.join(rows))) from e return values def infer_sizes(self, inputs, context=None): """ Computes expected sizes. :param inputs: inputs as a dictionary :return: dictionary of dictionary of sizes """ res = self._set_size_inference_runtime(inputs, context=context) return {k: v for k, v in res.items() if k.startswith('#')} def _guess_inplace(self, input_inplace=False): """ Looks into every node of the graph to see if there is a way to do the computation inplace. By default (*input_inplace=False*), the function assumes inputs cannot be modified so the first node cannot do inplace computation. This function only works with the python runtime. @param input_inplace the computation is allowed to overwrite the input This function checks that one node is used only once and then can be modified by the next node. Nodes `A`, `C` can be overwritten by the computation. Node `B` cannot as it is used by two nodes. .. blockdiag:: diagram { A -> B -> C -> E; B -> D; } It does not handle specific case such node `B` being overwritten by node `C` but without changing its shape and node `D` only needs the shape of `B`. Then `B` could be overwritten as well. """ forbid = {} values = OrderedDict() for k in self.statics_: values[k] = dict(inplace=False, to=[], fr=[]) for k in self.inputs_: values[k] = dict(inplace=input_inplace, to=[], fr=[]) for k in self.inits_: values[k] = dict(inplace=False, to=[], fr=[]) for node in self.sequence_: for n in node.inputs: values[n]['to'].append(node) for n in node.outputs: if node.op_type == 'Constant': # We cannot modify constant. forbid[n] = node if n not in values: values[n] = dict(inplace=None, to=[], fr=[]) values[n]['fr'].append(node) # checks the number of outputs outputs = set(self.output_names) modif = 1 while modif > 0: modif = 0 for n, v in values.items(): if v['inplace'] is not None: continue if n in forbid: continue if len(v['to']) == 1: v['inplace'] = True modif += 1 # convey the information to every node inplaces = {} for n, v in values.items(): if v['inplace']: inplaces[n] = v for node in v['to']: if n in outputs: continue node.enable_inplace_compute(n) return inplaces def _build_compile_run(self, debug=False): """ Rewrite the run function in python, compiles it, and adds it as a method. @param debug insert debugging code @return method name, callable object .. exref:: :title: Run a model with runtime 'python_compiled' The following code trains a model and compute the predictions with runtime ``'python_compiled'``. It converts the onnx graph into a python function which calls every operator. Its code is printed below. .. runpython:: :showcode: :warningout: DeprecationWarning import numpy from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from skl2onnx import to_onnx from mlprodict.onnxrt import OnnxInference iris = load_iris() X, y = iris.data, iris.target X_train, X_test, y_train, __ = train_test_split(X, y, random_state=11) y_train = y_train.astype(numpy.float32) clr = AdaBoostClassifier( base_estimator=DecisionTreeClassifier(max_depth=3), n_estimators=3) clr.fit(X_train, y_train) model_def = to_onnx(clr, X_train.astype(numpy.float32), target_opset=12) oinf2 = OnnxInference(model_def, runtime='python_compiled') print(oinf2.run({'X': X_test[:5]})) # prints out the python function equivalent # to the onnx graph print(oinf2) """ def clean_name(name): return name.replace(":", "_").replace('.', '_').replace('/', '_') # inits inputs = self.input_names code = ['def compiled_run(dict_inputs, yield_ops=None):'] code.append(" if yield_ops is not None:") code.append( " raise NotImplementedError('yields_ops should be None.')") if debug: code.append(" printed = {}") context = {} # static variables for k in sorted(self.statics_): code.append(" # static: {0}".format(k)) code.append(" {0} = dict_inputs['{1}']".format( clean_name(k), k)) if debug: code.append( " debug_print('i.{0}', {1}, printed)".format( clean_name(k), k)) # initializers for k, v in sorted(self.inits_.items()): if k.startswith("_OPT_"): raise RuntimeError( # pragma: no cover "The runtime cannot handle any constant name " "starting with '_OPT_': '{}'.".format(k)) if k in inputs: context["_OPT_" + clean_name(k)] = v['value'] code.append(" # init: _OPT_{0} ({1})".format( clean_name(k), k)) if debug: code.append( " debug_print('c.[_OPT_{0}]', _OPT_{1}, printed)".format( clean_name(k), k)) else: context[clean_name(k)] = v['value'] code.append(" # init: {0} ({1})".format( clean_name(k), k)) if debug: code.append( " debug_print('c.[{0}]', {1}, printed)".format( clean_name(k), k)) # method signature code.append(" # inputs") for inp in inputs: if '_OPT_' + inp in context: # optional inputs code.append( " {0} = dict_inputs.get('{1}', _OPT_{0})".format( clean_name(inp), inp)) else: code.append(" {0} = dict_inputs['{1}']".format( clean_name(inp), inp)) if debug: code.append( " debug_print('i.{0}', {1}, printed)".format( clean_name(inp), inp)) # code for i, node in enumerate(self.sequence_): name = "n{}_{}".format(i, node.ops_.__class__.__name__.lower()) context[name] = node.ops_._run if (node.ops_.__class__.__name__ == 'Loop' and node.ops_.need_context()): # Adding context. ctx = "{%s}" % ", ".join( "'%s': %s" % (n, n) for n in node.ops_.additional_inputs) code.append(' ({1}, ) = {2}({0}, context={3})'.format( ', '.join(map(clean_name, node.inputs)), ', '.join(map(clean_name, node.outputs)), name, ctx)) else: code.append(' ({1}, ) = {2}({0})'.format( ', '.join(map(clean_name, node.inputs)), ', '.join(map(clean_name, node.outputs)), name)) if debug: code.append(" print('''# {}''')".format(code[-1][4:])) for o in node.outputs: code.append( " debug_print('o.{0}', {1}, printed)".format( clean_name(o), o)) # return code.append(' return {') for out in self.output_names: code.append(" '{1}': {0},".format( clean_name(out), out)) code.append(' }') final_code = '\n'.join(code) # compile the outcome context['self'] = self try: obj = compile(final_code, "<string>", 'exec') except SyntaxError as e: # pragma: no cover raise SyntaxError( "Unable to compile\n#####\n{}".format(final_code)) from e fcts_obj = [_ for _ in obj.co_consts if _ is not None and not isinstance(_, (bool, str, int))] fct = make_callable( "compiled_run", fcts_obj[0], final_code, context, debug) # end return "compiled_run", fct, final_code def reduce_size(self, pickable=False): """ Reduces the memory footprint as much as possible. @param pickable keeps a pickle object? """ import gc del self.graph_ if not pickable: del self.obj if self.runtime in ('python_compiled', 'python_compiled_debug'): del self.sequence_ gc.collect() def get_profiling(self, as_df=False): """ Returns the profiling after a couple of execution. :param as_df: return the results as a dataframe (True) :return: dataframe or list of dictionaries .. versionadded:: 0.6 """ if (self.runtime_options is None or not self.runtime_options.get('enable_profiling', False)): raise RuntimeError( "Profiling is available if options 'enable_profiling' " "is set to true in 'runtime_options' but is %r." % self.runtime_options) prof = None if hasattr(self, '_whole'): prof = self._whole.get_profiling() if prof is None: raise NotImplementedError( # pragma: no cover "profiling is only implemented for runtime 'onnxruntime1'.") if as_df: import pandas return pandas.DataFrame(prof) return prof def get_execution_order(self): """ This function returns a dictionary `{(kind, name): (order, op)}`, *name* can be a node name or a result name. In that case, it gets the execution order than the node which created it. The function returns None if the order is not available (the selected runtime does not return it). *kind* is either `'node'` or `'node'`. If two nodes have the same name, returned order is the last one. Initializers gets an execution order equal to -1, inputs to 0, all others results are >= 1. .. versionadded:: 0.7 """ if not hasattr(self, "sequence_"): return None res = {} for k, v in self.inits_.items(): res['res', k] = (-1, v) for name, shape in self.input_names_shapes: res['res', name] = (0, shape) for i, node in enumerate(self.sequence_): key = ('node', node.onnx_node.name) res[key] = (i + 1, node) for out in node.onnx_node.output: key = ('res', out) if key in res: raise RuntimeError( # pragma: no cover "Output %r of node name %r already registered." "" % (out, node.onnx_node.name)) res[key] = (i + 1, None) return res
the-stack_0_883
from typing import Iterable import re from dbt.clients.jinja import get_rendered from dbt.contracts.graph.parsed import ParsedDocumentation from dbt.node_types import NodeType from dbt.parser.base import Parser from dbt.parser.search import ( BlockContents, FileBlock, BlockSearcher ) SHOULD_PARSE_RE = re.compile(r'{[{%]') class DocumentationParser(Parser[ParsedDocumentation]): @property def resource_type(self) -> NodeType: return NodeType.Documentation @classmethod def get_compiled_path(cls, block: FileBlock): return block.path.relative_path def generate_unique_id(self, resource_name: str) -> str: # because docs are in their own graph namespace, node type doesn't # need to be part of the unique ID. return '{}.{}'.format(self.project.project_name, resource_name) def parse_block( self, block: BlockContents ) -> Iterable[ParsedDocumentation]: unique_id = self.generate_unique_id(block.name) contents = get_rendered(block.contents, {}).strip() doc = ParsedDocumentation( root_path=self.project.project_root, path=block.file.path.relative_path, original_file_path=block.path.original_file_path, package_name=self.project.project_name, unique_id=unique_id, name=block.name, block_contents=contents, ) return [doc] def parse_file(self, file_block: FileBlock): searcher: Iterable[BlockContents] = BlockSearcher( source=[file_block], allowed_blocks={'docs'}, source_tag_factory=BlockContents, ) for block in searcher: for parsed in self.parse_block(block): self.manifest.add_doc(file_block.file, parsed)
the-stack_0_887
#!/usr/bin/env python3 # Copyright (c) 2020-2021 The Eleccoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Functionality to build scripts, as well as signature hash functions. This file is modified from python-eleccoinlib. """ from collections import namedtuple import hashlib import struct import unittest from typing import List, Dict from .key import TaggedHash, tweak_add_pubkey from .messages import ( CTransaction, CTxOut, hash256, ser_string, ser_uint256, sha256, uint256_from_str, ) MAX_SCRIPT_ELEMENT_SIZE = 520 LOCKTIME_THRESHOLD = 500000000 ANNEX_TAG = 0x50 OPCODE_NAMES = {} # type: Dict[CScriptOp, str] LEAF_VERSION_TAPSCRIPT = 0xc0 def hash160(s): return hashlib.new('ripemd160', sha256(s)).digest() def bn2vch(v): """Convert number to eleccoin-specific little endian format.""" # We need v.bit_length() bits, plus a sign bit for every nonzero number. n_bits = v.bit_length() + (v != 0) # The number of bytes for that is: n_bytes = (n_bits + 7) // 8 # Convert number to absolute value + sign in top bit. encoded_v = 0 if v == 0 else abs(v) | ((v < 0) << (n_bytes * 8 - 1)) # Serialize to bytes return encoded_v.to_bytes(n_bytes, 'little') _opcode_instances = [] # type: List[CScriptOp] class CScriptOp(int): """A single script opcode""" __slots__ = () @staticmethod def encode_op_pushdata(d): """Encode a PUSHDATA op, returning bytes""" if len(d) < 0x4c: return b'' + bytes([len(d)]) + d # OP_PUSHDATA elif len(d) <= 0xff: return b'\x4c' + bytes([len(d)]) + d # OP_PUSHDATA1 elif len(d) <= 0xffff: return b'\x4d' + struct.pack(b'<H', len(d)) + d # OP_PUSHDATA2 elif len(d) <= 0xffffffff: return b'\x4e' + struct.pack(b'<I', len(d)) + d # OP_PUSHDATA4 else: raise ValueError("Data too long to encode in a PUSHDATA op") @staticmethod def encode_op_n(n): """Encode a small integer op, returning an opcode""" if not (0 <= n <= 16): raise ValueError('Integer must be in range 0 <= n <= 16, got %d' % n) if n == 0: return OP_0 else: return CScriptOp(OP_1 + n - 1) def decode_op_n(self): """Decode a small integer opcode, returning an integer""" if self == OP_0: return 0 if not (self == OP_0 or OP_1 <= self <= OP_16): raise ValueError('op %r is not an OP_N' % self) return int(self - OP_1 + 1) def is_small_int(self): """Return true if the op pushes a small integer to the stack""" if 0x51 <= self <= 0x60 or self == 0: return True else: return False def __str__(self): return repr(self) def __repr__(self): if self in OPCODE_NAMES: return OPCODE_NAMES[self] else: return 'CScriptOp(0x%x)' % self def __new__(cls, n): try: return _opcode_instances[n] except IndexError: assert len(_opcode_instances) == n _opcode_instances.append(super().__new__(cls, n)) return _opcode_instances[n] # Populate opcode instance table for n in range(0xff + 1): CScriptOp(n) # push value OP_0 = CScriptOp(0x00) OP_FALSE = OP_0 OP_PUSHDATA1 = CScriptOp(0x4c) OP_PUSHDATA2 = CScriptOp(0x4d) OP_PUSHDATA4 = CScriptOp(0x4e) OP_1NEGATE = CScriptOp(0x4f) OP_RESERVED = CScriptOp(0x50) OP_1 = CScriptOp(0x51) OP_TRUE = OP_1 OP_2 = CScriptOp(0x52) OP_3 = CScriptOp(0x53) OP_4 = CScriptOp(0x54) OP_5 = CScriptOp(0x55) OP_6 = CScriptOp(0x56) OP_7 = CScriptOp(0x57) OP_8 = CScriptOp(0x58) OP_9 = CScriptOp(0x59) OP_10 = CScriptOp(0x5a) OP_11 = CScriptOp(0x5b) OP_12 = CScriptOp(0x5c) OP_13 = CScriptOp(0x5d) OP_14 = CScriptOp(0x5e) OP_15 = CScriptOp(0x5f) OP_16 = CScriptOp(0x60) # control OP_NOP = CScriptOp(0x61) OP_VER = CScriptOp(0x62) OP_IF = CScriptOp(0x63) OP_NOTIF = CScriptOp(0x64) OP_VERIF = CScriptOp(0x65) OP_VERNOTIF = CScriptOp(0x66) OP_ELSE = CScriptOp(0x67) OP_ENDIF = CScriptOp(0x68) OP_VERIFY = CScriptOp(0x69) OP_RETURN = CScriptOp(0x6a) # stack ops OP_TOALTSTACK = CScriptOp(0x6b) OP_FROMALTSTACK = CScriptOp(0x6c) OP_2DROP = CScriptOp(0x6d) OP_2DUP = CScriptOp(0x6e) OP_3DUP = CScriptOp(0x6f) OP_2OVER = CScriptOp(0x70) OP_2ROT = CScriptOp(0x71) OP_2SWAP = CScriptOp(0x72) OP_IFDUP = CScriptOp(0x73) OP_DEPTH = CScriptOp(0x74) OP_DROP = CScriptOp(0x75) OP_DUP = CScriptOp(0x76) OP_NIP = CScriptOp(0x77) OP_OVER = CScriptOp(0x78) OP_PICK = CScriptOp(0x79) OP_ROLL = CScriptOp(0x7a) OP_ROT = CScriptOp(0x7b) OP_SWAP = CScriptOp(0x7c) OP_TUCK = CScriptOp(0x7d) # splice ops OP_CAT = CScriptOp(0x7e) OP_SUBSTR = CScriptOp(0x7f) OP_LEFT = CScriptOp(0x80) OP_RIGHT = CScriptOp(0x81) OP_SIZE = CScriptOp(0x82) # bit logic OP_INVERT = CScriptOp(0x83) OP_AND = CScriptOp(0x84) OP_OR = CScriptOp(0x85) OP_XOR = CScriptOp(0x86) OP_EQUAL = CScriptOp(0x87) OP_EQUALVERIFY = CScriptOp(0x88) OP_RESERVED1 = CScriptOp(0x89) OP_RESERVED2 = CScriptOp(0x8a) # numeric OP_1ADD = CScriptOp(0x8b) OP_1SUB = CScriptOp(0x8c) OP_2MUL = CScriptOp(0x8d) OP_2DIV = CScriptOp(0x8e) OP_NEGATE = CScriptOp(0x8f) OP_ABS = CScriptOp(0x90) OP_NOT = CScriptOp(0x91) OP_0NOTEQUAL = CScriptOp(0x92) OP_ADD = CScriptOp(0x93) OP_SUB = CScriptOp(0x94) OP_MUL = CScriptOp(0x95) OP_DIV = CScriptOp(0x96) OP_MOD = CScriptOp(0x97) OP_LSHIFT = CScriptOp(0x98) OP_RSHIFT = CScriptOp(0x99) OP_BOOLAND = CScriptOp(0x9a) OP_BOOLOR = CScriptOp(0x9b) OP_NUMEQUAL = CScriptOp(0x9c) OP_NUMEQUALVERIFY = CScriptOp(0x9d) OP_NUMNOTEQUAL = CScriptOp(0x9e) OP_LESSTHAN = CScriptOp(0x9f) OP_GREATERTHAN = CScriptOp(0xa0) OP_LESSTHANOREQUAL = CScriptOp(0xa1) OP_GREATERTHANOREQUAL = CScriptOp(0xa2) OP_MIN = CScriptOp(0xa3) OP_MAX = CScriptOp(0xa4) OP_WITHIN = CScriptOp(0xa5) # crypto OP_RIPEMD160 = CScriptOp(0xa6) OP_SHA1 = CScriptOp(0xa7) OP_SHA256 = CScriptOp(0xa8) OP_HASH160 = CScriptOp(0xa9) OP_HASH256 = CScriptOp(0xaa) OP_CODESEPARATOR = CScriptOp(0xab) OP_CHECKSIG = CScriptOp(0xac) OP_CHECKSIGVERIFY = CScriptOp(0xad) OP_CHECKMULTISIG = CScriptOp(0xae) OP_CHECKMULTISIGVERIFY = CScriptOp(0xaf) # expansion OP_NOP1 = CScriptOp(0xb0) OP_CHECKLOCKTIMEVERIFY = CScriptOp(0xb1) OP_CHECKSEQUENCEVERIFY = CScriptOp(0xb2) OP_NOP4 = CScriptOp(0xb3) OP_NOP5 = CScriptOp(0xb4) OP_NOP6 = CScriptOp(0xb5) OP_NOP7 = CScriptOp(0xb6) OP_NOP8 = CScriptOp(0xb7) OP_NOP9 = CScriptOp(0xb8) OP_NOP10 = CScriptOp(0xb9) # BIP 342 opcodes (Tapscript) OP_CHECKSIGADD = CScriptOp(0xba) OP_INVALIDOPCODE = CScriptOp(0xff) OPCODE_NAMES.update({ OP_0: 'OP_0', OP_PUSHDATA1: 'OP_PUSHDATA1', OP_PUSHDATA2: 'OP_PUSHDATA2', OP_PUSHDATA4: 'OP_PUSHDATA4', OP_1NEGATE: 'OP_1NEGATE', OP_RESERVED: 'OP_RESERVED', OP_1: 'OP_1', OP_2: 'OP_2', OP_3: 'OP_3', OP_4: 'OP_4', OP_5: 'OP_5', OP_6: 'OP_6', OP_7: 'OP_7', OP_8: 'OP_8', OP_9: 'OP_9', OP_10: 'OP_10', OP_11: 'OP_11', OP_12: 'OP_12', OP_13: 'OP_13', OP_14: 'OP_14', OP_15: 'OP_15', OP_16: 'OP_16', OP_NOP: 'OP_NOP', OP_VER: 'OP_VER', OP_IF: 'OP_IF', OP_NOTIF: 'OP_NOTIF', OP_VERIF: 'OP_VERIF', OP_VERNOTIF: 'OP_VERNOTIF', OP_ELSE: 'OP_ELSE', OP_ENDIF: 'OP_ENDIF', OP_VERIFY: 'OP_VERIFY', OP_RETURN: 'OP_RETURN', OP_TOALTSTACK: 'OP_TOALTSTACK', OP_FROMALTSTACK: 'OP_FROMALTSTACK', OP_2DROP: 'OP_2DROP', OP_2DUP: 'OP_2DUP', OP_3DUP: 'OP_3DUP', OP_2OVER: 'OP_2OVER', OP_2ROT: 'OP_2ROT', OP_2SWAP: 'OP_2SWAP', OP_IFDUP: 'OP_IFDUP', OP_DEPTH: 'OP_DEPTH', OP_DROP: 'OP_DROP', OP_DUP: 'OP_DUP', OP_NIP: 'OP_NIP', OP_OVER: 'OP_OVER', OP_PICK: 'OP_PICK', OP_ROLL: 'OP_ROLL', OP_ROT: 'OP_ROT', OP_SWAP: 'OP_SWAP', OP_TUCK: 'OP_TUCK', OP_CAT: 'OP_CAT', OP_SUBSTR: 'OP_SUBSTR', OP_LEFT: 'OP_LEFT', OP_RIGHT: 'OP_RIGHT', OP_SIZE: 'OP_SIZE', OP_INVERT: 'OP_INVERT', OP_AND: 'OP_AND', OP_OR: 'OP_OR', OP_XOR: 'OP_XOR', OP_EQUAL: 'OP_EQUAL', OP_EQUALVERIFY: 'OP_EQUALVERIFY', OP_RESERVED1: 'OP_RESERVED1', OP_RESERVED2: 'OP_RESERVED2', OP_1ADD: 'OP_1ADD', OP_1SUB: 'OP_1SUB', OP_2MUL: 'OP_2MUL', OP_2DIV: 'OP_2DIV', OP_NEGATE: 'OP_NEGATE', OP_ABS: 'OP_ABS', OP_NOT: 'OP_NOT', OP_0NOTEQUAL: 'OP_0NOTEQUAL', OP_ADD: 'OP_ADD', OP_SUB: 'OP_SUB', OP_MUL: 'OP_MUL', OP_DIV: 'OP_DIV', OP_MOD: 'OP_MOD', OP_LSHIFT: 'OP_LSHIFT', OP_RSHIFT: 'OP_RSHIFT', OP_BOOLAND: 'OP_BOOLAND', OP_BOOLOR: 'OP_BOOLOR', OP_NUMEQUAL: 'OP_NUMEQUAL', OP_NUMEQUALVERIFY: 'OP_NUMEQUALVERIFY', OP_NUMNOTEQUAL: 'OP_NUMNOTEQUAL', OP_LESSTHAN: 'OP_LESSTHAN', OP_GREATERTHAN: 'OP_GREATERTHAN', OP_LESSTHANOREQUAL: 'OP_LESSTHANOREQUAL', OP_GREATERTHANOREQUAL: 'OP_GREATERTHANOREQUAL', OP_MIN: 'OP_MIN', OP_MAX: 'OP_MAX', OP_WITHIN: 'OP_WITHIN', OP_RIPEMD160: 'OP_RIPEMD160', OP_SHA1: 'OP_SHA1', OP_SHA256: 'OP_SHA256', OP_HASH160: 'OP_HASH160', OP_HASH256: 'OP_HASH256', OP_CODESEPARATOR: 'OP_CODESEPARATOR', OP_CHECKSIG: 'OP_CHECKSIG', OP_CHECKSIGVERIFY: 'OP_CHECKSIGVERIFY', OP_CHECKMULTISIG: 'OP_CHECKMULTISIG', OP_CHECKMULTISIGVERIFY: 'OP_CHECKMULTISIGVERIFY', OP_NOP1: 'OP_NOP1', OP_CHECKLOCKTIMEVERIFY: 'OP_CHECKLOCKTIMEVERIFY', OP_CHECKSEQUENCEVERIFY: 'OP_CHECKSEQUENCEVERIFY', OP_NOP4: 'OP_NOP4', OP_NOP5: 'OP_NOP5', OP_NOP6: 'OP_NOP6', OP_NOP7: 'OP_NOP7', OP_NOP8: 'OP_NOP8', OP_NOP9: 'OP_NOP9', OP_NOP10: 'OP_NOP10', OP_CHECKSIGADD: 'OP_CHECKSIGADD', OP_INVALIDOPCODE: 'OP_INVALIDOPCODE', }) class CScriptInvalidError(Exception): """Base class for CScript exceptions""" pass class CScriptTruncatedPushDataError(CScriptInvalidError): """Invalid pushdata due to truncation""" def __init__(self, msg, data): self.data = data super().__init__(msg) # This is used, eg, for blockchain heights in coinbase scripts (bip34) class CScriptNum: __slots__ = ("value",) def __init__(self, d=0): self.value = d @staticmethod def encode(obj): r = bytearray(0) if obj.value == 0: return bytes(r) neg = obj.value < 0 absvalue = -obj.value if neg else obj.value while (absvalue): r.append(absvalue & 0xff) absvalue >>= 8 if r[-1] & 0x80: r.append(0x80 if neg else 0) elif neg: r[-1] |= 0x80 return bytes([len(r)]) + r @staticmethod def decode(vch): result = 0 # We assume valid push_size and minimal encoding value = vch[1:] if len(value) == 0: return result for i, byte in enumerate(value): result |= int(byte) << 8 * i if value[-1] >= 0x80: # Mask for all but the highest result bit num_mask = (2**(len(value) * 8) - 1) >> 1 result &= num_mask result *= -1 return result class CScript(bytes): """Serialized script A bytes subclass, so you can use this directly whenever bytes are accepted. Note that this means that indexing does *not* work - you'll get an index by byte rather than opcode. This format was chosen for efficiency so that the general case would not require creating a lot of little CScriptOP objects. iter(script) however does iterate by opcode. """ __slots__ = () @classmethod def __coerce_instance(cls, other): # Coerce other into bytes if isinstance(other, CScriptOp): other = bytes([other]) elif isinstance(other, CScriptNum): if (other.value == 0): other = bytes([CScriptOp(OP_0)]) else: other = CScriptNum.encode(other) elif isinstance(other, int): if 0 <= other <= 16: other = bytes([CScriptOp.encode_op_n(other)]) elif other == -1: other = bytes([OP_1NEGATE]) else: other = CScriptOp.encode_op_pushdata(bn2vch(other)) elif isinstance(other, (bytes, bytearray)): other = CScriptOp.encode_op_pushdata(other) return other def __add__(self, other): # add makes no sense for a CScript() raise NotImplementedError def join(self, iterable): # join makes no sense for a CScript() raise NotImplementedError def __new__(cls, value=b''): if isinstance(value, bytes) or isinstance(value, bytearray): return super().__new__(cls, value) else: def coerce_iterable(iterable): for instance in iterable: yield cls.__coerce_instance(instance) # Annoyingly on both python2 and python3 bytes.join() always # returns a bytes instance even when subclassed. return super().__new__(cls, b''.join(coerce_iterable(value))) def raw_iter(self): """Raw iteration Yields tuples of (opcode, data, sop_idx) so that the different possible PUSHDATA encodings can be accurately distinguished, as well as determining the exact opcode byte indexes. (sop_idx) """ i = 0 while i < len(self): sop_idx = i opcode = self[i] i += 1 if opcode > OP_PUSHDATA4: yield (opcode, None, sop_idx) else: datasize = None pushdata_type = None if opcode < OP_PUSHDATA1: pushdata_type = 'PUSHDATA(%d)' % opcode datasize = opcode elif opcode == OP_PUSHDATA1: pushdata_type = 'PUSHDATA1' if i >= len(self): raise CScriptInvalidError('PUSHDATA1: missing data length') datasize = self[i] i += 1 elif opcode == OP_PUSHDATA2: pushdata_type = 'PUSHDATA2' if i + 1 >= len(self): raise CScriptInvalidError('PUSHDATA2: missing data length') datasize = self[i] + (self[i + 1] << 8) i += 2 elif opcode == OP_PUSHDATA4: pushdata_type = 'PUSHDATA4' if i + 3 >= len(self): raise CScriptInvalidError('PUSHDATA4: missing data length') datasize = self[i] + (self[i + 1] << 8) + (self[i + 2] << 16) + (self[i + 3] << 24) i += 4 else: assert False # shouldn't happen data = bytes(self[i:i + datasize]) # Check for truncation if len(data) < datasize: raise CScriptTruncatedPushDataError('%s: truncated data' % pushdata_type, data) i += datasize yield (opcode, data, sop_idx) def __iter__(self): """'Cooked' iteration Returns either a CScriptOP instance, an integer, or bytes, as appropriate. See raw_iter() if you need to distinguish the different possible PUSHDATA encodings. """ for (opcode, data, sop_idx) in self.raw_iter(): if data is not None: yield data else: opcode = CScriptOp(opcode) if opcode.is_small_int(): yield opcode.decode_op_n() else: yield CScriptOp(opcode) def __repr__(self): def _repr(o): if isinstance(o, bytes): return "x('%s')" % o.hex() else: return repr(o) ops = [] i = iter(self) while True: op = None try: op = _repr(next(i)) except CScriptTruncatedPushDataError as err: op = '%s...<ERROR: %s>' % (_repr(err.data), err) break except CScriptInvalidError as err: op = '<ERROR: %s>' % err break except StopIteration: break finally: if op is not None: ops.append(op) return "CScript([%s])" % ', '.join(ops) def GetSigOpCount(self, fAccurate): """Get the SigOp count. fAccurate - Accurately count CHECKMULTISIG, see BIP16 for details. Note that this is consensus-critical. """ n = 0 lastOpcode = OP_INVALIDOPCODE for (opcode, data, sop_idx) in self.raw_iter(): if opcode in (OP_CHECKSIG, OP_CHECKSIGVERIFY): n += 1 elif opcode in (OP_CHECKMULTISIG, OP_CHECKMULTISIGVERIFY): if fAccurate and (OP_1 <= lastOpcode <= OP_16): n += opcode.decode_op_n() else: n += 20 lastOpcode = opcode return n SIGHASH_DEFAULT = 0 # Taproot-only default, semantics same as SIGHASH_ALL SIGHASH_ALL = 1 SIGHASH_NONE = 2 SIGHASH_SINGLE = 3 SIGHASH_ANYONECANPAY = 0x80 def FindAndDelete(script, sig): """Consensus critical, see FindAndDelete() in Electron codebase""" r = b'' last_sop_idx = sop_idx = 0 skip = True for (opcode, data, sop_idx) in script.raw_iter(): if not skip: r += script[last_sop_idx:sop_idx] last_sop_idx = sop_idx if script[sop_idx:sop_idx + len(sig)] == sig: skip = True else: skip = False if not skip: r += script[last_sop_idx:] return CScript(r) def LegacySignatureHash(script, txTo, inIdx, hashtype): """Consensus-correct SignatureHash Returns (hash, err) to precisely match the consensus-critical behavior of the SIGHASH_SINGLE bug. (inIdx is *not* checked for validity) """ HASH_ONE = b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' if inIdx >= len(txTo.vin): return (HASH_ONE, "inIdx %d out of range (%d)" % (inIdx, len(txTo.vin))) txtmp = CTransaction(txTo) for txin in txtmp.vin: txin.scriptSig = b'' txtmp.vin[inIdx].scriptSig = FindAndDelete(script, CScript([OP_CODESEPARATOR])) if (hashtype & 0x1f) == SIGHASH_NONE: txtmp.vout = [] for i in range(len(txtmp.vin)): if i != inIdx: txtmp.vin[i].nSequence = 0 elif (hashtype & 0x1f) == SIGHASH_SINGLE: outIdx = inIdx if outIdx >= len(txtmp.vout): return (HASH_ONE, "outIdx %d out of range (%d)" % (outIdx, len(txtmp.vout))) tmp = txtmp.vout[outIdx] txtmp.vout = [] for _ in range(outIdx): txtmp.vout.append(CTxOut(-1)) txtmp.vout.append(tmp) for i in range(len(txtmp.vin)): if i != inIdx: txtmp.vin[i].nSequence = 0 if hashtype & SIGHASH_ANYONECANPAY: tmp = txtmp.vin[inIdx] txtmp.vin = [] txtmp.vin.append(tmp) s = txtmp.serialize_without_witness() s += struct.pack(b"<I", hashtype) hash = hash256(s) return (hash, None) # TODO: Allow cached hashPrevouts/hashSequence/hashOutputs to be provided. # Performance optimization probably not necessary for python tests, however. # Note that this corresponds to sigversion == 1 in EvalScript, which is used # for version 0 witnesses. def SegwitV0SignatureHash(script, txTo, inIdx, hashtype, amount): hashPrevouts = 0 hashSequence = 0 hashOutputs = 0 if not (hashtype & SIGHASH_ANYONECANPAY): serialize_prevouts = bytes() for i in txTo.vin: serialize_prevouts += i.prevout.serialize() hashPrevouts = uint256_from_str(hash256(serialize_prevouts)) if (not (hashtype & SIGHASH_ANYONECANPAY) and (hashtype & 0x1f) != SIGHASH_SINGLE and (hashtype & 0x1f) != SIGHASH_NONE): serialize_sequence = bytes() for i in txTo.vin: serialize_sequence += struct.pack("<I", i.nSequence) hashSequence = uint256_from_str(hash256(serialize_sequence)) if ((hashtype & 0x1f) != SIGHASH_SINGLE and (hashtype & 0x1f) != SIGHASH_NONE): serialize_outputs = bytes() for o in txTo.vout: serialize_outputs += o.serialize() hashOutputs = uint256_from_str(hash256(serialize_outputs)) elif ((hashtype & 0x1f) == SIGHASH_SINGLE and inIdx < len(txTo.vout)): serialize_outputs = txTo.vout[inIdx].serialize() hashOutputs = uint256_from_str(hash256(serialize_outputs)) ss = bytes() ss += struct.pack("<i", txTo.nVersion) ss += ser_uint256(hashPrevouts) ss += ser_uint256(hashSequence) ss += txTo.vin[inIdx].prevout.serialize() ss += ser_string(script) ss += struct.pack("<q", amount) ss += struct.pack("<I", txTo.vin[inIdx].nSequence) ss += ser_uint256(hashOutputs) ss += struct.pack("<i", txTo.nLockTime) ss += struct.pack("<I", hashtype) return hash256(ss) class TestFrameworkScript(unittest.TestCase): def test_bn2vch(self): self.assertEqual(bn2vch(0), bytes([])) self.assertEqual(bn2vch(1), bytes([0x01])) self.assertEqual(bn2vch(-1), bytes([0x81])) self.assertEqual(bn2vch(0x7F), bytes([0x7F])) self.assertEqual(bn2vch(-0x7F), bytes([0xFF])) self.assertEqual(bn2vch(0x80), bytes([0x80, 0x00])) self.assertEqual(bn2vch(-0x80), bytes([0x80, 0x80])) self.assertEqual(bn2vch(0xFF), bytes([0xFF, 0x00])) self.assertEqual(bn2vch(-0xFF), bytes([0xFF, 0x80])) self.assertEqual(bn2vch(0x100), bytes([0x00, 0x01])) self.assertEqual(bn2vch(-0x100), bytes([0x00, 0x81])) self.assertEqual(bn2vch(0x7FFF), bytes([0xFF, 0x7F])) self.assertEqual(bn2vch(-0x8000), bytes([0x00, 0x80, 0x80])) self.assertEqual(bn2vch(-0x7FFFFF), bytes([0xFF, 0xFF, 0xFF])) self.assertEqual(bn2vch(0x80000000), bytes([0x00, 0x00, 0x00, 0x80, 0x00])) self.assertEqual(bn2vch(-0x80000000), bytes([0x00, 0x00, 0x00, 0x80, 0x80])) self.assertEqual(bn2vch(0xFFFFFFFF), bytes([0xFF, 0xFF, 0xFF, 0xFF, 0x00])) self.assertEqual(bn2vch(123456789), bytes([0x15, 0xCD, 0x5B, 0x07])) self.assertEqual(bn2vch(-54321), bytes([0x31, 0xD4, 0x80])) def test_cscriptnum_encoding(self): # round-trip negative and multi-byte CScriptNums values = [0, 1, -1, -2, 127, 128, -255, 256, (1 << 15) - 1, -(1 << 16), (1 << 24) - 1, (1 << 31), 1 - (1 << 32), 1 << 40, 1500, -1500] for value in values: self.assertEqual(CScriptNum.decode(CScriptNum.encode(CScriptNum(value))), value) def TaprootSignatureHash(txTo, spent_utxos, hash_type, input_index = 0, scriptpath = False, script = CScript(), codeseparator_pos = -1, annex = None, leaf_ver = LEAF_VERSION_TAPSCRIPT): assert (len(txTo.vin) == len(spent_utxos)) assert (input_index < len(txTo.vin)) out_type = SIGHASH_ALL if hash_type == 0 else hash_type & 3 in_type = hash_type & SIGHASH_ANYONECANPAY spk = spent_utxos[input_index].scriptPubKey ss = bytes([0, hash_type]) # epoch, hash_type ss += struct.pack("<i", txTo.nVersion) ss += struct.pack("<I", txTo.nLockTime) if in_type != SIGHASH_ANYONECANPAY: ss += sha256(b"".join(i.prevout.serialize() for i in txTo.vin)) ss += sha256(b"".join(struct.pack("<q", u.nValue) for u in spent_utxos)) ss += sha256(b"".join(ser_string(u.scriptPubKey) for u in spent_utxos)) ss += sha256(b"".join(struct.pack("<I", i.nSequence) for i in txTo.vin)) if out_type == SIGHASH_ALL: ss += sha256(b"".join(o.serialize() for o in txTo.vout)) spend_type = 0 if annex is not None: spend_type |= 1 if (scriptpath): spend_type |= 2 ss += bytes([spend_type]) if in_type == SIGHASH_ANYONECANPAY: ss += txTo.vin[input_index].prevout.serialize() ss += struct.pack("<q", spent_utxos[input_index].nValue) ss += ser_string(spk) ss += struct.pack("<I", txTo.vin[input_index].nSequence) else: ss += struct.pack("<I", input_index) if (spend_type & 1): ss += sha256(ser_string(annex)) if out_type == SIGHASH_SINGLE: if input_index < len(txTo.vout): ss += sha256(txTo.vout[input_index].serialize()) else: ss += bytes(0 for _ in range(32)) if (scriptpath): ss += TaggedHash("TapLeaf", bytes([leaf_ver]) + ser_string(script)) ss += bytes([0]) ss += struct.pack("<i", codeseparator_pos) assert len(ss) == 175 - (in_type == SIGHASH_ANYONECANPAY) * 49 - (out_type != SIGHASH_ALL and out_type != SIGHASH_SINGLE) * 32 + (annex is not None) * 32 + scriptpath * 37 return TaggedHash("TapSighash", ss) def taproot_tree_helper(scripts): if len(scripts) == 0: return ([], bytes(0 for _ in range(32))) if len(scripts) == 1: # One entry: treat as a leaf script = scripts[0] assert(not callable(script)) if isinstance(script, list): return taproot_tree_helper(script) assert(isinstance(script, tuple)) version = LEAF_VERSION_TAPSCRIPT name = script[0] code = script[1] if len(script) == 3: version = script[2] assert version & 1 == 0 assert isinstance(code, bytes) h = TaggedHash("TapLeaf", bytes([version]) + ser_string(code)) if name is None: return ([], h) return ([(name, version, code, bytes())], h) elif len(scripts) == 2 and callable(scripts[1]): # Two entries, and the right one is a function left, left_h = taproot_tree_helper(scripts[0:1]) right_h = scripts[1](left_h) left = [(name, version, script, control + right_h) for name, version, script, control in left] right = [] else: # Two or more entries: descend into each side split_pos = len(scripts) // 2 left, left_h = taproot_tree_helper(scripts[0:split_pos]) right, right_h = taproot_tree_helper(scripts[split_pos:]) left = [(name, version, script, control + right_h) for name, version, script, control in left] right = [(name, version, script, control + left_h) for name, version, script, control in right] if right_h < left_h: right_h, left_h = left_h, right_h h = TaggedHash("TapBranch", left_h + right_h) return (left + right, h) TaprootInfo = namedtuple("TaprootInfo", "scriptPubKey,inner_pubkey,negflag,tweak,leaves") TaprootLeafInfo = namedtuple("TaprootLeafInfo", "script,version,merklebranch") def taproot_construct(pubkey, scripts=None): """Construct a tree of Taproot spending conditions pubkey: an ECPubKey object for the internal pubkey scripts: a list of items; each item is either: - a (name, CScript) tuple - a (name, CScript, leaf version) tuple - another list of items (with the same structure) - a function, which specifies how to compute the hashing partner in function of the hash of whatever it is combined with Returns: script (sPK or redeemScript), tweak, {name:(script, leaf version, negation flag, innerkey, merklepath), ...} """ if scripts is None: scripts = [] ret, h = taproot_tree_helper(scripts) tweak = TaggedHash("TapTweak", pubkey + h) tweaked, negated = tweak_add_pubkey(pubkey, tweak) leaves = dict((name, TaprootLeafInfo(script, version, merklebranch)) for name, version, script, merklebranch in ret) return TaprootInfo(CScript([OP_1, tweaked]), pubkey, negated + 0, tweak, leaves) def is_op_success(o): return o == 0x50 or o == 0x62 or o == 0x89 or o == 0x8a or o == 0x8d or o == 0x8e or (o >= 0x7e and o <= 0x81) or (o >= 0x83 and o <= 0x86) or (o >= 0x95 and o <= 0x99) or (o >= 0xbb and o <= 0xfe)
the-stack_0_890
from aiohttp import web from utils.utils import * def get_members(request, client): try: role_ids = request.query["ids"].split(",") guild = client.get_guild(client.config["main_guild_id"]) roles = [get(guild.roles, id=int(role_id)) for role_id in role_ids] members = [role.members for role in roles] except KeyError: return web.json_response({"error": "You did not provide the correct query param ids"}) except AttributeError: return web.json_response({"error": "Invalid Guild ID or Role ID provided"}) member_data = [ { "name": member.name, "id": member.id, "discriminator": member.discriminator, } for member in [m for m in members][0] ] return web.json_response({"member_data": member_data})
the-stack_0_891
import os import cv2 cascPath = "./haarcascades/haarcascade_frontalface_alt.xml" input_dir = './lfw' output_dir = './other_faces' if not os.path.exists(output_dir): os.makedirs(output_dir) # classifiers faceCascade = cv2.CascadeClassifier(cascPath) index = 1 for (path,dirnames,filenames) in os.walk(input_dir): for filename in filenames: if filename.endswith('.jpg'): print('处理picture %s'%index) image = cv2.imread(path + '/' + filename) gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) # Detect faces in the image faces = faceCascade.detectMultiScale( gray, scaleFactor=1.3, minNeighbors=5, minSize=(30, 30) ) # Draw a rectangle around the faces for (x, y, w, h) in faces: cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2) image = image[y:y+h,x:x+w] image = cv2.resize(image,(64,64)) cv2.imshow('image',image) cv2.imwrite(output_dir+'/'+str(index)+'.jpg',image) index +=1 if cv2.waitKey(30) & 0xFF == ord('q'): break cv2.destroyAllWindows()
the-stack_0_892
####################### # Dennis MUD # # remake_item.py # # Copyright 2018-2020 # # Michael D. Reiley # ####################### # ********** # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # ********** NAME = "remake item" CATEGORIES = ["items"] USAGE = "remake item <item_id>" DESCRIPTION = """Resets the item <item_id> in your inventory. Name and ID are untouched, you must be the primary owner of the item. Owners are reset to the primary owner only. Wizards can remake any item. Ex. `remake item 3`""" def COMMAND(console, args): # Perform initial checks. if not COMMON.check(NAME, console, args, argmin=1, argmax=1): return False # Perform argument type checks and casts. itemid = COMMON.check_argtypes(NAME, console, args, checks=[[0, int]], retargs=0) if itemid is None: return False # Lookup the target item and perform item checks. thisitem = COMMON.check_item(NAME, console, itemid, owner=True, primary=True, holding=True) if not thisitem: return False # remake the item. if len(thisitem["container"]["inventory"])>0: console.msg("{0} is not empty, please empty it before remaking.".format(thisitem["name"])) return False if thisitem["duplified"]: console.msg("Please unduplify this item before remaking.") return False thisitem["desc"] = "" thisitem["action"] = "" thisitem["message"] = "" thisitem["mlang"] = None thisitem["lang"] = None thisitem["owners"] = [console.user["name"]] thisitem["glued"] = console.database.defaults["items"]["glued"] thisitem["hidden"] = False thisitem["truehide"] = False thisitem["chance"] = 1 thisitem["container"]["enabled"] = False thisitem["container"]["inventory"] = [] thisitem["telekey"] = None console.database.upsert_item(thisitem) # Finished. console.msg("{0}: Done.".format(NAME)) return True
the-stack_0_894
# -*- coding: utf-8 -*- """ mslib.msui.performance_settings ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This module defines the performance settings dialog This file is part of mss. :copyright: Copyright 2017 Joern Ungermann :copyright: Copyright 2017-2022 by the mss team, see AUTHORS. :license: APACHE-2.0, see LICENSE for details. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json from PyQt5 import QtCore, QtWidgets from mslib.utils import FatalUserError from mslib.msui import aircrafts, constants from mslib.msui.mss_qt import get_open_filename from mslib.msui.mss_qt import ui_performance_dockwidget as ui_dw DEFAULT_PERFORMANCE = { "aircraft": aircrafts.SimpleAircraft(aircrafts.AIRCRAFT_DUMMY), "visible": False, "takeoff_weight": 0, "takeoff_time": QtCore.QDateTime.currentDateTimeUtc(), "empty_weight": 0, "ceiling_alt": [410], } class MSS_PerformanceSettingsWidget(QtWidgets.QWidget, ui_dw.Ui_PerformanceDockWidget): """ This class implements setting the performance settings as a dockable widget. """ def __init__(self, parent=None, view=None, settings_dict=None): """ Arguments: parent -- Qt widget that is parent to this widget. view -- reference to mpl canvas class settings_dict -- dictionary containing topview options """ super(MSS_PerformanceSettingsWidget, self).__init__(parent) self.setupUi(self) self.view = view self.parent = parent if not settings_dict: settings_dict = DEFAULT_PERFORMANCE self.aircraft = settings_dict["aircraft"] self.lbAircraftName.setText(self.aircraft.name) self.cbShowPerformance.setChecked(settings_dict["visible"]) self.dsbTakeoffWeight.setValue(settings_dict["takeoff_weight"]) self.dsbEmptyWeight.setValue( settings_dict.get("empty_weight", settings_dict["takeoff_weight"] - settings_dict.get("fuel", 0))) self.dteTakeoffTime.setDateTime(settings_dict["takeoff_time"]) # Connecting signals self.pbLoadPerformance.clicked.connect(self.load_performance) self.cbShowPerformance.stateChanged.connect(self.update_parent_performance) self.dteTakeoffTime.dateTimeChanged.connect(self.update_parent_performance) self.dsbTakeoffWeight.valueChanged.connect(self.update_parent_performance) self.dsbEmptyWeight.valueChanged.connect(self.update_parent_performance) def get_settings(self): """ Encapsulates GUI selections in a python dictionary. :return: Dictionary of all setting informations """ settings_dict = { "aircraft": self.aircraft, "visible": self.cbShowPerformance.isChecked(), "takeoff_time": self.dteTakeoffTime.dateTime(), "takeoff_weight": self.dsbTakeoffWeight.value(), "empty_weight": self.dsbEmptyWeight.value() } return settings_dict def update_parent_performance(self): self.parent.setPerformance(self.get_settings()) def load_performance(self): """ Gets a filename for a JSON file specifying aircraft performance and initializes an SimpleAircraft model. """ filename = get_open_filename( self, "Open Aircraft Performance JSON File", constants.MSS_CONFIG_PATH, "Performance File (*.json)", pickertag="filepicker_default") if filename is not None: try: with open(filename) as tf: performance = json.load(tf) self.aircraft = aircrafts.SimpleAircraft(performance) self.lbAircraftName.setText(self.aircraft.name) self.dsbTakeoffWeight.setValue(self.aircraft.takeoff_weight) if not any(hasattr(self.aircraft, _x) for _x in ("fuel", "empty_weight")): raise KeyError("empty_weight") if hasattr(self.aircraft, "empty_weight"): self.dsbEmptyWeight.setValue(self.aircraft.empty_weight) else: self.dsbEmptyWeight.setValue(self.aircraft.takeoff_weight - self.aircraft.fuel) self.update_parent_performance() except KeyError as ex: QtWidgets.QMessageBox.critical(self, self.tr("Performance JSON Load"), self.tr(f"JSON File missing '{ex}' entry")) except (FatalUserError, ValueError) as ex: QtWidgets.QMessageBox.critical(self, self.tr("Performance JSON Load"), self.tr(f"JSON File has Syntax Problems:\n{ex}"))
the-stack_0_895
from decimal import Decimal import graphene from django_filters import FilterSet, OrderingFilter from graphene import relay from graphene_django.filter import DjangoFilterConnectionField from graphene_django.types import DjangoObjectType from graphene_file_upload.scalars import Upload from graphql import GraphQLError from graphql_jwt.decorators import login_required from graphql_relay.node.node import from_global_id, to_global_id from .models import BilbyJob, Label, FileDownloadToken, BilbyJobUploadToken from .status import JobStatus from .types import JobStatusType, BilbyJobCreationResult, JobParameterInput, JobParameterOutput, JobIniInput, \ JobDetailsInput from .utils.db_search.db_search import perform_db_search from .utils.derive_job_status import derive_job_status from .utils.gen_parameter_output import generate_parameter_output from .utils.jobs.request_file_download_id import request_file_download_ids from .utils.jobs.request_job_filter import request_job_filter from .views import create_bilby_job, update_bilby_job, create_bilby_job_from_ini_string, upload_bilby_job class LabelType(DjangoObjectType): class Meta: model = Label interfaces = (relay.Node,) class UserBilbyJobFilter(FilterSet): class Meta: model = BilbyJob fields = '__all__' order_by = OrderingFilter( fields=( ('last_updated', 'lastUpdated'), ('name', 'name'), ) ) @property def qs(self): return BilbyJob.user_bilby_job_filter(super(UserBilbyJobFilter, self).qs, self) class PublicBilbyJobFilter(FilterSet): class Meta: model = BilbyJob fields = '__all__' order_by = OrderingFilter( fields=( ('last_updated', 'last_updated'), ('name', 'name'), ) ) @property def qs(self): return BilbyJob.public_bilby_job_filter(super(PublicBilbyJobFilter, self).qs, self) class BilbyJobNode(DjangoObjectType): class Meta: model = BilbyJob convert_choices_to_enum = False interfaces = (relay.Node,) job_status = graphene.Field(JobStatusType) last_updated = graphene.String() params = graphene.Field(JobParameterOutput) labels = graphene.List(LabelType) @classmethod def get_queryset(parent, queryset, info): return BilbyJob.bilby_job_filter(queryset, info) def resolve_last_updated(parent, info): return parent.last_updated.strftime("%Y-%m-%d %H:%M:%S UTC") def resolve_params(parent, info): return generate_parameter_output(parent) def resolve_labels(parent, info): return parent.labels.all() def resolve_job_status(parent, info): # Uploaded jobs are always complete if parent.is_uploaded_job: return { "name": JobStatus.display_name(JobStatus.COMPLETED), "number": JobStatus.COMPLETED, "date": parent.creation_time } try: # Get job details from the job controller _, jc_jobs = request_job_filter( info.context.user.user_id, ids=[parent.job_controller_id] ) status_number, status_name, status_date = derive_job_status(jc_jobs[0]["history"]) return { "name": status_name, "number": status_number, "date": status_date.strftime("%Y-%m-%d %H:%M:%S UTC") } except Exception: return { "name": "Unknown", "number": 0, "data": "Unknown" } class UserDetails(graphene.ObjectType): username = graphene.String() def resolve_username(parent, info): return "Todo" class BilbyResultFile(graphene.ObjectType): path = graphene.String() is_dir = graphene.Boolean() file_size = graphene.Decimal() download_token = graphene.String() class BilbyResultFiles(graphene.ObjectType): class Meta: interfaces = (relay.Node,) class Input: job_id = graphene.ID() files = graphene.List(BilbyResultFile) is_uploaded_job = graphene.Boolean() class BilbyPublicJobNode(graphene.ObjectType): user = graphene.String() name = graphene.String() job_status = graphene.Field(JobStatusType) labels = graphene.List(LabelType) description = graphene.String() timestamp = graphene.String() id = graphene.ID() class BilbyPublicJobConnection(relay.Connection): class Meta: node = BilbyPublicJobNode class GenerateBilbyJobUploadToken(graphene.ObjectType): token = graphene.String() class Query(object): bilby_job = relay.Node.Field(BilbyJobNode) bilby_jobs = DjangoFilterConnectionField(BilbyJobNode, filterset_class=UserBilbyJobFilter) public_bilby_jobs = relay.ConnectionField( BilbyPublicJobConnection, search=graphene.String(), time_range=graphene.String() ) all_labels = graphene.List(LabelType) bilby_result_files = graphene.Field(BilbyResultFiles, job_id=graphene.ID(required=True)) gwclouduser = graphene.Field(UserDetails) generate_bilby_job_upload_token = graphene.Field(GenerateBilbyJobUploadToken) @login_required def resolve_generate_bilby_job_upload_token(self, info, **kwargs): user = info.context.user # Create a job upload token token = BilbyJobUploadToken.create(user) # Return the generated token return GenerateBilbyJobUploadToken(token=str(token.token)) @login_required def resolve_all_labels(self, info, **kwargs): return Label.all() @login_required def resolve_public_bilby_jobs(self, info, **kwargs): # Perform the database search success, jobs = perform_db_search(info.context.user, kwargs) if not success: return [] # Parse the result in to graphql objects result = [] for job in jobs: bilby_job = BilbyJob.get_by_id(job['job']['id'], info.context.user) result.append( BilbyPublicJobNode( user=f"{job['user']['firstName']} {job['user']['lastName']}", name=job['job']['name'], description=job['job']['description'], job_status=JobStatusType( name=JobStatus.display_name( JobStatus.COMPLETED if bilby_job.is_uploaded_job else job['history'][0]['state'] ), number=JobStatus.COMPLETED if bilby_job.is_uploaded_job else job['history'][0]['state'], date=bilby_job.creation_time if bilby_job.is_uploaded_job else job['history'][0]['timestamp'] ), labels=bilby_job.labels.all(), timestamp=bilby_job.creation_time if bilby_job.is_uploaded_job else job['history'][0]['timestamp'], id=to_global_id("BilbyJobNode", job['job']['id']) ) ) # Nb. The perform_db_search function currently requests one extra record than kwargs['first']. # This triggers the ArrayConnection used by returning the result array to correctly set # hasNextPage correctly, such that infinite scroll works as expected. return result @login_required def resolve_gwclouduser(self, info, **kwargs): return info.context.user @login_required def resolve_bilby_result_files(self, info, **kwargs): # Get the model id of the bilby job _, job_id = from_global_id(kwargs.get("job_id")) # Try to look up the job with the id provided job = BilbyJob.get_by_id(job_id, info.context.user) # Fetch the file list from the job controller success, files = job.get_file_list() if not success: raise Exception("Error getting file list. " + str(files)) # Generate download tokens for the list of files paths = [f['path'] for f in filter(lambda x: not x['isDir'], files)] tokens = FileDownloadToken.create(job, paths) # Generate a dict that can be used to query the generated tokens token_dict = {tk.path: tk.token for tk in tokens} # Build the resulting file list and send it back to the client result = [ BilbyResultFile( path=f["path"], is_dir=f["isDir"], file_size=Decimal(f["fileSize"]), download_token=token_dict[f["path"]] if f["path"] in token_dict else None ) for f in files ] return BilbyResultFiles( files=result, is_uploaded_job=job.is_uploaded_job ) class BilbyJobMutation(relay.ClientIDMutation): class Input: params = JobParameterInput() result = graphene.Field(BilbyJobCreationResult) @classmethod @login_required def mutate_and_get_payload(cls, root, info, params): user = info.context.user # Create the bilby job bilby_job = create_bilby_job(user, params) # Convert the bilby job id to a global id job_id = to_global_id("BilbyJobNode", bilby_job.id) # Return the bilby job id to the client return BilbyJobMutation( result=BilbyJobCreationResult(job_id=job_id) ) class BilbyJobFromIniStringMutation(relay.ClientIDMutation): class Input: params = JobIniInput() result = graphene.Field(BilbyJobCreationResult) @classmethod @login_required def mutate_and_get_payload(cls, root, info, params): user = info.context.user # Create the bilby job bilby_job = create_bilby_job_from_ini_string(user, params) # Convert the bilby job id to a global id job_id = to_global_id("BilbyJobNode", bilby_job.id) # Return the bilby job id to the client return BilbyJobFromIniStringMutation( result=BilbyJobCreationResult(job_id=job_id) ) class UpdateBilbyJobMutation(relay.ClientIDMutation): class Input: job_id = graphene.ID(required=True) private = graphene.Boolean(required=False) labels = graphene.List(graphene.String, required=False) result = graphene.String() @classmethod @login_required def mutate_and_get_payload(cls, root, info, **kwargs): user = info.context.user job_id = kwargs.pop("job_id") # Update privacy of bilby job message = update_bilby_job(from_global_id(job_id)[1], user, **kwargs) # Return the bilby job id to the client return UpdateBilbyJobMutation( result=message ) class GenerateFileDownloadIds(relay.ClientIDMutation): class Input: job_id = graphene.ID(required=True) download_tokens = graphene.List(graphene.String, required=True) result = graphene.List(graphene.String) @classmethod @login_required def mutate_and_get_payload(cls, root, info, job_id, download_tokens): user = info.context.user # Get the job these file downloads are for job = BilbyJob.get_by_id(from_global_id(job_id)[1], user) # Verify the download tokens and get the paths paths = FileDownloadToken.get_paths(job, download_tokens) # Check that all tokens were found if None in paths: raise GraphQLError("At least one token was invalid or expired.") # For uploaded jobs, we can just return the exact some download tokens - this function is basically a no-op # for uploaded jobs if job.is_uploaded_job: return GenerateFileDownloadIds( result=download_tokens ) # Request the list of file download ids from the list of paths # Only the original job author may generate a file download id success, result = request_file_download_ids( job, paths ) # Report the error if there is one if not success: raise GraphQLError(result) # Return the list of file download ids return GenerateFileDownloadIds( result=result ) class UploadBilbyJobMutation(relay.ClientIDMutation): class Input: upload_token = graphene.String() details = JobDetailsInput() job_file = Upload(required=True) result = graphene.Field(BilbyJobCreationResult) @classmethod def mutate_and_get_payload(cls, root, info, upload_token, details, job_file): # Get the token being used to perform the upload - this will return None if the token doesn't exist or # is expired token = BilbyJobUploadToken.get_by_token(upload_token) if not token: raise GraphQLError("Job upload token is invalid or expired.") # Try uploading the bilby job bilby_job = upload_bilby_job(token, details, job_file) # Convert the bilby job id to a global id job_id = to_global_id("BilbyJobNode", bilby_job.id) # Return the bilby job id to the client return BilbyJobMutation( result=BilbyJobCreationResult(job_id=job_id) ) class Mutation(graphene.ObjectType): new_bilby_job = BilbyJobMutation.Field() new_bilby_job_from_ini_string = BilbyJobFromIniStringMutation.Field() update_bilby_job = UpdateBilbyJobMutation.Field() generate_file_download_ids = GenerateFileDownloadIds.Field() upload_bilby_job = UploadBilbyJobMutation.Field()
the-stack_0_896
from grpc.beta import implementations import numpy import traceback import tensorflow as tf from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2 from flask_restplus import Resource, abort from monocker_api.api.restplus import restplus_api from monocker_api.api.models import getModel from monocker_api.db.data_models import PredictionRequest from monocker_api import settings #============================================================================== # helper functions #============================================================================== def getMonockerModelStub(host, port): try: channel = implementations.insecure_channel(host, int(port)) stub = prediction_service_pb2.beta_create_PredictionService_stub(channel) except Exception as e: print("===========================================================") print("Encountered error while requesting gRPC connection.") print("Error: ") print(e) traceback.print_exc() print("===========================================================") stub = None return stub def getServingRequest(model, payload): request = predict_pb2.PredictRequest() request.model_spec.name = model['model_name'] request.model_spec.signature_name = model['model_signature'] request.inputs['images'].CopyFrom( tf.contrib.util.make_tensor_proto( payload['model_input'], shape=payload['model_input_shape'] ) ) return request #============================================================================== #============================================================================== # Models API #============================================================================== # define namespace api = restplus_api.namespace( 'predict', description="Operations related to requesting model evaluations" ) # Define /models route handlers @api.route('/') class Models(Resource): @api.response(501, 'Error in model computation') @api.response(403, 'Could not connect to tf serving server') @api.response(404, 'Model not found.') @api.response(201, 'Successfully retrieved model evaluation.') @api.expect(PredictionRequest, validate=False, required=True) def post(self): # get inputs payload = restplus_api.payload # get model model = getModel(payload['model_name']) if model is None: return 'Model not found.', 404 # get request model['model_signature'] = payload['model_signature'] serving_request = getServingRequest(model, payload) # get stub stub = getMonockerModelStub(model['ip_address'], model['port']) if stub is None: return 'Could not connect to tf serving server', 403 # make grpc prediction request then return results try: prediction = stub.Predict(serving_request, 5.0) model_response = list(prediction.outputs['scores'].float_val) return {'model_response': model_response}, 201 except Exception as e: return str(e), 501 #==============================================================================
the-stack_0_899
# Copyright Contributors to the Rez project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Bundle a context and its packages into a relocatable dir. ''' from __future__ import print_function import os import os.path import sys def setup_parser(parser, completions=False): group = parser.add_mutually_exclusive_group() group.add_argument( "-s", "--skip-non-relocatable", action="store_true", help="leave non-relocatable packages non-bundled, rather than raise an error") group.add_argument( "-f", "--force", action="store_true", help="bundle package even if it isn't relocatable (use at your own risk)") group.add_argument( "-n", "--no-lib-patch", action="store_true", help="don't apply library patching within the bundle") parser.add_argument( "RXT", help="context to bundle") parser.add_argument( "DEST_DIR", help="directory to create bundle in; must not exist") def command(opts, parser, extra_arg_groups=None): from rez.utils.logging_ import print_error from rez.bundle_context import bundle_context from rez.resolved_context import ResolvedContext rxt_filepath = os.path.abspath(os.path.expanduser(opts.RXT)) dest_dir = os.path.abspath(os.path.expanduser(opts.DEST_DIR)) # sanity checks if not os.path.exists(rxt_filepath): print_error("File does not exist: %s", rxt_filepath) sys.exit(1) context = ResolvedContext.load(rxt_filepath) bundle_context( context=context, dest_dir=dest_dir, force=opts.force, skip_non_relocatable=opts.skip_non_relocatable, verbose=opts.verbose, patch_libs=(not opts.no_lib_patch) )
the-stack_0_901
#!/usr/bin/python2.7 # -*- coding: UTF-8 -*- ''' Created on 2018年6月15日 @author: zhaohongxing ''' import os from PyQt5.Qt import Qt from PyQt5.Qt import QIcon,QStandardItemModel,QStandardItem ''' from PyQt5 import QtGui ''' from PyQt5.QtWidgets import QTableView,QVBoxLayout,QDialog,QPushButton from PyQt5.QtCore import QSize, pyqtSignal import wechatutil class ContactListWindow(QDialog): WIDTH = 600 membersConfirmed = pyqtSignal(str) def __init__(self,member_list,parent = None): super(ContactListWindow,self).__init__(parent) self.setModal(True) self.user_home = os.path.expanduser('~') self.app_home = self.user_home + '/.wechat/' self.head_home = ("%s/heads"%(self.app_home)) self.cache_home = ("%s/cache/"%(self.app_home)) self.cache_image_home = "%s/image/"%(self.cache_home) self.contact_head_home = ("%s/contact/"%(self.head_home)) self.default_head_icon = './resource/images/default.png' self.members = member_list self.membersTable = QTableView() self.membersTable.horizontalHeader().setStretchLastSection(True) self.membersTable.verticalHeader().setDefaultSectionSize(60) #self.membersTable.horizontalHeader().setDefaultSectionSize(60) self.membersTable.setColumnWidth(0, 10); self.membersTable.setColumnWidth(1, 60); self.membersTable.verticalHeader().setVisible(False) self.membersTable.horizontalHeader().setVisible(False) #confirm self.confirm = QPushButton(wechatutil.unicode("確定"),self) self.membersTableModel = QStandardItemModel(0,2) self.membersTableModel.itemChanged.connect(self.itemChanged) self.initinal_member_list_widget() mainLayout=QVBoxLayout() mainLayout.addWidget(self.membersTable) mainLayout.addWidget(self.confirm) self.setLayout(mainLayout) #self.membersTable.clicked.connect(self.contact_item_clicked) self.confirm.clicked.connect(self.do_confirm) self.selectedRowCount = 0 def itemChanged(self,item): if item.checkState() == Qt.Checked: self.selectedRowCount += 1 else: self.selectedRowCount -= 1 if self.selectedRowCount > 0: self.confirm.setText(wechatutil.unicode("確定(%d)"%(self.selectedRowCount))) else: self.confirm.setText(wechatutil.unicode("確定")) def initinal_member_list_widget(self): self.append_row(self.members, self.membersTableModel) self.membersTable.setModel(self.membersTableModel) self.membersTable.setIconSize(QSize(40,40)) def append_row(self,members,data_model): for (i,member) in enumerate(members): cells = [] user_name = member['UserName'] user_name_cell = QStandardItem(user_name) user_name_cell.setCheckable(True) cells.append(user_name_cell) user_avatar = self.contact_head_home + member['UserName']+".jpg" if not os.path.exists(user_avatar): user_avatar = self.default_head_icon dn = member['DisplayName'] or member['NickName'] if not dn: dn = member['NickName'] item = QStandardItem(QIcon(user_avatar),wechatutil.unicode(dn)) cells.append(item) data_model.appendRow(cells) def do_confirm(self): rowCount = self.membersTableModel.rowCount() selected_user_names = "" for row in range(rowCount): item = self.membersTableModel.item(row,0) if item.checkState() == Qt.Checked: index = self.membersTableModel.index(row,0) user_name_obj = self.membersTableModel.data(index) if user_name_obj: user_name = user_name_obj user = {} user['UserName']=user_name selected_user_names=selected_user_names+(user_name) selected_user_names=selected_user_names+(";") if len(selected_user_names) > 0: dictt = {} dictt['UserNames']=selected_user_names self.membersConfirmed.emit(selected_user_names) self.close()
the-stack_0_902
""" This module contains pdsolve() and different helper functions that it uses. It is heavily inspired by the ode module and hence the basic infrastructure remains the same. **Functions in this module** These are the user functions in this module: - pdsolve() - Solves PDE's - classify_pde() - Classifies PDEs into possible hints for dsolve(). - pde_separate() - Separate variables in partial differential equation either by additive or multiplicative separation approach. These are the helper functions in this module: - pde_separate_add() - Helper function for searching additive separable solutions. - pde_separate_mul() - Helper function for searching multiplicative separable solutions. **Currently implemented solver methods** The following methods are implemented for solving partial differential equations. See the docstrings of the various pde_hint() functions for more information on each (run help(pde)): - 1st order linear homogeneous partial differential equations with constant coefficients. - 1st order linear general partial differential equations with constant coefficients. - 1st order linear partial differential equations with variable coefficients. """ from functools import reduce from itertools import combinations_with_replacement from sympy.simplify import simplify # type: ignore from sympy.core import Add, S from sympy.core.function import Function, expand, AppliedUndef, Subs from sympy.core.relational import Equality, Eq from sympy.core.symbol import Symbol, Wild, symbols from sympy.functions import exp from sympy.integrals.integrals import Integral, integrate from sympy.utilities.iterables import has_dups, is_sequence from sympy.utilities.misc import filldedent from sympy.solvers.deutils import _preprocess, ode_order, _desolve from sympy.solvers.solvers import solve from sympy.simplify.radsimp import collect import operator allhints = ( "1st_linear_constant_coeff_homogeneous", "1st_linear_constant_coeff", "1st_linear_constant_coeff_Integral", "1st_linear_variable_coeff" ) def pdsolve(eq, func=None, hint='default', dict=False, solvefun=None, **kwargs): """ Solves any (supported) kind of partial differential equation. **Usage** pdsolve(eq, f(x,y), hint) -> Solve partial differential equation eq for function f(x,y), using method hint. **Details** ``eq`` can be any supported partial differential equation (see the pde docstring for supported methods). This can either be an Equality, or an expression, which is assumed to be equal to 0. ``f(x,y)`` is a function of two variables whose derivatives in that variable make up the partial differential equation. In many cases it is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected). ``hint`` is the solving method that you want pdsolve to use. Use classify_pde(eq, f(x,y)) to get all of the possible hints for a PDE. The default hint, 'default', will use whatever hint is returned first by classify_pde(). See Hints below for more options that you can use for hint. ``solvefun`` is the convention used for arbitrary functions returned by the PDE solver. If not set by the user, it is set by default to be F. **Hints** Aside from the various solving methods, there are also some meta-hints that you can pass to pdsolve(): "default": This uses whatever hint is returned first by classify_pde(). This is the default argument to pdsolve(). "all": To make pdsolve apply all relevant classification hints, use pdsolve(PDE, func, hint="all"). This will return a dictionary of hint:solution terms. If a hint causes pdsolve to raise the NotImplementedError, value of that hint's key will be the exception object raised. The dictionary will also include some special keys: - order: The order of the PDE. See also ode_order() in deutils.py - default: The solution that would be returned by default. This is the one produced by the hint that appears first in the tuple returned by classify_pde(). "all_Integral": This is the same as "all", except if a hint also has a corresponding "_Integral" hint, it only returns the "_Integral" hint. This is useful if "all" causes pdsolve() to hang because of a difficult or impossible integral. This meta-hint will also be much faster than "all", because integrate() is an expensive routine. See also the classify_pde() docstring for more info on hints, and the pde docstring for a list of all supported hints. **Tips** - You can declare the derivative of an unknown function this way: >>> from sympy import Function, Derivative >>> from sympy.abc import x, y # x and y are the independent variables >>> f = Function("f")(x, y) # f is a function of x and y >>> # fx will be the partial derivative of f with respect to x >>> fx = Derivative(f, x) >>> # fy will be the partial derivative of f with respect to y >>> fy = Derivative(f, y) - See test_pde.py for many tests, which serves also as a set of examples for how to use pdsolve(). - pdsolve always returns an Equality class (except for the case when the hint is "all" or "all_Integral"). Note that it is not possible to get an explicit solution for f(x, y) as in the case of ODE's - Do help(pde.pde_hintname) to get help more information on a specific hint Examples ======== >>> from sympy.solvers.pde import pdsolve >>> from sympy import Function, Eq >>> from sympy.abc import x, y >>> f = Function('f') >>> u = f(x, y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0) >>> pdsolve(eq) Eq(f(x, y), F(3*x - 2*y)*exp(-2*x/13 - 3*y/13)) """ if not solvefun: solvefun = Function('F') # See the docstring of _desolve for more details. hints = _desolve(eq, func=func, hint=hint, simplify=True, type='pde', **kwargs) eq = hints.pop('eq', False) all_ = hints.pop('all', False) if all_: # TODO : 'best' hint should be implemented when adequate # number of hints are added. pdedict = {} failed_hints = {} gethints = classify_pde(eq, dict=True) pdedict.update({'order': gethints['order'], 'default': gethints['default']}) for hint in hints: try: rv = _helper_simplify(eq, hint, hints[hint]['func'], hints[hint]['order'], hints[hint][hint], solvefun) except NotImplementedError as detail: failed_hints[hint] = detail else: pdedict[hint] = rv pdedict.update(failed_hints) return pdedict else: return _helper_simplify(eq, hints['hint'], hints['func'], hints['order'], hints[hints['hint']], solvefun) def _helper_simplify(eq, hint, func, order, match, solvefun): """Helper function of pdsolve that calls the respective pde functions to solve for the partial differential equations. This minimizes the computation in calling _desolve multiple times. """ if hint.endswith("_Integral"): solvefunc = globals()[ "pde_" + hint[:-len("_Integral")]] else: solvefunc = globals()["pde_" + hint] return _handle_Integral(solvefunc(eq, func, order, match, solvefun), func, order, hint) def _handle_Integral(expr, func, order, hint): r""" Converts a solution with integrals in it into an actual solution. Simplifies the integral mainly using doit() """ if hint.endswith("_Integral"): return expr elif hint == "1st_linear_constant_coeff": return simplify(expr.doit()) else: return expr def classify_pde(eq, func=None, dict=False, *, prep=True, **kwargs): """ Returns a tuple of possible pdsolve() classifications for a PDE. The tuple is ordered so that first item is the classification that pdsolve() uses to solve the PDE by default. In general, classifications near the beginning of the list will produce better solutions faster than those near the end, though there are always exceptions. To make pdsolve use a different classification, use pdsolve(PDE, func, hint=<classification>). See also the pdsolve() docstring for different meta-hints you can use. If ``dict`` is true, classify_pde() will return a dictionary of hint:match expression terms. This is intended for internal use by pdsolve(). Note that because dictionaries are ordered arbitrarily, this will most likely not be in the same order as the tuple. You can get help on different hints by doing help(pde.pde_hintname), where hintname is the name of the hint without "_Integral". See sympy.pde.allhints or the sympy.pde docstring for a list of all supported hints that can be returned from classify_pde. Examples ======== >>> from sympy.solvers.pde import classify_pde >>> from sympy import Function, Eq >>> from sympy.abc import x, y >>> f = Function('f') >>> u = f(x, y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0) >>> classify_pde(eq) ('1st_linear_constant_coeff_homogeneous',) """ if func and len(func.args) != 2: raise NotImplementedError("Right now only partial " "differential equations of two variables are supported") if prep or func is None: prep, func_ = _preprocess(eq, func) if func is None: func = func_ if isinstance(eq, Equality): if eq.rhs != 0: return classify_pde(eq.lhs - eq.rhs, func) eq = eq.lhs f = func.func x = func.args[0] y = func.args[1] fx = f(x,y).diff(x) fy = f(x,y).diff(y) # TODO : For now pde.py uses support offered by the ode_order function # to find the order with respect to a multi-variable function. An # improvement could be to classify the order of the PDE on the basis of # individual variables. order = ode_order(eq, f(x,y)) # hint:matchdict or hint:(tuple of matchdicts) # Also will contain "default":<default hint> and "order":order items. matching_hints = {'order': order} if not order: if dict: matching_hints["default"] = None return matching_hints else: return () eq = expand(eq) a = Wild('a', exclude = [f(x,y)]) b = Wild('b', exclude = [f(x,y), fx, fy, x, y]) c = Wild('c', exclude = [f(x,y), fx, fy, x, y]) d = Wild('d', exclude = [f(x,y), fx, fy, x, y]) e = Wild('e', exclude = [f(x,y), fx, fy]) n = Wild('n', exclude = [x, y]) # Try removing the smallest power of f(x,y) # from the highest partial derivatives of f(x,y) reduced_eq = None if eq.is_Add: var = set(combinations_with_replacement((x,y), order)) dummyvar = var.copy() power = None for i in var: coeff = eq.coeff(f(x,y).diff(*i)) if coeff != 1: match = coeff.match(a*f(x,y)**n) if match and match[a]: power = match[n] dummyvar.remove(i) break dummyvar.remove(i) for i in dummyvar: coeff = eq.coeff(f(x,y).diff(*i)) if coeff != 1: match = coeff.match(a*f(x,y)**n) if match and match[a] and match[n] < power: power = match[n] if power: den = f(x,y)**power reduced_eq = Add(*[arg/den for arg in eq.args]) if not reduced_eq: reduced_eq = eq if order == 1: reduced_eq = collect(reduced_eq, f(x, y)) r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e) if r: if not r[e]: ## Linear first-order homogeneous partial-differential ## equation with constant coefficients r.update({'b': b, 'c': c, 'd': d}) matching_hints["1st_linear_constant_coeff_homogeneous"] = r else: if r[b]**2 + r[c]**2 != 0: ## Linear first-order general partial-differential ## equation with constant coefficients r.update({'b': b, 'c': c, 'd': d, 'e': e}) matching_hints["1st_linear_constant_coeff"] = r matching_hints[ "1st_linear_constant_coeff_Integral"] = r else: b = Wild('b', exclude=[f(x, y), fx, fy]) c = Wild('c', exclude=[f(x, y), fx, fy]) d = Wild('d', exclude=[f(x, y), fx, fy]) r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e) if r: r.update({'b': b, 'c': c, 'd': d, 'e': e}) matching_hints["1st_linear_variable_coeff"] = r # Order keys based on allhints. retlist = [] for i in allhints: if i in matching_hints: retlist.append(i) if dict: # Dictionaries are ordered arbitrarily, so make note of which # hint would come first for pdsolve(). Use an ordered dict in Py 3. matching_hints["default"] = None matching_hints["ordered_hints"] = tuple(retlist) for i in allhints: if i in matching_hints: matching_hints["default"] = i break return matching_hints else: return tuple(retlist) def checkpdesol(pde, sol, func=None, solve_for_func=True): """ Checks if the given solution satisfies the partial differential equation. pde is the partial differential equation which can be given in the form of an equation or an expression. sol is the solution for which the pde is to be checked. This can also be given in an equation or an expression form. If the function is not provided, the helper function _preprocess from deutils is used to identify the function. If a sequence of solutions is passed, the same sort of container will be used to return the result for each solution. The following methods are currently being implemented to check if the solution satisfies the PDE: 1. Directly substitute the solution in the PDE and check. If the solution hasn't been solved for f, then it will solve for f provided solve_for_func hasn't been set to False. If the solution satisfies the PDE, then a tuple (True, 0) is returned. Otherwise a tuple (False, expr) where expr is the value obtained after substituting the solution in the PDE. However if a known solution returns False, it may be due to the inability of doit() to simplify it to zero. Examples ======== >>> from sympy import Function, symbols >>> from sympy.solvers.pde import checkpdesol, pdsolve >>> x, y = symbols('x y') >>> f = Function('f') >>> eq = 2*f(x,y) + 3*f(x,y).diff(x) + 4*f(x,y).diff(y) >>> sol = pdsolve(eq) >>> assert checkpdesol(eq, sol)[0] >>> eq = x*f(x,y) + f(x,y).diff(x) >>> checkpdesol(eq, sol) (False, (x*F(4*x - 3*y) - 6*F(4*x - 3*y)/25 + 4*Subs(Derivative(F(_xi_1), _xi_1), _xi_1, 4*x - 3*y))*exp(-6*x/25 - 8*y/25)) """ # Converting the pde into an equation if not isinstance(pde, Equality): pde = Eq(pde, 0) # If no function is given, try finding the function present. if func is None: try: _, func = _preprocess(pde.lhs) except ValueError: funcs = [s.atoms(AppliedUndef) for s in ( sol if is_sequence(sol, set) else [sol])] funcs = set().union(funcs) if len(funcs) != 1: raise ValueError( 'must pass func arg to checkpdesol for this case.') func = funcs.pop() # If the given solution is in the form of a list or a set # then return a list or set of tuples. if is_sequence(sol, set): return type(sol)([checkpdesol( pde, i, func=func, solve_for_func=solve_for_func) for i in sol]) # Convert solution into an equation if not isinstance(sol, Equality): sol = Eq(func, sol) elif sol.rhs == func: sol = sol.reversed # Try solving for the function solved = sol.lhs == func and not sol.rhs.has(func) if solve_for_func and not solved: solved = solve(sol, func) if solved: if len(solved) == 1: return checkpdesol(pde, Eq(func, solved[0]), func=func, solve_for_func=False) else: return checkpdesol(pde, [Eq(func, t) for t in solved], func=func, solve_for_func=False) # try direct substitution of the solution into the PDE and simplify if sol.lhs == func: pde = pde.lhs - pde.rhs s = simplify(pde.subs(func, sol.rhs).doit()) return s is S.Zero, s raise NotImplementedError(filldedent(''' Unable to test if %s is a solution to %s.''' % (sol, pde))) def pde_1st_linear_constant_coeff_homogeneous(eq, func, order, match, solvefun): r""" Solves a first order linear homogeneous partial differential equation with constant coefficients. The general form of this partial differential equation is .. math:: a \frac{\partial f(x,y)}{\partial x} + b \frac{\partial f(x,y)}{\partial y} + c f(x,y) = 0 where `a`, `b` and `c` are constants. The general solution is of the form: .. math:: f(x, y) = F(- a y + b x ) e^{- \frac{c (a x + b y)}{a^2 + b^2}} and can be found in SymPy with ``pdsolve``:: >>> from sympy.solvers import pdsolve >>> from sympy.abc import x, y, a, b, c >>> from sympy import Function, pprint >>> f = Function('f') >>> u = f(x,y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> genform = a*ux + b*uy + c*u >>> pprint(genform) d d a*--(f(x, y)) + b*--(f(x, y)) + c*f(x, y) dx dy >>> pprint(pdsolve(genform)) -c*(a*x + b*y) --------------- 2 2 a + b f(x, y) = F(-a*y + b*x)*e Examples ======== >>> from sympy import pdsolve >>> from sympy import Function, pprint >>> from sympy.abc import x,y >>> f = Function('f') >>> pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y)) Eq(f(x, y), F(x - y)*exp(-x/2 - y/2)) >>> pprint(pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y))) x y - - - - 2 2 f(x, y) = F(x - y)*e References ========== - Viktor Grigoryan, "Partial Differential Equations" Math 124A - Fall 2010, pp.7 """ # TODO : For now homogeneous first order linear PDE's having # two variables are implemented. Once there is support for # solving systems of ODE's, this can be extended to n variables. f = func.func x = func.args[0] y = func.args[1] b = match[match['b']] c = match[match['c']] d = match[match['d']] return Eq(f(x,y), exp(-S(d)/(b**2 + c**2)*(b*x + c*y))*solvefun(c*x - b*y)) def pde_1st_linear_constant_coeff(eq, func, order, match, solvefun): r""" Solves a first order linear partial differential equation with constant coefficients. The general form of this partial differential equation is .. math:: a \frac{\partial f(x,y)}{\partial x} + b \frac{\partial f(x,y)}{\partial y} + c f(x,y) = G(x,y) where `a`, `b` and `c` are constants and `G(x, y)` can be an arbitrary function in `x` and `y`. The general solution of the PDE is: .. math:: f(x, y) = \left. \left[F(\eta) + \frac{1}{a^2 + b^2} \int\limits^{a x + b y} G\left(\frac{a \xi + b \eta}{a^2 + b^2}, \frac{- a \eta + b \xi}{a^2 + b^2} \right) e^{\frac{c \xi}{a^2 + b^2}}\, d\xi\right] e^{- \frac{c \xi}{a^2 + b^2}} \right|_{\substack{\eta=- a y + b x\\ \xi=a x + b y }}\, , where `F(\eta)` is an arbitrary single-valued function. The solution can be found in SymPy with ``pdsolve``:: >>> from sympy.solvers import pdsolve >>> from sympy.abc import x, y, a, b, c >>> from sympy import Function, pprint >>> f = Function('f') >>> G = Function('G') >>> u = f(x,y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> genform = a*ux + b*uy + c*u - G(x,y) >>> pprint(genform) d d a*--(f(x, y)) + b*--(f(x, y)) + c*f(x, y) - G(x, y) dx dy >>> pprint(pdsolve(genform, hint='1st_linear_constant_coeff_Integral')) // a*x + b*y \ || / | || | | || | c*xi | || | ------- | || | 2 2 | || | /a*xi + b*eta -a*eta + b*xi\ a + b | || | G|------------, -------------|*e d(xi)| || | | 2 2 2 2 | | || | \ a + b a + b / | || | | || / | || | f(x, y) = ||F(eta) + -------------------------------------------------------|* || 2 2 | \\ a + b / <BLANKLINE> \| || || || || || || || || -c*xi || -------|| 2 2|| a + b || e || || /|eta=-a*y + b*x, xi=a*x + b*y Examples ======== >>> from sympy.solvers.pde import pdsolve >>> from sympy import Function, pprint, exp >>> from sympy.abc import x,y >>> f = Function('f') >>> eq = -2*f(x,y).diff(x) + 4*f(x,y).diff(y) + 5*f(x,y) - exp(x + 3*y) >>> pdsolve(eq) Eq(f(x, y), (F(4*x + 2*y)*exp(x/2) + exp(x + 4*y)/15)*exp(-y)) References ========== - Viktor Grigoryan, "Partial Differential Equations" Math 124A - Fall 2010, pp.7 """ # TODO : For now homogeneous first order linear PDE's having # two variables are implemented. Once there is support for # solving systems of ODE's, this can be extended to n variables. xi, eta = symbols("xi eta") f = func.func x = func.args[0] y = func.args[1] b = match[match['b']] c = match[match['c']] d = match[match['d']] e = -match[match['e']] expterm = exp(-S(d)/(b**2 + c**2)*xi) functerm = solvefun(eta) solvedict = solve((b*x + c*y - xi, c*x - b*y - eta), x, y) # Integral should remain as it is in terms of xi, # doit() should be done in _handle_Integral. genterm = (1/S(b**2 + c**2))*Integral( (1/expterm*e).subs(solvedict), (xi, b*x + c*y)) return Eq(f(x,y), Subs(expterm*(functerm + genterm), (eta, xi), (c*x - b*y, b*x + c*y))) def pde_1st_linear_variable_coeff(eq, func, order, match, solvefun): r""" Solves a first order linear partial differential equation with variable coefficients. The general form of this partial differential equation is .. math:: a(x, y) \frac{\partial f(x, y)}{\partial x} + b(x, y) \frac{\partial f(x, y)}{\partial y} + c(x, y) f(x, y) = G(x, y) where `a(x, y)`, `b(x, y)`, `c(x, y)` and `G(x, y)` are arbitrary functions in `x` and `y`. This PDE is converted into an ODE by making the following transformation: 1. `\xi` as `x` 2. `\eta` as the constant in the solution to the differential equation `\frac{dy}{dx} = -\frac{b}{a}` Making the previous substitutions reduces it to the linear ODE .. math:: a(\xi, \eta)\frac{du}{d\xi} + c(\xi, \eta)u - G(\xi, \eta) = 0 which can be solved using ``dsolve``. >>> from sympy.abc import x, y >>> from sympy import Function, pprint >>> a, b, c, G, f= [Function(i) for i in ['a', 'b', 'c', 'G', 'f']] >>> u = f(x,y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> genform = a(x, y)*u + b(x, y)*ux + c(x, y)*uy - G(x,y) >>> pprint(genform) d d -G(x, y) + a(x, y)*f(x, y) + b(x, y)*--(f(x, y)) + c(x, y)*--(f(x, y)) dx dy Examples ======== >>> from sympy.solvers.pde import pdsolve >>> from sympy import Function, pprint >>> from sympy.abc import x,y >>> f = Function('f') >>> eq = x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2 >>> pdsolve(eq) Eq(f(x, y), F(x*y)*exp(y**2/2) + 1) References ========== - Viktor Grigoryan, "Partial Differential Equations" Math 124A - Fall 2010, pp.7 """ from sympy.solvers.ode import dsolve xi, eta = symbols("xi eta") f = func.func x = func.args[0] y = func.args[1] b = match[match['b']] c = match[match['c']] d = match[match['d']] e = -match[match['e']] if not d: # To deal with cases like b*ux = e or c*uy = e if not (b and c): if c: try: tsol = integrate(e/c, y) except NotImplementedError: raise NotImplementedError("Unable to find a solution" " due to inability of integrate") else: return Eq(f(x,y), solvefun(x) + tsol) if b: try: tsol = integrate(e/b, x) except NotImplementedError: raise NotImplementedError("Unable to find a solution" " due to inability of integrate") else: return Eq(f(x,y), solvefun(y) + tsol) if not c: # To deal with cases when c is 0, a simpler method is used. # The PDE reduces to b*(u.diff(x)) + d*u = e, which is a linear ODE in x plode = f(x).diff(x)*b + d*f(x) - e sol = dsolve(plode, f(x)) syms = sol.free_symbols - plode.free_symbols - {x, y} rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, y) return Eq(f(x, y), rhs) if not b: # To deal with cases when b is 0, a simpler method is used. # The PDE reduces to c*(u.diff(y)) + d*u = e, which is a linear ODE in y plode = f(y).diff(y)*c + d*f(y) - e sol = dsolve(plode, f(y)) syms = sol.free_symbols - plode.free_symbols - {x, y} rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, x) return Eq(f(x, y), rhs) dummy = Function('d') h = (c/b).subs(y, dummy(x)) sol = dsolve(dummy(x).diff(x) - h, dummy(x)) if isinstance(sol, list): sol = sol[0] solsym = sol.free_symbols - h.free_symbols - {x, y} if len(solsym) == 1: solsym = solsym.pop() etat = (solve(sol, solsym)[0]).subs(dummy(x), y) ysub = solve(eta - etat, y)[0] deq = (b*(f(x).diff(x)) + d*f(x) - e).subs(y, ysub) final = (dsolve(deq, f(x), hint='1st_linear')).rhs if isinstance(final, list): final = final[0] finsyms = final.free_symbols - deq.free_symbols - {x, y} rhs = _simplify_variable_coeff(final, finsyms, solvefun, etat) return Eq(f(x, y), rhs) else: raise NotImplementedError("Cannot solve the partial differential equation due" " to inability of constantsimp") def _simplify_variable_coeff(sol, syms, func, funcarg): r""" Helper function to replace constants by functions in 1st_linear_variable_coeff """ eta = Symbol("eta") if len(syms) == 1: sym = syms.pop() final = sol.subs(sym, func(funcarg)) else: for key, sym in enumerate(syms): final = sol.subs(sym, func(funcarg)) return simplify(final.subs(eta, funcarg)) def pde_separate(eq, fun, sep, strategy='mul'): """Separate variables in partial differential equation either by additive or multiplicative separation approach. It tries to rewrite an equation so that one of the specified variables occurs on a different side of the equation than the others. :param eq: Partial differential equation :param fun: Original function F(x, y, z) :param sep: List of separated functions [X(x), u(y, z)] :param strategy: Separation strategy. You can choose between additive separation ('add') and multiplicative separation ('mul') which is default. Examples ======== >>> from sympy import E, Eq, Function, pde_separate, Derivative as D >>> from sympy.abc import x, t >>> u, X, T = map(Function, 'uXT') >>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t)) >>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='add') [exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)] >>> eq = Eq(D(u(x, t), x, 2), D(u(x, t), t, 2)) >>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='mul') [Derivative(X(x), (x, 2))/X(x), Derivative(T(t), (t, 2))/T(t)] See Also ======== pde_separate_add, pde_separate_mul """ do_add = False if strategy == 'add': do_add = True elif strategy == 'mul': do_add = False else: raise ValueError('Unknown strategy: %s' % strategy) if isinstance(eq, Equality): if eq.rhs != 0: return pde_separate(Eq(eq.lhs - eq.rhs, 0), fun, sep, strategy) else: return pde_separate(Eq(eq, 0), fun, sep, strategy) if eq.rhs != 0: raise ValueError("Value should be 0") # Handle arguments orig_args = list(fun.args) subs_args = [] for s in sep: for j in range(0, len(s.args)): subs_args.append(s.args[j]) if do_add: functions = reduce(operator.add, sep) else: functions = reduce(operator.mul, sep) # Check whether variables match if len(subs_args) != len(orig_args): raise ValueError("Variable counts do not match") # Check for duplicate arguments like [X(x), u(x, y)] if has_dups(subs_args): raise ValueError("Duplicate substitution arguments detected") # Check whether the variables match if set(orig_args) != set(subs_args): raise ValueError("Arguments do not match") # Substitute original function with separated... result = eq.lhs.subs(fun, functions).doit() # Divide by terms when doing multiplicative separation if not do_add: eq = 0 for i in result.args: eq += i/functions result = eq svar = subs_args[0] dvar = subs_args[1:] return _separate(result, svar, dvar) def pde_separate_add(eq, fun, sep): """ Helper function for searching additive separable solutions. Consider an equation of two independent variables x, y and a dependent variable w, we look for the product of two functions depending on different arguments: `w(x, y, z) = X(x) + y(y, z)` Examples ======== >>> from sympy import E, Eq, Function, pde_separate_add, Derivative as D >>> from sympy.abc import x, t >>> u, X, T = map(Function, 'uXT') >>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t)) >>> pde_separate_add(eq, u(x, t), [X(x), T(t)]) [exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)] """ return pde_separate(eq, fun, sep, strategy='add') def pde_separate_mul(eq, fun, sep): """ Helper function for searching multiplicative separable solutions. Consider an equation of two independent variables x, y and a dependent variable w, we look for the product of two functions depending on different arguments: `w(x, y, z) = X(x)*u(y, z)` Examples ======== >>> from sympy import Function, Eq, pde_separate_mul, Derivative as D >>> from sympy.abc import x, y >>> u, X, Y = map(Function, 'uXY') >>> eq = Eq(D(u(x, y), x, 2), D(u(x, y), y, 2)) >>> pde_separate_mul(eq, u(x, y), [X(x), Y(y)]) [Derivative(X(x), (x, 2))/X(x), Derivative(Y(y), (y, 2))/Y(y)] """ return pde_separate(eq, fun, sep, strategy='mul') def _separate(eq, dep, others): """Separate expression into two parts based on dependencies of variables.""" # FIRST PASS # Extract derivatives depending our separable variable... terms = set() for term in eq.args: if term.is_Mul: for i in term.args: if i.is_Derivative and not i.has(*others): terms.add(term) continue elif term.is_Derivative and not term.has(*others): terms.add(term) # Find the factor that we need to divide by div = set() for term in terms: ext, sep = term.expand().as_independent(dep) # Failed? if sep.has(*others): return None div.add(ext) # FIXME: Find lcm() of all the divisors and divide with it, instead of # current hack :( # https://github.com/sympy/sympy/issues/4597 if len(div) > 0: final = 0 for term in eq.args: eqn = 0 for i in div: eqn += term / i final += simplify(eqn) eq = final # SECOND PASS - separate the derivatives div = set() lhs = rhs = 0 for term in eq.args: # Check, whether we have already term with independent variable... if not term.has(*others): lhs += term continue # ...otherwise, try to separate temp, sep = term.expand().as_independent(dep) # Failed? if sep.has(*others): return None # Extract the divisors div.add(sep) rhs -= term.expand() # Do the division fulldiv = reduce(operator.add, div) lhs = simplify(lhs/fulldiv).expand() rhs = simplify(rhs/fulldiv).expand() # ...and check whether we were successful :) if lhs.has(*others) or rhs.has(dep): return None return [lhs, rhs]
the-stack_0_903
from notifications.signals import notify def notify_answer(request, topico, resposta): recipient = resposta.parent.user if resposta.parent else topico.user verb = 'responder' description = f'{recipient} respondeu seu post em {topico.titulo}.' url = topico.get_absolute_url() + f'#post{resposta.pk}' if request.user.pk != recipient.pk: notify.send(sender=request.user, recipient=recipient, target=topico, action_object=resposta, verb=verb, description=description, url=url)
the-stack_0_904
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import torchvision from torch.autograd import Variable import itertools import operator from itertools import islice from collections import OrderedDict def to_var(x, requires_grad=True): if torch.cuda.is_available(): x = x.cuda() return Variable(x, requires_grad=requires_grad) class MetaModule(nn.Module): # adopted from: Adrien Ecoffet https://github.com/AdrienLE def parameters(self): for name, param in self.named_params(self): yield param def named_parameters(self): for name, param in self.named_params(self): yield name, param def named_leaves(self): return [] def named_submodules(self): return [] def named_params(self, curr_module=None, memo=None, prefix=''): if memo is None: memo = set() if hasattr(curr_module, 'named_leaves'): for name, p in curr_module.named_leaves(): if p is not None and p not in memo: memo.add(p) yield prefix + ('.' if prefix else '') + name, p else: for name, p in curr_module._parameters.items(): if p is not None and p not in memo: memo.add(p) yield prefix + ('.' if prefix else '') + name, p for mname, module in curr_module.named_children(): submodule_prefix = prefix + ('.' if prefix else '') + mname for name, p in self.named_params(module, memo, submodule_prefix): yield name, p def update_params(self, lr_inner, first_order=False, source_params=None, detach=False): if source_params is not None: for tgt, src in zip(self.named_params(self), source_params): name_t, param_t = tgt # name_s, param_s = src # grad = param_s.grad # name_s, param_s = src grad = src if first_order: grad = to_var(grad.detach().data) tmp = param_t - lr_inner * grad self.set_param(self, name_t, tmp) else: for name, param in self.named_params(self): if not detach: grad = param.grad if first_order: grad = to_var(grad.detach().data) tmp = param - lr_inner * grad self.set_param(self, name, tmp) else: param = param.detach_() self.set_param(self, name, param) def set_param(self,curr_mod, name, param): if '.' in name: n = name.split('.') module_name = n[0] rest = '.'.join(n[1:]) for name, mod in curr_mod.named_children(): if module_name == name: self.set_param(mod, rest, param) break else: setattr(curr_mod, name, param) def detach_params(self): for name, param in self.named_params(self): self.set_param(self, name, param.detach()) def copy(self, other, same_var=False): for name, param in other.named_params(): if not same_var: param = to_var(param.data.clone(), requires_grad=True) self.set_param(name, param) class MetaLinear(MetaModule): def __init__(self, *args, **kwargs): super().__init__() ignore = nn.Linear(*args, **kwargs) self.register_buffer('weight', to_var(ignore.weight.data, requires_grad=True)) self.register_buffer('bias', to_var(ignore.bias.data, requires_grad=True)) self.in_features = ignore.weight.size(1) self.out_features = ignore.weight.size(0) def forward(self, x): return F.linear(x, self.weight, self.bias) def named_leaves(self): return [('weight', self.weight), ('bias', self.bias)] class MetaSequential(MetaModule): r"""A sequential container. Modules will be added to it in the order they are passed in the constructor. Alternatively, an ordered dict of modules can also be passed in. To make it easier to understand, here is a small example:: # Example of using Sequential model = MetaSequential( MetaConv2d(1,20,5), nn.ReLU(), MetaConv2d(20,64,5), nn.ReLU() ) # Example of using Sequential with OrderedDict model = MetaSequential(OrderedDict([ ('conv1', MetaConv2d(1,20,5)), ('relu1', nn.ReLU()), ('conv2', MetaConv2d(20,64,5)), ('relu2', nn.ReLU()) ])) """ def __init__(self, *args): super(MetaSequential, self).__init__() if len(args) == 1 and isinstance(args[0], OrderedDict): for key, module in args[0].items(): self.add_module(key, module) else: for idx, module in enumerate(args): self.add_module(str(idx), module) def _get_item_by_idx(self, iterator, idx): """Get the idx-th item of the iterator""" size = len(self) idx = operator.index(idx) if not -size <= idx < size: raise IndexError('index {} is out of range'.format(idx)) idx %= size return next(islice(iterator, idx, None)) def __getitem__(self, idx): if isinstance(idx, slice): return self.__class__(OrderedDict(list(self._modules.items())[idx])) else: return self._get_item_by_idx(self._modules.values(), idx) def __setitem__(self, idx, module): key = self._get_item_by_idx(self._modules.keys(), idx) return setattr(self, key, module) def __delitem__(self, idx): if isinstance(idx, slice): for key in list(self._modules.keys())[idx]: delattr(self, key) else: key = self._get_item_by_idx(self._modules.keys(), idx) delattr(self, key) def __len__(self): return len(self._modules) def __dir__(self): keys = super(Sequential, self).__dir__() keys = [key for key in keys if not key.isdigit()] return keys def forward(self, input): for module in self._modules.values(): input = module(input) return input class MetaModuleList(MetaModule): r"""Holds submodules in a list. :class:`~MetaModuleList` can be indexed like a regular Python list, but modules it contains are properly registered, and will be visible by all :class:`~MetaModule` methods. Arguments: modules (iterable, optional): an iterable of modules to add Example:: class MyModule(MetaModule): def __init__(self): super(MyModule, self).__init__() self.linears = MetaModuleList([MetaLinear(10, 10) for i in range(10)]) def forward(self, x): # ModuleList can act as an iterable, or be indexed using ints for i, l in enumerate(self.linears): x = self.linears[i // 2](x) + l(x) return x """ def __init__(self, modules=None): super(MetaModuleList, self).__init__() if modules is not None: self += modules def _get_abs_string_index(self, idx): """Get the absolute index for the list of modules""" idx = operator.index(idx) if not (-len(self) <= idx < len(self)): raise IndexError('index {} is out of range'.format(idx)) if idx < 0: idx += len(self) return str(idx) def __getitem__(self, idx): if isinstance(idx, slice): return self.__class__(list(self._modules.values())[idx]) else: return self._modules[self._get_abs_string_index(idx)] def __setitem__(self, idx, module): idx = self._get_abs_string_index(idx) return setattr(self, str(idx), module) def __delitem__(self, idx): if isinstance(idx, slice): for k in range(len(self._modules))[idx]: delattr(self, str(k)) else: delattr(self, self._get_abs_string_index(idx)) # To preserve numbering, self._modules is being reconstructed with modules after deletion str_indices = [str(i) for i in range(len(self._modules))] self._modules = OrderedDict(list(zip(str_indices, self._modules.values()))) def __len__(self): return len(self._modules) def __iter__(self): return iter(self._modules.values()) def __iadd__(self, modules): return self.extend(modules) def __dir__(self): keys = super(ModuleList, self).__dir__() keys = [key for key in keys if not key.isdigit()] return keys def insert(self, index, module): r"""Insert a given module before a given index in the list. Arguments: index (int): index to insert. module (MetaModule): module to insert """ for i in range(len(self._modules), index, -1): self._modules[str(i)] = self._modules[str(i - 1)] self._modules[str(index)] = module def append(self, module): r"""Appends a given module to the end of the list. Arguments: module (MetaModule): module to append """ self.add_module(str(len(self)), module) return self def extend(self, modules): r"""Appends modules from a Python iterable to the end of the list. Arguments: modules (iterable): iterable of modules to append """ if not isinstance(modules, container_abcs.Iterable): raise TypeError("ModuleList.extend should be called with an " "iterable, but got " + type(modules).__name__) offset = len(self) for i, module in enumerate(modules): self.add_module(str(offset + i), module) return self class ModuleDict(MetaModule): r"""Holds submodules in a dictionary. :class:`~MetaModuleDict` can be indexed like a regular Python dictionary, but modules it contains are properly registered, and will be visible by all :class:`~MetaModule` methods. :class:`~MetaModuleDict` is an **ordered** dictionary that respects * the order of insertion, and * in :meth:`~MetaModuleDict.update`, the order of the merged ``OrderedDict`` or another :class:`~MetaModuleDict` (the argument to :meth:`~MetaModuleDict.update`). Note that :meth:`~MetaModuleDict.update` with other unordered mapping types (e.g., Python's plain ``dict``) does not preserve the order of the merged mapping. Arguments: modules (iterable, optional): a mapping (dictionary) of (string: module) or an iterable of key-value pairs of type (string, module) Example:: class MyModule(MetaModule): def __init__(self): super(MyModule, self).__init__() self.choices = MetaModuleDict({ 'conv': MetaConv2d(10, 10, 3), 'pool': nn.MaxPool2d(3) }) self.activations = MetaModuleDict([ ['lrelu', nn.LeakyReLU()], ['prelu', nn.PReLU()] ]) def forward(self, x, choice, act): x = self.choices[choice](x) x = self.activations[act](x) return x """ def __init__(self, modules=None): super(MetaModuleDict, self).__init__() if modules is not None: self.update(modules) def __getitem__(self, key): return self._modules[key] def __setitem__(self, key, module): self.add_module(key, module) def __delitem__(self, key): del self._modules[key] def __len__(self): return len(self._modules) def __iter__(self): return iter(self._modules) def __contains__(self, key): return key in self._modules def clear(self): """Remove all items from the ModuleDict. """ self._modules.clear() def pop(self, key): r"""Remove key from the ModuleDict and return its module. Arguments: key (string): key to pop from the ModuleDict """ v = self[key] del self[key] return v def keys(self): r"""Return an iterable of the ModuleDict keys. """ return self._modules.keys() def items(self): r"""Return an iterable of the ModuleDict key/value pairs. """ return self._modules.items() def values(self): r"""Return an iterable of the ModuleDict values. """ return self._modules.values() def update(self, modules): r"""Update the :class:`~MetaModuleDict` with the key-value pairs from a mapping or an iterable, overwriting existing keys. .. note:: If :attr:`modules` is an ``OrderedDict``, a :class:`~MetaModuleDict`, or an iterable of key-value pairs, the order of new elements in it is preserved. Arguments: modules (iterable): a mapping (dictionary) from string to :class:`~MetaModule`, or an iterable of key-value pairs of type (string, :class:`~MetaModule`) """ if not isinstance(modules, container_abcs.Iterable): raise TypeError("ModuleDict.update should be called with an " "iterable of key/value pairs, but got " + type(modules).__name__) if isinstance(modules, container_abcs.Mapping): if isinstance(modules, (OrderedDict, ModuleDict)): for key, module in modules.items(): self[key] = module else: for key, module in sorted(modules.items()): self[key] = module else: for j, m in enumerate(modules): if not isinstance(m, container_abcs.Iterable): raise TypeError("ModuleDict update sequence element " "#" + str(j) + " should be Iterable; is" + type(m).__name__) if not len(m) == 2: raise ValueError("ModuleDict update sequence element " "#" + str(j) + " has length " + str(len(m)) + "; 2 is required") self[m[0]] = m[1] def forward(self): raise NotImplementedError() class LeNet(MetaModule): def __init__(self, n_out): super(LeNet, self).__init__() layers = [] layers.append(MetaConv2d(1, 6, kernel_size=5)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.MaxPool2d(kernel_size=2,stride=2)) layers.append(MetaConv2d(6, 16, kernel_size=5)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.MaxPool2d(kernel_size=2,stride=2)) layers.append(MetaConv2d(16, 120, kernel_size=5)) layers.append(nn.ReLU(inplace=True)) self.main = nn.Sequential(*layers) layers = [] layers.append(MetaLinear(120, 84)) layers.append(nn.ReLU(inplace=True)) layers.append(MetaLinear(84, n_out)) self.fc_layers = nn.Sequential(*layers) def forward(self, x): x = self.main(x) x = x.view(-1, 120) return self.fc_layers(x).squeeze()
the-stack_0_905
#!/usr/bin/env python # Software License Agreement (Apache License 2.0) # # Copyright 2017 Florian Kromer # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import rospy class ParameterContractViolation(Exception): """ Basic exception for contract violations raised by parameters. """ def __init__(self, name, msg=None): if msg is None: # default error message msg = "Contract violation of parameter %s" % name super(ParameterContractViolation, self).__init__(msg) # make name accessible for exception handling self.name = name class ParameterValueViolation(ParameterContractViolation): """ Exception for value contract violations raised by parameters. """ def __init__(self, name, value): super(ParameterValueViolation, self).__init__( name, msg="Parameter %s violated contract with value %s" % (name, value)) self.value = value def _check_parameter_exists(name): """ Checks if a parameter exists. Args: name (string): Name of the parameter. Returns: bool: True if existing, False if not existing. """ if rospy.has_param(name): return True return False def assert_parameter_exists(name): """ Indicates a contract violation if the parameter is expected to exist but if it does not exist by raising an exception. Args: name (string): Name of the parameter. Raises: ParameterContractViolation: Raised if parameter is not existing. """ if not _check_parameter_exists(name): raise ParameterContractViolation(name, "Parameter %s not existing" % (name)) def enforce_parameter_exists(name): """ Indicates a contract violation if the parameter is expected to exist but if it does not exist by logging or diagnostics. Args: name (string): Name of the parameter. """ if not _check_parameter_exists(name): rospy.logwarn("Parameter %s not existing" % (name)) def assert_parameter_not_exists(name): """ Indicates a contract violation if the parameter is expected to not exist but if it does exist. Args: name (string): Name of the parameter. Raises: ParameterContractViolation: Raised if parameter is existing. """ if rospy.has_param(name): raise ParameterContractViolation(name, "Parameter %s existing" % (name)) def assert_parameter_has_value(name, value): """ Indicates a contract violation if it is expected that the parameter has a specific value but if it has not. Args: name (string): Name of the parameter. value (depends on the parameter type): Value of the parameter. Raises: ParameterValueViolation: Raised if parameter value is not like expected. """ if rospy.has_param(name): observed_value = rospy.get_param(name) if value != observed_value: ParameterValueViolation(name, value) else: raise ParameterContractViolation(name, "Parameter %s not existing" % (name)) def assert_parameter_in_range(name, lower_bound, upper_bound): """ Indicates a contract violation if it is expected that a parameter value of type 32-bit integers has a value within a defined range but if it has not. Args: name (string): Name of the parameter. Raises: ParameterValueViolation: Raised if parameter value is not in the range. ParameterContractViolation: Raised if parameter does not exist. """ if rospy.has_param(name): value = rospy.get_param(name) if lower_bound > value > upper_bound: raise ParameterValueViolation(name, value) else: raise ParameterContractViolation(name, "Parameter %s not existing" % (name)) def assert_parameter_out_range(name, lower_bound, upper_bound): """ Indicates a contract violation if it is expected that a parameter value of type 32-bit integers has a value outside a defined range but if it has not. Args: name (string): Name of the parameter. Raises: ParameterValueViolation: Raised if parameter value is not outside the range. ParameterContractViolation: Raised if parameter does not exist. """ if rospy.has_param(name): value = rospy.get_param(name) if lower_bound > value > upper_bound: raise ParameterValueViolation(name, value) else: raise ParameterContractViolation(name, "Parameter %s not existing" % (name))
the-stack_0_913
""" =============== Subplots Adjust =============== Adjusting the spacing of margins and subplots using :func:`~matplotlib.pyplot.subplots_adjust`. """ import matplotlib.pyplot as plt import numpy as np # Fixing random state for reproducibility np.random.seed(19680801) plt.subplot(211) plt.imshow(np.random.random((100, 100)), cmap=plt.cm.BuPu_r) plt.subplot(212) plt.imshow(np.random.random((100, 100)), cmap=plt.cm.BuPu_r) plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9) cax = plt.axes([0.85, 0.1, 0.075, 0.8]) plt.colorbar(cax=cax) plt.show()
the-stack_0_914
#! /usr/bin/python2 # # Copyright (c) 2017 Intel Corporation # # SPDX-License-Identifier: Apache-2.0 # import codecs import os import shutil import socket import string import subprocess import sys import telnetlib import tempfile import time import serial import commonl import ttbl import ttbl.cm_loopback import ttbl.cm_serial import ttbl.config import ttbl.pc_ykush import ttbl.tt_qemu class tt_serial( ttbl.test_target, ttbl.tt_power_control_mixin, ttbl.cm_serial.cm_serial): """A generic test target, power switched with a pluggable power control implementation and with one or more serial ports. Example configuration:: >>> ttbl.config.target_add( >>> tt_serial( >>> "minnow-01", >>> power_control = ttbl.pc.dlwps7("http://URL"), >>> serial_ports = [ >>> { "port": "/dev/tty-minnow-01", "baudrate": 115200 } >>> ]), >>> tags = { >>> 'build_only': True, >>> 'bsp_models': { 'x86': None }, >>> 'bsps': { >>> 'x86': dict(board = 'minnowboard', >>> console = "") >>> } >>> }, >>> target_type = "minnow_max") With a udev configuration that generated the ``/dev/tty-minnow-01`` name such as ``/etc/udev/rules.d/SOMETHING.rules``:: SUBSYSTEM == "tty", ENV{ID_SERIAL_SHORT} == "SERIALNUMBER", \ GROUP = "SOMEGROUP", MODE = "0660", \ SYMLINK += "tty-minnow-01" :param power_control: an instance of an implementation of the power_control_mixin used to implement power control for the target. Use ttbl.pc.manual() for manual power control that requires user interaction. :param serial_ports: list of serial port dictionaries, specified as for :func:`serial.serial_for_url` with a couple of extras as specified in :class:`ttbl.cm_serial`. """ def __init__(self, id, power_control, serial_ports, _tags = None, target_type = None): ttbl.test_target.__init__(self, id, _tags = _tags, _type = target_type) ttbl.tt_power_control_mixin.__init__(self, power_control) ttbl.cm_serial.cm_serial.__init__(self, self.state_dir, serial_ports) class tt_power( ttbl.test_target, ttbl.tt_power_control_mixin): def __init__(self, id, power_control, power = None): """ A generic test target for just power control >>> ttbl.config.target_add( >>> ttbl.tt.tt_power(name, ttbl.pc.dlwps7(URL), power = None), >>> tags = dict(idle_poweroff = 0)) :param bool power: if specified, switch the power of the target upon initialization; *True* powers it on, *False* powers it off, *None* does nothing. """ assert isinstance(id, basestring) ttbl.test_target.__init__(self, id) ttbl.tt_power_control_mixin.__init__(self, power_control) if power == True: self.log.info("Powering on per configuration") self._power_on_do() elif power == False: self.log.info("Powering off per configuration") self._power_off_do() class tt_power_lc( ttbl.test_target, ttbl.cm_loopback.cm_loopback, ttbl.tt_power_control_mixin): def __init__(self, id, power_control, power = None, consoles = None): """ A generic test target for just power control and fake loopback consoles >>> ttbl.config.target_add( >>> ttbl.tt.tt_power(name, ttbl.pc.dlwps7(URL), power = None)) :param bool power: if specified, switch the power of the target upon initialization; *True* powers it on, *False* powers it off, *None* does nothing. :param consoles: see :class:`ttbl.cm_loopback.cm_loopback`. """ ttbl.test_target.__init__(self, id) ttbl.tt_power_control_mixin.__init__(self, power_control) ttbl.cm_loopback.cm_loopback.__init__(self, self.state_dir, consoles) if power == True: self.log.info("Powering on per configuration") self._power_on_do() elif power == False: self.log.info("Powering off per configuration") self._power_off_do() class tt_arduino2( ttbl.test_target, ttbl.test_target_images_mixin, ttbl.tt_power_control_mixin, ttbl.cm_serial.cm_serial): #: Command to call to execute the BOSSA command line flasher bossac_cmd = "bossac" def __init__(self, _id, serial_port, power_control = None, bossac_cmd = "bossac"): """Test target for a target flashable with the bossac tool (mostly Arduino Due) *Requirements* - Needs a connection to the USB programming port - Uses the bossac utility built on the *arduino* branch from https://github.com/shumatech/BOSSA/tree/arduino; requires it to be installed in the path ``bossac_cmd`` (defaults to sytem path). Supports ``kernel{,-arm}`` images:: $ git clone https://github.com/shumatech/BOSSA.git bossac.git $ cd bossac.git $ make -k $ sudo install -o root -g root bin/bossac /usr/local/bin - TTY devices need to be properly configured permission wise for bossac and serial console to work; for such, choose a Unix group which can get access to said devices and add udev rules such as:: # Arduino2 boards: allow reading USB descriptors SUBSYSTEM=="usb", ATTR{idVendor}=="2a03", ATTR{idProduct}=="003d", \ GROUP="GROUPNAME", MODE = "660" # Arduino2 boards: allow reading serial port SUBSYSTEM == "tty", ENV{ID_SERIAL_SHORT} == "SERIALNUMBER", \ GROUP = "GROUPNAME", MODE = "0660", \ SYMLINK += "tty-TARGETNAME" The theory of operation is quite simple. According to https://www.arduino.cc/en/Guide/ArduinoDue#toc4, the Due will erase the flash if you open the programming port at 1200bps and then start a reset process and launch the flash when you open the port at 115200. This is not so clear in the URL above, but this is what expermientation found. So for flashing, we'll take over the console, set the serial port to 1200bps, wait a wee bit and then call bossac. We need power control to fully reset the Arduino Due when it gets in a tight spot (and to save power when not using it). There is no reset, we just power cycle -- found no way to do a reset in SW without erasing the flash. :param str _id: name identifying the target :param str serial_port: File name of the device node representing the serial port this device is connected to. :param ttbl.tt_power_control_impl power_control: power controller (if any) :param bossac_cmd: Path and file where to find the `bossac` utility. """ self.serial_port = serial_port self.serial_port_basename = os.path.basename(serial_port) #:param power_url: http://USER:PASSWORD@HOST:PORT/OUTLETNUMBER ttbl.test_target.__init__(self, _id) ttbl.test_target_images_mixin.__init__(self) ttbl.tt_power_control_mixin.__init__(self, power_control) ttbl.cm_serial.cm_serial.__init__( self, self.state_dir, [ "pc", { 'port': serial_port, 'baudrate': 115200 } ]) self.bossac_cmd = bossac_cmd def image_do_set(self, image_type, image_name): """Just validates the image types are ok. The flashing happens in images_do_set(). :param str image_type: Type of the image supported :param str image_name: Name of image file in the daemon storage space for the user :raises: Any exception on failure """ if image_type != "kernel" and image_type != "kernel-arm": raise self.unsupported_image_e("%s: image type not supported " "(only kernel or kernel-arm)" % image_type) self.power_on(self.owner_get()) with self.console_takeover(): # erase the flash by opening the serial port at 1200bps self.log.info("Erasing the flash") eo = serial.Serial(port = self.serial_port, baudrate = 1200) time.sleep(0.25) eo.close() self.log.debug("Erased the flash") # now write it cmdline = [ self.bossac_cmd, "-p", self.serial_port_basename, "-e", # Erase current "-w", # Write a new one "-v", # Verify, "-b", # Boot from Flash image_name ] self.log.info("flashing image with: %s" % " ".join(cmdline)) so = commonl.logfile_open("bossac", type(self), True, 0) s = subprocess.Popen( cmdline, stdin = None, cwd = "/tmp", stdout = so, stderr = subprocess.STDOUT) self.log.info("running %s" % (" ".join(cmdline))) r = s.wait() del s so.seek(0) # Say what happened if r != 0: self.log.error("flashing failed") m = "" with codecs.open(so.name, "r", encoding = 'utf-8') as so_r: for line in so_r: line = line.decode('utf-8').strip() self.log.error("flashing output: " + line) m += "flashing output: " + line + "\n" raise Exception("Flashing failed\n" + m) # Check the log, if it does not say "Verify succesful", it didn't work with codecs.open(so.name, "r", encoding = 'utf-8') as so_r: m = "" for line in so_r: line = line.decode('utf-8').strip() if line.endswith("Verify successful"): break m += "flashing output: " + line + "\n" else: raise Exception( "Flashing failed (can't find 'Verify syccessful')\n" + m) self.log.info("flashing succeeded") with codecs.open(so.name, "r", encoding = 'utf-8') as so_r: for line in so_r: line = line.strip() self.log.debug("flashing: " + line) def images_do_set(self, images): pass class tt_esp32( ttbl.test_target, ttbl.tt_power_control_mixin, ttbl.cm_serial.cm_serial, ttbl.test_target_images_mixin): esptool_path = "__unconfigured__tt_esp32.esptool_path__" def __init__(self, _id, serial_number, power_control, serial_port): """\ Test target ESP32 Tensilica based MCUs that use the ESP-IDF framework :param str _id: name identifying the target :param str serial_number: Unique USB serial number of the device (can be updated with http://cp210x-program.sourceforge.net/) :param power_control: Power control implementation or rail (:class:`ttbl.tt_power_control_impl` or list of such) :param str serial_port: Device name of the serial port where the console will be found. This can be set with udev to be a constant name. The base code will convert the *ELF* image to the required *bin* image using the ``esptool.py`` script. Then it will flash it via the serial port. *Requirements* - The ESP-IDK framework, of which ``esptool.py`` is used to flash the target; to install:: $ cd /opt $ git clone --recursive https://github.com/espressif/esp-idf.git (note the ``--recursive``!! it is needed so all the submodules are picked up) configure path to it globally by setting :attr:`esptool_path` in a /etc/ttbd-production/conf_*.py file: .. code-block:: python import ttbl.tt ttbl.tt.tt_esp32.esptool_path = "/opt/esp-idf/components/esptool_py/esptool/esptool.py" Note you will also most likely need this in the client to compile code for the board. - Permissions to use USB devices in */dev/bus/usb* are needed; *ttbd* usually roots with group *root*, which shall be enough. - Needs power control for proper operation; FIXME: pending to make it operate without power control, using ``esptool.py``. """ assert isinstance(_id, basestring) assert isinstance(serial_number, basestring) assert isinstance(power_control, ttbl.tt_power_control_impl) \ or isinstance(power_control, list) self.serial_number = serial_number ttbl.test_target.__init__(self, _id) ttbl.tt_power_control_mixin.__init__(self, power_control) ttbl.test_target_images_mixin.__init__(self) self.serial_port = serial_port ttbl.cm_serial.cm_serial.__init__( self, self.state_dir, [ "pc", { 'port': serial_port, 'baudrate': 115200 } ]) def images_do_set(self, images): # We implement image_do_set(), as there is only one image to set pass def image_do_set(self, image_type, image_name): """Just validates the image types are ok. The flashing happens in images_do_set(). :param str image_type: Type of the image supported :param str image_name: Name of image file in the daemon storage space for the user :raises: Any exception on failure """ cmdline_convert = [ self.esptool_path, "--chip", "esp32", "elf2image", ] cmdline_flash = [ self.esptool_path, "--chip", "esp32", "--port", self.serial_port, "--baud", "921600", "--before", "default_reset", "write_flash", "-u", "--flash_mode", "dio", "--flash_freq", "40m", "--flash_size", "detect", "0x1000", ] if image_type == "kernel": image_type = "kernel-xternsa" if not image_type.startswith("kernel-"): raise RuntimeError( "Unknown image type '%s' (valid: kernel-{%s})" % (image_type, ",".join(self.tags['bsps'].keys()))) image_name_bin = image_name + ".bin" try: cmdline = cmdline_convert + [ image_name, "--output", image_name_bin ] self.log.info("converting with %s" % " ".join(cmdline)) s = subprocess.check_output(cmdline, cwd = "/tmp", stderr = subprocess.STDOUT) except subprocess.CalledProcessError as e: self.log.error("converting image with %s failed: (%d) %s" % (" ".join(cmdline), e.returncode, e.output)) raise self._power_cycle_do() with self.console_takeover(): # give up the serial port try: cmdline = cmdline_flash + [ image_name_bin ] self.log.info("flashing with %s" % " ".join(cmdline)) s = subprocess.check_output(cmdline, cwd = "/tmp", stderr = subprocess.STDOUT) self.log.info("flashed with %s: %s" % (" ".join(cmdline), s)) except subprocess.CalledProcessError as e: self.log.error("flashing with %s failed: (%d) %s" % (" ".join(cmdline), e.returncode, e.output)) raise self._power_off_do() self.log.info("flashing succeeded") class tt_flasher( ttbl.test_target, ttbl.test_target_images_mixin, ttbl.tt_power_control_mixin, ttbl.tt_debug_mixin, ttbl.cm_serial.cm_serial): class error(RuntimeError): pass def __init__(self, _id, serial_ports, flasher, power_control): """Test target flashable, power switchable with debuggin Any target which supports the :class:`ttbl.flasher.flasher_c` interface can be used, mostly OpenOCD targets. How we use this, is for example: >>> flasher_openocd = ttbl.flasher.openocd_c("frdm_k64f", FRDM_SERIAL, >>> openocd10_path, openocd10_scripts) >>> ttbl.config.target_add( >>> ttbl.tt.tt_flasher( >>> NAME, >>> serial_ports = [ >>> "pc", >>> dict(port = "/dev/tty-NAME", baudrate = 115200) >>> ], >>> flasher = flasher_obj, >>> power_control = [ >>> ttbl.pc_ykush.ykush(YKUSH_SERIAL, YKUSH_PORT) >>> # delay until device comes up >>> ttbl.pc.delay_til_usb_device(FRDM_SERIAL), >>> ttbl.cm_serial.pc(), # Connect serial ports >>> flasher_openocd, # Start / stop OpenOCD >>> ] >>> ), >>> tags = { >>> 'bsp_models' : { 'arm': None }, >>> 'bsps' : { >>> "arm": dict(board = "frdm_k64f", kernelname = 'zephyr.bin', >>> kernel = [ "micro", "nano" ], >>> console = "", quark_se_stub = "no"), >>> }, >>> 'slow_flash_factor': 5, # Flash verification slow >>> 'flash_verify': 'False', # Or disable it ... >>> }, >>> target_type = "frdm_k64f") .. note: the power for this target is a normal power control implementation, HOWEVER, the power rail also contains the OpenOCD flasher to start/stop the daemon once the board is powered up. :param str _id: target name :param serial_ports: list of serial port dictionaries, specified as for :func:`serial.serial_for_url` with a couple of extras as specified in :class:`ttbl.cm_serial`. :param ttbl.flasher.flasher_c flasher: flashing object that provides access to deploy images and debug control :param power_control: an instance of an implementation of the power_control_mixin used to implement power control for the target. Use ttbl.pc.manual() for manual power control that requires user interaction. """ ttbl.test_target.__init__(self, _id) ttbl.test_target_images_mixin.__init__(self) ttbl.tt_power_control_mixin.__init__(self, power_control) ttbl.tt_debug_mixin.__init__(self) ttbl.cm_serial.cm_serial.__init__(self, self.state_dir, serial_ports) self.flasher = flasher self.flasher.test_target_link(self) self.power_on_post_fns.append(self.power_on_do_post) self.power_off_pre_fns.append(self.power_off_do_pre) # Debugging interface # # We don't do much other than resuming the target if we stop # debugging def debug_do_start(self, tt_ignored): pass def debug_do_halt(self, _): if self.flasher: self.flasher.target_halt(for_what = "debug_halt") def debug_do_reset(self, _): if self.flasher: self.flasher.target_reset_halt(for_what = "debug_reset") def debug_do_reset_halt(self, _): if self.flasher: self.flasher.target_reset_halt(for_what = "debug_reset_halt") def debug_do_resume(self, _): if self.flasher: self.flasher.target_resume(for_what = "debug_resume") def debug_do_stop(self, _): if self.flasher: self.flasher.target_resume() def debug_do_info(self, _): # FIXME: self.flasher should be providing this information, this # is breaking segmentation count = 2 # port #0 is for telnet, #1 for TCL tcp_port_base_s = self.fsdb.get("openocd.port") if tcp_port_base_s == None: return "Debugging information not available, power on?" tcp_port_base = int(tcp_port_base_s) s = "OpenOCD telnet server: %s %d\n" \ % (socket.getfqdn('0.0.0.0'), tcp_port_base) for target in self.flasher.board['targets']: s += "GDB server: %s: tcp:%s:%d\n" % (target, socket.getfqdn('0.0.0.0'), tcp_port_base + count) count +=1 if self.fsdb.get('powered') != None: s += "Debugging available as target is ON" else: s += "Debugging not available as target is OFF" return s def debug_do_openocd(self, _, command): return self.flasher.openocd_cmd(command) # Wrap actual reset with retries def target_reset_halt(self, for_what = ""): tries = 1 tries_max = 2 # FIXME: current limitation, can't access the tags from the # constructor as the ones we add in target_add() aren't there # yet. wait = \ float(self.tags.get('hard_recover_rest_time', 2)) while tries <= tries_max: # The Arduino101 get's so stuck sometimes try: self.flasher.target_reset_halt(for_what) break except self.flasher.error: pass try_s = "%d/%d" % (tries, tries_max) time.sleep(2) try: self.flasher.target_reset("[recover reset #1 %s] " % try_s + for_what) except self.flasher.error: pass try: self.flasher.target_reset_halt("[retry %s] " % try_s + for_what) break except self.flasher.error: pass # In some targets, this fails because maybe we just # power-cycled and the JTAG said it was ready but it # is really not ready...when that happens, just # power-cycle again. # well, that didn't work either; bring the big guns, # power cycle it and try the whole thing again wait_s = (1 + 2.0 * tries/tries_max) * wait self.log.info("Failed to reset/halt, power-cycle (%.2fs) " "and retrying (try %d/%d)" % (wait_s, tries, tries_max)) self.power_cycle(self.owner_get(), wait_s) tries += 1 else: # FIXME: pass the exception we get or the log or something raise self.error("Can't reset/halt the target") def target_reset(self, for_what = ""): tries = 1 tries_max = 5 # FIXME: current limitation, can't access the tags from the # constructor as the ones we add in target_add() aren't there # yet. wait = \ float(self.tags.get('hard_recover_rest_time', 10)) while tries <= tries_max: # The Arduino101 get's so stuck sometimes try: self.flasher.target_reset(for_what) break except self.flasher.error: pass # Try again try: self.flasher.target_reset(for_what) break except self.flasher.error: pass # Bring the big guns, power cycle it if wait != None: wait_s = tries * wait self.log.info("Failed to reset/run, power-cycle (%.2fs) " "and retrying (try %d/%d)" % (wait_s, tries, tries_max)) self.power_cycle(self.owner_get(), wait_s) tries += 1 else: # FIXME: pass the exception we get or the log or something raise self.error("Can't reset/run the target") # Power interface # # Fire up the flasher when we power the target up, so it can # access the JTAG def power_on_do_post(self): self.flasher.start() def power_off_do_pre(self): self.flasher.stop() def reset_do(self, _): # We halt first so we can stop recording from the serial ports # and then restart wihout getting any trash; we use reset_halt # because it is a single command for all targets (halt needs # to select each target). self.flasher.target_reset_halt() self.consoles_reset() # When we reset, if we are debugging we need to halt the target as # soon as it starts. Otherwise, we reset it normally. These # are atomic (they act on all the targets at the same time..in # theory) if self.fsdb.get("debug") != None: self.flasher.target_reset_halt() else: self.flasher.target_reset() # Flashing interface -- quite simple, we need the target on and # then just flash the image in. def image_do_set(self, image_type, image_name): pass def images_do_set(self, images): # FIXME: current limitation, can't access the tags from the # constructor as the ones we add in target_add() aren't there # yet. wait = \ float(self.tags.get('hard_recover_rest_time', 10)) if self.fsdb.get("disable_power_cycle_before_flash") != 'True': # Make sure the target is really fresh before flashing it try: # See the documentation for this on class flasher_c # for why we have to do it. self.flasher.hack_reset_after_power_on = True self.power_cycle(self.owner_get(), wait = wait) finally: self.flasher.hack_reset_after_power_on = False self.log.info("sleeping 2s after power cycle") # HACK: For whatever the reason, we need to sleep before # resetting/halt, seems some of the targets are not ready # inmediately after time.sleep(2) self.target_reset_halt(for_what = "for image flashing") timeout_factor = self.tags.get('slow_flash_factor', 1) verify = self.tags.get('flash_verify', 'True') == 'True' # FIXME: replace this check for verifying which image types # the flasher supports for t, n in images.iteritems(): if t == "kernel-x86": it = "x86" elif t == "kernel": it = "x86" elif t == "kernel-arc": it = "arc" elif t == "kernel-arm": it = "arm" elif t == "rom": it = "rom" elif t == "bootloader": it = "bootloader" else: raise self.unsupported_image_e( "%s: Unknown image type (expected " "kernel|kernel-(x86,arc,arm), rom)" % t) try: self.flasher.image_write(it, n, timeout_factor, verify) except ValueError as e: self.log.exception("flashing got exception: %s", e) raise self.unsupported_image_e(e.message) class tt_dfu( ttbl.test_target, ttbl.tt_power_control_mixin, ttbl.cm_serial.cm_serial, ttbl.test_target_images_mixin): def __init__(self, _id, serial_number, power_control, power_control_board, serial_ports = None): """Test target for a flashable with DFU Utils *Requirements* - Needs a connection to the USB port that exposes a DFU interface upon boot - Uses the dfu-utils utility, available for most (if not all) Linux distributions - Permissions to use USB devices in */dev/bus/usb* are needed; *ttbd* usually roots with group *root*, which shall be enough. - Needs power control for proper operation :param str _id: name identifying the target :param power_control: Power control implementation or rail (:class:`ttbl.tt_power_control_impl` or list of such) :param ttbl.tt_power_control_impl power_control: power controller *just* for the board--this is the component in the power control rail that controls the board only (versus other parts such as serial ports or pseudo-power-controllers that wait for the USB device to pop up. Note the tags to the target must include, on each supported BSP, a tag named *dfu_interface_name* listing the name of the *altsetting* of the DFU interface to which the image for said BSP needs to be flashed. This can be found, when the device exposes the DFU interfaces with the *lsusb -v* command; for example, for a tinyTILE (output summarized for clarity):: $ lsusb -v ... Bus 002 Device 110: ID 8087:0aba Intel Corp. Device Descriptor: bLength 18 bDescriptorType 1 ... Interface Descriptor: bInterfaceClass 254 Application Specific Interface bInterfaceSubClass 1 Device Firmware Update... iInterface 4 x86_rom Interface Descriptor: bInterfaceClass 254 Application Specific Interface bInterfaceSubClass 1 Device Firmware Update... iInterface 5 x86_boot Interface Descriptor: bInterfaceClass 254 Application Specific Interface bInterfaceSubClass 1 Device Firmware Update iInterface 6 x86_app Interface Descriptor: bInterfaceClass 254 Application Specific Interface bInterfaceSubClass 1 Device Firmware Update iInterface 7 config Interface Descriptor: bInterfaceClass 254 Application Specific Interface bInterfaceSubClass 1 Device Firmware Update iInterface 8 panic Interface Descriptor: bInterfaceClass 254 Application Specific Interface bInterfaceSubClass 1 Device Firmware Update iInterface 9 events Interface Descriptor: bInterfaceClass 254 Application Specific Interface bInterfaceSubClass 1 Device Firmware Update iInterface 10 logs Interface Descriptor: bInterfaceClass 254 Application Specific Interface bInterfaceSubClass 1 Device Firmware Update iInterface 11 sensor_core Interface Descriptor: bInterfaceClass 254 Application Specific Interface bInterfaceSubClass 1 Device Firmware Update iInterface 12 ble_core In this case, the three cores available are x86 (x86_app), arc (sensor_core) and ARM (ble_core). *Example* A Tiny Tile can be connected, without exposing a serial console: >>> pc_board = ttbl.pc_ykush.ykush("YK22909", 1) >>> >>> ttbl.config.target_add( >>> tt_dfu("ti-01", >>> serial_number = "5614010001031629", >>> power_control = [ >>> pc_board, >>> ttbl.pc.delay_til_usb_device("5614010001031629"), >>> ], >>> power_control_board = pc_board), >>> tags = { >>> 'bsp_models': { 'x86+arc': ['x86', 'arc'], 'x86': None, 'arc': None}, >>> 'bsps' : { >>> "x86": dict(zephyr_board = "tinytile", >>> zephyr_kernelname = 'zephyr.bin', >>> dfu_interface_name = "x86_app", >>> console = ""), >>> "arm": dict(zephyr_board = "arduino_101_ble", >>> zephyr_kernelname = 'zephyr.bin', >>> dfu_interface_name = "ble_core", >>> console = ""), >>> "arc": dict(zephyr_board = "arduino_101_sss", >>> zephyr_kernelname = 'zephyr.bin', >>> dfu_interface_name = 'sensor_core', >>> console = "") >>> }, >>> >>> }, >>> target_type = "tile" >>> ) """ assert isinstance(_id, basestring) assert isinstance(serial_number, basestring) assert isinstance(power_control, ttbl.tt_power_control_impl) \ or isinstance(power_control, list) self.serial_number = serial_number self.pc_board = power_control_board self.pc_usb = ttbl.pc.delay_til_usb_device(serial_number) ttbl.test_target.__init__(self, _id) ttbl.tt_power_control_mixin.__init__(self, power_control) ttbl.test_target_images_mixin.__init__(self) ttbl.cm_serial.cm_serial.__init__(self, self.state_dir, serial_ports) def images_do_set(self, images): """Just validates the image types are ok. The flashing happens in images_do_set(). :param str image_type: Type of the image supported :param str image_name: Name of image file in the daemon storage space for the user :raises: Any exception on failure """ # Power cycle the board so it goes into DFU mode; it then # stays there for five seconds self.pc_board.power_cycle_raw(self, 5) self.pc_usb.power_on_do(self) cmdline = [ "/usr/bin/dfu-util", "-S", self.serial_number ] for image_type, image_name in images.iteritems(): if image_type == "kernel": image_type = "kernel-x86" if not image_type.startswith("kernel-"): raise RuntimeError( "Unknown image type '%s' (valid: kernel-{%s})" % (image_type, ",".join(self.tags['bsps'].keys()))) bsp = image_type[len("kernel-"):] tags_bsp = self.tags.get('bsps', {}).get(bsp, None) if tags_bsp == None: raise RuntimeError( "Unknown BSP %s from image type '%s' (valid: %s)" % (bsp, image_type, " ".join(self.tags['bsps'].keys()))) dfu_if_name = tags_bsp.get('dfu_interface_name', None) if dfu_if_name == None: raise RuntimeError( "Misconfigured target: image type %s (BSP %s) has " "no 'dfu_interface_name' key to indicate which DFU " "interface shall it flash" % (image_type, bsp)) # now write it cmdline += [ "-a", dfu_if_name, "-D", image_name, ] try: self.log.info("flashing with %s" % (" ".join(cmdline))) s = subprocess.check_output(cmdline, cwd = "/tmp", stderr = subprocess.STDOUT) self.log.info("flashed with %s: %s" % (" ".join(cmdline), s)) except subprocess.CalledProcessError as e: self.log.error("flashing with %s failed: (%d) %s" % (" ".join(cmdline), e.returncode, e.output)) raise self.log.info("flashing succeeded") self.pc_board.power_off_do(self) def image_do_set(self, t, n): pass class tt_max10( ttbl.test_target, ttbl.tt_power_control_mixin, ttbl.cm_serial.cm_serial, ttbl.test_target_images_mixin): """ Test target for an Altera MAX10 This allows to flash images to an Altera MAX10, using the Quartus tools, freely downloadable from http://dl.altera.com. Exports the following interfaces: - power control (using any AC power switch, such as the :class:`Digital Web Power Switch 7 <ttbl.pc.dlwps7>`) - serial console - image (in hex format) flashing (using the Quartus Prime tools package) Multiple instances at the same time are supported; however, due to the JTAG interface not exporting a serial number, addressing has to be done by USB path, which is risky (as it will change when the cable is plugged to another port or might be enumerated in a different number). Note that: - when flashing LED1 blinks green/blue - the blue power switch must be pressed, to ensure the board is *ON* when we switch the AC power to the power brick on - SW2 DIP bank on the back of the board has to be all OFF (down) except for 3, that has to be ON (this comes from the Zephyr Altera MAX10 configuration) - J7 (at the front of the board, next to the coaxial connectors) has to be open Pending: - CPU design hardcoded to use Zephyr's -- it shall be possible to flash it """ #: Path where the Quartus Programmer binaries have been installed #: #: 1. Download Quartus Prime Programmer and Tools from #: http://dl.altera.com/17.1/?edition=lite&platform=linux&download_manager=direct #: 2. Install to e.g `/opt/intelFPGA/17.1/qprogrammer/bin`. #: 3. Configure in /etc/ttbd-production/conf_00_max10.py:: #: #: .. code-block: python #: #: import ttbl.tt #: ttbl.tt.tt_max10.quartus_path = "/opt/intelFPGA/17.1/qprogrammer/bin" quartus_path = "__unconfigured__tt_max10.quartus_path__" #: Path to where the NIOS Zephyr CPU image has been installed #: #: 1. Download the CPU image to `/var/lib/ttbd`:: #: #: $ wget -O /var/lib/ttbd/ghrd_10m50da.sof \ #: https://github.com/zephyrproject-rtos/zephyr/raw/master/arch/nios2/soc/nios2f-zephyr/cpu/ghrd_10m50da.sof #: #: 3. Configure in /etc/ttbd-production/conf_00_max10.py: #: #: .. code-block: python #: #: import ttbl.tt #: ttbl.tt.tt_max10.input_sof = "/var/lib/ttbd/ghrd_10m50da.sof" input_sof = "__unconfigured__tt_max10.input_sof__" def __init__(self, _id, device_id, power_control, serial_port = None): assert isinstance(_id, basestring) assert isinstance(device_id, basestring) assert isinstance(power_control, ttbl.tt_power_control_impl) \ or isinstance(power_control, list) self.device_id = device_id ttbl.test_target.__init__(self, _id) ttbl.tt_power_control_mixin.__init__(self, power_control) ttbl.test_target_images_mixin.__init__(self) self.serial_port = serial_port if serial_port: ttbl.cm_serial.cm_serial.__init__( self, self.state_dir, [ "pc", { 'port': serial_port, 'baudrate': 115200 } ]) else: ttbl.cm_serial.cm_serial.__init__(self, self.state_dir, []) quartus_cpf_template = """\ <?xml version="1.0" encoding="US-ASCII" standalone="yes"?> <cof> <output_filename>${OUTPUT_FILENAME}</output_filename> <n_pages>1</n_pages> <width>1</width> <mode>14</mode> <sof_data> <user_name>Page_0</user_name> <page_flags>1</page_flags> <bit0> <sof_filename>${SOF_FILENAME}<compress_bitstream>1</compress_bitstream></sof_filename> </bit0> </sof_data> <version>10</version> <create_cvp_file>0</create_cvp_file> <create_hps_iocsr>0</create_hps_iocsr> <auto_create_rpd>0</auto_create_rpd> <rpd_little_endian>1</rpd_little_endian> <options> <map_file>1</map_file> </options> <MAX10_device_options> <por>0</por> <io_pullup>1</io_pullup> <config_from_cfm0_only>0</config_from_cfm0_only> <isp_source>0</isp_source> <verify_protect>0</verify_protect> <epof>0</epof> <ufm_source>2</ufm_source> <ufm_filepath>${KERNEL_FILENAME}</ufm_filepath> </MAX10_device_options> <advanced_options> <ignore_epcs_id_check>2</ignore_epcs_id_check> <ignore_condone_check>2</ignore_condone_check> <plc_adjustment>0</plc_adjustment> <post_chain_bitstream_pad_bytes>-1</post_chain_bitstream_pad_bytes> <post_device_bitstream_pad_bytes>-1</post_device_bitstream_pad_bytes> <bitslice_pre_padding>1</bitslice_pre_padding> </advanced_options> </cof> """ # XXX Do we care about FileRevision, DefaultMfr, PartName? Do they need # to be parameters? So far seems to work across 2 different boards, leave # this alone for now. quartus_pgm_template = """\ /* Quartus Prime Version 16.0.0 Build 211 04/27/2016 SJ Lite Edition */ JedecChain; FileRevision(JESD32A); DefaultMfr(6E); P ActionCode(Cfg) Device PartName(10M50DAF484ES) Path("${POF_DIR}/") File("${POF_FILE}") MfrSpec(OpMask(1)); ChainEnd; AlteraBegin; ChainType(JTAG); AlteraEnd;""" def _create_pof(self, output_pof, input_sof, kernel_hex): t = string.Template(self.quartus_cpf_template) input_sof = os.path.abspath(input_sof) kernel_hex = os.path.abspath(kernel_hex) # These tools are very stupid and freak out if the desired filename # extensions are used. The kernel image must have extension .hex with tempfile.NamedTemporaryFile(dir = self.state_dir, suffix = ".cof") as temp_xml: xml = t.substitute(SOF_FILENAME = input_sof, OUTPUT_FILENAME = output_pof.name, KERNEL_FILENAME = kernel_hex) temp_xml.write(xml) temp_xml.flush() try: cmd = [ os.path.join(self.quartus_path, "quartus_cpf"), "-c", temp_xml.name ] subprocess.check_output(cmd) except OSError as e: raise RuntimeError("Failed to create POF file w/ %s: %s" % (" ".join(cmd), e)) except subprocess.CalledProcessError as cpe: raise RuntimeError("Failed to create POF file: %s" % cpe.output.decode("UTF-8")) return output_pof def images_do_set(self, images): # We implement image_do_set(), as there is only one image to set pass # FIXME: limitation: SOF image is fixed, should be possible to # upload it and default to built-in? Problem is we need to fixup # the build instructions so they understand they need to upload # the SOF too # FIXME: also, the SOF is kinda big, 3M def image_do_set(self, image_type, image_name): if image_type == "kernel": image_type = "kernel-max10" if not image_type.startswith("kernel-"): raise RuntimeError( "Unknown image type '%s' (valid: kernel-{%s})" % (image_type, ",".join(self.tags['bsps'].keys()))) self._power_cycle_do() # This code snippet lifted from Zephyr's # scripts/support/quartus-flash.py -- thx # Minimum changes to place files in directories and wipe them # upon context exit, match local style . # def _flash_kernel(device_id, input_sof, kernel_hex): self.log.info("Flashing %s:%s" % (image_type, image_name)) with tempfile.NamedTemporaryFile(dir = self.state_dir, suffix = ".pof") as output_pof, \ tempfile.NamedTemporaryFile(dir = self.state_dir, suffix = ".hex") as kernel_hex, \ tempfile.NamedTemporaryFile(dir = self.state_dir, suffix = ".cdf") as temp_cdf: # Apparently, the tools get freaked out by our largish # file names, so just make it a temp with a short sweet name shutil.copyfile(image_name, kernel_hex.name) pof_file = self._create_pof(output_pof, self.input_sof, kernel_hex.name) dname, fname = os.path.split(pof_file.name) t = string.Template(self.quartus_pgm_template) cdf = t.substitute(POF_DIR = dname, POF_FILE = fname) temp_cdf.write(cdf) temp_cdf.flush() try: output = subprocess.check_output([ os.path.join(self.quartus_path, "quartus_pgm"), "--quiet", "-c", self.device_id, temp_cdf.name ]) except subprocess.CalledProcessError as cpe: raise RuntimeError("Failed to flash image: %s" % cpe.output.decode("UTF-8")) self.log.info("Flashed %s:%s; output:\n%s" % (image_type, image_name, output)) self._power_off_do() self.log.info("flashing succeeded") class grub2elf(tt_serial, ttbl.test_target_images_mixin): """Boot anything that can take an ELF image with grub2 **Overview** A platform that can EFI boot off a multiplexed boot USB drive; this drive: - when connected to the target, acts as boot drive which boots into grub2 which multiboots into whatever ELF binary we gave it - when connected to the server, we partition, format, install grub2 and the ELF kernel to be booted. An eight-port USBRLY8 relay bank acting as a USB switcher, each relay switching one of the four USB lines from target to server, using :class:`ttbl.usbrly08b.plugger`: - the USB-A female cable is connected to the C relay terminals - the USB-A male cable for the server is connected to the NC relay terminals - the USB-A male cable for the client is connected to the NO relay terminal - a target that EFI/boots and can boot off a USB drive Limitations: - kinda hardcoded x86-64, shall be easy to fix **Methodology** The power rail for the target ensures that when the target is powered on, the USB boot drive is connected to the target by the USB multiplexor. When the target is off, the USB boot drive is connected to the server. The imaging process in :meth:`image_do_set` will make sure the USB drive is connected to the server (by powering off the target) and then use the helper script ``/usr/share/tcf/setup-efi-grub2-elf.sh`` to flash the ELF kernel to the drive (as well, will create the grub2 boot structure)--for this we need the drive's USB serial number and the ELF file to boot. Upon boot, the boot drive will be detected and booted by default, as the grub configuration is set to just boot that ELF kernel. For cases where BIOS interaction with the console might be necessary, a boot coercer can be implemented in the form of a power control implementation that in its `power_on_do()` method talks to the serial port to do whatever is needed. See for example :class:`conf_00_lib.minnowboard_EFI_boot_grub_pc` which does so for Minnowboards. **Setup** - the helper script ``/usr/share/tcf/setup-efi-grub2-elf.sh`` is used to partition, configure and setup the USB drive--it is run with *sudo* (via the sudo configurations script :download:`/etc/sudoers.d/ttbd_sudo <../ttbd/ttbd_sudo>`) - The daemon will require specific capabilities for being able to run *sudo* (*CAP_SETGID*, *CAP_SETUID*, *CAP_SYS_ADMIN*, *CAP_FOWNER*, *CAP_DAC_OVERRIDE*) setup in :download:`/etc/systemd/system/[email protected] <../ttbd/[email protected]>`. - Ensure the following packages are available in the system: * parted * dosfstools * grub2-efi-x64-cdboot and grub2-efi-x64-modules * util-linux - Identify the serial number for the USB drive; plug it to a machine and issue:: $ lsblk -o "NAME,SERIAL,VENDOR,MODEL" NAME SERIAL VENDOR MODEL sdb AOJROZB8 JetFlash Transcend 8GB sdj 76508A8E JetFlash Transcend 8GB ... (for this example, ours is *76508A8E*, `/dev/sdj`) blank the USB drive (**NOTE!!!** This will destroy the drive's contents):: $ dd if=/dev/zero of=/dev/sdj - Create a power controller - Setup the target's BIOS to boot by default off the USB drive See :func:`conf_00_lib.minnowboard_add` for an example instantiation. """ def __init__(self, _id, power_controller, usb_drive_serial, usbrly08b_serial, usbrly08b_bank, serial_port, boot_coercer = None): power_control = [ # Ensure the USB dongle is / has been connected to the server ttbl.pc.delay_til_usb_device(usb_drive_serial, when_powering_on = False, want_connected = True), ttbl.usbrly08b.plugger(usbrly08b_serial, usbrly08b_bank), # let the dongle power up, otherwise it won't be seen ttbl.pc.delay(2), ttbl.pc.delay_til_usb_device(usb_drive_serial, when_powering_on = True, want_connected = False), ttbl.pc.delay(2), # let USB dongle settle to the target ttbl.cm_serial.pc(), # Let it open and close ports power_controller, ttbl.pc.delay(2), # board powers up... ] # A boot coercer is a PCI that talks to the target to get it to # boot right, so it only implements power_on_do() to do that, # power_off_do() has only a pass and power_get_do() returns # True. # This is eg needed if we need to tell the bios to do this, do # that -- in the case of Minnowboard, tell the EFI shell to # run grub (sometimes). if boot_coercer: assert isinstance(boot_coercer, ttbl.tt_power_control_impl) power_control.append(boot_coercer) self.usb_drive_serial = usb_drive_serial tt_serial.__init__( self, _id, power_control, serial_ports = [ "pc", { "port": serial_port, "baudrate": 115200 } ]) ttbl.test_target_images_mixin.__init__(self) image_types_valid = ("kernel", "kernel-x86") def image_do_set(self, image_type, image_name): if image_type not in self.image_types_valid: raise self.unsupported_image_e( "%s: image type not supported (valid: %s)" % (image_type, ", ".join(self.image_types_valid))) # power off the board to flash, this will redirect the USB # drive to be connected to the server self.power_off(self.owner_get()) # We don't verify image_name is an ELF file so that we can # also use this to flash other stuff and it's up to the Grub # bootloader to interpret it. # We need an image with a bootloader, we use grub2 and we # share the setup-efi-grub2-elf.sh implementation from # simics and others cmd_path = commonl.ttbd_locate_helper("setup-efi-grub2-elf.sh", log = self.log) # Yeah, sudo ... it kinda sucks, but it is the best way to # isolate it -- could run from the daemon, then it'd have too # many permissions--nope. file ./ttbd.sudo contains the config # to put in /etc/sudoers.d for this to work. cmdline = [ "sudo", "-n", cmd_path, self.usb_drive_serial, image_name, "x86_64" ] try: self.log.debug("flashing with command '%s'" % " ".join(cmdline)) output = subprocess.check_output(cmdline, stderr = subprocess.STDOUT) except subprocess.CalledProcessError as cpe: msg = "flashing with command '%s' failed: %s" \ % (" ".join(cpe.cmd), cpe.output) self.log.error(msg) raise RuntimeError(msg) self.log.debug("flashed with command '%s': %s" % (" ".join(cmdline), output)) def images_do_set(self, images): # No need to set multiple images at the same time pass class simics( ttbl.test_target, ttbl.tt_power_control_mixin, ttbl.tt_power_control_impl, ttbl.test_target_images_mixin, ttbl.test_target_console_mixin): """ Driver for a target based on Simics simulation of a platform Currently this driver is quite basic and supports only the image and console management interfaces: - images are only supported as an ELF file that is booted by *grub2* when simics boots from a hard disk image generated on the fly. - the only supported console is a serial output (no input) **System setup** 1. In a configuration file (e.g. */etc/environment*), set the base package for Simics:: SIMICS_BASE_PACKAGE=/opt/simics/5.0/simics-5.0.136 note that all the packages and extensions installed in there must have been registered with the global Simics configuration, as it will execute under the user as which the daemon is run (usually *ttbd*). Note that the installation of Simics and any extra packages needed can be done automagically with:: $ destdir=/opt/simics/5.0 $ mkdir -p $destdir # --batch: no questions asked, just proceed # -a: auto select packages and register them $ ./install-simics.pl --batch -a --prefix $destdir \\ package-1000-5.0.136-linux64.tar.gz.aes KEY-1000 \\ package-1001-5.0.54-linux64.tar.gz.aes KEY-1001 \\ package-1010-5.0.59-linux64.tar.gz.aes KEY-1010 \\ package-1012-5.0.24-linux64.tar.gz.aes KEY-1012 \\ package-2018-5.0.31-linux64.tar.gz.aes KEY-2018 \\ package-2075-5.0.50-linux64.tar.gz.aes KEY-2075 """ class error_e(Exception): # pylint: disable = missing-docstring pass class simics_start_e(error_e): # pylint: disable = missing-docstring pass #: location of the base Simics installation in the file system; by #: default this taken from the *SIMICS_BASE_PACKAGE* environment #: variable, if it exists; it can also be set in a configuration #: file as: #: #: >>> ttbl.tt.simics.base_package = "/some/path/simics-5.0.136" base_package = os.environ.get('SIMICS_BASE_PACKAGE', None) def __init__(self, _id, simics_cmds, _tags = None, image_size_mb = 100): assert isinstance(_id, basestring) assert isinstance(simics_cmds, basestring) assert image_size_mb > 0 if self.base_package == None: raise RuntimeError( "Simics not yet configured, either define environment " "variable SIMICS_BASE_PACKAGE or configuration " "ttbl.tt.simics.base_package") ttbl.test_target.__init__(self, _id, _tags = _tags) ttbl.tt_power_control_mixin.__init__(self) ttbl.tt_power_control_impl.__init__(self) ttbl.test_target_images_mixin.__init__(self) ttbl.test_target_console_mixin.__init__(self) self.simics_path = os.path.join(self.base_package, "bin/simics") self.simics_check_path = os.path.join(self.base_package, "linux64/bin/simics-common") self.simics_cmds = simics_cmds #: Variables that can be expanded in the Simics configuration #: script passed as an argument self.simics_vars = dict( simics_workspace = os.path.join(self.state_dir, "simics.workspace"), simics_pidfile = os.path.join(self.state_dir, "simics.pid"), simics_console = os.path.join(self.state_dir, "simics-console.read"), simics_hd0 = os.path.join(self.state_dir, "simics-hd0.img"), simics_hd0_size = image_size_mb, ) self.logfile_name = os.path.join(self.state_dir, "simics.log") self.telnet = None # FIXME: verify the BSP is kosher? generate command line from it? image_types_valid = ( "kernel", "kernel-x86" ) # Image management interface def image_do_set(self, image_type, image_name): if image_type not in self.image_types_valid: raise self.unsupported_image_e( "%s: image type not supported (valid: %s)" % (image_type, ", ".join(self.image_types_valid))) # power off the target to flash, so in case simics is running # on the image/files, it is stopped and we won't conflict / # corrupt anything. self.power_off(self.owner_get()) # Remove old image and create a new one, just writing one byte # at the end to create a shallow file. commonl.rm_f(self.simics_vars['simics_hd0']) with open(self.simics_vars['simics_hd0'], "w") as f: f.seek(self.simics_vars['simics_hd0_size'] * 1024 * 1024 - 1) f.write('0') # We don't verify image_name is an ELF file so that we can # also use this to flash other stuff and it's up to the Grub # bootloader to interpret it. # Simics needs an image with a bootloader, we use grub2 and we # share the setup-efi-grub2-elf.sh implementation from # grub2elf. cmd_path = commonl.ttbd_locate_helper("setup-efi-grub2-elf.sh", log = self.log) # Yeah, sudo ... it kinda sucks, but it is the best way to # isolate it -- could run from the daemon, then it'd have too # many permissions--nope. file ./ttbd_sudo contains the config # to put in /etc/sudoers.d for this to work. Also note the # systemd configuration requires us to have permission to # regain certain capabilities. cmdline = [ "sudo", "-n", cmd_path, self.simics_vars['simics_hd0'], image_name, "i386" ] try: self.log.debug("flashing with '%s'" % " ".join(cmdline)) output = subprocess.check_output(cmdline, stderr = subprocess.STDOUT) except subprocess.CalledProcessError as cpe: msg = "flashing with command '%s' failed: %s" \ % (" ".join(cpe.cmd), cpe.output) self.log.error(msg) raise RuntimeError(msg) self.log.debug("flashed with command '%s': %s" % (" ".join(cmdline), output)) def images_do_set(self, images): pass # power control interface def _simics_launch(self, _target): # Note this function will be called again if there is a # resource conflict because simics will fail to start and # _power_on_do() will detect it. cmd_file_name = os.path.join(self.state_dir, "commands") # clean up old state, but NOT the hd, as we probably created # the image with images_do_set() before commonl.rm_f(cmd_file_name) if self.fsdb.get("debug") != None: # if debugging, keep log commonl.rm_f(self.logfile_name) commonl.rm_f(self.simics_vars['simics_console']) commonl.rm_f(self.simics_vars['simics_pidfile']) try: # Create a fresh Simics workspace shutil.rmtree(self.simics_vars['simics_workspace'], ignore_errors = True) cmdline = [ os.path.join(self.base_package, "bin/project-setup"), "--ignore-existing-files", self.simics_vars['simics_workspace'] ] self.log.info("creating workspace with %s" % " ".join(cmdline)) subprocess.check_output(cmdline, shell = False, stderr = subprocess.STDOUT) except subprocess.CalledProcessError as e: self.log.error("failed to create workspace: %s" % e.output) except OSError as e: self.log.error("failed to create workspace: %s" % e) # Write the command script here, in case anything changes in # the interpretation of the fields simics_console_port = commonl.tcp_port_assigner(1) with open(cmd_file_name, "w") as cmd_file: simics_vars = dict(self.simics_vars) simics_vars['simics_console_port'] = simics_console_port cmd_file.write(self.simics_cmds % simics_vars) cmdline = [ self.simics_path, "-no-gui" ] if self.fsdb.get("debug"): # if debugging, be verbose cmdline += [ "-verbose", "-verbose" ] cmdline += [ "-project", self.simics_vars['simics_workspace'], cmd_file_name ] # Fire up simics, redirecting all the output (stdout, stderr, # traces) to a log file logfile = open(self.logfile_name, "ab") try: env = dict(os.environ) env['SIMICS_BASE_PACKAGE'] = self.base_package self.log.info("Starting simics with: %s" % " ".join(cmdline)) p = subprocess.Popen( cmdline, shell = False, cwd = self.state_dir, env = env, close_fds = True, stdout = logfile, stderr = subprocess.STDOUT) except OSError as e: raise self.simics_start_e("Simics failed to start: %s" % e) with open(self.simics_vars['simics_pidfile'], "w") as pidfilef: pidfilef.write("%d" % p.pid) pid = commonl.process_started( # Verify it started self.simics_vars['simics_pidfile'], self.simics_check_path, verification_f = os.path.exists, verification_f_args = (self.simics_vars['simics_console'],), timeout = 20, tag = "simics", log = self.log) if pid == None: raise self.simics_start_e("Simics failed to start after 5s") self.fsdb.set('simics_console_port', "%d" % simics_console_port) def power_on_do(self, target): # try to start qemu, retrying if we have to for cnt in range(5): try: self._simics_launch(target) break except self.error_e: with open(self.logfile_name) as logfile: for line in logfile: if 'Address already in use' in line: # Ops, port we took for the console is # taken, try again with another port self.log.info("%d/5: port conflict, trying again" % cnt) self.power_off_do(target) continue else: raise RuntimeError("simis: did not start after 5 tries") def power_off_do(self, _target): self.fsdb.set('simics_console_port', None) commonl.process_terminate(self.simics_vars['simics_pidfile'], tag = "simics", path = self.simics_check_path) def power_get_do(self, _target): pid = commonl.process_alive(self.simics_vars['simics_pidfile'], self.simics_check_path) return pid != None # Console mixin # Any file SOMETHING-console.read describes a console that is available. def console_do_list(self): consoles = [] for filename in os.listdir(self.state_dir): if filename.endswith("-console.read"): console_name = filename[:-len("-console.read")] consoles.append(console_name) return consoles def console_do_read(self, console_id = None, offset = 0): if console_id == None: console_id = 'simics' if console_id != 'simics': raise RuntimeError("console ID '%s' not found" % console_id) # Reading is simple -- simics pipes all the output to a file # called simics-console.read consolefname = os.path.join(self.state_dir, "%s-console.read" % console_id) if os.path.isfile(consolefname): # don't open codecs.open() UTF-8, as that will trip Flask # when passing the generator up to serve to the client ifd = open(consolefname, "rb") if offset > 0: ifd.seek(offset) return ifd else: return iter(()) def console_do_write(self, _data, _console_id = None): _simics_console_port = self.fsdb.get('simics_console_port') if _simics_console_port == None: raise RuntimeError("target is off, cannot write to it") simics_console_port = int(_simics_console_port) # re-create it for every write -- yeah, overkill, but this # runs across multiple servers, so we don't know if it was # power cycled and thus the port is still valid/open.. # FIXME: hack, should cache telnet = telnetlib.Telnet('127.0.0.1', simics_console_port) # KLUDGE, workaround # So this C-like loop (because I want it to be clearer # than hidden iterator pythonic stuff) it is chunking # the data to be sent to the VM's serial console # and doing a short sleep in between. Why? # Because by observation we've seen data being lost # when sending it to the sock that represents the # input. Chunking it up and giving it a breather # alleviated it. chunk_size = 8 count = 0 l = len(_data) while l > 0: if l >= chunk_size: chunk_data = _data[count:count + chunk_size] else: chunk_data = _data[count:count + l] # FIXME: I seriously don't have any idea of what am I doing # here; this Python2 string decoding/encoding stuff is # utterly confusing -- but this is how it works :/ telnet.write(chunk_data.decode('latin1').encode('utf-8')) time.sleep(0.15) l -= chunk_size count += chunk_size
the-stack_0_915
#!/usr/bin/python # -*- coding: utf-8 -*- def warn(*args, **kwargs): pass from django.shortcuts import render from django.core.files.storage import FileSystemStorage from django.http import HttpResponse, JsonResponse from django.db.models import Q from .models import * def search(request): try: query = request.GET['search'] query = str(query).lower() mydict = { "urls" : Url.objects.all().filter(Q(link__contains=query) | Q(result__contains=query) | Q(created_at__contains=query) | Q(rank__contains=query) | Q(dom__contains=query) | Q(country__contains=query) | Q(state__contains=query) | Q(emails__contains=query) | Q(add__contains=query) | Q(org__contains=query) | Q(city__contains=query) ).order_by('-created_at') } return render(request,'list.html',context=mydict) except: return render(request,'404.html') def error_404_view(request, exception): return render(request,'404.html') def index(request): try: return render(request, '404.html') except: return render(request, '404.html') from requests import get import json from dateutil import parser as dateparser from django.http import HttpResponse from django.shortcuts import render def result(request): #text=request.GET['nm'].strip() #http://127.0.0.1:8000/result?uniqueid=12&nm=hi&phonenumber=12321&time=21%2F12%2F1998+12%3A12%3A12 #result="booked" lat=request.GET['LAT'] lon=request.GET['LON'] import reverse_geocoder as rg coordinates = (lat,lon) #print (rg.search(coordinates)[0]['name'], rg.search(coordinates)[0]['admin1']) mydict = { "query" : f"{lat},{lon}", "city" : rg.search(coordinates)[0]['name'], "state" : rg.search(coordinates)[0]['admin1'] } response = JsonResponse(mydict) return response
the-stack_0_916
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import yaml import cv2 import re import numpy as np from collections import defaultdict import paddle from paddle.inference import Config from paddle.inference import create_predictor from picodet_postprocess import PicoDetPostProcess from utils import argsparser, Timer, get_current_memory_mb, _is_valid_video, video2frames from det_infer import Detector, DetectorPicoDet, get_test_images, print_arguments, PredictConfig from det_infer import load_predictor from benchmark_utils import PaddleInferBenchmark from visualize import plot_tracking from mot.tracker import DeepSORTTracker from mot.utils import MOTTimer, write_mot_results, flow_statistic, scale_coords, clip_box, preprocess_reid from mot.mtmct.utils import parse_bias from mot.mtmct.postprocess import trajectory_fusion, sub_cluster, gen_res, print_mtmct_result from mot.mtmct.postprocess import get_mtmct_matching_results, save_mtmct_crops, save_mtmct_vis_results # Global dictionary MOT_SUPPORT_MODELS = {'DeepSORT'} def bench_log(detector, img_list, model_info, batch_size=1, name=None): mems = { 'cpu_rss_mb': detector.cpu_mem / len(img_list), 'gpu_rss_mb': detector.gpu_mem / len(img_list), 'gpu_util': detector.gpu_util * 100 / len(img_list) } perf_info = detector.det_times.report(average=True) data_info = { 'batch_size': batch_size, 'shape': "dynamic_shape", 'data_num': perf_info['img_num'] } log = PaddleInferBenchmark(detector.config, model_info, data_info, perf_info, mems) log(name) class SDE_Detector(Detector): """ Detector of SDE methods Args: pred_config (object): config of model, defined by `Config(model_dir)` model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU run_mode (str): mode of running(fluid/trt_fp32/trt_fp16) batch_size (int): size of per batch in inference, default is 1 in tracking models trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt trt_calib_mode (bool): If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True cpu_threads (int): cpu threads enable_mkldnn (bool): whether to open MKLDNN """ def __init__(self, pred_config, model_dir, device='CPU', run_mode='fluid', batch_size=1, trt_min_shape=1, trt_max_shape=1088, trt_opt_shape=608, trt_calib_mode=False, cpu_threads=1, enable_mkldnn=False): super(SDE_Detector, self).__init__( pred_config=pred_config, model_dir=model_dir, device=device, run_mode=run_mode, batch_size=batch_size, trt_min_shape=trt_min_shape, trt_max_shape=trt_max_shape, trt_opt_shape=trt_opt_shape, trt_calib_mode=trt_calib_mode, cpu_threads=cpu_threads, enable_mkldnn=enable_mkldnn) assert batch_size == 1, "The detector of tracking models only supports batch_size=1 now" self.pred_config = pred_config def postprocess(self, boxes, ori_image_shape, threshold, inputs, scaled=False): over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0] if len(over_thres_idx) == 0: pred_dets = np.zeros((1, 6), dtype=np.float32) pred_xyxys = np.zeros((1, 4), dtype=np.float32) return pred_dets, pred_xyxys else: boxes = boxes[over_thres_idx] if not scaled: # scaled means whether the coords after detector outputs # have been scaled back to the original image, set True # in general detector, set False in JDE YOLOv3. input_shape = inputs['image'].shape[2:] im_shape = inputs['im_shape'][0] scale_factor = inputs['scale_factor'][0] pred_bboxes = scale_coords(boxes[:, 2:], input_shape, im_shape, scale_factor) else: pred_bboxes = boxes[:, 2:] pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape) if len(keep_idx[0]) == 0: pred_dets = np.zeros((1, 6), dtype=np.float32) pred_xyxys = np.zeros((1, 4), dtype=np.float32) return pred_dets, pred_xyxys pred_scores = boxes[:, 1:2][keep_idx[0]] pred_cls_ids = boxes[:, 0:1][keep_idx[0]] pred_tlwhs = np.concatenate( (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1), axis=1) pred_dets = np.concatenate( (pred_tlwhs, pred_scores, pred_cls_ids), axis=1) return pred_dets, pred_xyxys def predict(self, image_path, ori_image_shape, threshold=0.5, scaled=False, repeats=1, add_timer=True): ''' Args: image_path (list[str]): path of images, only support one image path (batch_size=1) in tracking model ori_image_shape (list[int]: original image shape threshold (float): threshold of predicted box' score scaled (bool): whether the coords after detector outputs are scaled, default False in jde yolov3, set True in general detector. repeats (int): repeat number for prediction add_timer (bool): whether add timer during prediction Returns: pred_dets (np.ndarray, [N, 6]): 'x,y,w,h,score,cls_id' pred_xyxys (np.ndarray, [N, 4]): 'x1,y1,x2,y2' ''' # preprocess if add_timer: self.det_times.preprocess_time_s.start() inputs = self.preprocess(image_path) input_names = self.predictor.get_input_names() for i in range(len(input_names)): input_tensor = self.predictor.get_input_handle(input_names[i]) input_tensor.copy_from_cpu(inputs[input_names[i]]) if add_timer: self.det_times.preprocess_time_s.end() self.det_times.inference_time_s.start() # model prediction for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() boxes_tensor = self.predictor.get_output_handle(output_names[0]) boxes = boxes_tensor.copy_to_cpu() if add_timer: self.det_times.inference_time_s.end(repeats=repeats) self.det_times.postprocess_time_s.start() # postprocess if len(boxes) == 0: pred_dets = np.zeros((1, 6), dtype=np.float32) pred_xyxys = np.zeros((1, 4), dtype=np.float32) else: pred_dets, pred_xyxys = self.postprocess( boxes, ori_image_shape, threshold, inputs, scaled=scaled) if add_timer: self.det_times.postprocess_time_s.end() self.det_times.img_num += 1 return pred_dets, pred_xyxys class SDE_DetectorPicoDet(DetectorPicoDet): """ PicoDet of SDE methods, the postprocess of PicoDet has not been exported as other detectors, so do postprocess here. Args: pred_config (object): config of model, defined by `Config(model_dir)` model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU run_mode (str): mode of running(fluid/trt_fp32/trt_fp16) batch_size (int): size of per batch in inference, default is 1 in tracking models trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt trt_calib_mode (bool): If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True cpu_threads (int): cpu threads enable_mkldnn (bool): whether to open MKLDNN """ def __init__(self, pred_config, model_dir, device='CPU', run_mode='fluid', batch_size=1, trt_min_shape=1, trt_max_shape=1088, trt_opt_shape=608, trt_calib_mode=False, cpu_threads=1, enable_mkldnn=False): super(SDE_DetectorPicoDet, self).__init__( pred_config=pred_config, model_dir=model_dir, device=device, run_mode=run_mode, batch_size=batch_size, trt_min_shape=trt_min_shape, trt_max_shape=trt_max_shape, trt_opt_shape=trt_opt_shape, trt_calib_mode=trt_calib_mode, cpu_threads=cpu_threads, enable_mkldnn=enable_mkldnn) assert batch_size == 1, "The detector of tracking models only supports batch_size=1 now" self.pred_config = pred_config def postprocess(self, boxes, ori_image_shape, threshold): over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0] if len(over_thres_idx) == 0: pred_dets = np.zeros((1, 6), dtype=np.float32) pred_xyxys = np.zeros((1, 4), dtype=np.float32) return pred_dets, pred_xyxys else: boxes = boxes[over_thres_idx] pred_bboxes = boxes[:, 2:] pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape) if len(keep_idx[0]) == 0: pred_dets = np.zeros((1, 6), dtype=np.float32) pred_xyxys = np.zeros((1, 4), dtype=np.float32) return pred_dets, pred_xyxys pred_scores = boxes[:, 1:2][keep_idx[0]] pred_cls_ids = boxes[:, 0:1][keep_idx[0]] pred_tlwhs = np.concatenate( (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1), axis=1) pred_dets = np.concatenate( (pred_tlwhs, pred_scores, pred_cls_ids), axis=1) return pred_dets, pred_xyxys def predict(self, image_path, ori_image_shape, threshold=0.5, scaled=False, repeats=1, add_timer=True): ''' Args: image_path (list[str]): path of images, only support one image path (batch_size=1) in tracking model ori_image_shape (list[int]: original image shape threshold (float): threshold of predicted box' score scaled (bool): whether the coords after detector outputs are scaled, default False in jde yolov3, set True in general detector. repeats (int): repeat number for prediction add_timer (bool): whether add timer during prediction Returns: pred_dets (np.ndarray, [N, 6]): 'x,y,w,h,score,cls_id' pred_xyxys (np.ndarray, [N, 4]): 'x1,y1,x2,y2' ''' # preprocess if add_timer: self.det_times.preprocess_time_s.start() inputs = self.preprocess(image_path) input_names = self.predictor.get_input_names() for i in range(len(input_names)): input_tensor = self.predictor.get_input_handle(input_names[i]) input_tensor.copy_from_cpu(inputs[input_names[i]]) if add_timer: self.det_times.preprocess_time_s.end() self.det_times.inference_time_s.start() # model prediction for i in range(repeats): self.predictor.run() np_score_list.clear() np_boxes_list.clear() output_names = self.predictor.get_output_names() num_outs = int(len(output_names) / 2) for out_idx in range(num_outs): np_score_list.append( self.predictor.get_output_handle(output_names[out_idx]) .copy_to_cpu()) np_boxes_list.append( self.predictor.get_output_handle(output_names[ out_idx + num_outs]).copy_to_cpu()) if add_timer: self.det_times.inference_time_s.end(repeats=repeats) self.det_times.postprocess_time_s.start() # postprocess self.picodet_postprocess = PicoDetPostProcess( inputs['image'].shape[2:], inputs['im_shape'], inputs['scale_factor'], strides=self.pred_config.fpn_stride, nms_threshold=self.pred_config.nms['nms_threshold']) boxes, boxes_num = self.picodet_postprocess(np_score_list, np_boxes_list) if len(boxes) == 0: pred_dets = np.zeros((1, 6), dtype=np.float32) pred_xyxys = np.zeros((1, 4), dtype=np.float32) else: pred_dets, pred_xyxys = self.postprocess(boxes, ori_image_shape, threshold) if add_timer: self.det_times.postprocess_time_s.end() self.det_times.img_num += 1 return pred_dets, pred_xyxys class SDE_ReID(object): """ ReID of SDE methods Args: pred_config (object): config of model, defined by `Config(model_dir)` model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU run_mode (str): mode of running(fluid/trt_fp32/trt_fp16) batch_size (int): size of per batch in inference, default 50 means at most 50 sub images can be made a batch and send into ReID model trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt trt_calib_mode (bool): If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True cpu_threads (int): cpu threads enable_mkldnn (bool): whether to open MKLDNN """ def __init__(self, pred_config, model_dir, device='CPU', run_mode='fluid', batch_size=50, trt_min_shape=1, trt_max_shape=1088, trt_opt_shape=608, trt_calib_mode=False, cpu_threads=1, enable_mkldnn=False): self.pred_config = pred_config self.predictor, self.config = load_predictor( model_dir, run_mode=run_mode, batch_size=batch_size, min_subgraph_size=self.pred_config.min_subgraph_size, device=device, use_dynamic_shape=self.pred_config.use_dynamic_shape, trt_min_shape=trt_min_shape, trt_max_shape=trt_max_shape, trt_opt_shape=trt_opt_shape, trt_calib_mode=trt_calib_mode, cpu_threads=cpu_threads, enable_mkldnn=enable_mkldnn) self.det_times = Timer() self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0 self.batch_size = batch_size assert pred_config.tracker, "Tracking model should have tracker" pt = pred_config.tracker max_age = pt['max_age'] if 'max_age' in pt else 30 max_iou_distance = pt[ 'max_iou_distance'] if 'max_iou_distance' in pt else 0.7 self.tracker = DeepSORTTracker( max_age=max_age, max_iou_distance=max_iou_distance) def get_crops(self, xyxy, ori_img): w, h = self.tracker.input_size self.det_times.preprocess_time_s.start() crops = [] xyxy = xyxy.astype(np.int64) ori_img = ori_img.transpose(1, 0, 2) # [h,w,3]->[w,h,3] for i, bbox in enumerate(xyxy): crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :] crops.append(crop) crops = preprocess_reid(crops, w, h) self.det_times.preprocess_time_s.end() return crops def preprocess(self, crops): # to keep fast speed, only use topk crops crops = crops[:self.batch_size] inputs = {} inputs['crops'] = np.array(crops).astype('float32') return inputs def postprocess(self, pred_dets, pred_embs): tracker = self.tracker tracker.predict() online_targets = tracker.update(pred_dets, pred_embs) online_tlwhs, online_scores, online_ids = [], [], [] for t in online_targets: if not t.is_confirmed() or t.time_since_update > 1: continue tlwh = t.to_tlwh() tscore = t.score tid = t.track_id if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[ 3] > tracker.vertical_ratio: continue online_tlwhs.append(tlwh) online_scores.append(tscore) online_ids.append(tid) tracking_outs = { 'online_tlwhs': online_tlwhs, 'online_scores': online_scores, 'online_ids': online_ids, } return tracking_outs def postprocess_mtmct(self, pred_dets, pred_embs, frame_id, seq_name): tracker = self.tracker tracker.predict() online_targets = tracker.update(pred_dets, pred_embs) online_tlwhs, online_scores, online_ids = [], [], [] online_tlbrs, online_feats = [], [] for t in online_targets: if not t.is_confirmed() or t.time_since_update > 1: continue tlwh = t.to_tlwh() tscore = t.score tid = t.track_id if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[ 3] > tracker.vertical_ratio: continue online_tlwhs.append(tlwh) online_scores.append(tscore) online_ids.append(tid) online_tlbrs.append(t.to_tlbr()) online_feats.append(t.feat) tracking_outs = { 'online_tlwhs': online_tlwhs, 'online_scores': online_scores, 'online_ids': online_ids, 'feat_data': {}, } for _tlbr, _id, _feat in zip(online_tlbrs, online_ids, online_feats): feat_data = {} feat_data['bbox'] = _tlbr feat_data['frame'] = f"{frame_id:06d}" feat_data['id'] = _id _imgname = f'{seq_name}_{_id}_{frame_id}.jpg' feat_data['imgname'] = _imgname feat_data['feat'] = _feat tracking_outs['feat_data'].update({_imgname: feat_data}) return tracking_outs def predict(self, crops, pred_dets, repeats=1, add_timer=True, MTMCT=False, frame_id=0, seq_name=''): # preprocess if add_timer: self.det_times.preprocess_time_s.start() inputs = self.preprocess(crops) input_names = self.predictor.get_input_names() for i in range(len(input_names)): input_tensor = self.predictor.get_input_handle(input_names[i]) input_tensor.copy_from_cpu(inputs[input_names[i]]) if add_timer: self.det_times.preprocess_time_s.end() self.det_times.inference_time_s.start() # model prediction for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() feature_tensor = self.predictor.get_output_handle(output_names[0]) pred_embs = feature_tensor.copy_to_cpu() if add_timer: self.det_times.inference_time_s.end(repeats=repeats) self.det_times.postprocess_time_s.start() # postprocess if MTMCT == False: tracking_outs = self.postprocess(pred_dets, pred_embs) else: tracking_outs = self.postprocess_mtmct(pred_dets, pred_embs, frame_id, seq_name) if add_timer: self.det_times.postprocess_time_s.end() self.det_times.img_num += 1 return tracking_outs def predict_image(detector, reid_model, image_list): image_list.sort() for i, img_file in enumerate(image_list): frame = cv2.imread(img_file) ori_image_shape = list(frame.shape[:2]) if FLAGS.run_benchmark: # warmup pred_dets, pred_xyxys = detector.predict( [img_file], ori_image_shape, FLAGS.threshold, FLAGS.scaled, repeats=10, add_timer=False) # run benchmark pred_dets, pred_xyxys = detector.predict( [img_file], ori_image_shape, FLAGS.threshold, FLAGS.scaled, repeats=10, add_timer=True) cm, gm, gu = get_current_memory_mb() detector.cpu_mem += cm detector.gpu_mem += gm detector.gpu_util += gu print('Test iter {}, file name:{}'.format(i, img_file)) else: pred_dets, pred_xyxys = detector.predict( [img_file], ori_image_shape, FLAGS.threshold, FLAGS.scaled) if len(pred_dets) == 1 and np.sum(pred_dets) == 0: print('Frame {} has no object, try to modify score threshold.'. format(i)) online_im = frame else: # reid process crops = reid_model.get_crops(pred_xyxys, frame) if FLAGS.run_benchmark: # warmup tracking_outs = reid_model.predict( crops, pred_dets, repeats=10, add_timer=False) # run benchmark tracking_outs = reid_model.predict( crops, pred_dets, repeats=10, add_timer=True) else: tracking_outs = reid_model.predict(crops, pred_dets) online_tlwhs = tracking_outs['online_tlwhs'] online_scores = tracking_outs['online_scores'] online_ids = tracking_outs['online_ids'] online_im = plot_tracking( frame, online_tlwhs, online_ids, online_scores, frame_id=i) if FLAGS.save_images: if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) img_name = os.path.split(img_file)[-1] out_path = os.path.join(FLAGS.output_dir, img_name) cv2.imwrite(out_path, online_im) print("save result to: " + out_path) def predict_video(detector, reid_model, camera_id): if camera_id != -1: capture = cv2.VideoCapture(camera_id) video_name = 'mot_output.mp4' else: capture = cv2.VideoCapture(FLAGS.video_file) video_name = os.path.split(FLAGS.video_file)[-1] # Get Video info : resolution, fps, frame count width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(capture.get(cv2.CAP_PROP_FPS)) frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) print("fps: %d, frame_count: %d" % (fps, frame_count)) if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) out_path = os.path.join(FLAGS.output_dir, video_name) if not FLAGS.save_images: video_format = 'mp4v' fourcc = cv2.VideoWriter_fourcc(*video_format) writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height)) frame_id = 0 timer = MOTTimer() results = defaultdict(list) id_set = set() interval_id_set = set() in_id_list = list() out_id_list = list() prev_center = dict() records = list() entrance = [0, height / 2., width, height / 2.] video_fps = fps while (1): ret, frame = capture.read() if not ret: break timer.tic() ori_image_shape = list(frame.shape[:2]) pred_dets, pred_xyxys = detector.predict([frame], ori_image_shape, FLAGS.threshold, FLAGS.scaled) if len(pred_dets) == 1 and np.sum(pred_dets) == 0: print('Frame {} has no object, try to modify score threshold.'. format(frame_id)) timer.toc() im = frame else: # reid process crops = reid_model.get_crops(pred_xyxys, frame) tracking_outs = reid_model.predict(crops, pred_dets) online_tlwhs = tracking_outs['online_tlwhs'] online_scores = tracking_outs['online_scores'] online_ids = tracking_outs['online_ids'] results[0].append( (frame_id + 1, online_tlwhs, online_scores, online_ids)) # NOTE: just implement flow statistic for one class result = (frame_id + 1, online_tlwhs, online_scores, online_ids) statistic = flow_statistic( result, FLAGS.secs_interval, FLAGS.do_entrance_counting, video_fps, entrance, id_set, interval_id_set, in_id_list, out_id_list, prev_center, records) id_set = statistic['id_set'] interval_id_set = statistic['interval_id_set'] in_id_list = statistic['in_id_list'] out_id_list = statistic['out_id_list'] prev_center = statistic['prev_center'] records = statistic['records'] timer.toc() fps = 1. / timer.duration im = plot_tracking( frame, online_tlwhs, online_ids, online_scores, frame_id=frame_id, fps=fps, do_entrance_counting=FLAGS.do_entrance_counting, entrance=entrance) if FLAGS.save_images: save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2]) if not os.path.exists(save_dir): os.makedirs(save_dir) cv2.imwrite( os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im) else: writer.write(im) frame_id += 1 print('detect frame:%d, fps: %f' % (frame_id, fps)) if camera_id != -1: cv2.imshow('Tracking Detection', im) if cv2.waitKey(1) & 0xFF == ord('q'): break if FLAGS.save_mot_txts: result_filename = os.path.join(FLAGS.output_dir, video_name.split('.')[-2] + '.txt') write_mot_results(result_filename, results) result_filename = os.path.join( FLAGS.output_dir, video_name.split('.')[-2] + '_flow_statistic.txt') f = open(result_filename, 'w') for line in records: f.write(line) print('Flow statistic save in {}'.format(result_filename)) f.close() if FLAGS.save_images: save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2]) cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir, out_path) os.system(cmd_str) print('Save video in {}.'.format(out_path)) else: writer.release() def predict_mtmct_seq(detector, reid_model, seq_name, output_dir): fpath = os.path.join(FLAGS.mtmct_dir, seq_name) if os.path.exists(os.path.join(fpath, 'img1')): fpath = os.path.join(fpath, 'img1') assert os.path.isdir(fpath), '{} should be a directory'.format(fpath) image_list = os.listdir(fpath) image_list.sort() assert len(image_list) > 0, '{} has no images.'.format(fpath) results = defaultdict(list) mot_features_dict = {} # cid_tid_fid feats print('Totally {} frames found in seq {}.'.format( len(image_list), seq_name)) for frame_id, img_file in enumerate(image_list): if frame_id % 40 == 0: print('Processing frame {} of seq {}.'.format(frame_id, seq_name)) frame = cv2.imread(os.path.join(fpath, img_file)) ori_image_shape = list(frame.shape[:2]) frame_path = os.path.join(fpath, img_file) pred_dets, pred_xyxys = detector.predict([frame_path], ori_image_shape, FLAGS.threshold, FLAGS.scaled) if len(pred_dets) == 1 and np.sum(pred_dets) == 0: print('Frame {} has no object, try to modify score threshold.'. format(frame_id)) online_im = frame else: # reid process crops = reid_model.get_crops(pred_xyxys, frame) tracking_outs = reid_model.predict( crops, pred_dets, MTMCT=True, frame_id=frame_id, seq_name=seq_name) feat_data_dict = tracking_outs['feat_data'] mot_features_dict = dict(mot_features_dict, **feat_data_dict) online_tlwhs = tracking_outs['online_tlwhs'] online_scores = tracking_outs['online_scores'] online_ids = tracking_outs['online_ids'] online_im = plot_tracking(frame, online_tlwhs, online_ids, online_scores, frame_id) results[0].append( (frame_id + 1, online_tlwhs, online_scores, online_ids)) if FLAGS.save_images: save_dir = os.path.join(output_dir, seq_name) if not os.path.exists(save_dir): os.makedirs(save_dir) img_name = os.path.split(img_file)[-1] out_path = os.path.join(save_dir, img_name) cv2.imwrite(out_path, online_im) if FLAGS.save_mot_txts: result_filename = os.path.join(output_dir, seq_name + '.txt') write_mot_results(result_filename, results) return mot_features_dict def predict_mtmct(detector, reid_model, mtmct_dir, mtmct_cfg): MTMCT = mtmct_cfg['MTMCT'] assert MTMCT == True, 'predict_mtmct should be used for MTMCT.' cameras_bias = mtmct_cfg['cameras_bias'] cid_bias = parse_bias(cameras_bias) scene_cluster = list(cid_bias.keys()) # 1.zone releated parameters use_zone = mtmct_cfg['use_zone'] zone_path = mtmct_cfg['zone_path'] # 2.tricks parameters, can be used for other mtmct dataset use_ff = mtmct_cfg['use_ff'] use_rerank = mtmct_cfg['use_rerank'] # 3.camera releated parameters use_camera = mtmct_cfg['use_camera'] use_st_filter = mtmct_cfg['use_st_filter'] # 4.zone releated parameters use_roi = mtmct_cfg['use_roi'] roi_dir = mtmct_cfg['roi_dir'] mot_list_breaks = [] cid_tid_dict = dict() output_dir = FLAGS.output_dir if not os.path.exists(output_dir): os.makedirs(output_dir) seqs = os.listdir(mtmct_dir) seqs.sort() for seq in seqs: fpath = os.path.join(mtmct_dir, seq) if os.path.isfile(fpath) and _is_valid_video(fpath): ext = seq.split('.')[-1] seq = seq.split('.')[-2] print('ffmpeg processing of video {}'.format(fpath)) frames_path = video2frames( video_path=fpath, outpath=mtmct_dir, frame_rate=25) fpath = os.path.join(mtmct_dir, seq) if os.path.isdir(fpath) == False: print('{} is not a image folder.'.format(fpath)) continue mot_features_dict = predict_mtmct_seq(detector, reid_model, seq, output_dir) cid = int(re.sub('[a-z,A-Z]', "", seq)) tid_data, mot_list_break = trajectory_fusion( mot_features_dict, cid, cid_bias, use_zone=use_zone, zone_path=zone_path) mot_list_breaks.append(mot_list_break) # single seq process for line in tid_data: tracklet = tid_data[line] tid = tracklet['tid'] if (cid, tid) not in cid_tid_dict: cid_tid_dict[(cid, tid)] = tracklet map_tid = sub_cluster( cid_tid_dict, scene_cluster, use_ff=use_ff, use_rerank=use_rerank, use_camera=use_camera, use_st_filter=use_st_filter) pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt') if use_camera: gen_res(pred_mtmct_file, scene_cluster, map_tid, mot_list_breaks) else: gen_res( pred_mtmct_file, scene_cluster, map_tid, mot_list_breaks, use_roi=use_roi, roi_dir=roi_dir) if FLAGS.save_images: camera_results, cid_tid_fid_res = get_mtmct_matching_results( pred_mtmct_file) crops_dir = os.path.join(output_dir, 'mtmct_crops') save_mtmct_crops( cid_tid_fid_res, images_dir=mtmct_dir, crops_dir=crops_dir) save_dir = os.path.join(output_dir, 'mtmct_vis') save_mtmct_vis_results( camera_results, images_dir=mtmct_dir, save_dir=save_dir, save_videos=FLAGS.save_images) # evalution metrics data_root_gt = os.path.join(mtmct_dir, '..', 'gt', 'gt.txt') if os.path.exists(data_root_gt): print_mtmct_result(data_root_gt, pred_mtmct_file) def main(): pred_config = PredictConfig(FLAGS.model_dir) detector_func = 'SDE_Detector' if pred_config.arch == 'PicoDet': detector_func = 'SDE_DetectorPicoDet' detector = eval(detector_func)(pred_config, FLAGS.model_dir, device=FLAGS.device, run_mode=FLAGS.run_mode, batch_size=FLAGS.batch_size, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn) pred_config = PredictConfig(FLAGS.reid_model_dir) reid_model = SDE_ReID( pred_config, FLAGS.reid_model_dir, device=FLAGS.device, run_mode=FLAGS.run_mode, batch_size=FLAGS.reid_batch_size, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn) # predict from video file or camera video stream if FLAGS.video_file is not None or FLAGS.camera_id != -1: predict_video(detector, reid_model, FLAGS.camera_id) elif FLAGS.mtmct_dir is not None: mtmct_cfg_file = FLAGS.mtmct_cfg with open(mtmct_cfg_file) as f: mtmct_cfg = yaml.safe_load(f) predict_mtmct(detector, reid_model, FLAGS.mtmct_dir, mtmct_cfg) else: # predict from image img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file) predict_image(detector, reid_model, img_list) if not FLAGS.run_benchmark: detector.det_times.info(average=True) reid_model.det_times.info(average=True) else: mode = FLAGS.run_mode det_model_dir = FLAGS.model_dir det_model_info = { 'model_name': det_model_dir.strip('/').split('/')[-1], 'precision': mode.split('_')[-1] } bench_log(detector, img_list, det_model_info, name='Det') reid_model_dir = FLAGS.reid_model_dir reid_model_info = { 'model_name': reid_model_dir.strip('/').split('/')[-1], 'precision': mode.split('_')[-1] } bench_log(reid_model, img_list, reid_model_info, name='ReID') if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() print_arguments(FLAGS) FLAGS.device = FLAGS.device.upper() assert FLAGS.device in ['CPU', 'GPU', 'XPU' ], "device should be CPU, GPU or XPU" main()
the-stack_0_918
# coding: utf-8 import os import sys import re import time import pickle import shutil import random import argparse from darknet_util import * from darknet import Darknet from preprocess import prep_image, process_img, inp_to_image from dataset import color_attrs, direction_attrs, type_attrs import torch import torchvision import paramiko import cv2 import numpy as np import PIL from PIL import Image from matplotlib import pyplot as plt from matplotlib.widgets import Cursor from matplotlib.image import AxesImage from scipy.spatial.distance import cityblock from tqdm import tqdm # ------------------------------------- # for matplotlib to displacy chinese characters correctly from pylab import * mpl.rcParams['font.sans-serif'] = ['SimHei'] use_cuda = True # True os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES'] = '0' device = torch.device( 'cuda: 0' if torch.cuda.is_available() and use_cuda else 'cpu') if use_cuda: torch.manual_seed(0) torch.cuda.manual_seed_all(0) print('=> device: ', device) local_model_path = './checkpoints/epoch_39.pth' local_car_cfg_path = './car.cfg' local_car_det_weights_path = './car_detect.weights' class Cls_Net(torch.nn.Module): """ vehicle multilabel classification model """ def __init__(self, num_cls, input_size): """ network definition :param is_freeze: """ torch.nn.Module.__init__(self) # output channels self._num_cls = num_cls # input image size self.input_size = input_size # delete original FC and add custom FC self.features = torchvision.models.resnet18(pretrained=True) del self.features.fc # print('feature extractor:\n', self.features) self.features = torch.nn.Sequential( *list(self.features.children())) self.fc = torch.nn.Linear(512 ** 2, num_cls) # 输出类别数 # print('=> fc layer:\n', self.fc) def forward(self, X): """ :param X: :return: """ N = X.size()[0] X = self.features(X) # extract features X = X.view(N, 512, 1 ** 2) X = torch.bmm(X, torch.transpose(X, 1, 2)) / (1 ** 2) # Bi-linear CNN X = X.view(N, 512 ** 2) X = torch.sqrt(X + 1e-5) X = torch.nn.functional.normalize(X) X = self.fc(X) assert X.size() == (N, self._num_cls) return X # ------------------------------------- vehicle detection model class Car_Classifier(object): """ vehicle detection model mabager """ def __init__(self, num_cls, model_path=local_model_path): """ load model and initialize """ # define model and load weights self.net = Cls_Net(num_cls=num_cls, input_size=224).to(device) # self.net = torch.nn.DataParallel(Net(num_cls=20, input_size=224), # device_ids=[0]).to(device) self.net.load_state_dict(torch.load(model_path)) print('=> vehicle classifier loaded from %s' % model_path) # set model to eval mode self.net.eval() # test data transforms self.transforms = torchvision.transforms.Compose([ torchvision.transforms.Resize(size=224), torchvision.transforms.CenterCrop(size=224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) # split each label self.color_attrs = color_attrs print('=> color_attrs:\n', self.color_attrs) self.direction_attrs = direction_attrs print('=> direction attrs:\n', self.direction_attrs) self.type_attrs = type_attrs print('=> type_attrs:\n', self.type_attrs) def get_predict(self, output): """ get prediction from output """ # get each label's prediction from output output = output.cpu() # fetch data from gpu pred_color = output[:, :9] pred_direction = output[:, 9:11] pred_type = output[:, 11:] color_idx = pred_color.max(1, keepdim=True)[1] direction_idx = pred_direction.max(1, keepdim=True)[1] type_idx = pred_type.max(1, keepdim=True)[1] pred = torch.cat((color_idx, direction_idx, type_idx), dim=1) return pred def pre_process(self, image): """ image formatting :rtype: PIL.JpegImagePlugin.JpegImageFile """ # image data formatting if type(image) == np.ndarray: if image.shape[2] == 3: # turn all 3 channels to RGB format image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) elif image.shape[2] == 1: # turn 1 channel to RGB image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) # turn numpy.ndarray into PIL.Image image = Image.fromarray(image) elif type(image) == PIL.JpegImagePlugin.JpegImageFile: if image.mode == 'L' or image.mode == 'I': # turn 8bits or 32bits into 3 channels RGB image = image.convert('RGB') return image def predict(self, img): """ predict vehicle attributes by classifying :return: vehicle color, direction and type """ # image pre-processing img = self.transforms(img) img = img.view(1, 3, 224, 224) # put image data into device img = img.to(device) # calculating inference output = self.net.forward(img) # get result # self.get_predict_ce, return pred to host side(cpu) pred = self.get_predict(output) color_name = self.color_attrs[pred[0][0]] direction_name = self.direction_attrs[pred[0][1]] type_name = self.type_attrs[pred[0][2]] return color_name, direction_name, type_name class Car_DC(): def __init__(self, src_dir, dst_dir, car_cfg_path=local_car_cfg_path, car_det_weights_path=local_car_det_weights_path, inp_dim=768, prob_th=0.2, nms_th=0.4, num_classes=1): """ model initialization """ # super parameters self.inp_dim = inp_dim self.prob_th = prob_th self.nms_th = nms_th self.num_classes = num_classes self.dst_dir = dst_dir # clear dst_dir if os.path.exists(self.dst_dir): for x in os.listdir(self.dst_dir): if x.endswith('.jpg'): os.remove(self.dst_dir + '/' + x) else: os.makedirs(self.dst_dir) # initialize vehicle detection model self.detector = Darknet(car_cfg_path) self.detector.load_weights(car_det_weights_path) # set input dimension of image self.detector.net_info['height'] = self.inp_dim self.detector.to(device) self.detector.eval() # evaluation mode print('=> car detection model initiated.') # initiate multilabel classifier self.classifier = Car_Classifier(num_cls=19, model_path=local_model_path) # initiate imgs_path self.imgs_path = [os.path.join(src_dir, x) for x in os.listdir( src_dir) if x.endswith('.jpg')] def cls_draw_bbox(self, output, orig_img): """ 1. predict vehicle's attributes based on bbox of vehicle 2. draw bbox to orig_img """ labels = [] pt_1s = [] pt_2s = [] # 1 for det in output: # rectangle points pt_1 = tuple(det[1:3].int()) # the left-up point pt_2 = tuple(det[3:5].int()) # the right down point pt_1s.append(pt_1) pt_2s.append(pt_2) # turn BGR back to RGB ROI = Image.fromarray( orig_img[pt_1[1]: pt_2[1], pt_1[0]: pt_2[0]][:, :, ::-1]) # ROI.show() # call classifier to predict car_color, car_direction, car_type = self.classifier.predict(ROI) label = str(car_color + ' ' + car_direction + ' ' + car_type) labels.append(label) print('=> predicted label: ', label) # 2 color = (0, 215, 255) for i, det in enumerate(output): pt_1 = pt_1s[i] pt_2 = pt_2s[i] # draw bounding box cv2.rectangle(orig_img, pt_1, pt_2, color, thickness=2) # get str text size txt_size = cv2.getTextSize( label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0] # pt_2 = pt_1[0] + txt_size[0] + 3, pt_1[1] + txt_size[1] + 5 pt_2 = pt_1[0] + txt_size[0] + 3, pt_1[1] - txt_size[1] - 5 # draw text background rect cv2.rectangle(orig_img, pt_1, pt_2, color, thickness=-1) # text # draw text cv2.putText(orig_img, labels[i], (pt_1[0], pt_1[1]), # pt_1[1] + txt_size[1] + 4 cv2.FONT_HERSHEY_PLAIN, 2, [225, 255, 255], 2) def process_predict(self, prediction, prob_th, num_cls, nms_th, inp_dim, orig_img_size): """ processing detections """ scaling_factor = min([inp_dim / float(x) for x in orig_img_size]) # W, H scaling factor output = post_process(prediction, prob_th, num_cls, nms=True, nms_conf=nms_th, CUDA=True) # post-process such as nms if type(output) != int: output[:, [1, 3]] -= (inp_dim - scaling_factor * orig_img_size[0]) / 2.0 # x, w output[:, [2, 4]] -= (inp_dim - scaling_factor * orig_img_size[1]) / 2.0 # y, h output[:, 1:5] /= scaling_factor for i in range(output.shape[0]): output[i, [1, 3]] = torch.clamp( output[i, [1, 3]], 0.0, orig_img_size[0]) output[i, [2, 4]] = torch.clamp( output[i, [2, 4]], 0.0, orig_img_size[1]) return output def detect_classify(self): """ detect and classify """ for x in self.imgs_path: # read image data img = Image.open(x) img2det = process_img(img, self.inp_dim) img2det = img2det.to(device) # put image data to device # vehicle detection prediction = self.detector.forward(img2det, CUDA=True) # calculating scaling factor orig_img_size = list(img.size) output = self.process_predict(prediction, self.prob_th, self.num_classes, self.nms_th, self.inp_dim, orig_img_size) orig_img = cv2.cvtColor(np.asarray( img), cv2.COLOR_RGB2BGR) # RGB => BGR if type(output) != int: self.cls_draw_bbox(output, orig_img) dst_path = self.dst_dir + '/' + os.path.split(x)[1] if not os.path.exists(dst_path): cv2.imwrite(dst_path, orig_img) # ----------------------------------------------------------- parser = argparse.ArgumentParser(description='Detect and classify cars.') parser.add_argument('-src-dir', type=str, default='./test_imgs', help='source directory of images') parser.add_argument('-dst-dir', type=str, default='./test_result', help='destination directory of images to store results.') if __name__ == '__main__': # ---------------------------- Car detect and classify # DR_model = Car_DC(src_dir='./test_imgs', # dst_dir='./test_result') # DR_model.detect_classify() args = parser.parse_args() DR_model = Car_DC(src_dir=args.src_dir, dst_dir=args.dst_dir) DR_model.detect_classify()
the-stack_0_919
""" SimplePose for COCO Keypoint, implemented in TensorFlow. Original paper: 'Simple Baselines for Human Pose Estimation and Tracking,' https://arxiv.org/abs/1804.06208. """ __all__ = ['SimplePose', 'simplepose_resnet18_coco', 'simplepose_resnet50b_coco', 'simplepose_resnet101b_coco', 'simplepose_resnet152b_coco', 'simplepose_resneta50b_coco', 'simplepose_resneta101b_coco', 'simplepose_resneta152b_coco'] import os import tensorflow as tf tf.random.set_seed(3) import tensorflow.keras.layers as nn from .common import get_activation_layer, BatchNorm, conv1x1, HeatmapMaxDetBlock, is_channels_first from .resnet import resnet18, resnet50b, resnet101b, resnet152b from .resneta import resneta50b, resneta101b, resneta152b class Deconv2d(nn.Layer): """ Standard deconvolution layer. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. strides : int or tuple/list of 2 int, default 1 Strides of the convolution. padding : int or tuple/list of 2 int, default 0 Padding value for convolution layer. out_padding : int or tuple/list of 2 int, default 0 Output padding value for deconvolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. groups : int, default 1 Number of groups. use_bias : bool, default True Whether the layer uses a bias vector. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ def __init__(self, in_channels, out_channels, kernel_size, strides=1, padding=0, out_padding=0, dilation=1, groups=1, use_bias=True, data_format="channels_last", **kwargs): super(Deconv2d, self).__init__(**kwargs) assert (dilation == 1) assert (groups == 1) assert (in_channels is not None) if isinstance(padding, int): padding = (padding, padding) self.use_crop = (padding[0] > 0) or (padding[1] > 0) if self.use_crop: self.crop = nn.Cropping2D( cropping=padding, data_format=data_format, name="crop") self.conv = nn.Conv2DTranspose( filters=out_channels, kernel_size=kernel_size, strides=strides, padding="valid", output_padding=out_padding, data_format=data_format, dilation_rate=dilation, use_bias=use_bias, name="conv") def call(self, x): x = self.conv(x) if self.use_crop: x = self.crop(x) return x class DeconvBlock(nn.Layer): """ Deconvolution block with batch normalization and activation. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. strides : int or tuple/list of 2 int Strides of the deconvolution. padding : int or tuple/list of 2 int Padding value for deconvolution layer. out_padding : int or tuple/list of 2 int, default 0 Output padding value for deconvolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for deconvolution layer. groups : int, default 1 Number of groups. use_bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. bn_eps : float, default 1e-5 Small float added to variance in Batch norm. activation : function or str or None, default 'relu' Activation function or name of activation function. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ def __init__(self, in_channels, out_channels, kernel_size, strides, padding, out_padding=0, dilation=1, groups=1, use_bias=False, use_bn=True, bn_eps=1e-5, activation="relu", data_format="channels_last", **kwargs): super(DeconvBlock, self).__init__(**kwargs) assert (in_channels is not None) self.activate = (activation is not None) self.use_bn = use_bn self.conv = Deconv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, strides=strides, padding=padding, out_padding=out_padding, dilation=dilation, groups=groups, use_bias=use_bias, data_format=data_format, name="conv") if self.use_bn: self.bn = BatchNorm( epsilon=bn_eps, data_format=data_format, name="bn") if self.activate: self.activ = get_activation_layer(activation) def call(self, x, training=None): x = self.conv(x) if self.use_bn: x = self.bn(x, training=training) if self.activate: x = self.activ(x) return x class SimplePose(tf.keras.Model): """ SimplePose model from 'Simple Baselines for Human Pose Estimation and Tracking,' https://arxiv.org/abs/1804.06208. Parameters: ---------- backbone : nn.Sequential Feature extractor. backbone_out_channels : int Number of output channels for the backbone. channels : list of int Number of output channels for each decoder unit. return_heatmap : bool, default False Whether to return only heatmap. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (256, 192) Spatial size of the expected input image. keypoints : int, default 17 Number of keypoints. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ def __init__(self, backbone, backbone_out_channels, channels, return_heatmap=False, in_channels=3, in_size=(256, 192), keypoints=17, data_format="channels_last", **kwargs): super(SimplePose, self).__init__(**kwargs) assert (in_channels == 3) self.in_size = in_size self.keypoints = keypoints self.return_heatmap = return_heatmap self.data_format = data_format self.backbone = backbone self.backbone._name = "backbone" self.decoder = tf.keras.Sequential(name="decoder") in_channels = backbone_out_channels for i, out_channels in enumerate(channels): self.decoder.add(DeconvBlock( in_channels=in_channels, out_channels=out_channels, kernel_size=4, strides=2, padding=1, data_format=data_format, name="unit{}".format(i + 1))) in_channels = out_channels self.decoder.add(conv1x1( in_channels=in_channels, out_channels=keypoints, use_bias=True, data_format=data_format, name="final_block")) self.heatmap_max_det = HeatmapMaxDetBlock( data_format=data_format, name="heatmap_max_det") def call(self, x, training=None): x = self.backbone(x, training=training) heatmap = self.decoder(x, training=training) if self.return_heatmap or not tf.executing_eagerly(): return [heatmap] else: keypoints = self.heatmap_max_det(heatmap) return keypoints def get_simplepose(backbone, backbone_out_channels, keypoints, model_name=None, data_format="channels_last", pretrained=False, root=os.path.join("~", ".tensorflow", "models"), channels=[256, 256, 256], **kwargs): """ Create SimplePose model with specific parameters. Parameters: ---------- backbone : nn.Sequential Feature extractor. backbone_out_channels : int Number of output channels for the backbone. keypoints : int Number of keypoints. model_name : str or None, default None Model name for loading pretrained model. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ net = SimplePose( backbone=backbone, backbone_out_channels=backbone_out_channels, channels=channels, keypoints=keypoints, data_format=data_format, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import get_model_file in_channels = kwargs["in_channels"] if ("in_channels" in kwargs) else 3 input_shape = (1,) + (in_channels,) + net.in_size if net.data_format == "channels_first" else\ (1,) + net.in_size + (in_channels,) net.build(input_shape=input_shape) net.load_weights( filepath=get_model_file( model_name=model_name, local_model_store_dir_path=root)) return net def simplepose_mobilenetv2_coco(mv2_alpha=1.0, keypoints=17, data_format="channels_last", **kwargs): backbone = tf.keras.applications.MobileNetV2(include_top=False, alpha=mv2_alpha) return get_simplepose(backbone, backbone_out_channels=512, keypoints=keypoints, model_name="simplepose_mobilenetv2_coco", data_format=data_format, **kwargs) def simplepose_mv2_coco(keypoints=17, data_format="channels_last", **kwargs): from .mv2_cpm import MobileNetV2 backbone = MobileNetV2() return get_simplepose(backbone, backbone_out_channels=256, keypoints=keypoints, model_name="simplepose_mv2_coco", data_format=data_format, channels=[256, 256], **kwargs) def simplepose_resnet18_coco(pretrained_backbone=False, keypoints=17, data_format="channels_last", **kwargs): """ SimplePose model on the base of ResNet-18 for COCO Keypoint from 'Simple Baselines for Human Pose Estimation and Tracking,' https://arxiv.org/abs/1804.06208. Parameters: ---------- pretrained_backbone : bool, default False Whether to load the pretrained weights for feature extractor. keypoints : int, default 17 Number of keypoints. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ backbone = resnet18(pretrained=pretrained_backbone, data_format=data_format).features backbone._layers.pop() return get_simplepose(backbone=backbone, backbone_out_channels=512, keypoints=keypoints, model_name="simplepose_resnet18_coco", data_format=data_format, **kwargs) def simplepose_resnet50b_coco(pretrained_backbone=False, keypoints=17, data_format="channels_last", **kwargs): """ SimplePose model on the base of ResNet-50b for COCO Keypoint from 'Simple Baselines for Human Pose Estimation and Tracking,' https://arxiv.org/abs/1804.06208. Parameters: ---------- pretrained_backbone : bool, default False Whether to load the pretrained weights for feature extractor. keypoints : int, default 17 Number of keypoints. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ backbone = resnet50b(pretrained=pretrained_backbone, data_format=data_format).features backbone._layers.pop() return get_simplepose(backbone=backbone, backbone_out_channels=2048, keypoints=keypoints, model_name="simplepose_resnet50b_coco", data_format=data_format, **kwargs) def simplepose_resnet101b_coco(pretrained_backbone=False, keypoints=17, data_format="channels_last", **kwargs): """ SimplePose model on the base of ResNet-101b for COCO Keypoint from 'Simple Baselines for Human Pose Estimation and Tracking,' https://arxiv.org/abs/1804.06208. Parameters: ---------- pretrained_backbone : bool, default False Whether to load the pretrained weights for feature extractor. keypoints : int, default 17 Number of keypoints. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ backbone = resnet101b(pretrained=pretrained_backbone, data_format=data_format).features backbone._layers.pop() return get_simplepose(backbone=backbone, backbone_out_channels=2048, keypoints=keypoints, model_name="simplepose_resnet101b_coco", data_format=data_format, **kwargs) def simplepose_resnet152b_coco(pretrained_backbone=False, keypoints=17, data_format="channels_last", **kwargs): """ SimplePose model on the base of ResNet-152b for COCO Keypoint from 'Simple Baselines for Human Pose Estimation and Tracking,' https://arxiv.org/abs/1804.06208. Parameters: ---------- pretrained_backbone : bool, default False Whether to load the pretrained weights for feature extractor. keypoints : int, default 17 Number of keypoints. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ backbone = resnet152b(pretrained=pretrained_backbone, data_format=data_format).features backbone._layers.pop() return get_simplepose(backbone=backbone, backbone_out_channels=2048, keypoints=keypoints, model_name="simplepose_resnet152b_coco", data_format=data_format, **kwargs) def simplepose_resneta50b_coco(pretrained_backbone=False, keypoints=17, data_format="channels_last", **kwargs): """ SimplePose model on the base of ResNet(A)-50b for COCO Keypoint from 'Simple Baselines for Human Pose Estimation and Tracking,' https://arxiv.org/abs/1804.06208. Parameters: ---------- pretrained_backbone : bool, default False Whether to load the pretrained weights for feature extractor. keypoints : int, default 17 Number of keypoints. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ backbone = resneta50b(pretrained=pretrained_backbone, data_format=data_format).features backbone._layers.pop() return get_simplepose(backbone=backbone, backbone_out_channels=2048, keypoints=keypoints, model_name="simplepose_resneta50b_coco", data_format=data_format, **kwargs) def simplepose_resneta101b_coco(pretrained_backbone=False, keypoints=17, data_format="channels_last", **kwargs): """ SimplePose model on the base of ResNet(A)-101b for COCO Keypoint from 'Simple Baselines for Human Pose Estimation and Tracking,' https://arxiv.org/abs/1804.06208. Parameters: ---------- pretrained_backbone : bool, default False Whether to load the pretrained weights for feature extractor. keypoints : int, default 17 Number of keypoints. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ backbone = resneta101b(pretrained=pretrained_backbone, data_format=data_format).features backbone._layers.pop() return get_simplepose(backbone=backbone, backbone_out_channels=2048, keypoints=keypoints, model_name="simplepose_resneta101b_coco", data_format=data_format, **kwargs) def simplepose_resneta152b_coco(pretrained_backbone=False, keypoints=17, data_format="channels_last", **kwargs): """ SimplePose model on the base of ResNet(A)-152b for COCO Keypoint from 'Simple Baselines for Human Pose Estimation and Tracking,' https://arxiv.org/abs/1804.06208. Parameters: ---------- pretrained_backbone : bool, default False Whether to load the pretrained weights for feature extractor. keypoints : int, default 17 Number of keypoints. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ backbone = resneta152b(pretrained=pretrained_backbone, data_format=data_format).features backbone._layers.pop() return get_simplepose(backbone=backbone, backbone_out_channels=2048, keypoints=keypoints, model_name="simplepose_resneta152b_coco", data_format=data_format, **kwargs) def _test(): import numpy as np import tensorflow.keras.backend as K data_format = "channels_last" # data_format = "channels_first" in_size = (256, 192) keypoints = 17 return_heatmap = False pretrained = False models = [ simplepose_resnet18_coco, simplepose_resnet50b_coco, simplepose_resnet101b_coco, simplepose_resnet152b_coco, simplepose_resneta50b_coco, simplepose_resneta101b_coco, simplepose_resneta152b_coco, ] for model in models: net = model(pretrained=pretrained, in_size=in_size, return_heatmap=return_heatmap, data_format=data_format) batch = 14 x = tf.random.normal((batch, 3, in_size[0], in_size[1]) if is_channels_first(data_format) else (batch, in_size[0], in_size[1], 3)) y = net(x) assert (y.shape[0] == batch) if return_heatmap: if is_channels_first(data_format): assert ((y.shape[1] == keypoints) and (y.shape[2] == x.shape[2] // 4) and (y.shape[3] == x.shape[3] // 4)) else: assert ((y.shape[3] == keypoints) and (y.shape[1] == x.shape[1] // 4) and (y.shape[2] == x.shape[2] // 4)) else: assert ((y.shape[1] == keypoints) and (y.shape[2] == 3)) weight_count = sum([np.prod(K.get_value(w).shape) for w in net.trainable_weights]) print("m={}, {}".format(model.__name__, weight_count)) assert (model != simplepose_resnet18_coco or weight_count == 15376721) assert (model != simplepose_resnet50b_coco or weight_count == 33999697) assert (model != simplepose_resnet101b_coco or weight_count == 52991825) assert (model != simplepose_resnet152b_coco or weight_count == 68635473) assert (model != simplepose_resneta50b_coco or weight_count == 34018929) assert (model != simplepose_resneta101b_coco or weight_count == 53011057) assert (model != simplepose_resneta152b_coco or weight_count == 68654705) if __name__ == "__main__": _test()
the-stack_0_920
"""Selector and proactor event loops for Windows.""" import _overlapped import _winapi import errno import math import msvcrt import socket import struct import time import weakref from . import events from . import base_subprocess from . import futures from . import exceptions from . import proactor_events from . import selector_events from . import tasks from . import windows_utils from .log import logger __all__ = ( 'SelectorEventLoop', 'ProactorEventLoop', 'IocpProactor', 'DefaultEventLoopPolicy', 'WindowsSelectorEventLoopPolicy', 'WindowsProactorEventLoopPolicy', ) NULL = 0 INFINITE = 0xffffffff ERROR_CONNECTION_REFUSED = 1225 ERROR_CONNECTION_ABORTED = 1236 # Initial delay in seconds for connect_pipe() before retrying to connect CONNECT_PIPE_INIT_DELAY = 0.001 # Maximum delay in seconds for connect_pipe() before retrying to connect CONNECT_PIPE_MAX_DELAY = 0.100 class _OverlappedFuture(futures.Future): """Subclass of Future which represents an overlapped operation. Cancelling it will immediately cancel the overlapped operation. """ def __init__(self, ov, *, loop=None): super().__init__(loop=loop) if self._source_traceback: del self._source_traceback[-1] self._ov = ov def _repr_info(self): info = super()._repr_info() if self._ov is not None: state = 'pending' if self._ov.pending else 'completed' info.insert(1, f'overlapped=<{state}, {self._ov.address:#x}>') return info def _cancel_overlapped(self): if self._ov is None: return try: self._ov.cancel() except OSError as exc: context = { 'message': 'Cancelling an overlapped future failed', 'exception': exc, 'future': self, } if self._source_traceback: context['source_traceback'] = self._source_traceback self._loop.call_exception_handler(context) self._ov = None def cancel(self, msg=None): self._cancel_overlapped() return super().cancel(msg=msg) def set_exception(self, exception): super().set_exception(exception) self._cancel_overlapped() def set_result(self, result): super().set_result(result) self._ov = None class _BaseWaitHandleFuture(futures.Future): """Subclass of Future which represents a wait handle.""" def __init__(self, ov, handle, wait_handle, *, loop=None): super().__init__(loop=loop) if self._source_traceback: del self._source_traceback[-1] # Keep a reference to the Overlapped object to keep it alive until the # wait is unregistered self._ov = ov self._handle = handle self._wait_handle = wait_handle # Should we call UnregisterWaitEx() if the wait completes # or is cancelled? self._registered = True def _poll(self): # non-blocking wait: use a timeout of 0 millisecond return (_winapi.WaitForSingleObject(self._handle, 0) == _winapi.WAIT_OBJECT_0) def _repr_info(self): info = super()._repr_info() info.append(f'handle={self._handle:#x}') if self._handle is not None: state = 'signaled' if self._poll() else 'waiting' info.append(state) if self._wait_handle is not None: info.append(f'wait_handle={self._wait_handle:#x}') return info def _unregister_wait_cb(self, fut): # The wait was unregistered: it's not safe to destroy the Overlapped # object self._ov = None def _unregister_wait(self): if not self._registered: return self._registered = False wait_handle = self._wait_handle self._wait_handle = None try: _overlapped.UnregisterWait(wait_handle) except OSError as exc: if exc.winerror != _overlapped.ERROR_IO_PENDING: context = { 'message': 'Failed to unregister the wait handle', 'exception': exc, 'future': self, } if self._source_traceback: context['source_traceback'] = self._source_traceback self._loop.call_exception_handler(context) return # ERROR_IO_PENDING means that the unregister is pending self._unregister_wait_cb(None) def cancel(self, msg=None): self._unregister_wait() return super().cancel(msg=msg) def set_exception(self, exception): self._unregister_wait() super().set_exception(exception) def set_result(self, result): self._unregister_wait() super().set_result(result) class _WaitCancelFuture(_BaseWaitHandleFuture): """Subclass of Future which represents a wait for the cancellation of a _WaitHandleFuture using an event. """ def __init__(self, ov, event, wait_handle, *, loop=None): super().__init__(ov, event, wait_handle, loop=loop) self._done_callback = None def cancel(self): raise RuntimeError("_WaitCancelFuture must not be cancelled") def set_result(self, result): super().set_result(result) if self._done_callback is not None: self._done_callback(self) def set_exception(self, exception): super().set_exception(exception) if self._done_callback is not None: self._done_callback(self) class _WaitHandleFuture(_BaseWaitHandleFuture): def __init__(self, ov, handle, wait_handle, proactor, *, loop=None): super().__init__(ov, handle, wait_handle, loop=loop) self._proactor = proactor self._unregister_proactor = True self._event = _overlapped.CreateEvent(None, True, False, None) self._event_fut = None def _unregister_wait_cb(self, fut): if self._event is not None: _winapi.CloseHandle(self._event) self._event = None self._event_fut = None # If the wait was cancelled, the wait may never be signalled, so # it's required to unregister it. Otherwise, IocpProactor.close() will # wait forever for an event which will never come. # # If the IocpProactor already received the event, it's safe to call # _unregister() because we kept a reference to the Overlapped object # which is used as a unique key. self._proactor._unregister(self._ov) self._proactor = None super()._unregister_wait_cb(fut) def _unregister_wait(self): if not self._registered: return self._registered = False wait_handle = self._wait_handle self._wait_handle = None try: _overlapped.UnregisterWaitEx(wait_handle, self._event) except OSError as exc: if exc.winerror != _overlapped.ERROR_IO_PENDING: context = { 'message': 'Failed to unregister the wait handle', 'exception': exc, 'future': self, } if self._source_traceback: context['source_traceback'] = self._source_traceback self._loop.call_exception_handler(context) return # ERROR_IO_PENDING is not an error, the wait was unregistered self._event_fut = self._proactor._wait_cancel(self._event, self._unregister_wait_cb) class PipeServer(object): """Class representing a pipe server. This is much like a bound, listening socket. """ def __init__(self, address): self._address = address self._free_instances = weakref.WeakSet() # initialize the pipe attribute before calling _server_pipe_handle() # because this function can raise an exception and the destructor calls # the close() method self._pipe = None self._accept_pipe_future = None self._pipe = self._server_pipe_handle(True) def _get_unconnected_pipe(self): # Create new instance and return previous one. This ensures # that (until the server is closed) there is always at least # one pipe handle for address. Therefore if a client attempt # to connect it will not fail with FileNotFoundError. tmp, self._pipe = self._pipe, self._server_pipe_handle(False) return tmp def _server_pipe_handle(self, first): # Return a wrapper for a new pipe handle. if self.closed(): return None flags = _winapi.PIPE_ACCESS_DUPLEX | _winapi.FILE_FLAG_OVERLAPPED if first: flags |= _winapi.FILE_FLAG_FIRST_PIPE_INSTANCE h = _winapi.CreateNamedPipe( self._address, flags, _winapi.PIPE_TYPE_MESSAGE | _winapi.PIPE_READMODE_MESSAGE | _winapi.PIPE_WAIT, _winapi.PIPE_UNLIMITED_INSTANCES, windows_utils.BUFSIZE, windows_utils.BUFSIZE, _winapi.NMPWAIT_WAIT_FOREVER, _winapi.NULL) pipe = windows_utils.PipeHandle(h) self._free_instances.add(pipe) return pipe def closed(self): return (self._address is None) def close(self): if self._accept_pipe_future is not None: self._accept_pipe_future.cancel() self._accept_pipe_future = None # Close all instances which have not been connected to by a client. if self._address is not None: for pipe in self._free_instances: pipe.close() self._pipe = None self._address = None self._free_instances.clear() __del__ = close class _WindowsSelectorEventLoop(selector_events.BaseSelectorEventLoop): """Windows version of selector event loop.""" class ProactorEventLoop(proactor_events.BaseProactorEventLoop): """Windows version of proactor event loop using IOCP.""" def __init__(self, proactor=None): if proactor is None: proactor = IocpProactor() super().__init__(proactor) def run_forever(self): try: assert self._self_reading_future is None self.call_soon(self._loop_self_reading) super().run_forever() finally: if self._self_reading_future is not None: ov = self._self_reading_future._ov self._self_reading_future.cancel() # self_reading_future was just cancelled so if it hasn't been # finished yet, it never will be (it's possible that it has # already finished and its callback is waiting in the queue, # where it could still happen if the event loop is restarted). # Unregister it otherwise IocpProactor.close will wait for it # forever if ov is not None: self._proactor._unregister(ov) self._self_reading_future = None async def create_pipe_connection(self, protocol_factory, address): f = self._proactor.connect_pipe(address) pipe = await f protocol = protocol_factory() trans = self._make_duplex_pipe_transport(pipe, protocol, extra={'addr': address}) return trans, protocol async def start_serving_pipe(self, protocol_factory, address): server = PipeServer(address) def loop_accept_pipe(f=None): pipe = None try: if f: pipe = f.result() server._free_instances.discard(pipe) if server.closed(): # A client connected before the server was closed: # drop the client (close the pipe) and exit pipe.close() return protocol = protocol_factory() self._make_duplex_pipe_transport( pipe, protocol, extra={'addr': address}) pipe = server._get_unconnected_pipe() if pipe is None: return f = self._proactor.accept_pipe(pipe) except OSError as exc: if pipe and pipe.fileno() != -1: self.call_exception_handler({ 'message': 'Pipe accept failed', 'exception': exc, 'pipe': pipe, }) pipe.close() elif self._debug: logger.warning("Accept pipe failed on pipe %r", pipe, exc_info=True) except exceptions.CancelledError: if pipe: pipe.close() else: server._accept_pipe_future = f f.add_done_callback(loop_accept_pipe) self.call_soon(loop_accept_pipe) return [server] async def _make_subprocess_transport(self, protocol, args, shell, stdin, stdout, stderr, bufsize, extra=None, **kwargs): waiter = self.create_future() transp = _WindowsSubprocessTransport(self, protocol, args, shell, stdin, stdout, stderr, bufsize, waiter=waiter, extra=extra, **kwargs) try: await waiter except (SystemExit, KeyboardInterrupt): raise except BaseException: transp.close() await transp._wait() raise return transp class IocpProactor: """Proactor implementation using IOCP.""" def __init__(self, concurrency=0xffffffff): self._loop = None self._results = [] self._iocp = _overlapped.CreateIoCompletionPort( _overlapped.INVALID_HANDLE_VALUE, NULL, 0, concurrency) self._cache = {} self._registered = weakref.WeakSet() self._unregistered = [] self._stopped_serving = weakref.WeakSet() def _check_closed(self): if self._iocp is None: raise RuntimeError('IocpProactor is closed') def __repr__(self): info = ['overlapped#=%s' % len(self._cache), 'result#=%s' % len(self._results)] if self._iocp is None: info.append('closed') return '<%s %s>' % (self.__class__.__name__, " ".join(info)) def set_loop(self, loop): self._loop = loop def select(self, timeout=None): if not self._results: self._poll(timeout) tmp = self._results self._results = [] return tmp def _result(self, value): fut = self._loop.create_future() fut.set_result(value) return fut def recv(self, conn, nbytes, flags=0): self._register_with_iocp(conn) ov = _overlapped.Overlapped(NULL) try: if isinstance(conn, socket.socket): ov.WSARecv(conn.fileno(), nbytes, flags) else: ov.ReadFile(conn.fileno(), nbytes) except BrokenPipeError: return self._result(b'') def finish_recv(trans, key, ov): try: return ov.getresult() except OSError as exc: if exc.winerror in (_overlapped.ERROR_NETNAME_DELETED, _overlapped.ERROR_OPERATION_ABORTED): raise ConnectionResetError(*exc.args) else: raise return self._register(ov, conn, finish_recv) def recv_into(self, conn, buf, flags=0): self._register_with_iocp(conn) ov = _overlapped.Overlapped(NULL) try: if isinstance(conn, socket.socket): ov.WSARecvInto(conn.fileno(), buf, flags) else: ov.ReadFileInto(conn.fileno(), buf) except BrokenPipeError: return self._result(0) def finish_recv(trans, key, ov): try: return ov.getresult() except OSError as exc: if exc.winerror in (_overlapped.ERROR_NETNAME_DELETED, _overlapped.ERROR_OPERATION_ABORTED): raise ConnectionResetError(*exc.args) else: raise return self._register(ov, conn, finish_recv) def recvfrom(self, conn, nbytes, flags=0): self._register_with_iocp(conn) ov = _overlapped.Overlapped(NULL) try: ov.WSARecvFrom(conn.fileno(), nbytes, flags) except BrokenPipeError: return self._result((b'', None)) def finish_recv(trans, key, ov): try: return ov.getresult() except OSError as exc: if exc.winerror in (_overlapped.ERROR_NETNAME_DELETED, _overlapped.ERROR_OPERATION_ABORTED): raise ConnectionResetError(*exc.args) else: raise return self._register(ov, conn, finish_recv) def sendto(self, conn, buf, flags=0, addr=None): self._register_with_iocp(conn) ov = _overlapped.Overlapped(NULL) ov.WSASendTo(conn.fileno(), buf, flags, addr) def finish_send(trans, key, ov): try: return ov.getresult() except OSError as exc: if exc.winerror in (_overlapped.ERROR_NETNAME_DELETED, _overlapped.ERROR_OPERATION_ABORTED): raise ConnectionResetError(*exc.args) else: raise return self._register(ov, conn, finish_send) def send(self, conn, buf, flags=0): self._register_with_iocp(conn) ov = _overlapped.Overlapped(NULL) if isinstance(conn, socket.socket): ov.WSASend(conn.fileno(), buf, flags) else: ov.WriteFile(conn.fileno(), buf) def finish_send(trans, key, ov): try: return ov.getresult() except OSError as exc: if exc.winerror in (_overlapped.ERROR_NETNAME_DELETED, _overlapped.ERROR_OPERATION_ABORTED): raise ConnectionResetError(*exc.args) else: raise return self._register(ov, conn, finish_send) def accept(self, listener): self._register_with_iocp(listener) conn = self._get_accept_socket(listener.family) ov = _overlapped.Overlapped(NULL) ov.AcceptEx(listener.fileno(), conn.fileno()) def finish_accept(trans, key, ov): ov.getresult() # Use SO_UPDATE_ACCEPT_CONTEXT so getsockname() etc work. buf = struct.pack('@P', listener.fileno()) conn.setsockopt(socket.SOL_SOCKET, _overlapped.SO_UPDATE_ACCEPT_CONTEXT, buf) conn.settimeout(listener.gettimeout()) return conn, conn.getpeername() async def accept_coro(future, conn): # Coroutine closing the accept socket if the future is cancelled try: await future except exceptions.CancelledError: conn.close() raise future = self._register(ov, listener, finish_accept) coro = accept_coro(future, conn) tasks.ensure_future(coro, loop=self._loop) return future def connect(self, conn, address): if conn.type == socket.SOCK_DGRAM: # WSAConnect will complete immediately for UDP sockets so we don't # need to register any IOCP operation _overlapped.WSAConnect(conn.fileno(), address) fut = self._loop.create_future() fut.set_result(None) return fut self._register_with_iocp(conn) # The socket needs to be locally bound before we call ConnectEx(). try: _overlapped.BindLocal(conn.fileno(), conn.family) except OSError as e: if e.winerror != errno.WSAEINVAL: raise # Probably already locally bound; check using getsockname(). if conn.getsockname()[1] == 0: raise ov = _overlapped.Overlapped(NULL) ov.ConnectEx(conn.fileno(), address) def finish_connect(trans, key, ov): ov.getresult() # Use SO_UPDATE_CONNECT_CONTEXT so getsockname() etc work. conn.setsockopt(socket.SOL_SOCKET, _overlapped.SO_UPDATE_CONNECT_CONTEXT, 0) return conn return self._register(ov, conn, finish_connect) def sendfile(self, sock, file, offset, count): self._register_with_iocp(sock) ov = _overlapped.Overlapped(NULL) offset_low = offset & 0xffff_ffff offset_high = (offset >> 32) & 0xffff_ffff ov.TransmitFile(sock.fileno(), msvcrt.get_osfhandle(file.fileno()), offset_low, offset_high, count, 0, 0) def finish_sendfile(trans, key, ov): try: return ov.getresult() except OSError as exc: if exc.winerror in (_overlapped.ERROR_NETNAME_DELETED, _overlapped.ERROR_OPERATION_ABORTED): raise ConnectionResetError(*exc.args) else: raise return self._register(ov, sock, finish_sendfile) def accept_pipe(self, pipe): self._register_with_iocp(pipe) ov = _overlapped.Overlapped(NULL) connected = ov.ConnectNamedPipe(pipe.fileno()) if connected: # ConnectNamePipe() failed with ERROR_PIPE_CONNECTED which means # that the pipe is connected. There is no need to wait for the # completion of the connection. return self._result(pipe) def finish_accept_pipe(trans, key, ov): ov.getresult() return pipe return self._register(ov, pipe, finish_accept_pipe) async def connect_pipe(self, address): delay = CONNECT_PIPE_INIT_DELAY while True: # Unfortunately there is no way to do an overlapped connect to # a pipe. Call CreateFile() in a loop until it doesn't fail with # ERROR_PIPE_BUSY. try: handle = _overlapped.ConnectPipe(address) break except OSError as exc: if exc.winerror != _overlapped.ERROR_PIPE_BUSY: raise # ConnectPipe() failed with ERROR_PIPE_BUSY: retry later delay = min(delay * 2, CONNECT_PIPE_MAX_DELAY) await tasks.sleep(delay) return windows_utils.PipeHandle(handle) def wait_for_handle(self, handle, timeout=None): """Wait for a handle. Return a Future object. The result of the future is True if the wait completed, or False if the wait did not complete (on timeout). """ return self._wait_for_handle(handle, timeout, False) def _wait_cancel(self, event, done_callback): fut = self._wait_for_handle(event, None, True) # add_done_callback() cannot be used because the wait may only complete # in IocpProactor.close(), while the event loop is not running. fut._done_callback = done_callback return fut def _wait_for_handle(self, handle, timeout, _is_cancel): self._check_closed() if timeout is None: ms = _winapi.INFINITE else: # RegisterWaitForSingleObject() has a resolution of 1 millisecond, # round away from zero to wait *at least* timeout seconds. ms = math.ceil(timeout * 1e3) # We only create ov so we can use ov.address as a key for the cache. ov = _overlapped.Overlapped(NULL) wait_handle = _overlapped.RegisterWaitWithQueue( handle, self._iocp, ov.address, ms) if _is_cancel: f = _WaitCancelFuture(ov, handle, wait_handle, loop=self._loop) else: f = _WaitHandleFuture(ov, handle, wait_handle, self, loop=self._loop) if f._source_traceback: del f._source_traceback[-1] def finish_wait_for_handle(trans, key, ov): # Note that this second wait means that we should only use # this with handles types where a successful wait has no # effect. So events or processes are all right, but locks # or semaphores are not. Also note if the handle is # signalled and then quickly reset, then we may return # False even though we have not timed out. return f._poll() self._cache[ov.address] = (f, ov, 0, finish_wait_for_handle) return f def _register_with_iocp(self, obj): # To get notifications of finished ops on this objects sent to the # completion port, were must register the handle. if obj not in self._registered: self._registered.add(obj) _overlapped.CreateIoCompletionPort(obj.fileno(), self._iocp, 0, 0) # XXX We could also use SetFileCompletionNotificationModes() # to avoid sending notifications to completion port of ops # that succeed immediately. def _register(self, ov, obj, callback): self._check_closed() # Return a future which will be set with the result of the # operation when it completes. The future's value is actually # the value returned by callback(). f = _OverlappedFuture(ov, loop=self._loop) if f._source_traceback: del f._source_traceback[-1] if not ov.pending: # The operation has completed, so no need to postpone the # work. We cannot take this short cut if we need the # NumberOfBytes, CompletionKey values returned by # PostQueuedCompletionStatus(). try: value = callback(None, None, ov) except OSError as e: f.set_exception(e) else: f.set_result(value) # Even if GetOverlappedResult() was called, we have to wait for the # notification of the completion in GetQueuedCompletionStatus(). # Register the overlapped operation to keep a reference to the # OVERLAPPED object, otherwise the memory is freed and Windows may # read uninitialized memory. # Register the overlapped operation for later. Note that # we only store obj to prevent it from being garbage # collected too early. self._cache[ov.address] = (f, ov, obj, callback) return f def _unregister(self, ov): """Unregister an overlapped object. Call this method when its future has been cancelled. The event can already be signalled (pending in the proactor event queue). It is also safe if the event is never signalled (because it was cancelled). """ self._check_closed() self._unregistered.append(ov) def _get_accept_socket(self, family): s = socket.socket(family) s.settimeout(0) return s def _poll(self, timeout=None): if timeout is None: ms = INFINITE elif timeout < 0: raise ValueError("negative timeout") else: # GetQueuedCompletionStatus() has a resolution of 1 millisecond, # round away from zero to wait *at least* timeout seconds. ms = math.ceil(timeout * 1e3) if ms >= INFINITE: raise ValueError("timeout too big") while True: status = _overlapped.GetQueuedCompletionStatus(self._iocp, ms) if status is None: break ms = 0 err, transferred, key, address = status try: f, ov, obj, callback = self._cache.pop(address) except KeyError: if self._loop.get_debug(): self._loop.call_exception_handler({ 'message': ('GetQueuedCompletionStatus() returned an ' 'unexpected event'), 'status': ('err=%s transferred=%s key=%#x address=%#x' % (err, transferred, key, address)), }) # key is either zero, or it is used to return a pipe # handle which should be closed to avoid a leak. if key not in (0, _overlapped.INVALID_HANDLE_VALUE): _winapi.CloseHandle(key) continue if obj in self._stopped_serving: f.cancel() # Don't call the callback if _register() already read the result or # if the overlapped has been cancelled elif not f.done(): try: value = callback(transferred, key, ov) except OSError as e: f.set_exception(e) self._results.append(f) else: f.set_result(value) self._results.append(f) # Remove unregistered futures for ov in self._unregistered: self._cache.pop(ov.address, None) self._unregistered.clear() def _stop_serving(self, obj): # obj is a socket or pipe handle. It will be closed in # BaseProactorEventLoop._stop_serving() which will make any # pending operations fail quickly. self._stopped_serving.add(obj) def close(self): if self._iocp is None: # already closed return # Cancel remaining registered operations. for address, (fut, ov, obj, callback) in list(self._cache.items()): if fut.cancelled(): # Nothing to do with cancelled futures pass elif isinstance(fut, _WaitCancelFuture): # _WaitCancelFuture must not be cancelled pass else: try: fut.cancel() except OSError as exc: if self._loop is not None: context = { 'message': 'Cancelling a future failed', 'exception': exc, 'future': fut, } if fut._source_traceback: context['source_traceback'] = fut._source_traceback self._loop.call_exception_handler(context) # Wait until all cancelled overlapped complete: don't exit with running # overlapped to prevent a crash. Display progress every second if the # loop is still running. msg_update = 1.0 start_time = time.monotonic() next_msg = start_time + msg_update while self._cache: if next_msg <= time.monotonic(): logger.debug('%r is running after closing for %.1f seconds', self, time.monotonic() - start_time) next_msg = time.monotonic() + msg_update # handle a few events, or timeout self._poll(msg_update) self._results = [] _winapi.CloseHandle(self._iocp) self._iocp = None def __del__(self): self.close() class _WindowsSubprocessTransport(base_subprocess.BaseSubprocessTransport): def _start(self, args, shell, stdin, stdout, stderr, bufsize, **kwargs): self._proc = windows_utils.Popen( args, shell=shell, stdin=stdin, stdout=stdout, stderr=stderr, bufsize=bufsize, **kwargs) def callback(f): returncode = self._proc.poll() self._process_exited(returncode) f = self._loop._proactor.wait_for_handle(int(self._proc._handle)) f.add_done_callback(callback) SelectorEventLoop = _WindowsSelectorEventLoop class WindowsSelectorEventLoopPolicy(events.BaseDefaultEventLoopPolicy): _loop_factory = SelectorEventLoop class WindowsProactorEventLoopPolicy(events.BaseDefaultEventLoopPolicy): _loop_factory = ProactorEventLoop DefaultEventLoopPolicy = WindowsProactorEventLoopPolicy
the-stack_0_921
from django.urls import path, include from comment.api.views import CommentCreateApiView, CommentListApiView, CommentValidateApiView app_name = "comment" urlpatterns = [ path('create/', CommentCreateApiView.as_view(), name='create'), path('list/', CommentListApiView.as_view(), name='list'), path('validate/<pk>', CommentValidateApiView.as_view(), name='validate'), ]
the-stack_0_922
def readline(f, newline): buf = "" while True: while newline in buf: pos = buf.index(newline) yield buf[:pos] buf = buf[pos + len(newline):] chunk = f.read(4096 * 10) if not chunk: yield buf break buf += chunk with open("index.txt") as f: for line in readline(f, "{|}"): print(line)
the-stack_0_924
"""The module defines the abstract interface for resolving container images for tool execution.""" from abc import ( ABCMeta, abstractmethod, abstractproperty, ) from galaxy.util.bunch import Bunch from galaxy.util.dictifiable import Dictifiable class ResolutionCache(Bunch): """Simple cache for duplicated computation created once per set of requests (likely web request in Galaxy context). This should not be assumed to be thread safe - resolution using a given cache should all occur one resolution at a time in a single thread. """ mulled_resolution_cache = None class ContainerResolver(Dictifiable, metaclass=ABCMeta): """Description of a technique for resolving container images for tool execution.""" # Keys for dictification. dict_collection_visible_keys = ["resolver_type", "can_uninstall_dependencies", "builds_on_resolution"] can_uninstall_dependencies = False builds_on_resolution = False read_only = True # not used for containers, but set for when they are used like dependency resolvers def __init__(self, app_info=None, **kwds): """Default initializer for ``ContainerResolver`` subclasses.""" self.app_info = app_info self.resolver_kwds = kwds def _get_config_option(self, key, default=None): """Look in resolver-specific settings for option and then fallback to global settings. """ if self.app_info and hasattr(self.app_info, key): return getattr(self.app_info, key) else: return default @abstractmethod def resolve(self, enabled_container_types, tool_info, resolution_cache=None, **kwds): """Find a container matching all supplied requirements for tool. The supplied argument is a :class:`galaxy.tool_util.deps.containers.ToolInfo` description of the tool and its requirements. """ @abstractproperty def resolver_type(self): """Short label for the type of container resolution.""" def _container_type_enabled(self, container_description, enabled_container_types): """Return a boolean indicating if the specified container type is enabled.""" return container_description.type in enabled_container_types def __str__(self): return f"{self.__class__.__name__}[]"
the-stack_0_925
import warnings from itertools import islice from types import GeneratorType from typing import ( TYPE_CHECKING, AbstractSet, Any, Callable, Dict, Generator, Iterator, List, Optional, Set, Tuple, Type, TypeVar, Union, no_type_check, ) from .typing import AnyType, display_as_type from .version import version_info if TYPE_CHECKING: from inspect import Signature from .main import BaseModel, BaseConfig # noqa: F401 from .typing import AbstractSetIntStr, DictIntStrAny, IntStr, MappingIntStrAny, ReprArgs # noqa: F401 from .fields import ModelField # noqa: F401 from .dataclasses import DataclassType # noqa: F401 __all__ = ( 'import_string', 'sequence_like', 'validate_field_name', 'lenient_issubclass', 'in_ipython', 'deep_update', 'update_not_none', 'almost_equal_floats', 'get_model', 'to_camel', 'PyObjectStr', 'Representation', 'GetterDict', 'ValueItems', 'version_info', # required here to match behaviour in v1.3 ) def import_string(dotted_path: str) -> Any: """ Stolen approximately from django. Import a dotted module path and return the attribute/class designated by the last name in the path. Raise ImportError if the import fails. """ from importlib import import_module try: module_path, class_name = dotted_path.strip(' ').rsplit('.', 1) except ValueError as e: raise ImportError(f'"{dotted_path}" doesn\'t look like a module path') from e module = import_module(module_path) try: return getattr(module, class_name) except AttributeError as e: raise ImportError(f'Module "{module_path}" does not define a "{class_name}" attribute') from e def truncate(v: Union[str], *, max_len: int = 80) -> str: """ Truncate a value and add a unicode ellipsis (three dots) to the end if it was too long """ warnings.warn('`truncate` is no-longer used by pydantic and is deprecated', DeprecationWarning) if isinstance(v, str) and len(v) > (max_len - 2): # -3 so quote + string + … + quote has correct length return (v[: (max_len - 3)] + '…').__repr__() try: v = v.__repr__() except TypeError: v = v.__class__.__repr__(v) # in case v is a type if len(v) > max_len: v = v[: max_len - 1] + '…' return v def sequence_like(v: AnyType) -> bool: return isinstance(v, (list, tuple, set, frozenset, GeneratorType)) def validate_field_name(bases: List[Type['BaseModel']], field_name: str) -> None: """ Ensure that the field's name does not shadow an existing attribute of the model. """ for base in bases: if getattr(base, field_name, None): raise NameError( f'Field name "{field_name}" shadows a BaseModel attribute; ' f'use a different field name with "alias=\'{field_name}\'".' ) def lenient_issubclass(cls: Any, class_or_tuple: Union[AnyType, Tuple[AnyType, ...]]) -> bool: return isinstance(cls, type) and issubclass(cls, class_or_tuple) def in_ipython() -> bool: """ Check whether we're in an ipython environment, including jupyter notebooks. """ try: eval('__IPYTHON__') except NameError: return False else: # pragma: no cover return True KeyType = TypeVar('KeyType') def deep_update(mapping: Dict[KeyType, Any], updating_mapping: Dict[KeyType, Any]) -> Dict[KeyType, Any]: updated_mapping = mapping.copy() for k, v in updating_mapping.items(): if k in mapping and isinstance(mapping[k], dict) and isinstance(v, dict): updated_mapping[k] = deep_update(mapping[k], v) else: updated_mapping[k] = v return updated_mapping def update_not_none(mapping: Dict[Any, Any], **update: Any) -> None: mapping.update({k: v for k, v in update.items() if v is not None}) def almost_equal_floats(value_1: float, value_2: float, *, delta: float = 1e-8) -> bool: """ Return True if two floats are almost equal """ return abs(value_1 - value_2) <= delta def generate_model_signature( init: Callable[..., None], fields: Dict[str, 'ModelField'], config: Type['BaseConfig'] ) -> 'Signature': """ Generate signature for model based on its fields """ from inspect import Parameter, Signature, signature present_params = signature(init).parameters.values() merged_params: Dict[str, Parameter] = {} var_kw = None use_var_kw = False for param in islice(present_params, 1, None): # skip self arg if param.kind is param.VAR_KEYWORD: var_kw = param continue merged_params[param.name] = param if var_kw: # if custom init has no var_kw, fields which are not declared in it cannot be passed through allow_names = config.allow_population_by_field_name for field_name, field in fields.items(): param_name = field.alias if field_name in merged_params or param_name in merged_params: continue elif not param_name.isidentifier(): if allow_names and field_name.isidentifier(): param_name = field_name else: use_var_kw = True continue # TODO: replace annotation with actual expected types once #1055 solved kwargs = {'default': field.default} if not field.required else {} merged_params[param_name] = Parameter( param_name, Parameter.KEYWORD_ONLY, annotation=field.outer_type_, **kwargs ) if config.extra is config.extra.allow: use_var_kw = True if var_kw and use_var_kw: # Make sure the parameter for extra kwargs # does not have the same name as a field default_model_signature = [ ('__pydantic_self__', Parameter.POSITIONAL_OR_KEYWORD), ('data', Parameter.VAR_KEYWORD), ] if [(p.name, p.kind) for p in present_params] == default_model_signature: # if this is the standard model signature, use extra_data as the extra args name var_kw_name = 'extra_data' else: # else start from var_kw var_kw_name = var_kw.name # generate a name that's definitely unique while var_kw_name in fields: var_kw_name += '_' merged_params[var_kw_name] = var_kw.replace(name=var_kw_name) return Signature(parameters=list(merged_params.values()), return_annotation=None) def get_model(obj: Union[Type['BaseModel'], Type['DataclassType']]) -> Type['BaseModel']: from .main import BaseModel # noqa: F811 try: model_cls = obj.__pydantic_model__ # type: ignore except AttributeError: model_cls = obj if not issubclass(model_cls, BaseModel): raise TypeError('Unsupported type, must be either BaseModel or dataclass') return model_cls def to_camel(string: str) -> str: return ''.join(word.capitalize() for word in string.split('_')) class PyObjectStr(str): """ String class where repr doesn't include quotes. Useful with Representation when you want to return a string representation of something that valid (or pseudo-valid) python. """ def __repr__(self) -> str: return str(self) class Representation: """ Mixin to provide __str__, __repr__, and __pretty__ methods. See #884 for more details. __pretty__ is used by [devtools](https://python-devtools.helpmanual.io/) to provide human readable representations of objects. """ __slots__: Tuple[str, ...] = tuple() def __repr_args__(self) -> 'ReprArgs': """ Returns the attributes to show in __str__, __repr__, and __pretty__ this is generally overridden. Can either return: * name - value pairs, e.g.: `[('foo_name', 'foo'), ('bar_name', ['b', 'a', 'r'])]` * or, just values, e.g.: `[(None, 'foo'), (None, ['b', 'a', 'r'])]` """ attrs = ((s, getattr(self, s)) for s in self.__slots__) return [(a, v) for a, v in attrs if v is not None] def __repr_name__(self) -> str: """ Name of the instance's class, used in __repr__. """ return self.__class__.__name__ def __repr_str__(self, join_str: str) -> str: return join_str.join(repr(v) if a is None else f'{a}={v!r}' for a, v in self.__repr_args__()) def __pretty__(self, fmt: Callable[[Any], Any], **kwargs: Any) -> Generator[Any, None, None]: """ Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects """ yield self.__repr_name__() + '(' yield 1 for name, value in self.__repr_args__(): if name is not None: yield name + '=' yield fmt(value) yield ',' yield 0 yield -1 yield ')' def __str__(self) -> str: return self.__repr_str__(' ') def __repr__(self) -> str: return f'{self.__repr_name__()}({self.__repr_str__(", ")})' class GetterDict(Representation): """ Hack to make object's smell just enough like dicts for validate_model. We can't inherit from Mapping[str, Any] because it upsets cython so we have to implement all methods ourselves. """ __slots__ = ('_obj',) def __init__(self, obj: Any): self._obj = obj def __getitem__(self, key: str) -> Any: try: return getattr(self._obj, key) except AttributeError as e: raise KeyError(key) from e def get(self, key: Any, default: Any = None) -> Any: return getattr(self._obj, key, default) def extra_keys(self) -> Set[Any]: """ We don't want to get any other attributes of obj if the model didn't explicitly ask for them """ return set() def keys(self) -> List[Any]: """ Keys of the pseudo dictionary, uses a list not set so order information can be maintained like python dictionaries. """ return list(self) def values(self) -> List[Any]: return [self[k] for k in self] def items(self) -> Iterator[Tuple[str, Any]]: for k in self: yield k, self.get(k) def __iter__(self) -> Iterator[str]: for name in dir(self._obj): if not name.startswith('_'): yield name def __len__(self) -> int: return sum(1 for _ in self) def __contains__(self, item: Any) -> bool: return item in self.keys() def __eq__(self, other: Any) -> bool: return dict(self) == dict(other.items()) # type: ignore def __repr_args__(self) -> 'ReprArgs': return [(None, dict(self))] # type: ignore def __repr_name__(self) -> str: return f'GetterDict[{display_as_type(self._obj)}]' class ValueItems(Representation): """ Class for more convenient calculation of excluded or included fields on values. """ __slots__ = ('_items', '_type') def __init__(self, value: Any, items: Union['AbstractSetIntStr', 'MappingIntStrAny']) -> None: if TYPE_CHECKING: self._items: Union['AbstractSetIntStr', 'MappingIntStrAny'] self._type: Type[Union[set, dict]] # type: ignore # For further type checks speed-up if isinstance(items, dict): self._type = dict elif isinstance(items, AbstractSet): self._type = set else: raise TypeError(f'Unexpected type of exclude value {items.__class__}') if isinstance(value, (list, tuple)): try: items = self._normalize_indexes(items, len(value)) except TypeError as e: raise TypeError( 'Excluding fields from a sequence of sub-models or dicts must be performed index-wise: ' 'expected integer keys or keyword "__all__"' ) from e self._items = items @no_type_check def is_excluded(self, item: Any) -> bool: """ Check if item is fully excluded (value considered excluded if self._type is set and item contained in self._items or self._type is dict and self._items.get(item) is ... :param item: key or index of a value """ if self._type is set: return item in self._items return self._items.get(item) is ... @no_type_check def is_included(self, item: Any) -> bool: """ Check if value is contained in self._items :param item: key or index of value """ return item in self._items @no_type_check def for_element(self, e: 'IntStr') -> Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']]: """ :param e: key or index of element on value :return: raw values for elemet if self._items is dict and contain needed element """ if self._type is dict: item = self._items.get(e) return item if item is not ... else None return None @no_type_check def _normalize_indexes( self, items: Union['AbstractSetIntStr', 'MappingIntStrAny'], v_length: int ) -> Union['AbstractSetIntStr', 'DictIntStrAny']: """ :param items: dict or set of indexes which will be normalized :param v_length: length of sequence indexes of which will be >>> self._normalize_indexes({0, -2, -1}, 4) {0, 2, 3} >>> self._normalize_indexes({'__all__'}, 4) {0, 1, 2, 3} """ if self._type is set: if '__all__' in items: if items != {'__all__'}: raise ValueError('set with keyword "__all__" must not contain other elements') return {i for i in range(v_length)} return {v_length + i if i < 0 else i for i in items} else: normalized_items = {v_length + i if i < 0 else i: v for i, v in items.items() if i != '__all__'} all_set = items.get('__all__') if all_set: for i in range(v_length): normalized_items.setdefault(i, set()).update(all_set) return normalized_items def __repr_args__(self) -> 'ReprArgs': return [(None, self._items)]
the-stack_0_927
# _____ ______ _____ # / ____/ /\ | ____ | __ \ # | | / \ | |__ | |__) | Caer - Modern Computer Vision # | | / /\ \ | __| | _ / Languages: Python, C, C++, Cuda # | |___ / ____ \ | |____ | | \ \ http://github.com/jasmcaus/caer # \_____\/_/ \_ \______ |_| \_\ # Licensed under the MIT License <http://opensource.org/licenses/MIT> # SPDX-License-Identifier: MIT # Copyright (c) 2020-2021 The Caer Authors <http://github.com/jasmcaus> from threading import Thread import time import math from queue import Queue import cv2 as cv from .constants import FRAME_COUNT, FPS __all__ = [ 'GPUFileStream' ] class GPUFileStream: r""" This is an auxiliary class that enables Video Streaming using the GPU for caer with minimalistic latency, and at the expense of little to no additional computational requirements. The basic idea behind it is to tracks and save the salient feature array for the given number of frames and then uses these anchor point to cancel out all perturbations relative to it for the incoming frames in the queue. This class relies heavily on **Threaded Queue mode** for error-free & ultra-fast frame handling. Args: source (int, str): Source path for the video. If ``source=0``, the default camera device is used. For multiple external camera devices, use incremented values. For eg: ``source=1`` represents the second camera device on your system. qsize (int): Default queue size for handling the video streams. Default: 128. """ def __init__(self, source, qsize=128): """ Source must be a path to a video file Utilizes your system's GPU to process the stream """ if not isinstance(source, str): raise ValueError(f'Expected either a filepath. Got {type(source)}. Consider using VideoStream which supports both live video as well as pre-existing videos') # initialize the file video stream along with the boolean # used to indicate if the thread should be stopped or not self.stream = cv.VideoCapture(source) self.kill_stream = False self.count = 0 # initialize the queue to store frames self.Q = Queue(maxsize=qsize) self.width = int(self.stream.get(cv.CAP_PROP_FRAME_WIDTH)) self.height = int(self.stream.get(cv.CAP_PROP_FRAME_HEIGHT)) self.res = (self.width, self.height) self.fps = math.ceil(self.stream.get(FPS)) self.frames = int(self.stream.get(FRAME_COUNT)) # since we use UMat to store the images to # we need to initialize them beforehand self.qframes = [0] * qsize for ii in range(qsize): self.qframes[ii] = cv.UMat(self.height, self.width, cv.CV_8UC3) def begin_stream(self): # start a thread to read frames from the file video stream t = Thread(target=self.update, args=()) t.daemon = True t.start() return self def update(self): # keep looping infinitely while True: if self.kill_stream: return # otherwise, ensure the queue has room in it if not self.Q.full(): self.count += 1 target = (self.count-1) % self.Q.maxsize ret = self.stream.grab() if not ret: self.release() return self.stream.retrieve(self.qframes[target]) # add the frame to the queue self.Q.put(target) def read(self): while (not self.more() and self.kill_stream): time.sleep(0.1) # return next frame in the queue return self.qframes[self.Q.get()] def more(self): # return True if there are still frames in the queue return self.Q.qsize() > 0 def release(self): self.kill_stream = True # wait until stream resources are released self.thread.join() # Gets frame count def count_frames(self): if not self.kill_stream and not self.live_video: return self.frames # if get_opencv_version() == '2': # return int(self.stream.get(FRAME_COUNT_DEPR)) # else: # return int(self.stream.get(FRAME_COUNT)) if self.live_video: print('[WARNING] Frames cannot be computed on live streams') return -1 # Gets FPS count def get_fps(self): if not self.kill_stream: return self.fps # Get frame dimensions def get_res(self): return self.res
the-stack_0_928
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('api', '0007_apirequest_extra'), ] operations = [ migrations.AddField( model_name='apirequest', name='api_client', field=models.CharField(null=True, editable=False, max_length=50), preserve_default=True, ), ]
the-stack_0_929
#-*- coding:utf-8 -*- import pytest import random import string import itertools as itt import collections import spiceminer as sm import spiceminer.kernel.lowlevel as lowlevel ### Helpers ### def rstrings(max_size): while True: yield ''.join(random.sample(string.lowercase, random.randint(1, max_size))) class FakeKernel(object): def __init__(self, path): self.path = path self.loaded = True def _unload(self): self.loaded = False @pytest.fixture(scope='function') def fake_LOADED(kernelfiles, monkeypatch): available = random.sample(kernelfiles, random.randint(0, len(kernelfiles))) substitute = {FakeKernel(path) for path in available} monkeypatch.setattr(lowlevel, 'LOADED_KERNELS', substitute) return substitute @pytest.fixture(scope='function') def fake_loaders(monkeypatch): '''Patch lowlevel loader functions to rerturn dummy results.''' def fake_loader(path): windows = {'ABC': 'Test'} return windows for func in ('_load_sp', '_load_pc', '_load_c', '_load_f'): monkeypatch.setattr(lowlevel, func, fake_loader) @pytest.fixture(scope='function') def fake_furnsh(monkeypatch): monkeypatch.setattr(lowlevel.spice, 'furnsh', lambda x: None) monkeypatch.setattr(lowlevel.spice, 'unload', lambda x: None) ### Tests ### class TestKernelProperties(object): def test_kp_good(self, kernelfile): kprops = lowlevel.kernel_properties(kernelfile) assert kprops.path == kernelfile assert kprops.arch in lowlevel.ARCH assert kprops.type in lowlevel.KTYPE def test_kp_bad(self, nonkernelfile): with pytest.raises((ValueError, sm.SpiceError)): kprops = lowlevel.kernel_properties(nonkernelfile) @pytest.mark.parametrize('ktype', list(lowlevel.KTYPE) + list( set(itt.islice(rstrings(10), 5)) - lowlevel.KTYPE )) def test_info_type(ktype): info = lowlevel._info_type(ktype) if ktype in lowlevel.KTYPE: assert info in ('pos', 'rot', 'none') else: assert info == None xValueError = pytest.mark.xfail(raises=ValueError) @pytest.mark.parametrize('arch', list(lowlevel.ARCH) + [xValueError('?')]) @pytest.mark.parametrize('ktype', list(lowlevel.KTYPE) + [ xValueError(next(rstrings(10))) ]) def test_validate(arch, ktype): lowlevel._validate('Test', arch, ktype) @pytest.mark.parametrize('recursive', [True, False]) def test_icollect_kprops(datadir, kernelfiles, recursive): paths = set(kp.path for kp in lowlevel.icollect_kprops(datadir, recursive, False)) if not recursive: assert len(paths) < len(kernelfiles) assert paths - set(kernelfiles) == set() def test_ifilter_kprops(kernelfiles, fake_LOADED): kp = collections.namedtuple('KernelPath', 'path') result = lowlevel.ifilter_kprops(kp(path) for path in kernelfiles) result_paths = set(kprops.path for kprops in result) fake_paths = set(k.path for k in fake_LOADED) assert result_paths.symmetric_difference(fake_paths) == set(kernelfiles) def test_iunload_kprops(kernelfiles, fake_LOADED): kp = collections.namedtuple('KernelPath', 'path') result = lowlevel.iunload_kprops(kp(path) for path in kernelfiles) result_paths = set(kprops.path for kprops in result) assert result_paths == set(kernelfiles) unloaded_paths = {k.path for k in fake_LOADED if not k.loaded} assert len(unloaded_paths) == len(fake_LOADED) @pytest.mark.parametrize('types', [ [random.choice(list(lowlevel.KTYPE)) for i in range(10)] ]) def test_split_kprops(types): kt = collections.namedtuple('KernelType', 'type') kpmisc, kpbody = lowlevel.split_kprops(kt(t) for t in types) body_types = {kt.type for kt in kpbody} misc_types = {kt.type for kt in kpmisc} assert body_types.union(lowlevel.KTYPE_BODY) == lowlevel.KTYPE_BODY assert misc_types.intersection(lowlevel.KTYPE_BODY) == set() assert body_types.union(misc_types) == set(types) @pytest.mark.usefixtures('fake_loaders', 'fake_furnsh') def test_load_any(kernelfile): kp = collections.namedtuple('KernelProperties', ['path', 'type']) kprops = kp(kernelfile, random.choice(list(lowlevel.KTYPE))) time_window_map = lowlevel.load_any(kprops) if kprops.type in lowlevel.KTYPE_BODY: assert time_window_map == {'ABC': 'Test'} else: assert time_window_map == {} def test_unload_any(): pass @pytest.mark.parametrize('path', ['.']) def test_load_dummy(path): assert lowlevel._load_dummy(path) == {} @pytest.mark.usefixtures('with_leapseconds') def test_load_sp(spfile): time_window_map = lowlevel._load_sp(spfile) assert time_window_map != {} @pytest.mark.usefixtures('with_leapseconds', 'with_spacecraftclock') def test_load_c(cfile): time_window_map = lowlevel._load_c(cfile) assert time_window_map != {} @pytest.mark.usefixtures('with_leapseconds') def test_load_pc(pcfile): time_window_map = lowlevel._load_pc(pcfile) assert time_window_map != {} @pytest.mark.usefixtures('with_leapseconds') def test_load_f(ffile): time_window_map = lowlevel._load_f(ffile) assert time_window_map != {}
the-stack_0_932
import json import datetime from django.utils import timezone from django.core.exceptions import PermissionDenied from rest_framework import permissions, generics from resources.models import Unit, Reservation, Resource, ResourceType from hmlvaraus.models.hml_reservation import HMLReservation from hmlvaraus.models.berth import Berth from django.contrib.gis.geos import GEOSGeometry from rest_framework import status from rest_framework.response import Response from django.utils.dateparse import parse_datetime import pytz class ImporterView(generics.CreateAPIView): base_name = 'importer' permission_classes = [permissions.IsAuthenticated] def post(self, request): request_user = request.user if not request_user.is_staff: raise PermissionDenied() uploaded_file = request.data['file'] data = uploaded_file.read().decode("utf-8") data_rows = data.split('\n') # Kohteet if data_rows[0][0] == '1': del data_rows[1] del data_rows[0] for row in data_rows: fields = row.split(';') try: print('Kohdedataa') a = fields[5] except: continue location = None if fields[5] and fields[5] != '': location = fields[5].split(',') coordinates = [] for coord in location: coord = coord.strip() coord = float(coord) coordinates = [coord] + coordinates location = GEOSGeometry(json.dumps({'type': 'Point', 'coordinates': coordinates})) Unit.objects.get_or_create(name=fields[0], street_address=fields[1], address_zip=fields[2], email=fields[3], phone=fields[4], location=location, description=fields[6]) # Venepaikat if data_rows[0][0] == '2': del data_rows[1] del data_rows[0] for row in data_rows: fields = row.split(';') try: print('Venepaikkadataa, Kohde:', fields[0]) unit = Unit.objects.get(name=fields[0]); except: continue resource_types = ResourceType.objects.all(); for resource_type in resource_types: if 'vene' in resource_type.name.lower() or 'boat' in resource_type.name.lower(): type_instance = resource_type resource = Resource.objects.get_or_create(unit=unit, name=fields[1], description=fields[2], type=type_instance, reservable=True)[0] is_disabled = False if fields[3] == 'kyllä': is_disabled = True price = 0 if fields[4]: price = fields[4].replace(',', '.') price = float(price) type_mapping = { 'numero': 'number', 'laituri': 'dock', 'poletti': 'ground' } length = 0 width = 0 depth = 0 if fields[5] and fields[5] != '': length = int(fields[5]) if fields[6] and fields[6] != '': width = int(fields[6]) if fields[7] and fields[7] != '': depth = int(fields[7]) berth_type = type_mapping.get(fields[8].lower(), None) Berth.objects.get_or_create(resource=resource, is_disabled=is_disabled, price=price, length_cm=length, width_cm=width, depth_cm=depth, type=berth_type) # Varaukset if data_rows[0][0] == '3': del data_rows[1] del data_rows[0] for i, row in enumerate(data_rows): fields = row.split(';') try: print(i, 'Varausdataa, Kohde:', fields[1]) unit = Unit.objects.get(name=fields[1]) resource = Resource.objects.get(unit=unit, name=str(fields[0]), description=str(fields[4])) except: continue resource.reservable = False berth = Berth.objects.get(resource=resource) begin = parse_datetime(str(fields[2]) + ' 00:00:00') begin = pytz.timezone("Europe/Helsinki").localize(begin, is_dst=None) end = parse_datetime(str(fields[3]) + ' 00:00:00') end = pytz.timezone("Europe/Helsinki").localize(end, is_dst=None) state = 'confirmed' state_updated_at = timezone.now() is_paid = False is_paid_at = None if fields[5] and fields[5].strip() != '': state_updated_at = datetime.datetime.strptime(fields[5], "%d.%m.%Y %H:%M") state = 'cancelled' if fields[6] and fields[6].strip() != '': is_paid_at = datetime.datetime.strptime(fields[6], "%d.%m.%Y %H:%M") is_paid = True reservation = Reservation.objects.create( resource=resource, begin=begin, end=end, event_description=fields[4] or '', state=state, reserver_name=fields[7] or '', reserver_email_address=fields[8] or '', reserver_phone_number=fields[9] or '', reserver_address_street=fields[10] or '', reserver_address_city=fields[11] or '', reserver_address_zip=fields[12] or '', ) HMLReservation.objects.get_or_create(reservation=reservation, berth=berth, state_updated_at=state_updated_at, is_paid_at=is_paid_at, is_paid=is_paid) resource.save() return Response( status=status.HTTP_201_CREATED )
the-stack_0_934
"""Gaussian MLP Policy. A policy represented by a Gaussian distribution which is parameterized by a multilayer perceptron (MLP). """ # pylint: disable=wrong-import-order import akro import numpy as np import tensorflow as tf from garage.tf.models import GaussianMLPModel from garage.tf.policies.policy import StochasticPolicy class GaussianMLPPolicy(StochasticPolicy): """Gaussian MLP Policy. A policy represented by a Gaussian distribution which is parameterized by a multilayer perceptron (MLP). Args: env_spec (garage.envs.env_spec.EnvSpec): Environment specification. name (str): Model name, also the variable scope. hidden_sizes (list[int]): Output dimension of dense layer(s) for the MLP for mean. For example, (32, 32) means the MLP consists of two hidden layers, each with 32 hidden units. hidden_nonlinearity (callable): Activation function for intermediate dense layer(s). It should return a tf.Tensor. Set it to None to maintain a linear activation. hidden_w_init (callable): Initializer function for the weight of intermediate dense layer(s). The function should return a tf.Tensor. hidden_b_init (callable): Initializer function for the bias of intermediate dense layer(s). The function should return a tf.Tensor. output_nonlinearity (callable): Activation function for output dense layer. It should return a tf.Tensor. Set it to None to maintain a linear activation. output_w_init (callable): Initializer function for the weight of output dense layer(s). The function should return a tf.Tensor. output_b_init (callable): Initializer function for the bias of output dense layer(s). The function should return a tf.Tensor. learn_std (bool): Is std trainable. adaptive_std (bool): Is std a neural network. If False, it will be a parameter. std_share_network (bool): Boolean for whether mean and std share the same network. init_std (float): Initial value for std. std_hidden_sizes (list[int]): Output dimension of dense layer(s) for the MLP for std. For example, (32, 32) means the MLP consists of two hidden layers, each with 32 hidden units. min_std (float): If not None, the std is at least the value of min_std, to avoid numerical issues. max_std (float): If not None, the std is at most the value of max_std, to avoid numerical issues. std_hidden_nonlinearity (callable): Nonlinearity for each hidden layer in the std network. The function should return a tf.Tensor. std_output_nonlinearity (callable): Nonlinearity for output layer in the std network. The function should return a tf.Tensor. std_parameterization (str): How the std should be parametrized. There are a few options: - exp: the logarithm of the std will be stored, and applied a exponential transformation - softplus: the std will be computed as log(1+exp(x)) layer_normalization (bool): Bool for using layer normalization or not. """ def __init__(self, env_spec, name='GaussianMLPPolicy', hidden_sizes=(32, 32), hidden_nonlinearity=tf.nn.tanh, hidden_w_init=tf.initializers.glorot_uniform(), hidden_b_init=tf.zeros_initializer(), output_nonlinearity=None, output_w_init=tf.initializers.glorot_uniform(), output_b_init=tf.zeros_initializer(), learn_std=True, adaptive_std=False, std_share_network=False, init_std=1.0, min_std=1e-6, max_std=None, std_hidden_sizes=(32, 32), std_hidden_nonlinearity=tf.nn.tanh, std_output_nonlinearity=None, std_parameterization='exp', layer_normalization=False): if not isinstance(env_spec.action_space, akro.Box): raise ValueError('GaussianMLPPolicy only works with ' 'akro.Box action space, but not {}'.format( env_spec.action_space)) super().__init__(name, env_spec) self._obs_dim = env_spec.observation_space.flat_dim self._action_dim = env_spec.action_space.flat_dim self._hidden_sizes = hidden_sizes self._hidden_nonlinearity = hidden_nonlinearity self._hidden_w_init = hidden_w_init self._hidden_b_init = hidden_b_init self._output_nonlinearity = output_nonlinearity self._output_w_init = output_w_init self._output_b_init = output_b_init self._learn_std = learn_std self._adaptive_std = adaptive_std self._std_share_network = std_share_network self._init_std = init_std self._min_std = min_std self._max_std = max_std self._std_hidden_sizes = std_hidden_sizes self._std_hidden_nonlinearity = std_hidden_nonlinearity self._std_output_nonlinearity = std_output_nonlinearity self._std_parameterization = std_parameterization self._layer_normalization = layer_normalization self._f_dist = None self._dist = None self.model = GaussianMLPModel( output_dim=self._action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, hidden_w_init=hidden_w_init, hidden_b_init=hidden_b_init, output_nonlinearity=output_nonlinearity, output_w_init=output_w_init, output_b_init=output_b_init, learn_std=learn_std, adaptive_std=adaptive_std, std_share_network=std_share_network, init_std=init_std, min_std=min_std, max_std=max_std, std_hidden_sizes=std_hidden_sizes, std_hidden_nonlinearity=std_hidden_nonlinearity, std_output_nonlinearity=std_output_nonlinearity, std_parameterization=std_parameterization, layer_normalization=layer_normalization, name='GaussianMLPModel') self._initialize() def _initialize(self): """Initialize policy.""" with tf.compat.v1.variable_scope(self.name) as vs: self._variable_scope = vs state_input = tf.compat.v1.placeholder(tf.float32, shape=(None, None, self._obs_dim)) self._dist, mean, log_std = self.model.build(state_input).outputs self._f_dist = tf.compat.v1.get_default_session().make_callable( [self._dist.sample(), mean, log_std], feed_list=[state_input]) @property def input_dim(self): """int: Dimension of the policy input.""" return self._obs_dim def build(self, state_input, name=None): """Build policy. Args: state_input (tf.Tensor) : State input. name (str): Name of the policy, which is also the name scope. Returns: tfp.distributions.MultivariateNormalDiag: Distribution. tf.tensor: Mean. tf.Tensor: Log of standard deviation. """ with tf.compat.v1.variable_scope(self._variable_scope): return self.model.build(state_input, name=name) @property def vectorized(self): """Vectorized or not. Returns: Bool: True if primitive supports vectorized operations. """ return True def get_action(self, observation): """Get single action from this policy for the input observation. Args: observation (numpy.ndarray): Observation from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns an action and a dict, with keys - mean (numpy.ndarray): Mean of the distribution. - log_std (numpy.ndarray): Log standard deviation of the distribution. """ sample, mean, log_std = self._f_dist(np.expand_dims([observation], 1)) sample = self.action_space.unflatten(np.squeeze(sample, 1)[0]) mean = self.action_space.unflatten(np.squeeze(mean, 1)[0]) log_std = self.action_space.unflatten(np.squeeze(log_std, 1)[0]) return sample, dict(mean=mean, log_std=log_std) def get_actions(self, observations): """Get multiple actions from this policy for the input observations. Args: observations (numpy.ndarray): Observations from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns actions and a dict, with keys - mean (numpy.ndarray): Means of the distribution. - log_std (numpy.ndarray): Log standard deviations of the distribution. """ samples, means, log_stds = self._f_dist(np.expand_dims( observations, 1)) samples = self.action_space.unflatten_n(np.squeeze(samples, 1)) means = self.action_space.unflatten_n(np.squeeze(means, 1)) log_stds = self.action_space.unflatten_n(np.squeeze(log_stds, 1)) return samples, dict(mean=means, log_std=log_stds) @property def distribution(self): """Policy distribution. Returns: tfp.Distribution.MultivariateNormalDiag: Policy distribution. """ return self._dist def clone(self, name): """Return a clone of the policy. It only copies the configuration of the primitive, not the parameters. Args: name (str): Name of the newly created policy. It has to be different from source policy if cloned under the same computational graph. Returns: garage.tf.policies.GaussianMLPPolicy: Newly cloned policy. """ return self.__class__( name=name, env_spec=self._env_spec, hidden_sizes=self._hidden_sizes, hidden_nonlinearity=self._hidden_nonlinearity, hidden_w_init=self._hidden_w_init, hidden_b_init=self._hidden_b_init, output_nonlinearity=self._output_nonlinearity, output_w_init=self._output_w_init, output_b_init=self._output_b_init, learn_std=self._learn_std, adaptive_std=self._adaptive_std, std_share_network=self._std_share_network, init_std=self._init_std, min_std=self._min_std, max_std=self._max_std, std_hidden_sizes=self._std_hidden_sizes, std_hidden_nonlinearity=self._std_hidden_nonlinearity, std_output_nonlinearity=self._std_output_nonlinearity, std_parameterization=self._std_parameterization, layer_normalization=self._layer_normalization) def __getstate__(self): """Object.__getstate__. Returns: dict: the state to be pickled for the instance. """ new_dict = super().__getstate__() del new_dict['_f_dist'] del new_dict['_dist'] return new_dict def __setstate__(self, state): """Object.__setstate__. Args: state (dict): Unpickled state. """ super().__setstate__(state) self._initialize()
the-stack_0_937
from collections import Counter class Solution: def removeDuplicateLetters(self, s: str) -> str: counter = Counter(s) seen = set() stack = [] for letter in s: counter[letter] -= 1 if letter in seen: continue while stack and stack[-1] > letter and counter[stack[-1]] > 0: seen.remove(stack.pop()) stack.append(letter) seen.add(letter) return "".join(stack)
the-stack_0_939
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ConnectionMonitorResult(Model): """Information about the connection monitor. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar name: Name of the connection monitor. :vartype name: str :ivar id: ID of the connection monitor. :vartype id: str :param etag: Default value: "A unique read-only string that changes whenever the resource is updated." . :type etag: str :ivar type: Connection monitor type. :vartype type: str :param location: Connection monitor location. :type location: str :param tags: Connection monitor tags. :type tags: dict[str, str] :param source: Required. :type source: ~azure.mgmt.network.v2017_11_01.models.ConnectionMonitorSource :param destination: Required. :type destination: ~azure.mgmt.network.v2017_11_01.models.ConnectionMonitorDestination :param auto_start: Determines if the connection monitor will start automatically once created. Default value: True . :type auto_start: bool :param monitoring_interval_in_seconds: Monitoring interval in seconds. Default value: 60 . :type monitoring_interval_in_seconds: int :param provisioning_state: The provisioning state of the connection monitor. Possible values include: 'Succeeded', 'Updating', 'Deleting', 'Failed' :type provisioning_state: str or ~azure.mgmt.network.v2017_11_01.models.ProvisioningState :param start_time: The date and time when the connection monitor was started. :type start_time: datetime :param monitoring_status: The monitoring status of the connection monitor. :type monitoring_status: str """ _validation = { 'name': {'readonly': True}, 'id': {'readonly': True}, 'type': {'readonly': True}, 'source': {'required': True}, 'destination': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'source': {'key': 'properties.source', 'type': 'ConnectionMonitorSource'}, 'destination': {'key': 'properties.destination', 'type': 'ConnectionMonitorDestination'}, 'auto_start': {'key': 'properties.autoStart', 'type': 'bool'}, 'monitoring_interval_in_seconds': {'key': 'properties.monitoringIntervalInSeconds', 'type': 'int'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'start_time': {'key': 'properties.startTime', 'type': 'iso-8601'}, 'monitoring_status': {'key': 'properties.monitoringStatus', 'type': 'str'}, } def __init__(self, **kwargs): super(ConnectionMonitorResult, self).__init__(**kwargs) self.name = None self.id = None self.etag = kwargs.get('etag', "A unique read-only string that changes whenever the resource is updated.") self.type = None self.location = kwargs.get('location', None) self.tags = kwargs.get('tags', None) self.source = kwargs.get('source', None) self.destination = kwargs.get('destination', None) self.auto_start = kwargs.get('auto_start', True) self.monitoring_interval_in_seconds = kwargs.get('monitoring_interval_in_seconds', 60) self.provisioning_state = kwargs.get('provisioning_state', None) self.start_time = kwargs.get('start_time', None) self.monitoring_status = kwargs.get('monitoring_status', None)
the-stack_0_940
from django.db.models.signals import pre_save, post_delete from django.dispatch import receiver from .serializers import XXTMP_PO_HEADERS, ElasticPO_headersSerializer @receiver(pre_save, sender=XXTMP_PO_HEADERS, dispatch_uid="update_record") def update_es_record(sender, instance, **kwargs): obj = ElasticPO_headersSerializer(instance) obj.save() @receiver(post_delete, sender=XXTMP_PO_HEADERS, dispatch_uid="delete_record") def delete_es_record(sender, instance, *args, **kwargs): obj = ElasticPO_headersSerializer(instance) obj.delete(ignore=404)
the-stack_0_943
"""Implementation of core Haskell rules""" load("@bazel_skylib//lib:dicts.bzl", "dicts") load( ":providers.bzl", "C2hsLibraryInfo", "HaddockInfo", "HaskellInfo", "HaskellLibraryInfo", "HaskellToolchainLibraryInfo", "all_dependencies_package_ids", ) load(":cc.bzl", "cc_interop_info") load( ":private/actions/info.bzl", "compile_info_output_groups", "library_info_output_groups", ) load( ":private/actions/link.bzl", "link_binary", "link_library_dynamic", "link_library_static", ) load(":private/actions/package.bzl", "package") load(":private/plugins.bzl", "resolve_plugin_tools") load(":private/actions/runghc.bzl", "build_haskell_runghc") load(":private/context.bzl", "haskell_context") load(":private/dependencies.bzl", "gather_dep_info") load(":private/expansions.bzl", "expand_make_variables", "haskell_library_extra_label_attrs") load(":private/java.bzl", "java_interop_info") load(":private/mode.bzl", "is_profiling_enabled") load( ":private/path_utils.bzl", "determine_module_names", "get_dynamic_hs_lib_name", "get_lib_extension", "get_static_hs_lib_name", "infer_main_module", "ln", "match_label", "parse_pattern", ) load(":private/pkg_id.bzl", "pkg_id") load(":private/set.bzl", "set") load(":private/list.bzl", "list") load(":private/version_macros.bzl", "generate_version_macros") load(":providers.bzl", "GhcPluginInfo", "HaskellCoverageInfo") load("@bazel_skylib//lib:paths.bzl", "paths") load("@bazel_skylib//lib:collections.bzl", "collections") load("@bazel_skylib//lib:shell.bzl", "shell") load("@rules_cc//cc:find_cc_toolchain.bzl", "find_cc_toolchain") load("//haskell/experimental:providers.bzl", "HaskellModuleInfo") load("//haskell/experimental/private:module.bzl", "build_haskell_modules", "get_module_path_from_target") # Note [Empty Libraries] # # GHC 8.10.x wants to load the shared libraries corresponding to packages needed # for running TemplateHaskell splices. It wants to do this even when all the # necessary object files are passed in the command line. # # In order to satisfy GHC, and yet avoid passing the linked library as input, we # create a ficticious package which points to an empty shared library. The # ficticious and the real package share the same interface files. # # Avoiding to pass the real shared library as input is necessary when building # individual modules with haskell_module, otherwise building the module would # need to wait until all of the modules of library dependencies have been built. # # See Note [Narrowed Dependencies] for an overview of what this feature is # needed for. def _prepare_srcs(srcs): srcs_files = [] import_dir_map = {} for src in srcs: # If it has the "files" attribute, it must be a Target if hasattr(src, "files"): if C2hsLibraryInfo in src: srcs_files += src.files.to_list() for f in src.files.to_list(): import_dir_map[f] = src[C2hsLibraryInfo].import_dir else: srcs_files += src.files.to_list() # otherwise it's just a file else: srcs_files.append(src) return srcs_files, import_dir_map def haskell_test_impl(ctx): return _haskell_binary_common_impl(ctx, is_test = True) def haskell_binary_impl(ctx): return _haskell_binary_common_impl(ctx, is_test = False) def _should_inspect_coverage(ctx, hs, is_test): return hs.coverage_enabled and is_test def _coverage_enabled_for_target(coverage_source_patterns, label): for pat in coverage_source_patterns: if match_label(pat, label): return True return False # Mix files refer to genfile srcs including their root. Therefore, we # must condition the src filepaths passed in for coverage to match. def _condition_coverage_src(hs, src): if not src.path.startswith(hs.genfiles_dir.path): return src """ Genfiles have the genfile directory as part of their path, so declaring a file with the sample path actually makes the new file double-qualified by the genfile directory. This is necessary because mix files capture the genfile path before compilation, and then expect those files to be qualified by the genfile directory when `hpc report` or `hpc markup` are used. But, genfiles included as runfiles are no longer qualified. So, double-qualifying them results in only one level of qualification as runfiles. """ conditioned_src = hs.actions.declare_file(src.path) hs.actions.run_shell( inputs = [src], outputs = [conditioned_src], arguments = [ src.path, conditioned_src.path, ], command = """ mkdir -p $(dirname "$2") && cp "$1" "$2" """, ) return conditioned_src def _resolve_preprocessors(ctx, preprocessors): if not hasattr(ctx, "resolve_tools"): # No resolve_tools when ctx is faked (see protobuf.bzl). return struct( inputs = depset(), input_manifests = [], ) (inputs, input_manifests) = ctx.resolve_tools(tools = preprocessors) return struct( inputs = inputs, input_manifests = input_manifests, ) def _expand_make_variables(name, ctx, strings): # All labels in all attributes should be location-expandable. return expand_make_variables(name, ctx, strings, haskell_library_extra_label_attrs(ctx.attr)) def haskell_module_from_target(m): """ Produces the module name from a HaskellModuleInfo """ return paths.split_extension(get_module_path_from_target(m))[0].replace("/", ".") def is_main_as_haskell_module(modules, main_function): main_module = infer_main_module(main_function).replace(".", "/") for m in modules: if haskell_module_from_target(m) == main_module: return True return False def _haskell_binary_common_impl(ctx, is_test): hs = haskell_context(ctx) deps = ctx.attr.deps + ctx.attr.narrowed_deps dep_info = gather_dep_info(ctx.attr.name, ctx.attr.deps) all_deps_info = gather_dep_info(ctx.attr.name, deps) modules = ctx.attr.modules if modules and ctx.files.srcs: fail("""Only one of "srcs" or "modules" attributes must be specified in {}""".format(ctx.label)) if not modules and ctx.attr.narrowed_deps: fail("""The attribute "narrowed_deps" can only be used if "modules" is specified in {}""".format(ctx.label)) # Note [Plugin order] plugin_decl = reversed(ctx.attr.plugins) non_default_plugin_decl = reversed(ctx.attr.non_default_plugins) all_plugin_decls = plugin_decl + non_default_plugin_decl plugin_dep_info = gather_dep_info( ctx.attr.name, [dep for plugin in all_plugin_decls for dep in plugin[GhcPluginInfo].deps], ) package_ids = all_dependencies_package_ids(deps) # Add any interop info for other languages. cc = cc_interop_info( ctx, override_cc_toolchain = hs.tools_config.maybe_exec_cc_toolchain, ) java = java_interop_info(deps) # Make shell tools available. posix = ctx.toolchains["@rules_sh//sh/posix:toolchain_type"] # Determine file directories. interfaces_dir = paths.join("_iface", hs.name) objects_dir = paths.join("_obj", hs.name) with_profiling = is_profiling_enabled(hs) srcs_files, import_dir_map = _prepare_srcs(ctx.attr.srcs) main_as_haskell_module = is_main_as_haskell_module(modules, ctx.attr.main_function) module_map = determine_module_names(srcs_files, not main_as_haskell_module, ctx.attr.main_function, ctx.file.main_file) inspect_coverage = _should_inspect_coverage(ctx, hs, is_test) dynamic = not ctx.attr.linkstatic if with_profiling or hs.toolchain.static_runtime: # NOTE We can't have profiling and dynamic code at the # same time, see: # https://ghc.haskell.org/trac/ghc/ticket/15394 # Also, static GHC doesn't support dynamic code dynamic = False module_outputs = build_haskell_modules(ctx, hs, cc, posix, "", with_profiling, dynamic, interfaces_dir, objects_dir) plugins = [resolve_plugin_tools(ctx, plugin[GhcPluginInfo]) for plugin in plugin_decl] non_default_plugins = [resolve_plugin_tools(ctx, plugin[GhcPluginInfo]) for plugin in non_default_plugin_decl] preprocessors = _resolve_preprocessors(ctx, ctx.attr.tools) user_compile_flags = _expand_make_variables("ghcopts", ctx, ctx.attr.ghcopts) c = hs.toolchain.actions.compile_binary( hs, cc, java, posix, dep_info, plugin_dep_info, srcs = srcs_files, module_map = module_map, import_dir_map = import_dir_map, extra_srcs = depset(ctx.files.extra_srcs), user_compile_flags = user_compile_flags, dynamic = dynamic, with_profiling = with_profiling, interfaces_dir = interfaces_dir, objects_dir = objects_dir, main_function = ctx.attr.main_function, version = ctx.attr.version, inspect_coverage = inspect_coverage, plugins = plugins, non_default_plugins = non_default_plugins, preprocessors = preprocessors, ) # gather intermediary code coverage instrumentation data coverage_data = c.coverage_data for dep in deps: if HaskellCoverageInfo in dep: coverage_data += dep[HaskellCoverageInfo].coverage_data coverage_data = list.dedup_on(_get_mix_filepath, coverage_data) user_compile_flags = _expand_make_variables("ghcopts", ctx, ctx.attr.ghcopts) (binary, solibs) = link_binary( hs, cc, posix, all_deps_info, ctx.files.extra_srcs, user_compile_flags, c.object_files + c.dyn_object_files, module_outputs.os, dynamic = dynamic, with_profiling = with_profiling, version = ctx.attr.version, ) hs_info = HaskellInfo( package_databases = all_deps_info.package_databases, version_macros = set.empty(), source_files = c.source_files, boot_files = c.boot_files, extra_source_files = c.extra_source_files, import_dirs = c.import_dirs, hs_libraries = all_deps_info.hs_libraries, deps_hs_libraries = all_deps_info.deps_hs_libraries, interface_dirs = all_deps_info.interface_dirs, deps_interface_dirs = all_deps_info.deps_interface_dirs, compile_flags = c.compile_flags, user_compile_flags = user_compile_flags, user_repl_flags = _expand_make_variables("repl_ghci_args", ctx, ctx.attr.repl_ghci_args), ) cc_info = cc_common.merge_cc_infos( cc_infos = [dep[CcInfo] for dep in deps if CcInfo in dep], ) target_files = depset([binary]) user_compile_flags = _expand_make_variables("ghcopts", ctx, ctx.attr.ghcopts) extra_args = _expand_make_variables("runcompile_flags", ctx, ctx.attr.runcompile_flags) build_haskell_runghc( hs, cc, posix, runghc_wrapper = ctx.file._ghci_repl_wrapper, extra_args = extra_args, user_compile_flags = user_compile_flags, output = ctx.outputs.runghc, package_databases = all_deps_info.package_databases, version = ctx.attr.version, hs_info = hs_info, ) executable = binary extra_runfiles = [] if inspect_coverage: binary_path = paths.join(ctx.workspace_name, binary.short_path) hpc_path = paths.join(ctx.workspace_name, hs.toolchain.tools.hpc.short_path) tix_file_path = hs.label.name + ".tix" mix_file_paths = [ paths.join(ctx.workspace_name, datum.mix_file.short_path) for datum in coverage_data ] mix_file_paths = collections.uniq(mix_file_paths) # remove duplicates # find which modules to exclude from coverage analysis, by using the specified source patterns raw_coverage_source_patterns = ctx.attr.experimental_coverage_source_patterns coverage_source_patterns = [parse_pattern(ctx, pat) for pat in raw_coverage_source_patterns] modules_to_exclude = [paths.split_extension(datum.mix_file.basename)[0] for datum in coverage_data if not _coverage_enabled_for_target(coverage_source_patterns, datum.target_label)] modules_to_exclude = collections.uniq(modules_to_exclude) # remove duplicates expected_covered_expressions_percentage = ctx.attr.expected_covered_expressions_percentage expected_uncovered_expression_count = ctx.attr.expected_uncovered_expression_count strict_coverage_analysis = ctx.attr.strict_coverage_analysis coverage_report_format = ctx.attr.coverage_report_format if coverage_report_format != "text" and coverage_report_format != "html": fail("""haskell_test attribute "coverage_report_format" must be one of "text" or "html".""") wrapper = hs.actions.declare_file("{}_coverage/coverage_wrapper.sh".format(ctx.label.name)) ctx.actions.expand_template( template = ctx.file._coverage_wrapper_template, output = wrapper, substitutions = { "{binary_path}": shell.quote(binary_path), "{hpc_path}": shell.quote(hpc_path), "{tix_file_path}": shell.quote(tix_file_path), "{expected_covered_expressions_percentage}": shell.quote(str(expected_covered_expressions_percentage)), "{expected_uncovered_expression_count}": shell.quote(str(expected_uncovered_expression_count)), "{mix_file_paths}": shell.array_literal(mix_file_paths), "{modules_to_exclude}": shell.array_literal(modules_to_exclude), "{strict_coverage_analysis}": str(strict_coverage_analysis), "{coverage_report_format}": shell.quote(ctx.attr.coverage_report_format), "{package_path}": shell.quote(ctx.label.package), }, is_executable = True, ) executable = wrapper mix_runfiles = [datum.mix_file for datum in coverage_data] srcs_runfiles = [_condition_coverage_src(hs, datum.src_file) for datum in coverage_data] extra_runfiles = [ ctx.file._bash_runfiles, hs.toolchain.tools.hpc, binary, ] + mix_runfiles + srcs_runfiles + java.inputs.to_list() return [ hs_info, cc_info, DefaultInfo( executable = executable, files = target_files, runfiles = ctx.runfiles( files = extra_runfiles + solibs, collect_data = True, ), ), OutputGroupInfo(**compile_info_output_groups( name = ctx.label.name, workspace_name = ctx.workspace_name, hs = hs, cc = cc, c = c, posix = posix, runfiles = ctx.runfiles(collect_data = True).files, )), ] def _create_empty_library(hs, cc, posix, my_pkg_id, with_shared, with_profiling, empty_libs_dir): """See Note [Empty Libraries]""" dep_info = gather_dep_info("haskell_module-empty_lib", []) empty_c = hs.actions.declare_file("empty.c") hs.actions.write(empty_c, "") static_library = link_library_static( hs, cc, posix, dep_info, depset([empty_c]), my_pkg_id, with_profiling = with_profiling, libdir = empty_libs_dir, ) libs = [static_library] if with_shared: dynamic_library = link_library_dynamic( hs, cc, posix, dep_info, depset(), depset([empty_c]), my_pkg_id, [], empty_libs_dir, ) libs = [dynamic_library, static_library] return libs def haskell_library_impl(ctx): hs = haskell_context(ctx) deps = ctx.attr.deps + ctx.attr.exports + ctx.attr.narrowed_deps dep_info = gather_dep_info(ctx.attr.name, ctx.attr.deps + ctx.attr.exports) narrowed_deps_info = gather_dep_info(ctx.attr.name, ctx.attr.narrowed_deps) all_deps_info = gather_dep_info(ctx.attr.name, deps) all_plugins = ctx.attr.plugins + ctx.attr.non_default_plugins plugin_dep_info = gather_dep_info( ctx.attr.name, [dep for plugin in all_plugins for dep in plugin[GhcPluginInfo].deps], ) package_ids = all_dependencies_package_ids(deps) modules = ctx.attr.modules if modules and ctx.files.srcs: fail("""Only one of "srcs" or "modules" attributes must be specified in {}""".format(ctx.label)) if not modules and ctx.attr.narrowed_deps: fail("""The attribute "narrowed_deps" is enabled only if "modules" is specified in {}""".format(ctx.label)) # Add any interop info for other languages. cc = cc_interop_info( ctx, override_cc_toolchain = hs.tools_config.maybe_exec_cc_toolchain, ) java = java_interop_info(ctx.attr.deps + ctx.attr.narrowed_deps) # Make shell tools available. posix = ctx.toolchains["@rules_sh//sh/posix:toolchain_type"] with_profiling = is_profiling_enabled(hs) srcs_files, import_dir_map = _prepare_srcs(ctx.attr.srcs) module_map = determine_module_names(srcs_files) package_name = getattr(ctx.attr, "package_name", None) version = getattr(ctx.attr, "version", None) my_pkg_id = pkg_id.new(ctx.label, package_name, version) # If we're compiling a package, put the interfaces inside the # package directory. interfaces_dir = paths.join(pkg_id.to_string(my_pkg_id), "_iface") objects_dir = paths.join("_obj", hs.name) non_empty = srcs_files or modules with_shared = not ctx.attr.linkstatic if with_profiling or hs.toolchain.static_runtime: # NOTE We can't have profiling and dynamic code at the # same time, see: # https://ghc.haskell.org/trac/ghc/ticket/15394 # Also, static GHC doesn't support dynamic code with_shared = False module_outputs = build_haskell_modules(ctx, hs, cc, posix, pkg_id.to_string(my_pkg_id), with_profiling, with_shared, interfaces_dir, objects_dir) plugins = [resolve_plugin_tools(ctx, plugin[GhcPluginInfo]) for plugin in ctx.attr.plugins] non_default_plugins = [resolve_plugin_tools(ctx, plugin[GhcPluginInfo]) for plugin in ctx.attr.non_default_plugins] preprocessors = _resolve_preprocessors(ctx, ctx.attr.tools) user_compile_flags = _expand_make_variables("ghcopts", ctx, ctx.attr.ghcopts) c = hs.toolchain.actions.compile_library( hs, cc, java, posix, dep_info, plugin_dep_info, srcs = srcs_files, module_map = module_map, import_dir_map = import_dir_map, extra_srcs = depset(ctx.files.extra_srcs), user_compile_flags = user_compile_flags, with_shared = with_shared, with_profiling = with_profiling, interfaces_dir = interfaces_dir, objects_dir = objects_dir, my_pkg_id = my_pkg_id, plugins = plugins, non_default_plugins = non_default_plugins, preprocessors = preprocessors, ) other_modules = ctx.attr.hidden_modules exposed_modules_reexports = _exposed_modules_reexports(ctx.attr.reexported_modules) haskell_module_names = [haskell_module_from_target(m) for m in modules] exposed_modules = set.from_list(module_map.keys() + exposed_modules_reexports + haskell_module_names) set.mutable_difference(exposed_modules, set.from_list(other_modules)) exposed_modules = set.to_list(exposed_modules) if non_empty: static_library = link_library_static( hs, cc, posix, all_deps_info, depset(c.object_files, transitive = [module_outputs.os]), my_pkg_id, with_profiling = with_profiling, ) else: static_library = None if with_shared and non_empty: dynamic_library = link_library_dynamic( hs, cc, posix, all_deps_info, depset(ctx.files.extra_srcs), depset(c.dyn_object_files, transitive = [module_outputs.dyn_os]), my_pkg_id, user_compile_flags, ) else: dynamic_library = None conf_file, cache_file = package( hs, cc, posix, all_deps_info, with_shared, exposed_modules, other_modules, my_pkg_id, non_empty, ) empty_libs_dir = "empty_libs" conf_file_empty, cache_file_empty = package( hs, cc, posix, all_deps_info, with_shared, exposed_modules, other_modules, my_pkg_id, non_empty, empty_libs_dir, ) interface_dirs = depset( direct = c.interface_files, transitive = [all_deps_info.interface_dirs, module_outputs.his, module_outputs.dyn_his], ) version_macros = set.empty() if version: package_name = hs.name if hasattr(ctx.attr, "package_name") and ctx.attr.package_name: package_name = ctx.attr.package_name version_macros = set.singleton( generate_version_macros(ctx, package_name, version), ) empty_libs = _create_empty_library(hs, cc, posix, my_pkg_id, with_shared, with_profiling, empty_libs_dir) export_infos = gather_dep_info(ctx.attr.name, ctx.attr.exports) hs_info = HaskellInfo( package_databases = depset([cache_file], transitive = [all_deps_info.package_databases]), empty_lib_package_databases = depset( direct = [cache_file_empty], transitive = [ dep_info.package_databases, narrowed_deps_info.empty_lib_package_databases, export_infos.empty_lib_package_databases, ], ), version_macros = version_macros, source_files = c.source_files, boot_files = c.boot_files, extra_source_files = c.extra_source_files, import_dirs = set.mutable_union(c.import_dirs, export_infos.import_dirs), hs_libraries = depset( direct = [lib for lib in [static_library, dynamic_library] if lib], transitive = [all_deps_info.hs_libraries], ), deps_hs_libraries = depset( transitive = [dep_info.hs_libraries, narrowed_deps_info.deps_hs_libraries], ), empty_hs_libraries = depset( direct = empty_libs, transitive = [all_deps_info.empty_hs_libraries, export_infos.empty_hs_libraries], ), interface_dirs = depset(transitive = [interface_dirs, export_infos.interface_dirs]), deps_interface_dirs = depset(transitive = [dep_info.interface_dirs, narrowed_deps_info.deps_interface_dirs]), compile_flags = c.compile_flags, user_compile_flags = user_compile_flags, user_repl_flags = _expand_make_variables("repl_ghci_args", ctx, ctx.attr.repl_ghci_args), per_module_transitive_interfaces = module_outputs.per_module_transitive_interfaces, per_module_transitive_objects = module_outputs.per_module_transitive_objects, ) exports = [ reexp[HaskellLibraryInfo] for reexp in ctx.attr.exports if HaskellCoverageInfo in reexp ] lib_info = HaskellLibraryInfo( package_id = pkg_id.to_string(my_pkg_id), version = version, exports = exports, ) dep_coverage_data = [] for dep in deps: if HaskellCoverageInfo in dep: dep_coverage_data += dep[HaskellCoverageInfo].coverage_data coverage_data = dep_coverage_data + c.coverage_data coverage_data = list.dedup_on(_get_mix_filepath, coverage_data) coverage_info = HaskellCoverageInfo( coverage_data = coverage_data, ) target_files = depset([file for file in [static_library, dynamic_library] if file]) if hasattr(ctx, "outputs"): extra_args = _expand_make_variables("runcompile_flags", ctx, ctx.attr.runcompile_flags) user_compile_flags = _expand_make_variables("ghcopts", ctx, ctx.attr.ghcopts) build_haskell_runghc( hs, cc, posix, runghc_wrapper = ctx.file._ghci_repl_wrapper, extra_args = extra_args, user_compile_flags = user_compile_flags, output = ctx.outputs.runghc, package_databases = all_deps_info.package_databases, version = ctx.attr.version, hs_info = hs_info, lib_info = lib_info, ) default_info = None if hasattr(ctx, "runfiles"): default_info = DefaultInfo( files = target_files, runfiles = ctx.runfiles(transitive_files = java.inputs, collect_data = True), ) else: default_info = DefaultInfo( files = target_files, ) # Create a CcInfo provider so that CC rules can work with # a haskell library as if it was a regular CC one. # XXX: protobuf is passing a "patched ctx" # which includes the real ctx as "real_ctx" real_ctx = getattr(ctx, "real_ctx", ctx) cc_toolchain = find_cc_toolchain(real_ctx) feature_configuration = cc_common.configure_features( ctx = real_ctx, cc_toolchain = cc_toolchain, requested_features = ctx.features, unsupported_features = ctx.disabled_features, ) if dynamic_library or static_library: linker_inputs = [ cc_common.create_linker_input( owner = ctx.label, libraries = depset(direct = [ cc_common.create_library_to_link( actions = ctx.actions, feature_configuration = feature_configuration, dynamic_library = dynamic_library, dynamic_library_symlink_path = dynamic_library.basename if dynamic_library else "", static_library = static_library, cc_toolchain = cc_toolchain, ), ]), ), ] else: linker_inputs = [] compilation_context = cc_common.create_compilation_context() linking_context = cc_common.create_linking_context( linker_inputs = depset(direct = linker_inputs), ) out_cc_info = cc_common.merge_cc_infos( cc_infos = [ CcInfo( compilation_context = compilation_context, linking_context = linking_context, ), ] + [dep[CcInfo] for dep in deps if CcInfo in dep], ) return [ hs_info, out_cc_info, coverage_info, default_info, lib_info, OutputGroupInfo(**dicts.add( compile_info_output_groups( # For haskell_proto_aspect, which doesn't have a ctx.workspace_name, # just set it to "". It won't matter in practice because those rules don't # have runfiles and won't be compiled directly anyway. workspace_name = getattr(ctx, "workspace_name", ""), hs = hs, cc = cc, name = ctx.label.name, c = c, posix = posix, runfiles = default_info.default_runfiles.files if getattr(default_info, "default_runfiles", None) else depset(), ), library_info_output_groups( name = ctx.label.name, hs = hs, hs_info = hs_info, lib_info = lib_info, ), )), ] # We should not need this provider. It exists purely as a workaround # for https://github.com/bazelbuild/bazel/issues/8129. # # TODO Get rid of this by computing a CcInfo in haskell_import # instead. Currently blocked on upstream. HaskellImportHack = provider() HaskellToolchainLibraries = provider() def haskell_toolchain_library_impl(ctx): hs = haskell_context(ctx) if ctx.attr.package: package = ctx.attr.package else: package = ctx.label.name libraries = ctx.attr._toolchain_libraries[HaskellToolchainLibraries].libraries target = libraries.get(package) if not target: fail( """ {} is not a toolchain library. Check that it ships with your version of GHC. The following toolchain libraries are available: {} """.format(package, libraries), ) return [ target.default_info, target.hs_info, target.hs_lib_info, target.cc_info, target.haddock_info, HaskellToolchainLibraryInfo(), OutputGroupInfo(**library_info_output_groups( hs = hs, name = ctx.label.name, hs_info = target.hs_info, lib_info = target.hs_lib_info, )), ] def _toolchain_library_symlink(dynamic_library): prefix = dynamic_library.owner.workspace_root.replace("_", "_U").replace("/", "_S") basename = dynamic_library.basename return paths.join(prefix, basename) def haskell_toolchain_libraries_impl(ctx): hs = haskell_context(ctx) with_profiling = is_profiling_enabled(hs) with_threaded = "-threaded" in hs.toolchain.ghcopts cc_toolchain = find_cc_toolchain(ctx) feature_configuration = cc_common.configure_features( ctx = ctx, cc_toolchain = cc_toolchain, requested_features = ctx.features, unsupported_features = ctx.disabled_features, ) libraries = hs.toolchain.libraries # List of library in left-to-right post-ordering # Meaning, if package B depends on package A, then A will appear before B. ordered = depset(transitive = [ target[HaskellImportHack].transitive_depends for target in hs.toolchain.libraries.values() ]) library_dict = {} for package in ordered.to_list(): target = libraries[package] # Construct CcInfo additional_link_inputs = [] if with_profiling: # GHC does not provide dynamic profiling mode libraries. The dynamic # libraries that are available are missing profiling symbols, that # other profiling mode build results will reference. Therefore, we # don't import dynamic libraries in profiling mode. libs = { get_static_hs_lib_name(hs.toolchain.version, lib): {"static": lib} for lib in target[HaskellImportHack].static_profiling_libraries.to_list() } else: # Workaround for https://github.com/tweag/rules_haskell/issues/881 # Static and dynamic libraries don't necessarily pair up 1 to 1. # E.g. the rts package in the Unix GHC bindist contains the # dynamic libHSrts and the static libCffi and libHSrts. libs = {} for lib in target[HaskellImportHack].dynamic_libraries.to_list(): libname = get_dynamic_hs_lib_name(hs.toolchain.version, lib) if libname == "ffi" and libname in libs: # Make sure that the file of libffi matching its soname # ends up in target runfiles. Otherwise, execution will # fail with "cannot open shared object file" errors. # On Linux libffi comes in three shapes: # libffi.so, libffi.so.7, libffi.so.7.1.0 # (version numbers may vary) # The soname is then libffi.so.7, meaning, at runtime the # dynamic linker will look for libffi.so.7. So, that file # should be the LibraryToLink.dynamic_library. ext_components = get_lib_extension(lib).split(".") if len(ext_components) == 2 and ext_components[0] == "so": libs[libname]["dynamic"] = lib else: libs[libname] = {"dynamic": lib} for lib in target[HaskellImportHack].static_libraries.to_list(): name = get_static_hs_lib_name(with_profiling, lib) entry = libs.get(name, {}) entry["static"] = lib libs[name] = entry # Avoid duplicate runtime and ffi libraries. These libraries come # in threaded and non-threaded flavors. Depending on the # compilation mode we want to forward only one or the other. # XXX: Threaded mode should be a per-target property. Use Bazel # build configurations and transitions to select the threaded or # non-threaded runtime and ffi on a per-target basis. if "HSrts_thr" in libs: if with_threaded: libs["HSrts"] = libs["HSrts_thr"] libs.pop("HSrts_thr") if "Cffi_thr" in libs: if with_threaded: libs["ffi"]["static"] = libs["Cffi_thr"]["static"] libs.pop("Cffi_thr") linker_inputs = [ cc_common.create_linker_input( owner = ctx.label, libraries = depset(direct = [ cc_common.create_library_to_link( actions = ctx.actions, feature_configuration = feature_configuration, dynamic_library = lib.get("dynamic", None), dynamic_library_symlink_path = _toolchain_library_symlink(lib["dynamic"]) if lib.get("dynamic") else "", static_library = lib.get("static", None), cc_toolchain = cc_toolchain, ) for lib in libs.values() ]), user_link_flags = depset(direct = target[HaskellImportHack].linkopts), ), ] compilation_context = cc_common.create_compilation_context( headers = target[HaskellImportHack].headers, includes = target[HaskellImportHack].includes, ) linking_context = cc_common.create_linking_context( linker_inputs = depset(direct = linker_inputs), ) cc_info = CcInfo( compilation_context = compilation_context, linking_context = linking_context, ) library_dict[package] = struct( default_info = target[DefaultInfo], hs_info = target[HaskellInfo], hs_lib_info = target[HaskellLibraryInfo], cc_info = cc_common.merge_cc_infos(cc_infos = [cc_info] + [ library_dict[dep].cc_info for dep in target[HaskellImportHack].depends ]), haddock_info = target[HaddockInfo], ) return [HaskellToolchainLibraries(libraries = library_dict)] haskell_toolchain_libraries = rule( haskell_toolchain_libraries_impl, attrs = { "_cc_toolchain": attr.label( default = Label("@rules_cc//cc:current_cc_toolchain"), ), }, toolchains = [ "@rules_cc//cc:toolchain_type", "@rules_haskell//haskell:toolchain", ], fragments = ["cpp"], ) """Generate Haskell toolchain libraries. This is an internal rule and should not be user facing. This rule is a work-around for toolchain transitions not being implemented, yet. See https://github.com/bazelbuild/proposals/blob/master/designs/2019-02-12-toolchain-transitions.md This will need to be revisited once that proposal is implemented. """ def haskell_import_impl(ctx): # The `allow_files` attribute of `rule` cannot define patterns of accepted # file extensions like `.so.*`. Instead, we check for the correct file # extensions here. for lib in ctx.files.shared_libraries: msg = "in shared_libraries attribute of haskell_import rule {}: " + \ "source file '{}' is misplaced here " + \ "(expected .dll, .dylib, .so or .so.*)" ext = get_lib_extension(lib) if not (ext in ["dll", "dylib", "so"] or ext.startswith("so.")): fail(msg.format(str(ctx.label), str(lib.short_path))) id = ctx.attr.id or ctx.attr.name target_files = [ file for file in ctx.files.static_libraries + ctx.files.shared_libraries ] version_macros = set.empty() if ctx.attr.version != None: version_macros = set.singleton( generate_version_macros(ctx, ctx.label.name, ctx.attr.version), ) hs_info = HaskellInfo( # XXX Empty set of conf and cache files only works for global db. package_databases = depset(), empty_lib_package_databases = depset(), version_macros = version_macros, source_files = depset(), boot_files = depset(), extra_source_files = depset(), import_dirs = set.empty(), hs_libraries = depset(), deps_hs_libraries = depset(), empty_hs_libraries = depset(), interface_dirs = depset(), deps_interface_dirs = depset(), compile_flags = [], user_compile_flags = [], user_repl_flags = [], ) import_info = HaskellImportHack( # Make sure we're using the same order for dynamic_libraries, # static_libraries. dynamic_libraries = depset(ctx.files.shared_libraries), static_libraries = depset(ctx.files.static_libraries, order = "topological"), # NOTE: haskell_import is evaluated as a toolchain rule. Even if we # bazel build with -c dbg, this rule is still executed with # ctx.var["COMPILATION_MODE"] == "opt". Therefore, we need to carry # both profiling and non-profiling libraries forward so that a later # haskell_toolchain_library can select the appropriate artifacts. static_profiling_libraries = depset(ctx.files.static_profiling_libraries, order = "topological"), headers = depset(ctx.files.hdrs), includes = depset(ctx.attr.includes), linkopts = ctx.attr.linkopts, depends = [dep.label.name for dep in ctx.attr.deps], transitive_depends = depset( direct = [ctx.attr.name], transitive = [dep[HaskellImportHack].transitive_depends for dep in ctx.attr.deps], order = "postorder", ), ) coverage_info = HaskellCoverageInfo(coverage_data = []) lib_info = HaskellLibraryInfo( package_id = id, version = ctx.attr.version, exports = [], ) default_info = DefaultInfo( files = depset(target_files), ) # This package haddock informations transitive_html = {id: ctx.file.haddock_html} if ctx.file.haddock_html else {} transitive_haddocks = {id: ctx.files.haddock_interfaces} # Add dependencies haddock informations for dep in ctx.attr.deps: transitive_html.update(dep[HaddockInfo].transitive_html) transitive_haddocks.update(dep[HaddockInfo].transitive_haddocks) haddock_info = HaddockInfo( package_id = id, transitive_html = transitive_html, transitive_haddocks = transitive_haddocks, ) return [ hs_info, import_info, coverage_info, default_info, lib_info, haddock_info, ] def _exposed_modules_reexports(reexported_modules): """Creates a ghc-pkg-compatible list of reexport declarations. A ghc-pkg registration file declares reexports as part of the exposed-modules field in the following format: exposed-modules: A, B, C from pkg-c:C, D from pkg-d:Original.D Here, the Original.D module from pkg-d is renamed by virtue of a different name being used before the "from" keyword. This function creates a ghc-pkg-compatible list of reexport declarations (as shown above) from a dictionary mapping package targets to "Cabal-style" reexported-modules declarations. That is, something like: { ":pkg-c": "C", ":pkg-d": "Original.D as D", ":pkg-e": "E1, Original.E2 as E2", } Args: reexported_modules: a dictionary mapping package targets to "Cabal-style" reexported-modules declarations. Returns: a ghc-pkg-compatible list of reexport declarations. """ exposed_reexports = [] for dep, cabal_decls in reexported_modules.items(): for cabal_decl in cabal_decls.split(","): stripped_cabal_decl = cabal_decl.strip() cabal_decl_parts = stripped_cabal_decl.split(" as ") original = cabal_decl_parts[0] if len(cabal_decl_parts) == 2: reexported = cabal_decl_parts[1] else: reexported = cabal_decl_parts[0] if HaskellLibraryInfo in dep: pkg = dep[HaskellLibraryInfo].package_id exposed_reexport = "{reexported} from {pkg}:{original}".format( reexported = reexported, pkg = pkg, original = original, ) exposed_reexports.append(exposed_reexport) return exposed_reexports def _get_mix_filepath(coverage_datum): """ Extracts mix file path from a coverage datum. """ return coverage_datum.mix_file.short_path
the-stack_0_944
import os import numpy as np import json from itertools import product class Node(): ''' Class for representing a node in the ImageNet/WordNet hierarchy. ''' def __init__(self, wnid, parent_wnid=None, name=""): """ Args: wnid (str) : WordNet ID for synset represented by node parent_wnid (str) : WordNet ID for synset of node's parent name (str) : word/human-interpretable description of synset """ self.wnid = wnid self.name = name self.class_num = -1 self.parent_wnid = parent_wnid self.descendant_count_in = 0 self.descendants_all = set() def add_child(self, child): """ Add child to given node. Args: child (Node) : Node object for child """ child.parent_wnid = self.wnid def __str__(self): return f'Name: ({self.name}), ImageNet Class: ({self.class_num}), Descendants: ({self.descendant_count_in})' def __repr__(self): return f'Name: ({self.name}), ImageNet Class: ({self.class_num}), Descendants: ({self.descendant_count_in})' class ImageNetHierarchy(): ''' Class for representing ImageNet/WordNet hierarchy. ''' def __init__(self, ds_path, ds_info_path): """ Args: ds_path (str) : Path to ImageNet dataset ds_info_path (str) : Path to supplementary files for the ImageNet dataset ('wordnet.is_a.txt', 'words.txt' and 'imagenet_class_index.json') which can be obtained from http://image-net.org/download-API. """ self.tree = {} ret = self.load_imagenet_info(ds_path, ds_info_path) self.in_wnids, self.wnid_to_name, self.wnid_to_num, self.num_to_name = ret with open(os.path.join(ds_info_path, 'wordnet.is_a.txt'), 'r') as f: for line in f.readlines(): parent_wnid, child_wnid = line.strip('\n').split(' ') parentNode = self.get_node(parent_wnid) childNode = self.get_node(child_wnid) parentNode.add_child(childNode) for wnid in self.in_wnids: self.tree[wnid].descendant_count_in = 0 self.tree[wnid].class_num = self.wnid_to_num[wnid] for wnid in self.in_wnids: node = self.tree[wnid] while node.parent_wnid is not None: self.tree[node.parent_wnid].descendant_count_in += 1 self.tree[node.parent_wnid].descendants_all.update(node.descendants_all) self.tree[node.parent_wnid].descendants_all.add(node.wnid) node = self.tree[node.parent_wnid] del_nodes = [wnid for wnid in self.tree \ if (self.tree[wnid].descendant_count_in == 0 and self.tree[wnid].class_num == -1)] for d in del_nodes: self.tree.pop(d, None) assert all([k.descendant_count_in > 0 or k.class_num != -1 for k in self.tree.values()]) self.wnid_sorted = sorted(sorted([(k, v.descendant_count_in, len(v.descendants_all)) \ for k, v in self.tree.items() ], key=lambda x: x[2], reverse=True ), key=lambda x: x[1], reverse=True ) @staticmethod def load_imagenet_info(ds_path, ds_info_path): """ Get information about mapping between ImageNet wnids/class numbers/class names. Args: ds_path (str) : Path to ImageNet dataset ds_info_path (str) : Path to supplementary files for the ImageNet dataset ('wordnet.is_a.txt', 'words.txt', 'imagenet_class_index.json') which can be obtained from http://image-net.org/download-API. """ files = os.listdir(os.path.join(ds_path, 'train')) in_wnids = [f for f in files if f[0]=='n'] f = open(os.path.join(ds_info_path, 'words.txt')) wnid_to_name = [l.strip() for l in f.readlines()] wnid_to_name = {l.split('\t')[0]: l.split('\t')[1] \ for l in wnid_to_name} with open(os.path.join(ds_info_path, 'imagenet_class_index.json'), 'r') as f: base_map = json.load(f) wnid_to_num = {v[0]: int(k) for k, v in base_map.items()} num_to_name = {int(k): v[1] for k, v in base_map.items()} return in_wnids, wnid_to_name, wnid_to_num, num_to_name def get_node(self, wnid): """ Add node to tree. Args: wnid (str) : WordNet ID for synset represented by node Returns: A node object representing the specified wnid. """ if wnid not in self.tree: self.tree[wnid] = Node(wnid, name=self.wnid_to_name[wnid]) return self.tree[wnid] def is_ancestor(self, ancestor_wnid, child_wnid): """ Check if a node is an ancestor of another. Args: ancestor_wnid (str) : WordNet ID for synset represented by ancestor node child_wnid (str) : WordNet ID for synset represented by child node Returns: A boolean variable indicating whether or not the node is an ancestor """ return (child_wnid in self.tree[ancestor_wnid].descendants_all) def get_descendants(self, node_wnid, in_imagenet=False): """ Get all descendants of a given node. Args: node_wnid (str) : WordNet ID for synset for node in_imagenet (bool) : If True, only considers descendants among ImageNet synsets, else considers all possible descendants in the WordNet hierarchy Returns: A set of wnids corresponding to all the descendants """ if in_imagenet: return set([self.wnid_to_num[ww] for ww in self.tree[node_wnid].descendants_all if ww in set(self.in_wnids)]) else: return self.tree[node_wnid].descendants_all def get_superclasses(self, n_superclasses, ancestor_wnid=None, superclass_lowest=None, balanced=True): """ Get superclasses by grouping together classes from the ImageNet dataset. Args: n_superclasses (int) : Number of superclasses desired ancestor_wnid (str) : (optional) WordNet ID that can be used to specify common ancestor for the selected superclasses superclass_lowest (set of str) : (optional) Set of WordNet IDs of nodes that shouldn't be further sub-classes balanced (bool) : If True, all the superclasses will have the same number of ImageNet subclasses Returns: superclass_wnid (list): List of WordNet IDs of superclasses class_ranges (list of sets): List of ImageNet subclasses per superclass label_map (dict): Mapping from class number to human-interpretable description for each superclass """ assert superclass_lowest is None or \ not any([self.is_ancestor(s1, s2) for s1, s2 in product(superclass_lowest, superclass_lowest)]) superclass_info = [] for (wnid, ndesc_in, ndesc_all) in self.wnid_sorted: if len(superclass_info) == n_superclasses: break if ancestor_wnid is None or self.is_ancestor(ancestor_wnid, wnid): keep_wnid = [True] * (len(superclass_info) + 1) superclass_info.append((wnid, ndesc_in)) for ii, (w, d) in enumerate(superclass_info): if self.is_ancestor(w, wnid): if superclass_lowest and w in superclass_lowest: keep_wnid[-1] = False else: keep_wnid[ii] = False for ii in range(len(superclass_info) - 1, -1, -1): if not keep_wnid[ii]: superclass_info.pop(ii) superclass_wnid = [w for w, _ in superclass_info] class_ranges, label_map = self.get_subclasses(superclass_wnid, balanced=balanced) return superclass_wnid, class_ranges, label_map def get_subclasses(self, superclass_wnid, balanced=True): """ Get ImageNet subclasses for a given set of superclasses from the WordNet hierarchy. Args: superclass_wnid (list): List of WordNet IDs of superclasses balanced (bool) : If True, all the superclasses will have the same number of ImageNet subclasses Returns: class_ranges (list of sets): List of ImageNet subclasses per superclass label_map (dict): Mapping from class number to human-interpretable description for each superclass """ ndesc_min = min([self.tree[w].descendant_count_in for w in superclass_wnid]) class_ranges, label_map = [], {} for ii, w in enumerate(superclass_wnid): descendants = self.get_descendants(w, in_imagenet=True) if balanced and len(descendants) > ndesc_min: descendants = set([dd for ii, dd in enumerate(sorted(list(descendants))) if ii < ndesc_min]) class_ranges.append(descendants) label_map[ii] = self.tree[w].name for i in range(len(class_ranges)): for j in range(i + 1, len(class_ranges)): assert(len(class_ranges[i].intersection(class_ranges[j])) == 0) return class_ranges, label_map def common_superclass_wnid(group_name): """ Get WordNet IDs of common superclasses. Args: group_name (str): Name of group Returns: superclass_wnid (list): List of WordNet IDs of superclasses """ common_groups = { # ancestor_wnid = 'n00004258' 'living_9': ['n02084071', #dog, domestic dog, Canis familiaris 'n01503061', # bird 'n01767661', # arthropod 'n01661091', # reptile, reptilian 'n02469914', # primate 'n02512053', # fish 'n02120997', # feline, felid 'n02401031', # bovid 'n01627424', # amphibian ], 'mixed_10': [ 'n02084071', #dog, 'n01503061', #bird 'n02159955', #insect 'n02484322', #monkey 'n02958343', #car 'n02120997', #feline 'n04490091', #truck 'n13134947', #fruit 'n12992868', #fungus 'n02858304', #boat ], 'mixed_13': ['n02084071', #dog, 'n01503061', #bird (52) 'n02159955', #insect (27) 'n03405725', #furniture (21) 'n02512053', #fish (16), 'n02484322', #monkey (13) 'n02958343', #car (10) 'n02120997', #feline (8), 'n04490091', #truck (7) 'n13134947', #fruit (7) 'n12992868', #fungus (7) 'n02858304', #boat (6) 'n03082979', #computer(6) ], # Dataset from Geirhos et al., 2018: arXiv:1811.12231 'geirhos_16': ['n02686568', #aircraft (3) 'n02131653', #bear (3) 'n02834778', #bicycle (2) 'n01503061', #bird (52) 'n02858304', #boat (6) 'n02876657', #bottle (7) 'n02958343', #car (10) 'n02121808', #cat (5) 'n03001627', #char (4) 'n03046257', #clock (3) 'n02084071', #dog (116) 'n02503517', #elephant (2) 'n03614532', #keyboard (3) 'n03623556', #knife (2) 'n03862676', #oven (2) 'n04490091', #truck (7) ], 'big_12': ['n02084071', #dog (100+) 'n04341686', #structure (55) 'n01503061', #bird (52) 'n03051540', #clothing (48) 'n04576211', #wheeled vehicle 'n01661091', #reptile, reptilian (36) 'n02075296', #carnivore 'n02159955', #insect (27) 'n03800933', #musical instrument (26) 'n07555863', #food (24) 'n03405725', #furniture (21) 'n02469914', #primate (20) ], 'mid_12': ['n02084071', #dog (100+) 'n01503061', #bird (52) 'n04576211', #wheeled vehicle 'n01661091', #reptile, reptilian (36) 'n02075296', #carnivore 'n02159955', #insect (27) 'n03800933', #musical instrument (26) 'n07555863', #food (24) 'n03419014', #garment (24) 'n03405725', #furniture (21) 'n02469914', #primate (20) 'n02512053', #fish (16) ] } if group_name in common_groups: superclass_wnid = common_groups[group_name] return superclass_wnid else: raise ValueError("Custom group does not exist")
the-stack_0_948
from math import * from prettytable import PrettyTable def func(x, y): return x * x + y * y def main(): mas_x = []; mas_y = [] tmp_x = []; tmp_y = []; tmp_y2 = [] tmp_x3 = []; tmp_y3 = [] matrix = [] beg = 0; end = 10 N = abs(end - beg) - 1 eps = 1e-5 for i in range(beg, end): tmp_x.append(i) tmp_y.append(i) matrix = create_new_matrix(func, tmp_x, tmp_y) print_matrix(tmp_x, tmp_y, matrix) n_X = int(input("input n for X: ")) n_Y = int(input("input n for Y: ")) x = float(input("input x: ")) y = float(input("input y: ")) mas_x = create_new_x_y(x, n_X, N, tmp_x) mas_y = create_new_x_y(y, n_Y, N, tmp_y) matrix = create_new_matrix(func, mas_x, mas_y) new_x = [] for i in range(len(mas_x)): new_x.append(interpolation(y, n_Y, mas_y, matrix[i])) answer = interpolation(x, n_X, mas_x, new_x) print("\nF(x, y) = ", answer) def print_matrix(tmp_x, tmp_y, matrix): print("|X|Y|", end = " ") for i in range(0, len(tmp_x)): print("{:5d}".format(tmp_x[i]), end = " ") print() for i in range(0, len(tmp_x)): print("{:3d}".format(tmp_x[i])," ", end = " ") for j in range(0, len(tmp_y)): print( "{:5d}".format(matrix[i][j]), end = " ") print() print() def create_new_matrix(f, tmp_x, tmp_y): matrix = [] for i in range(0, len(tmp_x)): matrix.append([]) for j in range(0, len(tmp_y)): matrix[i].append(f(tmp_x[i], tmp_y[j])) return matrix def create_new_x_y(x, n, N, tmp_x): mas_x = [] if (x <= tmp_x[0]): for i in range(0, n + 1): mas_x.append(tmp_x[i]) elif (x >= tmp_x[N]): for i in range(len(tmp_x) - (n + 1), len(tmp_x)): mas_x.append(tmp_x[i]) else: back = 0; up = 0 for i in range(1, N): if((tmp_x[i - 1] <= x) and (tmp_x[i] > x)): up = i; back = i - 1 for k in range(0, n + 1): if (k % 2 == 0): if (up < len(tmp_x)): mas_x.append(tmp_x[up]) up += 1 elif (back >= 0): mas_x.insert(0, tmp_x[back]) back -= 1 else: if (back >= 0): mas_x.insert(0, tmp_x[back]) back -= 1 elif(up < len(tmp_x)): mas_x.append(tmp_x[up]) up += 1 return mas_x def interpolation(x, n, mas_x, mas_y): matrix = [] matrix.append([]) for i in range(0, n): matrix[0].append((mas_y[i] - mas_y[i + 1])/(mas_x[i] - mas_x[i + 1])) m = n - 1 for i in range(1, n): matrix.append([]) for j in range(0, m): matrix[i].append(((matrix[i - 1][j] - matrix[i - 1][j + 1]))/(mas_x[j] - mas_x[j + 2])) m -= 1 y = mas_y[0] fact = 1 for i in range(0, n): fact *= (x - mas_x[i]) y += matrix[i][0] * fact return y if __name__ == "__main__": main();
the-stack_0_950
import configparser import os from compute.config import AlgorithmConfig import numpy as np from train.utils import TrainConfig class StatusUpdateTool(object): @classmethod def clear_config(cls): config_file = os.path.join(os.path.dirname(__file__), 'global.ini') config = configparser.ConfigParser() config.read(config_file) config.write(open(config_file, 'w')) @classmethod def __write_ini_file(cls, section, key, value): config_file = os.path.join(os.path.dirname(__file__), 'global.ini') config = configparser.ConfigParser() config.read(config_file) config.set(section, key, value) config.write(open(config_file, 'w')) @classmethod def __read_ini_file(cls, section, key): config_file = os.path.join(os.path.dirname(__file__), 'global.ini') config = configparser.ConfigParser() config.read(config_file) return config.get(section, key) @classmethod def get_num_class(cls): return TrainConfig.get_out_cls_num() @classmethod def get_input_weight(cls): rs = TrainConfig.get_data_input_size() return rs[0] @classmethod def get_input_height(cls): rs = TrainConfig.get_data_input_size() return rs[1] @classmethod def get_input_channel(cls): rs = TrainConfig.get_data_input_size() return rs[2] @classmethod def get_init_params(cls): g = AlgorithmConfig() pop_size = int(g.read_ini_file('pop_size')) max_gen = int(g.read_ini_file('max_gen')) params = {} params['pop_size'] = pop_size params['max_gen'] = max_gen return params @classmethod def begin_evolution(cls): section = 'evolution_status' key = 'IS_RUNNING' cls.__write_ini_file(section, key, "1") @classmethod def end_evolution(cls): section = 'evolution_status' key = 'IS_RUNNING' cls.__write_ini_file(section, key, "0") @classmethod def is_evolution_running(cls): rs = cls.__read_ini_file('evolution_status', 'IS_RUNNING') if rs == '1': return True else: return False
the-stack_0_952
import cv2 import random import numpy as np import skimage.transform from typing import Union, Optional, Sequence, Tuple, Dict from . import functional as F from ...core.transforms_interface import DualTransform, to_tuple __all__ = ["ShiftScaleRotate", "ElasticTransform", "Perspective", "Affine", "PiecewiseAffine"] class ShiftScaleRotate(DualTransform): """Randomly apply affine transforms: translate, scale and rotate the input. Args: shift_limit ((float, float) or float): shift factor range for both height and width. If shift_limit is a single float value, the range will be (-shift_limit, shift_limit). Absolute values for lower and upper bounds should lie in range [0, 1]. Default: (-0.0625, 0.0625). scale_limit ((float, float) or float): scaling factor range. If scale_limit is a single float value, the range will be (-scale_limit, scale_limit). Default: (-0.1, 0.1). rotate_limit ((int, int) or int): rotation range. If rotate_limit is a single int value, the range will be (-rotate_limit, rotate_limit). Default: (-45, 45). interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_LINEAR. border_mode (OpenCV flag): flag that is used to specify the pixel extrapolation method. Should be one of: cv2.BORDER_CONSTANT, cv2.BORDER_REPLICATE, cv2.BORDER_REFLECT, cv2.BORDER_WRAP, cv2.BORDER_REFLECT_101. Default: cv2.BORDER_REFLECT_101 value (int, float, list of int, list of float): padding value if border_mode is cv2.BORDER_CONSTANT. mask_value (int, float, list of int, list of float): padding value if border_mode is cv2.BORDER_CONSTANT applied for masks. shift_limit_x ((float, float) or float): shift factor range for width. If it is set then this value instead of shift_limit will be used for shifting width. If shift_limit_x is a single float value, the range will be (-shift_limit_x, shift_limit_x). Absolute values for lower and upper bounds should lie in the range [0, 1]. Default: None. shift_limit_y ((float, float) or float): shift factor range for height. If it is set then this value instead of shift_limit will be used for shifting height. If shift_limit_y is a single float value, the range will be (-shift_limit_y, shift_limit_y). Absolute values for lower and upper bounds should lie in the range [0, 1]. Default: None. p (float): probability of applying the transform. Default: 0.5. Targets: image, mask, keypoints Image types: uint8, float32 """ def __init__( self, shift_limit=0.0625, scale_limit=0.1, rotate_limit=45, interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_REFLECT_101, value=None, mask_value=None, shift_limit_x=None, shift_limit_y=None, always_apply=False, p=0.5, ): super(ShiftScaleRotate, self).__init__(always_apply, p) self.shift_limit_x = to_tuple(shift_limit_x if shift_limit_x is not None else shift_limit) self.shift_limit_y = to_tuple(shift_limit_y if shift_limit_y is not None else shift_limit) self.scale_limit = to_tuple(scale_limit, bias=1.0) self.rotate_limit = to_tuple(rotate_limit) self.interpolation = interpolation self.border_mode = border_mode self.value = value self.mask_value = mask_value def apply(self, img, angle=0, scale=0, dx=0, dy=0, interpolation=cv2.INTER_LINEAR, **params): return F.shift_scale_rotate(img, angle, scale, dx, dy, interpolation, self.border_mode, self.value) def apply_to_mask(self, img, angle=0, scale=0, dx=0, dy=0, **params): return F.shift_scale_rotate(img, angle, scale, dx, dy, cv2.INTER_NEAREST, self.border_mode, self.mask_value) def apply_to_keypoint(self, keypoint, angle=0, scale=0, dx=0, dy=0, rows=0, cols=0, **params): return F.keypoint_shift_scale_rotate(keypoint, angle, scale, dx, dy, rows, cols) def get_params(self): return { "angle": random.uniform(self.rotate_limit[0], self.rotate_limit[1]), "scale": random.uniform(self.scale_limit[0], self.scale_limit[1]), "dx": random.uniform(self.shift_limit_x[0], self.shift_limit_x[1]), "dy": random.uniform(self.shift_limit_y[0], self.shift_limit_y[1]), } def apply_to_bbox(self, bbox, angle, scale, dx, dy, **params): return F.bbox_shift_scale_rotate(bbox, angle, scale, dx, dy, **params) def get_transform_init_args(self): return { "shift_limit_x": self.shift_limit_x, "shift_limit_y": self.shift_limit_y, "scale_limit": to_tuple(self.scale_limit, bias=-1.0), "rotate_limit": self.rotate_limit, "interpolation": self.interpolation, "border_mode": self.border_mode, "value": self.value, "mask_value": self.mask_value, } class ElasticTransform(DualTransform): """Elastic deformation of images as described in [Simard2003]_ (with modifications). Based on https://gist.github.com/ernestum/601cdf56d2b424757de5 .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", in Proc. of the International Conference on Document Analysis and Recognition, 2003. Args: alpha (float): sigma (float): Gaussian filter parameter. alpha_affine (float): The range will be (-alpha_affine, alpha_affine) interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_LINEAR. border_mode (OpenCV flag): flag that is used to specify the pixel extrapolation method. Should be one of: cv2.BORDER_CONSTANT, cv2.BORDER_REPLICATE, cv2.BORDER_REFLECT, cv2.BORDER_WRAP, cv2.BORDER_REFLECT_101. Default: cv2.BORDER_REFLECT_101 value (int, float, list of ints, list of float): padding value if border_mode is cv2.BORDER_CONSTANT. mask_value (int, float, list of ints, list of float): padding value if border_mode is cv2.BORDER_CONSTANT applied for masks. approximate (boolean): Whether to smooth displacement map with fixed kernel size. Enabling this option gives ~2X speedup on large images. same_dxdy (boolean): Whether to use same random generated shift for x and y. Enabling this option gives ~2X speedup. Targets: image, mask Image types: uint8, float32 """ def __init__( self, alpha=1, sigma=50, alpha_affine=50, interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_REFLECT_101, value=None, mask_value=None, always_apply=False, approximate=False, same_dxdy=False, p=0.5, ): super(ElasticTransform, self).__init__(always_apply, p) self.alpha = alpha self.alpha_affine = alpha_affine self.sigma = sigma self.interpolation = interpolation self.border_mode = border_mode self.value = value self.mask_value = mask_value self.approximate = approximate self.same_dxdy = same_dxdy def apply(self, img, random_state=None, interpolation=cv2.INTER_LINEAR, **params): return F.elastic_transform( img, self.alpha, self.sigma, self.alpha_affine, interpolation, self.border_mode, self.value, np.random.RandomState(random_state), self.approximate, self.same_dxdy, ) def apply_to_mask(self, img, random_state=None, **params): return F.elastic_transform( img, self.alpha, self.sigma, self.alpha_affine, cv2.INTER_NEAREST, self.border_mode, self.mask_value, np.random.RandomState(random_state), self.approximate, self.same_dxdy, ) def get_params(self): return {"random_state": random.randint(0, 10000)} def get_transform_init_args_names(self): return ( "alpha", "sigma", "alpha_affine", "interpolation", "border_mode", "value", "mask_value", "approximate", "same_dxdy", ) class Perspective(DualTransform): """Perform a random four point perspective transform of the input. Args: scale (float or (float, float)): standard deviation of the normal distributions. These are used to sample the random distances of the subimage's corners from the full image's corners. If scale is a single float value, the range will be (0, scale). Default: (0.05, 0.1). keep_size (bool): Whether to resize image’s back to their original size after applying the perspective transform. If set to False, the resulting images may end up having different shapes and will always be a list, never an array. Default: True pad_mode (OpenCV flag): OpenCV border mode. pad_val (int, float, list of int, list of float): padding value if border_mode is cv2.BORDER_CONSTANT. Default: 0 mask_pad_val (int, float, list of int, list of float): padding value for mask if border_mode is cv2.BORDER_CONSTANT. Default: 0 fit_output (bool): If True, the image plane size and position will be adjusted to still capture the whole image after perspective transformation. (Followed by image resizing if keep_size is set to True.) Otherwise, parts of the transformed image may be outside of the image plane. This setting should not be set to True when using large scale values as it could lead to very large images. Default: False p (float): probability of applying the transform. Default: 0.5. Targets: image, mask, keypoints, bboxes Image types: uint8, float32 """ def __init__( self, scale=(0.05, 0.1), keep_size=True, pad_mode=cv2.BORDER_CONSTANT, pad_val=0, mask_pad_val=0, fit_output=False, interpolation=cv2.INTER_LINEAR, always_apply=False, p=0.5, ): super().__init__(always_apply, p) self.scale = to_tuple(scale, 0) self.keep_size = keep_size self.pad_mode = pad_mode self.pad_val = pad_val self.mask_pad_val = mask_pad_val self.fit_output = fit_output self.interpolation = interpolation def apply(self, img, matrix=None, max_height=None, max_width=None, **params): return F.perspective( img, matrix, max_width, max_height, self.pad_val, self.pad_mode, self.keep_size, params["interpolation"] ) def apply_to_bbox(self, bbox, matrix=None, max_height=None, max_width=None, **params): return F.perspective_bbox(bbox, params["rows"], params["cols"], matrix, max_width, max_height, self.keep_size) def apply_to_keypoint(self, keypoint, matrix=None, max_height=None, max_width=None, **params): return F.perspective_keypoint( keypoint, params["rows"], params["cols"], matrix, max_width, max_height, self.keep_size ) @property def targets_as_params(self): return ["image"] def get_params_dependent_on_targets(self, params): h, w = params["image"].shape[:2] scale = np.random.uniform(*self.scale) points = np.random.normal(0, scale, [4, 2]) points = np.mod(np.abs(points), 1) # top left -- no changes needed, just use jitter # top right points[1, 0] = 1.0 - points[1, 0] # w = 1.0 - jitter # bottom right points[2] = 1.0 - points[2] # w = 1.0 - jitt # bottom left points[3, 1] = 1.0 - points[3, 1] # h = 1.0 - jitter points[:, 0] *= w points[:, 1] *= h # Obtain a consistent order of the points and unpack them individually. # Warning: don't just do (tl, tr, br, bl) = _order_points(...) # here, because the reordered points is used further below. points = self._order_points(points) tl, tr, br, bl = points # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordiates or the top-right and top-left x-coordinates min_width = None max_width = None while min_width is None or min_width < 2: width_top = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) width_bottom = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) max_width = int(max(width_top, width_bottom)) min_width = int(min(width_top, width_bottom)) if min_width < 2: step_size = (2 - min_width) / 2 tl[0] -= step_size tr[0] += step_size bl[0] -= step_size br[0] += step_size # compute the height of the new image, which will be the maximum distance between the top-right # and bottom-right y-coordinates or the top-left and bottom-left y-coordinates min_height = None max_height = None while min_height is None or min_height < 2: height_right = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) height_left = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) max_height = int(max(height_right, height_left)) min_height = int(min(height_right, height_left)) if min_height < 2: step_size = (2 - min_height) / 2 tl[1] -= step_size tr[1] -= step_size bl[1] += step_size br[1] += step_size # now that we have the dimensions of the new image, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the image, again specifying points # in the top-left, top-right, bottom-right, and bottom-left order # do not use width-1 or height-1 here, as for e.g. width=3, height=2 # the bottom right coordinate is at (3.0, 2.0) and not (2.0, 1.0) dst = np.array([[0, 0], [max_width, 0], [max_width, max_height], [0, max_height]], dtype=np.float32) # compute the perspective transform matrix and then apply it m = cv2.getPerspectiveTransform(points, dst) if self.fit_output: m, max_width, max_height = self._expand_transform(m, (h, w)) return {"matrix": m, "max_height": max_height, "max_width": max_width, "interpolation": self.interpolation} @classmethod def _expand_transform(cls, matrix, shape): height, width = shape # do not use width-1 or height-1 here, as for e.g. width=3, height=2, max_height # the bottom right coordinate is at (3.0, 2.0) and not (2.0, 1.0) rect = np.array([[0, 0], [width, 0], [width, height], [0, height]], dtype=np.float32) dst = cv2.perspectiveTransform(np.array([rect]), matrix)[0] # get min x, y over transformed 4 points # then modify target points by subtracting these minima => shift to (0, 0) dst -= dst.min(axis=0, keepdims=True) dst = np.around(dst, decimals=0) matrix_expanded = cv2.getPerspectiveTransform(rect, dst) max_width, max_height = dst.max(axis=0) return matrix_expanded, int(max_width), int(max_height) @staticmethod def _order_points(pts: np.ndarray) -> np.ndarray: pts = np.array(sorted(pts, key=lambda x: x[0])) left = pts[:2] # points with smallest x coordinate - left points right = pts[2:] # points with greatest x coordinate - right points if left[0][1] < left[1][1]: tl, bl = left else: bl, tl = left if right[0][1] < right[1][1]: tr, br = right else: br, tr = right return np.array([tl, tr, br, bl], dtype=np.float32) def get_transform_init_args_names(self): return ("scale", "keep_size", "pad_mode", "pad_val", "mask_pad_val", "fit_output", "interpolation") class Affine(DualTransform): """Augmentation to apply affine transformations to images. This is mostly a wrapper around the corresponding classes and functions in OpenCV. Affine transformations involve: - Translation ("move" image on the x-/y-axis) - Rotation - Scaling ("zoom" in/out) - Shear (move one side of the image, turning a square into a trapezoid) All such transformations can create "new" pixels in the image without a defined content, e.g. if the image is translated to the left, pixels are created on the right. A method has to be defined to deal with these pixel values. The parameters `cval` and `mode` of this class deal with this. Some transformations involve interpolations between several pixels of the input image to generate output pixel values. The parameters `interpolation` and `mask_interpolation` deals with the method of interpolation used for this. Args: scale (number, tuple of number or dict): Scaling factor to use, where ``1.0`` denotes "no change" and ``0.5`` is zoomed out to ``50`` percent of the original size. * If a single number, then that value will be used for all images. * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the interval ``[a, b]``. That value will be used identically for both x- and y-axis. * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``. Each of these keys can have the same values as described above. Using a dictionary allows to set different values for the two axis and sampling will then happen *independently* per axis, resulting in samples that differ between the axes. translate_percent (None, number, tuple of number or dict): Translation as a fraction of the image height/width (x-translation, y-translation), where ``0`` denotes "no change" and ``0.5`` denotes "half of the axis size". * If ``None`` then equivalent to ``0.0`` unless `translate_px` has a value other than ``None``. * If a single number, then that value will be used for all images. * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the interval ``[a, b]``. That sampled fraction value will be used identically for both x- and y-axis. * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``. Each of these keys can have the same values as described above. Using a dictionary allows to set different values for the two axis and sampling will then happen *independently* per axis, resulting in samples that differ between the axes. translate_px (None, int, tuple of int or dict): Translation in pixels. * If ``None`` then equivalent to ``0`` unless `translate_percent` has a value other than ``None``. * If a single int, then that value will be used for all images. * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the discrete interval ``[a..b]``. That number will be used identically for both x- and y-axis. * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``. Each of these keys can have the same values as described above. Using a dictionary allows to set different values for the two axis and sampling will then happen *independently* per axis, resulting in samples that differ between the axes. rotate (number or tuple of number): Rotation in degrees (**NOT** radians), i.e. expected value range is around ``[-360, 360]``. Rotation happens around the *center* of the image, not the top left corner as in some other frameworks. * If a number, then that value will be used for all images. * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the interval ``[a, b]`` and used as the rotation value. shear (number, tuple of number or dict): Shear in degrees (**NOT** radians), i.e. expected value range is around ``[-360, 360]``, with reasonable values being in the range of ``[-45, 45]``. * If a number, then that value will be used for all images as the shear on the x-axis (no shear on the y-axis will be done). * If a tuple ``(a, b)``, then two value will be uniformly sampled per image from the interval ``[a, b]`` and be used as the x- and y-shear value. * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``. Each of these keys can have the same values as described above. Using a dictionary allows to set different values for the two axis and sampling will then happen *independently* per axis, resulting in samples that differ between the axes. interpolation (int): OpenCV interpolation flag. mask_interpolation (int): OpenCV interpolation flag. cval (number or sequence of number): The constant value to use when filling in newly created pixels. (E.g. translating by 1px to the right will create a new 1px-wide column of pixels on the left of the image). The value is only used when `mode=constant`. The expected value range is ``[0, 255]`` for ``uint8`` images. cval_mask (number or tuple of number): Same as cval but only for masks. mode (int): OpenCV border flag. fit_output (bool): Whether to modify the affine transformation so that the whole output image is always contained in the image plane (``True``) or accept parts of the image being outside the image plane (``False``). This can be thought of as first applying the affine transformation and then applying a second transformation to "zoom in" on the new image so that it fits the image plane, This is useful to avoid corners of the image being outside of the image plane after applying rotations. It will however negate translation and scaling. p (float): probability of applying the transform. Default: 0.5. Targets: image, mask, keypoints, bboxes Image types: uint8, float32 """ def __init__( self, scale: Optional[Union[float, Sequence[float], dict]] = None, translate_percent: Optional[Union[float, Sequence[float], dict]] = None, translate_px: Optional[Union[int, Sequence[int], dict]] = None, rotate: Optional[Union[float, Sequence[float]]] = None, shear: Optional[Union[float, Sequence[float], dict]] = None, interpolation: int = cv2.INTER_LINEAR, mask_interpolation: int = cv2.INTER_NEAREST, cval: Union[int, float, Sequence[int], Sequence[float]] = 0, cval_mask: Union[int, float, Sequence[int], Sequence[float]] = 0, mode: int = cv2.BORDER_CONSTANT, fit_output: bool = False, always_apply: bool = False, p: float = 0.5, ): super().__init__(always_apply=always_apply, p=p) params = [scale, translate_percent, translate_px, rotate, shear] if all([p is None for p in params]): scale = {"x": (0.9, 1.1), "y": (0.9, 1.1)} translate_percent = {"x": (-0.1, 0.1), "y": (-0.1, 0.1)} rotate = (-15, 15) shear = {"x": (-10, 10), "y": (-10, 10)} else: scale = scale if scale is not None else 1.0 rotate = rotate if rotate is not None else 0.0 shear = shear if shear is not None else 0.0 self.interpolation = interpolation self.mask_interpolation = mask_interpolation self.cval = cval self.cval_mask = cval_mask self.mode = mode self.scale = self._handle_dict_arg(scale, "scale") self.translate_percent, self.translate_px = self._handle_translate_arg(translate_px, translate_percent) self.rotate = to_tuple(rotate, rotate) self.fit_output = fit_output self.shear = self._handle_dict_arg(shear, "shear") def get_transform_init_args_names(self): return ( "interpolation", "mask_interpolation", "cval", "mode", "scale", "translate_percent", "translate_px", "rotate", "fit_output", "shear", "cval_mask", ) @staticmethod def _handle_dict_arg(val: Union[float, Sequence[float], dict], name: str): if isinstance(val, dict): if "x" not in val and "y" not in val: raise ValueError( f'Expected {name} dictionary to contain at least key "x" or ' 'key "y". Found neither of them.' ) x = val.get("x", 1.0) y = val.get("y", 1.0) return {"x": to_tuple(x, x), "y": to_tuple(y, y)} return {"x": to_tuple(val, val), "y": to_tuple(val, val)} @classmethod def _handle_translate_arg( cls, translate_px: Optional[Union[float, Sequence[float], dict]], translate_percent: Optional[Union[float, Sequence[float], dict]], ): if translate_percent is None and translate_px is None: translate_px = 0 if translate_percent is not None and translate_px is not None: raise ValueError( "Expected either translate_percent or translate_px to be " "provided, " "but neither of them was." ) if translate_percent is not None: # translate by percent return cls._handle_dict_arg(translate_percent, "translate_percent"), translate_px if translate_px is None: raise ValueError("translate_px is None.") # translate by pixels return translate_percent, cls._handle_dict_arg(translate_px, "translate_px") def apply( self, img: np.ndarray, matrix: skimage.transform.ProjectiveTransform = None, output_shape: Sequence[int] = None, **params ) -> np.ndarray: return F.warp_affine( img, matrix, interpolation=self.interpolation, cval=self.cval, mode=self.mode, output_shape=output_shape, ) def apply_to_mask( self, img: np.ndarray, matrix: skimage.transform.ProjectiveTransform = None, output_shape: Sequence[int] = None, **params ) -> np.ndarray: return F.warp_affine( img, matrix, interpolation=self.mask_interpolation, cval=self.cval_mask, mode=self.mode, output_shape=output_shape, ) def apply_to_bbox( self, bbox: Sequence[float], matrix: skimage.transform.ProjectiveTransform = None, rows: int = 0, cols: int = 0, output_shape: Sequence[int] = (), **params ) -> Sequence[float]: return F.bbox_affine(bbox, matrix, rows, cols, output_shape) def apply_to_keypoint( self, keypoint: Sequence[float], matrix: skimage.transform.ProjectiveTransform = None, scale: dict = None, **params ) -> Sequence[float]: return F.keypoint_affine(keypoint, matrix=matrix, scale=scale) @property def targets_as_params(self): return ["image"] def get_params_dependent_on_targets(self, params: dict) -> dict: h, w = params["image"].shape[:2] translate: Dict[str, Union[int, float]] if self.translate_px is not None: translate = {key: random.randint(*value) for key, value in self.translate_px.items()} elif self.translate_percent is not None: translate = {key: random.uniform(*value) for key, value in self.translate_percent.items()} translate["x"] = translate["x"] * w translate["y"] = translate["y"] * h else: translate = {"x": 0, "y": 0} shear = {key: random.uniform(*value) for key, value in self.shear.items()} scale = {key: random.uniform(*value) for key, value in self.scale.items()} rotate = random.uniform(*self.rotate) # for images we use additional shifts of (0.5, 0.5) as otherwise # we get an ugly black border for 90deg rotations shift_x = w / 2 - 0.5 shift_y = h / 2 - 0.5 matrix_to_topleft = skimage.transform.SimilarityTransform(translation=[-shift_x, -shift_y]) matrix_shear_y_rot = skimage.transform.AffineTransform(rotation=-np.pi / 2) matrix_shear_y = skimage.transform.AffineTransform(shear=np.deg2rad(shear["y"])) matrix_shear_y_rot_inv = skimage.transform.AffineTransform(rotation=np.pi / 2) matrix_transforms = skimage.transform.AffineTransform( scale=(scale["x"], scale["y"]), translation=(translate["x"], translate["y"]), rotation=np.deg2rad(rotate), shear=np.deg2rad(shear["x"]), ) matrix_to_center = skimage.transform.SimilarityTransform(translation=[shift_x, shift_y]) matrix = ( matrix_to_topleft + matrix_shear_y_rot + matrix_shear_y + matrix_shear_y_rot_inv + matrix_transforms + matrix_to_center ) if self.fit_output: matrix, output_shape = self._compute_affine_warp_output_shape(matrix, params["image"].shape) else: output_shape = params["image"].shape return { "rotate": rotate, "scale": scale, "matrix": matrix, "output_shape": output_shape, } @staticmethod def _compute_affine_warp_output_shape( matrix: skimage.transform.ProjectiveTransform, input_shape: Sequence[int] ) -> Tuple[skimage.transform.ProjectiveTransform, Sequence[int]]: height, width = input_shape[:2] if height == 0 or width == 0: return matrix, input_shape # determine shape of output image corners = np.array([[0, 0], [0, height - 1], [width - 1, height - 1], [width - 1, 0]]) corners = matrix(corners) minc = corners[:, 0].min() minr = corners[:, 1].min() maxc = corners[:, 0].max() maxr = corners[:, 1].max() out_height = maxr - minr + 1 out_width = maxc - minc + 1 if len(input_shape) == 3: output_shape = np.ceil((out_height, out_width, input_shape[2])) else: output_shape = np.ceil((out_height, out_width)) output_shape_tuple = tuple([int(v) for v in output_shape.tolist()]) # fit output image in new shape translation = (-minc, -minr) matrix_to_fit = skimage.transform.SimilarityTransform(translation=translation) matrix = matrix + matrix_to_fit return matrix, output_shape_tuple class PiecewiseAffine(DualTransform): """Apply affine transformations that differ between local neighbourhoods. This augmentation places a regular grid of points on an image and randomly moves the neighbourhood of these point around via affine transformations. This leads to local distortions. This is mostly a wrapper around scikit-image's ``PiecewiseAffine``. See also ``Affine`` for a similar technique. Note: This augmenter is very slow. Try to use ``ElasticTransformation`` instead, which is at least 10x faster. Note: For coordinate-based inputs (keypoints, bounding boxes, polygons, ...), this augmenter still has to perform an image-based augmentation, which will make it significantly slower and not fully correct for such inputs than other transforms. Args: scale (float, tuple of float): Each point on the regular grid is moved around via a normal distribution. This scale factor is equivalent to the normal distribution's sigma. Note that the jitter (how far each point is moved in which direction) is multiplied by the height/width of the image if ``absolute_scale=False`` (default), so this scale can be the same for different sized images. Recommended values are in the range ``0.01`` to ``0.05`` (weak to strong augmentations). * If a single ``float``, then that value will always be used as the scale. * If a tuple ``(a, b)`` of ``float`` s, then a random value will be uniformly sampled per image from the interval ``[a, b]``. nb_rows (int, tuple of int): Number of rows of points that the regular grid should have. Must be at least ``2``. For large images, you might want to pick a higher value than ``4``. You might have to then adjust scale to lower values. * If a single ``int``, then that value will always be used as the number of rows. * If a tuple ``(a, b)``, then a value from the discrete interval ``[a..b]`` will be uniformly sampled per image. nb_cols (int, tuple of int): Number of columns. Analogous to `nb_rows`. interpolation (int): The order of interpolation. The order has to be in the range 0-5: - 0: Nearest-neighbor - 1: Bi-linear (default) - 2: Bi-quadratic - 3: Bi-cubic - 4: Bi-quartic - 5: Bi-quintic mask_interpolation (int): same as interpolation but for mask. cval (number): The constant value to use when filling in newly created pixels. cval_mask (number): Same as cval but only for masks. mode (str): {'constant', 'edge', 'symmetric', 'reflect', 'wrap'}, optional Points outside the boundaries of the input are filled according to the given mode. Modes match the behaviour of `numpy.pad`. absolute_scale (bool): Take `scale` as an absolute value rather than a relative value. keypoints_threshold (float): Used as threshold in conversion from distance maps to keypoints. The search for keypoints works by searching for the argmin (non-inverted) or argmax (inverted) in each channel. This parameters contains the maximum (non-inverted) or minimum (inverted) value to accept in order to view a hit as a keypoint. Use ``None`` to use no min/max. Default: 0.01 Targets: image, mask, keypoints, bboxes Image types: uint8, float32 """ def __init__( self, scale: Union[float, Sequence[float]] = (0.03, 0.05), nb_rows: Union[int, Sequence[int]] = 4, nb_cols: Union[int, Sequence[int]] = 4, interpolation: int = 1, mask_interpolation: int = 0, cval: int = 0, cval_mask: int = 0, mode: str = "constant", absolute_scale: bool = False, always_apply: bool = False, keypoints_threshold: float = 0.01, p: float = 0.5, ): super(PiecewiseAffine, self).__init__(always_apply, p) self.scale = to_tuple(scale, scale) self.nb_rows = to_tuple(nb_rows, nb_rows) self.nb_cols = to_tuple(nb_cols, nb_cols) self.interpolation = interpolation self.mask_interpolation = mask_interpolation self.cval = cval self.cval_mask = cval_mask self.mode = mode self.absolute_scale = absolute_scale self.keypoints_threshold = keypoints_threshold def get_transform_init_args_names(self): return ( "scale", "nb_rows", "nb_cols", "interpolation", "mask_interpolation", "cval", "cval_mask", "mode", "absolute_scale", "keypoints_threshold", ) @property def targets_as_params(self): return ["image"] def get_params_dependent_on_targets(self, params) -> dict: h, w = params["image"].shape[:2] nb_rows = np.clip(random.randint(*self.nb_rows), 2, None) nb_cols = np.clip(random.randint(*self.nb_cols), 2, None) nb_cells = nb_cols * nb_rows scale = random.uniform(*self.scale) state = np.random.RandomState(random.randint(0, 1 << 31)) jitter = state.normal(0, scale, (nb_cells, 2)) if not np.any(jitter > 0): return {"matrix": None} y = np.linspace(0, h, nb_rows) x = np.linspace(0, w, nb_cols) # (H, W) and (H, W) for H=rows, W=cols xx_src, yy_src = np.meshgrid(x, y) # (1, HW, 2) => (HW, 2) for H=rows, W=cols points_src = np.dstack([yy_src.flat, xx_src.flat])[0] if self.absolute_scale: jitter[:, 0] = jitter[:, 0] / h if h > 0 else 0.0 jitter[:, 1] = jitter[:, 1] / w if w > 0 else 0.0 jitter[:, 0] = jitter[:, 0] * h jitter[:, 1] = jitter[:, 1] * w points_dest = np.copy(points_src) points_dest[:, 0] = points_dest[:, 0] + jitter[:, 0] points_dest[:, 1] = points_dest[:, 1] + jitter[:, 1] # Restrict all destination points to be inside the image plane. # This is necessary, as otherwise keypoints could be augmented # outside of the image plane and these would be replaced by # (-1, -1), which would not conform with the behaviour of the other augmenters. points_dest[:, 0] = np.clip(points_dest[:, 0], 0, h - 1) points_dest[:, 1] = np.clip(points_dest[:, 1], 0, w - 1) matrix = skimage.transform.PiecewiseAffineTransform() matrix.estimate(points_src[:, ::-1], points_dest[:, ::-1]) return { "matrix": matrix, } def apply( self, img: np.ndarray, matrix: skimage.transform.PiecewiseAffineTransform = None, **params ) -> np.ndarray: return F.piecewise_affine(img, matrix, self.interpolation, self.mode, self.cval) def apply_to_mask( self, img: np.ndarray, matrix: skimage.transform.PiecewiseAffineTransform = None, **params ) -> np.ndarray: return F.piecewise_affine(img, matrix, self.mask_interpolation, self.mode, self.cval_mask) def apply_to_bbox( self, bbox: Sequence[float], rows: int = 0, cols: int = 0, matrix: skimage.transform.PiecewiseAffineTransform = None, **params ) -> Sequence[float]: return F.bbox_piecewise_affine(bbox, matrix, rows, cols, self.keypoints_threshold) def apply_to_keypoint( self, keypoint: Sequence[float], rows: int = 0, cols: int = 0, matrix: skimage.transform.PiecewiseAffineTransform = None, **params ): return F.keypoint_piecewise_affine(keypoint, matrix, rows, cols, self.keypoints_threshold)
the-stack_0_953
from sympy import S, Rational from sympy.external import import_module from sympy.stats import Binomial, sample, Die, FiniteRV, DiscreteUniform, Bernoulli, BetaBinomial, Hypergeometric, \ Rademacher from sympy.testing.pytest import skip, raises def test_given_sample(): X = Die('X', 6) scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests') assert sample(X, X > 5) == 6 def test_sample_numpy(): distribs_numpy = [ Binomial("B", 5, 0.4), ] size = 3 numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests for _sample_numpy.') else: for X in distribs_numpy: samps = sample(X, size=size, library='numpy') for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: sample(Die("D"), library='numpy')) raises(NotImplementedError, lambda: Die("D").pspace.sample(library='tensorflow')) def test_sample_scipy(): distribs_scipy = [ FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}), DiscreteUniform("Y", list(range(5))), Die("D"), Bernoulli("Be", 0.3), Binomial("Bi", 5, 0.4), BetaBinomial("Bb", 2, 1, 1), Hypergeometric("H", 1, 1, 1), Rademacher("R") ] size = 3 scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for _sample_scipy.') else: for X in distribs_scipy: samps = sample(X, size=size) samps2 = sample(X, size=(2, 2)) for sam in samps: assert sam in X.pspace.domain.set for i in range(2): for j in range(2): assert samps2[i][j] in X.pspace.domain.set def test_sample_pymc3(): distribs_pymc3 = [ Bernoulli('B', 0.2), Binomial('N', 5, 0.4) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: for X in distribs_pymc3: samps = sample(X, size=size, library='pymc3') for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: (sample(Die("D"), library='pymc3'))) def test_sample_seed(): F = FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}) size = 10 libraries = ['scipy', 'numpy', 'pymc3'] for lib in libraries: try: imported_lib = import_module(lib) if imported_lib: s0 = sample(F, size=size, library=lib, seed=0) s1 = sample(F, size=size, library=lib, seed=0) s2 = sample(F, size=size, library=lib, seed=1) assert all(s0 == s1) assert not all(s1 == s2) except NotImplementedError: continue
the-stack_0_956
""" Writes out submission datetime details (when it was submitted, how long it was in grading process, etc) to a history.json file which is a list of all grading attempts for a particular submission (including initial grading of it and all regrades). """ import os import sys import collections import json from datetime import datetime from submitty_utils import dateutils import fcntl import traceback import zipfile import stat import subprocess import shutil import codecs import glob import docker from typing import Optional class Logger: """Specialized logger class that accumulates stack traces.""" def __init__( self, *, log_dir: str, stack_trace_dir: str, capture_traces: bool = False, # This used to be "UNKNOWN", but "NO JOB" better describes the circumstances. job_id: str = "NO JOB", ): self.log_dir = log_dir self.stack_trace_dir = stack_trace_dir self.capture_traces = capture_traces self.accumulated_traces = [] self.job_id = job_id def _log_filename(self) -> str: """Get the name of the file that should be logged into. Currently, this is in the format YYYYMMDD.txt. """ now = dateutils.get_current_time() return f'{datetime.strftime(now, "%Y%m%d")}.txt' @property def log_path(self) -> str: """Get the full path to the regular logging file.""" return os.path.join(self.log_dir, self._log_filename()) @property def stack_trace_path(self) -> str: """Get the full path to the stack trace logging file.""" return os.path.join(self.stack_trace_dir, self._log_filename()) def log_message( self, message: str, *, is_batch: bool = False, which_untrusted: str = "", jobname: str = "", timelabel: str = "", elapsed_time: Optional[int] = None, job_id: Optional[str] = None ): """Log a message to this logger's configured log directory.""" now = dateutils.get_current_time() easy_to_read_date = dateutils.write_submitty_date(now, True) batch_string = "BATCH" if is_batch else "" if elapsed_time is None: elapsed_time = -1 elapsed_time_string = "" if elapsed_time < 0 else '{:9.3f}'.format(elapsed_time) time_unit = "" if elapsed_time < 0 else "sec" job_id = job_id or self.job_id parts = (easy_to_read_date, f"{job_id:>6s}", f"{batch_string:>5s}", f"{which_untrusted:>11s}", f"{jobname:75s}", f"{timelabel:6s} {elapsed_time_string:>9s} {time_unit:>3s}", message) write_to_log(self.log_path, ' | '.join((str(x) for x in parts))) def log_stack_trace( self, trace: str, *, is_batch: bool = False, which_untrusted: str = '', job_id: Optional[str] = None, jobname: str = "", echo_source: Optional[str] = None, ): """Log a stack trace to this logger's configured stack trace directory.""" job_id = job_id or self.job_id # Save the parameters to this trace so we can duplicate these on the # shipper's end once the job finishes. # # TODO: Maybe we want to store time info too? Might need to think a bit # more in terms of the stack traces log file format. if self.capture_traces: self.accumulated_traces.append({ 'trace': trace, 'is_batch': is_batch, 'which_untrusted': which_untrusted, 'job_id': job_id, 'jobname': jobname, }) # Always run this since this could be deleted without us knowing os.makedirs(self.stack_trace_dir, exist_ok=True) now = dateutils.get_current_time() easy_to_read_date = dateutils.write_submitty_date(now, True) message = f"[{easy_to_read_date}][{job_id:>6s}]\n" if echo_source is not None: message += f"== (Echoed from {echo_source})\n" message += f"== Batch? {is_batch}\n" message += f"== Which: {which_untrusted}\n" message += f"== Job: {jobname}\n" for line in trace.splitlines(): message += f"== {line}\n" message = message.strip() write_to_log(self.stack_trace_path, message) def just_write_grade_history(json_file,assignment_deadline,submission_time,seconds_late, first_access_time,access_duration,queue_time,batch_regrade,grading_began, wait_time,grading_finished,grade_time,autograde_total, revision): ##################################### # LOAD THE PREVIOUS HISTORY if os.path.isfile(json_file): with open(json_file, 'r') as infile: obj = json.load(infile, object_pairs_hook=collections.OrderedDict) else: obj = [] ##################################### # CREATE THE NEWEST INFO BLOB blob = collections.OrderedDict() blob["assignment_deadline"] = assignment_deadline blob["submission_time"] = submission_time seconds_late = seconds_late if seconds_late > 0: minutes_late = int((seconds_late+60-1) / 60) hours_late = int((seconds_late+60*60-1) / (60*60)) days_late = int((seconds_late+60*60*24-1) / (60*60*24)) blob["days_late_before_extensions"] = days_late blob["queue_time"] = queue_time blob["batch_regrade"] = True if batch_regrade == "BATCH" else False blob["first_access_time"] = first_access_time blob["access_duration"] = access_duration blob["grading_began"] = grading_began blob["wait_time"] = wait_time blob["grading_finished"] = grading_finished blob["grade_time"] = grade_time blob["autograde_result"] = autograde_total autograde_array = str.split(autograde_total) if len(autograde_array) > 0 and autograde_array[0] == "Automatic": blob["autograde_total"] = int(autograde_array[3]) if len(autograde_array) == 6: blob["autograde_max_possible"] = int(autograde_array[5]) if revision: blob["revision"] = revision ##################################### # ADD IT TO THE HISTORY obj.append(blob) with open(json_file, 'w') as outfile: json.dump(obj, outfile, indent=4, separators=(',', ': ')) # ================================================================================== # # LOGGING FUNCTIONS # # ================================================================================== def log_container_meta(log_path, event="", name="", container="", time=0): """ Given a log file, create or append container meta data to a log file. """ now = dateutils.get_current_time() easy_to_read_date = dateutils.write_submitty_date(now, True) time_unit = "sec" parts = (easy_to_read_date, name, container, event, f"{time:.3f}", time_unit) write_to_log(log_path, ' | '.join(parts)) def write_to_log(log_path, message): """ Given a log file, create or append message to log file""" with open(log_path, 'a+') as log_file: try: fcntl.flock(log_file, fcntl.LOCK_EX | fcntl.LOCK_NB) print(message, file=log_file) fcntl.flock(log_file, fcntl.LOCK_UN) except: print("Could not gain a lock on the log file.") # ================================================================================== # # VALIDATION FUNCTIONS # # ================================================================================== def setup_for_validation(config, working_directory, complete_config, is_vcs, testcases, job_id): """ Prepare a directory for validation by copying in and permissioning the required files. """ tmp_submission = os.path.join(working_directory,"TMP_SUBMISSION") tmp_work = os.path.join(working_directory,"TMP_WORK") tmp_results = os.path.join(working_directory,"TMP_RESULTS") submission_path = os.path.join(tmp_submission, "submission") checkout_subdirectory = complete_config["autograding"].get("use_checkout_subdirectory","") tmp_logs = os.path.join(working_directory,"TMP_SUBMISSION","tmp_logs") tmp_work_test_output = os.path.join(tmp_work, "test_output") tmp_work_generated_output = os.path.join(tmp_work, "generated_output") tmp_work_instructor_solution = os.path.join(tmp_work, "instructor_solution") tmp_autograding = os.path.join(working_directory,"TMP_AUTOGRADING") os.mkdir(tmp_work_test_output) os.mkdir(tmp_work_generated_output) os.mkdir(tmp_work_instructor_solution) patterns = complete_config['autograding'] # Add all permissions to tmp_work add_permissions_recursive(tmp_work, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR | stat.S_IRGRP | stat.S_IWGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IWOTH | stat.S_IXOTH, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR | stat.S_IRGRP | stat.S_IWGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IWOTH | stat.S_IXOTH, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR | stat.S_IRGRP | stat.S_IWGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IWOTH | stat.S_IXOTH) # Copy required submission/checkout files pattern_copy("submission_to_validation", patterns['submission_to_validation'], submission_path, tmp_work, tmp_logs) checkout_subdir_path = os.path.join(tmp_submission, 'checkout', checkout_subdirectory) if os.path.exists(checkout_subdir_path): pattern_copy("checkout_to_validation", patterns['submission_to_validation'],checkout_subdir_path,tmp_work,tmp_logs) for c in testcases: if c.type == 'Compilation': pattern_copy("compilation_to_validation", patterns['compilation_to_validation'], c.secure_environment.directory, tmp_work, tmp_logs) # Copy expected files into the tmp_work_test_output path test_output_path = os.path.join(tmp_autograding, 'test_output') copy_contents_into(config, job_id, test_output_path, tmp_work_test_output, tmp_logs) generated_output_path = os.path.join(tmp_autograding, 'generated_output') copy_contents_into(config, job_id, generated_output_path, tmp_work_generated_output, tmp_logs) # Copy in instructor solution code. instructor_solution = os.path.join(tmp_autograding, 'instructor_solution') copy_contents_into(config, job_id, instructor_solution, tmp_work_instructor_solution, tmp_logs) # Copy any instructor custom validation code into the tmp work directory custom_validation_code_path = os.path.join(tmp_autograding, 'custom_validation_code') copy_contents_into(config, job_id, custom_validation_code_path, tmp_work, tmp_logs) # Copy the .submit.notebook to tmp_work for validation submit_notebook_path = os.path.join(tmp_submission, 'submission', ".submit.notebook") if os.path.exists(submit_notebook_path): shutil.copy( submit_notebook_path, os.path.join(tmp_work, '.submit.notebook') ) # Copy the validation script into this directory. bin_runner = os.path.join(tmp_autograding, "bin","validate.out") my_runner = os.path.join(tmp_work, "my_validator.out") shutil.copy(bin_runner, my_runner) add_permissions_recursive(tmp_work, stat.S_IROTH | stat.S_IWOTH | stat.S_IXOTH, stat.S_IROTH | stat.S_IWOTH | stat.S_IXOTH, stat.S_IROTH | stat.S_IWOTH | stat.S_IXOTH) add_permissions(my_runner, stat.S_IXUSR | stat.S_IXGRP |stat.S_IROTH | stat.S_IWOTH | stat.S_IXOTH) # ================================================================================== # # ARCHIVAL AND PERMISSIONS FUNCTIONS # # ================================================================================== def add_all_permissions(path): """ Recursively chmod a directory or file 777. """ if os.path.isdir(path): add_permissions_recursive(path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR | stat.S_IRGRP | stat.S_IWGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IWOTH | stat.S_IXOTH, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR | stat.S_IRGRP | stat.S_IWGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IWOTH | stat.S_IXOTH, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR | stat.S_IRGRP | stat.S_IWGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IWOTH | stat.S_IXOTH) elif os.path.isfile(path): add_permissions(path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR | stat.S_IRGRP | stat.S_IWGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IWOTH | stat.S_IXOTH) def lock_down_folder_permissions(top_dir): # Chmod a directory to take away group and other rwx. os.chmod(top_dir,os.stat(top_dir).st_mode & ~stat.S_IRGRP & ~stat.S_IWGRP & ~stat.S_IXGRP & ~stat.S_IROTH & ~stat.S_IWOTH & ~stat.S_IXOTH) def cleanup_stale_containers(user_id_of_runner, my_log_function): # Remove any docker containers left over from past runs. client = docker.from_env(timeout=60) try: # Get all containers (running or not) with user_id_of_runner in their name # sparse=True gets containers without fully evaluating them. This is important, # as race conditions with other grading threads can cause this call to fail otherwise. old_containers = client.containers.list(all=True, filters={"name":user_id_of_runner}, sparse=True) for old_container in old_containers: try: my_log_function(f'Removing stale container {old_container.name}') old_container.remove(force=True) except docker.errors.NotFound: # This is an expected case which does not constitute an error, caused # by the use of sparse=True pass except Exception: my_log_function("ERROR: Could not remove docker container") # Get all networks with user_id_of_runner in their name old_networks = client.networks.list(filters={"name":user_id_of_runner}) for old_network in old_networks: try: my_log_function(f'Removing stale network {old_network.name}') old_network.remove() except Exception: my_log_function("ERROR: Could not remove docker network") finally: client.close() def prepare_directory_for_autograding(config, working_directory, user_id_of_runner, autograding_zip_file, submission_zip_file, is_test_environment): """ Given a working directory, set up that directory for autograding by creating the required subdirectories and configuring permissions. """ # If an old (stale) version of the working directory exists, we need to remove it. if os.path.exists(working_directory): # Make certain we can remove old instances of the working directory. if not is_test_environment: untrusted_grant_rwx_access( config.submitty['submitty_install_dir'], user_id_of_runner, working_directory ) add_all_permissions(working_directory) shutil.rmtree(working_directory,ignore_errors=True) # Create the working directory os.mkdir(working_directory) # Important directory variables. tmp_autograding = os.path.join(working_directory,"TMP_AUTOGRADING") tmp_submission = os.path.join(working_directory,"TMP_SUBMISSION") tmp_work = os.path.join(working_directory,"TMP_WORK") tmp_logs = os.path.join(working_directory,"TMP_SUBMISSION","tmp_logs") submission_path = os.path.join(tmp_submission, "submission") tmp_work_test_input = os.path.join(tmp_work, "test_input") os.mkdir(tmp_work) os.mkdir(tmp_work_test_input) # Unzip the autograding and submission folders unzip_this_file(autograding_zip_file,tmp_autograding) unzip_this_file(submission_zip_file,tmp_submission) with open(os.path.join(tmp_autograding, "complete_config.json"), 'r') as infile: complete_config_obj = json.load(infile) # Handle the case where a student errantly submits to multiple parts of a one part only gradeable. if complete_config_obj.get('one_part_only', False) == True: allow_only_one_part(submission_path, log_path=os.path.join(tmp_logs, "overall.txt")) with open(os.path.join(tmp_submission,"queue_file.json"), 'r') as infile: queue_obj = json.load(infile) job_id = queue_obj["job_id"] # copy output files test_input_path = os.path.join(tmp_autograding, 'test_input') # Copy test input files into tmp_work_test_input. copy_contents_into(config, job_id, test_input_path, tmp_work_test_input, tmp_logs) # Lock down permissions on the unzipped folders/test input folder to stop untrusted users from gaining access. lock_down_folder_permissions(tmp_work_test_input) lock_down_folder_permissions(tmp_autograding) lock_down_folder_permissions(tmp_submission) def archive_autograding_results( config, working_directory: os.PathLike, job_id: str, which_untrusted: str, is_batch_job: bool, complete_config_obj: dict, gradeable_config_obj: dict, queue_obj: dict, is_test_environment: bool ): """ After grading is finished, archive the results. """ tmp_autograding = os.path.join(working_directory,"TMP_AUTOGRADING") tmp_submission = os.path.join(working_directory,"TMP_SUBMISSION") tmp_work = os.path.join(working_directory,"TMP_WORK") tmp_logs = os.path.join(working_directory,"TMP_SUBMISSION","tmp_logs") tmp_results = os.path.join(working_directory,"TMP_RESULTS") submission_path = os.path.join(tmp_submission, "submission") random_output_path = os.path.join(tmp_work, 'random_output') if "generate_output" not in queue_obj: partial_path = os.path.join(queue_obj["gradeable"],queue_obj["who"],str(queue_obj["version"])) item_name = os.path.join(queue_obj["semester"],queue_obj["course"],"submissions",partial_path) elif queue_obj["generate_output"]: item_name = os.path.join(queue_obj["semester"],queue_obj["course"],"generated_output",queue_obj["gradeable"]) results_public_dir = os.path.join(tmp_results,"results_public") results_details_dir = os.path.join(tmp_results, "details") patterns = complete_config_obj['autograding'] # Copy work to details pattern_copy("work_to_details", patterns['work_to_details'], tmp_work, results_details_dir, tmp_logs) # Copy work to public if 'work_to_public' in patterns: pattern_copy("work_to_public", patterns['work_to_public'], tmp_work, results_public_dir, tmp_logs) if os.path.exists(random_output_path): pattern_copy("work_to_random_output", [os.path.join(random_output_path, '**', '*.txt'),], tmp_work, tmp_results, tmp_logs) # timestamp of first access to the gradeable page first_access_string = "" # grab the submission time if "generate_output" in queue_obj and queue_obj["generate_output"]: submission_string = "" else: with open(os.path.join(tmp_submission, 'submission' ,".submit.timestamp"), 'r') as submission_time_file: submission_string = submission_time_file.read().rstrip() # grab the first access to the gradeable page (if it exists) user_assignment_access_filename = os.path.join(tmp_submission, ".user_assignment_access.json") if os.path.exists(user_assignment_access_filename): with open(user_assignment_access_filename, 'r') as access_file: obj = json.load(access_file) first_access_string = obj[0]["timestamp"] history_file_tmp = os.path.join(tmp_submission,"history.json") history_file = os.path.join(tmp_results,"history.json") if os.path.isfile(history_file_tmp) and not is_test_environment: shutil.move(history_file_tmp, history_file) # fix permissions ta_group_id = os.stat(tmp_results).st_gid os.chown(history_file, int(config.submitty_users['daemon_uid']),ta_group_id) add_permissions(history_file, stat.S_IRGRP) grading_finished = dateutils.get_current_time() grade_result = "" if "generate_output" not in queue_obj: try: shutil.copy(os.path.join(tmp_work, "grade.txt"), tmp_results) with open(os.path.join(tmp_work,"grade.txt")) as f: lines = f.readlines() for line in lines: line = line.rstrip('\n') if line.startswith("Automatic grading total:"): grade_result = line except: with open(os.path.join(tmp_logs,"overall.txt"),'a') as f: f.write(f"\n\nERROR: Grading incomplete -- Could not process {os.path.join(tmp_work,'grade.txt')}") config.logger.log_message( "ERROR: could not process grade.txt. See stack trace entry for more details.", job_id=job_id, is_batch=is_batch_job, which_untrusted=which_untrusted, jobname=item_name, ) config.logger.log_stack_trace( traceback.format_exc(), job_id=job_id, is_batch=is_batch_job, which_untrusted=which_untrusted, jobname=item_name, ) gradeable_deadline_string = gradeable_config_obj["date_due"] submission_datetime = dateutils.read_submitty_date(submission_string) gradeable_deadline_datetime = dateutils.read_submitty_date(gradeable_deadline_string) gradeable_deadline_longstring = dateutils.write_submitty_date(gradeable_deadline_datetime) submission_longstring = dateutils.write_submitty_date(submission_datetime) seconds_late = int((submission_datetime-gradeable_deadline_datetime).total_seconds()) # compute the access duration in seconds (if it exists) access_duration = -1 if first_access_string != "": first_access_datetime = dateutils.read_submitty_date(first_access_string) access_duration = int((submission_datetime-first_access_datetime).total_seconds()) # note: negative = not late grading_finished_longstring = dateutils.write_submitty_date(grading_finished) with open(os.path.join(tmp_submission,".grading_began"), 'r') as f: grading_began_longstring = f.read() grading_began = dateutils.read_submitty_date(grading_began_longstring) gradingtime = (grading_finished - grading_began).total_seconds() queue_obj["gradingtime"]=gradingtime queue_obj["grade_result"]=grade_result queue_obj["which_untrusted"]=which_untrusted waittime = queue_obj["waittime"] try: # Make certain results.json is utf-8 encoded. results_json_path = os.path.join(tmp_work, 'results.json') with codecs.open(results_json_path, 'r', encoding='utf-8', errors='ignore') as infile: results_str = "".join(line.rstrip() for line in infile) results_obj = json.loads(results_str) with open(results_json_path, 'w') as outfile: json.dump(results_obj, outfile, indent=4) shutil.move(results_json_path, os.path.join(tmp_results, "results.json")) except: with open(os.path.join(tmp_logs,"overall.txt"),'a') as f: f.write(f"\n\nERROR: Grading incomplete -- Could not open/write {os.path.join(tmp_work,'results.json')}") config.logger.log_message( "ERROR: results.json read/write error", job_id=job_id, is_batch=is_batch_job, which_untrusted=which_untrusted, jobname=item_name, ) config.logger.log_stack_trace( traceback.format_exc(), job_id=job_id, is_batch=is_batch_job, which_untrusted=which_untrusted, jobname=item_name, ) # Rescue custom validator files custom_validator_output_directory = os.path.join(tmp_results, "custom_validator_output") pattern_copy("rescue_custom_validator_validation_jsons", [os.path.join(tmp_work, 'validation_results_*.json'),], tmp_work, custom_validator_output_directory, tmp_logs) pattern_copy("rescue_custom_validator_logs", [os.path.join(tmp_work, 'validation_logfile_*.txt'),], tmp_work, custom_validator_output_directory, tmp_logs) pattern_copy("rescue_custom_validator_errors", [os.path.join(tmp_work, 'validation_stderr_*.txt'),], tmp_work, custom_validator_output_directory, tmp_logs) just_write_grade_history(history_file, gradeable_deadline_longstring, submission_longstring, seconds_late, first_access_string, access_duration, queue_obj["queue_time"], "BATCH" if is_batch_job else "INTERACTIVE", grading_began_longstring, int(waittime), grading_finished_longstring, int(gradingtime), grade_result, queue_obj.get("revision", None)) with open(os.path.join(tmp_logs,"overall.txt"),'a') as f: f.write("FINISHED GRADING!\n") config.logger.log_message( grade_result, job_id=job_id, is_batch=is_batch_job, which_untrusted=which_untrusted, jobname=item_name, timelabel="grade:", elapsed_time=gradingtime ) with open(os.path.join(tmp_results,"queue_file.json"),'w') as outfile: json.dump(queue_obj,outfile,sort_keys=True,indent=4,separators=(',', ': ')) # save the logs! shutil.copytree(tmp_logs,os.path.join(tmp_results,"logs")) # Save the .submit.notebook # Copy the .submit.notebook to tmp_work for validation submit_notebook_path = os.path.join(tmp_submission, 'submission', ".submit.notebook") if os.path.exists(submit_notebook_path): shutil.copy( submit_notebook_path, os.path.join(tmp_results, ".submit.notebook") ) def allow_only_one_part(path, log_path=os.devnull): """ Given a path to a directory, iterate through the directory and detect folders that start with "part". If there is more than one and they have files, then delete all of the part folders except for the first one that has files. An example would be if you had the folder structure: part1/ test.py part2/ test.cpp Then the part2 folder would be deleted, leaving just the part1 folder. :param path: string filepath to directory to scan for parts in :param log_path: string filepath to file to write print statements to """ if not os.path.isdir(path): return with open(log_path, 'a') as log: clean_directories = [] print('Clean up multiple parts') log.flush() for entry in sorted(os.listdir(path)): full_path = os.path.join(path, entry) if not os.path.isdir(full_path) or not entry.startswith('part'): continue count = len(os.listdir(full_path)) print('{}: {}'.format(entry, count)) if count > 0: clean_directories.append(full_path) if len(clean_directories) > 1: print("Student submitted to multiple parts in violation of instructions.\n" "Removing files from all but first non empty part.") for i in range(1, len(clean_directories)): print("REMOVE: {}".format(clean_directories[i])) for entry in os.listdir(clean_directories[i]): print(" -> {}".format(entry)) shutil.rmtree(clean_directories[i]) # go through the testcase folder (e.g. test01/) and remove anything # that matches the test input (avoid archiving copies of these files!) def remove_test_input_files(overall_log, test_input_path, testcase_folder): for path, subdirs, files in os.walk(test_input_path): for name in files: relative = path[len(test_input_path)+1:] my_file = os.path.join(testcase_folder, relative, name) if os.path.isfile(my_file): print ("removing (likely) stale test_input file: ", my_file, file=overall_log) overall_log.flush() os.remove(my_file) def add_permissions(item,perms): if os.getuid() == os.stat(item).st_uid: os.chmod(item,os.stat(item).st_mode | perms) # else, can't change permissions on this file/directory! def add_permissions_recursive(top_dir,root_perms,dir_perms,file_perms): for root, dirs, files in os.walk(top_dir): add_permissions(root,root_perms) for d in dirs: add_permissions(os.path.join(root, d),dir_perms) for f in files: add_permissions(os.path.join(root, f),file_perms) # copy the files & directories from source to target # it will create directories as needed # it's ok if the target directory or subdirectories already exist # it will overwrite files with the same name if they exist def copy_contents_into(config, job_id, source, target, tmp_logs): if not os.path.isdir(target): config.logger.log_message( "ERROR: Could not copy contents. The target directory does not exist: " + target, job_id=job_id ) raise RuntimeError("ERROR: the target directory does not exist: '", target, "'") if os.path.isdir(source): for item in os.listdir(source): if os.path.isdir(os.path.join(source,item)): if os.path.isdir(os.path.join(target,item)): # recurse copy_contents_into(config, job_id,os.path.join(source,item),os.path.join(target,item),tmp_logs) elif os.path.isfile(os.path.join(target,item)): config.logger.log_message( "ERROR: the target subpath is a file not a directory " f"'{os.path.join(target,item)}'", job_id=job_id, ) raise RuntimeError("ERROR: the target subpath is a file not a directory '", os.path.join(target,item), "'") else: # copy entire subtree shutil.copytree(os.path.join(source,item),os.path.join(target,item)) else: if os.path.exists(os.path.join(target,item)): with open(os.path.join(tmp_logs,"overall.txt"),'a') as f: print ("\nWARNING: REMOVING DESTINATION FILE" , os.path.join(target,item), " THEN OVERWRITING: ", os.path.join(source,item), "\n", file=f) os.remove(os.path.join(target,item)) try: shutil.copy(os.path.join(source,item),target) except: config.logger.log_stack_trace(traceback.format_exc(), job_id=job_id) return else: print(f'{source} is not a directory') # copy files that match one of the patterns from the source directory # to the target directory. def pattern_copy(what, patterns, source, target, tmp_logs): with open(os.path.join(tmp_logs,"overall.txt"),'a') as f: print (what," pattern copy ", patterns, " from ", source, " -> ", target, file=f) for pattern in patterns: for my_file in glob.glob(os.path.join(source,pattern),recursive=True): if (os.path.isfile(my_file)): # grab the matched name relpath = os.path.relpath(my_file,source) # make the necessary directories leading to the file os.makedirs(os.path.join(target,os.path.dirname(relpath)),exist_ok=True) # copy the file shutil.copy(my_file,os.path.join(target,relpath)) print (" COPY ",my_file, " -> ",os.path.join(target,relpath), file=f) else: print ("skip this directory (will recurse into it later)", my_file, file=f) # give permissions to all created files to the DAEMON_USER def untrusted_grant_rwx_access(SUBMITTY_INSTALL_DIR, which_untrusted, my_dir): subprocess.call([os.path.join(SUBMITTY_INSTALL_DIR, "sbin", "untrusted_execute"), which_untrusted, "/usr/bin/find", my_dir, "-user", which_untrusted, "-exec", "/bin/chmod", "ugo+rwx", "{}", ";"]) # Used by packer unpacker def zip_my_directory(path,zipfilename): zipf = zipfile.ZipFile(zipfilename,'w',zipfile.ZIP_DEFLATED) for root,dirs,files in os.walk(path): for my_file in files: relpath = root[len(path)+1:] zipf.write(os.path.join(root,my_file),os.path.join(relpath,my_file)) zipf.close() # Used by packer unpacker def unzip_this_file(zipfilename,path): if not os.path.exists(zipfilename): raise RuntimeError("ERROR: zip file does not exist '", zipfilename, "'") zip_ref = zipfile.ZipFile(zipfilename,'r') zip_ref.extractall(path) zip_ref.close() # ================================================================================== # # PRE- AND POST-COMMAND FUNCTIONS # # ================================================================================== def pre_command_copy_file(config, source_testcase, source_directory, destination_testcase, destination, job_id, tmp_logs): """ Handles the cp pre_command. """ source_testcase = os.path.join(str(os.getcwd()), source_testcase) if not os.path.isdir(source_testcase): raise RuntimeError("ERROR: The directory {0} does not exist.".format(source_testcase)) if not os.path.isdir(destination_testcase): raise RuntimeError("ERROR: The directory {0} does not exist.".format(destination_testcase)) source = os.path.join(source_testcase, source_directory) target = os.path.join(destination_testcase, destination) # The target without the potential executable. target_base = '/'.join(target.split('/')[:-1]) # If the source is a directory, we copy the entire thing into the # target. if os.path.isdir(source): # We must copy from directory to directory copy_contents_into(config, job_id, source, target, tmp_logs) # Separate ** and * for simplicity. elif not '**' in source: # Grab all of the files that match the pattern files = glob.glob(source, recursive=True) # The target base must exist in order for a copy to occur if target_base != '' and not os.path.isdir(target_base): raise RuntimeError("ERROR: The directory {0} does not exist.".format(target_base)) # Copy every file. This works whether target exists (is a directory) or does not (is a target file) for file in files: try: shutil.copy(file, target) except Exception as e: traceback.print_exc() config.logger.log_message( f"Pre Command could not perform copy: {file} -> {target}", job_id=job_id ) else: # Everything after the first **. source_base = source[:source.find('**')] # The full target must exist (we must be moving to a directory.) if not os.path.isdir(target): raise RuntimeError("ERROR: The directory {0} does not exist.".format(target)) # Grab all of the files that match the pattern. files = glob.glob(source, recursive=True) # For every file matched for file_source in files: file_target = os.path.join(target, file_source.replace(source_base,'')) # Remove the file path. file_target_dir = '/'.join(file_target.split('/')[:-1]) # If the target directory doesn't exist, create it. if not os.path.isdir(file_target_dir): os.makedirs(file_target_dir) # Copy. try: shutil.copy(file_source, file_target) except Exception as e: traceback.print_exc() config.logger.log_message( f"Pre Command could not perform copy: {file_source} -> {file_target}", job_id=job_id )
the-stack_0_958
from __future__ import unicode_literals import fnmatch import logging import os import re import shutil import subprocess import tempfile from difflib import SequenceMatcher from functools import cmp_to_key from django.core.exceptions import ObjectDoesNotExist from django.utils import six from django.utils.encoding import force_text from django.utils.translation import ugettext as _ from djblets.log import log_timed from djblets.siteconfig.models import SiteConfiguration from djblets.util.compat.python.past import cmp from djblets.util.contextmanagers import controlled_subprocess from reviewboard.deprecation import RemovedInReviewBoard50Warning from reviewboard.diffviewer.commit_utils import exclude_ancestor_filediffs from reviewboard.diffviewer.errors import DiffTooBigError, PatchError from reviewboard.scmtools.core import PRE_CREATION, HEAD CHUNK_RANGE_RE = re.compile( br'^@@ -(?P<orig_start>\d+)(,(?P<orig_len>\d+))? ' br'\+(?P<modified_start>\d+)(,(?P<modified_len>\d+))? @@', re.M) NEWLINE_CONVERSION_BYTES_RE = re.compile(br'\r(\r?\n)?') NEWLINE_CONVERSION_UNICODE_RE = re.compile(r'\r(\r?\n)?') NEWLINE_BYTES_RE = re.compile(br'(?:\n|\r(?:\r?\n)?)') NEWLINE_UNICODE_RE = re.compile(r'(?:\n|\r(?:\r?\n)?)') _PATCH_GARBAGE_INPUT = 'patch: **** Only garbage was found in the patch input.' def convert_to_unicode(s, encoding_list): """Return the passed string as a unicode object. If conversion to unicode fails, we try the user-specified encoding, which defaults to ISO 8859-15. This can be overridden by users inside the repository configuration, which gives users repository-level control over file encodings. Ideally, we'd like to have per-file encodings, but this is hard. The best we can do now is a comma-separated list of things to try. Returns the encoding type which was used and the decoded unicode object. Args: s (bytes or bytearray or unicode): The string to convert to Unicode. encoding_list (list of unicode): The list of encodings to try. Returns: tuple: A tuple with the following information: 1. A compatible encoding (:py:class:`unicode`). 2. The Unicode data (:py:class:`unicode`). Raises: TypeError: The provided value was not a Unicode string, byte string, or a byte array. UnicodeDecodeError: None of the encoding types were valid for the provided string. """ if isinstance(s, bytearray): # Some SCMTool backends return file data as a bytearray instead of # bytes. s = bytes(s) if isinstance(s, six.text_type): # Nothing to do return 'utf-8', s elif isinstance(s, bytes): try: # First try strict utf-8 enc = 'utf-8' return enc, six.text_type(s, enc) except UnicodeError: # Now try any candidate encodings for e in encoding_list: try: return e, six.text_type(s, e) except (UnicodeError, LookupError): pass # Finally, try to convert to unicode and replace all unknown # characters. try: enc = 'utf-8' return enc, six.text_type(s, enc, errors='replace') except UnicodeError: raise UnicodeDecodeError( _("Diff content couldn't be converted to unicode using " "the following encodings: %s") % (['utf-8'] + encoding_list)) else: raise TypeError('Value to convert is unexpected type %s', type(s)) def convert_line_endings(data): r"""Convert line endings in a file. Some types of repositories provide files with a single trailing Carriage Return (``\r``), even if the rest of the file used a CRLF (``\r\n``) throughout. In these cases, GNU diff will add a ``\ No newline at end of file`` to the end of the diff, which GNU patch understands and will apply to files with just a trailing ``\r``. However, we normalize ``\r`` to ``\n``, which breaks GNU patch in these cases. This function works around this by removing the last ``\r`` and then converting standard types of newlines to a ``\n``. This is not meant for use in providing byte-compatible versions of files, but rather to help with comparing lines-for-lines in situations where two versions of a file may come from different platforms with different newlines. Args: data (bytes or unicode): A string to normalize. This supports either byte strings or Unicode strings. Returns: bytes or unicode: The data with newlines converted, in the original string type. Raises: TypeError: The ``data`` argument provided is not a byte string or Unicode string. """ # See https://www.reviewboard.org/bugs/386/ and # https://reviews.reviewboard.org/r/286/ for the rationale behind the # normalization. if data: if isinstance(data, bytes): cr = b'\r' lf = b'\n' newline_re = NEWLINE_CONVERSION_BYTES_RE elif isinstance(data, six.text_type): cr = '\r' lf = '\n' newline_re = NEWLINE_CONVERSION_UNICODE_RE else: raise TypeError( _('%s is not a valid string type for convert_line_endings.') % type(data)) if data.endswith(cr): data = data[:-1] data = newline_re.sub(lf, data) return data def split_line_endings(data): """Split a string into lines while preserving all non-CRLF characters. Unlike :py:meth:`str.splitlines`, this will only split on the following character sequences: ``\n``, ``\r``, ``\r\n``, and ``\r\r\n``. This is needed to prevent the sort of issues encountered with Unicode strings when calling :py:meth:`str.splitlines``, which is that form feed characters would be split. :program:`patch` and :program:`diff` accept form feed characters as valid characters in diffs, and doesn't treat them as newlines, but :py:meth:`str.splitlines` will treat it as a newline anyway. Args: data (bytes or unicode): The data to split into lines. Returns: list of bytes or unicode: The list of lines. """ if isinstance(data, bytes): lines = NEWLINE_BYTES_RE.split(data) elif isinstance(data, six.text_type): lines = NEWLINE_UNICODE_RE.split(data) else: raise TypeError('data must be a bytes or unicode string, not %s' % type(data)) # splitlines() would chop off the last entry, if the string ends with # a newline. split() doesn't do this. We need to retain that same # behavior by chopping it off ourselves. if not lines[-1]: lines = lines[:-1] return lines def patch(diff, orig_file, filename, request=None): """Apply a diff to a file. This delegates out to ``patch`` because noone except Larry Wall knows how to patch. Args: diff (bytes): The contents of the diff to apply. orig_file (bytes): The contents of the original file. filename (unicode): The name of the file being patched. request (django.http.HttpRequest, optional): The HTTP request, for use in logging. Returns: bytes: The contents of the patched file. Raises: reviewboard.diffutils.errors.PatchError: An error occurred when trying to apply the patch. """ log_timer = log_timed('Patching file %s' % filename, request=request) if not diff.strip(): # Someone uploaded an unchanged file. Return the one we're patching. return orig_file # Prepare the temporary directory if none is available tempdir = tempfile.mkdtemp(prefix='reviewboard.') try: orig_file = convert_line_endings(orig_file) diff = convert_line_endings(diff) (fd, oldfile) = tempfile.mkstemp(dir=tempdir) f = os.fdopen(fd, 'w+b') f.write(orig_file) f.close() newfile = '%s-new' % oldfile process = subprocess.Popen(['patch', '-o', newfile, oldfile], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=tempdir) with controlled_subprocess('patch', process) as p: stdout, stderr = p.communicate(diff) failure = p.returncode try: with open(newfile, 'rb') as f: new_file = f.read() except Exception: new_file = None if failure: rejects_file = '%s.rej' % newfile try: with open(rejects_file, 'rb') as f: rejects = f.read() except Exception: rejects = None error_output = force_text(stderr.strip() or stdout.strip()) # Munge the output to show the filename instead of # randomly-generated tempdir locations. base_filename = os.path.basename(filename) error_output = ( error_output .replace(rejects_file, '%s.rej' % base_filename) .replace(oldfile, base_filename) ) raise PatchError(filename=filename, error_output=error_output, orig_file=orig_file, new_file=new_file, diff=diff, rejects=rejects) return new_file finally: shutil.rmtree(tempdir) log_timer.done() def get_original_file_from_repo(filediff, request=None, encoding_list=None): """Return the pre-patched file for the FileDiff from the repository. The parent diff will be applied if it exists. Version Added: 4.0 Args: filediff (reviewboard.diffviewer.models.filediff.FileDiff): The FileDiff to retrieve the pre-patch file for. request (django.http.HttpRequest, optional): The HTTP request from the client. encoding_list (list of unicode, optional): A custom list of encodings to try when processing the file. This will override the encoding list normally retrieved from the FileDiff and repository. If there's already a known valid encoding for the file, it will be used instead. This is here for compatibility and will be removed in Review Board 5.0. Returns: bytes: The pre-patched file. Raises: UnicodeDecodeError: The source file was not compatible with any of the available encodings. reviewboard.diffutils.errors.PatchError: An error occurred when trying to apply the patch. reviewboard.scmtools.errors.SCMError: An error occurred while computing the pre-patch file. """ data = b'' extra_data = filediff.extra_data or {} # If the file has a parent source filename/revision recorded, we're # going to need to fetch that, since that'll be (potentially) the # latest commit in the repository. # # This information was added in Review Board 3.0.19. Prior versions # stored the parent source revision as filediff.source_revision # (rather than leaving that as identifying information for the actual # file being shown in the review). It did not store the parent # filename at all (which impacted diffs that contained a moved/renamed # file on any type of repository that required a filename for lookup, # such as Mercurial -- Git was not affected, since it only needs # blob SHAs). # # If we're not working with a parent diff, or this is a FileDiff # with legacy parent diff information, we just use the FileDiff # FileDiff filename/revision fields as normal. source_filename = extra_data.get('parent_source_filename', filediff.source_file) source_revision = extra_data.get('parent_source_revision', filediff.source_revision) if source_revision != PRE_CREATION: repository = filediff.get_repository() data = repository.get_file( source_filename, source_revision, base_commit_id=filediff.diffset.base_commit_id, request=request) # Convert to unicode before we do anything to manipulate the string. encoding_list = get_filediff_encodings(filediff, encoding_list) encoding, data = convert_to_unicode(data, encoding_list) # Repository.get_file doesn't know or care about how we need line # endings to work. So, we'll just transform every time. # # This is mostly only a problem if the diff chunks aren't in the # cache, though if several people are working off the same file, # we'll be doing extra work to convert those line endings for each # of those instead of once. # # Only other option is to cache the resulting file, but then we're # duplicating the cached contents. data = convert_line_endings(data) # Convert back to bytes using whichever encoding we used to decode. data = data.encode(encoding) if not filediff.encoding: # Now that we know an encoding that works, remember it for next # time. filediff.extra_data['encoding'] = encoding filediff.save(update_fields=('extra_data',)) # If there's a parent diff set, apply it to the buffer. if (filediff.parent_diff and not filediff.is_parent_diff_empty(cache_only=True)): try: data = patch(diff=filediff.parent_diff, orig_file=data, filename=source_filename, request=request) except PatchError as e: # patch(1) cannot process diff files that contain no diff sections. # We are going to check and see if the parent diff contains no diff # chunks. if (e.error_output == _PATCH_GARBAGE_INPUT and not filediff.is_parent_diff_empty()): raise return data def get_original_file(filediff, request=None, encoding_list=None): """Return the pre-patch file of a FileDiff. Version Changed: 4.0: The ``encoding_list`` parameter should no longer be provided by callers. Encoding lists are now calculated automatically. Passing a custom list will override the calculated one. Args: filediff (reviewboard.diffviewer.models.filediff.FileDiff): The FileDiff to retrieve the pre-patch file for. request (django.http.HttpRequest, optional): The HTTP request from the client. encoding_list (list of unicode, optional): A custom list of encodings to try when processing the file. This will override the encoding list normally retrieved from the FileDiff and repository. If there's already a known valid encoding for the file, it will be used instead. Returns: bytes: The pre-patch file. Raises: UnicodeDecodeError: The source file was not compatible with any of the available encodings. reviewboard.diffutils.errors.PatchError: An error occurred when trying to apply the patch. reviewboard.scmtools.errors.SCMError: An error occurred while computing the pre-patch file. """ if encoding_list: RemovedInReviewBoard50Warning.warn( 'The encoding_list parameter passed to get_original_file() is ' 'deprecated and will be removed in Review Board 5.0.') data = b'' # If the FileDiff has a parent diff, it must be the case that it has no # ancestor FileDiffs. We can fall back to the no history case here. if filediff.parent_diff: return get_original_file_from_repo(filediff=filediff, request=request, encoding_list=encoding_list) # Otherwise, there may be one or more ancestors that we have to apply. ancestors = filediff.get_ancestors(minimal=True) if ancestors: oldest_ancestor = ancestors[0] # If the file was created outside this history, fetch it from the # repository and apply the parent diff if it exists. if not oldest_ancestor.is_new: data = get_original_file_from_repo(filediff=oldest_ancestor, request=request, encoding_list=encoding_list) if not oldest_ancestor.is_diff_empty: data = patch(diff=oldest_ancestor.diff, orig_file=data, filename=oldest_ancestor.source_file, request=request) for ancestor in ancestors[1:]: # TODO: Cache these results so that if this ``filediff`` is an # ancestor of another FileDiff, computing that FileDiff's original # file will be cheaper. This will also allow an ancestor filediff's # original file to be computed cheaper. data = patch(diff=ancestor.diff, orig_file=data, filename=ancestor.source_file, request=request) elif not filediff.is_new: data = get_original_file_from_repo(filediff=filediff, request=request, encoding_list=encoding_list) return data def get_patched_file(source_data, filediff, request=None): """Return the patched version of a file. This will normalize the patch, applying any changes needed for the repository, and then patch the provided data with the patch contents. Args: source_data (bytes): The file contents to patch. filediff (reviewboard.diffviewer.models.filediff.FileDiff): The FileDiff representing the patch. request (django.http.HttpClient, optional): The HTTP request from the client. Returns: bytes: The patched file contents. """ repository = filediff.get_repository() diff = repository.normalize_patch(patch=filediff.diff, filename=filediff.source_file, revision=filediff.source_revision) return patch(diff=diff, orig_file=source_data, filename=filediff.dest_file, request=request) def get_revision_str(revision): if revision == HEAD: return "HEAD" elif revision == PRE_CREATION: return "" else: return _("Revision %s") % revision def get_filenames_match_patterns(patterns, filenames): """Return whether any of the filenames match any of the patterns. This is used to compare a list of filenames to a list of :py:mod:`patterns <fnmatch>`. The patterns are case-sensitive. Args: patterns (list of unicode): The list of patterns to match against. filename (list of unicode): The list of filenames. Returns: bool: ``True`` if any filenames match any patterns. ``False`` if none match. """ for pattern in patterns: for filename in filenames: if fnmatch.fnmatchcase(filename, pattern): return True return False def get_filediff_encodings(filediff, encoding_list=None): """Return a list of encodings to try for a FileDiff's source text. If the FileDiff already has a known encoding stored, then it will take priority. The provided encoding list, or the repository's list of configured encodingfs, will be provided as fallbacks. Args: filediff (reviewboard.diffviewer.models.filediff.FileDiff): The FileDiff to return encodings for. encoding_list (list of unicode, optional): An explicit list of encodings to try. If not provided, the repository's list of encodings will be used instead (which is generally preferred). Returns: list of unicode: The list of encodings to try for the source file. """ filediff_encoding = filediff.encoding encodings = [] if encoding_list is None: encoding_list = filediff.get_repository().get_encoding_list() if filediff_encoding: encodings.append(filediff_encoding) encodings += [ encoding for encoding in encoding_list if encoding != filediff_encoding ] else: encodings += encoding_list return encodings def get_matched_interdiff_files(tool, filediffs, interfilediffs): """Generate pairs of matched files for display in interdiffs. This compares a list of filediffs and a list of interfilediffs, attempting to best match up the files in both for display in the diff viewer. This will prioritize matches that share a common source filename, destination filename, and new/deleted state. Failing that, matches that share a common source filename are paired off. Any entries in ``interfilediffs` that don't have any match in ``filediffs`` are considered new changes in the interdiff, and any entries in ``filediffs`` that don't have entries in ``interfilediffs`` are considered reverted changes. Args: tool (reviewboard.scmtools.core.SCMTool) The tool used for all these diffs. filediffs (list of reviewboard.diffviewer.models.filediff.FileDiff): The list of filediffs on the left-hand side of the diff range. interfilediffs (list of reviewboard.diffviewer.models.filediff. FileDiff): The list of filediffs on the right-hand side of the diff range. Yields: tuple: A paired off filediff match. This is a tuple containing two entries, each a :py:class:`~reviewboard.diffviewer.models.filediff.FileDiff` or ``None``. """ parser = tool.get_parser(b'') _normfile = parser.normalize_diff_filename def _make_detail_key(filediff): return (_normfile(filediff.source_file), _normfile(filediff.dest_file), filediff.is_new, filediff.deleted) # In order to support interdiffs properly, we need to display diffs on # every file in the union of both diffsets. Iterating over one diffset # or the other doesn't suffice. We also need to be careful to handle # things like renamed/moved files, particularly when there are multiple # of them with the same source filename. # # This is done in four stages: # # 1. Build up maps and a set for keeping track of possible # interfilediff candidates for future stages. # # 2. Look for any files that are common between the two diff revisions # that have the same source filename, same destination filename, and # the same new/deleted states. # # Unless a diff is hand-crafted, there should never be more than one # match here. # # 3. Look for any files that are common between the two diff revisions # that have the same source filename and new/deleted state. These will # ignore the destination filename, helping to match cases where diff 1 # modifies a file and diff 2 modifies + renames/moves it. # # 4. Add any remaining files from diff 2 that weren't found in diff 1. # # We don't have to worry about things like the order of matched diffs. # That will be taken care of at the end of the function. detail_interdiff_map = {} simple_interdiff_map = {} remaining_interfilediffs = set() # Stage 1: Build up the maps/set of interfilediffs. for interfilediff in interfilediffs: source_file = _normfile(interfilediff.source_file) detail_key = _make_detail_key(interfilediff) # We'll store this interfilediff in three spots: The set of # all interfilediffs, the detail map (for source + dest + # is_new file comparisons), and the simple map (for direct # source_file comparisons). These will be used for the # different matching stages. remaining_interfilediffs.add(interfilediff) detail_interdiff_map[detail_key] = interfilediff simple_interdiff_map.setdefault(source_file, set()).add(interfilediff) # Stage 2: Look for common files with the same source/destination # filenames and new/deleted states. # # There will only be one match per filediff, at most. Any filediff or # interfilediff that we find will be excluded from future stages. remaining_filediffs = [] for filediff in filediffs: source_file = _normfile(filediff.source_file) try: interfilediff = detail_interdiff_map.pop( _make_detail_key(filediff)) except KeyError: remaining_filediffs.append(filediff) continue yield filediff, interfilediff if interfilediff: remaining_interfilediffs.discard(interfilediff) try: simple_interdiff_map.get(source_file, []).remove(interfilediff) except ValueError: pass # Stage 3: Look for common files with the same source/destination # filenames (when they differ). # # Any filediff from diff 1 not already processed in stage 2 will be # processed here. We'll look for any filediffs from diff 2 that were # moved/copied from the same source to the same destination. This is one # half of the detailed file state we checked in stage 2. new_remaining_filediffs = [] for filediff in remaining_filediffs: source_file = _normfile(filediff.source_file) found_interfilediffs = [ temp_interfilediff for temp_interfilediff in simple_interdiff_map.get(source_file, []) if (temp_interfilediff.dest_file == filediff.dest_file and filediff.source_file != filediff.dest_file) ] if found_interfilediffs: remaining_interfilediffs.difference_update(found_interfilediffs) for interfilediff in found_interfilediffs: simple_interdiff_map[source_file].remove(interfilediff) yield filediff, interfilediff else: new_remaining_filediffs.append(filediff) remaining_filediffs = new_remaining_filediffs # Stage 4: Look for common files with the same source filenames and # new/deleted states. # # Any filediff from diff 1 not already processed in stage 3 will be # processed here. We'll look for any filediffs from diff 2 that match # the source filename and the new/deleted state. Any that we find will # be matched up. new_remaining_filediffs = [] for filediff in remaining_filediffs: source_file = _normfile(filediff.source_file) found_interfilediffs = [ temp_interfilediff for temp_interfilediff in simple_interdiff_map.get(source_file, []) if (temp_interfilediff.is_new == filediff.is_new and temp_interfilediff.deleted == filediff.deleted) ] if found_interfilediffs: remaining_interfilediffs.difference_update(found_interfilediffs) for interfilediff in found_interfilediffs: simple_interdiff_map[source_file].remove(interfilediff) yield filediff, interfilediff else: new_remaining_filediffs.append(filediff) remaining_filediffs = new_remaining_filediffs # Stage 5: Look for common files with the same source filenames and # compatible new/deleted states. # # This will help catch files that were marked as new in diff 1 but not in # diff 2, or deleted in diff 2 but not in diff 1. (The inverse for either # is NOT matched!). This is important because if a file is introduced in a # parent diff, the file can end up showing up as new itself (which is a # separate bug). # # Even if that bug did not exist, it's still possible for a file to be new # in one revision but committed separately (by that user or another), so we # need these matched. # # Any files not found with a matching interdiff will simply be yielded. # This is the last stage dealing with the filediffs in the first revision. for filediff in remaining_filediffs: source_file = _normfile(filediff.source_file) found_interfilediffs = [ temp_interfilediff for temp_interfilediff in simple_interdiff_map.get(source_file, []) if (((filediff.is_new or not temp_interfilediff.is_new) or (not filediff.is_new and temp_interfilediff.is_new and filediff.dest_detail == temp_interfilediff.dest_detail)) and (not filediff.deleted or temp_interfilediff.deleted)) ] if found_interfilediffs: remaining_interfilediffs.difference_update(found_interfilediffs) for interfilediff in found_interfilediffs: # NOTE: If more stages are ever added that deal with # simple_interdiff_map, then we'll need to remove # interfilediff from that map here. yield filediff, interfilediff else: yield filediff, None # Stage 6: Add any remaining files from the interdiff. # # We've removed everything that we've already found. What's left are # interdiff files that are new. They have no file to diff against. # # The end result is going to be a view that's the same as when you're # viewing a standard diff. As such, we can pretend the interdiff is # the source filediff and not specify an interdiff. Keeps things # simple, code-wise, since we really have no need to special-case # this. for interfilediff in remaining_interfilediffs: yield None, interfilediff def get_filediffs_match(filediff1, filediff2): """Return whether two FileDiffs effectively match. This is primarily checking that the patched version of two files are going to be basically the same. This will first check that we even have both FileDiffs. Assuming we have both, this will check the diff for equality. If not equal, we at least check that both files were deleted (which is equivalent to being equal). The patched SHAs are then checked. These would be generated as part of the diff viewing process, so may not be available. We prioritize the SHA256 hashes (introduced in Review Board 4.0), and fall back on SHA1 hashes if not present. Args: filediff1 (reviewboard.diffviewer.models.filediff.FileDiff): The first FileDiff to compare. filediff2 (reviewboard.diffviewer.models.filediff.FileDiff): The second FileDiff to compare. Returns: bool: ``True`` if both FileDiffs effectively match. ``False`` if they do not. Raises: ValueError: ``None`` was provided for both ``filediff1`` and ``filediff2``. """ if filediff1 is None and filediff2 is None: raise ValueError('filediff1 and filediff2 cannot both be None') # For the hash comparisons, there's a chance we won't have any SHA1 (RB # 2.0+) or SHA256 (RB 4.0+) hashes, so we have to check for them. We want # to prioritize SHA256 hashes, but if the filediff or interfilediff lacks # a SHA256 hash, we want to fall back to SHA1. return (filediff1 is not None and filediff2 is not None and (filediff1.diff == filediff2.diff or (filediff1.deleted and filediff2.deleted) or (filediff1.patched_sha256 is not None and filediff1.patched_sha256 == filediff2.patched_sha256) or ((filediff1.patched_sha256 is None or filediff2.patched_sha256 is None) and filediff1.patched_sha1 is not None and filediff1.patched_sha1 == filediff2.patched_sha1))) def get_diff_files(diffset, filediff=None, interdiffset=None, interfilediff=None, base_filediff=None, request=None, filename_patterns=None, base_commit=None, tip_commit=None): """Return a list of files that will be displayed in a diff. This will go through the given diffset/interdiffset, or a given filediff within that diffset, and generate the list of files that will be displayed. This file list will contain a bunch of metadata on the files, such as the index, original/modified names, revisions, associated filediffs/diffsets, and so on. This can be used along with :py:func:`populate_diff_chunks` to build a full list containing all diff chunks used for rendering a side-by-side diff. Args: diffset (reviewboard.diffviewer.models.diffset.DiffSet): The diffset containing the files to return. filediff (reviewboard.diffviewer.models.filediff.FileDiff, optional): A specific file in the diff to return information for. interdiffset (reviewboard.diffviewer.models.diffset.DiffSet, optional): A second diffset used for an interdiff range. interfilediff (reviewboard.diffviewer.models.filediff.FileDiff, optional): A second specific file in ``interdiffset`` used to return information for. This should be provided if ``filediff`` and ``interdiffset`` are both provided. If it's ``None`` in this case, then the diff will be shown as reverted for this file. This may not be provided if ``base_filediff`` is provided. base_filediff (reviewbaord.diffviewer.models.filediff.FileDiff, optional): The base FileDiff to use. This may only be provided if ``filediff`` is provided and ``interfilediff`` is not. filename_patterns (list of unicode, optional): A list of filenames or :py:mod:`patterns <fnmatch>` used to limit the results. Each of these will be matched against the original and modified file of diffs and interdiffs. base_commit (reviewboard.diffviewer.models.diffcommit.DiffCommit, optional): An optional base commit. No :py:class:`FileDiffs <reviewboard.diffviewer.models.filediff.FileDiff>` from commits before that commit will be included in the results. This argument only applies to :py:class:`DiffSets <reviewboard.diffviewer.models.diffset.DiffSet>` with :py:class:`DiffCommits <reviewboard.diffviewer.models.diffcommit .DiffCommit>`. tip_commit (reviewboard.diffviewer.models.diffcommit.DiffSet, optional): An optional tip commit. No :py:class:`FileDiffs <reviewboard.diffviewer.models.filediff.FileDiff>` from commits after that commit will be included in the results. This argument only applies to :py:class:`DiffSets <reviewboard.diffviewer.models.diffset.DiffSet>` with :py:class:`DiffCommits <reviewboard.diffviewer.models.diffcommit .DiffCommit>`. Returns: list of dict: A list of dictionaries containing information on the files to show in the diff, in the order in which they would be shown. """ # It is presently not supported to do an interdiff with commit spans. It # would require base/tip commits for the interdiffset as well. assert not interdiffset or (base_commit is None and tip_commit is None) assert base_filediff is None or interfilediff is None if (diffset.commit_count > 0 and base_commit and tip_commit and base_commit.pk > tip_commit.pk): # If the base commit is more recent than the tip commit the interval # **must** be empty. return [] per_commit_filediffs = None requested_base_filediff = base_filediff if filediff: filediffs = [filediff] if interdiffset: log_timer = log_timed("Generating diff file info for " "interdiffset ids %s-%s, filediff %s" % (diffset.id, interdiffset.id, filediff.id), request=request) else: log_timer = log_timed("Generating diff file info for " "diffset id %s, filediff %s" % (diffset.id, filediff.id), request=request) if (diffset.commit_count > 0 and ((base_commit and filediff.commit_id <= base_commit.pk) or (tip_commit and filediff.commit_id > tip_commit.pk))): # The requested FileDiff is outside the requested commit range. return [] else: if (diffset.commit_count > 0 and (base_commit is not None or tip_commit is not None)): # Even if we have base_commit, we need to query for all FileDiffs # so that we can do ancestor computations. filediffs = per_commit_filediffs = diffset.per_commit_files if base_commit: base_commit_id = base_commit.pk else: base_commit_id = 0 if tip_commit: tip_commit_id = tip_commit.pk else: tip_commit_id = None filediffs = [ f for f in filediffs if (f.commit_id > base_commit_id and (not tip_commit_id or f.commit_id <= tip_commit_id)) ] filediffs = exclude_ancestor_filediffs(filediffs, per_commit_filediffs) else: filediffs = diffset.cumulative_files if interdiffset: log_timer = log_timed("Generating diff file info for " "interdiffset ids %s-%s" % (diffset.id, interdiffset.id), request=request) else: log_timer = log_timed("Generating diff file info for " "diffset id %s" % diffset.id, request=request) # Filediffs that were created with leading slashes stripped won't match # those created with them present, so we need to compare them without in # order for the filenames to match up properly. tool = diffset.repository.get_scmtool() if interdiffset: if not filediff: if interdiffset.commit_count > 0: # Currently, only interdiffing between cumulative diffs is # supported. interfilediffs = interdiffset.cumulative_files else: interfilediffs = list(interdiffset.files.all()) elif interfilediff: interfilediffs = [interfilediff] else: interfilediffs = [] filediff_parts = [] matched_filediffs = get_matched_interdiff_files( tool=tool, filediffs=filediffs, interfilediffs=interfilediffs) for temp_filediff, temp_interfilediff in matched_filediffs: if temp_filediff: filediff_parts.append((temp_filediff, temp_interfilediff, True)) elif temp_interfilediff: filediff_parts.append((temp_interfilediff, None, False)) else: logging.error( 'get_matched_interdiff_files returned an entry with an ' 'empty filediff and interfilediff for diffset=%r, ' 'interdiffset=%r, filediffs=%r, interfilediffs=%r', diffset, interdiffset, filediffs, interfilediffs) raise ValueError( 'Internal error: get_matched_interdiff_files returned an ' 'entry with an empty filediff and interfilediff! Please ' 'report this along with information from the server ' 'error log.') else: # We're not working with interdiffs. We can easily create the # filediff_parts directly. filediff_parts = [ (temp_filediff, None, False) for temp_filediff in filediffs ] # Now that we have all the bits and pieces we care about for the filediffs, # we can start building information about each entry on the diff viewer. files = [] for parts in filediff_parts: filediff, interfilediff, force_interdiff = parts newfile = filediff.is_new if interdiffset: # First, find out if we want to even process this one. # If the diffs are identical, or the patched files are identical, # or if the files were deleted in both cases, then we can be # absolutely sure that there's nothing interesting to show to # the user. if get_filediffs_match(filediff, interfilediff): continue source_revision = _('Diff Revision %s') % diffset.revision else: source_revision = get_revision_str(filediff.source_revision) if interfilediff: dest_revision = _('Diff Revision %s') % interdiffset.revision else: if force_interdiff: dest_revision = (_('Diff Revision %s - File Reverted') % interdiffset.revision) elif newfile: dest_revision = _('New File') else: dest_revision = _('New Change') if interfilediff: raw_depot_filename = filediff.dest_file raw_dest_filename = interfilediff.dest_file else: raw_depot_filename = filediff.source_file raw_dest_filename = filediff.dest_file depot_filename = tool.normalize_path_for_display(raw_depot_filename) dest_filename = tool.normalize_path_for_display(raw_dest_filename) if filename_patterns: if dest_filename == depot_filename: filenames = [dest_filename] else: filenames = [dest_filename, depot_filename] if not get_filenames_match_patterns(patterns=filename_patterns, filenames=filenames): continue base_filediff = None if filediff.commit_id: # If we pre-computed this above (or before) and we have all # FileDiffs, this will cost no additional queries. # # Otherwise this will cost up to # ``1 + len(diffset.per_commit_files.count())`` queries. ancestors = filediff.get_ancestors(minimal=False, filediffs=per_commit_filediffs) if ancestors: if requested_base_filediff: assert len(filediffs) == 1 if requested_base_filediff in ancestors: base_filediff = requested_base_filediff else: raise ValueError( 'Invalid base_filediff (ID %d) for filediff (ID ' '%d)' % (requested_base_filediff.pk, filediff.pk)) elif base_commit: base_filediff = filediff.get_base_filediff( base_commit=base_commit, ancestors=ancestors) f = { 'depot_filename': depot_filename, 'dest_filename': dest_filename or depot_filename, 'revision': source_revision, 'dest_revision': dest_revision, 'filediff': filediff, 'interfilediff': interfilediff, 'force_interdiff': force_interdiff, 'binary': filediff.binary, 'deleted': filediff.deleted, 'moved': filediff.moved, 'copied': filediff.copied, 'moved_or_copied': filediff.moved or filediff.copied, 'newfile': newfile, 'is_symlink': filediff.extra_data.get('is_symlink', False), 'index': len(files), 'chunks_loaded': False, 'is_new_file': ( (newfile or (base_filediff is not None and base_filediff.is_new)) and not interfilediff and not filediff.parent_diff ), 'base_filediff': base_filediff, } # When displaying an interdiff, we do not want to display the # revision of the base filediff. Instead, we will display the diff # revision as computed above. if base_filediff and not interdiffset: f['revision'] = get_revision_str(base_filediff.source_revision) f['depot_filename'] = tool.normalize_path_for_display( base_filediff.source_file) if force_interdiff: f['force_interdiff_revision'] = interdiffset.revision files.append(f) log_timer.done() if len(files) == 1: return files else: return get_sorted_filediffs( files, key=lambda f: f['interfilediff'] or f['filediff']) def populate_diff_chunks(files, enable_syntax_highlighting=True, request=None): """Populates a list of diff files with chunk data. This accepts a list of files (generated by get_diff_files) and generates diff chunk data for each file in the list. The chunk data is stored in the file state. """ from reviewboard.diffviewer.chunk_generator import get_diff_chunk_generator for diff_file in files: generator = get_diff_chunk_generator( request, diff_file['filediff'], diff_file['interfilediff'], diff_file['force_interdiff'], enable_syntax_highlighting, base_filediff=diff_file.get('base_filediff')) chunks = list(generator.get_chunks()) diff_file.update({ 'chunks': chunks, 'num_chunks': len(chunks), 'changed_chunk_indexes': [], 'whitespace_only': len(chunks) > 0, }) for j, chunk in enumerate(chunks): chunk['index'] = j if chunk['change'] != 'equal': diff_file['changed_chunk_indexes'].append(j) meta = chunk.get('meta', {}) if not meta.get('whitespace_chunk', False): diff_file['whitespace_only'] = False diff_file.update({ 'num_changes': len(diff_file['changed_chunk_indexes']), 'chunks_loaded': True, }) def get_file_from_filediff(context, filediff, interfilediff): """Return the files that corresponds to the filediff/interfilediff. This is primarily intended for use with templates. It takes a RequestContext for looking up the user and for caching file lists, in order to improve performance and reduce lookup times for files that have already been fetched. This function returns either exactly one file or ``None``. """ interdiffset = None key = "_diff_files_%s_%s" % (filediff.diffset.id, filediff.id) if interfilediff: key += "_%s" % (interfilediff.id) interdiffset = interfilediff.diffset if key in context: files = context[key] else: assert 'user' in context request = context.get('request', None) files = get_diff_files(filediff.diffset, filediff, interdiffset, interfilediff=interfilediff, request=request) populate_diff_chunks(files, get_enable_highlighting(context['user']), request=request) context[key] = files if not files: return None assert len(files) == 1 return files[0] def get_last_line_number_in_diff(context, filediff, interfilediff): """Determine the last virtual line number in the filediff/interfilediff. This returns the virtual line number to be used in expandable diff fragments. """ f = get_file_from_filediff(context, filediff, interfilediff) last_chunk = f['chunks'][-1] last_line = last_chunk['lines'][-1] return last_line[0] def _get_last_header_in_chunks_before_line(chunks, target_line): """Find the last header in the list of chunks before the target line.""" def find_last_line_numbers(lines): """Return a tuple of the last line numbers in the given list of lines. The last line numbers are not always contained in the last element of the ``lines`` list. This is the case when dealing with interdiffs that have filtered out opcodes. See :py:func:`get_chunks_in_range` for a description of what is contained in each element of ``lines``. """ last_left = None last_right = None for line in reversed(lines): if not last_right and line[4]: last_right = line[4] if not last_left and line[1]: last_left = line[1] if last_left and last_right: break return last_left, last_right def find_header(headers, offset, last_line): """Return the last header that occurs before a line. The offset parameter is the difference between the virtual number and and actual line number in the chunk. This is required because the header line numbers are original or patched line numbers, not virtual line numbers. """ # In the case of interdiffs, it is possible that there will be headers # in the chunk that don't belong to it, but were put there due to # chunks being merged together. We must therefore ensure that the # header we're looking at is actually in the chunk. end_line = min(last_line, target_line) for header in reversed(headers): virtual_line = header[0] + offset if virtual_line < end_line: return { 'line': virtual_line, 'text': header[1] } # The most up-to-date header information header = { 'left': None, 'right': None } for chunk in chunks: lines = chunk['lines'] virtual_first_line = lines[0][0] if virtual_first_line <= target_line: if virtual_first_line == target_line: # The given line number is the first line of a new chunk so # there can't be any relevant header information here. break last_left, last_right = find_last_line_numbers(lines) if 'left_headers' in chunk['meta'] and lines[0][1]: offset = virtual_first_line - lines[0][1] left_header = find_header(chunk['meta']['left_headers'], offset, last_left + offset) header['left'] = left_header or header['left'] if 'right_headers' in chunk['meta'] and lines[0][4]: offset = virtual_first_line - lines[0][4] right_header = find_header(chunk['meta']['right_headers'], offset, last_right + offset) header['right'] = right_header or header['right'] else: # We've gone past the given line number. break return header def get_last_header_before_line(context, filediff, interfilediff, target_line): """Get the last header that occurs before the given line. This returns a dictionary of ``left`` header and ``right`` header. Each header is either ``None`` or a dictionary with the following fields: ======== ============================================================== Field Description ======== ============================================================== ``line`` Virtual line number (union of the original and patched files) ``text`` The header text ======== ============================================================== """ f = get_file_from_filediff(context, filediff, interfilediff) return _get_last_header_in_chunks_before_line(f['chunks'], target_line) def get_file_chunks_in_range(context, filediff, interfilediff, first_line, num_lines): """Generate the chunks within a range of lines in the specified filediff. This is primarily intended for use with templates. It takes a RequestContext for looking up the user and for caching file lists, in order to improve performance and reduce lookup times for files that have already been fetched. See :py:func:`get_chunks_in_range` for information on the returned state of the chunks. """ f = get_file_from_filediff(context, filediff, interfilediff) if f: return get_chunks_in_range(f['chunks'], first_line, num_lines) else: return [] def get_chunks_in_range(chunks, first_line, num_lines): """Generate the chunks within a range of lines of a larger list of chunks. This takes a list of chunks, computes a subset of those chunks from the line ranges provided, and generates a new set of those chunks. Each returned chunk is a dictionary with the following fields: ============= ======================================================== Variable Description ============= ======================================================== ``change`` The change type ("equal", "replace", "insert", "delete") ``numlines`` The number of lines in the chunk. ``lines`` The list of lines in the chunk. ``meta`` A dictionary containing metadata on the chunk ============= ======================================================== Each line in the list of lines is an array with the following data: ======== ============================================================= Index Description ======== ============================================================= 0 Virtual line number (union of the original and patched files) 1 Real line number in the original file 2 HTML markup of the original file 3 Changed regions of the original line (for "replace" chunks) 4 Real line number in the patched file 5 HTML markup of the patched file 6 Changed regions of the patched line (for "replace" chunks) 7 True if line consists of only whitespace changes ======== ============================================================= """ for i, chunk in enumerate(chunks): lines = chunk['lines'] if lines[-1][0] >= first_line >= lines[0][0]: start_index = first_line - lines[0][0] if first_line + num_lines <= lines[-1][0]: last_index = start_index + num_lines else: last_index = len(lines) new_chunk = { 'index': i, 'lines': chunk['lines'][start_index:last_index], 'numlines': last_index - start_index, 'change': chunk['change'], 'meta': chunk.get('meta', {}), } yield new_chunk first_line += new_chunk['numlines'] num_lines -= new_chunk['numlines'] assert num_lines >= 0 if num_lines == 0: break def get_enable_highlighting(user): user_syntax_highlighting = True if user.is_authenticated(): try: profile = user.get_profile() user_syntax_highlighting = profile.syntax_highlighting except ObjectDoesNotExist: pass siteconfig = SiteConfiguration.objects.get_current() return (siteconfig.get('diffviewer_syntax_highlighting') and user_syntax_highlighting) def get_line_changed_regions(oldline, newline): """Returns regions of changes between two similar lines.""" if oldline is None or newline is None: return None, None # Use the SequenceMatcher directly. It seems to give us better results # for this. We should investigate steps to move to the new differ. differ = SequenceMatcher(None, oldline, newline) # This thresholds our results -- we don't want to show inter-line diffs # if most of the line has changed, unless those lines are very short. # FIXME: just a plain, linear threshold is pretty crummy here. Short # changes in a short line get lost. I haven't yet thought of a fancy # nonlinear test. if differ.ratio() < 0.6: return None, None oldchanges = [] newchanges = [] back = (0, 0) for tag, i1, i2, j1, j2 in differ.get_opcodes(): if tag == 'equal': if (i2 - i1 < 3) or (j2 - j1 < 3): back = (j2 - j1, i2 - i1) continue oldstart, oldend = i1 - back[0], i2 newstart, newend = j1 - back[1], j2 if oldchanges and oldstart <= oldchanges[-1][1] < oldend: oldchanges[-1] = (oldchanges[-1][0], oldend) elif not oldline[oldstart:oldend].isspace(): oldchanges.append((oldstart, oldend)) if newchanges and newstart <= newchanges[-1][1] < newend: newchanges[-1] = (newchanges[-1][0], newend) elif not newline[newstart:newend].isspace(): newchanges.append((newstart, newend)) back = (0, 0) return oldchanges, newchanges def get_sorted_filediffs(filediffs, key=None): """Sorts a list of filediffs. The list of filediffs will be sorted first by their base paths in ascending order. Within a base path, they'll be sorted by base name (minus the extension) in ascending order. If two files have the same base path and base name, we'll sort by the extension in descending order. This will make :file:`*.h` sort ahead of :file:`*.c`/:file:`*.cpp`, for example. If the list being passed in is actually not a list of FileDiffs, it must provide a callable ``key`` parameter that will return a FileDiff for the given entry in the list. This will only be called once per item. """ def cmp_filediffs(filediff1, filediff2): x = make_key(filediff1) y = make_key(filediff2) # Sort based on basepath in ascending order. if x[0] != y[0]: a = x[0] b = y[0] else: # Sort based on filename in ascending order, then based on # the extension in descending order, to make *.h sort ahead of # *.c/cpp. x_file, x_ext = os.path.splitext(x[1]) y_file, y_ext = os.path.splitext(y[1]) if x_file == y_file: a = y_ext b = x_ext else: a = x_file b = y_file return cmp(a, b) def make_key(filediff): if key: filediff = key(filediff) filename = filediff.dest_file i = filename.rfind('/') if i == -1: return '', filename else: return filename[:i], filename[i + 1:] return sorted(filediffs, key=cmp_to_key(cmp_filediffs)) def get_displayed_diff_line_ranges(chunks, first_vlinenum, last_vlinenum): """Return the displayed line ranges based on virtual line numbers. This takes the virtual line numbers (the index in the side-by-side diff lines) and returns the human-readable line numbers, the chunks they're in, and mapped virtual line numbers. A virtual line range may start or end in a chunk not containing displayed line numbers (such as an "original" range starting/ending in an "insert" chunk). The resulting displayed line ranges will exclude these chunks. Args: chunks (list of dict): The list of chunks for the diff. first_vlinenum (int): The first virtual line number. This uses 1-based indexes. last_vlinenum (int): The last virtual line number. This uses 1-based indexes. Returns: tuple: A tuple of displayed line range information, containing 2 items. Each item will either be a dictionary of information, or ``None`` if there aren't any displayed lines to show. The dictionary contains the following keys: ``display_range``: A tuple containing the displayed line range. ``virtual_range``: A tuple containing the virtual line range that ``display_range`` maps to. ``chunk_range``: A tuple containing the beginning/ending chunks that ``display_range`` maps to. Raises: ValueError: The range provided was invalid. """ if first_vlinenum < 0: raise ValueError('first_vlinenum must be >= 0') if last_vlinenum < first_vlinenum: raise ValueError('last_vlinenum must be >= first_vlinenum') orig_start_linenum = None orig_end_linenum = None orig_start_chunk = None orig_last_valid_chunk = None patched_start_linenum = None patched_end_linenum = None patched_start_chunk = None patched_last_valid_chunk = None for chunk in chunks: lines = chunk['lines'] if not lines: logging.warning('get_displayed_diff_line_ranges: Encountered ' 'empty chunk %r', chunk) continue first_line = lines[0] last_line = lines[-1] chunk_first_vlinenum = first_line[0] chunk_last_vlinenum = last_line[0] if first_vlinenum > chunk_last_vlinenum: # We're too early. There won't be anything of interest here. continue if last_vlinenum < chunk_first_vlinenum: # We're not going to find anything useful at this point, so bail. break change = chunk['change'] valid_for_orig = (change != 'insert' and first_line[1]) valid_for_patched = (change != 'delete' and first_line[4]) if valid_for_orig: orig_last_valid_chunk = chunk if not orig_start_chunk: orig_start_chunk = chunk if valid_for_patched: patched_last_valid_chunk = chunk if not patched_start_chunk: patched_start_chunk = chunk if chunk_first_vlinenum <= first_vlinenum <= chunk_last_vlinenum: # This chunk contains the first line that can possibly be used for # the comment range. We know the start and end virtual line numbers # in the range, so we can compute the proper offset. offset = first_vlinenum - chunk_first_vlinenum if valid_for_orig: orig_start_linenum = first_line[1] + offset orig_start_vlinenum = first_line[0] + offset if valid_for_patched: patched_start_linenum = first_line[4] + offset patched_start_vlinenum = first_line[0] + offset elif first_vlinenum < chunk_first_vlinenum: # One side of the the comment range may not have started in a valid # chunk (this would happen if a comment began in an insert or # delete chunk). If that happened, we may not have been able to set # the beginning of the range in the condition above. Check for this # and try setting it now. if orig_start_linenum is None and valid_for_orig: orig_start_linenum = first_line[1] orig_start_vlinenum = first_line[0] if patched_start_linenum is None and valid_for_patched: patched_start_linenum = first_line[4] patched_start_vlinenum = first_line[0] # Figure out the end ranges, now that we know the valid ending chunks of # each. We're going to try to get the line within the chunk that represents # the end, if within the chunk, capping it to the last line in the chunk. # # If a particular range did not have a valid chunk anywhere in that range, # we're going to invalidate the entire range. if orig_last_valid_chunk: lines = orig_last_valid_chunk['lines'] first_line = lines[0] last_line = lines[-1] offset = last_vlinenum - first_line[0] orig_end_linenum = min(last_line[1], first_line[1] + offset) orig_end_vlinenum = min(last_line[0], first_line[0] + offset) assert orig_end_linenum >= orig_start_linenum assert orig_end_vlinenum >= orig_start_vlinenum orig_range_info = { 'display_range': (orig_start_linenum, orig_end_linenum), 'virtual_range': (orig_start_vlinenum, orig_end_vlinenum), 'chunk_range': (orig_start_chunk, orig_last_valid_chunk), } else: orig_range_info = None if patched_last_valid_chunk: lines = patched_last_valid_chunk['lines'] first_line = lines[0] last_line = lines[-1] offset = last_vlinenum - first_line[0] patched_end_linenum = min(last_line[4], first_line[4] + offset) patched_end_vlinenum = min(last_line[0], first_line[0] + offset) assert patched_end_linenum >= patched_start_linenum assert patched_end_vlinenum >= patched_start_vlinenum patched_range_info = { 'display_range': (patched_start_linenum, patched_end_linenum), 'virtual_range': (patched_start_vlinenum, patched_end_vlinenum), 'chunk_range': (patched_start_chunk, patched_last_valid_chunk), } else: patched_range_info = None return orig_range_info, patched_range_info def get_diff_data_chunks_info(diff): """Return information on each chunk in a diff. This will scan through a unified diff file, looking for each chunk in the diff and returning information on their ranges and lines of context. This can be used to generate statistics on diffs and help map changed regions in diffs to lines of source files. Args: diff (bytes): The diff data to scan. Returns: list of dict: A list of chunk information dictionaries. Each entry has an ``orig`` and ``modified` dictionary containing the following keys: ``chunk_start`` (``int``): The starting line number of the chunk shown in the diff, including any lines of context. This is 0-based. ``chunk_len`` (``int``): The length of the chunk shown in the diff, including any lines of context. ``changes_start`` (``int``): The starting line number of a range of changes shown in a chunk in the diff. This is after any lines of context and is 0-based. ``changes_len`` (``int``): The length of the changes shown in a chunk in the diff, excluding any lines of context. ``pre_lines_of_context`` (``int``): The number of lines of context before any changes in a chunk. If the chunk doesn't have any changes, this will contain all lines of context otherwise shown around changes in the other region in this entry. ``post_lines_of_context`` (``int``): The number of lines of context after any changes in a chunk. If the chunk doesn't have any changes, this will be 0. """ def _finalize_result(): if not cur_result: return for result_dict, unchanged_lines in ((cur_result_orig, orig_unchanged_lines), (cur_result_modified, modified_unchanged_lines)): result_dict['changes_len'] -= unchanged_lines if result_dict['changes_len'] == 0: assert result_dict['pre_lines_of_context'] == 0 result_dict['pre_lines_of_context'] = unchanged_lines else: result_dict['post_lines_of_context'] = unchanged_lines process_orig_changes = False process_modified_changes = False results = [] cur_result = None cur_result_orig = None cur_result_modified = None orig_unchanged_lines = 0 modified_unchanged_lines = 0 # Look through the chunks of the diff, trying to find the amount # of context shown at the beginning of each chunk. Though this # will usually be 3 lines, it may be fewer or more, depending # on file length and diff generation settings. for i, line in enumerate(split_line_endings(diff.strip())): if line.startswith(b'-'): if process_orig_changes: # We've found the first change in the original side of the # chunk. We now know how many lines of context we have here. # # We reduce the indexes by 1 because the chunk ranges # in diffs start at 1, and we want a 0-based index. cur_result_orig['pre_lines_of_context'] = orig_unchanged_lines cur_result_orig['changes_start'] += orig_unchanged_lines cur_result_orig['changes_len'] -= orig_unchanged_lines process_orig_changes = False orig_unchanged_lines = 0 elif line.startswith(b'+'): if process_modified_changes: # We've found the first change in the modified side of the # chunk. We now know how many lines of context we have here. # # We reduce the indexes by 1 because the chunk ranges # in diffs start at 1, and we want a 0-based index. cur_result_modified['pre_lines_of_context'] = \ modified_unchanged_lines cur_result_modified['changes_start'] += \ modified_unchanged_lines cur_result_modified['changes_len'] -= modified_unchanged_lines process_modified_changes = False modified_unchanged_lines = 0 elif line.startswith(b' '): # We might be before a group of changes, inside a group of changes, # or after a group of changes. Either way, we want to track these # values. orig_unchanged_lines += 1 modified_unchanged_lines += 1 else: # This was not a change within a chunk, or we weren't processing, # so check to see if this is a chunk header instead. m = CHUNK_RANGE_RE.match(line) if m: # It is a chunk header. Start by updating the previous range # to factor in the lines of trailing context. _finalize_result() # Next, reset the state for the next range, and pull the line # numbers and lengths from the header. We'll also normalize # the starting locations to be 0-based. orig_start = int(m.group('orig_start')) - 1 orig_len = int(m.group('orig_len') or '1') modified_start = int(m.group('modified_start')) - 1 modified_len = int(m.group('modified_len') or '1') cur_result_orig = { 'pre_lines_of_context': 0, 'post_lines_of_context': 0, 'chunk_start': orig_start, 'chunk_len': orig_len, 'changes_start': orig_start, 'changes_len': orig_len, } cur_result_modified = { 'pre_lines_of_context': 0, 'post_lines_of_context': 0, 'chunk_start': modified_start, 'chunk_len': modified_len, 'changes_start': modified_start, 'changes_len': modified_len, } cur_result = { 'orig': cur_result_orig, 'modified': cur_result_modified, } results.append(cur_result) process_orig_changes = True process_modified_changes = True orig_unchanged_lines = 0 modified_unchanged_lines = 0 else: logging.warning('Unexpected content on line %d of diff: "%s"', i, line) # We need to adjust the last range, if we're still processing # trailing context. _finalize_result() return results def check_diff_size(diff_file, parent_diff_file=None): """Check the size of the given diffs against the maximum allowed size. If either of the provided diffs are too large, an exception will be raised. Args: diff_file (django.core.files.uploadedfile.UploadedFile): The diff file. parent_diff_file (django.core.files.uploadedfile.UploadedFile, optional): The parent diff file, if any. Raises: reviewboard.diffviewer.errors.DiffTooBigError: The supplied files are too big. """ siteconfig = SiteConfiguration.objects.get_current() max_diff_size = siteconfig.get('diffviewer_max_diff_size') if max_diff_size > 0: if diff_file.size > max_diff_size: raise DiffTooBigError( _('The supplied diff file is too large.'), max_diff_size=max_diff_size) if parent_diff_file and parent_diff_file.size > max_diff_size: raise DiffTooBigError( _('The supplied parent diff file is too large.'), max_diff_size=max_diff_size) def get_total_line_counts(files_qs): """Return the total line counts of all given FileDiffs. Args: files_qs (django.db.models.query.QuerySet): The queryset descripting the :py:class:`FileDiffs <reviewboard.diffviewer.models.filediff.FileDiff>`. Returns: dict: A dictionary with the following keys: * ``raw_insert_count`` * ``raw_delete_count`` * ``insert_count`` * ``delete_count`` * ``replace_count`` * ``equal_count`` * ``total_line_count`` Each entry maps to the sum of that line count type for all :py:class:`FileDiffs <reviewboard.diffviewer.models.filediff.FileDiff>`. """ counts = { 'raw_insert_count': 0, 'raw_delete_count': 0, 'insert_count': 0, 'delete_count': 0, 'replace_count': None, 'equal_count': None, 'total_line_count': None, } for filediff in files_qs: for key, value in six.iteritems(filediff.get_line_counts()): if value is not None: if counts[key] is None: counts[key] = value else: counts[key] += value return counts
the-stack_0_959
#!/usr/bin/env python # # Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Creates an AndroidManifest.xml for an APK split. Given the manifest file for the main APK, generates an AndroidManifest.xml with the value required for a Split APK (package, versionCode, etc). """ import lxml.etree import optparse from util import build_utils MANIFEST_TEMPLATE = """<?xml version="1.0" encoding="utf-8"?> <manifest xmlns:android="http://schemas.android.com/apk/res/android" package="%(package)s" split="%(split)s"> <uses-sdk android:minSdkVersion="21" /> <application android:hasCode="%(has_code)s"> </application> </manifest> """ def ParseArgs(): """Parses command line options. Returns: An options object as from optparse.OptionsParser.parse_args() """ parser = optparse.OptionParser() build_utils.AddDepfileOption(parser) parser.add_option('--main-manifest', help='The main manifest of the app') parser.add_option('--out-manifest', help='The output manifest') parser.add_option('--split', help='The name of the split') parser.add_option( '--has-code', action='store_true', default=False, help='Whether the split will contain a .dex file') (options, args) = parser.parse_args() if args: parser.error('No positional arguments should be given.') # Check that required options have been provided. required_options = ('main_manifest', 'out_manifest', 'split') build_utils.CheckOptions(options, parser, required=required_options) return options def Build(main_manifest, split, has_code): """Builds a split manifest based on the manifest of the main APK. Args: main_manifest: the XML manifest of the main APK as a string split: the name of the split as a string has_code: whether this split APK will contain .dex files Returns: The XML split manifest as a string """ doc = lxml.etree.fromstring(main_manifest) package = doc.xpath('/manifest/@package')[0] return MANIFEST_TEMPLATE % { 'package': package, 'split': split.replace('-', '_'), 'has_code': str(has_code).lower() } def main(): options = ParseArgs() main_manifest = file(options.main_manifest).read() split_manifest = Build( main_manifest, options.split, options.has_code) with file(options.out_manifest, 'w') as f: f.write(split_manifest) if options.depfile: build_utils.WriteDepfile( options.depfile, [main_manifest] + build_utils.GetPythonDependencies()) if __name__ == '__main__': main()
the-stack_0_960
# -*- coding: utf-8 -*- # Resource object code # # Created: Mon Dec 9 12:39:51 2019 # by: The Resource Compiler for PySide2 (Qt v5.13.0) # # WARNING! All changes made in this file will be lost! from PySide2 import QtCore qt_resource_data = b"\ \x00\x00\x10\xcd\ <\ ?xml version=\x221.\ 0\x22 encoding=\x22UTF\ -8\x22 standalone=\x22\ no\x22?>\x0a<svg\x0a xm\ lns:dc=\x22http://p\ url.org/dc/eleme\ nts/1.1/\x22\x0a xml\ ns:cc=\x22http://cr\ eativecommons.or\ g/ns#\x22\x0a xmlns:\ rdf=\x22http://www.\ w3.org/1999/02/2\ 2-rdf-syntax-ns#\ \x22\x0a xmlns:svg=\x22\ http://www.w3.or\ g/2000/svg\x22\x0a x\ mlns=\x22http://www\ .w3.org/2000/svg\ \x22\x0a xmlns:sodip\ odi=\x22http://sodi\ podi.sourceforge\ .net/DTD/sodipod\ i-0.dtd\x22\x0a xmln\ s:inkscape=\x22http\ ://www.inkscape.\ org/namespaces/i\ nkscape\x22\x0a widt\ h=\x2248\x22\x0a height\ =\x2248\x22\x0a viewBox\ =\x220 0 48 48\x22\x0a \ version=\x221.1\x22\x0a \ id=\x22svg6\x22\x0a so\ dipodi:docname=\x22\ zoom_default.svg\ \x22\x0a inkscape:ve\ rsion=\x220.92.4 (u\ nknown)\x22>\x0a <met\ adata\x0a id=\x22m\ etadata12\x22>\x0a \ <rdf:RDF>\x0a \ <cc:Work\x0a \ rdf:about=\x22\x22>\x0a\ <dc:form\ at>image/svg+xml\ </dc:format>\x0a \ <dc:type\x0a \ rdf:res\ ource=\x22http://pu\ rl.org/dc/dcmity\ pe/StillImage\x22 /\ >\x0a <dc:ti\ tle />\x0a </c\ c:Work>\x0a </rd\ f:RDF>\x0a </metad\ ata>\x0a <defs\x0a \ id=\x22defs10\x22 />\ \x0a <sodipodi:nam\ edview\x0a page\ color=\x22#ffffff\x22\x0a\ bordercolor\ =\x22#666666\x22\x0a \ borderopacity=\x221\ \x22\x0a objecttol\ erance=\x2210\x22\x0a \ gridtolerance=\x22\ 10\x22\x0a guideto\ lerance=\x2210\x22\x0a \ inkscape:pageo\ pacity=\x220\x22\x0a \ inkscape:pagesha\ dow=\x222\x22\x0a ink\ scape:window-wid\ th=\x22902\x22\x0a in\ kscape:window-he\ ight=\x22427\x22\x0a \ id=\x22namedview8\x22\x0a\ showgrid=\x22f\ alse\x22\x0a inksc\ ape:zoom=\x223.4766\ 083\x22\x0a inksca\ pe:cx=\x2223.055426\ \x22\x0a inkscape:\ cy=\x2232.605698\x22\x0a \ inkscape:win\ dow-x=\x22783\x22\x0a \ inkscape:window\ -y=\x22162\x22\x0a in\ kscape:window-ma\ ximized=\x220\x22\x0a \ inkscape:curren\ t-layer=\x22layer1\x22\ />\x0a <path\x0a \ d=\x22M0 0h48v48h-\ 48z\x22\x0a id=\x22pa\ th2\x22\x0a fill=\x22\ none\x22 />\x0a <circ\ le\x0a style=\x22o\ pacity:1;fill:#9\ 99999;fill-opaci\ ty:1;stroke:none\ ;stroke-width:17\ .22429085;stroke\ -linecap:round;s\ troke-linejoin:b\ evel;stroke-mite\ rlimit:4;stroke-\ dasharray:none;s\ troke-dashoffset\ :0;stroke-opacit\ y:1;paint-order:\ normal\x22\x0a id=\ \x22path1093\x22\x0a \ cx=\x2218.237631\x22\x0a \ cy=\x2217.87515\ 4\x22\x0a r=\x2214.58\ 8048\x22 />\x0a <path\ \x0a style=\x22fil\ l:#b3b3b3;fill-r\ ule:evenodd;stro\ ke:#999999;strok\ e-width:7;stroke\ -linecap:round;s\ troke-linejoin:m\ iter;stroke-mite\ rlimit:4;stroke-\ dasharray:none;s\ troke-opacity:1\x22\ \x0a d=\x22M 23.46\ 1607,23.808476 4\ 0.458238,41.4307\ 5\x22\x0a id=\x22path\ 1095\x22\x0a inksc\ ape:connector-cu\ rvature=\x220\x22\x0a \ sodipodi:nodety\ pes=\x22cc\x22 />\x0a <c\ ircle\x0a style\ =\x22opacity:1;fill\ :#e6e6e6;fill-op\ acity:1;stroke:n\ one;stroke-width\ :15.31822777;str\ oke-linecap:roun\ d;stroke-linejoi\ n:bevel;stroke-m\ iterlimit:4;stro\ ke-dasharray:non\ e;stroke-dashoff\ set:0;stroke-opa\ city:1;paint-ord\ er:normal\x22\x0a \ id=\x22path1093-3\x22\x0a\ cx=\x2218.1563\ 38\x22\x0a cy=\x2217.\ 843712\x22\x0a r=\x22\ 12.973715\x22 />\x0a \ <g\x0a transfor\ m=\x22matrix(0.5084\ 7458,0,0,0.50847\ 458,15.118648,-5\ 05.88314)\x22\x0a \ id=\x22layer1\x22\x0a \ inkscape:label=\ \x22Capa 1\x22\x0a st\ yle=\x22stroke:#00d\ 4aa\x22>\x0a <g\x0a \ id=\x22g836\x22\x0a \ transform=\x22\ matrix(0.6818019\ 5,0,0,0.68180195\ ,-10.748023,329.\ 76841)\x22>\x0a <\ rect\x0a st\ yle=\x22fill:none;f\ ill-opacity:0.84\ 951453;stroke:#0\ 0d4aa;stroke-wid\ th:3.85741425;st\ roke-linejoin:ro\ und;stroke-miter\ limit:4;stroke-d\ asharray:none\x22\x0a \ id=\x22rect\ 4136\x22\x0a w\ idth=\x2244.142586\x22\ \x0a height\ =\x2244.142586\x22\x0a \ x=\x221.92870\ 71\x22\x0a y=\x22\ 1006.2909\x22\x0a \ ry=\x2210.18675\ 1\x22 />\x0a <g\x0a \ id=\x22g415\ 7\x22\x0a tran\ sform=\x22matrix(0.\ 84603094,0,0,0.7\ 8857975,5.043487\ 2,217.0903)\x22\x0a \ style=\x22fil\ l:#999999;stroke\ :#00d4aa\x22>\x0a \ <path\x0a \ sodipodi:nod\ etypes=\x22ccc\x22\x0a \ inkscape\ :connector-curva\ ture=\x220\x22\x0a \ id=\x22path4138\ \x22\x0a d=\x22\ m 9.1882493,1043\ .1259 28.1788757\ ,-28.9184 v 0\x22\x0a \ style=\ \x22fill:#999999;fi\ ll-rule:evenodd;\ stroke:#00d4aa;s\ troke-width:4.74\ 617958;stroke-li\ necap:butt;strok\ e-linejoin:miter\ ;stroke-miterlim\ it:4;stroke-dash\ array:none;strok\ e-opacity:1\x22 />\x0a\ <path\x0a \ sodipod\ i:nodetypes=\x22ccc\ c\x22\x0a in\ kscape:connector\ -curvature=\x220\x22\x0a \ id=\x22pa\ th4140-3\x22\x0a \ d=\x22m 38.871\ 283,1019.5549 -6\ .563179,-7.2978 \ 8.297448,-1.8083\ z\x22\x0a s\ tyle=\x22fill:#00d4\ aa;fill-rule:eve\ nodd;stroke:#00d\ 4aa;stroke-width\ :1px;stroke-line\ cap:butt;stroke-\ linejoin:miter;s\ troke-opacity:1\x22\ />\x0a <pat\ h\x0a sod\ ipodi:nodetypes=\ \x22cccc\x22\x0a \ inkscape:conne\ ctor-curvature=\x22\ 0\x22\x0a id\ =\x22path4140-3-6\x22\x0a\ d=\x22m \ 6.8693068,1038.4\ 258 6.5632192,7.\ 2979 -8.2974502,\ 1.8083 z\x22\x0a \ style=\x22fill\ :#00d4aa;fill-ru\ le:evenodd;strok\ e:#00d4aa;stroke\ -width:1px;strok\ e-linecap:butt;s\ troke-linejoin:m\ iter;stroke-opac\ ity:1\x22 />\x0a \ </g>\x0a </g>\x0a \ </g>\x0a</svg>\x0a\ \x00\x00\x07\xa4\ <\ ?xml version=\x221.\ 0\x22 encoding=\x22UTF\ -8\x22 standalone=\x22\ no\x22?>\x0a<!-- Creat\ ed with Inkscape\ (http://www.ink\ scape.org/) -->\x0a\ \x0a<svg\x0a xmlns:d\ c=\x22http://purl.o\ rg/dc/elements/1\ .1/\x22\x0a xmlns:cc\ =\x22http://creativ\ ecommons.org/ns#\ \x22\x0a xmlns:rdf=\x22\ http://www.w3.or\ g/1999/02/22-rdf\ -syntax-ns#\x22\x0a \ xmlns:svg=\x22http:\ //www.w3.org/200\ 0/svg\x22\x0a xmlns=\ \x22http://www.w3.o\ rg/2000/svg\x22\x0a \ xmlns:sodipodi=\x22\ http://sodipodi.\ sourceforge.net/\ DTD/sodipodi-0.d\ td\x22\x0a xmlns:ink\ scape=\x22http://ww\ w.inkscape.org/n\ amespaces/inksca\ pe\x22\x0a version=\x22\ 1.1\x22\x0a id=\x22svg2\ \x22\x0a width=\x22192\x22\ \x0a height=\x22192\x22\ \x0a viewBox=\x220 0\ 192 192\x22\x0a sod\ ipodi:docname=\x22s\ avec.svg\x22\x0a ink\ scape:version=\x220\ .92.2 (5c3e80d, \ 2017-08-06)\x22>\x0a \ <metadata\x0a i\ d=\x22metadata8\x22>\x0a \ <rdf:RDF>\x0a \ <cc:Work\x0a \ rdf:about=\x22\ \x22>\x0a <dc:f\ ormat>image/svg+\ xml</dc:format>\x0a\ <dc:type\ \x0a rdf:\ resource=\x22http:/\ /purl.org/dc/dcm\ itype/StillImage\ \x22 />\x0a <dc\ :title />\x0a \ </cc:Work>\x0a <\ /rdf:RDF>\x0a </me\ tadata>\x0a <defs\x0a\ id=\x22defs6\x22 \ />\x0a <sodipodi:n\ amedview\x0a pa\ gecolor=\x22#ffffff\ \x22\x0a bordercol\ or=\x22#666666\x22\x0a \ borderopacity=\ \x221\x22\x0a objectt\ olerance=\x2210\x22\x0a \ gridtolerance\ =\x2210\x22\x0a guide\ tolerance=\x2210\x22\x0a \ inkscape:pag\ eopacity=\x220\x22\x0a \ inkscape:pages\ hadow=\x222\x22\x0a i\ nkscape:window-w\ idth=\x221503\x22\x0a \ inkscape:window\ -height=\x22616\x22\x0a \ id=\x22namedview\ 4\x22\x0a showgrid\ =\x22false\x22\x0a in\ kscape:zoom=\x221.2\ 291667\x22\x0a ink\ scape:cx=\x22-192\x22\x0a\ inkscape:cy\ =\x2296.000006\x22\x0a \ inkscape:windo\ w-x=\x2257\x22\x0a in\ kscape:window-y=\ \x2227\x22\x0a inksca\ pe:window-maximi\ zed=\x220\x22\x0a ink\ scape:current-la\ yer=\x22svg2\x22 />\x0a \ <path\x0a style\ =\x22fill:#5555ff;s\ troke-width:1.33\ 333337\x22\x0a d=\x22\ m 37.559322,153.\ 62712 v -8 h 56 \ 55.999998 v 8 8 \ h -55.999998 -56\ z m 28,-52.6666\ 7 -27.30894,-27.\ 333331 h 15.6544\ 71 15.654469 v -\ 24 -24 h 24 23.9\ 99998 v 24 24 h \ 15.65447 15.6544\ 6 l -27.30893,27\ .333331 c -15.01\ 992,15.03334 -27\ .619918,27.33334\ -27.999998,27.3\ 3334 -0.38008,0 \ -12.98008,-12.3 \ -28,-27.33334 z\x22\ \x0a id=\x22path81\ 7\x22\x0a inkscape\ :connector-curva\ ture=\x220\x22 />\x0a</sv\ g>\x0a\ \x00\x02\xb4\x85\ <\ ?xml version=\x221.\ 0\x22 encoding=\x22UTF\ -8\x22 standalone=\x22\ no\x22?>\x0a<!-- Creat\ ed with Inkscape\ (http://www.ink\ scape.org/) -->\x0a\ \x0a<svg\x0a xmlns:d\ c=\x22http://purl.o\ rg/dc/elements/1\ .1/\x22\x0a xmlns:cc\ =\x22http://creativ\ ecommons.org/ns#\ \x22\x0a xmlns:rdf=\x22\ http://www.w3.or\ g/1999/02/22-rdf\ -syntax-ns#\x22\x0a \ xmlns:svg=\x22http:\ //www.w3.org/200\ 0/svg\x22\x0a xmlns=\ \x22http://www.w3.o\ rg/2000/svg\x22\x0a \ xmlns:xlink=\x22htt\ p://www.w3.org/1\ 999/xlink\x22\x0a xm\ lns:sodipodi=\x22ht\ tp://sodipodi.so\ urceforge.net/DT\ D/sodipodi-0.dtd\ \x22\x0a xmlns:inksc\ ape=\x22http://www.\ inkscape.org/nam\ espaces/inkscape\ \x22\x0a width=\x2248\x22\x0a\ height=\x2248\x22\x0a \ viewBox=\x220 0 4\ 8.000001 48.0000\ 01\x22\x0a id=\x22svg2\x22\ \x0a version=\x221.1\ \x22\x0a inkscape:ve\ rsion=\x220.92.4 (u\ nknown)\x22\x0a sodi\ podi:docname=\x22ma\ p (night).svg\x22>\x0a\ <defs\x0a id=\ \x22defs4\x22>\x0a <cl\ ipPath\x0a cl\ ipPathUnits=\x22use\ rSpaceOnUse\x22\x0a \ id=\x22clipPath\ 825\x22>\x0a <rec\ t\x0a style\ =\x22fill:none;fill\ -opacity:0.84951\ 453;stroke:#9999\ 99;stroke-width:\ 3.85741425;strok\ e-linejoin:round\ ;stroke-miterlim\ it:4;stroke-dash\ array:none\x22\x0a \ id=\x22rect827\ \x22\x0a width\ =\x2244.142586\x22\x0a \ height=\x2244\ .142586\x22\x0a \ x=\x221.9287071\x22\x0a\ y=\x221006\ .2909\x22\x0a \ ry=\x2210.186751\x22 /\ >\x0a </clipPath\ >\x0a </defs>\x0a <s\ odipodi:namedvie\ w\x0a id=\x22base\x22\ \x0a pagecolor=\ \x22#ffffff\x22\x0a b\ ordercolor=\x22#666\ 666\x22\x0a border\ opacity=\x221.0\x22\x0a \ inkscape:page\ opacity=\x220.0\x22\x0a \ inkscape:page\ shadow=\x222\x22\x0a \ inkscape:zoom=\x223\ .959798\x22\x0a in\ kscape:cx=\x22-9.39\ 73628\x22\x0a inks\ cape:cy=\x2274.0196\ 67\x22\x0a inkscap\ e:document-units\ =\x22px\x22\x0a inksc\ ape:current-laye\ r=\x22layer1-3\x22\x0a \ showgrid=\x22fals\ e\x22\x0a units=\x22p\ x\x22\x0a inkscape\ :window-width=\x221\ 863\x22\x0a inksca\ pe:window-height\ =\x221025\x22\x0a ink\ scape:window-x=\x22\ 57\x22\x0a inkscap\ e:window-y=\x2227\x22\x0a\ inkscape:wi\ ndow-maximized=\x22\ 1\x22 />\x0a <metadat\ a\x0a id=\x22metad\ ata7\x22>\x0a <rdf:\ RDF>\x0a <cc:W\ ork\x0a rdf\ :about=\x22\x22>\x0a \ <dc:format>im\ age/svg+xml</dc:\ format>\x0a \ <dc:type\x0a \ rdf:resource\ =\x22http://purl.or\ g/dc/dcmitype/St\ illImage\x22 />\x0a \ <dc:title /\ >\x0a </cc:Wor\ k>\x0a </rdf:RDF\ >\x0a </metadata>\x0a\ <g\x0a inksca\ pe:label=\x22Capa 1\ \x22\x0a inkscape:\ groupmode=\x22layer\ \x22\x0a id=\x22layer\ 1\x22\x0a transfor\ m=\x22translate(0,-\ 1004.3622)\x22>\x0a \ <g\x0a id=\x22l\ ayer1-3\x22\x0a \ inkscape:label=\x22\ Capa 1\x22\x0a t\ ransform=\x22transl\ ate(-58.464286,-\ 14.928558)\x22>\x0a \ <image\x0a \ y=\x221019.7905\x22\ \x0a x=\x2259.\ 231869\x22\x0a \ id=\x22image825\x22\x0a \ xlink:hr\ ef=\x22\ 0KGgoAAAANSUhEUg\ AAAfQAAAH0CAYAAA\ DL1t+KAAAABHNCSV\ QICAgIfAhkiAAAIA\ BJREFU\x0aeJzsvXmMb\ Nl93/c555671dp7v\ 377DGcjZ0iKpCiKk\ klZMmVZkk0LtgnLD\ qIkcOD8E8R/KIARJ\ EEQ\x0aBPnDgAUkgYMg\ QRQnTmAFZhLIFizB\ kSJakk2RIjkmxaFm\ RjPz3ryl33u9Vndt\ dz8nf9zqpbqru6u6\ \x0aq9d3P8DM6666VXW\ 76tb5nt8ujDEUFBQ\ UFBQUXG7keZ9AQUF\ BQUFBwckpBL2goKC\ goOAKUAh6QUFB\x0aQU\ HBFaAQ9IKCgoKCgi\ tAIegFBQUFBQVXgE\ LQCwoKCgoKrgCFoB\ cUFBQUFFwBCkEvKC\ goKCi4AhSC\x0aXlBQU\ FBQcAUoBL2goKCgo\ OAKUAh6QUFBQUHBF\ aAQ9IKCgoKCgitAI\ egFBQUFBQVXAHXeJ\ 1BwNtz8\x0a4peKsXoF\ Bc8pj3//d8R5n0PB\ 6SOK8amXk0KgCwoK\ TotiA3A5KQT9glMI\ d0FBwUWhEPqLTSHo\ F4xC\x0awAsKCi4LhcB\ fLApBP2cKAS8oKLg\ qFAJ/vhSCfsYUAl5\ QUPC8UAj82VII+hl\ QiHhBQcHzTiHup08\ h\x0a6KdIIeQFBQUF/R\ TCfnoUgj5mChEvKC\ goGI5C3MdLIehjoh\ DygoKCguNRCPt4KA\ T9BBQiXlBQUDBe\x0aC\ nE/PkUv92Nw84tfM\ hddzL8yXer/vWZv/\ /w3a5LPOYK/XT/+x\ +8MuO3jE8XldFH4h\ dLRxzxPfKVc\x0aaMQW\ f3PuYl8cl2F9vagU\ FvoIXKSL7C/VbH6j\ mRx4f/DgQ9IwRHke\ pdt3MEIgsgxhDFrt\ tPAX3Q5J\x0au00SBNi\ +j5CCqNXG6Gz7GJ3\ u/Fx99bXT+YMKTg3\ dWKOzvHLg/fZEBVX\ 2SDY7pO3gyOezJyu\ oqk/W\x0ajYhXmyOfj1\ 0q4d26PfLjxkG6vE\ TQaAx9vFQW5ZlZqE\ 8MvF+vraIqVbTrAi\ CyjOb77418Xod9r1\ rv\x0avjPy8x2GVBaVF\ 1/CiMGbnC+VFb/TS\ cf6miehsNiHpxD0I\ ThvIf9KzeKrzezoA\ 3sIY+g+fEAahgDU\x0a\ bt7EZJpwcwPLsbGU\ TZYkGGOImqMtyPU7\ d9GeN9JjCi4GotOm\ +fjxvtvtiQqq4pFs\ DCfo0lbYUxUs\x0a1yE\ NQrJ2SBbEQ53DeYr\ 5Ft3798jio8/Xchx\ Ks7NQqQ6832w0CBo\ NLMfGrdYAQdTaJG5\ 3Rjqfw75T\x0aotuh+e\ jRSM+3F8txKL3w4v\ bv0eIjbL+EnJoe+j\ l+ft7hny8N9xmfFo\ WwH00h6Edw3mJ+HG\ QU0X6y\x0auL1oOZUyO\ s1IwxDLyZ3lwyxog\ /DqdexrC2M714Izp\ t2itbjYd9OoFjqAM\ 11DlT0MhiyMyFrDi\ fp5\x0ae3hEt0P76RPK\ H3l5+7aDLGCnUsa9\ cWv/c2QZ0fIzkm63\ z3t1HLyJOvb84O+T\ yDI6Dx8c+7u6xV5B\ \x0av8wUon44RdDzAM4\ yjvOVut33e/DgwxO\ 52Xa7ywHidmfbWs/\ i+EQLhFOvH/uxBRe\ AShWnUt53s0Gj\x0a44\ NDOHvJuiFxo0XWDp\ FS5ZuCqn/oY+zS+c\ duTalMeXbu2I8XWh\ M+e0LUbJ1YzAHcia\ mBt0ePH9F9\x0a/OjEY\ g75epCtLp/4eQ7jl\ ybPZhJ3EV8/nMJC3\ 8NZXSw/V5H8Zlv33\ SaMoX3v/e2F4rjWT\ La6TLi5\x0aOZYFZzf+\ 5CRqbn6sz1lwfsRP\ F0nCAFUvIR1FuLg+\ 8nNIZSE9B1myEZYk\ a0ekrf1WfnXhOtRq\ 4zjt\x0a02Fzg9azZ30\ 3WY5D+do1dBRheT7\ GcYiWnhI1W2N5SeV\ 5+Hfu7rs9efaUcHN\ zLK+xl/LMDHJ65lS\ e\x0a+zwoLPZ+CkHfQd\ z84pf00Ycdn897gj\ 8MB7/f8dPFvoXiJK\ 7JrYS4ceHWqjgLN8\ b2fAUXBxF1icIm\x0aJ\ sowUYZTqSAnc6txF\ C+R5TtYFQ+hJOlGl\ yyIkcrCq9cRQl4KE\ Rl38tlR1F94Ee3sr\ xc5zfNQnkfp\x0a5i2M\ ZZ3aa+zmJ0qS3+ue\ 6rLK49//HQkUQgac\ jZ/kgnNWVvlBYj7u\ L7BbqWD7PnGnc2KX\ nV0qFWJ+\x0ahTFuCcc\ 9uSt8K35u18tY1Tz\ BS9ku1szx3dunxX9\ Zifnv2g5re25Xnjf\ WjfBRDBLz0yYNQwg\ DKFfO\x0a5PVOW8wBtg\ yxwlp/zgX9NIX8MG\ t8L06l3JcZW124fr\ wXbbfoLD3Dn5hE2u\ P5aM87I7ng8iCFQg\ mH\x0azNMoy8WqDZ9Ff\ Zb8F+3BQuqUS2cm6\ IPyGADkKb++8jw4o\ FztrBhlbRyFrfX8e\ Rb25zYp7rSt8qMu\x0a\ WJFl2/9adr7ASGXl\ X/RjxhqDtTV0mtFZ\ XaWzvHJi67z+kZdO\ 9PiCy0u2uozyPKQa\ zjWrPA9/agpR\x0am0R\ iXVgx343otPu8Y0K\ czXJo+Q7u5OC69qT\ bwq6XUVUfq+Se6HW\ ksrA8B8tztj9Hy7G\ JNjdO9Lwn\x0aZWtt/N\ QpNaJ6npPmnssY+n\ l/4OnyEnGng1SKLI\ 6wHBchJTpNKc3NYf\ zjuUCjxUcj18DuRS\ oLIa0r\x0aU+ZSMDxmo\ 4GQEmp1hDHES8+IO\ +0Dkyt3l0CW52aRk\ xdfxLcQxuxrrHIWM\ XTLc7BqHn59Fi3tf\ ffH\x0aG8+w3N77msSk\ mwFZNxrpNaRtIV0H\ oSyEnYumDhJ0GKM8\ D29q+thrzGXiebTU\ nyuX+3kL+RZ2tUoS\ \x0aBCTdbl8davLsKUJ\ ax87uGIeYe/X6hYx\ 7Fpw+YmJy+2cjBE6\ 9jjGaNIxQnksWJxi\ tMTpDpxlutYI9\x0aMd\ XXefCycFCXtHEjlQ\ UCpOtgtEZVfYSSA8\ VcZnl3tiyKQeYbJj\ EpITXb7/mRr+coVL\ WE5TsgwGgD\x0aGKSjS\ OnF0L3DywuvCs+jC\ /7yfROPyUURcwDjl\ 3ArFXSa4MzObwt43\ GkjpDxWaVj89MmJz\ kkqC7tU\x0aLsS8YBvj\ l3D80r6+/TKKMFmK\ KZU5/ZSn8eMAZ9nz\ zKr62NUSJtMIS5I0\ OtgDctK6T56QdLtA\ /n3U\x0aFR9V8bA8h7Q\ 7XMMfq+Jh10qES41\ ty14qC3umijNVJWt\ HZ7aZuSjc/OKXzPM\ i6s9FDH2cYv5zlfG\ U\x0ae0TtNsrzMXLnI7\ Ac99h13s7Cdcozxy\ sNymP3FZzjJuMVXE\ kOcqBr18WUBid1XQ\ bOuoGpXS+RbHbR\x0aa\ UrS7GI7+9u8yjTdF\ nPI5yfoMEZIiRlly\ dGgk3Sfm16EBtup4\ sw+n10eL5JBd5pca\ UEfZ1ehLSvl\x0aN9vj\ adbi37mL0f32jT81\ uGvUMPxKLUZOz2CX\ SnmzjyGSmbaO8ycm\ D2w/WfD8sres6ypz\ mvFzISRZ\x0aJyB6tkH\ SaGNNz/bdL5OEzQ/\ e3/c4ozU6S1HlEWY\ nGIPJ9jSskhb2/AJ\ /1Ts/I1UEXWQ0Wi7\ AuHke\x0ausxdWUEf9w\ d3Grv63SVhv1KLMS\ eoDf3lpsPfqyZ4t2\ 5Tnp1HyKMFXXke/u\ QU6oDhEwUFBadP6+\ GH\x0ag+/QhqwbI6wRl\ mkh9h1vdEa6vMRXk\ /OLsBq/tD2R7ry5y\ qJ+JQV9XB/YL03vT\ 1wZJ2ZjZ4zjLzeP\x0a\ 32RCBLmr7u+2eudb\ q+GUD3eJVl99DffG\ LeTUNNp1+Z+nYn7B\ vjgjEwsKzowzLuOS\ SdL382HJblkn\x0aHFr\ QVdVHuoqkuZMc609\ OUv7Iy6i5eaaB/35\ i+H79x2ZzA5FlyDB\ EN8br53lZjcfLcFV\ F/colxY3z\x0ag/pHa6\ d48bdbiBNmBwtj0J\ sbdBsNpFLYvred1J\ aO6N7699fPvmtVQc\ FFQJ5SPoBUFqrkQ9\ a/JHWe\x0aLO70cNcHp\ xXqNEPagz1tVsnNB\ dxWIADTS6TTmmRtp\ 4V0EgTbi/wa8PiUE\ wj02irBRgO5sYHRG\ m9i\x0acL39cXkvHZ8O\ X8VkuStVhz4OMf+F\ qsWvt8Y71GTchI8e\ 4lTKmCyju7YzUEMq\ C7day+tXw/DQnb9b\ \x0aq+L0FjKhFELZF8Y\ lVlBw1oSPHvYlpY0\ Dqaxe1nmZ8OkaOtn\ 5Pm7NajhqEIu0Lby\ b06RrXUymkWUH\x0aYU\ mEJTFxhkl7GwIBCI\ FJMuLNHUGXykJ53s\ AxsONm7zwKu1Q61U\ 6TX6kpvto8uVfxKo\ n6lRH0q+pC\x0aOYit5\ jTH7QanPA/LsXGqN\ Shi6AXPOd3798Yyq\ nQ3UlmoyTKW6xA9a\ /RtsL2JOjpNj9x4b\ z2H8l1A\x0akAYhQguk\ a5N2AnTQ8yL2JMlk\ ++vV9zaL+ltuyq9G\ 43XOyjhm8/49oDel\ bm7uRDlBZ81VEfUr\ IejP\x0am5jLJKHzZPH\ YfafLc3PbE7UKCgp\ yxp3pLm0LZ7aO0Zp\ k9Xjz06WyEL0RtQB\ CSSzXyTcDzYAsGD6\ 0\x0a5pTLuDdPx1Lf7e\ FwKuUz8QiMm6sg6p\ c+Ke6kYn7zbKYIjs\ xWr/dBmDQ5tpiXpq\ cGivn/Nj3YOhGd\x0aN\ t3792i9+w7ho4f9w\ yOaTYIHH8LmBjId7\ PqSSYJeWz31oRMFB\ SdFeSOUhw2DEEil0\ PHx3cI6zcjC\x0amGSj\ TbLRJutGpJ0QISVC\ jbZ8n5bxJrqdvnDF\ 1myKy8ZVMAwvtYV+\ WT6Arfnko8w4j58u\ Hjq29Lgz\x0az/3JySO\ b18g0RXfaRO3WkS7\ BUSjPzFyKudgFlwe\ ZpmNtPRssPkC6di6\ WBqLl42fAW56DtzB\ F+Gwd\x0akwzXunVY3P\ kJMJC2j+71LpWFV6\ tjzY6/C6RMEjbvfd\ B/brXqpR65fJkt9U\ troV8WMYe8iUxlfv\ 5Q\x0aq3uLrb2tkPJQF\ 2B54Tr+5OSB9x9E3\ OlAs7nvXLaaPoSPH\ tJ6cJ/Ws2fE7c5YF\ 6HO6urYnqvg+UXG\x0a\ MdnqMt3799Cd9lif\ 26q4SEchLYXlO3km\ +ZAT5/rOUVlI2877\ qY9ZzAHSVgAWSGe4\ 0trTMNxEltF+\x0a/Gj\ sz3veXCZt2culLFu\ 7jG+4mJg8cuiKDEP\ inttPH+DChl7dubI\ RcvSNZBbHUKvtO5f\ ND++P/FwF\x0aBWeJ2W\ zQXV3tE8eo1cKtj6\ 80yiSaLI4QSNSEj1\ V20cHoyXJCWaiKlw\ 9aOQWyboSq+UOZZD\ rNCBoN\x0a7Cgaa9Z58\ GRxYCKhUz3e+OeLx\ GUtabt0FvplFPNha\ S0+In76hGx1mSweX\ AMv05Tmw4ds3vugr\ 2Tt\x0aRK97BmMjCwpO\ RLdJd211n6UbdzrI\ dHz9InQnxlYeWRiS\ hfHQFvBupG1hlT2E\ Y5E0TjYB8TCElCPN\ \x0acE+63e0mVON5/cF\ 6J+Slk5WBXEatuVQ\ W+kne4GkBaxf045F\ pStZuYZdKZHFM0s1\ d3Vvzpnejlcrr\x0aSi\ sVLC9feEZ1ZZ+XgD\ uVyzvQo+D8EDqju7\ reV8e9m2B1GffaeG\ K2/sQE1CcIGg3SzS\ 52tZRnmcNw\x0a40uVh\ VX2UWWPtBOOPMv8t\ BnnHHRvcmrgyOZgb\ Q3vEg/v2c1ls9Qvz\ VbqpLuliyrmkIu0V\ ckTSUo3\x0ab2GXyvnC\ cIB14N+5i5yewZQr\ lybJzHKcS1nKUnD+\ ZBsNdHKwFe6MUzx2\ u++NIYsTrOpO9rt0\ 1IEx\x0adakspO9glR1\ MpolXm+M7r72vZVt\ gwJjhB9jW79wZ6zk\ cNHHP9sdcLXACssb\ KiQ2Yy2SpXwpBv0x\ v\x0a6HHZytQ1loU3NY\ 1U9sDd7xY3xeV6S8\ rzxxsLW/B8I7OUcL\ N5uHV8CvaTUynnWe\ TNLqrs5UJdclH1\x0aE\ rLk7GvJKpWFdPNjA\ NKN8Xad24v0HYzWm\ AO8FnvPzS6V0J5/q\ ucEeXe4rfbTF4Huc\ t5L/nkR9Qsv\x0a6Jfl\ jTwKOUIXqizo7hut\ upfHZmcVcyoXuyOT\ 5TiXen52wfnRfvjw\ yA5uUbA/0/0/r+YW\ vcyO5/L2\x0aZ+fzmeT\ dGCEEznQVd66OdBT\ OZBWr6iPtnTHF0rZ\ z4bcVWTcm6RxP0Ld\ GGh/qBVAWquwPLeg\ ApWvj\x0aH488aPBK6Y\ iS2LMkWHzQ9/vzIO\ oXWtAvwxs4LHpAPP\ wgxMQkQkosx6HzwX\ t0Pnjv0A2Be+PmOE\ 7x\x0a1CidYM57wfNL8\ PQBRh8tWGKAif5f9\ SYPmvB4CXOdp0+2f\ 07aAeHjNbofLhMur\ hOvtVAlD3d6Amnb\x0a\ eTc3TyE9G52kJI3R\ S+m2hFr0EupUye+V\ vu35r+QglJX3ck80\ WXi0oSCkhbbHPzly\ 70ZLeR5mjAmK\x0aJyV\ tB/tuu+qifqmS4p4\ n/MkphK3IwgAhBOH\ ayvbgg1Ea1FwIxlh\ WVPB8ILQmbe5fkAf\ hzh2cEHfc\x0afuL+nb\ u03n0HnWbEK/2x8L\ QdIIzAniijJkvoJM\ XyXbIoJlo6XiMa6T\ momo+QEp2m+fTEyT\ JYezYr\x0aGpB57HyYz\ Q6cXta5Pb9AuLEzW\ Ma/c/fI0tyLQOvdd\ y7fGjokF1bQL/pO6\ NTp1YrLXlaqMwFOt\ bVv\x0akEr46OGR7vmC\ gsuE3lgnbAwnjLVb\ t85FRLIogk1QFR9V\ 8tBpStYZ3b3vzNRQ\ FQ+BwGiDzlJMpvNK\ \x0al268Pz/AAAKcmTr\ ORBUhLZKN8TbXGZX\ K/DxiYvQmV+fJSUT\ 9Ime+X8jWr8cVcwc\ 45XG/FxJhDM0/\x0aff\ e8T+NArupuuOBkSJ\ 2C7lmamUbHMWkYEb\ dzT5TyfdIgwC6V8k\ z2LU9Pq0nrSe4SP9\ Vrq9mktcv1\x0avu/8l\ YWql7HKLkZrdJRgM\ o1JM9CDXb67Ub6Hq\ voYYci6ETpKYGs9N\ oeXyUnbwpmpIyxJ0\ uwc6s2Q\x0aysKfmDyV\ ipijWlSfJ8O4109y\ /VxEUb9wgn5cMf9L\ NZvfaF6c+M2Z0m7R\ Wlw877M4kELQCwBM\ cwOp\x0abDCGuNMmCQM\ wBpNphCWxa2Xc6gT\ GUoDEiEPWy941f9r\ X1lGioEq5KKMEaJB\ K5e5wo5GWwmQaneV\ d\x0aH7NuhO7GWK6LkB\ IjDNK3QUPWDkmD0W\ YzWJ6DPVnBGE262S\ U7oqPd8/Y9HDZefp\ VE/cK63EfleRHz\x0aN\ 6TmLb0rJtZuEaztz\ za9KDxvi0jBYLLGK\ uH6zkxwf3KS0u0X9\ h13WPBIGLMj8pXqm\ Vxb1VdfO3RW\x0auo4T\ stBCOjY6Skh1sO0W\ l76NVArlu+gkQ9YU\ ptorHdNsT2EzWXZo\ nf1BZGGMDOO8nK5S\ QiAHbgos\x0ax9mehV6\ wn84H7/FvffYT/Pr\ 6cDkbF5kLJejPfdx\ 8CPrEHC60ZV5QACD\ CLtFmE8txsSccnOl\ rQz82\x0aXnpC2g0xOs\ uzu22L8tx1tBp/1v\ ZBHJZUptMMeu5yk+\ 4MYZHKwmiNmvXI2n\ EutL29iOU4GAxCyb\ zM\x0aLdXHHt6SdcLtZ\ jf6gPOUY5xGd1lIl\ 5eGPlanGf/kBx/gL\ Fwf+XUuWjz9wnzSh\ ZgPjwxD9LhnN58C\x0a\ dml8bSYLLi/h+jom\ y/DuHm4l6uY6UbuF\ MAKvPokQgmT3xL80\ gxA2Wx9QXbgGtbOp\ nrB9H50mB4qu\x0aTlL\ YZWBLW2FVPSzPQac\ pSbOTW+G9xxsnA5k\ PcMlkhEmOn9QqXRt\ pK0yq8/MY9nGXZA0\ 5DjIMCRqN\x0akR4TNZ\ u4ExPHao17kUT9Qg\ h6IeajkYUB7Qcfbv\ 8ulYU/NYWcnAYgWX\ pK3G6PfWTjqPg3zy\ cDueDi\x0aEC0tkgbBU\ NdisLaOjlOksgjSN\ dLw4JhyliaMPtT0e\ Ki5edTcPNHio0O7N\ 1qOg/RsrLILAnSU9\ hLl\x0a+senHtUoZxgs\ z8Eqe0hXgTZkQTTS\ 8+oohCso6CLL2Ny1\ No5C8+HDS5/5fqEb\ yxzG9Lm/deeH2JMs\ \x0aJKSFKu3U29rzC6g\ zaPN4GE6lfHhSU8G\ VR8QBabuLTrO+hVJ\ mg+PFWzFlnWaHinn\ +5GM7zaFxb9w6\x0a1O\ skbAtV9kBC1o2J15\ qk7eE2M6NgT1SwJy\ sIJdFRStLsooMDpj\ MqC6/WP840XV66kr\ 0hTLNB8/33\x0aTvQcz\ R98f0xncz6cu6Af1\ zq/yMNWTptgo79G1\ +hs6CYTp41UFuWZm\ WIQSwFpJ6+P3i3mo\ ttBW4Pj\x0a39IZ3mGY\ huczxWyvOO5GKImw\ LXScnlptuKr6WKW8\ 62TaCrY3DQdZ51LZ\ /eK9ubGddX/VaD8d\ Pm5+\x0aGBvfe5O/cac\ +8uMugqf5vF3uhQl\ 3DPw7d/M40doqcbu\ N5bgDYj9nf21JZeH\ V65dmAlzB6WJNzqK\ S\x0afqHJ0ghJ3tdf9E\ pmtzw5quwTx60Dn0\ 95HqXZ2fOdC1CfQK\ 6uDLS6jdYYrU91Hr\ iq+L0ytWCo0azK\x0ac\ /t+j9pt/OnpQ6sJC\ uDXHmwefdBgBOex+\ PY4Vwv95he/VFxXx\ 0R7Hu6Nm3lJynyeN\ fwrtZ3F0z4H\x0al7tU\ 9oWatFRw/uxtyypr\ O339g5VFsu6Ot8mf\ mhtopTvlMtVXX8tb\ i16AIT/+AV3RTJqh\ k/RUBR1B\x0aXtunh9M\ M5e7Eyc1GI8+tOed\ w3IWnt9H8pb/x0ZE\ fet6adm6Cfhz3xC9\ UzyoN5mJx2FiX8tw\ c2nH4\x0aip3yy82dI0\ eZkzwuDpoQVVCwj3\ aTpNFGuTu5H1rZWJ\ W8UYuq+FiOg+U4eF\ MXq62onJ6h+uprlO\ dm\x0a++/IgDQvRzs1T\ J5FL474rkll4U3U+\ 1qyJsHlr7M+dYTAG\ INuN/hHv/Y2X3nlc\ rnez9vlPhK/3roY\x0a\ ceKzRKYp8e460naL\ sNHAcmzscgVTqfIZ\ qflqok48SeikWPbw\ E+UKnmO6bTory/kG\ cE+nSqvU66Km\x0aM0y\ 39313dsRL6pRwbQV\ 3eh5zmpbwEMjJaay\ Nze34dRbHiMRCcno\ 18lvW/1HzG6Sysed\ 3RqbKJCEN\x0aw3zO+1\ WkfWwXeR/CUliux+\ aDewgl+NXvW9Q+/s\ mxPPdZcC7fiIuQPH\ AZMBsNOouP+24Tls\ IpldBp\x0auj2o5TtaE\ i0+QiqL0vTUmVvKU\ lnYpRLqAs1CLjhno\ v2x8DdkLkI6jtFxi\ uW46ChCdNqIIC8Hi\ 59t\x0aED1ZJ2vHiLJC\ lBVhq0HaXiVaf0L7\ 0UNMnJ27mG/hlAcL\ pLQPmWfeawQz6vd0\ 63idpvs2QvvPqz+n\ \x0apvNkkSyOr2yyahS\ MLwlRVcuUblyndO0\ 6wnGPfsAAzkvjLoW\ F/hO+5PeC5y/cLiY\ mcdKE4MGH+Hfu\x0aAm\ B8H+n77L3M3Bu3cD\ c3oD6BFYTotHuq56\ Y8D+W5GG2QllWIeU\ EfncfPUKVNZMXB8W\ sY5W13OVTl\x0aCrBM0\ u2SdPPr1J+cxDb5d\ RW3O+iN9namuKr5p\ Ot5gxmpLNw7N8/rz\ 9qHtPpF2aQak2nUR\ Hnf2FWp\x0arHzOednB\ xBlZEIEUuTj3lv9B\ yXZSWb1Wsg4IMJkG\ IZC2AmP2PUYqC7s2\ 0Zf4dtUnMpohcwqG\ Qdj5\x0aZitt5NfmZRq\ 3euaCfpydy/Mo5lt\ YM3P4M6DXVumsrh5\ +YfXKU5Trbi+UYz8\ fx0EqhXfr9qk8f8H\ V\x0aQJYc4mYbmhCyjj\ NTw53OW2smrf3u0a\ DROLC71+5JYnvrwM\ NHD0m63e1GK5bvoJ\ QLbnXv05wKUaff\x0aM\ jRplnsfPGefBa4my\ 6hyb1SqrVA1D4RAJ\ ym6m6LDGBicue7M1\ TGpJotjVNlDVTwwk\ Gx2odVf6+5W\x0aa2hn\ f/iryHEZ7j0QohfW\ 2HX8bqNqWM6j2cyZ\ Cnrhaj8eZqNBsJEv\ dt37944ctJAlpzdE\ duu1f8lJ\x0a+UexYhr\ 4t/2E/yY4u97aBZe\ PdKOD6T5Ep+mJeiY\ 4u7LcZRyTxbkAmjQ\ j3eyQbnaIAH8q3u6\ ceFoI\x0akyFcBbtyza\ Rj581lBHjXp/sS5H\ TcawLTjfMRq4DluX\ kSYN2Dupdb3FGWT0\ +LIuxKGTVVyq1yC9\ JO\x0aSPRsIx/6Uith1\ 0t5V7r1nY3FQd6yy\ t0Xr2znRpMNd03Jk\ oM7N5HnafRG3ZpM5\ 2EMnXs/tnrs29Pl\x0a\ fARuYpDieJuhsxb1\ C+1yf9mWvHeCPsdX\ BSHEtityUMxOr63u\ /JwN0WVrRCrz833Z\ sgD/eyCQacSa\x0a6xZ\ iXrAPt1Lrs6x1mo0\ lDNRdX8dNYow2xJ2\ dPu+7LdTctV0+tVp\ rvbZKHHRRNR9V91H\ V3OpGiFxc\x0ak5QsjP\ OJauHO5tpk2X7Xeh\ ghSw4mMCSNNkiBqv\ g4c1WgCgbijXa+Cc\ j0duw8SzOyKELVy9\ jVEsKS\x0a+1z8u5FKY\ ayra6GbA7rxSWWhy\ j7WhJ93z5QgLCtPL\ jQChMnFHIOQFgjR+\ yzzxzsTdcg0wrIwx\ Hx5\x0aboJ/+vh0w5kn\ 4czmoRfW+fExG43t\ Hejepi3p8tLIgwhG\ Za+bX4Yh7adPKM/P\ X4i64IKLyXlVXVie\ \x0aQ/nWHYw8PQHr3r+\ HcPPpb8KSWJ6DMIK\ 0FZIGwXad+FFtX1X\ Vx6q4mFgTrzV78XL\ RV5Zmkp2WuHuR\x0ato\ X0HVS5J1YJqMn9vS\ CO4zK+TAQPP9w3Ot\ YquTizNZTvI2xF1r\ tfCEHaDRFp7s3UcY\ r0bexKaft9\x0aN5i8x\ XZPtbZuF9rHHKMf2\ llZ6RfWQp8Wz3d71\ 92IickDL6G4c/Cwi\ HGRLD3FnZgCIUhbT\ brNJlkc\x0aEzbWcbVG\ lCtF3/aCfjY3jj5m\ DFQXriNsRbC6StLt\ Im2L8tz8qYo5QPnu\ C7TvvQ8hIARZOwIM\ JslG\x0a6t1uMp3HbHs\ r8fZjh5ycppMMTEy\ SZEjfwZ+YGehW96d\ ON/xw3uyeJ285Dna\ 9jD1VQTgKk2jSZht\ j\x0aNFJaaGFIN7vb3h\ OdZsgo/1k6Nmk7wC\ RZX4Mg6eYfkI5X8K\ /fOcO/bDTORNCPY5\ 0XYj4cu3s4b5WP\x0aO\ Qt5d66tRLqTEm5sE\ m7sT2SK2508DFApX\ 9lymIIdXrztMLNQo\ r0Z8yfvHO52bC4+R\ lg7y4sZ0D98\x0amPt3\ 3777eAC3WoVaDQM4\ pRLCtrCrJYy/32v0\ iU/X+OM3D3ZJj4oR\ Yo9wH68/uolTsiDG\ KjnYUxWS\x0a9dHLr3S\ aQZrlGfazB0xQq55\ NkuC5IXODwiq5ONM\ 17Go5b5Hb7JBsdtF\ RDL3Qpaw6GN0/g14\ neSzd\x0aZBkmyfra6k\ pl9YVOLnKC3IW10A\ uGwy6VtjPaLcfdFn\ PIY0W1l18ha6yPRd\ i3UJ53pd13BfuZKE\ tK\x0aVZs/+mZuedfLk\ pc+OcF3vr6+71ihN\ UnQBQSWZWGMRg8om\ xJCIC0LYzhgYEh/W\ 2whJcpxyeIYowz1\x0a\ qTt5nLzZQFUrSGcG\ mvvDT+nyE+ZevAsn\ FPS+GeJj8kDoNINO\ mNemD2h7K5WF8jzS\ MNwWILtUQkiB\x0aPzu\ PDrq0nj0DwK1ccdE\ +BKvkASHOVA27VsZ\ kmnijRbrZIQt2xFh\ VfIQRjJIduNfjct5\ jqQ/jLAS9\x0a8MWeIl\ v1paXpqb4+6qLbgY\ nJvPRiegar5yY/DM\ txKM/N5e70jY2Bx7\ vWu+FAAAAgAElEQV\ S1Gs7C\x0a9bH+DQUXn\ +lpm3fe2QnvbHY0a\ 4/bfPqzE7z5rX5xK\ 5ctzGd+BGE0q29+i\ yxLufaZz2Isuz/+G\ HVY\x0ae+stLN9h+iMf\ 3VdqptsNZGUSy4Is\ g9Z7PyBudZDSYurj\ P4xtC2pVyQqTOwlw\ tZ3kzXpZstnRJEF7\ \x0aPAlyyqLzwXtjX9B\ 1nGJSjeU6B5alDmp\ vogEch2p9AtFpY8q\ VAUc9H7jlClnFQ5W\ 9XMwbeWvhrZG8\x0aUl\ kIRyE9RdoJMekBHp\ UhQ4fHqU0/Cyv91N\ stnXez+ucBf3KyX8\ y1Jm6Nbo0oz8OUK8\ jJKUqzs1gD\x0aalkLM\ S/Y4sOHMX41r3CQw\ Y4Lvh3k5s8X/sqLW\ Laduzcth0/+2E5C5\ 8sfr4JbpjQ/i10ug\ Vvlx//y\x0aTm+Dz3/5\ FtO38+OzDL7wl29T\ vZ3HLnWWLylRYtjY\ zPjo6/216T/3iy9x\ Z8Fhs5MfJ6Xqy/GY\ nTje\x0asqeVTWXh+oW\ s536exRxAVCZQtTJ\ IQdLs7BNzWXJQdR8\ dp6TNTp57sJetoTe\ XOB/oYvRPLBiZrRS\ X\x0a8rWFvrrTdHmJ9v\ 0PcKd2Fk8RdI+0zg\ GE3HUhV6qUXniR6q\ uvUXv5FaqvvnZpui\ UVnB2tVp6MNKha\x0a5\ uYbt/AX5vNsYaBUd\ xFpyOq3v8l732/h+\ xJ/bh7Zm49u0ozOB\ +8QLT0i2Ax46TMzr\ L/5R6x9+5vY\x0avgtu\ BakEWZpAN8/pSDKY\ mi/z0Vd2JohZvs3S\ aoLo1bvblSoWUHIF\ n/3cBCsbR9sYMk2I\ Vp9Ap39j\x0abEplVGm\ 808osx8F2fZTtQHN\ 8cf7nDm3IuiHJxn4\ xt8oewrLyUsoD3O0\ mzcsKtxLgjuK8Z2c\ M4lQF\x0avShVGy9yl5\ torfevdneccTKKCB\ qNvObX3qkNN34Jb+\ LoqUFJN0Duyhbdfv\ wRfbN318EXPF+orU\ 3g\x0aHqOm5Aq01rn49\ Y751u88Je200L0Sz\ DQ1SLVznd773gqd1\ XV0kvL2N9b41m8vk\ WWaLMsImrkHQEiY\x0a\ +dhrUNq5np2SQ6Xu\ bM9XT7sxYWK2M92t\ +hTKGH70L97h+qeP\ zlBOVp/RebqIyTRR\ 0CZef0bSXtm+\x0a35u\ cOuTRo2E5DqUXXkR\ WJ8GrQa02tud+3og\ bTaKVzb6ENqGsPG4\ uBWkzwMTpgSGTrcQ\ 3yz29IVOn\x0arYmFhX\ 6Z6C2EP2H1Wxj/SS\ kXYe26+dzoyUlot/\ hpa+fCtecXtq3s2u\ 07A93pWRzTevhhPu\ hlCIse\x0aIHn2lM7qK\ uGjh9sLasHzg+v1l\ hDXZ2bC4qd+9hoA3\ Siv491qowmQJGZgz\ 21h5cdE3eGic7I6x\ Uc/\x0avSN8q483cb0d\ t/re0cFGWggD4eMG\ 7cer3Lm5vxHSG9bO\ eekoIe1ZevFak2hl\ A8feyZw3XmlfC9rj\ \x0aUr77wliepwCipY1\ 92enStpG2Qocpuhs\ dmv+QNz9K8/K2A4b\ r7OWiWemnJuiFdT5\ +dlvjkGfdAvxf\x0aQb\ +LSM3NQ6XKb2eDL0\ rj+1Su3xh4n04z4n\ aHzfv3aL37zr7/kq\ Wn28eGjx4SbvZcn9\ 0uzT99l84H\x0a70Hzb\ GqQC86Wj3+y33r8y\ Z+Z5ztfX0OmMUZKp\ m94PPjBTta7EALLc\ o7Mit1q2qFcceQsc\ alsXFew\x0asrjThW5y\ vky7tasjm9z/ilob\ vv7NTf6/31jk7sf3\ 12R/ztnVC31ACaZx\ +wXcnz55XXdlfr7o\ 33CK\x0aCMvC8py8q+B\ ac7hkRk3ukj/Fz+U\ 0tbEoW7skCK23Xd+\ /l+X/ho11nIXrvGc\ OvvhElhE8Wdw3TGX\ v\x0a5mBYDqpJ337eNK\ P19Bk8zUtpqgvXCz\ fiFeCDhxFf+tQcf+\ 7uJFII0m7E136rt7\ lTubfn3R90+PN/\x0a9\ S61qXViDPe+8S46j\ bdj6ABZEiGURGBIE\ iBN0HHuYVp5mmC5E\ qNToihf8wSAELz1r\ /LXqszfJIoM\x0aL8+5\ fOz1KR79aYP2SsB3\ v9vazvR++s7yvvN/\ +xtPtn/+vd96xsSE\ pLkRo3tL4K8Goy2F\ plTGrdWI\x0ajhnzthx\ nXzvlgvEhVa+Ln2v\ 1We1HPkbJvH1vPHx\ fgYvUhe/UWr+Osgv\ 5jCP4TlwY9FuITps\ 06BK1\x0a2ocOYgkefJ\ hbCpUqv1KL+eXmjh\ v9Py4l/P2uDe0Wrc\ XF7dvrd+6iPQ+9vk\ pn5Wxi30Uy3fPH+r\ e/\x0agazZuSJHgE3+c\ 6+dpuV4mDQhCxJMa\ sD0Wm1KgXAFxOS16\ 9qgM40sK6ZuvAj1g\ +PXenUJOTPcGN/4\x0a\ 6UO6zRUmXv3MwPv3\ ulKd6RruzP4Kj+OW\ sfmTk8XI4TGz+zOz\ HAdV8bFKDulmQNw6\ umGPqvhYZReT\x0a5m1\ 4R2HUNe60ytdOxUI\ f1aVQiHk/B9ZI7sH\ 2fYQQGOgTcxF0+fv\ kLsLdSUcAmw8+HNd\ pDoW0LdLW\x0aCqo6e6\ avW3C+SNfGrU6DAm\ k5eacuDELZ+cCR9U\ beIc1xESWHLOxijE\ F5JZxaFWND2FjGll\ WyKA8t\x0aBd0m/iGCP\ qyY09ygu7RC6fq1g\ 5/LtvpLm+LB8f2to\ UmjUoj5+NndZMug0\ WSILBsqsCyVhVXKv\ Zaj\x0aijmA2Wwg6sN7\ XE6rJr1IiruI1Cew\ ZuawHPvQpAu7Wt0W\ /zfkzoJj/F3xPnV+\ URWpLJz5OtjFZfa8\ \x0aUX7hFmQC3UyIV5q\ kzZC0GZGst0kabYS\ wUaUqoueut7wSyi8\ DgrjZRndianc/gpo\ sY3keluvh1o+u\x0a1D\ gKGYV019aw/DJaGG\ S6K/mzvRNKcmbqff\ XmWTQ4SdStT1zIuv\ Tnkd1hRR2n6CABS2\ BNeHmC3CGf\x0ak1BbE\ 9iO99rtZ0u87Jz/d\ TD2lbZIhjsZYtdcX\ 3VEnLv9ZBHqEwC8p\ Qd/lGnr4Hj3aePOT\ yLIxzp2\x0aPnjv3M6j\ 4OyRUvWs8uMhkFhW\ FXfqOuWFa5SuzSJL\ o8Wcf2Uif/1o8RHh\ 4iO69+/Revxou7ui\ 6aYE\x0ay7vi7ZVdGwY\ JztzO7+WDYqSVKtV\ jzDEQA1rhFowXk6Q\ ka22ksHPD4hBUPTe\ C0ubxR6O+F48cehm\ 7\x0ahT72GHoh6GOk2U\ SUywfOMU6ePcW+tg\ BA/PQJlq36OsZtcR\ YjVvfiLkwgLYXuJq\ TtgCyOKc/M7Bv/\x0aW\ nA1CZ88ImkdfxLgV\ slR+dYNrkvF51XGV\ 5PjeZvi5ackvRjq3\ rnpkLvNhZToLMOpV\ pC2ItEhWRQj\x0aLYVS\ LrJy8GZChuHIoayt\ +vOCMdNs0nq6kwCZ\ J8cpvIVJ4s02RmtU\ 1UcI2Sur7GmqgSxI\ SDbb+Sz7\x0aY3LesfR\ zzXL/vCf4w7DQ/wP\ pTZI6CKda3b4/aja\ xSyUGSb+am6c+Nc3\ mB++fwkkORgiZTzs\ KAkyv\x0aY1ew0cBn/0\ z3gquF1PnEqvqdO7\ QWHx8raWzrMeHqKo\ 9nF44t5gDO3AKWXK\ G7ttZ3+9ZrpOHOHO\ 0g\x0aihCOwq6XMd0U5\ 9bNnQd0WlDePwCls\ /Rs5HPK4hgZRceuN\ ino5zNS8x0tt5sYb\ aHTDAmET9eRriJq\x0a\ rhIuaSzbxXLz7nFZ\ FJJ0uwjLYCkHtLVv\ st9uTJpXZYg9+UmD\ huucNWN1uY9qnRdi\ fnzS5SWEs7MY\x0alGd\ m0Ick0+kzjqXrToJ\ UCnaNmdRpRmd1lXj\ XDrrg6qGlRfnGDbT\ nYznHEyypLCzfw5l\ dGHj/qE2M\x0axAFeLt\ hqKLLzH8ZguyX8W3\ f7Dxwg5tHi474NwS\ h0nj09+qCCodhKCR\ YDetrrNCMLYsKlZS\ Zf/hRT\x0ar74OWpMFE\ VkQk7S6TL78MpNvf\ Jb6Sy8jvJ0EOaksV\ NnHnZ/Ama3hzNbA1\ mRJRNJpbY/3tUou9\ vTo\x0a0+7G7dEuspUu\ KXGn09feVVWqGJ1h\ Ng52rZfnzi7TPAui\ fR27toiaze2mOAVX\ E61s/utagnfrNk5l\ \x0atMEh0rawJyp41/f\ HpmUUEj19TPve+wS\ LD/J+68M85ygbWgP\ SPmCu+B6yeLga5wN\ fqGAs/GEvh+iw\x0aRj\ 0mM0zO2hjHR1XK22\ +/wZCEXYSOyMIALA\ O2IdNdkrhFEmwSba\ 5jspRoZRWnNsnkD/\ 0wtY/cQROR\x0a6S5p2\ CRcXiJYfnAWf+6Bn\ Jug3zz/hMBLzd4FS\ rsu1Ru3Dm1WYbKzm\ +NrT1fIwjgfeDCAs\ LE28PaC\x0aq0NF5ium\ e+MmtZdeHr5dqhBI\ R20PV4F8XkDw4ENa\ jx/lWfBphg7jvLVs\ dHSNMdUabm04C0oI\ iZbD\x0abQAqt47uDb+\ F8ty+TGv/TtH29ay\ 5/nKeHLfXYyMtCyE\ sMIK03SWLIuovvsT\ ERz9N7eVPUJ5doLP\ 4\x0ahCyJ8K7d5s/+4k\ v4M/NMvvIxLMdl4q\ WPUbv1AsGTZf5abf\ 88jLPi3Jz+jy/ujP\ hLwaAMeO0dbFXI\x0aJ\ CHoHD+Dc1iksrCnq\ liuTboa5OMIB2CKL\ N8rz9/Z2OmNYCwL7\ 9ZtzIMPj3RRCylRt\ rs9XAUAKfc9\x0aLnel\ RkRphu1HKL+MPsSy\ Vp5P1Gwded4m0wfG\ y/cyKJQllYVTqWDP\ Dw4XZKsrWId8VwtO\ B33ImuNU\x0aJ9BCoco\ VdJpRv/0S09dLrDz\ Nxfm1H7vD9xobBKs\ rTEwpjMlnE+goxCQ\ pWtjg2mRxyv/97Xf\ glY+f\x0a1Z/Vx9gs9C\ K7/ewwGw10NnxrQo\ DNex8cO9Y3LFJZ2J\ NVLN8h68boKD4wIU\ oeknRScHUpzQyZEL\ nH\x0adSonp1ADRDDtB\ MQbLcKNJmFrA3nI9\ 2LY6z+LY4K1NWQy3\ PFbQ4+qr75G7dYty\ h95+UAxB7BmZqEy\x0a\ ery14OQ43gHzLaRN\ qSwwUuFPTaGFzUuf\ nkeaXNAXXp3Fv/EC\ Os3YWE9Ze9RApCEb\ 771PmkTcfiW/\x0aNo0\ xrLaCga9xEOPUznN\ xuf/NiWIxPwliYhJ\ nYfBwlUFkq/t7W48\ baVtYtbzVoo4S0tb\ Bc4cBsgFj\x0aWgueA7\ yjZ4lbjgNuLngvi5\ 2LyD1kJkAWRKStLl\ lwsPs9S4YvR9JJQn\ v5KVlrtNCQKZWPPq\ jgVLGc\x0a/dP0AIS9s\ 0nMK28GL1DexBQz8\ zaWo3LLG1i6t9Z7X\ G7lt9dD0m67v5vg9\ gsZvjB7Ph6YcxH0f\ 7wx\x0amnV5Gdk7nFQ3\ 1qB9tLvvNOiurR99\ 0AmQysIqe6iKl4v5\ ZoBOkkPLlbZaNBY8\ XxzVUMWplHEXdkrF\ \x0adg8eUv7hMfgsjEm\ Dg61qf3JypK5ujlP\ CLhWW9GXDma7hzNS\ wJ8qomo/lu9gTZRA\ Qh/maZLKMNIpI\x0ag2\ 4vt2hH3I3RaG3Y3a\ PlnW9tINIuW5ejsg\ UCgcGABkvuSKnlKP\ 5g5XySfgtTecz8LT\ fhVyObLVtg\x0ab9MJ5\ XlnOplHnrIlLG0L6\ Tv5UIM4I2tFB4q5S\ VPEObaiLTh/jDzch\ rDsvVvhHbTn4U3Ui\ dvtAzeL\x0aWZIw2D4D\ qnXKAqTro+MIHeXz\ sdMo6ttg7h6cUmR6\ XD5UvYzCoNMMk6Zk\ QYy0FabXLmB2wUbw\ MpUb\x0aISZNaX54r+/\ xnadPsGqztNc6SJ1\ gsgQsK0/klSAwzL0\ wyQffb+FN1YmbLZp\ rMdduOhB9Eum4vPB\ 6\x0ahQ9+MESy5pgZi4\ VexM93+NWofznRnp\ e7EAFvon6omGcry7\ TefYfmn7yFXhvPJL\ S4sWOdmzQhCwNM\x0am\ mCyFJOlZGHQ918ad\ LYbJxzFlpirig8ZZ\ K2IpNPdt9iaLCUNO\ qRRQBbsLJzj+hsLL\ g8HdT3cImo1\x0aoX3w\ cAx7foHy/LWB8fSh\ qNTRtgPlKnJqBjU3\ j3frNsrL+31flClo\ SWMJmRVhqeOQBWFe\ eujYWCUf\x0ae6KMUBL\ pSd76+hozCyXKNYU\ qlcGvUVq4DmlEt2M\ giwk32hA0+fD7DSp\ THsYuYaSL7VcQSLJ\ Og2Az\x0aACGo3XkBYQ\ nWVlJ0BrhltFAjFy\ SOS0MLc+mEyDSl8+\ QB0eo6U69/Yrvzk8\ iy7cVLeR6W5+xLlE\ k6\x0ay4SPV6jcuM7G/\ XugBRiDyTKajx9hr\ eaCd5zxozJN6D55Q\ hLkCRpp0MVyLexai\ SwMSYMYYUlUycOu\x0a\ Vmk9WsSbrONPz7B5\ 7z5O5fDex9K2sMo+\ lu9AZsjauZgPIg0D\ yjcWsP0SweoKcbOD\ 8kvoLCsaITxn\x0ayPj\ oOLa0ncMt40oV3xi\ C9fXtRDfLcbAcG6f\ XWOQ/9BL+QXigrb4\ P5bokOssHHg39qNN\ B6pR4o0Xc\x0aaOHPTS\ ErB0+YK+hHr63SXV\ 1FlX2c6SpWyUMqBy\ EsnHoNog7vvLnzCU\ udEDUaRI113Mkp4l\ YT5To0\x0a3vtTgvVpy\ jduAQqhI5r376Esm\ /aTR3znNwWyPImOQ\ tCw/ua3MK++gixXM\ WGXt3/3Me78zYNP9\ JQo\x0aBP0EhE8f4C3c\ oXT7BdrPVtj88D7h\ ZoO5H/nRbTHPO1oZ\ vOmp/oUibNN+7xGV\ 2zcQlUkqt2+x+d49\ \x0ahBSUpyq019sQgjV\ EEtFefubLt/mn/8P\ vE7fb2y0MdZYx+ZF\ XwSlD1Gblj9+idnM\ Bdy6/6DpPn1D/\x0ayC\ tooYD7ZFE4MBNdKN\ Un5lkUES/vGgAj2H\ 5Nk6Vg8nIRd/4mti\ 2wSmXWvv8WANHmxo\ WwhgouDkJa\x0acIRbH\ oBqDb9ag+YGOstQl\ Vpfo6VRxBwgSxOM1\ gSba3hHxOpPGy0V/\ vQkYWOTcHUDz5JIf\ +Jcz+my\x0aIHsGVdoJ\ SDsB0rZQE2WciSql\ uQXC5joyaJLGXUyU\ r09CKYzICFprKMen\ fPs6JjOYNGHjvR/k\ 4XUB\x0a3twsBoG0LZo\ PP0Q6j8iCBCkUWNB\ 45130rrh7IeiXiO4\ H7+HNTTO7YG/XKm5\ hENy57fDgYUz4+AF\ 4\x0aCqMzhNEYIaHZYP\ 3eB2AgXFvDnZyh83\ ARYzTTd+f57F//Mf\ 7o//hXbD7bIOk0yV\ aeYc0ePLt5L4nO\x0aB\ td5O2UqNUmnWaY0O\ 4U7d5M3fmyK7/zG9\ zGpJtpYxa1PY7QmD\ rp49TJZnOBUKghLE\ Tc3MWGEW5lE\x0a2IJ4\ vYFOU1TFI25tgjak\ SYZSdm59K4FTn8Aq\ 9S+uRmckQRshwVtf\ wpoqRP0q8zduS96I\ Ev7TJYu0\x0ac3hcUSq\ F6fXI/oqX8dXwiCS\ 22gSSk8e6vZu3Sde\ XMfK87fMcWZumUqm\ TtproKEaOvq9/LpF\ 7DCCd\x0aZPn43kYnDw\ 9OlLBLZVx7enswiz\ E6Xy+NycslM03S7p\ AFYFcmITMYYUBKlJ\ 83ByrfvolUFmknJN\ 3s\x0aouN03xyN1rvvH\ Mu7ehJOLOjPY/xcx\ jFxu403N33gMaGGe\ GWROO5QvfU6AJPzi\ hden+Y7vwv+3Ayt\x0a\ R0+oTFxHC4U3N4MV\ tvji3/4SU7em+dF/\ 54u8/S/+mEff+5BO\ Y4na7DV+6meu8fRB\ k7ff2e/a/smf\x0aXSB\ YDfjGtzYObX8opcA\ gKN99hdc/N8lb//I\ RzQ8eYNkSd2KmF//\ JP9Laa58EYGbe5u7\ rk3z7d5eJ\x0aG0/pPF\ uEDZh65XWmb9aYvl\ Hi3TdzKz1cekTrwW\ OkJZn4xOf42OcmaT\ ztorWh3UhJA4POMi\ rX8rrO\x0aNz43iQK++\ 83+lrUf/+wE3//WB\ j/6hWnCTsJ338zjq\ j/2hWmyzPDNr59u5\ n7B+Pi1hxp6y93uu\ dSD\x0aEtt0mhA+eQxC\ 8NXrOxaOzGK0dXDC\ 3DhQU/snFQqjEWma\ x93PGC0Vsj5VhKVG\ 4KCZFTrN0K2AtBUQ\ \x0asoaq+EjXzmPrSiE\ 9G2nb+UBTKZAqN2B\ 2X6MZkLCzIXVmawh\ LIh0bHQ+u3PrbN2v\ 8T48PzgnZzc0v\x0afs\ mcdPramV4rP126Gp\ dmsLJ05DFRN8MIjf\ QUX/hrd/nJX3yJ9a\ WUN3/3Ga9+uk7pxl\ 0AnHKFL/zl\x0aO/hTM\ 8RrLR585z6rD1b51\ q9/i0fff0QSJLz4h\ R/mxgsev/svnvH2O\ 10+8fFeb+x2LqK/8\ B98gq/9\x0a1lO+8a0N\ vvx3Pn1oaY6Ugs/9\ heu88bkp3v7DZVb/\ +C1s18OuVNFC8SN/\ YQHZm1j0C//RZ/j5\ r7zI\x0a6lLCt393mZ/\ 6q3dwJhfwvQmmP/o\ JPvpnrtPaSHnvW8t\ MTln84n/2Z/CnZzE\ 6Y/ozn+PP/3sf5U+\ +\x0a2WDpwzYf+7FbfO\ InFgCDsAX+jRf48S\ /f5k++scJ3v9ngi3\ +l10KzuYkMu/zQlz\ /Fj35hmm/8wRpL\x0aj\ zr8lb/zGX7oh6p8/\ Q/WePd7G3z60wfXJ\ BdcXIRnY5X9A4elZ\ HFeIeFNTKLDTeKni\ 0BeIZF2TjeJ\x0a0gH+\ XjWP8ZskX4SNkOci\ 5gWnS9oOiNeaREsb\ BIurdD54SuudhyQb\ bRACYUnEEdPThLIw\ Wh/aUntY\x0aMR8XZ+p\ y/+3u1SgCcW/cIhu\ i65TyfLIsH97wtf/\ zfdbe/COELXiXz/L\ ia2WWvtE7cGskb5b\ RWe8Q\x0atgI6iw2Sbk\ R1vsZLn5rl33xtZz\ LT5LUyfL+N9MvMTF\ l87dfe2r7vn/23b/\ K5n7u+PbJ0Lz/0My\ 8w\x0ac2ea5XvL6G8eb\ eX+86/ulHQEvYuzu\ fQM74WXqE54bNy/R\ +fJEvr1j9Fc3bl4X\ /mhGv/vP3yb4PF9\x0a\ Os+W+Jq0mZ7NL7eZ\ 1z6GZcG//mcPWXvz\ O1Sv3+D3/x/4+V96\ jX/+D76JSVMsJfnG\ H+TNHJ6uZDQ/\x0aXOa\ 7383r+Dc6miePjj9\ ru+D8EL5L6fY1EAa\ dJJg0255FTpZhMoP\ tVNCWgwSciZ5b1C2\ hrOHWD6F1\x0aX3mcSE\ PClVVUycOqD+5UJ4\ wmAf5uKxdvYRcbxv\ NiaxpjHjY0SKV6G7\ 0Uu7TjUh/UjW9rA3\ hc0mYX\x0aq+Ri+R5W2\ SXrHjJ8RxukrdAj9\ DY4bYoY+jFxKlWM0\ STR4EXGqyiElJBC0\ s13/fls3vwtd0v73\ 3qz\x0a9T8DRhuEFHi1\ Erbv8Kk/d4Pvfe0J\ 9ZrFe9/tdS0SgnLF\ YvlhPOCJoPaxN/LX\ XVsl7jW1ef+PHvMv\ \x0af+09AH70Z2/w9c4\ rrP3Ju9vjAktKMvO\ pz2GkxOktisIYkmd\ PWNnMu2BtNVyQUtJ\ 9lnehy+KIqLWz\x0ayZ\ m+VYPvNtFxhOn1c2\ 9u5JsM6bh4nqTT0R\ htCBtruAs3sGs+GI\ 3Rkiztf19bK/0Crp\ Qkd4IVXCaC\x0aZ0uos\ of0bETPEkIKpFTg2\ AgsdJaL6nUbnlDjZ\ 2cFv7ViQA03tW1vr\ btA5U1nugElLER9/\ wAjIyTB\x0aww8pzc5h\ /BLTQDE+6HyImgdb\ tdmuKgmdZthePtNc\ pwlJEJ5w+h3oMCbr\ hFiug10tEa8cYmEL\ kc9f\x0aP8xJ3m7DiNM\ GT8LV8IGfMbqxTtD\ IS2Y21jNuv+IDhqi\ 1iaUUn/0LCzx7GJF\ GeT3kVsbO7s5D0tp\ /\x0aFQjycjflKIQQ6C\ yj08ibaHzjNx+z8e\ FDHr31kKdL+UUtdE\ azmXJjfmdzcGNe4S\ uJcnd2snJ6hunP\x0af\ BaA5trOF2LznTVe/\ /E7TL1wF3oWvSstR\ BIjkxjd2xlk66tsP\ HpIumfQShwllBeu5\ ZsPS+FXd15z\x0a6b08\ Jr67kUx9Kv85Dbuk\ qdl+T4StMAii9V2d\ 9Hrv1dbca6fan1h3\ okBTwbnhlepEyxsE\ j1cJFtcI\x0anzZI1tv\ oMEbHcd4nIW5iWhs\ 86eWa/taKYWG0pPU\ +0uYGRuezzrurq5i\ NBjKOEGEH3drxUvm\ 372J6\x0a7WELMT8cYT\ RC6yM7/x0H5e0fPD\ WIuN2ms7pKe2mJ7t\ o6SXd/D4xR0WmWGy\ BCYvlePv/8AEySHT\ kB\x0at7X4+ETnMyqFh\ T4iurFGZ3kFk2UEz\ 5bwZ+f5yKdfYmP5z\ 9DcyMW9PF1BkqLjl\ DTqkg05ttRoQ+PJ\x0a\ OnN3Z3n5Jz7Kw7ce\ 0Fxs8K9/4xGf/MIM\ 3/uD3nFbD8g0axua\ n/93X2Xxf30bgI/+\ 5F1UlGIfUO6m\x0ad4n\ y2/dDfvynalgz16j\ 5ZQyQGo1J03zn2SN\ uNfvKMYSQiKTLs/t\ NPvalj3HvB3dYuO0\ id8VFP3x7\x0akz/711\ /jX/4TKN1+ic//xZ\ usPW6ytthk8/33kJ\ /8ET738zf4Jp8H4A\ tfvsVv/eP3EZUqCI\ noSfZ2\x0agp8sJPwqY\ Epl0IYszIVTKgsdx\ SRNkXu0yKedmSRFr\ K5TvnMXIyVPT9BjR\ dVrWFkIrQCdZLSX8\ hwY\x0ay3NQ1VJ/m+Za\ UR62F6E1urVJ1Gnn\ Q6GMySfSARhD+cWX\ x/p6Oj3f1uBCCiDv\ B3LYVMi01cV2L1Zr\ \x0aYLHbahyVUTLc/1L\ N5jeal7PzkUxTurv\ iOlvNLLIwwCo51F9\ +Db2raEGg6Ty5T9b\ NW0pOfeKHIeqw\x0a8s\ d/jJSSmU9+AqN8lr\ /5dSrXZindeZng6X\ 06j5+hPIdXf/oNpJ\ Asvv2Ixv1lKjdu4M\ 3dxIxgl8oo\x0aRLvDd\ 9OSYYDubQJk2MXYD\ sZSyCxl/d98m0QbZ\ n/k88gs5tm3v41Tc\ pj86OsYtbNx+Olfe\ o3f/h//\x0aiNUf/ADl\ 2kx8/If7X4OMYOUp\ rQePqd25jTN7vf8k\ 2k2o5Dviqi9oBfsv\ r73x0YLLh9lobIvq\ MFiO\x0ajV0qHTrBbFi\ SlWfEzRY6zbBcB6v\ i4c5cP/qBzxEyTdB\ BlzQMidttsvjwdbt\ +94Xthlrjwmw00Gl\ C\x0a3OmQhidzo4+KM1\ vDnZsEDcGjZdL2wd\ PT3PkJjNZk7ZAsGN\ w0adTStZNkup+ZhX\ 5ZxRx2SiGSbhfl\x0ae\ Xj1OlJZCCEwWrP6b\ 96kfGMBt17DYAg2N\ 8iCBDKJyATdB++Td\ jso5YCA5r17WK6LZ\ VlE6xsIeY+w\x0asY5y\ PHSa8d7vv4NXcglb\ AUJYdBaXiJtt6rdf\ QDseMo7AmEMFexQx\ B7bFPP95p7FGtLwE\ ysHSms79\x0ad9FpipQ\ SbQztJ4+xHBfledg\ TM9iuTXd5GSkVOoW\ N73+b0rXrpGGXaHM\ zn4ipBcp26Cw+JWo\ 0cKcm\x0a84YeS89wK5\ P4PUEfJOZwdC/wgo\ uPmJjEi0LCjc2jDy\ bPfM/iTYzWI00ZHI\ Q9ew3le4hKYYnvJV\ ld\x0aIt5sjuy27i4v4\ d26feLXd2B7BoaYm\ MQC/Jm8nvvMMQaTZ\ ujw8M6GaStA1f08I\ /4AQT9LCpf7kHi3\x0a\ bjNIIkXQRTkeaauD\ KCmU62K5LroTo8mw\ XJd4owVC5L2DgSzM\ d3N2ryNVtL6JpVyE\ srGALAjodLsI\x0aIVC\ Oj7AUJk7pPnuG0Zp\ ocxO7VKb88iun/nf\ rLMPyS8gsJWl2QQi\ kpShfu7bdZQ5gclb\ xL/6X79Nd\x0aWUPZdt\ 6+M0noLD7beqfyx9\ oK0RtvmIUh3cWlPI\ 4urfzfbqcYQVUtpR\ IAACAASURBVPkcYM\ 8vDC3o\x0aW0TNFs7Jj\ fRCzPcgooD2k8UDa\ 6mPIul28Y05tP/FM\ PyEyvikq/leJPnt9\ Hwyx6WysBwXISRZH\ B65\x0aucm6EapeypM7\ D3i+s6QQ9BOSBV28\ 67PY5RKy7JCFMTpM\ txPhhKWw9rRQtfZY\ z5bqz/gZ1O5VWIqk\ \x0aNxpy4iMvIcqVM+k\ 5vRWR6fs7dEAWhEi\ T9lrFwvpKSrL+DCk\ l0nYG/t172fs+ZEl\ K++kTLMcdy46/\x0a4G\ oxbLLUefCG1LylL5\ /3SDfWCNbXT5xMlq\ wto2ZO1vHxt1Nrn5\ AHD+6f6DlHRdgWQg\ nM7jyBozAG\x0aYUmsk\ pvngUixI/BnnPtTC\ PoJMSWJU6oBAhOnJ\ I02WTs48RfkMKTno\ 0+4Gx6WQQkq0rGJG\ k3Cte9u\x0ad5WDPFlO\ ef52L/fjvV6GTrsk\ PTebV69jXxuDWVZw\ 4SjPzZKG0aFlStvH\ zswgpwfXkF8E/nSA\ mMso\x0aGnts+aSIsEM\ mUqLVjUNjw6OSRfH\ YxEQEXbJul87qOUx\ jFLknEdhO0jwMq5S\ nVEpHIZQEesmdgl7\ y\x0aoEEHm0j/8GFX46\ IQ9P+fvfcOsuw8zz\ t/5/tOurHz5MEMBp\ EACFACQIgURUqUKC\ uaLgVbVq1TrSyr\x0at\ mxvsHZVWtem8m5te\ b1V6z+8a1lau9aSV\ yvJFiUqUBYp5oAME\ CCAGYSJPT3TufvGk\ 76wf3y3b3dP\x0a90yH\ 6UTOPFUDdN8+955z\ zz33vN/7vs/7PLcB\ T6f4tSpWK4pmm2Kh\ jc3VLYO5CCRerwxz\ MxLFRjCd\x0aNgzsTdk\ wqlXpzq0WoPGkj19\ aYcCy4vGdRtpokDY\ au0K8uYv9hRgaQc5\ Ob2pbv1bftl57On6\ F8uHD\x0amHD3rp+lb3\ I2MU5pZBQTlw7U9e\ plCWlrHtXsEh0ecl\ KnebHtMvuNyNsddu\ rdZlkLhCUYqjpNDq\ X7\x0a/3YzUQLAWJdxC\ wGiN4Wxzj5F6COiY\ DkrB3esWmN7+hhWG\ UyusCVNdDegH1wkl\ y9hhSU+NIikjE4y\x0a\ ivnWhgFa+BK/VsGv\ xVhtyGeb/fGdrcDa\ rfDdbw9y9BAVT5C1\ 2312/0rsRhBfD41L\ F4kHB3aE6XwX\x0aBwd\ Zq7XxRoBJuiTXr6H\ SlNrRY1DfvJJbfPK\ e2zZvuRF/JVB8tfB\ Xzas7j4cOebtDeWQ\ YObpWG36/\x0akMzOot\ NeT9i4kT2T7lxAh9\ ufQBEix3iacLgGxm\ CMcZmu7hHUctUzUa\ FfDrfaSa+63y12SZ\ CqN557\x0aswWACHoZt\ efh+QJPyn5m7XkCa\ w0iCAhHB5xzW2t1N\ cOvlp0Yl7HoLEenO\ bZQ655PmxVEN7f92\ FHc\x0aDehbgFCKxvn3\ +r9nc02iQCLLToAg\ n2lii5uvImUlJhyq\ IcqRuwitwU43MMXB\ VjwTI6NEsG5A30uk\ \x0aiw2ikbGbGjDcxbc\ HRJ6TzEyRtzcv39u\ anOz/bI3GazbImk0\ 8KTbFfH/As7xrd24\ Z/IfF2mvQhK78\x0aGp\ TL+KXyvvuqL+FGlr\ i1ZkNBlO2g+e47lM\ dGkMNjW36uyFKS9n\ yvdC3xhCtdiyCASO\ DFvVK4tU6g\x0ay+J+N\ r3s3RjX/jOAdn+31\ qzpg5tcuey6F9A9I\ UAKhBTguf431oK2i\ DAkHAmQldCp0WU5t\ tCIOMQv\x0ax3ieR9Zs\ bti6MEoTepDvwQVx\ 9864FSiFDMO+/KBq\ JVhliI8MEdSdvF8+\ 23J2jjcEdRFIgsEq\ ohSC\x0aMXieRzhYx2S\ KfHZrAv7tqSlqg06\ +8q/4ij9Um/8Y9ez\ 0ljKHH5Oaz2iJOCB\ BtHH+vT23JLyLHUS\ z\x0aiSry2yqdWq0pki\ 55xy0IsuY5wkqF6M\ TJVdt1zr+LH8dEx0\ /eVjD/76o5/6Ttgn\ U6fsUtKKTAFIqg\x0aV\ F7meDSbRPUa0aEj2\ JuYz+w1kvHLax6zx\ myqP7wddGfmEAuLR\ IMDhEPDoDUmcMV4o\ QqMv1byz+t2\x0aaIyP\ 3/Q1hS8R1QgZhS4Y\ +z4IF4Q9IUGCCAKn\ SrnmY14tzWqzvD9l\ Az29eN2zT0VjlQVr\ 8Dzpsnch\x0aEFFEfDR\ EJyn5XItoqI7WCt3\ KNhxrW8KT5YBnO7s\ /ur0nd+mV84X7DTM\ /R2dmBgAZhkS1Kn6\ liifk\x0ahj0vE8cEpd\ IqPWGdZKRTC5ROjB\ LUawjpk04trAnqsl\ ZCliKsUpi8QJYcwz\ sarqOa3U2VvoJyma\ hW\x0aQ4Rhf4G9lWAO0\ J2bZ6A2sOn+3me0u\ zEVaUJQLmONwajVF\ +au97Xu4jsH9ToCK\ JfLNK9c2dZLtKem\x0a\ 1ri15Z0O+uJ5ZBg6\ j4WOy5o2EkXZDP5J\ O8TMza5L0tJ5Yzmg\ 1+uE9fqBycyTicuo\ 7vrZo+ftHiPf\x0aKE0\ yO08yu8y9WRrfqty\ 3rCqnZ6fX8HNu9np\ msYtirW30SsgodPw\ kSZ9pLnznqeEJgTG\ qb/9g8gJb\x0aGEy2vL\ gUvkTEIbISIQIfNb\ sIGkQlIKhV8GtVZO\ wmmXQ7Q3c3Hmtbwl\ 4Ec9ijgP5zwwG/Ob\ 9/wjJe\x0ab0ZSFAWtX\ jAHJ/TfnZuHuXlKQ\ 0P4h9zYxZKSVVito\ POC8vAwolJFt1ukj\ bWzs7qb0b00RfnUY\ fxa\x0ahVh6ZFOLeIV2\ 1noWgloZhIdqJeRT\ DaLRAeRAGetZV66f\ Wvbe9eMYTwh0nq26\ YJZGubZ7w0guX3Ik\ \x0aj22QdYLDRwm1hjQ\ hazbwhMAagx9Ge85\ GTcev3B1r+zaHLZU\ 33ujG56gCnaVO0An\ r5oX9ZeFWJ0Cz\x0afJ\ 8RvrytTDSbGN9UW6\ D19rkDUzUSKqc9cf\ WW3BydZq7kfJPZ6d\ 2CiEJ0Mk82s7htQv\ CtoLMctikq\x0aJ3yJr\ JUI6mVscQO/qQXFb\ As5VKJ0aBS/4jv2e\ logrD1QCc22A/pWZ\ F/fbO+vNu+S4EHry\ qWbblMk\x0aiTsZ7RbJ\ gjMWWfoyr+zf3Qwm\ V3QvTlI6OYZfrSBO\ hmA0qpNicoUsx2AM\ qp24hcS1GYJulfjo\ MOGw\x0aY6znU26xUDp\ 12r3mwjzJ/NyOXDB\ mbhajCipj2yfqWCl\ BqTU9S7G4sKcXddH\ twt2g/m0NkWU3ZRD\ f\x0aDCpLGfnAk1ghEK\ pg7o1vOfXF9V7fl3\ hCUjlydFuEuM0G8y\ W03j5H/Z5T2NJaDY\ l/Wsv7tqy7AdNa\x0aI\ J1f2DzBtoAdZwluE\ p5cHgs7SPBCv599F\ 3OtNdelURoWErrdK\ UonRgmH6ogoIJtcw\ Ozg+N/tYk+W\x0aaFPq\ YBSh5C3GVowq6F68\ QGdq8qZe4ptBMj5D\ Oj2H1RoRRIRDg0Rj\ w+B5FK0uegVb0nRz\ 1HwHjCEa\x0aHqJ0cvW\ crRgaJqzsjPVe1m5\ TOXwE6rc3PiHWye6\ D8tazrduFzjOyiZv\ 33e5i7/Hf/8yPr3n\ s1//R\x0aP1h3WxNF/W\ tbJ12KTpO83UR1W6\ hu22XjadL7veVc2K\ zFCsFPPfk4xg/QRU\ 7RaaLTXnk97fafK8\ OI\x0a8r1nNlWN8jotv\ HaL5OJ5Om+/RevsG\ 9sigLavXcXMra1W/\ W87HcyzNnphluzaV\ boXL5BMz2K3sDAy\x0a\ ee7u/HsdWCVYbZfV\ qg4QbI9B78nlseL1\ YLKczvlrqG4XEQaI\ 6DZsAG+CrSTLN2JP\ Su5X92k1CHDC\x0as1z\ tEWLiet1ld+vArch\ u33oPoJhroRpdRDn\ Ek8IRaFKF7qwWnLF\ Go9IUX5WwwiArZSo\ PnFi1eg6O\x0aHAXhER\ w6clvHVj55z47ooJ\ t1VOxudk53E0bpXS\ P23MX24K9DeAp7zG\ 9vHWnQcGCAxSuXCQ\ If3/ex\x0axjBQr6KUZ\ mGxiScER48eodHp0\ G220D3uRhi429bQm\ fswStEYv0yRZ/hSE\ o+MIP2A8Phqgpwoc\ kyw\x0aOrB67RZzZ9+g\ cvQ4QblC2nA2q0L4\ FElCUNmak5ZRmmRx\ gdga/JEx1NwMnieY\ 2wFBHFGk5I0GRTdx\ \x0aHBa7vM+twiiNMfq\ 2EpftIKhX+mNnBw1\ GaVQjwa+XkPV43Wr\ HynNtCoUIwwPn43w\ wqMu7iKvWW5Zl\x0aHB\ iETZTPbxdGaegJIQ\ A91aC1Xz6jNF5aUM\ x3kNUIEQXOBSrwwE\ R9d7XbDeawe6YmXn\ L7HsTbRTw8\x0aul+Vw\ 7tYB9a/+d3NK3JsG\ PFffOKjlEolagN1/\ qf/9/epHz9OdPwkv\ /CDH8VYw0C9ThzHX\ LhwkWql\x0aQhjFnD59\ il/5tX9Ncuk8AIcO\ HeZXf+6naLc7lEsl\ /ugLX+Zb587hjx3m\ rz75OL/38uv9/f7q\ X/4E\x0a/+sffQ6A/+r\ Hf4jG3CxHDh/iG6+\ /xRcvXmX46Q/x3/z\ MJ9FGk2c5i80mv/X\ V55h96fltnQOjNGm\ j\x0ageg4t7KoXud28n\ Ov0yZtLrqKgdm5fq\ 0QEiP2lomvOinBQP\ lAltwBR1guFCIOkJ\ UI3bl5Q94qA8Yg\x0ap\ L/l1tFu4js+oAOrN\ JbjgYF1iW27gc18y\ FZrikYH1U1dGcxC6\ fip3T+4HcJ2yE07B\ ZMmcIDUuO50\x0aHDt2\ kn/8sz9K0k7BghCC\ +vCw+2NvQfnPP/cV\ AO6rlXn6nmN8rec3\ Xa/X+dTnv8SlZhuA\ //sf/9f8\x0awv/yz/p\ iJf/ZT3yCf/kfuli\ gVinxz3/v03SVwno\ eP/Xk45ydc7yX0UN\ uBtrTCit9wgG3/+6\ 1qwyP\x0ajlGOQ/7n3/\ 9M/5h/4on38Xuf/X\ x/v7/8M5/kgeEBZm\ +jLGxWKJqpNCUE/n\ 6p4F8kmyvPekajFu\ ad\x0adWiyO9oP1po9z\ 9B129lNh8M1sDVUJ\ 11TtdxPGKWhneJJg\ V8v3zKgq1ZCUC0Tj\ g4QjNSwhXLCMj0P\x0a\ dZMrTOYqSrK8d/eo\ OyKgr4S1Byun65f6\ D8pc31bRWNy3XSeL\ i5T2SAL3LjZGt93h\ X//x55lcUa78\x0ane/\ 9iPvBLH/v/vLD9/K\ BDzxBo5vytUtXAWh\ 3Olxqtpl54VnGPvg\ hhCeg3Wb6rW8x9sE\ PMTo8ghdE\x0aWGBuYY\ GO1sy89ByHv+sprk\ 5N8+jYEG/OLKB7Qi\ Kd8fOUDx1D9X5PF2\ bR1vKpv3ALCjMzhR\ g7jBSS\x0aS802089/g\ 0PPfJjxW8xDbwfWa\ LKr4/yLFTPydnEBr\ 6cjsRKeMeRz0+Tt9\ o4quK17XD0lNOHfn\ ibA\x0aZtFvRy50CAYq\ 6CRHRD5WhweKVGYK\ F4j90CcYqlIstNff\ Lsn64jUAXuDjSYnw\ 6CvOWWN71723Z22G\ \x0aOy6gh0eP9y0Y0/E\ r+9L//U6Bl3TpzG8\ 8R7pb2G/lurtYjXa\ zsSqYA2SJu1mbMOL\ vf+wZXnzrHf7o\x0a3E\ Ui3+fUqeVKVFm4O1\ 5tbAzPWooiZ/G9t/\ t/94Xs9+CLohfsLN\ i8QBnDcLUCMwt4vW\ 3SpInfqlKK\x0alx39t\ Fa81WgjioLO3CyVs\ cN0kuVg4hnD5es73\ 5ILbmC+y0p1bauo3\ aAzP7cr41zrwbMCf\ Ocuxl5m\x0ayMa5mFmj\ sUb0BF0OHuwGFRpT\ aIwqEMK1SXWSYbLC\ zbzLnpSs734WUu5Z\ r/2OZhUd1IspuXxp\ vw9h\x0aQ4gsozM5uUp\ kZz9gFxf2df93sQy\ 9jjOf1cvB4th99/P\ 8jPu83ro6CSvEYZY\ yndLp+/qPmZuUhI8\ c\x0adnoRQeBjy2UeOn\ WCr150mX7Re44Qgn\ j0CPfcs4Ic19P3Tq\ YnSdou8xoecMQ3KS\ VWCJ554rEtvOPN\x0aQ\ Rc9Mt/SYQTrlN6rA\ 5TvObO3FrH7QE4Tc\ YhVGhEGPXGX/R1pv\ hEi8BFhgOd56M4GC\ YNwWvC6m1HM\x0atchn\ m2TTi6TX58km58mm\ FshmFsnmtqYEeju4\ 4zL0bweoNN2yROte\ w6pi34M5QLKwQLVa\ u6vvfgCQ\x0adNaWJ5u\ 9lozIMy5NTPBTTz7\ O1996mwdOn+DixPX\ +du9enQKWNSMWFpd\ 5Lp4xNJpNPK2xQnD\ 9+iQ/\x0a9thDvBRHfO\ zx9/H2ZRfMaTf5g6\ 88yy/+xA/xJ5UYa+\ mX0K21NFru+IwqHC\ +r1eQPX3ydv/XR7+\ GP\x0ao5CHjowifX9HA\ 90SSS44cnRTXbU9E\ 3vx2DLjXJZCbKHxp\ MTq7Tmfidh3hDILN\ tcHysdChD6yGuOF\x0a\ cnPGNb1yulV6DSt+\ iRhNApAQjR7brcNe\ BW+j0sLNcDuzcvsN\ T2t0c5Gs2TqwZdut\ OkrtB7yku235\x0aztt\ B5dAYYmjZvuiuctz\ BR+vN16g9+sSax71\ uBzyBLZXWjJbNvfQ\ 8FsvAyVMEh4+STVw\ hHj2EjVwZ\x0aXeBheh\ Fp/pUX8YOQgcceJ5\ CSki9o9G7IosiZ/u\ ZLjD79YUSe07jwLi\ pNMUox9l1PYaQkFI\ JD5Zgf\x0a+O7H+fSzL\ 3HhG18jqu8sP2Mzn\ u7di+d3RK52I8RHh\ zFKoVvphoI0wpf49\ QrWGldOFmKZi+RMz\ npE\x0asOKm9tHCl3hS\ Eh0aQBcFupNhkr3p\ 328GshQiSiEiDrCF\ RjdTpzx3C0RHBgmH\ B1CNDtnUrcW1tqok\ \x0aePUrf7GtIv0dlda\ INKXxbVDO/rbBLvp\ L3wpCri5ZlkZGUAe\ 8ovGdDpGlmCi+6d+\ Dap25l1/kVilh\x0aEE\ YM3Hc/tlwBwBMSKQ\ WtiQns1XFESZI0Zh\ C+U/Rayu48z0NIH2\ Msc6++jAg8RC10QS\ PtkZaEz9zL\x0aL/S2d\ SXV8tih/jhnbgxX2\ 13KcUyzULsyWtWZn\ YXZWeKBAZcNbsOVb\ CcgQh+rjevx3kJEB\ XqSqNUS\x0aIuqFCs9Z\ lnpez2rUd+fPWtMj\ uRmsMn3J65VOZMFA\ BWN6/eb04ARzv1py\ vua+M9zRnWzDYA6O\ 6R4O\x0aDyCiAC/095a\ LcBPcUQEd3yeq11B\ pdiDKxbdC6/o1agc\ 8Q+9e3R+lttb1a/g\ L832JXFuuIHtB4C5\ 2\x0aF0IpjO8jlKJYnC\ drtfoZZfXwIbzB4X\ WfF4+M9t3RVsKT7h\ ZktcKTPuniAlHvsx\ x84D7yThtrDKXB\x0aY\ SgvC73oxTm6UzP95\ y1B9v4TDtWxdU0+2\ ejvZ+W2KukQVqtYz\ +NEtUwry3n6vlO89\ MZb6LkZ5C66\x0apaWN\ BjIKKQ3ETgqVZTVI\ P453PUOX5RhTKGQQ\ OrWzmzDdl4K5rITY\ wjm0qWayytBExiH4\ zghFRhEi\x0a9B1ZoKe\ 94fmyrwwn45C83cF\ 08wNRal8yY/FrJee\ dkebobrppYqLuZKA\ NIpCIOEB3tykkv4O\ 4owK6\x0a8X2CUtmxEg\ 94QAdHPNuOkcpewC\ zM72u7QqUpanqqb6\ hzF7uLYuo66eKt9R\ vaU9MMxGVMvE6mXq\ 1R\x0aGhm56WssBdq81\ SbutLGVKn6lBmGPV\ FZerdomB0eQrSZ6n\ SEVGUX4UYzqpquC/\ arAHwQ0r1xmuFyh\x0a\ 14HnL86dJ79+lda1\ 62uY6duF8CVeILG9\ ALYUCHWWY7XGkyH5\ 4iQi9wgqFYTc3Vuy\ CH1EyQfVs1EN\x0ahLN\ 0TgsnquI76VOvd9x\ BrUzR7SL9kHy2sSb\ wryzXKxK3CCjHeJE\ zxvGrcV/RUWUZupU\ ciGAuyxEy\x0a7i1AgK\ LZQbW2Pj5n8gIRh4\ jgYITSg3EUewA1Pd\ U3Xfl2QePSxQPj4n\ Qjkvm5/T4E93kuLF\ A7dgxq\x0adT7haz6nD\ oYP9XcUWs0Ngzm44\ JU3G/i9gF5MXSc4f\ LT/93DssJux3qA02\ bx61WVPUUg4UnMSs\ OUy\x0aV8cvM/POWY58\ 6KNuf+HarEgEEhEG\ WG3IZ27OLvb8EAnM\ n3sLYwzWWjzPQ0qf\ oFRaFfy3C+E7T21/\ \x0aoIzNDaq5ukJhtQE\ PhO+TTM3u2v1pybp\ UxCGiFLh2grSYRCF\ KPv5AGRMWfSEUEQb\ IcugsR3OFTTV5\x0auj\ aYrwejNGbF+xSBTz\ had6X6Yv9kX5fOwd\ Jixa+V8HyB7uao1u\ bsq9eDLgpEKUL4B0\ Mx7o4I6Cud\x0ak9wYz\ dJV5a3xVd4MrCqcn\ rLnIaOdWcm7Y1OYw\ q14ZVzuX4QHEbUT9\ 9C+NnEgKh2ta9eoH\ TF87q7I\x0azK4g2aTW\ gCcE/gqjnuDwUboX\ L1C+9wzg5Iddtra5\ wAA5+WyL6MgAi3lG\ MDDI8IqxNk8KRCD7\ GZ/w\x0aJbLiLDDz+db\ Gx+uHN3Vr2yn41RI\ yCiEGUxTQK+capdF\ Z7rJZKXYtGCzdQ/x\ aGb9ecguduWa/rBz\ K\x0aOiL2keUQvxJjjX\ EqctpQLHZW9cC3A1\ Mo8pkGohoRDdUweQ\ Hp8jnYLQhfOk/03m\ gZXs8vPZLIKHTH\x0aN\ du87bl/3ckI6lXXR\ /f3eKZ/HdwRAT0aG\ EQlXXSaonXeY2k6g\ QMPib+F/qvqdkAYZ\ OCTJznC9/Hk\x0a7Tvu\ WK3J2i3iWokiKzCd\ FpUd0HDfDZzwLFej\ iMrhw7SvX0P4AX4c\ bSr72i20JicRszPO\ Ua66NVON\x0au7g5iqn\ rW2qteEKsSsJWzVW\ 3W1vqDzsJ1QQmQZw\ cJAgjHnjwYS63Wgi\ r3RiVNdBKnNRsKUR\ WQlQn\x0ave1AdLsQvs\ QLffyBEunVOUQ1Ih\ ypoZopOsmQvuxnhS\ IM8PzdI1WJKCQcq5\ NNNdZIreYrZqRlOc\ If\x0aKOFJgWolO3YOn\ aRqhgpDouE6RTtBd\ 1MEOxPUXSWEPpHRE\ wKkh6xG+LFbMC1pj\ ugkJ702t2Nlf5Pk\x0a\ bpZeeoie/ep+4o4I\ 6FRrVI8dd2MXlVrf\ 9ISszezrb276JFit\ sNZw/4cf5OSTp/ni\ v/wcOs/xS7cf\x0a0E2\ RIUPJD/2jH+P5z1y\ jefY1VJJwEDvoS+5\ 1tlzBj2PiYyewnof\ n7W9bwyhN0WkT3A3\ oW4JZmKMz\x0aPQO4jH\ Kll8BSFryeudCN0H\ lBc3yceHDAldqbDY\ puty+oYtcRntkMVD\ eh9fY5wtE651uuFK\ yMwSiF\x0aiHxEUMNk7\ mdPCFSjs6a6tdXAs\ fT87T5PxCHhaI284\ Ra5ZrGLJwSyGhEMl\ MCX2Fz1mOLSmYGkO\ 0+q\x0aWqp0WKV7jMGb\ w/MFwvexhdnxBZFR\ mmx6ETNcJaiXIQDd\ 2n5QX/n5ijhEViL3\ +ffm+K2xeMZzbQ1j\ \x0aSa/P949jJ6HTHJW\ kyFKEF+y/TtudEdA\ BW67iddtYPD7yl08\ ydaXBa5+5gNEFaWN\ 1EPKE59yItO5L\x0aAA\ opnegE4Ac+cblH/L\ GWotNapZIlfZ+gUn\ OPa7Wqb+R5HjII8E\ sVrFaoJHHbADL0CU\ q9EO5B5YEH\x0ad/w8Z\ BPjqDSlduKeLRPuH\ vMtb6jV4zzR8ZP9t\ +cfOgz7zFPI221kM\ IsYvn3Lyu8kFJPXK\ Xoyp+Fo\x0aHVMoVKO7\ xqDDpLljeY+M8UsP\ Sn6Nw/hjVZKrs5vW\ 3M7bbfL2u2seF+sp\ pG0BarGDYrk/64U+\ suRu\x0a5OFgBUTPJvn\ YCEYrdJ5juxqziRG\ k9SBKIWarRCnhEQx\ W8eslsqlFioXlDLi\ Yb6Ob7vWW2NUidEI\ t\x0aIt7dW3HeaBNUy5\ huftNKgCckniewu+\ hhqJsJupkQHh7AHx\ ukWOxgGmunHzaCCE\ NkLXLtjB5Mrsib\x0aL\ bdQ6sELfeLDg4go3\ PZ1sBGsNojAxy/F5\ OydKtx6uGMCOrigD\ nDl+UmuTBV0JqYIS\ iHDjz1O1lok\x0aHHQl\ 7sXXXyTvZhz6wOMQ\ u9Ex01lg/q23XYBf\ imnWopUmrpW590OP\ MnBsiGShzbm/eJOs\ uYi1lpNP\x0a3kuW5tR\ H6wweGWL20jTX3hw\ nazUQQhAN1amceQg\ AD9vXogYQeY4Jd7b\ HJ6SPUZr2tQkqp+9\ d41G9\x0aLppN8OCN2t\ oxur8ZKn4z9/GsJd\ mnMbYbkbXalO4GdM\ Bl31mzhVFFPzux1v\ VJ1+M/GKVJFxepRD\ G/\x0a9k6v0mErlI5XK\ GYmSec3NuO5WRZki\ tsbx7rxdQWglm7en\ vuPF0hEOUCGIUGpj\ C1bsonNcQCWxEVM\x0a\ npK1FkGxvBhPLZ7n\ I+Obc2ZkOcQfKCOk\ T3J5mqLdpljTrvDw\ hEdpdBhECYvB8yRi\ HS/5nYRuJIT1\x0ayi3\ n63U7ceNnpRC/XEJ\ 1d75tsfQZ5tMN51Q\ 24I6pWFzfBOVG+JU\ SwaBrkVpclUa1E0y\ Sr+sRLwOJ\x0a1RZZjX\ YtoOtOCgM1t8AsR/\ s6vnZHBfQltBPtiJ\ 5CUjtxD8cfHOKBDz\ 7GN/7DebLCUj10jO\ DwUR56\x0acohzrzh27\ /H3HcGv1Jl87tn+X\ KXFlalKh6pUhqvMv\ DfJmQ89QHVsgJd+9\ +skjYTHPvE48WCZy\ 69e\x0aQmvNIz/wCKPH\ h3jx91+gdvIY0eGT\ fPgnT/CNP75KVJIc\ ffgocMEd59UrlM/c\ v6Pv3Y9jaDTQeU56\ \x0a7SrR8WWta88Yitk\ ZV40olbBFQdZeVtM\ rKYUYcnPGttNAyoj\ f0gEkLbpzcwdCdW+\ /WaYHBV6nTXd2\x0adl\ Ug3yyM0nRnZqiWSp\ ge21vYHK22FpCFL6\ mdPNXP98wWn7+Z41\ yzT2vRhUJ7aV+ZLD\ w2SD7ZWJfJ\x0aLMsRs\ uIyPYslX1wkjgcpH\ 7+fY5UynTynUSiEL\ mhceQcZh9jU9F9LR\ iGyEiNiV+632pDPN\ jGFxmpF\x0a7ehR/tX/\ /k/5xf/ylymNHWZo\ aJhGu8X8ubMEgzVQ\ 1pmkiN117xDVCF0o\ RBQ4m891zp1RGqvc\ vLlf\x0a352A3t9XoVH\ NBFmJ8CsxIvBR7e5\ NSWrCl0SHh/ACd45\ 1N0cnmWsl3Monvhf\ kZRiwW9P9bq5eObG\ g\x0ayt2AvucoCkvkew\ w/+UEATh8rE6eKrH\ Cfvn/kOA+9v8q5Vx\ p4KsEUOcNHT3P9So\ bteZYvwShN4+o8\x0ab\ 82/hjWWoBLyyA88h\ h/6YA1RNWL6netc+\ PrbZO2Mci2mdmQIz\ 4N4ZIwP9YJ567030\ WOHyVd48O5G\x0agPQG\ hwhaLawxq4N5p01n\ evqWrPXO9DRh0sWv\ liDwKLqLZDP7Z596\ K2QT46ve350EL+nS\ vHr1pn+3\x0aunfTHig\ 5QpYQmKygWFwufVq\ jaV26SHR4iLA+iFH\ 5tsyMiuZiX8FPjh5\ iYHCQ7uz0rvlgr3x\ N4Vuy\x0amQbBcJVobN\ Cxu3ukpWCw4tTBpM\ TkBaqdYrKcotGi+u\ h9/OrP/yzfeO2bfO\ PseZ45c4JPfuIH+W\ //\x0a1b8lnbyMDjXWF\ OgiR6cdKDykH2MzT\ ZGmPa1yizGaEh6nT\ 59GBAFFu8VCpQpZS\ pEldK5PIEshnu+j\x0a\ Owm6rZB+cMsqwHYR\ VMtOPMVjA+cvizXr\ V292GibLe9wBd235\ 9TJ+vbx6I89VFZEe\ pijQsxlW6+Vz\x0avIl\ raOm6FWEI7LxCnVH\ azaOHPnKfdUPuyIC\ uDWRqOSrnnYKvvXR\ 51TanHj/GyH0Zl16\ bImkramNV\x0aYAEZrG\ CWWEsQB5x66n7uff\ oMncUOUS0mrpfwhN\ cvzzeuLrKMwAAAIA\ BJREFUN2hNN1FZQd\ 7Niaul\x0ans1eQFwtk\ c9eI1toodpdGlOr5\ 33Nwtwq3fKdwI265\ 1uZ0c9bbYzRBAPlv\ uzjQcRB873fS2xGX\ 1+W\x0aQrxAYJTC8wV+\ WEJWIkyqyOeaGKUR\ viSbWcSvlVx9extJ\ ZNZqUV4hyWv8kPjI\ CXQ6j2qnq1jWOw2j\ \x0aNALXu45G6gQjVQJ\ Dn/VssgKTJU6utJe\ 1WmWxQlCOY7705rv\ QbvHC2S7f/9TTDAQ\ +OijTnpxk9APP\x0a9P\ fjWcP0y88zct+Da7\ 6r6fjlfhtNruAQjD\ 38CNQG1hzz/CsvQM\ qOBXXhS2TdzVyrZr\ qqNL0e+u2Y\x0aPZgSM\ Eqjuxmy7HgQ611f1\ hh0kWOaBVZpbLE1U\ xirNLqb41djV3af3\ 6Wye5rhV0uIKEBG4\ aakY3cD\x0ad2RAX4Jn\ DFYIisLQSizFtXGC\ Yycpro2Tdk/zwp9e\ QRUGdM7zn36PbG4a\ U6wOFLWxGk/85Hfz\ 2p++\x0aTGemxdj9Rzj\ 64NFV2xhlsLr3LbL\ un9fTRjRa48dxP/i\ vWjAA6WKD8g4H9FV\ oLG6ZmW6yHJ0Gbn6\ 1\x0aFO6Zh/Nm4QlJfO\ LUxhveoVCtxGUt0g\ MDuuNUy0ToPtPo0K\ BjJC/dOC29saCt7c\ c9X6+r6BeEdZTY\x0a/\ RbNkutVLtoEwxVE6\ KM6KbqbOQnTm40vr\ RiBslFMuVyiUSiyx\ gKjH3iG7zl1jFfGJ\ zk5UKEaxbz2\x0a1IcA\ +NlnPsBwfZBPffVZ\ Zm5grfsDQ/ynP/gx\ fuPzXwbg73z/92Il\ /D+f/zofOX2CwWqF\ P8EZzWxV\x0agWJJxlR\ EbtGguxlWKWStRFB\ zc/k207d0SROh74i\ LBky+N60rk7os3Wr\ jpFRvgDUGq/S2hV8\ AdDd1\x0aDP7S+ouGnY\ BupdhB7exXS3cD+p\ 7igUdrNGYzLl3J8K\ ylmbkgvTA+TrzYoO\ i0+fIfXOL+91d571\ tt\x0adw3IAD+K3RjEC\ sjQp364jjUWLAyfH\ EFsZIHoOWKMTtpMn\ J2mMjaC+MDjEFYYG\ Fu9at/N0peZn6Uz\x0a\ M7v15ymNyQpEIPHr\ 5QMV0INy+Y52XvM2\ 4Z6oE1e29GuuyqJV\ hm5niCBHGhcAwpE6\ qtHB86XL2pRh\x0au+T\ nZGGBUBVEx070H7O\ 22FPVMNVOQNArs4u\ +EIhQel2jkFJc4pf\ +0sc5f+kyD5w+he7\ 5uqcL8/zD\x0aj38fl6\ 5dIzeG8wstfuEHnu\ DqQoO5LGdsbJS8mz\ GbpJiF+b7sKYCRkr\ FDy4YsIyPD/Mevfw\ OhCr52\x0a6Sp/9YMfA\ NzI1WYgy+Gy7Kjol\ aaF11uc+f2RuKLZd\ X3eDTJbZ9Yi9vRzW\ TKHMbnaFe2ApSqNa\ nUJ\x0a4zqyVoLmzrd7\ dJpjsgJZEstGNvuA\ OzKgtxYypqdcELLt\ Buff8fAwCCGc5KMQ\ FHOTvPctx3q30vVF\ \x0alsZumtMNJt++Dho\ 6823e+Py3GD1zmGS\ wwtyFWawyqLTA8wT\ X35qgOd2AHoN94do\ 8WTfDWmhfneC9\x0acp\ 24JCF0zM2v/86reD\ pF5wVyF5XivKS7rW\ C+BJPlmDhAlnZXaW\ sr6M8/38HY1NQC7g\ ZqjXGSlUGA\x0aJnPZa\ jtx89KVEFMUbpRJS\ kxWrFnMbgV5q42+f\ IF4aBBjNVoVmHT3b\ UJXQjUTbKEJRmrIa\ gTaiUuZ\x0aKMBkxaqA\ olTBl196lbNzC3zu\ 7fP8ne//MACDZx7g\ xMkTlMpl3rwyQS2O\ kIFPu3AZZLvd5je/\ 9Bwz\x0aLz6HkILaikX\ MjWi0GrwxOcfMay8\ z9uT38PaVCcbiiI1\ Elf16CREELgBLF4B\ NobCec0HTHSeehQA\ y\x0aRbGwOQb5UiD3vL\ 1rpYnY3T+s3r2KQD\ +oNxOnlldo2AXr1q\ WF2J552q+DOzKgX7\ i4orRTG0QtTlMk\x0aX\ URvzjyIS7SuXKWcZ\ ZTGDuH5ASZP6U5NI\ YOA2cuztOc6oCFr5\ 7z5H19n9OQoRZYzf\ 36W6liVIlUI\x0aKXjn\ K+dIWwmekAjPY/Lc\ NWQg8TxQnYSF119l\ 4IH7kXGForXI+OuK\ dGEBjLcjetLrQaQp\ jStXkGGI\x0a7JGisub\ GUpnQYwWXIhBuRW+\ xyAOgkBTV63d8MN8\ K/FrJKa0Z0zcOgSX\ 2ccdls/UYD4Hn+30\ S0u1A\x0apzmd69O3e+\ ibxpIHN4J+71XEoS\ NTZQW2cPPDMnZ8As\ +XWO0WGVmWcXZuge\ nnvwHA5MP38Us/+n\ F+\x0a/Y8/i9GGbrfD9\ W7K9W7KO5/9Un+f3\ WS5jeBtsLjKejLPV\ hk8a9DGEN9iER8MV\ lxVIfJBuyC+9D5M\x0a\ liPrJWQcbnoE7EbY\ Hsud2AkM7abaXjBU\ dWXw0HeLy10u8Ttx\ n46baChHrjLQSW+r\ lL8uluRm9wl3\x0aZEC\ /Ee3LE1hr8Ht+zp4\ fEPgB6YyzaMS6L6c\ nBX4YUXQUeaeJ7GU\ 3+WLKxPzyDPbitYY\ b/Qokzckm\x0aHp57bW\ tJGxkWEH6AjEropM\ vC2dUiHJ7wkLvkNS\ 6yDBPHq0xf7OL81g\ J6HLovvudW1l4gYZ\ 8n1sQt\x0aNPlXKqGBG\ 2FZQlAuE44ewu6iX\ eZ+QPgS4fsY5cheM\ gpBer2sTjpPbOv6l\ jfeuE2hUYsdomPD/\ aqU\x0aTntqY98GEL5E\ lJw1aF85rFddELEL\ ILqVotO8R8gKXO8z\ 8pFVdw8IetfIoWdc\ Zn7m3ns5d+EiJunw\ \x0a0qvfROkbAkGnDZU\ qW8Im1kdLFqaeFIj\ Y+Y2bTGGSYpWNKWw\ oBLchTNFrpYU+ohQ\ gjSOU7Qb8aow1\x0a1j\ HXu9meJQRFo0M44P\ QVPFHGpGvP4+3ibk\ DfZ9yMUSrj8qa+JF\ uRfvVvEJCQpVvvY+\ DeMzum22Tm\x0aZmFkr\ eCK2YIkpyedA5Na7\ LqZVs8ciBt9kSQE3\ Q72Bl1+kaZ0bjAXW\ aknrvMG6WID4Usqh\ w7DOuI5\x0aBwlLPuRL\ N6DgyNqqRP3Bh8Ba\ PFWQNGadDKYQeKHo\ 2zxu6DJlAW0RJQnG\ YPKtz7PvB0TogrJf\ coHZ\x0aaAWGvk2m6qS\ YbtYnfeluhu5miMB\ prxurEVoxfnWcn3j\ ifbwzfo3hWoVMFXz\ +7fM0L13kM7UBvvv\ Y\x0aIZ4+cYTzM/PMZz\ lUqgit+Q/PfxPoJQ\ CeQOcZr73+OqrboZ\ RnnHvnHTxrsJ7g01\ 9/qb8tec4b06uL\x0a7\ UsMdb8U91j5CtXor\ EvkE75Tebvd/rfJc\ rQvEHGArMS7FtDB9\ bVVc28193U7w5RLY\ EGG4YrguwNB\x0a3dqe\ EczuagrcCncD+joo\ DQ0579482/eb2E4q\ xYl1gjmwace5Jf3k\ JZWxg+C0tgSVpjTH\ xwmrlVXz\x0a5+nC/KY\ +Q6M0rWvXiAc66wb\ Jg4JicZ7u3PICZb1\ jtb2big0j/FqM1S6\ gm0K5Ea2lka0Nyo1\ GKxDC\x0aLdj2yfZyqx\ BhQFB3dqX5fHPTmZ\ 8pNBQalXbpeFf4vz\ 7z+eU/zjf48nMv0L\ k+CR7MvfwCLzcfxK\ sv\x0au/tlE+MYVVA5d\ gLdde07GUak83P8x\ r/+N2TNJly+yKfCi\ Oz6BOFAjWZ5ANNcQ\ AY+yfQU5cNHnEe5\x0a\ cPr5slrCr5YoGh1M\ 59b3IhGHruqyDa2A\ G8+DlytXlkYcyCmW\ 24VqdvFrZXSe4/nC\ 6cCHPjq5zUqB\x0a5+H\ hORnYeqn30N5m63d\ 8QG+9fW7NY/6hw4R\ piuq0XfAqClSa7Xk\ Akzss+3oziKER/GZ\ rQyEbEQR4\x0anneg7+\ 15u0O+zme6WaSNBi\ rLKJ06vXMHtYPIWq\ tbI0IpjL/+1zidGM\ dK2xtH8vsSmeHYAK\ IUIG41\x0atoXr0XpSo\ rrJrpKWdhpWG3SWb\ +vm7MdlssYCxcVvo\ VsZJjd4vb5o0CupW\ 61YvHC+5/XgEjLRy\ /SS\x0auTk8z7XYPOlD\ kfPNb76GJ32ydovs\ lRfxhIdSCTJvIYOQ\ 8okj5LMLdGem3X6q\ VRfMayWKxfaGWawI\ \x0aJCJ2bQOV7Ezvy2p\ noXrQplh2Ajp110Y\ wWOlNPPiIcgTC23Z\ AF8GS4xt9v3W4G9D\ 3FJ3zy71r4Us8\x0aIa\ kcPowFTBwjYle2k4\ CcnV6VGe0FqkeP7a\ JNwmpE1eqGAV0lqS\ NK7fFFutdQaUrr7X\ OreAYHBTov\x0asL3+r\ Sd90pkp/DjGr1Ux/\ mrehckLdJ4TDFWxw\ iBKASZ3kpn4Hl7ku\ 0mKpRWat6Ja44GMI\ jzPQ7XS\x0aVcS5m8Eu\ GRF57BqhcyOYLEe1\ JUG97MrT26iwhYPD\ RKMDFLUuxdxagpkn\ ffzS8vsTviQaGCQc\ HML4\x0aztfAdjt0Jq/\ jl9a3ZjaJIRouEQx\ UsTWDCAJUs4vVBll\ 2IiiqlWyqJC1KISJ\ yfAmd3L7sqM0VJlU\ E\x0a9RLWWkee7H3+O1\ GxlHHoqj/7nBksKS\ MuqQZut7qx1OYRPd\ 6FyXLSG/wDag/tjb\ fEHRvQhVJU770P\x0ak\ q4TdbEWanUs8POBY\ ljCv0iXT49frsAeB\ 3TTW1DsBTqz2x9hu\ 4u9g+q28STums2lY\ 2iXA4RVcIPZ\x0arvB9\ rNGYpFdaDEOybJai\ 1QQfwqEhwsEVnAHh\ IaPQMYCNcex2Y9DJ\ xq0nnSYYXSB8iS4U\ 0g93RcJ0\x0aI5hC46U\ 5thwjqyXMNhnfQH/\ qZSOE9Tr+6Bg/96G\ PcPTIUZIk4Q++8gW\ uW0trYuKmz0smZtF\ 5TjRU\x0aJxyqIeLAVU\ WEwHTzTY+byTgCA8\ VCe0fIZUZp6CZuUV\ cJicYGKRpd52Huy9\ sO6sFQFZ27ue2DgG\ Kx\x0as0yM3ML7E7502\ fhQBb9aQoYhViny2\ 7jmbhd3bED/hzXL8\ xk8u4KZ+veign+VB\ fx24ZNfuYY1mnho\x0a\ mKLd3lef792G1+0g\ w3BTLYXb7dF9O8Hr\ tLFbZS7vIkSaAJbB\ x59G2ILZb76OrMR4\ UtC9NoUfRoRH\x0aj/e\ 3L42MkLYX8QecFHG\ x2EV1Mx742PvozLW\ 49sY1PCsJ6pX+JIe\ IemNd2ims6STDFrf\ utVutMFpT\x0av/c0/t\ AhkusXSSf3b4FolU\ Z1UoJ6eXsjXNZitN\ r0PHEwdpgff//j/P\ azX4NWE2p1fvbpp3\ k1jHht\x0aahK4eWabz\ zTxpCAcrOGXS5g0J\ 5tqbMkYZUmbnx00e\ DGFhk7iypMxBANlR\ OyjGl23mxuy6y0Fw\ UBi\x0aGhtzOPYSVhk3\ uhgFN7WXXQkRSGSt\ RDhcd8Y+RlO0Oqhm\ d5Unwl7jjg3o/zxZ\ y0z/9dSne+nCqsCW\ \x0at/fnwxG7KCpzI2y\ 5QvXoURqXL99yO9e\ W2Fslqf2EF4Q78lb\ /2q98D7/7T59b9dj\ IoGRucWuZTufa\x0aOG\ G1xgOP1nj3zRZeDF\ ZoinabbH6OrCcoHB\ w9TjYxTra4QDBcI5\ /PyVrzqHaBUYYzT5\ 1h5sI0E69f\x0aJZueJ\ 5uaw1qNLEdUTp9Al\ kqkE/Nkc/NYozDG9\ FjbHp6QyNgZaFitM\ HmG1gqjDUF9gO/55\ D187bfn\x0a1gT0G6/n\ 3SSbLmXp3lC1v98t\ 7c/iVPE2GR8FHlNz\ 7v3+0k//Nc6++w7/\ /sUX+eWf/et86+w3\ nQf5\x0aLaA7GaZSxi+\ XIN56ULbGjZCKMNg\ xpy+dJugUdJIi4xh\ Rdv7t4ZEBhJBgLCr\ NMInCpDkC0GmKyhK\ s\x0atT0eQQnvhqkeUY\ soOi2yxVlMbhDSv2\ lbYi+hkwwpY0QcOD\ vUW0D4ktLJMWSlDN\ a972x6EdXs7tHR\x0a3\ hx3bEBPx52BhSeE0\ 2vuOQxZczDIP0G5v\ PFGO4hscWPXNH+oA\ p7TAr8TkM7NrMp4t\ 4tuI+FH/5MH\x0a+bN/\ 986mthcqW9MPp9OE\ UoC/4ivrGdDNLvlC\ E1mKCAYHaF2bgKvj\ eL5EFYpguEYyNUP5\ 6AC5n5Au\x0adFy5Hue\ opnq90WioTnx4FJ3\ lNK9cBO2crLyywLQ\ N8VAZYX2ydhfdbiK\ ljzEaYwxhrewym1t\ A1kuE\x0a1QpFO3HCNX\ sAYzUiCrfsg221dj\ PqW1BBFOvwSjzhys\ tZ99atOpPk2N7oqC\ 0UZovkW5PkiNDHC2\ +f\x0a26LThCJbEdAy3\ Iz9PETlKrLXBhTVi\ KBaRg6GWK+EaiXkr\ RblY0cojY7RnrhCv\ tBaM6YbDlRpvHOB\x0a\ 4ROj5ErTnW6i02Rf\ 2jMrYXMF1m4qkQpG\ a8hKGZvnpNOLzsjm\ gCQ5d2RAF0VB0d3/\ 1dQSonqtHzi6\x0aF12\ FYCcCyVaQdzZRmvR\ 6kqEHqFS2mwjLO5M\ 5vPbpt3j/D52hHHl\ 0s9XffM/avlzrD//\ 1+8kXO5RG\x0aa/zZb7\ 2DUAWmd0P8+N9+gm\ 43p9tMOfHIcd5983\ WKJCMaHmLou57moz\ 97hu5ihyAKePZTbz\ P96quE\x0aUZm/9A8+T\ tJJ8UOfd758losvv\ uskQXF9+NqJY8RHT\ /E9P3ECayxxPeKrv\ /s2s2e/iahI/vo/+\ 1vM\x0ajs9itGHoyDDX\ z07wrc+8yuL0AkP3\ 3080NMJHfvo+Wgtt\ KoOVZXU0zyMYqSJD\ N06FBaM1IvYReYjZ\ \x0aZTcvawwoSzhcJb2\ +Re6LBZMVBAMbL6p\ lFGKwHD9+CCau8ut\ /8oeYMOInH3+cr77\ w9U1lzM5+U2N0\x0asS\ 3/eqt03zXvdmGM4c\ j7jvN9f/fjhHGIyg\ tmr8zyyh+9xOLFWa\ Le9ajnm2TTs4ggwK\ 9W8Ktl4mPD\x0alA6d5\ Mg9Mde1Ips71zs+1\ ysPhqpO2U4Z7v3g/\ SSthEvPv0eykPS3w\ XMKmf3fe7gx099pb\ OacC18i\x0aopBweACr\ FOnMIrq1OzbA28Wd\ F9CbTToLe0tu2whi\ BSO4evIe18Pb42PY\ dA8s8DGB3FSf6dse\ A4Mb\x0ab7MJNJuaP/2\ tt/n4J0/yhU+Pr/5\ jtwOVKk8+M8hn/7/\ 3eg9e50f+5kP8+a+\ 9An7Aj//Nh/nT3zy\ H\x0abswgB8YYOTYEgL\ GG8tF7Of1wma/++/\ PYbgvKdb77R+7lz1\ 55BRsZjr/vBM/93r\ NcfPZdGpPz5Nly\x0ag\ LHW0rk+iSkKvvbvp\ gkqVWxQpj4YMZUpy\ gNVxs4c5vU/fZnx1\ 64QVmOe+bkPM3Rqm\ IXZeUR1mHsf\x0arfLF\ 33kPuk0o1/nRv/t+\ 9+K9ER6d5nhSUCx2\ nAd7tUQ4UiMYrrjR\ KOVIdzsuMGItplBO\ IW+LMEr3\x0a5Jk3Uf7\ 2gKzDH7zwCj///d/\ HYHmIQuc8++YrvHV\ 1EtXYOHGQcej69Z7\ XV+bb6vH6ntih6RN\ LXInw\x0aA8kXf+2zqK\ Tg5Hed5id/5ZP8zn\ /+m6huC6MN1losFt\ KcvN1FhgEy8LGHPI\ aOlpm6FAGWotvC67\ UR\x0a1HSKmBMYq/BjH\ 9kjHauiQBcrA/jaJ\ r0MfPzS7vJZrDLIW\ kTpnjGs0o4IeEP5P\ ToyhCck6eQsehdM\x0a\ Xm4Xd1xAb12/tt+H\ sAZmxYzvzWaKdxNe\ d3MlUJtoZC1AluMD\ PZuqkk5foOMg9OeW\ 8IVPj/PYoxXe\x0aeLN\ D1nP4W5rvPvORB6n\ UL5I0C+rHqozefwz\ d/QqiXCHJckhbLLx\ zntrpjMakc+zyrIf\ F4/0//DDl\x0agQs0Z8\ vc8+gYI/eM4AUe1r\ NYa7n8wnssXHFZtg\ glop/JWfAF5WPHwC\ 9z7N6IU48fZubyAu\ 99waCU\x0ac0Sb+NZVF\ sbnnSSxEASlAJMqp\ ISkpUgmLqLSLvUz7\ 6O7lHkbi2nnhCOOR\ e+yyLw32y7wAtl39\ /J2\x0agy/SMyzZTkBf\ er7V1hHV8puriFml\ 6U5OEQ+P8Ntf+mr/\ cVHkdKavb4r45YR7\ LJ4nwbfIcrTlXrg1\ \x0aBs/u0Dip52GUYWF\ ijnQhIetkfOwXPk6\ lVmZhep7hBx7AHxr\ jqR86jMoNr355hnT\ iMu1r1/F6/tDW\x0aak\ QsGHrkST7wcWedG0\ aSZz91lrmzbyGkhx\ 9IhBQcfeQ4Y/cdZu\ bCFBOvX2LsviM89m\ PfTbleBmu5\x0a8MJ7v\ PPFt5BBsauZuu6kP\ RdJ3wkUDVYIh6pO0\ 6CbI8uhu/d1XKA/a\ MEc7sCA7sfxhvPWe\ w2VpgSL\x0aC3iDQ/uy\ /87U1Ka200naV1Xa\ riGLSjr9BYwjxOws\ V0AnHcDwvkce4u2z\ 72yrPyd8SfXI0V1p\ i0Xl\x0agKOHfcaOxrz\ +zeU2R9HN+MrnlvT\ mF+EPrqLShBD6fW6\ AvNkg7ZGslnqmnYU\ 2bz3vpjCunr+E5Yp\ T\x0aO8lAFYq0kYAVCA\ FW4FTkcFnW6ONPce\ zeEhMXU65dTJm9Ns\ 7pR53WtTFum7yT44\ WeM56QHhjrtPyB\x0av\ KtIZ+fwJHieWXWTs\ 0o7R7ee3OySNznQs\ 96tIKSP9XahHuXR3\ +92n+9aTLe+xpfeU\ +fadeD6tnZl\x0alEbn\ Ob4qwPOQta0HdM9z\ XKCdVnYTUjB8zyhZ\ JydNU6yBQw8cZW5G\ 8eLn3H3j8ImQKU71\ RvQsedc5\x0a+ZXGDnP\ /BwZ49QvTeD2WYTI\ 15Tx+eiTLo4+cYPT\ MGK25Ju3FJjLy6c4\ nXPj6e3jCMnB4iO/\ +K0/z\x0azpfeQufZmp\ 78TsLkCnKF9Z3pjR\ dIRBAgSj6e7yNjH6\ s1+Xx7U7oM+4HvbI\ WQdRDVD45WtwxDgr\ KT\x0aIGxPTdE5/y7Zx\ PjGT9xBiGzzCnhGa\ acaZkzf9nAr0FlC5\ EueefpJPvj0U05c4\ gZYrdBpty+ecuPf\x0a\ lv6t+/ppilaKqFTm\ b/2Nv0H5yNFVDmHr\ PXflay79E36wa+Nq\ L7+4yP2PDnP6qVPA\ spBLa7qxZtuw\x0aPoR\ nNOXBCl5cxa+FDJx\ 5kJF7hntv2P2vNdf\ C8wwL777KwrvfJJ0\ bxyqLsHL57Xu9CFV\ Y0NYFvEhi\x0a8Tjx8B\ Dp1GV0c56xE2u1D0\ RJgPWwhXXKaG5VgN\ ZQqoUMPfQwMi5h8K\ kMrK6IFI1OPziuhC\ m0K7nb\x0a3WkueVLeX\ kDHmSQZpfckEzNJ0\ Q/iSzr0W4LtEXyDn\ al21A8P8JG//QN83\ y/+IKc/eB9f+bdfJ\ m0n\x0ahINl3v/x0wAs\ vPoiC996meacK5dH\ Nbc4N8aCseg0ZfJC\ mw/+paNYBO3z75LM\ LPRU6Cz1owM8+NH3\ \x0aUXRyLr9wgbSREpQ\ jrDCoLCOulyiPVBg\ 6PkwUuRL+XsAoR4p\ UrcT5HaQK4bsFEx6\ EI3VkpbSnk0ib\x0axX\ dshq5npxF+gFEFfr\ nSN+0QQ8P4zea+Zu\ lBuUw8MAi9xcXeyc\ eshpd0aVy5svXnSb\ E9Ao4FPwh4\x0a5JFHA\ I8XXnwJq1VfVWwpe\ 7fW4imF5wmEFBhj3\ Y1/pX2n5yF6WQnWu\ mzSGIy1+GHAo488g\ h/Fjond\x0aafeY3T2/\ Yk/gCc/1AdfM1XvI\ HbopLmGxs3ofX/3C\ ND96uLew7LGGP//7\ l3jmY2Ocf20eVVgW\ Owav\x0aVicZv8h//De\ SI/fE+MGTFIVF9cx\ lrLKY5hwvfAZOPVy\ jXHuKpGPQGhrvXsJ\ iaM+1MCveo1GG7mK\ C\x0aSlW/R6yNoXLsFF\ rD3LWUpF0ge2YmzZ\ kmOjeYwoCxJI0Elb\ vPhrzNpXfg0L3DEF\ cZHvOZuzyLZ1ZE\x0ab\ xf7bwrPE5seD9sOt\ iPXvGS7au3eUZdNT\ 45UVkvIaOtOi/3Rt\ SAAbp+PUKQFMxeny\ ZopSbPLxNkJ\x0arIFS\ OcITHkLnaK2xSpEk\ lrjkkdQHVr1GMjNL\ e+44L/y5IYo8xj78\ GFPvXmfu7XNYYykP\ VqgdqjF5\x0aDopugU4\ V1aMDnHj8JINjQ8y\ Nz5F0U0yh8X0ftQU\ TqZ2A8HuSuvEKUqd\ 1nIf4iNMnKebbB6r\ 9+J0Z\x0a0JtNwAllyN\ FDa9Z1Ub22JwHdj2\ Mqx45jtkF02W0kly\ 9t6xyIIHAKZMU2My\ vPI4rj3sT0MnTaJR\ 4a\x0aonTqDMM9Dfv5P\ Ce5fJH25HWe/uDT+\ L5PpVJhdHSURqPJW\ 2+d5cr4ZUpxzH1nH\ uD973+ULC+YbCy4\x0a\ UURrUCrn0Ae/F4CR\ KGQuy/GMYeaVFxh7\ 9AlsabkcPxD4NArF\ 4svPb++9bQF/1iPA\ 2RWEyOe/PLNq\x0aG9t\ cJJmdQ5RjJjkGgIf\ h2T++iu0sIoSkcf4\ iA/d5XF4hXy9MjhA\ SrRQv/d5zpK20Fzg\ FaI93v3aO\x0arJ2Chm\ zmKi/9+fJz005Kmo\ SE1Sqq3eW5f/dV0o\ UuwhMYDGc//waL1x\ YQUrJw7m2GHn6Y6V\ 6leX5G\x0asfjZCfJWC\ 3+oSjBQA+GC6pJ96\ Y2w2jjnq10wAfGkQ\ C3cRnCzEIxU0Y3dJ\ z8tZYVWKUQQbK+Pb\ s2O\x0a1VyTRpe3v/wm\ yVwX6ft4nkBKSdHJ\ 8CxYGbi2SRhSqwva\ LUO2OE/5uKs84bmF\ 4ty5NwmqVcTpB3jk\ \x0aY2eYmcrxo95icar\ B1HuTlEeqHH/iHt7\ 7+ttUBsoceeg47ak\ mU2evMXB8CLFJgZ+\ dggvkIbIcgfSc\x0aN0\ CagwCbaUTkeER+tY\ Q1Tut4JyR3dwLfmQ\ G9Xkdy89L6XhhNVE\ ZHESOje85WvxU8a9\ Hzczsi87qT\x0apVKrF\ NHgEKVT9/L3fvgH+\ YsXXqAaxfzME+/n1\ z/7BbK5Gb73wx+iX\ Klw9epVpPQ5fe9pa\ vU6ExMT\x0aHD92nB/7\ sR+h3W6x2Gjx2LH3\ ITwPawyj9z/EDzxw\ L+U45uK1SX7kqSf4\ 98++zNijj2NLJX7h\ 499H\x0aN035i1df56k\ zp3n4wQf4P4w5EGO\ lzavjyLhEZ/w6rct\ OQjQcqaK7CSY1+GG\ I8H0a5y9gzHmXofm\ C\x0a6NAQQa2MSRXvfO\ kcnucRVNzCxdou19\ +cADykDOhOTNO9Og\ USZCkgGKzjxyVKY4\ dpN8Y5+7k33fPj\x0aE\ roouPLqZTw8/CAEC\ /NvnMVaiwgFfr0My\ iDjmKBWxZMCqw2qn\ YJZe0ZNXjhzjMDH7\ lBAd0YloZND\x0axYm2\ bBVGachydJIT1Mp4\ VqCa29OF3wpsoXqk\ rAC/XtpiQN+FK9a4\ Cpkfl/Ckj04T0nbG\ F3/3XaqD\x0aEvvE0wB\ U6j6tZk6xxO3AWcf\ Gg1Xq9z/hXgrIep/\ FUuGjMdng8isXOfW\ BUxx9+Djt2SYqK9C\ ZpjJU\x0a5fhjJ6kdqp\ Nu4zPcCkToSHD0TH\ gQvcekj85yVHPZZr\ gAZDnCr5cI6k7y1a\ TF3YC+H/CMIb0+sS\ fq\x0ab7JcPhBBAUDkO\ e2JqzviFrc087pzs\ BilKI2O8Xe+/6Ncv\ z7Bc5/7LNIPePKRh\ zhRKWPO3E+pFGOM\x0a\ 4bnnnufCxYv89E//\ FPeeOsXw8DBnztzL\ 0aNH+R/+x98gSRI+\ 8UM/2C+XiuFRHnno\ Qf7PP/lz5l5+\x0agbf\ mFvj573uG3/6qy8K\ jOOaLr3yTs1/9MrP\ tDk89/hhW7D+1xCz\ Mub600vhl9zW1WhE\ NDGEqNYpG\x0au99D9/\ 3A6W6XQkQYIOMIPy\ 7z/7P3ZjGSZel93+\ 8z/+4BAAAgAElEQV\ Qsd40t16qurupluq\ enmz3D\x0aEWfI4XgoU\ txtAbRACLbkB8MrY\ BimbPhBfvGrYUAvM\ qAHwYZhy7ANSJZAS\ xA1Fk2aFEVRxCwcz\ sqZ\x0a6Znu6aX2NbfY\ 7nYWP5wbkZlVmZV7\ VbE7/0CjurIyIu6N\ uHG/c77vvzRrI2xV\ 7QpK2Y+E6K1Bpznp\ \x0a0jKI8DmrNEPuGIn\ sRUhS7WNVliCzOMz\ XpcDXwcEOZtfMo8U\ w5JBHIXOdGBvrY9u\ BqjQOr98uEISU\x0aJ8\ rydo2lWR8BPXQ3xe\ MQRY1vznCmvkMmd1\ gf+Rlc3QQ/cq1ReX\ yicx/fH/Lel9/Blh\ al9PzzV2mG\x0as4Z67\ Q4j/xxJIpAS7tyoK\ W68j0DgizHvfk9iJ\ mOU3s2z+co/v0F99\ ya2stz94W3qsqZYG\ /HeV97h\x0ayqdfREea\ tffvceMb73Plx1+i\ s9KlMQ3f+e1v0jRN\ 6DCdAnQ3C8qK9umE\ bNUWrXQQFySPzWSy\ p4mW\x0anVbYaYXO0hB\ be0Kuxmni2TmSM4T\ f3GB8SCb3SSC1Quq\ IfHUVf8rs7ePCb26\ wdYrn7ooGGUftjVM\ 9\x0aNn7z4IPzuKbBOY\ dMUq5cfo4//MM/QA\ iBbRreeustfvEzn+\ HvbwbC2PXr11lbW6\ epG4rJFO8dy8uL\x0aD\ AYD7t67x9bWFlJKv\ v3tb8/nxs/3ct760\ XtI0wRpT1lQTgo6S\ jGxlo3NTd7dHJH1B\ zilmW6soYTA\x0aPsH5\ 6cOQTcPo3v1Hfi6U\ xluHTDTxQj+YdMzy\ s5MImbSFrKjRnZSG\ w6eeqSRBZSki1vjG\ UN7dmL/m\x0aQRAqzBh\ pQob6UXYrtigRWgb\ lRCfF1ccLtpBpTDT\ Ig/GRcTSjCXZ8sl2\ TM6Go+zaNS+qw4FA\ E4xnf\x0amFMt7jKOkE\ kEHsz0aOMwO63Dzr\ 4XEtykrrDTo0urhJ\ CsXVtj7doaQkiibL\ dCRKcZow9u4N+7ho\ hF\x0aaDnboFhRUcz62\ 28jlcQ3DmsN5YM/Q\ SqBEGEEhBBIFfH+l\ 3+EJ1jE1pOat37vu\ wS5m+e9r/yID/7k\x0a\ PYQUEMugqrCg4+Oz\ jWYENpnH6E62ezTh\ wuhnlgDnjcVOqwMX\ l7ZpkFlyaM//J4EP\ dUGvb9+kGo4e\x0a+Xm\ U56g4otx8lFl8EGZ\ FG9g1g9ZpOs/Qfto\ 78/L6tTNzwrN1jWx\ iVBajuhmMi2MXde8\ 91pjQvneO\x0apmno71\ AhdLvdYMXbFteqrM\ JKfQecc1hrieMYpY\ IZSN5J50SrW6Mpv7\ yyhFc6GGEkKXGkmb\ Rjl9nz\x0adT/2Ko7wP\ X+axby8fpXmMcEcd\ lyiF3J0J8VnMd67M\ B/37U2pdQzb72ak0\ jgwoT2tzbFodygK3\ UkR\x0aUmKK6sjzW9dY\ XHP0ebWrDWY8RQ9y\ VCfGlcdsvYugOy9v\ na5plDOW+sEQ3c9Q\ WYLupkGn3XYTRN0W\ \x0a9hPKmIILmUYoha1\ qmvWjL2zspESoYN6\ jBhG1ANGYI32WOst\ Rsw7cHjG4QulgQGQ\ NrqlDN2SHRa7q\x0axI\ hY4UZBu+9Ng2tqwB\ Nl297us6hd0XYiZt\ a34e8eW0yDhE9n6K\ Uc6SLMZBp2z8dcRM\ k4Jl7q4RtH\x0avTY8c\ TKdqw1CiqCoeExK2\ 5Nkw3+oC7p3btcbn\ fR7JAuL892zd27Pg\ v84qDghXVxERjHNa\ ItyawsV\x0aJ2RXXnjq\ hRzArT3A1mc7z3Fl\ 8I7WeVgxi6ppZSqH\ +4JIIVhaWmLlc/9G\ eLxzYBr+nz/8Iz73\ 2c/w\x0a3nvvIaXkk5/\ 8JH/nt34bs7l/0t1\ kMuHuvXv8paUlPvn\ JN5lMJrz5qU/tIt0\ tLCzghWD1c1/AQzB\ q\x0aeficonBTas5IRn\ VYHDQWsVUNY4GzBp\ 2mSK2xRU11b38vfh\ kF1jZSoHtZmHX7cB\ MVQoCUSKVAK7xz\x0aT\ zwtylWm7fzocGzPE\ MloBjPcziZXaUy00\ EUPMpyJsKPyWIuZn\ RBR8HYAaEbH61I4Y\ 9tMdY/upsEz\x0awocd\ /1G6CeIQ7X6hNGqP\ 7o3Q4b7QFEGfL3SE\ 2mNU88hCYddrClRr\ CCW1QniF7qUgwWwd\ 79oM8sOC\x0aRAxoRpN\ g5nNC2EmFdx4ZK0S\ s93TPlFqFjc8Twoe\ 2oAtriTvdEDAhFfn\ qKnR7u4puunrxyAV\ dagXd\x0aHg5QyQUypZ\ GLS89EMQeQyyuo6R\ QhzTwS9eEicawEqh\ 2wZQ2OUBx6KaIfWp\ 32EJ7Zzjmm04K/+B\ d/\x0ajP/+hSsA3Lp5i\ //x//19vvveB/zqF\ z7Pf/U3fgMdR9y6d\ RvGI9bf+xHrGxuMx\ +N58tdkMmFjc5Ni\x0a\ WvDDH77Nt7/9Xf7G\ b/wGt27f4t6D+9y4\ cRNnGu5+5V/zjSsX\ +G/+nb+C1pqmMfwP\ /+SLlNfeJ33x\x0aY3z\ n3fd3Hd8H1/fPr34\ SUEmMM/sXB6kVWI+\ vLT51uMrQrI/mn6n\ Qau6cOWvHi1iFXVv\ bHhQ6tOaF\x0amBHlXJ\ hz1w12XGLO2Gd9L7\ iixgCqm5As95neeH\ Tk8Fi053viMdAhYM\ sae2edaKGD6iZB2l\ TUJ3pd\x0amYV2u28sZ\ v34Cypn2thTPLqbh\ bz11QHV/c15l/m0O\ QCyveaEUoEI6dyp5\ LJDG+M6KtBZStTNs\ JMS\x0aydHPYXaM3jtc\ fXS//L1gJ4HsKdpI\ 2L1eU3Uz0otPzjBM\ HFdreeUv/cqzUsMe\ C7exhu72cVE0zzuH\ \x0aYHc6vn3r0Kb8sH0\ R9V5/4+wO+BRgH9x\ Dd7r4LMdtrDO5d6+\ NPg3xpzpJ8P7o3Yn\ 9MPPnnl6999jf\x0a89\ ZgymJeaLb/wQdNq3\ coqVjp99msa5qyDO\ YeziOlnMcyzh6DEK\ 3rnEBIQRQnRFoyGU\ 9QWmGtQ7aP\x0azxcWU\ XlGvbGBTtLWMx+a0\ SbqwqVdxyltg1NPV\ mooioLx7RtB7/rQN\ Tm7GSEEqpOi83Q+t\ 3PWYMYF\x0avrKoPEV1\ YlAiFLjaBulWWZKu\ LCGi4HRlxlPMpEB3\ MmSssZOKZmN8ajfh\ 40J3M6KFkM1e3Dya\ EiMa\x0adNC9DDMtj9W\ uPi7i5T66k2ImJfX\ a8NjPEy12SVYHCCE\ pbjzATI6+qHr4PiV\ jHUxQ4nAtN8NpMEo\ 5\x0a5YKu8gTdy+YdBj\ MpqR8c/73YC7PI0m\ ZzcqxzkFqhFjJUEl\ PfH55aFnv+8gWElt\ Tr413XndRh155e\x0aX\ ER3O7j6aPeTG3/0+\ 8dyZ/jQ7tBnkIvL/\ GVt+X0D/3MVYe7dp\ RoNUXFC3OlST8YHX\ hw6TVu9YYWQ\x0a2yux\ vxYZfrN5tt5C4T1R\ b4BrzSnk4hJyfY18\ eQUZx3ODHTGdzOfs\ p/UFf9wcCUKbTacZ\ rql3G7oI\x0agVYKnXW\ wVcF6e1w6SVBJFtz\ j6ir4CqT5fH7nvSf\ K8iCpqQqcbags6JZ\ 1GsUJKs3wpqGejBD\ TCYuf\x0aeCMsdNqXVt\ mj7bAnXcwBrKpILi\ y27e6HOirdIJNROg\ oEoR0SMKk0yWIfdO\ veNikxW0XILe/EgT\ Cn\x0aNLYs0ap18iobm\ rUxzdqTK3yHRdhBH\ f1m65oGaxQqi9nJs\ nic9W+4joJM7LDkw\ f0gHlJG2LJAan1o\x0a\ 73E3rfGVQfZyosUO\ rtrfP/5h7OzOhPtT\ e/04HzzIsxhvHNFi\ B1vVx9rhPvb14wgR\ ySDx2pye+sJw\x0adn6\ mKFGDFFtWRwqHmi2\ IdS/EvHKKHBmpI4Q\ KPJSds3KhFPFiLxR\ z0wBP5p7ybFWjM8C\ npOO3TXij\x0ai6sfIK\ Ske+n5eWGLiynDQ7\ ilZUtLj9iBPmvFHO\ Bv5oZ/KGNu7LhmO6\ ++Buwm6/m8E0YS1p\ xcxucB\x0a64ny/MBd/\ 36ztxlU8ujNVyiNz\ vSuvz/8HHs9bv77O\ iLr98mev4LwHlEWu\ KecvzyDmIxBCMq1D\ aLF\x0aDsmFQRiTlDVR\ Jw8tTBxmq6CZjo40\ +7Nt61wmMTLRIAU0\ DtecbHfircFUJc6Y\ edckLBwkKkqOH6Ah\ \x0aASlw5cwJ7/BhHL6\ 2+NIhuqGw7sz1bqq\ SKEl3FfZmMgqsa0K\ QiooiVHoMZYoE29T\ zHXXoQk2xxkIV\x0avN\ Dj7uCAJ2kz2FsGvU\ oTZPz40ctOCK0CqT\ APO+RZ6pr3DoGgXh\ 9jxwWynxCtdGkejE\ 81LVEmGl+7\x0aVuZ3N\ ohWeug8DdfuUeuxF\ CTPL+JLi9063exy7\ xxCKVSeBKfKIvCJ4\ uU+0UI3jLImFfIJq\ Z6evYp0\x0ayviukwjn\ 8FI+wkKXdc34zp3H\ Pj5fXtrTbe5Zxd8u\ Dn8zjZ4LrWaxjxrg\ 0BCgkxx1aZlq+IOD\ f/8U\x0aoLOU7MWX+fW\ f+AneeO1NJpMxf/e\ 3/xnF9auYh1jiUSc\ jvfISc/PXp5Botxd\ eE54vLKb8n7Umzz/\ G\x0a5L13EJEOKU+DLl\ hPsznBFtW8kB9vZ1\ WD7cxb8DI+2W7B1h\ VpN2b51St0LvTxxl\ GsT1j/4D6jtTFK\x0aK\ aJO71jPLZVC9zLK4\ f1AghpO5p2Wx8EZi\ yLslFUaY4spSS/nr\ //tf59/+F//7zjTo\ Nh+Du9h9ae/\x0aAIDZ\ vMfog4MzFKLFLjLR\ yHjGQRB4PGZc4tuu\ gmsM2YVVsisfA+D+\ n3z5UOftjMVWFa4O\ cbOqlzxy\x0aHe8H1Ut\ D2/fBCFeFxZCQEhl\ F2Kqam/q4YYWPYpL\ VAfXaaBdXQqUxupe\ H4uwdWCjvHMyJUXm\ CkEFV\x0acWb6fAkyja\ hHY+zW3iZF+x5fGp\ NeWMQ7T/Vga8+R1s\ mPT6K7Obob0uGEDB\ 0BW1WY4ZRmfUTnlS\ cz\x0aR3827mxnjP2MQ\ lxLGtsPz/qs/KQQz\ lHfv4tOU+JLl+c/P\ 4wtrE6DxElFEdEsm\ Wxrf6b1aSN78WU+\x0a\ e+k5/vTtt/mtb30L\ gH/v85/nHwGjH+5e\ VNg9WO3PAt7xgnfq\ 7a9g55XXmLz/o7kE\ rbq3hW930ye5\x0aCTl\ jw6y9KFBJjOoElna\ zecyWu/f0Ly/y8Z9\ 7g7Sbsnlrk/5nXyE\ bZFz75lW++Y+/iik\ m6KyDKcZh\x0at+pD2I\ nSGqkjbF3jvEVKhY\ pinDGYZkI1XQuWq1\ nEGz/3Kf7sd7+JmV\ R4ZwDRev2Hw5BKoJ\ MMlMBS\x0aYbcmlKMQI\ uOsIUpyLn78OYQUW\ GNxw02kUkgVpFEzq\ CQJEspyGmSULoTXK\ K2Je31kpqlG69jNK\ b52\x0aOBu6EjpOiJcX\ EFrhhKUeD3HOkeoQ\ nnOYOHUIRUd1UlQe\ RiRCqT0yBvZGtBwW\ GXZS44rtNr3UKpzz\ \x0aQ9dNsz7C5emcc2D\ rGhHJMB5Abo8OFOh\ BfnCe+yxn4Qz9+AP\ jjmDTdgzZmrUNQqv\ Q9Tjte0HL5ZmF\x0aLH\ k7k+oZ6s0xdnR8We\ 9x8JEo6DO8Jjy/lh\ r+TruLlVVF/8UXKd\ fXsHVD/rFXnvIRPl\ l4KYkuXnrk\x0a5/nqK\ pO7d/dd7MxsbR/Gd\ P10NcAHYZD3+MbtO\ /zix1/lrZs3+Udf/\ Sr/5a/9On/roYI+G\ zk8SxDF\x0atNUv17ve\ y+5Lr2CLrRAcc5rG\ JS7cbEJRTXC5wRX1\ sRc7Ukucddx56xbv\ /NFb6CTi4icu8drP\ /xij\x0atSHv/MH38W6\ EtYaLP/U5nNBQj9l\ 8+23q6YR40GFw+TJ\ mWjK8ep24n9N98QW\ kVKz/4Ptc+PFL/MS\ v\x0afZaiLpncGnPrOx\ 8gvGL1J38yPBdgRw\ 8Y3vgAgGz5AvnqZR\ xtet2738PWJeBJF3\ Ne+ZlPILzk+vc/\x0aY\ PpgjGu95ZUC4wkpf\ csLLH3sVZwI94fp9\ R9RjbcQU8/im5+kX\ FsnW72IExphSobvv\ ktx+z4qC97r\x0aKz/x\ 43i13QXQeu8ql6wu\ zEcg3oXQoZlfuJQa\ 3Y+J+h1c1cylcnsh\ WuwS5Rm2arDj3X7z\ +103rrEw\x0aKXGNCSq\ VLA1mQNMaTHBtDDG\ sCVHvEAW9xVml5rV\ PHj6kY8i5vbGYrYJ\ 4uUe00KG6e7oFPXh\ ohMWg\x0aGZe4yuBdmy\ R4Cv4ER8VHqqC/48\ W8mANz4lhy+dlwdX\ tW4PMOnZdeZnr92i\ M79cErr+4dNjMano\ q1\x0a7FEwc4N749WPI\ 6Xk7g/fpntGsaenj\ cmd29g2NS2aTsmWl\ /F5By8lsrOIq0O3I\ 1rqBkvX1qXMTisQ\x0a\ Ikim0gRX1pR31x9r\ xqL7Wcg/rxw2qlFZ\ us2cPwGscZTDgvGD\ MVJKbGNZeGGJV7/w\ Gj/4ve/ghWP1\x0acz9\ D1pFMJo4f+4tXeCv\ uMvzBt+m98CIiGxB\ 3QNy8TnZhFZkuhCf\ 2kHRzuis90jSligu\ 89yx95qd2\x0aZSNE3Q\ G2MSy+/HFUf4Urn8\ i49nYogHZaoFqfhM\ /81Z9m8+YGvZU+F9\ +8xJ998Rs8eH/bPX\ GW5Jc/\x0a99y8mPcXF\ C+98Wm+/g/+AGcsn\ cUOr3/uEj/4RvhcP\ v2Ll/m2Tln/1p+C8\ HQuf4JP/swS3/3SO\ kLA\x0aL/z11/jjf/Kj\ Pd83mbSfZVkxmwN5\ FwoDltZONCJe6oFj\ 3hpXeSuRi3RrVaqw\ ZRO8xo9QOOa59K3k\ \x0ayrsgW5ztfmfXxmw\ m/zjINHQVOOO6JYT\ kOMEYzlgoa+r1Ecn\ K4NQ7CbNuji2b0P1\ 4AlG7j8NHqqCf\x0a4/\ CYcQ52us51LqzuWc\ zd5jqTu4+XrJ0Fsl\ Ym8z/9bogLW0lT3n\ 3v0ZuorGtcfPT89r\ NE/rFXgXBs\x0a9ebGn\ KQ5h4D44oBo0AsGM\ FKi8pSo3wEZ4l8BZ\ J4QLw8oHqPbVlmCj\ DTN1gSrJCrPTtWuU\ ojQsm2m\x0aFVs31nnl\ p14FAdlKn3/zP/0k\ v/e/fRc33uKtr8Hi\ qsYXLyGjmMVVzfp9\ E+b6MtyKun3J/cay\ dWuj\x0a7QDcZHRrC9t\ Y3vzcAvdvT1i7PsW\ WU8YP7uMqi+qv8GO\ fHfCDb2xgh+vgPaY\ 0xIMEqST3rt7n3g9\ v\x0aEqmIX/jPf4X3V3\ rcf+9R7sz41k26zw\ ucaRiywi/+h2/wtf\ /j9/He8fHPLDGd1k\ hXU482Wb8VFgvZ\x0a6\ jLZhQv0FhTf/dI6f\ roF+YCqrJESVK6Il\ rYXmSKSuCZIDfdzc\ Gu2xkRLvVaGWKM6C\ UgQyHZHD752\x0aWBPa\ 7Mdlle/3OGcswjq8\ deh+tm+XIF7qIfMY\ VzW4s5Q8CoFQAnfM\ 8B5nLBT12YwF/Paf\ T7uYw3lB\x0aP8cBSF9\ 48bF57W5jjckevuN\ nDVFV/M5bb/Grr7/\ OeFqgpKK2Db/5p49\ Gn9abG+gLF5/4MR4\ GLo4f\x0aOTZpDWiNyo\ LNqDUNvnbzEAkEuD\ rcPHSeojsp8XJ/Tx\ 20SuPgD2493mzPOo\ VSwYTmFCCECM58Im\ TJ\x0aexf0/wuXFhlcH\ AT/7u4CL7ya0V1K2\ Li1BQJM05K1mhD4M\ zsabx3lVoG3ntHGm\ MYZVKb5/tc26S8p\x0a\ Lr7U4fa1CBUP5yE8\ OpKsf/sbeNcuMFSw\ txVCcvMbHzAdj/HG\ I7VA7XHeOlb0X34V\ r1MUsLCkSDpp\x0a6Dy\ 0NsFvf23I9MY1xrf\ voQcXAIg6HYg6pJl\ kvGlYf/ttFj7+Km9\ /JULIUMBnO+rwZgX\ XOb+PNM+W\x0aNWyOEV\ qFOXc3xTeOZjwNYx\ NjQ1qk3z/05jTgG4\ OZlOhe/khBV1kcFh\ tZjGsMdlKemYeBjF\ Q4hmmF\x0azGLsHmEpT\ xOzUcNMtva0i/p5Q\ T/HsVHdvP5Ekuv2w\ uTWTTrPX+b3fvjDX\ T+ffvDeI79bT8ZE0\ +6j\x0au+AWsq7xUYQ/\ LIvpBJDSYqoxWnVw\ cvfXz29tIAaLoIIV\ pnceMxwHq8q2gCMD\ Qcg3gbHOskd3UqJB\ \x0ajox165YWBWa8d6g\ kxjcWW4SsbRWHFul\ pBsQ6Z/GNp7M6YPX\ jz3HvvdDOlq1mfkZ\ iu/5uAe8WTO/d\x0apn\ PhedyMfd24lqjWvg\ 8enHXBFZBQ4L11jK\ 5+H+lfY7ge8fInOn\ zAC2SbgbchlQIk3l\ vwLnAQ2jl5\x0avVVg6\ 8AfCEX+IcKa9yy+/\ gZeby9dN9dtmyG/+\ 1wfiV4WINr3UuACA\ bEx1JXDO3ClxU6q+\ eLJO7uL\x0avLYXbFnT\ bI3RvSwQCJsKOzz7\ TPadcI1FFDUqj4lX\ +5iN7fhYoRQqDTkC\ dlKdKNntcZAtkU2m\ mmZ9\x0aQrTYab8Hh9f\ oz58njU9Vfz6DNxa\ sCwu3NMY9BZfFnTg\ v6Oc4Np5WMYfgeT7\ 84P2DfxGwdcPw+nW\ y\x0axcX5bjhEyl6fz7\ F7zz0Hg4UzOVY3XM\ dJh+5meKXDF99VOD\ vFTWpcY4I3e54h3R\ CiCFfUNFsTzNbj\x0ac\ 7ibzUnYHaQR0eK2V\ EylMd6FQm5GBa6sE\ bGa7xR9Y+cSp+NCx\ 4rehT6rH79IZ7HDx\ U9cIh/kfPuL\x0a3wAE\ w9ubjB8EOaSbbCCV\ wuOpNjeI8h5LVwZM\ Ro6VN99A9pb4qV96\ jre/cS+k7VlLNalY\ fekCa2/f\x0aZTgs6V2\ 6gi2n4EEn4Vzjfvj\ MHLD4Fz6LG62DFKy\ /88OQnoXHOY+rQkH\ 3ziOiEPG6EzLNeeP\ zC3z/\x0aq5vhWDuLh2\ aa+2rKdKhwKJZe/w\ Syt8SbP3uJr//uTV\ zljmWlOwvakTo6W8\ LZ447BWMy4DIY002\ pu\x0aSCO0CpwM4w79H\ h0HQqswbiB0OmxRo\ /IEVx/9uhWxwtvTL\ +iuNNAPrnwifnIhL\ PvhvKCf4yODYmMD\x0a\ NvYOeik2N8lOuaCL\ asL0/gNcVQdZixDI\ SLVFRSG1Ri4E97e2\ V4wtK5pJsC89TEvV\ laHwK5uikpCH\x0ajhT\ INA5kp3q7zR4tdJF\ J3HptVycymKmmNcW\ oJFvs8MJPvEzaTVG\ x5N0vvcPt791A64T\ JxoTf+Xvf\x0apduXjA\ k6XAHEnT6jG9eJFi\ +yclHzwAeZ17t/9o\ DhpgMEpjK8/aW3uf\ zJF4hlxGRzBHF/vm\ G+ezUs\x0aJssH99FZx\ p99CTodyYTwXFJJT\ DHh1ls3W6vhsDtfu\ 7ZGXdWIloFubdDVe\ 7fB97+qyTuSKYvkH\ cm1\x0ab1+dz0i/9a+C\ Fa2bBdrM3v/aMLrz\ PiSf4rkrEXduhNf/\ 0dfu0jQnLCDWIWJx\ ajalx8Gsva8HOXZc\ \x0aomTwa3elCXN9LZG\ xmo+ATgsy1qhuGqy\ JixAN661DxDIU+fE\ R5WtnlHBqp2WIf45\ 1WGxMj89pOA2c\x0aF/\ RzILzHj4bYusJUFa\ Ys0WloP6bPPY9Xj6\ 48xfTp7c7PAqe905\ hefx+/02zD2F3ENZ\ XGqG7QA8so\x0aBkTwI\ d8cP1aq9DCcsbitC\ c3WJLQW85h4sRcsb\ SWofobGYiNF1M1bZ\ nR1ojQzISXj+yOuf\ u1dOss9\x0avHHUWwVb\ dzcYP5gEc5isg5mO\ Wfv6V5Gf/Sy07HFf\ DWkmE3zlKG9fY53L\ gELYgjtvrRNlOVJK\ TGX5\x0a5j/9U176zEs\ 0dcjR9tMtRB5c1yZ\ bJdNrV3GNZ+u9D+g\ 8VyCefxEQSG/xtcc\ Lz5f//h9jjUXpCGc\ M\x0a3//9P2NrfROVaM\ zWPaSKKB+sU0/GDF\ 7xTAmz8enGkK9+sc\ ATcgSoxjTjcchvlx\ I7fIBAUK1vUI+m\x0aT\ N7/IffcyyATpDfc/\ v5tVJy0o4ATQMpgV\ /qEMfMil2lYcEqtE\ d0s6NvLBltWyCRqj\ WUUQtVhAXrS\x0aGNlI\ tc6GESqPsZMaszVB\ xjGqmwTr2iwKWn27\ +zs7CxjacwF0Ro0E\ Vxvq9SHp6iJRJ8eV\ zVMt6B/6\x0acJZzPB7\ Nnds0RfHEJWfPClQ\ cky0uIhZOx8lJlBO\ GVw92HZsh5GC3u+Z\ TigydPWe00iXqdbF\ l8MEX\x0akQZnqTfGNB\ vjE+38zHSCcztv3i\ JYv8bJLl90W0xweK\ JejjcmmMmgwQpsXT\ 30HARinVJIHWHq6p\ GF\x0alpQSvZgHq9VGo\ LPg7W+rci5jnIX1w\ HbiXJR3McUEZx2yo\ 0gWFvB1Qz0cgxMop\ YPZjXMILUObeVIg\x0a\ lcZNG6x1gG+jQH1r\ cOORSqOiGNvUbYt/\ 18kQpdmh4kgfhsoT\ 0ucXUWnG8LuHGy2d\ JlQaowZpUB94\x0aMEW\ xp8Og1DpwOkywFPY\ PFfSZzv4wGfdSK2Q\ Wo7tBhbFX0I7KkyD\ fS/Tc4ja8UAgqcrU\ Jc+1WDuiq\x0aJqgo8p\ iol1PeWjsTbXh2ZR\ Xdz3FFRXnnURnpUU\ 3KzsNZznEsJItLOH\ vvI1fQozyfa79PA9\ I1bL3z\x0a7pEfN8tpP\ k2ErkCNLSuifg9BK\ OZCKWzTYIvqxG1cf\ cj3TWUd0sUuUT8Pj\ OhxFdqUwqIPKHTRH\ j7u\x0aUivilQE2r2k2\ ws1eKI3OD/Yf0G3G\ tuomqDhB9frES4uB\ MFhbtLF4Y5FpTLzQ\ w684vPAhxMb5wDto\ \x0aOy4P77sPOpe9MLN\ NfVgHDrTWsgrfWGS\ st+1bnwAxLiwII6I\ 0wzeO6e1ZZ+nR61R\ 12gKrNToOmeVz\x0aj2\ Xfhu1YM3dSw4Or67\ 1TBdudufeu9YZ/1M\ nQTqs95X4qjZF5jE\ rj8FotKdIlIQ9eJv\ pYxjSHRbM1\x0aDh4BW\ Uy03MPf3XzipjJwX\ tA/8nBV+VTJbU8L2\ eUr+1oCHxbCWYS3u\ NhinXkmZCs7EfW6Y\ B2uaVCR\x0aDlKk4XQe\ fnLWkFqBFETdHFeb\ U4loVVkYBZ1kRGLH\ FXZc7ZJfya7GVjW2\ CK3kZjwl6ueY8ZR4\ pRek\x0aY5uTU00qi1f\ 6qDQOOfRFHT6XaRm\ Y+G3LG+OIlrtgwIy\ mp56UthdErFHdBGd\ sm/63P+ykwk5CgdX\ 9\x0aDN3L8HjctAnOhF\ ohE0283BI2ncdMqt\ Cyl2KXmY1MoyCFq8\ J1ehTYMsyuZ1e2jB\ Sqk6E7KV54hBeI\x0as\ xqkA2ZUoFpPiKjXw\ RXNieJ0j4vzgv4Rg\ 3AOqhKf5U9VdvY0E\ OU5Ugdp13GKuTQ15\ cYaZlLMLVPj\x0a5T7J\ Sj/8ex7jjjD/PitI\ HTTmKknwzmLKEpWn\ uKYJReMI4RYHvc4M\ e2a4E94fIcSpFHOp\ FVE/xwt/\x0aKudgi3r\ eGlV5jOqlxEu9YMN\ qqvDnsMDjiLvdEJi\ ycXpRw0KEABWpI1Q\ SCnsTq0A+S2Ok1Fh\ XEve7\x0aiDgGCc3G+E\ wXjuHakaBEUFkcMi\ AGgpwNB2Zruq9pju\ 5m6IUM1UvCbntSIQ\ XIOEZoGTz9x8WJrx\ XX\x0aWNzmeJ5XILUie\ 3H1RM95EMyoQGUxu\ tshXu6F3PYnTGg8L\ +gfMdT37lJubT3tw\ 9iF2c3/LG9SUkek\x0a\ L7x49MeaiumD+9jJ\ 3jpgVzUh6SvLiHqd\ IxHaHne88+c/5nsi\ k7glDjVgWiMZFXZM\ QqkTx2fOFg2y\x0alcc\ xfVQbrLKw+61bxv5\ JoRc7OCyueHRWe1L\ YaY2d1tQMUdksvCY\ sdmezWin1I7nnx8G\ cNzHTtEsB\x0aKGSmiI\ RA99IgV8OjsgzXzB\ aPA7Bnu1MXLbMHZ1\ sAACAASURBVFubxm\ O2jnYtz96b/Yo5BB\ tbMy5C\x0aYR9k6DwNh\ kcqJNWZrf0d9E4FQ\ pzZgshOq3nAjYwis\ ssrFNfvP9Gu3XlBP\ 8dTh4oTkl6X8RnZx\ 6ok\x0aJr3y0pEf5zbW\ mBwQOOPKoPOWSbzt\ BnYKkHmMO4lhR7Q9\ qxSRnLeog0nLyW8w\ ItbEgx4ybqMiuw3l\ \x0arR3vlYBosUMzms5\ z2U/8mlKCZ1ec7Fn\ AN5b6flj06sXO3Cb\ XlvWpvHfRUi90LrQ\ G5zBbE7zzwUgm\x0ajk\ C183NnEUpQ3l8n7v\ bQvZx4tY9MNfX66F\ QzzWcQUXAjNJtn22\ lyZU1d1kRLvWCkhM\ TXbl8HvdOA\x0aN45os\ Xumue22qpEmMP9Vl\ h4p1/40cF7QP2I4j\ R3GaUNqhVhYorewh\ Ft78EiSW337FtVwS\ NztEGU5\x0aOs9xD+Vj\ 13tkup8k/lY003kn\ 43ErbGdCshIeVJ6R\ XlmivLG+zTRf6GCm\ ZUjDOuyuUoQkrWq6\ XSB1\x0aN8jQXLmPLOd\ hWIK2XUnS1eV2nhm\ 1bc2TFQLVTdCdLJh\ 9lDWmKNG9jPTyEmZ\ UIKQi6oXAI9Puck9\ j\x0alyIiiavMsSI0jw\ JnbLAcXeigOgm+sl\ T3Nk+0iEguLRD3Qu\ vcOwvO0QxHNBsTXF\ Gh8hTvbatnzvDW\x0aU\ N5dRyCwo4Jiq0D1M\ tKVBaLFPtGgixlPq\ e5vndqOViUxKk7Ai\ yN7s+t+FvgAh/Q2m\ H1+zfqIaKUH\x0aFuyk\ PNPP1TuHzCLSS8vY\ qg6jgVOWmHnnwAZ7\ 3mYyDYvqJ4jzgv4R\ Qz15dmbm+fISauXC\ /O9/LTL8\x0a5h6xrPG\ l54kvPT//+150qPj\ SZeI2Cba5e3vPWNi\ jYOaZfZgbjJ0E/Xi\ 81CNeXAhSJ2+Jul2\ k0uh+\x0ajp0+mi/v8a\ 0VaYjRtNOKem0EHu\ q7YTGRPb8SnM18+P\ 2ZqYmt613tSRlrVD\ 9F5ylCyEBMsjaQjp\ UP\x0aemqlQ1BLrI892\ 4sWu8hUI1Uw/Gg2w\ /E6rYm6Ob7jwi7TQ\ XVv89RCK3Q3QyBxR\ XOmu/MZhFLILKK+\x0a\ szVPQjuS3WisiZa6\ 8/m3EKKVVVWYUWg7\ uyrwGYQKrHKhJPXm\ GO6PWqZ3+Izmrzss\ qJQkWR6AlOhe\x0aB90\ N11a1tnXicY9MQ5f\ JjKZH/syEbN3jjtj\ BcMbiTTCMkUl0Jhr\ umT+DjDXlnQ3ipR4\ qibH69Fv7\x0a3rm5t7\ A37omTZM8L+kcIzd\ 3bJ5anpQsD4tWLj5\ DKHkewi7sdkssvHP\ jcv9mczuV40mIO4P\ zhmeDe\x0aWJqNEa5uS\ Fb6gV3bFmlTFagkR\ UhJvTHe17ZSaInKE\ /IXL4RCb33Q4lYlb\ tiELsAOZarKkxCvu\ dSy\x0ah6Vos59LXLP9\ GiHQRaG7IcRFZwl+\ pU+zOT6SB7dKY6Kl\ LlJrbFPTDKfBk7zt\ OtiyBh185rGeam3r\ \x0adG/OkQhFzp39TVK\ lMdFiN7Dhj3gOUit\ 0v0OyMgiWrVqGIj4\ usdNqbn4yWyCoPEH\ 3M4SQYbde1ft2\x0acp\ yxmM0JrmiQeUQ06C\ KjCNVJydIYu1jSDK\ dzOd/MC/0wxDaVxE\ HaBcca9czGEsdxH3\ R1g0zP0DpV\x0aCuLFH\ s3mFF8b6gdDkgtnY\ /M869YhxYmcGI+L8\ 4L+UcHWJuXm0clw+\ fIS9WRK5/IVXKu13\ YtfnFx+\x0agQQY/fAH\ j/ybrRvEZIx/TFZ5\ dfM66dIyQqp5Tv3T\ hD8Ci3qWL+3b3YbK\ 42DjOq2CNeaFKIRM\ RDq0\x0a3vcoSFIrfOO\ 2dw2ekKpWNXvuDr2\ xj8jPgtWr2Ye8F2Q\ 9yeoi0aAbNOEH3Lh\ nBUEvZmFHXtU0k0k\ w\x0a72h2v46vDb7SRP\ 0OzphDGYkcBVIHI5\ EnMTISWiFjTf3gaN\ 8XGWui5R7xQj/wCs\ Yl5n4ROj37fI6z\x0aa\ NsgWzs4dMQ1FtcUI\ RJ42swXa8FwJUWlC\ dEgnxOzAIo7a7hJ9\ djnDhns4TM+1oJJt\ v7zx/jcXVHj\x0asjAO\ Uml8qgtBlcZEy93A\ nh+GDYcta5rxFD3I\ gjyvaE6t3e+NxTkb\ TJayGP+Y+NmzwHlB\ /whAliWj\x0aB8eLONW\ dLmrlwqGdE/ebWx9\ UHpPLLyCaZs+89ac\ Ba46u1XbGwqTAFm1\ 73fm5DlvmCfFiWNA\ 0G6NH\x0abh6zRcGhX6\ s2R2qbh7Q1G3bp3T\ wU9aLZNzhkZuAidJ\ hbN80UV9W7zFUePn\ 5RNWH3GZ1+ap13YX\ eu\x0aOgne2lNfMEAor\ roXXMpcbY5kDKK7G\ clKH9lJwXqajTHNc\ HLgfNs1DdIHt7XZ7\ F7labBclSH8Y7bj\x0a\ 3vW42uLq8Nm5skam\ MVE/R/UydNQJhDoh\ QQiiQYdqsv9x6G6G\ 6sQ4a7DjR0dDh4bn\ WGYqrrFgQUYh\x0auOi\ 0CrpKY/Qg2B3XD4I\ mfHbt2lGJbyyqEz5\ zlSfBtnVazSWpx4G\ QElp3PBlF6J5Ad7K\ DH3hKOC/o\x0aH3KIYs\ r0wYNjrz59lp/yEe\ 2PZ6WYA6SdRczGlM\ AuOzz2ep+rtS0StY\ hMIuKVASqPqddGx0\ rhOglc\x0aY6nXRsg4Q\ sYRup/veQwyUkSLP\ WSsMZMSOykPFRTjj\ cVMSqKF03Hf2wmhZ\ JA79bLQ+i9q7Lg8M\ hdA\x0atXKxh89Fd8NN\ HUE7HjkcEzqYqeSo\ OAqObsZSPRgemJI3\ Py/ZepLLYDQjlAzB\ PUJhqxrdS/cs6Dsx\ \x0aM1VxdYOuaqTWOGv\ ReYLudNB5xn7lXOX\ BI917hxkeT/+tkjg\ sHk5iDeDDZ6w6Md5\ m+NqeqLDKOMzN\x0ahZ\ ZtxOvud8A1JljVWo\ fKkmAulEYnes2AEA\ LkrcXVJihgoidXZs\ 8L+ocYzZ3b1JPxvj\ eWWTa2KU+w\x0aKv+Qw\ pvTm3+ZUYFQinipi\ 8wSVCcjURKZRdhxe\ Sa7zX2PZVxQb45Il\ gchR32hOzffgG0Ck\ cpimq3p\x0aviOCveCM\ RfqzUVJIpRGpxDdh\ py4TjdB5ayV7OHKT\ 7meoLAlhJzvOaWZ1\ KhMdWPvjx2uhVZ4E\ pn+W\x0aBjKbVmExMy0\ x4/LAArwTQm2PEYS\ W4Fp7Uxtmy1pmj+S\ R74edtqgqT9CdBI/\ fl0QYinkapIBHeB8\ f\x0aOYdItX7ux/RMiH\ WwjBVhl657Gd46ZB\ ODY9f1eajna/0RZB\ bIn3ay//3NTit8bd\ qFlJzn1h8bMrwf\x0aQ\ khsUWGGU2SkSB7l+\ p4Jzgv6hxRu7cFjD\ WR6ly9DNxCq9pp7A\ wxe/thZhRQ986imo\ yAvOiU0m2O8\x0atyRL\ A2SeBL9wpfC9HDMq\ McPpKewODgezNQ1j\ gDRG5THN5va/hZls\ 1jLYj3YjDU/ALvLe\ aWFGuppl\x0au8s8hHj\ IfjB7OUy3Q3cynDW\ oLAHvQwFJ4nlR9dY\ htaa8v23ZKVsjHr2\ Qh5u93557IwW06gR\ bBPb6\x0aUYuiUBIh2h\ a/bfBmOz9daoUZFs\ QX+8FRjcMrBoSSyD\ h0I2y5h/d5EqM6gS\ jpanMiK13RehG46m\ iL\x0aYN3N2gVR0L6HY\ BUXYlK1JOpk2LoJj\ PRDfDfmhbx9Tm9c2\ J0f0HUIeQomBAsdw\ ktC5ckursrsdUWs\x0a\ 2pGNDpbL7UL9SXq6\ nxf0Dymq8e6bcdzt\ 4IwlyjKiTmcXQS1f\ XmK6tttARafpM0FO\ e1pQScRpO56b\x0arQI\ hFLGWyEgH17ZIE0c\ RKo0DM/wsXbJmmBH\ +hEBGum2Ri7BTVAT\ 7ziN6ac/gneO4CY7\ 7IV7u43GY\x0aSTEnjr\ lhAR6iXifs6NrCOo\ vf9E2QHYpYB2JiFI\ Xzq9sgj0jjfUhi87\ ighQxR7ESDLs3W9v\ cnWuoS\x0aLYTvi7c2E\ Dcbg6tCjKidHK/Lo\ rvZvJDtZRPqTJAdu\ tqgexlm6wgOcW3bV\ 0ZBDie02vVYoVR4H\ +Ko\x0atZ8N3QlXmSN1\ ZaDtLHiOpF3X3Wyb\ r2AMrgrv56zVrjsZ\ chDKk8weX9DD7D3a\ /k61FrJH6Tr4xoL3\ \x0aYSTTzXYRFOdRsnE\ 0t8X1jYVxiNKNl/v\ IePZ9DsEwZvpkO28\ znBf0DyGm7783l6f\ tJRl7+HarVi4Q\x0aV4\ EFO2u/x50nNzt/Fi\ Gj6Ex2ms3mGKEk8X\ IvFBjrEJFG9TISDf\ XaCF+dbH54EFQnnT\ OgESExK/xv\x0acJRrN\ ifHmqXOfMBPw01t7\ kffTVFJTDOaBDb0j\ kIzywnX3SzkyseBS\ CaExGsFsm3nirAjN\ S3hyzVm\x0a23VuGjzb\ RaTCrltAvNAJLWRr\ EUoSLfZCBOi0xNY1\ vnahiB/nPYo1Kk/D\ MaVx8IufPj79zmwV\ pMsD\x0a8By6ne/qBjM\ qiJdDAI3u57sd0iS\ hQAkFCnQcB017UWH\ TeE5CFFKCCHazvt6\ bRyGEPLKcUPcCUWz\ G\x0a0XhkMVPVNOPQVV\ HZ7i7SDCqL51bGYd\ Gy7eg3I7gdFr62QQ\ 6YRKhOElLfZl0LMR\ sLCAQC19h5xKuM\x0aN\ XrQ2ZGaZ7CT6tAcj\ NPGeUH/kGHy7jvoN\ MW78OVLF5cOxVWZF\ f3i6gc40+wyfPko4\ jTb7Q9jlsIU\x0aDfLg\ 2W0sCNDdTtAjb55t\ +13lSdDJltW8yM0i\ PH1tj80yFrFGdZIT\ p7nNdkS6F9zH6gej\ oM/eo2CY\x0aUbtT73d\ CRGsrEZOpDkE8xoU\ ibFxImntM4VRZjO7\ noCXxSi/oo1Uw0ak\ ebFA/2Dpy+3Tmyy/\ zwFeZ\x0a7YwRYed90L\ zeGYsswTdBDulNFn\ bzBxzHLN1ORIpo0C\ Na6ITWe+u5L7OoJW\ t5fBO81EPHJkIOFA\ gZ\x0anAYRgSMgHObBo\ z4TKmsjYM3hW/YqC\ 2OOZmsyX5Ttdd6UD\ S4JwTWzDgm0300HM\ gv/5p0Ltry1m7sp\x0a\ HrXTZasaW9Uhga+T\ ItPdpdE1FjetcO37\ F18cEPVzZJIEExlr\ sdOSen207zk9CZwX\ 9A8RqpvXAUiX\x0alml\ GI6LVC3hxtG1m9tL\ LZ3Bkf/6g0j5CbnB\ UlvthUa8NsZOQgqb\ yMPeTCGSaoBcc9fr\ ZRC/Od4h4\x0amtF0Lu\ c58fNGIf5SSImZHK\ 9dv/1kAj0I2vfy5t\ qBOz8zLoKkLUtCVG\ yW4K2jGU5wdd1KoQ\ 5uI9ui\x0aDhyCXj6Pf\ pVK45qGZmN8rGIuZ\ 23tPOjovXHtrP1ou\ ud6c4weZES9PLDiD\ 6GbtmVNdWcDqUKUa\ LK6\x0aQHV3E+omWPPK\ UIjqzRF2VKJ7OTpP\ QEukFiAlrqmRWqLT\ FCMm8/MSUdgZq04S\ dufV4Rdxqp8GhvkB\ \x0aiwBXG8zWFLEo0d1\ 0/nMvgvGSty7M3L0\ LIS/W0WwdLBV8HHY\ m8O0HGSkEYp7x7so\ yLMLH5RPjweyH\x0a84\ L+IcGM2Ca1wmc5Os\ tPpCL5qMMLFeaKZ/\ gFncmNWA+FNl4dkC\ wtgI73fYyMNULJIC\ M7QoFReWir\x0aq26Cj\ FWY/z5Gm3wUSK1Q3\ SwQ7NaP1q6XWm2PN\ lqb2NDKjCiuHt47Y\ SfD+2EjD3cUeaAHn\ EPoFCUi\x0afN1Qrm0c\ icE9XwwkEfFiDwTU\ G6P57m7+e1EYKzBb\ dDu/53sXSFtFMG/p\ Bj9yV5tD+Ra42lBc\ v0/+\x0a0nOoLCVaCiY\ rItKACAVsRhwT4HH\ BGlgZdDdouG1RBJW\ BUkhPWIR2goWwbcO\ JDltEZ/yFZn2CLQ5\ +\x0ajKtNWITsgO62um\ 7PvHOTXFyYj1DOCr\ Nui+rlxEsDvAl++3\ ZYPBVXuL1wXtD/HK\ O+fYtkMMBWVSCx\x0am\ SaEK5zjRDDjB1R3N\ 56oD7OrDWY4Jep19\ iSVzWbKeiFH5ynNa\ HooKROERUB6aWnOF\ BdaQxtyclJI\x0arZBZ\ jEz1fB58FIg4EJog\ zDGFaSNez4LAcAjM\ GObZ5RgRKerhGLt5\ 8O5+HnkrQ4ta9RJ0\ mtJMpvs+\x0aXmZxIIa\ 1pLKDGNlmXIAORkW\ zz/IwcMYyfvcmvdd\ fJOp1wgLCe5rhJHS\ K2s9MaIWKY5wx1Pe\ HuMWG\x0aeNBFqgiVBb\ 29GU3nZDYzLg+d+T\ 1b5MQrfWxTn8iP/0\ n7N+yE7uUkFxcRUl\ BvTrBbR/e9P0ucF/\ Q/\x0apxDTCfGl54Ntc\ N4hW1xi+v57ZFdeO\ N+ZnwDCe6q7G0/vA\ Frm9c6MeKmDe1i80\ kNlKUIqkBI7rg7c\x0a\ pUmtSC8uhbavjnDO\ ENxTxPbO8ASYFSXv\ gkToqFnuMotC+9eB\ lx4pFN67MwnpOCxc\ WVPd3yR9bol4\x0asYf\ ZmOzLLp+dr9BqPns\ VSiGEoL4/2tdH3RY\ TjB2jhhGmqBE6SM3\ s1BClOULvbbJkNqd\ tu/zo51Xc\x0auE9ycR\ AiPau69fPfXoAJtS\ 0/c7WhWQ8hMenKEt\ 4a4tVBaH1LEWb/k/\ JQi8LZexSv9sNnu3\ V0Q6DD\x0a4qyyzmcLk\ uTiAlJHFHceYDb39\ /h4Wjgv6H9O4fO93\ bjM2v2PPKHtuHDVF\ gg3zyI/q5vDgRAC1\ c2w\x0a4yJYsK4OiJZ6\ Qa9c1siEILE6hDxM\ JjEqT5BRhKsqRBSF\ 3a/gVPLbfW1xjQmv\ oTW+DRoRQlLeXgMe\ \x0aX9iFlO2sdw8a81O\ CMxYznlBtSpLlJfK\ XLjC9em/PGipiHQx\ r8hhvfJjhJ3FbFOt\ 9FzjWOjqrz5Gu\x0avo\ DE4Npb8fr3voZrat\ Q+BX0njnp9mkmBea\ 8ge3EVO6l2+a4Hvf\ 1M5RCY9K6xmPUJRW\ GJFjtEgz6k\x0abTpcH\ IEW88XOw+f3MPRiB\ xErqpsbZ1LMvXFBt\ ta69Z0mZDsWyV68g\ IwTqrWN4AT4BPXlh\ 8V5Qf8Q\x0aIf/YK0/7\ EP7cwqzdox6NUXlC\ enGJ8tY67gkTXLwN\ 0h/dScmurM7lX1JH\ rZVkHXZm8vA763i1\ h4g0\x0a9daQ+v6QeKm\ H7ncQWpxKutUseES\ l8dycxZRlYCYv92j\ Wno5858RwYNan6Dh\ F9XLSy8s0owlmc4r\ U\x0aUWBYpzEyUtiqob\ 47ml8vJirQg4zshd\ UQI/tg65FrSSnJ5N\ ot0tUX+Nl/93VG90\ d8619cxZUOnaZ7\x0aH\ dEcwgV/8Ma4efEyx\ RRTVwghkFoT5fsHI\ XlnH0n9m+m39zKYs\ UUJSiAiFTpEQoESx\ IM+cbeDLevA\x0aEdgv\ hERA1Mspbjw4lTHP\ XvDeBT+Bs8jukYLk\ 0iI6zzGTcbimz+g8\ Torzgn6Ojzzsg/tU\ raueGU/D\x0aF3i5T3H\ 7wRM9Dj8jAF0ghDv\ E4etpplPqtRGurEP\ LL9mfNPcwROsjbYb\ F/PmlDnNr3UmDxOc\ E5Dhn\x0aLExrqplUre\ 0aON2QPrfw57agz0\ xdyrsbdHtdVJpgpi\ XJ6sIuvXOzFSJPd+\ a+S6BZG2H0FNVLSS\ 70\x0aMdOKZn0039V57\ 3HOMb32Ln/8mwbwj\ G9eC5G7dUX0mB269\ x7vAzkOwAxHeGd47\ s3LDC4t8va//D7e\x0a\ mMCV2ANCbo9zZpBp\ jNQaM91tkzob+dhx\ QVnWQYHQy9CdNEi2\ pERlCUms0XkW2vh7\ jEs8jmixu1sL\x0af4p\ wZTMnU9p9neuPDhk\ p9CAn6nVxTU15e+N\ QuQZPC+cF/RwfSci\ 6DIVyPKbZIbOSWmF\ GU6JBcE97\x0aknDGQh\ 3cx6TWFDdDy9pbN4\ 8rtXWN9jm0uvGDIH\ U09wqf3YTqrTFJPC\ DqdVFJQr0+mmvjj3\ 3cD78u\x0aIYJW9TMYH\ s157FnBrKh7gvudj\ HQwgdkK+fTe2j0jU\ eeF3YPZnGDHFcmFA\ UYpaCymmIAQrH7uC\ 3zh\x0a166gY03TNAzv\ r/L9r26y9vU/AcBM\ x3jvEVKgogSho2CH\ WpbUwyG2KUH4edTv\ 8gsrPP+pK7z9B9/D\ \x0a1iXB6lCgorAAtE2\ Ndw69mWAeJi/KVg6\ 2x8Zzfn7tn74xmGE\ RzFxSRbqyiIoT5CA\ QN4sbD6kTPFR3\x0ato\ hXe0RLvZA2WJ/u9e\ BrA53kVINQpFboXo\ dkZQGcp7h+f9944m\ cF5wX9HB8ZiGJCM5\ nQlAWurvec\x0agc13J\ FVFvNKnXhueGYFnX\ /hg9LJXPrY3IfNca\ IXqZ7j1A5zDnAcvk\ LFGRgrXWOy4oNaSa\ LGLSuKw\x0a61SS6t7p\ zrFdY1BZjH2c0UZr\ tzpDCEoJxitPk828\ 81hC4W7TyKblnkV8\ L8yuJbGjD+ytwRnD\ 8k99\x0ank/9zBJf/uc\ 3EE2Bd0F1UKyv4b2\ jHg2RkaD38os0wxH\ Tu2sopbDlBASkly/\ Q7V7BViWjG1dxjUP\ H\x0amjiNww7eOZI0wX\ sop2HBqqOIhU+8Rt\ MUlA/W8Y1Dp8F73F\ cWH1l0P0V14mC/4K\ G8u/7oeTUW2u+O\x0ar\ BSVkCTLA0Sk0XlCe\ mmJ8vb242YLo/r+i\ Gi5S7TYw2xNT5X46\ IwNc/Q0GBKdhrmLT\ GOihZAtX93b\x0afOrX\ 42FwXtDP8aFHs3YX\ U5ZBs/oYIos3JhQX\ rbDjmmiQHys5bJbU\ tl/L83EQMqQ+2dHe\ bUM7LjFJ\x0ajO53SC8\ uE/Vymq3pvkEqrqp\ bH+rAvqYJ+nWzNQl\ mNlEUpFZHkEEdCj6\ wpXXn8fPgnWEusmW\ K634W\x0azEIGOd5Z7K\ jac3HzJCC0AmsRWo\ dW63EWd7EIBcc5XF\ 0hlebTP7PCW19bw2\ zcY/j+1RA/SpgFSy\ 1Z\x0afP11nn/9AvduV\ rz+M6/w3vcmbH7va\ zjvWPrUT7N8UVNXj\ rrwxN0F7v3ZN+Z3c\ xUpLr52idd/4U3+\x0a\ 5P/+Km4y5sJnfoKP\ f+Y57t+c8sKbA777\ pUs0a3cYX7uJznXI\ unc2GMZIFRaAsSZ9\ fgkzLh7R0M/g\x0aGov\ ZDIYzyfIAEUeoTkq\ 82qfeEXLjjAVjEVK\ iFzJkJ27fj9NbLNt\ JidASlScnLui6m5F\ cGKCylHpz\x0aRPOUrF\ yPirOgEJzjHM8E3N\ YGxfWr1JvDcFPap5\ h7Y6jHI5piSjOdUm\ 5tMr1zBzMtjuxLbq\ ZjTFXQ\x0aFFNscQzHt\ DaPez89d0hBm9Bsj\ PCNQXUy0ueWyF5Yn\ Xuy70QznrYhHXoXm\ c7VNszOTQilOIsgC\ Tsp\x0aEeoAedzOgt5K\ 4MyoxIzK4LPeuBAe\ cwQi4GnC1Q3IIKUT\ Wu1irR8WKouRUrVB\ MJ60FzNY7dA0ntHV\ \x0a60gdodr/pNJ0nn8\ ekQ0YrjX4uua9703\ 4lf/gdXovvkzaW+R\ nf/1F1u4aJusVTVF\ RPLiLt8E9Taea\x0aS5\ 9+gTd+9VPc+eAu5W\ SC1IrP/5WP86PvjR\ ht1nz3S+v89F++RL\ T8HCIS2Cq4ztmiDl\ 2IcYEZTTGj\x0aAm8c0\ UIXkUX7nntYIE6pN\ 0Z4Y1FpTNTL97wez\ Tg85ywY5jQxS2sTU\ qKOwDN5GMGfPUdlK\ bauadZG\x0az3SbfSfO\ d+jn+NBBNFOKtbUQ\ +nCIL6JtahZffRW5\ sESuFdPZY6ZDqrtr\ CLV9c/DWhHjEvZ6n\ LEiX\x0alsheegXhPev\ f+tNDPW4GGQWTFjy\ Pdagz45A6ZqdV8Dv\ vJCGKMlI0m1Pq9eG\ 2EU03Q7Sa80e6DSI\ Q\x0arIR1IT1qdhytl7\ rKwg3ZVc2Rd8izNu\ tBWvfZzTde7SOkxF\ Vm3m2YRZeqPEF1Uv\ D7L8rOAvMZehOc\x0a1\ aJ+HghwR7y5z2bYc\ 0hw7bDaO4/csejx3\ pP0B/zsX30ZU9R85\ XduAXDhYxfRvWWmt\ +7y9f/vBlc+\x0alnLj\ fWA6ZHztZiAjOlh+\ cZU3f/nHKbamvP/l\ d4KOfJDz8k++wlf+\ 2Q/YunmTejJi7cd/\ CYB0ZYXy\x0a7m7y52w\ 37ZugYIhkl3ihS+M\ nsM91MLNplXFENOg\ ik5hkZcB0cu+R3xV\ CoqIIFzenLg31xuK\ 9Q3XS\x0aY7s86l5O1A\ 0Wu/X94VP1RDgqzg\ v6OZ44Rj/8Acmgj8\ 4SmrrCO0faG0DeO/\ Fzi2pKOdw8dDEHAq\ N8\x0aYYm/9Z/9x/yvv\ /mPmdYNv/DpN/nRr\ Vt8eVowvHa9dddyI\ Ua7LY4CcM4RmEQiB\ Jy0O3rhHNYa/GQM\x0a\ +B2PEyF3eY/iLnQI\ 7jjMDcQZi9sK9pmq\ kxINOqg8JVnVbaF2\ xAs9ZKznqWF6EBL0\ ZsVZJTFCKXxt\x0akWl\ EnEbbbnIyJEm5xuC\ 9I8p6mNHR557eBnZ\ zyKZ+NKEsJHqJlnB\ W79JGzwqLGRbobhr\ iOZ+C9rde\x0aH5FcXA\ hOaeMyFLojFCHvgx\ RMqOCAV04qXOtjni\ z0qIfjwJyXgHQIpd\ Gp5p2v3Zo/xz/47/\ 4IN96k\x0aHA0pNja5U\ fRRCuj1Wf3MZ7j79\ a+HRZsI11mSxgjn8\ SYsHJI8oZlM8N7gj\ Wf9TmCzP04iN1vQN\ Jtj\x0aooUuup/hkggz\ 3FuDPbOBVWmMTBJU\ mj5yPUdL3bDIjDSR\ ECGG9hTDTFwVEtNk\ crzSpnsZ0SD43Dcb\ \x0a431HWc8qzgv6OZ4\ 4ZKSotoZUW+3ftUI\ uXuDweU37w5ji2ME\ meZ7z/r0HuKbh//r\ KN/hf/tu/yZ9+\x0acA\ t/9QOWP/v5Xb9b37\ 5JMx7Se+kV3A67Xb\ sWdiSunOKsZeWnvr\ DrcW59ja1rH6CzPb\ 56rYZ4JqE7\x0aDFxtc\ PUYVzWkFxdDCMdyH\ 49HJSnOmbDD1Jpo0\ EXnKa422DIsBISUO\ F8HiZzfLj6uMXN/a\ pXEqDg6\x0alk+2tw6Z\ aLx2IFNUN22zuoNm\ WCqNLRvMuNh37hkK\ So6MoyMX05PCGUu9\ PiRayFF5TtTPQ2rZ\ UboV\x0atQmz3W5CopY\ p1h7wzT+4yY99bsB\ bvI66c5WmmCBjTTM\ ZY+uS69+9w90bNcM\ PvoMdV3Sfu8Lm+x+\ A\x0agtH1a5hpxdKbn+\ Sn/+1X+OrvtoXfez\ ZurvP2v/o+n/i5N/\ jEz/8Y3/7i16lHBR\ t3NkiWLlGu3ad7\x0a6\ RKv/PgyX/+DezTjC\ Y9Tc+ws6rqfz5PSn\ AkkPm/cXLsutAyFV\ ICQAq8E8cqAen2Ir\ w160CFe7s2j\x0ae2WW\ oPIkLDBPaaE2b7un\ x5sm626GTGNcWR86\ qvZZwnlBP8cTh0xj\ XLN983bG4oopxMef\ e82go4x4\x0asYcrGpx\ pjnTzt84yvn2Tyd2\ 7LL7yCnGS4He0qT/\ 7/AWuXLiAAH4L0Os\ JLk74L/6tX+JHV6/\ ygxu3\x0auVkv8J/88s\ /x9/7Fv2bx5Vf5j3\ 7289zf2KSoav7lj9\ 5Hd7t7GrzNnbrwx9\ KF22lFdX+LREpkEi\ Gc\x0ax9UNzhq8sQjrk\ UoGJnIcofJkW87WG\ GxRhcCWh93DYo1UC\ nx7wz5ii1RIianKe\ da00HKesQ2BtW/H\x0a\ 1YEMYleZkKZWNafu\ BHYY1Jtj0jhEa6pO\ ciT5khkVYXyhQaUp\ OokphyPuXVO89ImM\ q7zEbJ9cb9xm\x0a+MG\ 7vNtZ5NM/v8x3+PT\ 8edSNq/hY0XvtU0D\ oC737rZlETFCXNVt\ 3NrnxnWsIJXj95z/\ J9W9fY+3q\x0aXb74d7\ 9Jf0HjX/sLAGzdny\ JdQ/lg2XWcRwAAIA\ BJREFU/cD8h1mnxJ\ Y18XIfEbUzahk+P2\ cNMo7Q\x0aWdKSLGWIO\ PWeaNBBRPL/Z+/NY\ yzL7vu+z1nu9vZ6V\ V3Vy3TPwuFwhsNty\ FlEipJMW5YoWpZsS\ Y4X\x0awbERGzKM2ImM\ OEASJICRP+IgcIw4\ MSI5BozIsuNNke0o\ FiOKkkhKIkVyyOFw\ Fs5MT8/S03utb73r\ \x0aOSd/nFuvq7qru6u\ 7q6t7NPUFGoWueu+\ +++579/zOb/l+v1T\ jlKjfQWiNSb30q27\ EBB3vJV6N0l23\x0adb\ bKIl/5exFoZKQRUh\ L2237ivzK7HpLzDm\ rCb3r3SFjqVuYubh\ UHAf0A+46w2bzqBp\ uurdFqNLHB\x0a7Q3Ku\ LBB3HXkZgNb3Zwvd\ 5IkNO5/iMb9XnHvx\ ZdexA02qMoSWeR85\ 613+Pa5S/yNH//jn\ Hj9DU6P\x0aAn7woRMc\ PXqUX/iN32b9O9+i\ c/w4hxYWAIjm+jz2\ 2Af4pX/8T7Eba2Ad\ o4vnfU+7xmavW0Zh\ XeK+\x0adS9xmxXkF9d\ 9abSosNPS0/PqhU9\ FIaoVoxtxvfAFiHr\ C3ZX2qsG42UI+zUm\ OLSACdfPDaaJe9Ou\ B\x0aK/DObzLy2bYrza\ 4WznIwIeg1fYYvxI\ yXv18o18YEnSa61S\ BoN/yGcRc0pq3XcI\ YKVr/7Mq76AKtJ\x0al\ 8UjIVLBhTMFUijKa\ cno1Et8l8c5+mCEQ\ HD2zQyEnJXQm02Jt\ bBysSQ7/zYIx+rpF\ cq8opwWnHvh\x0aDFIp\ kn4T9xasvfgN+NDT\ 9PqKwbrhje9uMD73\ NrrdREq962nzTb0C\ FXnveKElKojQjRgZ\ BDXdMvfV\x0aHenV5HS\ riQoDH8ynGdmFdXA\ ON+8Iup7GpqKQYn2\ MHVzOii/fG8FMyW5\ zE7q1MuCsl32VQYA\ Ma2tX\x0aBGqTwmeM3w\ wWFTYrrisMM2uZ7W\ UQ3seBzoOAfoB9h+\ ouoDa2D5uYoiC9dI\ Ho2PHbfwErdpSwvB\ Fa\x0azSb/2Y9/FmdKy\ rLkl375l1l//RUWH\ /vQtrJ6f67P4V6H0\ +fPc2FjwJtvvcXyN\ 7+GlF7DXNaLzsbJ\x0a\ V3nltdf5M099jH/z\ ze8AoIcDqiyfLVa+\ bx4hY1/yLm6DHmMr\ gx2n18x2TV5g8oJi\ degX5G6DcK6N\x0abjZ\ q7ru55rS7KQtQtf7\ 7zSQukhmneXasLVa\ nu8Xm44PeZkY33fd\ MPV8Z+AAT+mC2VfD\ nZiB0SBDD\x0a+vdew1\ rL1pE0KRVRo4WZZG\ y8/hwbr4MZXN7kCQ\ Qrz359y3MEUkqUCl\ l+fZnl1y8hld8UnP\ q91wDQ\x0aOoRSsPqtb\ 7BSl4dUrIgW+kSdH\ jarwN6c+I/JC0SqC\ HpNdDMBLbGVVx0sh\ 5N67iFBJ96ZzZYVL\ i+8\x0apPLm5mFtjAy0\ r3o0YnRlKOuALgPv\ 4R60Gsi4ruxoBUic\ qS4PW9YBW+ialulc\ /Ts/2yIQiFATJTG2\ \x0aLKkm3iGOa9HwKq/\ ap8Jwzwb2boX6eqs\ 4COgHuCtoHj7M+Mz\ Z7YYVRQmjIbQ7TN9\ 8AxEqGkdP4G7C\x0aFW\ zTF/5WsLa2zi/84j\ /i4sWLWGvRvZDKGl\ R3jr/5J3+UX/7Cb7\ OWF4xHl7OIjWnG8u\ oqAolUvty4\x0aiWI65\ u//L/8r/See5K9/9\ o+hpOQf/vpvkq496\ yfQOw1koLFVRTXNr\ ktX22uYvMBcKnDGE\ i100JtT\x0avWujHcvJ\ Ni8J2k2svLkKghAS\ zN7oXs+Cer+JjMM7\ QrW77uuPM4pVr4cf\ dJrIQFGsjSC9eY68\ 0CFB\x0a7Xvv6krSVoe\ 1IImRzQgRSFxi/EA\ gtYCKqWYSu1e6sm1\ lU/jjim16CJvPFTq\ Ayt9XMtK4Mrwp33g\ Z\x0aKHQn8Z7ptRBTsT\ qk3CJ0ZLOC9J1lRO\ QHL68sqZs0p5qkiE\ Ah63O87DmeEC/2EE\ HoxXjKCorSZ+Y4\x0ad\ BJf9pJ3nl7oqrSeD\ ym8Fa9WyNjz6XWSI\ IOAcM6bFeUX1nf83\ JyxXoxJCmQUeh/6d\ xEOAvoB7gpc\x0a1CBs\ tylGlzmepigYnTsH\ 1EM+BQxfe3X2HJ3E\ yDhARgFRu4+VW76+\ 4xGjs2dv65yMNaxP\ xhhriZot\x0a4kMLmMl\ pfu6zf5R/8cXfYT3\ LfbnXWYpdLOBRq03\ 7+APYjTX+0f/7G/z\ tP//Ts7+JyFtVmrx\ AaOkX\x0aonF2naPdGR\ SrQx/UD3U93SjQlI\ MpJs22S8s6/0+om+\ +jmzzfs/K4meazLP\ 1uuOFtDkrFS310u+\ mN\x0ab9aGMMpmQ4Q3i\ 52sUm1pYJyjOgnhQ\ ptqkFJNvPve9WpPW\ 9kTOx1369/NJAfjv\ GJgI7opJTTdbRK0\x0a\ m3W7pvQMiCvaaLYy\ PiBOrn2cYnnoK1Qt\ PcvKUbVIjQ4oByPK\ 4ZhqY/uxdSMhOjzn\ BwkHE8q10XVb\x0aN1I\ r4mPz6E5zVmEpjb3\ KFtdV1t+TSqFaEdX\ k9gL6plPbfuEgoB/\ griFYPIwtS4rxde7\ 4LajSDFIf\x0a9LILV0\ tS3i7G4wk4hw404X\ wPZy2qqfnWKy/yV3\ /mJxgNhhR5wXx/ju\ 9cWMYaw6Us5+LaOr\ UjKVjH\x0atNaGbz/2Y\ f7WT36OwWRIp9tld\ ePyOQspvf91mlOt3\ N0soNwYIwJJvNj3p\ c9WkyqdUo4ufy5Sa\ 6yt\x0avFiIACbZNkOS\ /YSrrNcRD/beKnM3\ KNe3sAoaMfHiPFU8\ IV9e31OevK0MDFNc\ ZQj7bYgEZphf05v9\ \x0aVmCyAn2T7SkZKIJ\ uC5TETFOcc+hWjHO\ WanVy0+dWjVNUEvp\ rGdeDsUJgspz09PL\ Oz5l6K9jdwlaG\x0a6d\ uXCPot4sPzntKpFc\ X6CFGY2ebVVQZnLC\ qJ0O3GLYnKzIbghB\ +yU8ntD/vuFsLtwl\ N5J9z3gz98\x0ab/rHH\ eBdhcmpk3ddhamaT\ lBa0334ES69+DxRs\ 0lyYgksmCwj21im/\ 9CHsTrEDlcp8ykmy\ 5iurNBa\x0aOIKOEwan\ 3yZIGlTphP5cl/XB\ iCLPWFo6zOLSItPp\ lPPnLpAXOTqIaJw4\ AgLvrnYPQEaaaGmO\ sNvF\x0aYRFCenU0sb3\ /57n2FSbNKDcm26o\ K29y76kUtuq9Pfm5\ vPbBVHBL0W5iswNx\ l45dosUe40EVISTk\ c\x0ak5/zm7Y7cU7xkT\ 4qDsmXB9tK8LeLaK\ kHDu8Gd4PjSa0ID/\ cIui1sWZJf3MDlFd\ Gid6HLVwaz4ceb\x0aO\ ofFHkG36afklQTny\ JfX78j9odsJ0WIP1\ UgAcGXps/zBBKwj6\ LUI+i2wkL6zfMMs/\ copdlFLGKtW\x0a5IdO\ Echw7qbO8cxXvnhL\ af1BQD/AXUV25vQ2\ t7O7BZNNvcJUGBHO\ z6HnEqqNFDNKMVmG\ LX3/1rtf\x0aSYK5NiL\ RdcATfieuQ8rJhHx\ jFZH7m9xZUwdGgZA\ KFTdQcVjrlNttetd\ 3E1J7j2vVjn0wryy\ qlmIV\x0aNcfMGutFeA\ KNqNkIrigpRxPKte\ 22mVIrVD9BKk25Mt\ rTzFVqRXio6zPCwX\ Tfe+lXnotqJ0QLXU\ So\x0asWlOvjqgGux91\ UVqryQY9ttUWY4Zp\ nvy3nXHqw3avNrWA\ 9/xsb0G8dIcQmryS\ +tUA1/FUe2EsNfC\x0a\ lpX3Pb9JSK0I5tuo\ RkixNsJO9m7DstNr\ Ab6dMddCRlFNV/PB\ HbwPgytKisH4hpsK\ FXs6o4y179tL\x0ahSs\ NZZpiswqXlzTf9/6\ bOsdbDegHJfcD3FU\ 4cW/sC1Xc8IM+Pd8\ XpHSYic8+Ra2zvRU\ 2s8jSgK69\x0apAM/pR\ 60mgStpg/0CjC+T1\ 4NJjPLSBHUnHOzF1\ I6ewMvIKIwW3qVZp\ xuW+BnAiJSIhshQb\ eBShLC\x0a+R5hv4vJc\ qrh1Lu2CUHYbHoL2\ D3+iO2melwn8RKfd\ zGg28rAKCUrjc/sO\ k0a98VkwRrFyt5u1\ mxl\x0aIC0o1keoRoTu\ NHxp+jYHKe20QAYB\ QbuBDDXVxs6KgLrX\ IDm6gNQB5XDstQvq\ gKulBCUR9tboXrYu\ \x0adQshCVpNitzcMcn\ V2SZhmJKOM1Tsr6V\ uXh60c8bghEO3Gzc\ O6N2YIEkwaUm5Mfb\ UU3fZinY/K0gH\x0aAf\ 0AdxXNpSMMxm/c7d\ MAfL9LhhopFfnyYE\ ebTBWHNO5/iJ958h\ mOHj7C6voa//z3v0\ J69m1sUW6n\x0aqAivC\ 62iENexMMz8a8R1d\ lvdOwEdrrHwXNPQx\ mCnBUKPUM2IoN1Eh\ ppoqU843/GLmnW7t\ hq96XPN\x0aC0zupXKD\ XuuuSnTaykBWUKwM\ sGVJON8lPjyPSkLS\ d24+W90KGfgSt05i\ bFFSjqeYYYZuJPVm\ MgDr\x0abiv4+Q3SBFu\ WyDhAtSKQlnxlAwS\ oMCKYa4Gz5Mvr6HZ\ CuTH1HuSzEwWsQwD\ hfGfGV78ZmHHug2s\ z\x0a9lay51cvH14rgg\ UvDe3V4AwY30svx2\ OsMQgpCOIYoXfXs5\ 59L61DtSOQApNmVJ\ MM3U4Ad8NWUXyk\x0aj\ wgUxXCCnRQ4s79Kh\ lfiIKAf4O7iFvjid\ wrOGGxeIZrqmuITj\ fsf4pnj9/Erz3599\ rsffuQDfJGd\x0aKXPO\ eKMI3fKlbCG9iIu1\ 1fUUN+95bAqmQB1c\ JzkiUASdRi1WIsjP\ r9/Z1x+l9XDc3TeN\ nBmaGC94\x0aEs33CHp\ thJJkZ1ZvaZGXofa\ 95V4HV5boZgPdauI\ WjOdUT1MvtWq57Wz\ WlgaTDamqHB2HxEu\ L6E6L\x0a6dvnMCLHjg\ p6j3wCgWN67i2qcX\ 5V5UUoiQgDAq0w6c\ 5aA7ONSBjMJGRd6Y\ Mz1Pegs6AE4XyHaj\ hB\x0a95qoOKLKMj+02\ qh19RyIUBLOt0n6h\ zBZyvorJ2d0wN1CR\ Npz6R2Uw6mvppWVl\ 6XNS8L5NsXq1foQ\x0a\ KolA+QqJGe2vcdC1\ cBDQD3BXUZX3Bs9z\ sz8pA41w1460D3W6\ vH7JT95+dHGR5y9d\ 4ouvvcpPffwp\x0afmm\ HgG6LClwKDm8wUla\ XJTPfRS5O14MtDbb\ 0k8q0fRnYTguq4e7\ YC7fzurC/wh03gi0\ r7w9uIex7\x0a0Z74Ps\ jOrt7Ugi8DhZ5rEP\ TaYC3l+sRny43Iu/\ JFIVEc+QAYF54xMc\ 5uWa5UxgpjSubvf5\ yjD89x\x0a9NE5ytwgz\ Uf49hdOsf7Wq57y7\ QRY32sWOsBkUz/Ad\ qnApJkXKVKAcDhTo\ aII2QhnG3fVjLwcs\ TXg\x0aLDg/US619lal\ 0zFlOkbqAATIVogT\ FrM5M5BNKYOas678\ 63ceeBArQkQSIpsS\ 1QpxZUU5naBkgjMl\ \x0aVvjeeNjuIgLvJCi\ kBOs3TkIIPzk/nPr\ PaeTZBarpz02nFdX\ 0irVKiNrTvbwngjk\ cBPQD3GVUxf4I\x0aqV\ wLUitUw/PbPc1EIp\ RAdxtUg+lVmdWJQ4\ t86dRJAD75sU/wxm\ //JqOqotO+tlOc5x\ R7b3UZBshQ\x0aY6riX\ WXLeCNIrdCtBqoZ4\ 8qKfHlj/0qPkl271\ O0HvD/4xPP7l7rod\ ougX/gp8l0s/FIrd\ KdJ1O+B\x0acxTrI6+g\ 5jzFSwQKGWjf8w0U\ Mo6IkhjmDVWa++A3\ 8s52UitkzQqQUlGs\ jzGT7cyAcKHjNwmy\ j1MJ\x0axx6d4xufPz/\ 7ezZcp5oURLGgLNx\ Mn99lKUEzIuh1qSZ\ T0gvLCCWJD/WRUYj\ JM6+1IDOCuAXA9Px\ 5\x0af106PXS7STUakC\ 2vzIRlvOkLhN0OwV\ yHKkspLq2BhTLNEU\ DzeB8pNZOzZykzv3\ 4kiSBNHS43mDBH\x0aJ\ wnKVZjpFFtYosUOj\ e4i4+WzfjNdxEgdE\ rSbftrdOWxWzkrst\ jTgCl+FSED3G6hej\ Bln2FplTmjB\x0avVZm\ OwjoB9g1ZFXiTIWL\ kj07ppYBpp3s2jxh\ L6EatY+41ggtvXpa\ WmBS77pUDa+evv/S\ qZM8cfgw\x0az124wC9\ +4fMAPNBu840XX7j\ ua9nKYEcp0VLkZVb\ vkR39XkHGIboVA4J\ ibbBvn+dlTrqC/df\ luSZs\x0aZWCSUo4D4v\ mEaKGmhq3fOKjL2A\ 8cAjWDYHS5BbRVEr\ 4ReaGlIEA3ImQUot\ sNdLuB7ZTYwvuNyy\ iE\x0amj4Vh5pqGlOsj\ jBpTtBtEs61vY1tL\ QLorGP45ncphynOg\ ZQSVzpMtfl3g6lKl\ p5+BotCCC+QaAyM\x0a\ XnuRxsIiRG10EDI6\ dwYtE1r3PYgrCybn\ L7D4xJNY4edIwrnD\ SFuy8p1v0zx2lGjp\ svRzGAnaPc2l\x0aV86\ x9vpJ2seOER+9f/b\ 33vxhpm+f9Fly3bl\ LFpaIj5wAYOPFZ5F\ hQO+DH+fY+yLOnsp\ 56OFDrJwd\x0as/7SS0\ gZ1uYwwutB7CCMQ1\ rgSuOrDFCb88SXRZ\ ecZU9sIvcI906t6g\ D3JOzGGtM332D69h\ uMz58h\x0aW1vFDfauN\ yq7874XtY+QWhF0m\ 16+M9RYU1EOp5hJj\ hlnMyqOTMKrOabO8\ cryMp88cYIH2m2eP\ HoU\x0aB7y8urMAxtUv\ 7rMQu0dOTvcCZKDQ\ 7QSZRNg0pxrsIw3R\ 1SI9wf45Wu0aDmzm\ o6RzlnC+g+55ydhr\ \x0aQSWRFz2JfYZbrHj\ Pg52qHWaaU66NyS+\ uk11cp1gbUg2nuLx\ CKul9ycMAnKMaTj3\ Pui7bh4c6hPP+\x0anw\ wDXGXIVj2HXgjBoU\ c/ysJHnybqdbCFYS\ u92TlD+8Qxeoeiug\ zvg3mvr+g88jhCKj\ 74TA/dWwLl\x0aiLt9P\ vfXn6BKJ4TNBice6\ 86O1e5IrAzoPfwwQ\ atF/5DmmR87CkCRO\ x7+xCJq7hDOWhpH7\ uMHfvrB\x0a2XOlLanS\ 7d+1+MgJ2h2JwFLl\ Ja1jJ/j+P3U/Z0/5\ ndD6SsX9H+zTOOxF\ rWSgcc7VG/mrq4W2\ dpkr\x0a18Ze8yAt62A\ ufKleqXsqST/I0A9\ wXZg8xxRbTFTIKYZ\ jms4ie/N78hrh3GF\ E4cg2du8DfquQofa\ l\x0a4STEWUs1zrBFgZ\ lu51CbaYFuJxTZdu\ 3y8Ruvw0MP87XTpz\ mSNHj2nJepnb61y0\ n9WkL1DxNk4nm4\x0aO\ MjXBntmO3nd19ReJ\ lTG2g+iFfdoxaPO3\ mxWoJLYU8MC7WcpH\ NuCgTPWm+a0vUZBu\ THdNSVt0/Bm\x0aMyOX\ sR86g9oed+TL7OF8\ B9Xy7mg6iTzf2hjK\ 0ZR8dQMZnuEb/x+0\ O4pmR4F4jLF8jfHF\ SygNwgoQ\x0aguTwceY\ Ox2xc2mD52WfpPvQ\ gGyyRJJL1i8u8/PU\ Gj368yzdPJQS9w4y\ WR6y/+grzjz/Oo59\ 6gHdO\x0avowx0D8c8/\ 4n2zz32xYzGVDklm\ 9/8TzL3/wa3Qfv5x\ ufhyMnIi5+3eHKnM\ l6vdm2JRuvvUw6GN\ EG\x0aWj3NU99/lPOvr\ nDqpQmr3/omOgqQz\ TmCSLP67NdxOBpHD\ vHB/+RP89YLl8g2V\ pGhxlXVrto1tjLY\x0a\ mk0hQ41qxagkRDYC\ tGPX9q93EgcB/T0O\ s7JMmaYEjQQ1fwiz\ sUxVld7GcTjZFsy3\ Ilsf0FAa2t0d\x0a/74\ TZFlgg50nUFUSwT6\ IpqlGjIy8IYqZXNu\ HuxpNiQ73fIazhXp\ lKzPTl79ZXzQZbtH\ ZVuquyJbu\x0aNWSo0T\ V/2ab5LamE3QpUK5\ ltyq73Od4NbAoHIU\ Rd4fGR25YlQiuCTs\ sH8k37z02jFSFASF\ CCapDe\x0aUORlJ1zWT\ 9/5ehSrQ1QeIY8Ey\ DCsz6u2120lTC9eY\ HrhPMXhY4SLR/kjf\ +5hvvwvHeNLl5BSA\ M5r\x0aKCCZDkpwFiEF\ 2cYawfwSS8cTzn39\ Eo2lYyyc6NE+/gAf\ +lSfL/2r17HGIqIW\ trLML4ZcOl9w+uSU\ \x0at1+bQurf63hY74C\ cTyacg6TtNR5Wvvs\ C3w4b9PoKFWis/Cj\ 6nZMIKZk/ktCab9N\ dmAITnHQELT/X\x0aMh\ 2mWGtRWjE5ewkdaI\ T0cwooiRmnM82JXV\ /nosKujXG1KI9uJ9\ hQ+43VXZzlOAjo7z\ EI55i89eZV\x0agdoUO\ Sr1i8BuzDRMUTBZv\ kRzh4Cer55Dak3U6\ mOVRmQTEIKqyNEC7\ CatZDr03G2tMFSoM\ MRZg5AK\x0aZ6/N55Sh\ 9oEWz4e+mRtIRn5x\ qIbXVhjbpCBVaYZs\ BNji1j3Kt0LV1DXn\ zMx3+d0OGQeoRgQI\ qptc\x0aFG8VupUgk8B\ PlA+neyore7vwynE\ x0UIP52ytd1/571A\ pcNZ4a84oBFmXa2v\ qlggDkMLTALM7Nyx\ q\x0axjnlxpio38UpiZ\ Ci3hzFqGZANZkwfO\ cd5uKAtbPzOARUDm\ sdZeEFU6Sr6C3Ncf\ 50jow1rWNH6fYV\x0ab\ 702xeQV5XCdk8+eJ\ 2i2OPLIEt/61ef97\ Eg2Jh2mrJxLWfvOt\ 3DWW/KasmT+sUdn5\ +i2CLNIKUAK\x0agl7C\ 8OQLVIeWiOYXeepH\ j/Ds5zM/14Pj5S+f\ 4tybGQ893oT8g6yf\ epUm0Og2aC4tMF1e\ pf/o+ynS\x0aHIxFJw1\ c6b3qb/U7VA1TXGX\ rllMASiC0wplrWxH\ fSRwE9PcI7GCVdM1\ rakutUGG4Laj7nf3\ N9T5t\x0aacjeOU183A\ +hyKpicOr12d9NL/\ diDeOMqNnGlAWTcx\ cBUA1vxiC1BmsQUv\ pdblXNzk1uDpxcMU\ wq\x0aw2AWmE1W+BtoS\ 2Df2ve+2ga08hKNg\ YIbJHXFxSHJ8QVsX\ O6JQIoMtOehG3vXS\ 3N7BRkF/jOs7I5D\x0a\ hHsN1YjQ3cQH89G9\ FcyhHmhrN0BIXFHO\ rD3zC+vbPnPVjAj7\ HaRWlMOpz5yT0Jdx\ oxAVhqjkzlnE\x0autK\ w2QB3xvPadZQQ9ea\ xaAQOhyAIAkRVGyK\ lPsK6yrD26gucnXs\ SpaD/+MdxCKQSSHx\ /eXrpEhc7\x0ah/jMzz\ 7CmZcuMDx9BhWErH\ /vJGdPHsUKxfwTT/\ mTKVMGb5y8SpPCWX\ +90nGFCASdhx4G6Y\ cFjYGz\x0ar615RTdbc\ fbkmOnEIW3ByllJ2\ OkiIoUZr1Bkx2nc/\ 35axx9ARgFf/b9fw\ WQpuplg8/K2lfbMN\ PcU\x0at1bsKXiBrtci\ gSuvtiK+kzgI6O8R\ TC74oa241yWam8cp\ RbW+ynT19lzLyumU\ 8hoe5OXGZR5yWmwf\ \x0apDNT37f22UqAiL1\ 3sVZ+EE2aAFcrjV0\ Z0J2xYLwUqVCSYC6\ hynIv21hDhtov9lf\ 0tcqNMdFSzwtV\x0a7K\ I8bAsvMOGqq60Wbw\ ZSK7+5yQtsvjcZ/9\ 2GDBQq8gON1TTbl1\ Jj0G3ijMWMc2x+jw\ VzrfyCHkeY\x0aLPPUv\ Ulel7a3w0xy0sn2Q\ UpTT1S7pkW3YoJeC\ 5PuvasgMOux26KkW\ B2RXVwhXpzH9jRP/\ vElgjjg\x0azMurfOu3\ L7D83HO+HbB5nkVB\ NcrZeGcZ2e7z+DN9\ Lrw1Zu1iweDki4Tt\ BtUkpVy9wHOfVwxX\ UhCC\x0aoNGmGA353pd\ fJVo4xkd+YAFr4IW\ vrqKTBsV4TNLuI5y\ peeETJIazb2aoUCP\ RPPB4i2Y3YuPilLO\ n\x0aRqy/+j0ai0uIqI\ eoMi499x3cEx/D6Z\ jWsRMMT7/N1/59mw\ 8+s0TSCXnp95ZZf+\ siVZURdecoJznu\x0aF\ m1vt8IWFWJSgAURe\ CfFoNf0m4V9qlzBg\ TnLewbFxXPEc/PYc\ PtE+U7qZncTMlBEx\ /qYde//rKLI\x0aD/Xs\ 0Mvf7N+qOMQ56/XU\ a1hrEEpSro6x6eWg\ LgNNuNDBGes1x3eB\ 5L4F71c+zXc9+OJ9\ kOteuRDI\x0aKPDnaS3\ VKN1xovbdBt1JiA/\ 3EVKRnl3eF6pafKx\ PNUr3rVe/W2wOo4X\ zbXSnSb62Tn7u1oZ\ CZOAN\x0aX4JO45ZV5m\ 6ExgOLqCShWBuSX/\ Sb7Wo6wQqDatST38\ MShEDVG2XR9EIsLr\ MIFKaqZlm0CCVht0\ XU\x0a66OikHxtg+m5Z\ TwNwR9DJy1cVVFm0\ 5kvwCY2xYGctf5+k\ V4BULUDhNYErTbTN\ y9ccS0EUkmcc5d9\x0a\ BoSYVR5UHBAt9ZHK\ t+fy4ar3g1eC5qHD\ yCDAVhXF2ng2NLgX\ UA3fU/e68A4zKogP\ 33dTxzgwZznA\x0adRE\ uHcUCf6Nb8Q8Hlz9\ 2HcfYqrznSsCuJlR\ ez4nNFtV1NaOjpR5\ Rv0OxPoap3yUHcy1\ koKny3e+a\x0ay9EE3U\ wI5ppUI+UHjnZhvK\ C6CUGjMVOGKwf+OC\ qJ9r0UdyegWwlCa2\ x2NYf3TsHL5947FD\ WplXfY\x0aSmqzmjj2P\ fCNW9+w2dIgshLXd\ qgkxo72XnFPSOV7z\ 1u+g7rR9KI23SYy0\ aRvXULoy2tFfKSPG\ eUY\x0anWErgwKcqcA5\ hA7QQYKqJ+zDua4X\ eUkzxBZjI6E1YauD\ qyo2byJxhfHRVoW5\ 6FDXt3SEwKxmmCzb\ \x0acqztz9t2jKpEaI1\ 0IdFcF7Rv6akg8rM\ KzuKsQwUBYQ/y0lx\ VzbtVzBgHoUb3GgR\ zjds+5m5xENDf\x0aA7\ hPOP7LTsl/Pwz5dy\ PFPzhquDBx/N2Bpn\ H8BGZ9jXRj/d4IMH\ soupJf3IDDPYJe0w\ 8oSYEIJeV4\x0aelMTx\ NUgRScJxhTIRKMaX\ WxeYdMSuHoR2OzhB\ 0ltkXpp6Bf8Tu3kp\ kBWIUzvPs3lViG1u\ sxx3seS\x0a4l5AhSEy\ CBCy1hI35ppsjuth\ M/iF/TYyikCAzXKy\ S2tXy4Tu4lhXQjiB\ 6kSUtxHQdzqurYy3\ wdWB\x0an0fRavv30IG\ KYlQceRe+TbvRMKQ\ sxtseK9TlEFKNU6p\ xStBrEfZbxEfnveT\ tDt9xofWsirX5mjP\ U\x0alrTx0lytWGPJlt\ fr5107iG8/vn9csT\ 6kGk1QvQTdSijHE8\ yk8Gp5paH54GFUq0\ EcKPJLAxjvXaZu\x0ai\ 4ri0hCT5DRO9Pfkm\ DfCQUB/D+CME/znA\ 9/HE2XOz79hcbHfN\ TopkfMLBEVOPrxZI\ tadgww1Zg8E\x0aG8wo\ R/cjwvm2H6JLC+wt\ DBoVKwNkHCJChdAS\ 1QwJOgnVJN+xdB8u\ dSk3Jt7FCbyvep3F\ BvNtwrk2\x0apZpi1++\ eS9jtQHUShFLY6T4\ LyewBGg8+BMDHjxz\ l2+fPXTXMuVvER+f\ R7XpIK8so10e3fC2\ EVohY\x0az6S+hFZ+4+\ duf4lWvYSw06IcT6\ lqHne+PCA5HhH0mt\ iynFm9CqVqjXODnm\ tSLPvf67nmru1+nT\ He\x0aeU1J4mPzTN++t\ OPjwoVu7eLmKAcTP\ 3MjHHquSdhp++qAt\ WRrA8xt+subjXSbN\ fAm8osDIkA1G8TH\x0a\ 5ilWB+QX9pY/uxc9\ +t3iIKC/x+B0vOOn\ Hjbb90xAd5VFaMle\ SDDZvCA9v4Lq+h26\ /+UtHKe2yNyU\x0aF62\ Ed4HSjZhoqVc/pvK\ ezkik0hTZYBbQt+7\ 6zcSXY2WkUa0IM37\ 39dNl4DMsU5ltZdt\ 3E3771/89\x0avSeewu\ qbWwZ1IyFa7KJaCc\ 7PtoAjAAAgAElEQV\ RYitUB5frY64Hfwr\ UIei1EJD0DQ2p0I/\ bCMutT\x0azDX45DeCa\ kSEix1kEEBlvYb7e\ EurKCuoRhN0p0nQa\ Xh3tEnupWRDTTmun\ dw233MSY/JiV3RLV\ xmq\x0aLCdoNJBxQHxi\ nuz06rbHbCrVITy3\ PZzvEvRadfle1+9/\ SLEyvKbz4W5xvefa\ oiA9s0J4qINuJYTd\ \x0aNjqJyVcH99ycxm5\ wENDfQwiBrbmpcA4\ 3HICQTFdvz7d5L2G\ LCh0neyKpOLuZh34\ xU3GITMJbUjO7\x0aig\ KXlthAoyJf/ZCBl5\ GVYYAzlnChO7PT3P\ a8mmqnWiGq8S4N6D\ Vn+t1KwRPOkWW3tm\ DrXnLZhGZ1\x0aUNtt3\ t41EM5vAmWgKde9N\ /ltBTLrsGlJcXHoq\ WlbhJE2f5aDiXdvi\ yOCTnPbRlNG2s+eb\ ELhqw+7\x0aGIV2paFc\ HWHGObqboJsJjQcW\ ZyyUmY2wc5hJSjVN\ 0XGMCP3fXZp7lbw0\ u+O0xM3rUSwPMGlB\ tNBF\x0aNRPiQFE2p+T\ n1317qRER9tsUGyP\ s+MY6HTu9xn7gIKC\ /h7AtmFtLdv4sxfj\ OWlzeCsw4RXf2zgA\ G\x0a/KCRLAwk7JmDgc\ 0Kyqrm827COZB+yj\ Y61PP95SuYJJvGHQ\ hQSUg437nucN+9CK\ mU51iX+0vBc8ZT\x0aF\ We0xFs9jhAc/uQP3\ tJzVRT6YFR6Z7PbD\ ub1+zFpQbk+vu2MF\ HyWXK6Pr3mNVByiW\ wmuMohAE3Sb\x0aoHyw\ 3dRcMFvU94SQnq++\ y/NSzYSg2/A6BWGI\ iryHubObuvCOajCl\ HIz9EKHK/H0DfgNS\ 3v41uBls\x0aWqYWUhI\ tdLzRTWUwzQTZCIg\ OzXmtjFYDk2V+8G2\ cY6bZPbWhPQjo7zG\ ILCVdXvbSp7cwCLQ\ fCBe6\x0aCMTe+1xv9i\ f3KKJvKsrt+FJaIY\ TAiZ3r+5uWqkL5fn\ woOrPp2K3QjcSft/\ JmEK60fhG5hWCmWj\ Wd\x0aRkhsVnozmluoV\ Kgk9MI8zu47F9yUB\ VJ7pcBbVvdaWSbsd\ EEpXFmSb9yc2ZBQP\ pOUOiCa72KahZcC\x0a\ nRa3rGMvpPRWo3vE\ 5b9ekIkO9bz8cVFh\ Ul8tEsrbCGO9jWix\ NtreJsoLVDuB4Y2H\ xjbd4lQjrrUX\x0acqg\ s1hpcYXzVqrK1IEv\ N9rgH3AdtZaiGE4S\ WXvM+iQkP2dmkfzW\ eeMGfKEIGISoKMO1\ oppdhSz8o\x0aezcpqQ\ cB/T0GFyfEx0/M+O\ c6jgmbjdsWmNkLyE\ ARzLX9YjMp97w3K8\ PAZxp2f/wOrTFIrT\ Fi596B\x0aLQ1mnOGMR\ Yba21jONa9+oKszJ\ wHEXriiGk5vKpgG/\ RYyCXC5wQk7k2x1x\ tYc+2zXqmQyCrw6X\ 2nu\x0aiEiOq0psWdRa\ 6OE26lQx2CBotqgy\ 7y8vlMZkKdYYHA4p\ BEIqVHztCk+6ukq6\ unrV752pvM+3dQgh\ \x0afBlYXb1EVtOUMOw\ gwtBLtkqJbsW+Fz/\ kpoO6mWQgQcaaoNe\ i3Lgzg5KqEXlhHiz\ VNMOmJaoZ+fcg\x0aBF\ IH9U9veLM1MJXrE8\ KFDnZa3NiDQIKonc\ hsVuCKinxlUKvS2d\ qg6PaVF+8EbGlwlf\ WCVlqgmw1M\x0ampFfX\ MeknooWdJt16y5GN\ evvmfNyta6qcJXzl\ MC6mrRpkrMfOAjo7\ 1E0FxbIp2PCTssvg\ I3otiUQ\x0abwebYhoy\ 1pQb01uaRL8eVBTO\ Fqo7PcQltZoNTLnK\ XlVy3wqT+UEjG9T6\ 9DvF/vrpzhq/KQkV\ Mg53\x0aHdB9thFismI\ mz+qVwvzEvggkQa+\ FTIpd0flkFIAQuMr\ s+QTvZlBN5ucJkga\ Dd04TxA0/KFX5DLg\ x\x0atwihJRuu4YDW4a\ OoMCBbW6V5+ChrJ1\ 9FmmrHYHw9mKJg7q\ GHEd0eo1dewmQZKr\ n6GOXGmKDV8Hxm\x0a5\ alv0mmvh+7szQf0r\ KjVEGNUK/La5qNsz\ 1zrpFbo+SYq8FKyN\ i9nAkm6k4CS3hTGG\ Kx1iEAR9NsI\x0apSjW\ hri6EiLV7vj/Qit/\ r1lLsT5Ct+K7urbc\ DFQjIug0tshJe937\ TdXLTd13lUTotpfp\ tcZ62Vrp\x0adfFloCD\ UOGcuaybsk2f6QUB\ /j0LOL9BoJrjYZ4S\ N9hwAxdoFhJBU03T\ f7ACl9gHKG0S4O5K\ hyCQE\x0a6RfP/fAi18\ 3Y85JH5Q0HiWzpS4\ 67WfRkWBLMtbzqXF\ 0yvR6CuRa6GXtp1v\ HlUv3mTxletttUSY\ g4\x0a1MGMr5+ty0DPM\ qw9/344R+vIUcIjx\ /grn/l+fuEX/zGT6\ RStW5RZxvwnnuYzH\ 3iQ33n1TXSYsPH2\x0a\ m4RHvH92u9fHKoVz\ lipL0XGCLQucc7V0\ aZ2Fbsn4XVViqxLn\ HNYYRLfHX/uRz/AL\ a6usv/E6ZKnn\x0arG/\ lWw/HpCuSqNf1mu3\ GUgw2kEmIwyJDSTm\ cXLdKcCVMWlckeho\ Vh5jRztx+1YjAul3\ 12f0wV4hu\x0aJ36jkR\ VUw+0DfDPPdOP1BK\ pxhmr4/rru+B54NZ\ 4itKQcTa+acldR6B\ URNwV2Qo1uxj47zw\ tsVmJj\x0a7Zkg1jM8b\ HHv6S/I0FdHdMc7B\ zpjKUcTyvXxVfflZ\ mtsM/Muh1NsVvpsX\ NebZKkQ0leLbFUR9\ vZH\x0aXOYgoL+HsRnM\ tyLsH/Y/uxY7HZKt\ bVCley8couLQ87oD\ 6adelURKfUfMKFQU\ ohqhLy+nxW0PMV0P\ \x0aXjnM84ldaf2itoe\ Lly0qbFahGvW0/jW\ ul6z7orqdYNKCajD\ 1HtxXHc9gixSZl6h\ m7D+XXguVVJg0\x0a23\ E4SSg5M/W4GahG5K\ 9LYa7b/w7bHX7+Jz\ /Hxz76Ef7guef4/S\ 99BVPLhX506RA//S\ d+nER/gc+n\x0aU4Ktc\ r9ZCs0WzcUlxhcvU\ qZTOvcdZ/DO28w9+\ D6EUozPvEOV5oDAO\ UvUatM6ehRrKkbvn\ Abg6JEj\x0aqKRB//0f\ QEjB2snX/AItBNYY\ GocOEcVdXGkpizHF\ YB1R+Sl1MDQPH8X1\ K9ZPnUQqhYpvvJjL\ OqsV\x0a+JaQMwYV+1k\ FoZUvY0uJ0BJXWl/\ OTYvr99ylQLV9W6U\ apbi88uwKpS5vCIS\ oDYNKqklGuTHGTBR\ m\x0aWhD2Wn66O+yAg6\ IaEsx7S1JRO8UJIW\ ufgi2/U8K/h8qAwC\ skNpJayjVCucg70E\ 1vcP77ANWIUM2I\x0ao\ Ok3LygvZDML5lvur\ 817Sja2sFqKClfsv\ BnffLzJC8Le0r68n\ 4OAfoAd4aREtHokr\ R6MBhTjCVWW\x0a3dYg\ nQprYZawXryUnC2S\ rrKYqrhpX+IbQbe9\ 1CrOZwf7YWkoY69S\ VW3h/e4lbFYgY0+X\ szu0SjYz\x0aMxVHOGP\ 8JPENSuO2qMCmuMK\ XYXUr9lSl9R1YEJs\ uXTeYRZBaIUKNakZ\ +c9GIZspftqz85qS\ osNnV\x0aC3tRFHz3uy\ /w2c9+lq//3lfJso\ zOfcd55qOPM81TTi\ 97mmXviacByM++w+\ DMOyw+/mHi4w8Qtt\ oM\x0a3nydj3zwg3xv6\ QgA/TBE9vqY1WXWT\ p1k6RPPYJWioRXTy\ jC34BfdZrOJSxJEk\ rCYRNDuMnz5ecpp\x0a\ yvyT33f5MgBRA9Kz\ 5+k9/uS285/vhohu\ j5Vn/wAVN3xp27HN\ V2DbtYo9hRFPy0b3\ mrMAjmDWexbO\x0at0h\ ELLGBdw20ebnjBkk\ oiQpCsourqFaCbPq\ g6nvY/h1Irf072aL\ QaEuD3Rhjs4LwUBf\ dTBBSEvba\x0aNYNjyw\ Vg81je7tQZSzXNZ8\ IyMg48lzyrkImvBA\ kp/Walzmj3qxJ4JX\ QrQXcbBO2GryiUpa\ 9i5SXV\x0aaLpjMFctX\ 3mTUeDXlLH3d9gJ1\ xuavVPYv279Ad69a\ HcJjxyldfwEOo5v6\ RC6laDakf8Z+zKdS\ XPK\x0a9Qn5xQ3yZf9v\ L6oBUitUI6xLaInv\ SU6vfePtKYQfbsJx\ xxYqU5cynfU+zEGv\ Nbuu3l60SdBuIpOA\ \x0aapD6AZ9dwFaGapJ\ SrAwwWYFuxIhAbZM\ P3Sy3IwS6Efthu/D\ aeYGIFVG/S9hvoxI\ vJ+opTS3Cfoew\x0a3y\ KYbxMtzflef8N/v8\ qy5F984bd46Ph9LC\ 0uogJFeOQYF1dWWN\ tYI92ysfzzn3yKeO\ GQ/0+rzX/1\x0aZ38KO\ TdPcmiJv/O3f56/+\ OlnaCjFI4cX+G9+9\ mdQ84do9OdoxRF/7\ Uc/w/sXtstyJo0Gf\ +mHPsmh\x0aJOLjjz7A\ 3/tPf47WfcdpLC7x\ 05/4CH/hB5/iUCPi\ 537sj/Dx+xbpP/IR\ AP7uz/1lfuTx97PY\ iPjR\x0apz/Kf/uz/xG\ qHtoLuk2CbhPdacw\ oY0GvRTDXIui1/HC\ adFRpPSQZaB9nK4u\ ZFlQbKeXqyGfQmZ+\ q\x0al4H2m69uw3vE7y\ DzivMDamG/TTjfIe\ i1638tgm4TESic9d\ bDV0oum6wgP79GsT\ akmkyxRVlvvnJM\x0am\ lNNUqrxlHI0ptgY+\ X/rI//4cbZl41B/t\ 0YpxfKQ/OKG3+wKb\ yMr46vd6PYDQa9J0\ G35LDrLyVcG\x0a5BfW\ yS9uYKZXrxWbwdzm\ JbasKIeTA9raAd69\ sNprv0/fOY2OI6L+\ PDYIkUVOurxMMb66\ 962SEKHV\x0ajFdu0uK\ Olto2s0LZCNAN73d\ cDab7V9oTAqHu/CR\ 9OZigSk9DCzpeM97\ kBUhQQYir7Cz7vdk\ Fx5aG\x0acn2Ebi6g2w\ 2q4XRmHRvMtRCBN8\ uQSUQUKqrEVwmcqY\ eAJLMKjIy0HzAyBl\ NkPkMHMJtDRIqgpU\ Ep\x0aMBaZaITybl/np\ xkvvvwSTz39JGtfG\ vCXfuiT/NKXv8Z8v\ 7f9hOtMUezAJlBK8\ cu/93U2nnuWd75u\x0a\ +BN/7I8C0Hz4Mf7U\ p57kH/3G77D6/DdR\ kcI5x9xjn2Ccjvml\ L3+NyTuvcvbcW/zs\ n/4ZVKtH0unz\x0a8Sc\ +xj/51X/L8jTnldf\ f4Ps+8mG+fcZLm66\ urvKFl06y9tI3uDT\ N+d+eeoruAw8yWbk\ 0C86qEdUu\x0aXNRqiH\ gHM2v9Jq00VNe7Py\ oz+5tuJ8gk8C2lIK\ TSClFXOzYzSmcssu\ FFgDad/1xZ+VZQWe\ FcTSG7\x0aBoXRVmbXr\ oRQ339xgEy8yNK19\ BWqYQrDlPhIH5kEy\ DpI7gc2h1Z1wwfoa\ jKlWBn5TcY1Hi8Cj\ YwD\x0afy/EAWaS4/Ib\ m1ptfg77hYOAfoCb\ gpOS5P4HgMuDmzaM\ iDodZKgpRiO/Kxcg\ o9DvwAPtee/j/Jo3\ \x0azV4i6DZ97244uWl\ Vpz3DHqjc3Qiex2u\ wjbjmhktc4ft/N2s\ OchUcmMIP+uhmg2o\ yRSchYb/tB8HK\x0ayg\ elUBPOdXDtyg+V1T\ 1ZodQseLvKUI1TTF\ 54vrX0pUpXGC81Gg\ eoJEJFIUGjgXDh7P\ r9wn/4Lf7r\x0an/0pX\ vreKyweWgTgjdNnt\ 52q0HV5OfbLmbpyA\ R2PqKoKay1FeTloF\ XVgbBw+RNBpeb40k\ Oc50pRk\x0awwEYmE6m\ uPq9BEHAn/mRH2Yw\ GhLHMYPhYHa86WSK\ mE4wmUU4R56m6HaH\ oJj4walxju42EaHE\ VZZq\x0abXpbLaBqlMI\ onVW/VCv01RIpwDp\ kHGBNhSsN+eoG8aE\ 5pA6oRlOK1eEd2eT\ 6FkuIEJJyF7r2zlh\ U\x0aGOKadk+NUa4H1f\ LGL0IrqunUc+6vdy\ 2E13BwxqBacT2PsL\ tg7od9o+s+bi9xEN\ APcMu4TzjOuHrl\x0ab\ XcI2h3CdpvJpUt+2\ KThFbWKtdG+0FZmV\ paBp8zYyV0I5jXXd\ r+4p74PPabcWz+JG\ apxSrTQQ2hJ\x0a0PW9\ RlcZP8FbD6TZsqiH\ ozQYV1cHPD9daEU1\ TilWhp7uE4cE/daW\ 3q/PzEya+167kETN\ BBn465eu\x0avM3SoSU\ +9xOf5eU3XkOWBcZ\ t/0x1Q2N1SPOY75V\ 3OvXgVh3YrTXeUMe\ JbVl8nPjyvgojysG\ YfHWV\x0aqHfMDzOmGW\ ZcURbb/Q0uXLjA3/\ +3/4H04lvYqgDryD\ c26H/4mW2+3ABCit\ nGZHNjeScUAatxii\ 1L\x0aX86P/PW10xLdi\ KnSjGqQIrXCdQ0ii\ tHthGqS3ZmqlauFm\ xyY8Y3bZ85YROR76\ n4Ac+83/N7iFR+Y\x0a\ 44ig3wQlMVkOdpM5\ wI72qbPeeRIiUeSr\ w90F80ChmomnIe7H\ 7r7GQUA/wC1jFsy3\ wMVN4qU+DkN+\x0aYWP\ fp1hlFHpjh+Hkjgy\ k3QhCKVQYYs3+Kqj\ tJbytpS/Rxkf6yCD\ wjAQp/GT7pob7JPV\ 0r6ryQWW6\x0avWwqtS\ I5cWgWzMH3ZVVeIU\ ON7Htvej81D9ZUVJ\ OUMCqo6qCdrSzztW\ /8AZ/7kc/yl/7O3y\ UbXMC4\x0ah5gW5UxyV\ 5b+ZzR/H59+6D7ie\ s4jaDUoyhIZBTSOL\ vrvQ73PcpMNhtMxf\ +FTT/F/ffWbSGNoz\ B3G\x0a4fv3W788RS1v\ m597B+ccHzo0z4tb\ rleYnAegqipwmwHd\ UVlqWtud3VS6qqRM\ vYxqtDBH0PN+5s5Z\ \x0a0tMX/LzDfB/ZiDx\ 9Lc1nG669hklzROC\ 9x6+yZd0Bmxsc1Yy\ QzQBZ7C0LxVUVZTZ\ BRRqTG4KFDrrZ\x0aBG\ spVn1mHsy10N2ESg\ pIvZSvn9z31SaV+D\ ZJOUpx1nqmQM1Th6\ tV+TZL+kGnQTmYUm\ 6MaX9gYc/e\x0a0/VwE\ NAPcAdgvQ/yPss5C\ q3Q7dhLm94lr3FXG\ crJFJ3c2vDgvQLd8\ u50tqi89rY1VHmJc\ NRCGq72\x0a//ZBWLUi\ dJJQrAyuprlJuW1x\ L1aHhEsddBz7ga+a\ 3yyj0E9vlzm/9uVv\ AOCmls//2m8Q6QhZ\ FZgi\x0a46uvn/EHdhY\ 7XOX//K2v8t/9x3+\ WMit49vnv8j/+H/8\ EWRYURc53Xnreb64\ UUDqef+ElAFZefZl\ /\x0aF7d55sHj/A9/5S\ +yOtjgf/6VX0M4x1\ e/+Sy2rDwDw1leeP\ FFhDWML53lH/zK/8\ OffPJj/IWf+DGc\x0ag\ //pn/1LNkI/H/Kvv\ /JVqjT1VYrJhJdef\ Qk7GZNdXEE32nfkc\ yonYxwGFWisKUlXl\ r2SXygpN4Y4\x0aDLrR\ QISCajpFSkW+PLjz\ FTPhtR/s6MYZd7E6\ JDAtdCtGzEnKK2Rn\ bxXOVJgipbG0SHLf\ g0xOnazl\x0ak0u/Ac3\ rWYXBxM+idJtUgYL\ B1PP3O7XFdGUwk9y\ LzrRrqq+FcjTBTLK\ ZBL1/MDXDJKQap3d\ M9e9a\x0aEO46KlbXw3\ 0/+MN3If85wLsBk1\ Mnt/1/v8RpRKAIF7\ uUK+M953/f1LkEiu\ T4IdLTy/fUBOxuoe\ KQ\x0a6GgPFYSIMMSkG\ eX6mKCRUE19BiaUp\ 1MJKf3UdVr6jCaUV\ OsTbOWznOi+vu8Vb\ 5kGlloRHuqC86pr\x0a\ IlSEc20/TGgM+eo6\ +XjDJ8mpo9qS9aum\ IprrIZXvs+dra5TD\ nYOTVBLZ9GX3uLVA\ uryMKavZ33yJ\x0a/PI\ y5pzFOYeUvkIRhBF\ lnqEChUgEotRUWYF\ z1x54FFKitKaqCnT\ bU5uUiRA62FXGejN\ wpqJMp8x/\x0a4mk+/T\ MP8nu/8iZrzz1Lsn\ gIJy3SSeKj9/On/t\ ZT/Orf+yJYRzmYki\ +vzTL0ncRvzHVc6L\ Y+3uuw\x0al6g4wZlqZ\ tSjGgnhXAcVh6RnV\ 6463uYxNp8PIIOQc\ L6LTLTv8a9cnk2QW\ iN0UD+nxFbV7Dhbj\ zF7\x0afC0EVKUTon6X\ 7vvez5EHE57/11+m\ +xGvLZCdXaPcGM6O\ FbRaM1qdikLPjMmL\ WZuoGmfbvO6DudbM\ \x0a00BuDhtWxqsGao2\ tDNnZy/LC7Q88es1\ ruhPOfOWLt1SnP8j\ QD7DniO+bJzu7SpA\ 0qLIc2IegJpjR\x0aX/\ ZDCe4PM4RW6EYTWx\ ZMXz+LqypkGGLjEN\ 2JKTbGmDrzEtrLBh\ MIrw0eRP6xdS/UlQ\ bVjnwAqYOZ\x0aaicIJ\ evMWeByg0kL78O9M\ SGa7xMvLSDDiMnJM\ 971KstQsZ9K1rFXy\ rNZRZj0kHa6zfVta\ wAweYqK\x0aPdshaLTR\ VTn7G1wOKpsKcrNB\ plaECr26YDEcY4c5\ VhhUmGwLKpvBw/dp\ 3ezYYdBBzSV+U6RV\ PQC3\x0a9wJNm2j3Wjz\ xQ4d4Ln+EjXdeR0U\ Nwlafn/ibH0cKiRS\ KPB0yPnMGW1y+H8s\ 8Q+kAHUVUeY6pri7\ F\x0aW1u/V6kp84wgjK\ iqcjYvUGQ+0AkhZ8\ cs0xHxYp9yMsRcsY\ kp8x2uQ55RZVOiuS\ 7Wltsfk/s5CCm3\x0aD\ zuWeTbbXG2+9uaxN\ iGGA0xZ8fy/+TLx0\ gL52hqiUmTLy36jW\ Ce0ZZ4hlSTsttCtJ\ q4CV/sUmMHV\x0aGxwz\ Smf3AICea/qBROcl\ hDetaPcbBwH9AHsO\ FfVpPuS5vZFzTN56\ 8446u6kwnE36lnV2\ eC9AJTGk\x0a9xZP9UZ\ QSUS02AUEJs3RHc9\ vF1JgK++UhfVVF5W\ E6HYDEXg98yD2Yih\ BOyF0baw1mFHuhVL\ q8iXa\x0au8vZovLTwn\ XGXK6NfN+x38KUJW\ Gz44Pk5nlt6h84Pw\ ioonCmyy+URl1Dt1\ 1FtaBL/RlsDeb+/x\ q1\x0aRQpWhBrdTbxqY\ a19f2UPXOgAdeVxr\ nx9B2Y9xYgM1YkJ5\ puwBtwh3vL6+XXGg\ xyiDm5skEoQzB1i\x0a\ cGlAd8k7y+VrKwgE\ P/BX/ygL71siTAJO\ f+dtXvmtF1l/Zw3d\ CHno+x/joz/2MYSA\ wYUB2Tjl5V//\x0aDgD\ f95d/iC//77/JdH2\ CkIJP/9XPcO61s7z\ 5tZO87/se4bE//hH\ iVsx4dcTLv/MCZ18\ 8TePwEguP\x0aPsh4aP\ nMn3+Y868u89yvPU\ eVpbTf9zg/9GceQi\ rJ7/zL1zGDFTZeP8\ X8hx6n/b4WAD/w0w\ 8yurjB\x0aF/7+r/G+T\ z/Khz77UXTkr/Xv/\ ouXWX3lu/Q/9DSf+\ skT3lAn1Hz5X5/i0\ td/n87997HwyIM8/\ RPv\x0ah599jLe/e44X\ vvAdJucuIoXg0FPf\ x6f/9P0gBK9+7SzL\ 50ukq1h5/nmidue6\ n9PWv4WLHVQjwmZ1\ \x0atUFpTHUQ0A/whww\ fUo4XjSDudJisrNy\ x1xGhQjQUVZZdtxy\ 6b3BQTTN0J/GTtO8\ SyMDrBahmA5vl\x0a3m\ Cj9MNDznqHNt2I0e\ 0Y3alnFfIKV1pPU1\ ob1yYjfpgomGt6Hf\ nUfy7RfBdjSqRUiE\ aADHXdZ6zV\x0a6Mapz\ +ibUb0oVsgoBLa3T\ 7whRoXJ957F4N2xF\ PmlDc+UuEWL1q3tB\ TNMwXohE1tWd0Q97\ Hu/f56q\x0adDz84Rbf\ eBHi/jy9Q5ov/6tT\ /OTPP+nnHSYltjS8\ /JsvwW++gG7HfPRz\ H+O+Dx9n7fQyRx49\ zANP\x0aPMBrv/s9Lr5\ ynqXHj/GpP/f9fO9\ LL7Hx5iV6x+boPbh\ APsnpP7BAo9fE5hW\ mqDj/0jk2zg4Ax4k\ n\x0aHuJDP/JRznz3LZ\ wwfPgzxwjjiC/98x\ fI19YYnz/PoSe/n0\ ZT8rv/5iS2zJk72m\ GdBYLwDEJKnv4T\x0ax\ 8DCV//JVxivrfvf/\ blP8lv/9HuYyQZSa\ oZvvUGVlkxPn+R3/\ +kyqnuIx566rFEwv\ XCBUWeOL/7i\x0aH6Ba\ XX78bzzJqW+fZ3Lu\ Ev2Pf4pHPtbl9/7t\ 27jJgNbiHE9/7gjf\ /PVzM82F3SBa6oH0\ bnQ2LVCN\x0aGNGQyCS\ A26WO3gIOAvoB7hh\ eNJuKH3fm+DLU6Hb\ D0+Os17cO2k0wUA5\ H7DTmfmWGdqdQbUy\ Jj8z5\x0aXvOdGSjec2\ z2Pp0x2KKkGmXb9N\ xdVWGzEpVE/nqXBh\ EodCP2OgPZdqnMYt\ US9tsErYYvUSuBqy\ zF\x0axhjd9JmzCBTRk\ R42rXw/XfvMHyGQU\ US40CY7t93qVOh6I\ 3GHvNiFFJclPrX2+\ unWVyaQtbzpMN3V\x0a\ YNksMIxSP/ndDHy/\ udjboD4cGJyDdFyx\ 8KEnwDoe//QxvvLP\ np9R9Uxp/NwAFXNH\ F2gudpg/vsDa\x0am5d\ wztI73CNpRLzx+6+\ RDVOEEpR5iROCqqg\ 49QcneeDjDzF4e5U\ TTzzAaHXE8MLA32b\ W0WwntA73\x0aOPTwIu\ 2+HwJ01oCDr/27U6\ y++KL/3KzgB3/qAb\ 7yq28xeusViuEUgq\ fo9RX2gRMApMOM7/\ 7uKquv\x0anwfnN4ynv\ vUOT3/uGF//dUF65\ k2KcYqSAdNLa6g4R\ gHf++YG6dk3vT69E\ 5iqQHcWkAriVoQIW\ ggh\x0aaDQlr31nQLl2\ gY1TbyGa38fFNzZw\ CGQjQMXRDX3Nw/kO\ QtUqlDVFVob+/crg\ 7oTWg4B+gDsO2V+g\ \x0a3V9g+uYbt6cFvzm\ EEgW13KgXvt60hBS\ RdzoiFJTZlJ0GPqV\ U1/S53ivYyiBhx9e\ /V6HbCeF8q55c\x0az6\ lGme9TF+Vlje/CQG\ E8Xcc5T+8Ja0W4QK\ OSy4vg5jUQ2lPSql\ FaK6IZXGFwceSzYV\ mbmtTqnyJQ\x0aXhoYo\ KYIBYc6lCujy9myq\ JXVbjPTVY0I3UxQU\ W1JG3hzjk1vcFuWv\ uozNDhXVyiiGCcsw\ VyTsN/2\x0aZX9jffDf\ sog7a6mmKdVGPWug\ vLmLcBIZhgRzXnDJ\ 5MXM3U5q73wnIoVU\ mnx59+ICzoHAcfbN\ jPsf\x0a7fD2K1O+99X\ zlOnEB/TSD2y979O\ PcvTxY6yfWWd0cYN\ inPnr6Rw61EglyUd\ etrWcFGQ1l1wIxWu\ /\x0a9Qo/8l/8GKe+/B\ qHHz7KG18/yfDCBg\ uPLPHQM4+gpWblzU\ uMLw2YO9zFFtZ/WA\ KK3CECQdTqUqYT\x0a4\ lo5EgsqlJsfN/8/e\ +/9ZNl55vd93nDSD\ X07TcQA4CCTAJdcU\ lxyV9woKuxqFSjJ0\ tqyVapykspV\x0atlV2\ ueT/wVWq0g8uWZZL\ ln6wZa9LJXFXYbVJ\ 2qVIECBBggSWBAgM\ 4sSON5/0vq9/eM69\ 3T3dM9M9\x0aCb1Uf6u\ mgOnpc8O595znfZ/\ nG3Qs3hWbV8bz8xg\ lKWU+5a2vv8c7r6/\ SWdA888uf4s2XLrP\ +2utg\x0aFMnpR2m1NZ\ PNPqPL10gWWvSe+z\ Ge+nSPH35ngHMw2h\ oTEC+C1UcS3n9zKo\ S65jrdvlGiCBJq0x\ Yz\x0amFsVddvNMG0hy\ 7nxzhjFFyUuNpgsI\ Vps73SfHhJOCvoJH\ hpsOztyQZcZbhNa0\ SROAWJbWUoqlS8q\x0a\ CYNwlqoegwnEi22e\ /fnPkLYsvmEyv/vm\ hMl7b1Fs9jGx3yE2\ WYuy8TxKE4R1Oyv6\ Owze0Px+tG+n\x0af/O\ xWCM7UGsIddmwX/c\ f91FjFhs58/V204J\ qe4yOLT7UYkICe0w\ 3drehfSlOZCQW05K\ CPrPfDWWN\x0aQlEXxX\ zHE0ongRx1jaWrhW\ YAACAASURBVLFNAl\ 6oJYkrjWXeXdWgyv\ nsOlnqYVsZ5eYA12\ iBQXZI\x0as7Z9fQd5l\ EljTDsVFnOTY65nb\ nZSDQUhSNxqZFB43\ I2dDoWpnAQMaY3Pa\ 1xZNs5sSHrYro6BM\ pqo\x0a08Zm2dyb3U1L\ dGLRqaR01aMcnVjs\ Ygu72EIpLSOjphOQ\ nFmkuH6Eoj4eQnuB\ j//0kyyfv86rv3OV\ \x0aKGuhUPhKImI/9rk\ nmWyNuf7mVem4NO5\ +AMW0xPlA90yPwbU\ +cZbRXmzLpWc0g6t\ bjDZHPPFHnyYQ\x0a6F\ /bpi5qzjxxls5Klw\ +/8x43Ll2nd2EJbf\ ScCztTEiivsFlGPR\ kz3pRCZ5MWVUOqyz\ qG9XeGxJ0F\x0aXLV/M\ bz1xlvEncvw5FOsf\ PEcxF1sYll+/sdpL\ 2qG256N73+fEALpy\ iphlnRTDQnBk3Z2p\ KTvvzml\x0a1db4Vmf+\ s1OPZAw2hyI7dB7T\ SSCEfV4aJo2xCxm+\ qPelN/rKoXLxPjBZ\ clLQT/Cji1kBPSxs\ lmLb\x0a2Y51bFGCg+A\ coXL7TWtqJ0VDlUS\ 9Bb7wVz7Nv/i7L1E\ UzQ2lzikGW2ID6hr\ rUqUaZq/sRELwaK1\ l\x0afmt2IjO990BAK2\ FnhzyXaMwowlUl3s\ muVWmFq2vqPMcutS\ g2N+c3U3nMEpu1eC\ jesHeAji3xqZ6M\x0aK\ bQi1OK97acVeqUj4\ S9pglrUlOu3To6aM\ 40bdzxljexeQ6AeS\ 5CHZGVHopHWmoB4i\ Pu8Ag02yjDt\x0aVExP\ qlra2rPd4YpGxxHp\ mWV8r5R5vrXixa0l\ sYvAPlvhmXNgcmYJ\ k4if+cyMBi+ubqGU\ pDJf17JQ\x0aCEIMtN0\ WOor2WLO6qfifK6v\ xZY0bT/G5kVFCtTc\ SVkdm7hho0mYk5L0\ U/7LGj0QDbdsZKjY\ 7Xwcv\x0aumdlDVGvda\ RdnqsKbJ0z2hjS6m\ VMN69howQfdroZw4\ 0BK4+s8sTnn8I5R9\ xJqUuHUpr1d26wev\ E0\x0an/1LX2D78ibt5\ e588aS1xjvPpa+9y\ Wf/0hd46+W3GK4NA\ EUxLLDWcuGTj9E90\ 2P1Y6fI56mJYd6p\x0a\ CpV83r7w/PuvvM+F\ J1OuR0/Q8Rd59OkW\ 7/5gwvjKZZJnejvf\ LaR7oLRidXfSndYo\ Au2zj/DIxTZP\x0afv4\ Cr/zrd+DTP4EiMPn\ wHQDOPX2KS98borV\ iOtyRnakq5+zHTrF\ mQHd+kuc/3yxCGM4\ XZzpY0ZQ3\x0aC4FQe7\ yriDqiRXfjYl+gjb\ zPGl9U4i4X27vmYd\ wNTgr6CR4KwnAblx\ 9dtjMr5vVoergs8y\ YmNe5K\x0aqzff3mbrr\ TeBIDPE2nPhk4/TO\ 79EcHKjuPza+0y2x\ zz640/QO72A0ppyU\ vDG775OXZQsXlhh6\ dEV\x0asoWMKI0xkebG\ 2ze4+v0rVPmUuB1z\ 5tkLnH7iLN45hutD\ 3vjd1yi2Nlj65KcI\ u0INi+sfMLm61hT1\ \x0ajxa21yLqtObhKb6\ spJAsJ9Iqd1BPCnQ\ qN7bg3IHnX2nTkNh\ kx2oXWug4Ah1wPog\ nwMiRnl1GRwZX\x0aV2\ hlpZgHiaJUxmBaet\ 7Cr7Ync1OO4Pzc6E\ ZniZjaGDW31LSdDG\ WUhGbkwqoXC1oJk7\ FdCa/xVSUB\x0aKLVr4\ ltlnLA7811bKcS2n\ aKiCJPFe/7djQtxN\ EstoY5vmU0wiyDVV\ mI5Q+XnYSw+3/ke1\ +MpHFCv\x0adSSze9vN\ blnQlZGQHIoxOooZ\ b2yghn2++k+lABXb\ G9Rxwj/7Oy8zvbGG\ QvPW779B8UJOCIF8\ nPPa\x0ab7zK2lvXUUq\ z9cEGb331Dc48dY6\ qcKCGFNOSunTzXfb\ 6W9fRWrH+1jXyoUj\ ebrx1HW0MnVMd8nH\ O\x0a+9+8RNUwvut8wj\ d+/TJ+tCmugqVHac\ vw7T/gQz4xfy/v/m\ BCuX4FnzvyzQ2uRS\ l+tI3WGm0jqPa2\x0av\ r/26x+QX30fN53yw\ Ts5H7zz1s55CTXT9\ XWy1VX+/T+9hHPgX\ OBf//3XcIN1goeN7\ 32PEH1ufsz7\x0a3++T\ tg0qSEa8Ti14hB/S\ dIqU0ZJXHzxuWNzS\ 68JXDl06QhIwnRS/\ +fDMZU4K+gkeCvJB\ /8jOcfU0\x0axxZZs3v\ 0RzpeOYVWCpN16D1\ 2EWU0o+sfUGxP+Nh\ nn+D8jz3Gh997n8H\ V7YaVDTYy6Migjea\ Fn/00\x0a1964wvo711\ h6fIXn//in6F/ZYr\ w5YvmxFdLFNuP+mK\ 331lm+eJpnf/55xj\ dGFNMcbeWi7z7yOB\ ef\x0a73Lpdbkhv/D5J\ V7/RqDY2iLcpId+2\ NCRJWo3xbxq/NSLE\ h1ZGUFEYqxRbQ3FN\ aubSQE+cEciBVJH\x0a\ FttrCanNeUKzCyZA\ vNSVvGwfpLhFWgp5\ ZKSFXYiuWWmNm5Z7\ HLaq7RF+KrGdtiMz\ b2qFKypJc4tj\x0aTCv\ DZELOo5lr+8phOyk\ heMqtPm5c3HFR6Gs\ niWXTAhtFRMtdyl1\ t73o0JWknYh5i7sx\ 29LXDD47O\x0advZVjR\ vlRN3bL/yMsWy89j\ qEgE4scbrAdPM98I\ Go10MZzfYb38GNK2\ wU0/9gi8HlPgpwTr\ gBCi3K\x0aA20Yb415+\ 8UfotCcfuo0wXsmG\ 0MCgWQx49wnH+Xqm\ 1fYen+DUINNU/J+w\ TsvviVufAR85VEoT\ Gwx\x0aaYv1b76IUmYu\ D4xaberhhI1XXsZY\ S/CyYNLGYGzE5MoN\ Rh9eQymI0lT8AbRl\ 41svE3fa1NUEX4V5\ \x0aLHD+rZfYS4BV6Ng\ wGaxj6wn5+hrluly\ DSmkUiqjTwvXX8Q1\ pb8gZ6irg8jG6GR/\ 5aSUs/qKYe8Er\x0arX\ FlQSjrO3I4lFJNxO\ 3DW7yfFPQTPBSk3Q\ VGd5G0Vg+mRKsddB\ Id6iLaDWO1WGL2xE\ e5aw3l6PtE\x0aWUw1L\ nn7999k7e1rBAJKw\ 5U/+JDOtQ5JJ+WFP\ /kpFh9dZvPDNXRki\ JKI9755ifdeucRjn\ 7nIo595\x0agqXzS4zX\ B6xePI1Rmm/8318D\ 7QkKdGJQaY9HnjvN\ pdffQYeaxXMLBLZI\ VpaZXrmxT8v8MGHa\ qdhg\x0ahkA1nlAPpoS\ 6aZ1rTXKqR920KOv\ BlGihPc9Gv/kzqMd\ TQvDYXiYmM4pmNqs\ bY5ls7ralW+KeppQ\ G\x0aI21YNymo+rdvK7\ uilD+TAt2KCJUnFI\ 707JLMwmc7bGPlrq\ YUJgRwHjeaUm2MDt\ 36DJWjGkww7VSS\x0a+\ 3zAFzX1YMfjYKaqe\ FCYx5/eQYZp0gxDi\ o4N8eoitpM1UbUlN\ s1knJG0mL5/A1B7+\ CCzAqttRF0U\x0aJO2E\ 00+eFcKaD3RP9Xj3\ m5co+2M6Swtc+NyT\ nH7uPJe+/kPGG6Mm\ Vc9iM3sThwRAEXU7\ JEtLVOvD\x0aPZwUYN6\ hCnWJD4EoS/Ya/rh\ 6z+9H7Y5YueY5Ck0\ U7/BRZhyV+bmLI+L\ VJdLVRRk3TGpsFDe\ vLaaa\x0aTkiWlzC9VW\ ZWNb1FQ3/bMbl6DZ\ u2ZXSWF3dvEKOQEU\ 9gHh39MHBS0E/wUK\ AWlmjXjvHa0fTo9T\ TH\x0aFCk6sfjCHknDG\ 2BOiINm9h48qMD25\ S023lsXe1Cr6Z7t8\ ehnL2JQDfFJTCpmb\ d3+jW2KcU7wgWJU\x0a\ 4MoKGxmSVkKcRfTX\ +gRVk/RauOAIQ8dj\ z8iFvHzGMthUbF6V\ IAptJVvZpPFDD6+R\ 5zeNNEwY7dXW\x0aeH7\ j0tagGhng7tfmylL\ azOXBOmo3KcAHTDe\ dExeD90QLLVxdUW1\ PpLh3EoIVQmLIPW5\ ytNQvNynm\x0acjEdCb\ lO1YZ6OKVc76OzWH\ gXsUUpjStL6v50vp\ s7zLkBcOOcejDBdl\ uNlM9jMvm8lJX40w\ cauqKQ\x0a+NO6nr8mk\ UVZdByhbBNR2+wab\ StFtxIxACqRYq6Qt\ nG7NbcjvZUJj65r6\ knFdHNMttRGx5rrl\ 67x\x0a4avvYmyEiQxZ\ lnDp629y5dX3caXH\ 7iKUHWi2Y23DIbj1\ DlXZGGPj/T8/4DXe\ 6rXf/Bh2QXzZMRpV\ \x0aBYzJYJfJnNKaor9\ FsnquIc7BcKtk+sF\ 7lIMx2bnT8vneZRb\ FbDGmtMIXwhWhfVc\ PdWScFPQTPDTo\x0a5V\ XSqiLf7t/5l3fBDX\ Pi1S4+ro8UKlGXNd\ X2Jps/eFNMULwjqI\ ag4x3e1WitiVsJj/\ 34RT722Sf4\x0a/b//W\ xQTz1NffHqP7MzVf\ s/iYIaZe1raTTGZp\ a5qXF5Rj0ref3NK0\ tpk69qIYrjNq795D\ VcUlIMt\x0a7GIXm7RA\ qTvqXe8ndGSw3Tam\ lRB8aGQ3O8+vrMG0\ k/2z4UZb62/OGt8F\ l5f7tOimneDzek70\ 0pGV\x0a2fyg4UTcpfR\ MHjtrSHZNwascvpp\ S30WLG+Tc6CRGJyJ\ Zc5MStOzqdBoRLXa\ wQQp5PZyKBt9kc5L\ m\x0a/TS5EUtdWVhFS1\ 1RBSBERpPGc5Kh6K\ 0b0ieK4IIQ65zDVS\ UmTWTRmsYHxoPOYN\ KMajrhyvcvc+X7\x0aO\ 3nzSmvirM14a8L3f\ v3bcp603lPMjxNMG\ mM7Lckgd17GNN1mh\ 9xcvjo2lP0B6996e\ c+xWjeWx6WM\x0acmyv\ Rb09PvKoUD4bS3Ce\ ck0W8cny+Xt+b4fB\ SUE/wUNFdOYc5Wh0\ pJtfPc2xviU310MG\ XITg8S5A\x0aCJgoxmY\ tXD6hriqCQ9riRoO\ X/1prGW2OUNrQPZf\ SXmw3jOiwaxa8O8h\ D7g/FKGeyNeLRTz3\ O6Yvn\x0aKLYn1JljY5\ ijfcXqowv88Dt94q\ SLMoq8rGR378XxTC\ 1pZlr6hwG70CZZ7U\ ke9GC6J3ACEA1uEp\ Ov\x0a7zVzMXE813/fC\ nt2kk1YDiGItKuVN\ i5yQi6ateY5DNHxg\ OexvTZRryHfwT2LB\ mYe7tFiu9nNNqx3\x0a\ pag2h2AVtpViWqno\ yBftvL0daulm+LKe\ Fw35+Uyzf3jnsRkz\ XyR2MVrr5r3pnfeo\ RJGAalj7tccX\x0aJfU\ kpx5O5wtEbQ2mm9G\ 60CI51SO/vnVbF7T\ bETXjzvGSW94Kpp1\ i2ykoua4IEqQSvJ9\ 323yVSMxy\x0affBCLF\ Q1ofaYdkyoPIymR7\ pfqUiUDw+T3T7DSU\ E/wUPH3XicSw6xlo\ vlEMeVgyFrl25QFz\ u7Tx3F\x0aqLpmuD5AW\ YVOLDjFdDjlypsfc\ vHzT/LF//znKYY5f\ /DbrzHdmhACFP0pw\ +t9qqISmVtZM9kaU\ Uxy\x0a6uC4/OZlWitd\ vvjXfpaqrLj+1nV+\ 7+/9Bldf+gbvnPV8\ 8cvPEqUW7zz/7v+9\ RHFjk3pzjPIG28uI\ \x0alxcoNwZHaj1LZjl\ HKhYA8UpXwkJGE8r\ toUgBdyMEvHOYToa\ alvOdNQbRWR/QpZg\ VIWWkiKuiFKZw\x0aO8\ KNS5GCdRKUanLUGw\ KdTiJqO8VvjuaLAb\ jz+9FZTHJqUfT+Ks\ xlbPcCFdmma+EZv3\ NNduudBJum\x0asvig0\ Zpvj8DIAkfHkZjRa\ I1dmJ0/3+yQPS7Pq\ cc5Pq/mOgdxnAvSr\ g87ix95YwqdRMRLX\ exMSljV\x0aQJiPi0Lt\ 5pa0vhIdtJsc/L3x\ tUNNS1yRY1op8eqC\ 2PPeZqd+v6CtkB0P\ MGt8oM+pk0iKtXdM\ rqzh\x0ahvncsAcNGIV\ JY+IlkeRV2+N950N\ niXzmPhAvtCl9gEk\ u18F84SifzUHnUUU\ GZSR18GHjJD71BA8\ d\x0aui6Z3rhBPT38yj\ c5tyg3ycGdZ66hri\ jGY2bU1KTdQVnbxE\ 1O5632dHUR2+lQrG\ 1RjEZ7duA7aKom\x0a0\ n7UujH/UAoda7ECz\ T2u9nAT09ZGhrpxV\ dsNE0VETcsy6rWJe\ x2C8+TXNw91PmY7L\ zE4qfBlOX/q\x0a2x2v\ raH91COgFcXa1s4N\ R6v53Bul0FmE7Wao\ oKiGE6JeS+aON/p7\ WvGzRYXOYqJue0eH\ bpSQ7bYn\x0auHFOdna\ FfG1rz+dm0hjbEzl\ ZvTWWgpolkj2dyzz\ +oPeirSE5u4TttmQ\ D1hQ6Ny4o1/ZnsR8\ W0WIH\x0a046pBhPccL\ +8UkeW9Pwy5cZw3z\ jCtBJxDmtiN5VpFj\ fWNKY1aq5JnxkhuU\ khZMJafq5iM8/bVt\ YS\x0a6loY1UVBsdHHD\ 4/uWz8z+ElO9dCpp\ ML5vKS4sS3SuQdY1\ LU1mCYwKf9g484H3\ AdESx2SUz1UJBGs\x0a\ 0/fXbvv76SMrhFrG\ J6HZTfvaES8vzMdO\ pi28hLqfYzpx41Ap\ pM5ifYCf7DgjQvO+\ F2QUVFzdmj/X\x0aSXz\ qCX5k4W1MduYM+do\ a1XhnFXurG8xsB6O\ Dwe+OSbwFlI1I2u3\ 5/89/bixRls0LrLL\ i5tR69CxR\x0af0yxsU\ lwNSbecZRSUSTtzS\ YaU1uDSkUjrK0luC\ BZ4UiOdPBy/Ox5Tc\ P8dWUhWdk3EYSq/p\ jgPfFS\x0al+T0EtMrd\ yYN2l4b04qFKd6W1\ yoWogUgRfOgc2l6m\ bQCcyGWqdgS9dqi4\ 46s7KC9k9Ztf0q00\ CLq\x0atqhGE2yTdrZ7\ J206KaYjEi588xqG\ Bb4sMVmK6SbEvTbl\ YCyt511weYntiTua\ soZ4ZYGo15YdfF1T\ \x0a3Niay712P6dOhPS\ mlKYajik3+qjIEC2\ 0iVd75Nc273j+DkT\ Tob25mM+eO7uwQjW\ YHhjNu5uoNztG\x0axZ\ bk3CImSdHGijTQ1Y\ 3ePsV2WiQsy67bOS\ AIF0Ap3GRC1Z/gp5\ Xo1I/6VmbXSxqTXZ\ AYWl/kIkfM\x0aFMm5J\ YrrWzB5gEVdK7Ds+\ 9wfFLQ1wheIIlxR3\ rGYA9T9CXYxIz6zg\ B9X1INJ8zXwBO+ot\ ka48VSu\x0at26CywvK\ 67JoNO2U5HQPl8Tz\ 4wBZxGSSJnjY8eD9\ xElBP8FHAm8i4rPn\ iYGqfwM3zPH15MDf\ NQvi\x0aFleNx3tyr2+\ HW2m8d7NnQ+Gohzl\ Rr0W80iVakfQoZTT\ GJmBu2rE3u0Y3LXH\ jnJCa+YodhFh0q9d\ h\x0abyNRC5U8pokPN6\ dUkWi13ShHpzEqFi\ /1+FQX5RXFYIjf3n\ 8u48UFKRpebFOjbh\ ulRRo1l2EpRbTQ\x0aJ\ VRuHoqSnF2S45vAD\ bT8CbXHjUvptNxk6\ ausIVldxtcVSWqZF\ tW+UclMd267LXQSS\ Xcgkl1uvNyd\x0ak9t0\ NyHpdtFZPN/91qMx\ 5cZgbgxTGyGRPQhE\ K12CC7hxfqgWsoos\ yekettWGANNrN6Qb\ MiNlJbEk\x0aysWyMDS\ xWN7Wkynl9ujARcN\ RoCKDXW4RdzuoKMI\ VU4qNPlG7RbTQxUQ\ x2bkV8rXtB2Z6ouM\ Im6Z3\x0alCPet+fLYm\ w3lc5Q/3Dvyecl5b\ USncbYXkZ6flmugx\ DwZXOf8RzYOg9FRX\ ljgFlISc4vikTTeV\ xZ\x0aSTdGi2e/rx9u4\ tpJQT/BR46od5qkX\ VCVI7kgB3IBRd02K\ pILRaGFqX4fV7y+d\ jCWXZdOImGnNj7b\x0a\ stOs9pDAdBJhWsmO\ paMT4tT9kJ/NbiS3\ g0ljosWO+JeXubSn\ Z+1f1cyBuwm2nRJ3\ 2riqwpUlflQQ\x0aLXU\ xWYJSWvzEtcyFi81\ tqs2R2MCudLGdthT\ a2BCtdKk2hkBjc9k\ 4tvla1Aa+2N/qlwj\ WNsmpRUna\x0aQnTOtp\ eJQ9suolCoHCrR0q\ bWSnyziynKGmynTf\ cTj4v1blVhkpRZ0I\ d3FfU43zPDvDX3/u\ 4xm73a\x0aVkp+bUte/\ x2+f9Fih/TcivjVF\ wXl2mCu5985tpRzp\ wDUfFQx283e7Xfcd\ jOS1R6mscR1eU61u\ Y4b\x0aNN+V/pR6mpOe\ XkFhSVZ7KKUpNwZ3\ 9Xy3RSOn8w+Q7GlS\ CbKJFjtix6qk43XY\ 2fX8POclZVGiY3k8\ \x0a00qwWYZ+xFJtjak\ PiEGVY0v8ekmlFDq\ KJFSnuY8opaDHgcc\ +SJwU9BMcC3ibyK4\ YqEe5tLimJWoq\x0a5g\ yuLO9553Lg8zapYK\ 52chMamzlhafbvO7\ 8cJNVNiwxIRXo+Q7\ 6Xgq6sJIz5uiY5vU\ hxY28gh+21\x0aiBZE4\ uarimo0kdn5TTd+H\ cD1A6EVQyo73Shqo\ RY6ItdTYtgxc71yk\ 1zmzmVNqGqK2uPzG\ rvYRkcR\x0aflqRnJHd\ uc4igvNUg7GE4YT9\ M24dW6LlLvHyAtpY\ 6smYajwlO7VKvNBp\ Fkm7gl3yCpMmcmPW\ Mmcu\x0a1weoyDTdgIA\ rHdVwjNJj8W5HVA/\ 1LuaxSWKZT9+GgX9\ 3HwxEK22qweSWBKh\ 9h0QaZRS+KCiu93F\ N\x0ay3z3sfse5x7jdU\ 0nIV5ewHaE6+DLkr\ I/wg2bRc8uFUG9NS\ b3kJxaRFkr51kzl1\ fdbzyolnNybhGb\x0ap\ ZJONwtsKivJAjjic\ 84Xo4n4+BMCxdo2p\ p0QrQjX5dZFffaXA\ AU4nYvhTmwwnYTsw\ irV4ODO44PA\x0aSUE/\ wbGDyWL8tMKNckme\ grk95IPAnse9gy3o\ DKFhgtt2iuMeW6S2\ iX2tIShP8sgSblKI\ n7gyMtce\x0a5pJIlsW\ SKX2AJGa+OBlO8ZN\ mB6iE8BYvdUWCo8T\ wQ+I983mBne04qqE\ Yc2hjZKduNEEF/LR\ u0tJu\x0aXdiUabzYtc\ ZXJflV2dXW7QzTao\ kmvdiRqYW6cTRbyF\ DWUo8mspvdpc0Pzj\ dMb9Guxytd0bXvfv\ +m\x0a8dkOd+ZXHBmBu\ Qf7YSDhI5VkuZ9ao\ E7tvMvxIGDSmHixi\ 22lEq4zHO/4jB/wX\ faVo94eg4doqY1O\x0a\ YpJloejfr6KuY4tK\ jKTm3QG2m6FbkXTf\ yrqRkvnbejMk5xaJ\ F7qoOCLUFdV43Nj6\ Vjut8iPCdBLJ\x0aqq+\ dPFZeEmqP7UC03Ln\ jTnvf4raW0ZBdSnd\ 08A8BJwX9BMcOIXj\ cKD9Ui/Ojgq8cusm\ YnrVM7xZu\x0aks/Z0F\ hpVc4Kty8kR9zn5Y\ 6nfbF/dz5/XbOf33\ QzT04tCPu8qnGlx+\ flPltLXzuU83hXY+\ JEPNA3\x0ah7Kzr9wdP\ w9ljBDkQqDcHM6JY\ sX1PtljCfGSFI5qa\ 9QknDlsQ3IMzs9/B\ hxcDCpHta3x5d73r\ 6wB\x0azX4J3iExG6Ec\ ZLMaXBOqckjOsc9L\ irU+Ua+NaSfEi90H\ W9A7IqvzZU2x3rDX\ y9tfM752YmNbSgdm\ \x0aJuPCc1/a7zqR+fn\ NkbahsWdV1mK7GfH\ KAiaJ5xn0IMlq1L5\ JL/QNz0IkcEprMFq\ kgUrjhhOq4UQW\x0amj\ d1Io4O0az7sporAD\ RQD6cYAun5ZfIrhy\ dcqkj4Na6sqLbHRJ\ 1T9/DaDo+Tgn6CY4\ e0u8Joc3Js\x0ai/kMP\ i+b3GMhOd2t77MvR\ d+tjBQmr6StPzMm2\ XMewvSutL3VYIpvy\ HezWXY4oGiGWlju2\ kbYVkax\x0afUgpXWTQ\ aTRPF9sdrlKPpvhJ\ IW5rvTY6iai2RtTD\ qciprG2kXHcuyAel\ mykj8aludPQ0P9vJ\ ZAel\x0aEc38boSmK7D\ cFae1cGdWuK8cqhl\ JKKVx9YM1DDJJjNJ\ GLG5v45AXXI0ri70\ SygHUxYT07ApRp02\ 0\x0a3CEEL1r1e8DMkt\ aNdz4Pl09wVY02mq\ S7SHJ6UfTiVU09ms\ j3PxInQW0asqlS4J\ xk1sN8UeWdAyfm\x0aL\ 7hw5IyH3agmY4J3a\ GdQQ4XPxSdAaYPNW\ tLxGueY1QXsYoYf3\ fk7INbKKSoyVJujI\ 7lb3itOCvoJ\x0ajh28\ jog7bYrB8d2hQ5Ok\ lVeSqNTN7j7IoXms\ wxjm3O0upO6PhZl/\ p66HDyJ/6y1gWxlV\ EgN3vomZ\x0adiatW6U\ p17f3uWSVW0Pi5S6\ mlaJMc9NOI0yTj47\ 383nzUaEaN7WjOHO\ ZlpiHqEhm77OW7W7\ 42kHD\x0ajTCtRLgDh3\ k9RqPTJjjkEG3nu8\ UOd8DNg1FuhWo6Yf\ UTLxBucoPTdU2+eY\ PSD4k7HeKlLjqy1N\ uT\x0au+p4zA1ltMIuC\ sHSZDGj94asfOonA\ AiTvjgVjqdU/Ynky\ lcOHRshpjW7W5OI5\ a42Rgh+DWM+OC/k\x0a\ zsiKWiCN5nnzwTfm\ O85DHW77HkJdE7zj\ qS8+w9lPPIKvPflg\ ytq7a1z9/mWqyZio\ 1UYD5eZAgoUO\x0aehy\ 38xkrY2XxZ6DaHh5\ qkXo/cVLQT3AsYds\ ZxfDBEHXuJ2Y3D50\ c70vp0AuG2qGKGj8\ psN02tpdR\x0arjVFLY\ 2xCxKPqrSeu74FL/\ nhzBzoDmjbVv0xpp\ uiXdxYv6aN5E81Zj\ L3polWHG7sMSsSKp\ bdoK9q\x0a3Li47S7Kl\ eWcG3DIFwNI+1jpe\ /SkvQ3sQkuKWe1IF\ s4Q987yeKfLB6MRn\ sDk3UvzguadI2Qtn\ lzs\x0a0mk8BT7/yU/w\ 2y+9wjtKsfGD7+DP\ np4Hv9heC13H+HFJ\ PZngyrJRYcgOX2sN\ KJE87vKSt+0MX5e4\ \x0a7Vx4DZF4z2Mlzvi\ XP/M8v/biy4yufog\ bTMGpubTTlw5f7ng\ PuCSWoJUli0kSaqZ\ UW0PRgScxzoiz\x0anr\ ZWnHEjyStXqcgXg/\ PY0Jqn4u122pN/Nz\ hV8LGfeJK4nXD5ux\ 8QpwmP//hFWr0WP/\ it13D5hMp5\x0aQj9gO\ gbtLfW0wsYJvi7xb\ tf7V6CtBhsI45qq8\ TTQh/3e3Acc77vQC\ f7DhYZ7Nuh+CFCRE\ NoOQwD6\x0aw4IdTbo4\ 2fm6RkeSDqejSDgD\ Ssnuywe5mSrJT7/V\ DNY0N9lqMCLqtlBR\ hIoikao1HuQPA6aT\ YrJY\x0aNPSTUrgEd1A\ o1MOp+N8f8us483a\ 3LQ1HINQdBbaTES2\ 2RZevugTgix+7yKU\ b13lmZZk0ivgOMHz\ j\x0aB8BOUXl7ewgMaR\ nDX37scR57930uXb\ 1GyGvSuAfdxsO2Gj\ Ptr6MSAyPHygufxN\ uIeu06NmsxvnqZ\x0aY\ jhg8YmnJCK03SbYi\ Pz6ZVxd0D5zgRCna\ F8zvPoOLq9ZjCMWO\ x1ClNE+/zT0Rgw/e\ A+XT/d5OPja\x0a4evp\ nOQWLy8Qr/bkOhtN\ 5wsVNynmRj7KzFz6\ ZN4emPkcpGLHu3sX\ HzxuEgghECURN354\ le/9i2/T\x0aXuzw/J/\ 6MS5+9iI/+M3v4uq\ S9vlzpOce33ltw03\ 6l97BVRWrLzyPjlK\ 82dm961Dh1c7fixs\ f3udP\x0a/9Y4KegnOJ\ bwXtyzjjNMFovns0\ YiOn8EoCNLtNTBLr\ QIPqBMRLLca7YfEg\ Ti8hKcn7PgdRwRqK\ kH\x0ak1uOHUw3lZSyv\ nAAol57D9v+oNn4k\ WAU0WKb2Y4/VG5fu\ zVa7EgEbO3FmGcyv\ eMIY9bZCMteAlOS\x0a\ ZvdXu4M5DkibvR5M\ Jeo0irC9NnV/fN/G\ RzoWDbmOI9wkR8ct\ vvixi3z13XcAuDKZ\ 0LWWX3r+x/h/\x0amoJ\ uoojNV74pbnXawGc\ /x5tvvsnv/vAd1l5\ 7lVOf+CR0urSsYTl\ L+HAIOmzilWPhhU/\ xuQtn+cH1\x0adfqnzv\ CFx87zs7jK3gAAIA\ BJREFUjXYH9/p30Y\ vLPNppMShK+lVNdv\ oc3lgeWWgxKWucs/\ hHnmb0\x0awTVGVc3q8\ gqn0oSNvOTMqVVod\ 5hceotyOMKk6b736\ quack3SGeOVReLVB\ QrnJNRnt27/Vi6Ts\ SWE\x0aFirouZHRbIde\ D8b4qSO4gNayEPDB\ 46pa0hWDJ+v1SM89\ ziMXU669n9NbttSL\ p6imY/rvfgBplwtP\ \x0atuhvFCgNjzy5QJk\ 73nptQLdnOPuxFm9\ +58J9+dwPg4fXCzj\ BCQ4JnecEfJN2dnx\ hsgSTRvjiaLGu\x0axx\ k6EeKaBINU+KJodr\ M55WaffG2L4toW0w\ /XmLx/g+nldYqNPt\ VgMjdQOQi2leInIj\ erNkfNzLqk\x0a6o9ue\ 9xhMHMPjHptbDfFL\ mSYtvirz/6IxW2KL\ 2uq7RFVf3QkPkI9z\ MV0pB3Ln26CaaeS7\ tXJ0NFN\x0a1ja1h0KU\ C8npRVRi91jY3gui\ pQ66lRCqmnJ7xLms\ xYcbYhn8N/7EL/KZ\ s2cZ1jVPXXxifoxJ\ W0Tt\x0aDkornn7maf7\ mL32Jf/T7L5J/8B4\ ojW52yJPa4Zznb//\ HXyY59ShWJ/zPv/I\ XePqpR+lXNS+cWeG\ /\x0a/Gt/laAU6alV/u\ s/9Qv8F3/5y5xfFB\ dBbyx/4tkn+clPPM\ NmXvJHnnqcv/Xnfm\ n+Os6dO0cnjvEE\x0af\ vmnPs8XHj9P5/GLc\ xOig+BrR7nWpx6OM\ GlCvNxFRYfbi/qyp\ rwxoFjbptzY+W+5M\ RDlSNMuX37i\x0aFE//\ 7Mf5+Jd+jNZyh/e+\ dYngPZ3zF/jSf/oc\ V37Y59qLX+fKdy/x\ hT/3DNnpc+hI7k9n\ n+jR33a8\x0a+9WXeP3\ lLc4/dwrlKy5/87u\ 8+Z0hP/VnHj3Cp3t\ vOCnoJzh2KMZ9aa3\ dZXDQw8Ise/peZWv\ HDaop\x0a5uX2kPzqJp\ N3rzF57wbFVXGVq8\ c7pi6iHfbif32HHe\ jspu0KCQjJr25SbY\ zumTjkJ+Jj76taZI\ Sz\x0aoJNee17co15bO\ gHb47syAaq2R9T9C\ fVoSj1qQlVijc4a9\ 8B2hu1kDdkuJVteR\ bcWwWVoGxGvLqCi\x0a\ ey/qtp2J/M95MY8Z\ 51ydTljIpCB/9ZVv\ 8sq1awD0B3vHH/V0\ QqfT4U//4p/k37z4\ MqrImaytobUm\x0aX78\ x/72rk5xxQ1BMest\ 88pMv8H9+5V+SX3+\ fb3//dUZN/oKyhiR\ N+PcvvsRrb7zJ+jd\ fBOAnPvMp\x0afvXF7w\ Dw299/m0++8DymsV\ y+dv0a716/wdpLX+\ d//61/xyeefAJvzB\ 17cb52TN67gS9KTD\ sT3fjN\x0ai6h7wNKZR\ R7/zMd4/DOP4wrH2\ 1/7ochHk4zOSocbr\ 7yC1prhB5cZrA/xW\ OLmnL/6e9dQ5YR6L\ AvL\x0aD753jdEH71GN\ xig86YkO/QT/wWLU\ x6SxMFqPdz2X+Wts\ UfGPVkHHN6E0lT9c\ KlcIKDSmnUm86EG/\ \x0aUntMmhAqaY/erWb\ 8wJdbO/z2CDcy6FY\ 8J7vNiXtNTrkb5fe\ kVZbwmxmmJKcXCbU\ nilP0mbN7fnf3\x0aVz\ eUhqjbJRTunnTe2h\ qJvzUSTFMPJnNmvw\ uB1SThtXUJJfnlT/\ 4Y/+j3fmfnNbga72\ q++FM/z9Li\x0aIm9v9\ tl8/buEEMiWlonPn\ uevf+mnUZWj0+2yu\ rICgE8SyqJk8NY7R\ IsdJvmYyUQ6Ksorq\ rzgt/7g\x0aLbYuvT3P\ G7/w6GP893/+l6jq\ CmU0L770IiaKsUox\ GI4Irp7rzq1uivIh\ F+/59U2yC6eJljri\ x1Dd\x0aw6hGKZRRKK3\ 44dff4Du/9k2e++n\ nOffsI/TOL7L29jV\ CEEJh3E5weY0yCt0\ s4L1vTJm82BH7Gdk\ O\x0acNWu78pD3JicFP\ QTHC90epgQKLcfnB\ nH/YIrSnQV33MW93\ GCL0qK/oD09CrxSl\ dmtOx1wprFpore\x0aW\ M2JRrdj+ldbY6KVN\ io3cHS5+KGgU0liq\ 0e5+NPPcrAjRbUxv\ K8SyKjdIk476DjFm\ 9t//gGNDppo\x0asS2a\ /JsIlPM8eSu2w6F2\ By48TCtFJRZXFFTb\ I1zjkz559xKvA7/w\ 9LN8/OlnGQ4H/OPf\ /7dMP3hv\x0afmw5GXH\ 23CP8xS//Of72P/j\ HMBzQPnOOejKi9cT\ T/PnPvMDXXvku3/7\ GN2g//Rz/3Z/9RQD\ UdIxS\x0aiuVnP8Hw/f\ dYOP04rSYx0JUl3n\ s8QYp5MyF77Xvf45\ /+2le4dPU9dGZRE0\ eZT6hD4NTKCnS6ZI\ s9\x0aAKqZ2cwhx2v1Y\ No48UWSR2/vTh2hr\ YEsI9QBZeS562nF5\ Vc/YOHUIs/+sefZ/\ HCNarTN5uVNLn7h\x0a\ Ka79wWXiXkJrIUOH\ Elcc8nkf4uTwR+dO\ dIIfGQSlyE6tMrkh\ bcDjqkWfF7aHKEt5\ 0PCVw/VzXGuC\x0a6bQ\ wixn1xljea5Obrho\ NuU4tupllhtrPQ3U\ OQj2ZEi23Gze5BxM\ rqawEvbi1Hf/0+51\ 2pa0h7nSI\x0azpyT5z\ j8q9vnNT8r5DqNxV\ kulejPajxBjSrwQf\ LTm3MVLbYlitU5ic\ 5t4IqS4Rs/4J+/8Q\ P++QHP\x0aLLG+gb/wF\ /8seVWynMRsskDSX\ SBpfmc0nvL5jz/Hm\ 5t9vvTck6ysLAOQb\ 27w8jdf4Vf+2M/wT\ 158\x0ahWfPrLC8ujJ/\ 7HJmtarE7U07x6tv\ /JAv/9kv87tf/V2K\ tmPV9/jKV75C6T2n\ T5+mbQ08/XH+5p/6\ \x0aY3zju99Dl+WR+DJ\ Vf0R6dgXbSYW7crv\ Y5Ztlg40jo2mlaO1\ wa1Py7SnlpEAZzdb\ VTa5+/wOe+pnn\x0aWH\ 3iLBtvv8u3/z/FT/\ 71n2b6Cy/QWe7yG/\ /wdaaXL6ObiXVVhe\ YzkedavzILTFKo4J\ jexvDnfkPd\x0aKeHpV\ rjwM1865g3RE/xhh\ h9tEjQUG/17coJ6k\ DBZjO22QEFxffvOB\ /whgklj2k+eJ4RAc\ W0LNOhW\x0ahDGW4IPM\ qxsy4O18t3fDLmaY\ LBGv8XvUnd8MbaXd\ bnst6u3JfZfBaWvQ\ NiJqt7Crp490bCgH\ FNsD\x0a/LRsss8FppM\ 1ZjuZOI/WVdMGtuA\ 8blJQbg5wubQ0Os8\ 8KosC78mvb+9x47s\ dXD6lKnL+wpf/PI8\ 8\x0afgG7i1D2L1/8Nl\ vTnKA1v/T8s5xaWe\ Yf/d7XAVDBc+2lr7\ Fw7gI/9ws/w48//T\ R/71/9Nn/nv/0b\x0a/\ K2/+/cYvPYqCy98C\ oDNV15Ga4NzFSvPP\ Q/tDv/VL/4cgcAr3\ 3yFf/Ub/5rTn/mjA\ CzHMV/+6c/z\x0aq7/3\ dYajEeuvvUqUZih7\ +Pjb7nOPyXV3Y/tA\ BYFuFkrxanfPqmvG\ dFdGU09zJh9eEYtl\ 70lWFzFx\x0azPTamnw\ eIRD8TGOuyE61yTc\ meOcx1qBTPWeh+TK\ IS6DVmESL02LWphx\ sE4Clj/+RQ783gA9\ /77fu\x0aal9/UtBPcO\ zg1m/grIfCozJL1R\ 8fSxZ5tNzBZDF1f3\ rvsqtjBm0NdqlNdv\ Y0vpICXPUnuEmxpy\ jB\x0a4Tso8akFiZ2dV\ mLmch/n6GIYIwz04\ Px9X2DZdkZ24fE7/\ +JNUCrHVUWjjTZNY\ A6N1amVwuEcviyp\x0a\ GyOSeGUBZcz8PO+O\ oVXa4suc6dWN21q9\ 3oxy1J8Xp5uxY4yi\ bvpZwHuH1halFEop\ Vp55jv/lb/8P\x0a/I/\ /6z9g7aWvyzEKjI2\ xWYtQV9T5FO89yih\ MR96jDx43FC7D7ud\ RWhGlrbm5zGGRPXY\ K22mJkdH6\x0aYN/9wb\ QS0elrTd1YAksSnv\ Aq6r7Yzbq8wFU5Co\ XptomXFvB1xfTD64\ 39axuYdTlqQghoE2\ HSDNvL\x0aUFqJu13jN\ +CrSlwZJyXKWFw+I\ QTP0qcfTkE/abmf4\ NihcgUmTXBlDdMSZ\ SXF6yjWng8DSumd4\ JQf\x0aQdRbY+qFMcpq\ 6klBPZ5KhOxd7qy1\ tdSDKSZL0Gl8Xwv6\ HPdxm6GtIep0iJv2\ +lFRbl2T5Lo4kiLu\ \x0a/E4sb+VwwzH1cEo\ oG6vSprD6spbFj9a\ gpTMQgscVJW46oNo\ aH5i2dzvEnd6RX3+\ oK5LFRf7GX/0V\x0aVl\ dXGAyHPP3UU3zjJW\ HImyjCJmLlO4OyEV\ FHirNpxaQXVlFKUa\ z3qdS9ecTvRrUxEq\ Jdp4W2hmK9\x0av2eBo\ 7RGKU21Nb5l7LKvn\ QTFWIlIxcnoyLZat\ C6co9qVq36z8Q1Aq\ AO6FTVdEyV5BIMpk\ nFvm+Na\x0a+457kDgp\ 6Cc4doi6bYq1baLV\ LtXmiGihTe2P5tX9\ oBEtdtCJpR7nx3Ic\ cK/wtZMZZAg7N+wD\ MtCP\x0aguA9qpEa3U5\ 3fFeP7Ry+KEVKdp9\ seHfPyu/qNU0r8sF\ kZ467h/ouc1fCAR2\ O0ZQ8b+bKDUdDisZ\ t\x0ajnkQUIrhlcv8H/\ /s19CLMlPnN34Xt7\ HG8IP3sHGyp5jvO1\ wbtNYoGxEvtHH96X\ 173b4oKTb6xKsL\x0am\ FZGdiGh7o8pNwYiS\ 9RI0FFxhNFOQAh3s\ ZUEv1vAtFJsLyPUT\ qxtI0sgECqHMubBL\ FQPiZOCfoJj\x0ah5nn\ spsUmFZ8pDzqhwGT\ xmIf6j3+GI4C7ge0\ NehO0liLqrn0625g\ exkmTdCJ2HPWwyl+\ en9vevMs\x0a+HGBspr\ k3CLF1Xtru9tkv3P\ ZUZCcf3RuvXoQus8\ +t+fv0/feoc6LQ/v\ uP2goY4lbHQbvvkv\ Uvo6O\x0aE6rhsLECTl\ F3UHf4vCS/vk16dh\ nTadN6wgovYH1wV1\ 4Aex67djCaUtSOaL\ HTWOF2sZ0W1WDUJB\ ge\x0afeGjE7E2nkkUd\ WTQrWRe5LU1BNWMK\ LQW98NpLl0Yoz5yM\ 6yTgn6CY4d6IjMvN\ 5wSr/ZEEmUtJo5x\x0a\ 5Uff3tatmECT0HVP\ GczHEzq2xKclq1rH\ 0TzB6q53V0EsZf20\ xk3vPyFuhnlRHxVE\ i23SR5bJLx8+\x0aw/q\ jRvb4Reob15lubR3\ 5WJPGc9mbu2mxpK0\ hOt2V9vgsDW2GEPD\ O4YtKuk2Tcs8OU1m\ LsVbsUKsJ\x0aaIPJEg\ 4DXzsYTsnZFPJfmk\ ALskdPUW4OxXr1Hq\ 4fXzv8aCqRv8MpUa\ +FaadEix3cNKce34\ U+UjXf\x0a/5Uu0VIHE\ L93SfOrqEa58B5mi\ oUQCM4TLXekg1J/t\ F3Ek4J+gmOHWa61r\ +RCtd0MnUWi3/2I6\ 7lJ\x0aY0zS7M7v8y7z\ o4bJYuxSGxNHkuds\ LaEsKTYHt5xDHgY+\ r1BL+oEW8/lz1eLz\ XSnxj08fWaa83v9D\ \x0aMxaxp8/QiWNG168\ f6TjTTYkb+9V6PKX\ aGuOmElwSLXdJlhc\ bJz8FTUJaIKC1Rts\ YkyZEC52GoFfh\x0aq1\ oK/FTCa+Yz4VbSxK\ MC7nAt7VA6dBSB0o\ TgMUmGTvL7tpt1Tc\ COL0vstIXtZphWuk\ 8meCgECF7a\x0a524q1\ rDB+zl5MVS3X9h+1\ N+zk4J+gmOH3bPye\ jRFZ5FEbR6Dzvt8d\ z4tPvKL925hkhidx\ U18qew2\x0aTBJLtnQU\ EQjgAm4woRpN7jlY\ xJc1riglM94aGN86\ FGUmN9JptGcnObs5\ u1F+x3atrx1MSol1\ XWgR\x0an+o1hiRHW0y\ EEO7ZE6S1vEw+2L+\ guLndvhtqcYmF3iK\ DN9841HOYLCbqttB\ pAt4TWYOOI7HoLSr\ i\x0alQUIkkkfmlCd+f\ hECVlRWYNJ5DrTSS\ QmPZ0MgsLXNaGu8W\ WNSWK8c2K7qrQ8jp\ cFgitK6uH+gB6V\x0aN\ Hpw79FRhMtzYaXfg\ nW/G7MktcOoXNy0b\ ObYWr5D0eFlcHM0u\ 29f1bhJfqx4O4fBS\ UE/wbGHGxf4\x0aohLb\ 0I8IJo3FjCKz+Lz+\ w707V02LNhIJj1Ki\ ItBxLHGmwykuL6n7\ kz3GJveCejCVUJHE\ omxb9OsH\x0a3KRVZDD\ dRArF7vu9ahYikcW\ 4Gj+t8NNbF2hfO3Q\ OtZ9gOxl2IcNNb7+\ Y2Pea85y7KAl7YE6\ dhkH/\x0aUL/r1m9gGo\ 17UIpsaemO7Xdtje\ Six5EU3aIEq7HtDJ\ PFosFWimo4ptoc3v\ a9mzSeW+cqazBxIw\ VM\x0aY4KPMImQwHQII\ j3TGoWSBWAIkj6YR\ FTxhGprh9GutEj2g\ nP4aUmx2cdPDre4U\ tYQry7gpgX11p0X\x0a\ lr520slrkgDvBqGW\ +GDTSfGb94+Z/zBw\ UtBPcOzxMDToM5tQ\ 001EQuR3TCjQQJCC\ Iiv3P9yz81A7\x0a6bw\ 6Pw9G8WWNiozs0Bu\ d7v1k67pJgY4jTNa\ QHBXir77LlEY3O0s\ dR5Trg307uFD5uZb\ YtBJMljS7\x0ax0avXX\ vpLDSvezZTr/sTbK\ +FaceiTBhM9s2ZZ8\ 8/Yze7vKTOc5LJiN\ Dq3NN7bz/5NJN3Lu\ HKEpsm\x0a2ANiQoF5M\ Z/Bnj4Ddyjopp0RL\ UhsbLUtwTnKGuLlh\ YbIpXFlSbk5uCOp0\ e3KhpfPIpbwmbT5z\ Dyw\x0ae75uLNpqmHdS\ lASnNAuv4oaQEn1R\ oZQSk6L1/qHHLjoy\ ElkbWbTW+KKCQywE\ ZhJAZQ0mjQ9NwJuN\ \x0a9oDmWrCEBXcovX8\ I4VhkT5wU9BMcK6j\ wERVKBTqNGi/wKSq\ SoqOQuZ9S8ndfVAc\ 6o2lrUJFBGbPP\x0aZM\ a0EmHPNjc+X1QPfJ\ Z8O/gmHEXHVghFoy\ k6kjzoZHVJ3O+A6e\ X1+/u80xKlJVddxx\ bVlfMxO5+q\x0aKeihd\ gfmqs+K8O6dpI4sK\ o1lgVJLO9l4KZghS\ Jt+ZpMqu065YevZ7\ hXmZi8KNTdZ0UlM1\ R8xunqV\x0auNclWt0b\ vnJURK0MV5ZkK6vQ\ 6d7TY+2GijVKK3xR\ Um2NpHgpCJWTjkhk\ JR0uP5rb4tw2dzKd\ t72F\x0a9LXTsREzn0h\ a880CzbQSVGSJFto\ E73F5iV3Y0WLrRD5\ fm8WSBdCQykLt9hV\ escW1DeM8EC20KUu\ /\x0aL1vglucGhWmnhy\ roOrZynRojpFylCM\ oRdduHNPA5BtWck4\ J+gmOGUH40jmvKGF\ SscZOCamOISiPx\x0aK\ Q9yczRtka6g1IFe5\ Kppfc5sJd04R6fSs\ DXtRHY4AbQx+Mjir\ EEV5YE7xQcJk0obV\ Vl5nTqJYCRt\x0aaDcq\ cNkUk6XYXpu4KHGj\ /N4Y7rvgCmFQmzSG\ dopJY+yCFAM3KYSB\ Hek72rbu3kmalrwf\ bW0TGKN3\x0aXLt8jVJ\ iMBKCx+UFPjQ7/GY\ RsHuWrNCSoBWYP56\ fltRFwdF8zPYjWV6\ lmkzvazGHRjo1c/t\ UEpEa\x0avKfOJwTlSB\ YX79k171YyuuC9FD\ 58Q5CT+Fppvcckpx\ fxeYnJ0vlnM1tkBO\ V3OBK+mX/v+p7p2A\ pf\x0aJUi3KNSO5Pwyt\ ptRHSK4aeZ0p6LDt\ d1NO0VpjRsX83GB7\ WaYpfhQ2QNKaYI6m\ IR3r5G5R8FJQT/B\x0a\ sUJZPPyZlexADNpa\ yq1Ro3F17L6EhWCV\ iWOdNXtucDqymHaK\ TRN87Yh6bQmAyGLx\ QMdQjae48RTT\x0aldm\ macsMW2lzZLLWXb3\ HyDaBKs1CRSFjBbd\ zE/J5Sbk5IlmVHVl\ yeolS9am27m/y3aw\ gR0sdbCcl\x0aWhCLTh\ VLl+AolqZuUt5Vnv\ psdznb2aNoOixSAA\ KebGWZkFdwFy5rN8\ NHEZ0Ljx4hzGUHwd\ W4opB8\x0a7gMcy5Q2q\ NRiugm2TGifO8/0x\ g3K9S3ihQWixb0jg\ 1CLCc+9jI10ZDCdF\ NOKJYMejWmJ+sMVJ\ dpG\x0aaKvRWSK+EpUH\ rTBJjNKKsj8Un4kk\ afgblhDHoCvppGQJ\ ph1TNfn12hqq7RHx\ Uhc3jSHsvWakQyYj\ \x0aBp013bAQbjuumzP\ 2kYVuaPzzd867x/s\ au9CWkcXdnKdZ4t9\ DwklBP8GxQmwyVC9\ QjkcPrSWtYotp\x0aJ7\ iynEvmboabFthuho\ q0tGsb9y+lZZdr2y\ m+clTDsZCwOqlkcq\ OpRhPcVBzlVFHNd3\ /aWkwvph5r\x0aeECOc\ 7Mbnc5kfh2cpx4c7\ D3vawfjKUUIxKtdb\ Ee86qv+gzHL8JMSb\ y0mjbDdDO9lh/cwM\ OsW3ArZ\x0a8hKh14J7\ G5/vgY/ubp9fTye0\ L5xnfP0aYTrGRLFI\ vgLU4wk6sZgsQcWG\ 3hNPs3imxXbWZu07\ 36HY\x0a2CJakq6AFDn\ wdY0vS8klv0P0661\ g2pkU86KmHkwwrVT\ GGVajvMaXFfV0ilI\ aX9Wi1e61pTuEwk8\ q\x0asb1NHHaxJYU4jV\ DeoBM79y2YLe587f\ CDKdFCG9NOhDdRC9\ teRVb4GYkskqUD1a\ TSaYPtZHN75nkH\x0aw\ BqZmTeLW5Gh1ntyC\ mThU2M6MbbM8GV1V\ 9bHM3fEh4GTgn6C4\ 4V2j6jdw1/+gDp/8\ LaqOjJzidSd\x0anMXq\ yVSKdTsltOKdCEsl\ 2dD19kTIVLdpGbtx\ gRsXwppvp9h2iu1m\ sht4AAEvsxsvBqrN\ O4fc+NpB\x0aXuCqFBu\ gnuaHkhfdDVxRoqZ\ GZt0KserMj4dMyGa\ 39+D+uT9+mn/7mzf\ 2/fxzP7XMy1/bRM3\ a0feo\x0ata6nY3SkSc\ 9eID11ism1K+Q31g\ k+YFsJKijqwYR6PK\ GajkkfXWXpbMr2Db\ FZzTe3m4z7IcZEmM\ yS\x0anj5F3OuS1yX1e\ IyJkju6vkGzi20sa\ GcMejcphFCpSmqjJ\ f9c6zkvYfqh8DC0N\ cTLXbSxFNsjIbgh\x0a\ 3wEGYBeEtDjjQdSj\ /MA0uWpzTLzaxWe1\ cDFSWahqa3F5SbUx\ QicxyekeOo5Jz6/I\ 4mJ7Qj2Zyjo8\x0a7LT\ YgXmnSkUa3UpgKqR\ XX9bU/TEBT7TSEWX\ GKEdrtaewa2vmY51\ 90OrQbf/7gZOCfoJ\ jiXRxifGN\x0aG8CDK+\ gi+WnPW3t3ghsV2C\ wDg9zMXIkvhWU9s4\ o8LOZmGEWF7WbYbn\ ZfE9tmjO1osUU9ya\ k3JofW\x0a1CpriNotS\ ZfKH8z5n2VVh9oRg\ sG2M3xeUW7dXWvzv\ uMevOaVdyjv8U2CW\ BIpiuoOi6L+NvQWA\ Th3\x0aynJ1TT6rusy5\ 8PHH+NN/6yd46Z9/\ jw91gi8LlDK0Hn96\ frjG0X9XbGajVHaE\ UStm+flP4lXM9KWv\ \x0a4uqKc5/+Al5FJIk\ iWj7L5P23KDb62EM\ U9GilIyqPUdHM7nf\ m4Ls7HrabES91wcm\ CecZTUEoRvKMe\x0a7P\ 0uumkJHmy3hUkj6r\ K+ZTRsPZmiJxHxUk\ da6mW1L+3QTUvcOM\ f2WsRLXRmvnI6Iqj\ ZVf0w9mhIt\x0atnFTu\ X5tJyXudMFoQl1Tb\ Y+pBzK396WDrSmh8\ thOhk4ifF7hxjmmm\ Y2r2IJRKK933q9C+\ DaJqDYe\x0aFk4K+gmO\ H/rbjNbXHujuXFuD\ 7Un7rtoeHXpuWw8n\ Ire6T5KueiQyI9tJ\ D0W+OQxmxTw9t0y5\ NcKN\x0aDh+KoRtrUBV\ FMrvNj26gc1sSULN\ h1Vksu7Iowrsan1f\ 4sr5v5+BeUeU50cJ\ tfiHaf+t85JyRe3l\ R\x0a4LMWv/hXnyFqxX\ z1n32fYk3e0x//jy\ 7ym7/6zvyYJy7GXH\ qnnBdzgKtrNb/wy4\ +wfmXI77wMvpFh\x0af\ fi2fEer0ZDFFz7HY\ 89kvP/mzve2GI4ge\ LRWBGVYfuHT/Px/9\ nF+83/7RhNbavBKi\ ktRBH7uP3mK\x0af/t/\ Qb7+8qHa7yaO0NYS\ tTNAiazzIK13Y86i\ E0u03MVPKtw0RzWm\ MqHev5O90whkN8r1\ gcgabwNf\x0a1ZTrA+r\ tMaaTES21iDpddBw\ T9dp4V6FTi2215qY\ 3Sil0kqJPRZhWTLk\ 2xNfNtTMqqGpPtNg\ mODEs\x0a0olFGynmoX\ J4wPbEY0HGc7Mgoo\ fHgD8p6Cc4VqhGN8\ ivPXj/bdPJULGmGh\ y+mAP3HCpxIGZSqU\ 6M\x0a3763Xfq8mJ9fp\ tw8WjGXBwDdjghlK\ U5gdwmTifWmL0p0K\ xaSUyIkwaACOmjcp\ CJf30RFRgJc4oQQ\x0a\ HIz2kwRni4SHVexd\ Wd6W2d5ayPgr/9MX\ KGecC2vAGj548a35\ 7/iq5ltfucTmmkNX\ OaEoUbu851qJ\x0aor8\ lrWflPWGXM97v/Pp\ lfu4vXmT1mU9w9c0\ fkE8KtK9Yf/XbVIV\ 0g5JWhA5D1l75lhR\ 9BaDJFmKi\x0axPDFv/\ QUv/MPv8vGaz8gTt\ tUZcHGt76B1pr4dI\ 9ifEGeW2t8VWHuUN\ BDHXClyON8WWNb2Z\ 6Z8wz1\x0aaEpwDttt4\ YuaaKmNbkVicLM9J\ lQPb6zia4ffluugT\ IZkj54SYmEBWGHeS\ yxtLvP2doqOE2y7h\ ZuW\x0aEhnMLqOirQnJ\ mZ5Y4w5z3CgXIxsg\ Wu6IGiaLZJfuggS2\ PEScFPQTHCvcSbJ0\ vzCTkfnRR+/45vMK\ \x0aH0Wieb3Hgq6sIVr\ pUE9y3F218BXaRrK\ bmubcjb5WWYNd2Tu\ DDqWjGk3wk3JuBDP\ /t9pRVVIA4sUu\x0adZ\ RTru3dgek4xj/EYJ\ 7d7P+DMN0a8y//yd\ v7fv5Hfmp5/v++cl\ y+Ljd7H6Uom/Bvfv\ USj5yxXL5e\x0a88JPL\ PPS72+gJmNCq41S8\ KW/8hT1YIJNI5EW2\ ojVz/3kPIHVJgnBB\ wY/fJUf8il+7leeo\ /gzF3nx\x0a19/j+je+\ DsHRO7vIL/83Fxmu\ DRi99wHKKELiWH7q\ /2fvTYMsS9O7vt+7\ nO1uuVfW3tXbdE/P\ dM+m\x0akaZHMAgsIVZ\ ZhGSDZbEZgwyGwEH\ gIGw++IO/4MA2EMZ\ gERBgbGSziMBIaJs\ BzWg0i6YlzbRmpqf\ 3\x0arq6uLSvXu557zn\ kXf3jvvZlZlWtVVl\ VWK/8R1UvWXU7ee8\ 553ud5/8vTfOpHPk\ xWT+l3+px6fBG4\x0aC\ sqB23/x5qXfJs3a6\ /sQSqGzBJKE4a11s\ osLIThmC4fDDgd4Z\ ze1/1Ih94lknTw37\ 2OtDcFBo+cr\x0ardFp\ tuvzXVGy8fJ3IIPW\ 40+ganV8UVKudJCR\ JpqpIZTCVWVw1lu9\ U92hZ2o4YylXu3dk\ 0ru8CjJQ\x0aPNXy9uf\ Gze2mQfcLJwX9BMc\ KkvvPCNXNbOJ8JW6\ ToD0MeGuxwxAVG8+\ 39h0n7oZA8AvEIhX\ HVNxN\x0aR+snDnmuqA\ 5dz2WskI0Y4cT2Sc\ vISav52OM4raHfJt\ /YmOx9SqBa72KHYS\ Rae+wUpj8MRjGNBF\ 9a\x0aIhXGmaY7uO+du\ jMVYjjApzuT4+4m+\ GNMkHv2e8/SemWZ6\ 2+OvudRQfpdP3iWz\ /6/mx3+7/tjT0Kt\x0a\ jswHk6/BFAXGVNh1\ i/utX+cXb75HcvoC\ c4sJ/qMv4L1n/doG\ /+H/ep3F8zEf+oMf\ 5aV/+jmqvODS\x0ax87\ z0i/cwPXXKdY3+IE\ /H1LTPKDThHi2iYg\ VrjATLbaMQriLyuL\ gyd/eJEnu9h0Elzm\ N83ayQJVR\x0aFEbqzm\ PHV/pkAAAgAElEQV\ SHBVU+QAiYfupJVL\ 1O0Vmj+95VbJ4TZb\ sXZYCy28E5y+zFWe\ aeWWT+\x0asUVufWeJq\ 1+/vOukwRmLGfQAz\ 9xTH6V//SokbSgFL\ i9Rp6bCHnplKNY7m\ I3BHbI4mYyskYtiR\ 28G\x0aXxlcUaFqCXqq\ Trn64PkgJwX9BMcK\ ZnD/O3QZB1a7LcuJ\ /OxhYmxROg7NyM7N\ 46zZdEtzB0u1Cv7n\ \x0aPoy1vRvpX+9G4x5\ YPSpL4JAfj4xi4lo\ d7/024lN98RRyenZ\ Th12fIqtv6rvzG++\ GrY+8pDQujOib\x0aoe\ CMdchCSXQrC7yHdv\ ++T3N8WcIuBf1e0F\ /u8YHf/QH+v7//cn\ ifetDGqcamXvn7/+\ OLwblOCHxW\x0ao7vc4\ YmPzODkd7PxzV9j9\ sOfwAmN9BWtWYWSo\ WNWOqIcKQVuvdvmx\ R95hoXvfpFbL32JY\ dfwiR9Y\x0a5Dc+C1l9\ htbZGeA9gBCAVIuR\ Kni4R1vc3ZwxmHaO\ zXcuZLdDZjGqloye\ M0TVM4TUYIbBhjYf\ cOoT\x0aH+ej33eGWiu\ ju9GnNv0UX/mZs6z\ 95teohoGn4n1IgxN\ SoqIYoSOqQZe4lvI\ 9f/x7SZoJ3aUunet\ t\x0a2jfWMFUVnOdyix\ ASldbwpsJWRZjGOU\ t2ao6FC3WK9Yz+1e\ tIHeGqisp0yfwieq\ TzdztsC+hW2Be3\x0a6\ /0dlR/juNgQDqMPZ\ Tt7VBATl6FD4vxnv\ v94eN2d4H2F7muv3\ tfXHyeKyVgHeczGv\ SWJHdlxjcJf\x0a0OMw\ CxmYsz6EX9heEexS\ xyQkD7Yq8aXFlyMr\ 15HmPJqph/FfGlEu\ Hy46VGqFrMVk50+N\ JEYblEsb\x0age2733N\ jHcxGknjEWA9jx6k\ nn8Dpg5lryHJI973\ 3Rla8McnCVEjxauc\ T9rCqBTMSZwymm+9\ oE3sU\x0aqM3NoeYXDv\ 084WyICt1DsjZVF7\ T7d95C56clKxs7d/\ +PX4x550oJ/Q4yq+\ HkZj8mXcnKy1+ncf\ EC\x0a8dxZqLp0b7zH1\ GPP4Lxi5de/wuwHP\ oBszREngrII7y1Mz\ uq3vkXUapLMzyAQd\ yyUvHWTfe+DnEu6\x0a\ FVQb5VIIpRGRpv7E\ GQDar79BY/Ecv/OP\ vsCXfvYq0pXYYSiC\ RXuD9uUrxGlCUkuo\ iormYotBryBf\x0a7iG\ VxFrDJ/6TT5O0Eq7\ 8xjt0rq9TDSuqYYW\ tDCqJUInG9Eo8IUS\ mMVunGFjyTps4S5l\ 9/mNsvPot\x0aqsEQ76\ F+eoFsYQEElIM+rg\ zqEzuoNj/fSJGcnc\ X0cmx7b16KqiWoZo\ oQguJmkMLula63E6\ 7+yufu\x0aqtM46dBP8\ NsKKg02rN64kPt8D\ Io5hH1k0x0EzaoXE\ 6tMPMhaYN2Ofci9C\ 2NxrVNIRy52uIk3u\ ZAy\x0aGOVUh+8OxtGj\ xa110tNzxFMtVBSN\ pEBFiJTc5TMLDl8x\ AonpDpBakSzMHLiY\ A7g4DWEm770TkrlW\ \x0a2kQz9WD5OfIq98a\ GFLAsDs5htQTb3T9\ WFSCaaYTAkv7OaW9\ bUeX5XW0Aebn/s3Y\ q5sCkmN9OkgO4\x0a/G\ YbrEWkm8VcVkOGG2\ sMV1bAS/rXrmEGAx\ AQT0/RX36POGoAgv\ U33qT1eIVPM6q8jy\ 0LitU1BBIp\x0aVPBqx\ 9+zfDLo0MWmThsY3\ lwjnmuim3VkfZbuW\ o60Javf/OZkW8d7h\ 1YRZz94gY/80MdYu\ 7aO957G\x0aQpM3vvoq\ b3/hNbyDJz/1FG+9\ 9AZnnzvHxY9f4ua3\ r3Hj21cxRcXiU6dZ\ eHKRt7/0Gv2NPotP\ L/Li\x0aH/8M3/78K7z\ y879B/ew5Lj7ToNw\ 4w/obb7Hw/IcgayE\ EXHg649pbOTbvka+\ soFIRpkNRUMQA2O7\ O\x0axlNb4cuQxqibGd\ Fsk2rtaJ0W98JJQT\ /BsYEoB/f19VUaWN\ ZCBfcq94DHYXthUi\ SrO/9OVhXJ/DS2\x0aM\ hP3qjG7WEYaodSmN\ 7YY3VAV+O7dGI2O9\ hs3+lRpjG7UkHEcW\ OvTHj86Bo8PJjqdw\ aQwCimRWodw\x0aC4KS\ QLfm7+oYahcex6zd\ olhvUwFRqz4J+RgX\ dV/ZYGWbaMRUkB/d\ XqTHEwcZb1reej9y\ LatFgaW8\x0ai5mNLQv\ 8xjpieuaufod7we3\ FHGB4a5l8dZXWufP\ I0eTAy4jB9SXkiBC\ G95RrXaKpBlGtjpz\ WVN0B\x0aca2OM5b+ez\ cAkIlGT9eJ52fwud\ 1mrnLPx+5cCEbJEm\ weZI+m3cdVFabo8d\ Efnef1X1+j6rURQq\ Cy\x0a8fea472lsdBi9\ rEFvv3vv8mwM2T+q\ VN88kdf5N0vvYkzn\ tapFrPn5rj+yntIr\ Xjie54iiiNe/9Xv\x0a\ kLZSZs7MECURjfkm\ z/3gR/BS0DwdNIgq\ SXj6U4/xzjdu4r1j\ sHKL+mkNQnLldTj3\ eMq1d0DEayTz\x0a05T\ tPr406HoaJk4HcIp\ zxkJeYrVC1RKq+y/\ ameCkoJ/g2KDo3z8\ SiW6GvVchZAiRyO/\ Ny/pBwhUG\x0amxfBa1\ zKSUIabIn8HBlZCC\ VxyoRgkXtcsJQrHW\ xeIrREN2ubiXKj41\ BJhFAieGIrOZI/Gd\ ygpL54\x0a+p6DSPTsK\ fTsKYY3wz4vAkSqk\ c7hSoMzObIsR916Q\ jQVOvnbIbREKo3Jh\ 4HoNyJDykSjZlrYv\ NzR\x0ayMQZS76+Tu0h\ FPSdkJy/iPfQX12l\ NTcf9tfzwR3+7kpH\ 4AWmPyRJp4mnWvgz\ LuShbylGwitUPYFa\ \x0a8LOXO2jr7wYTB8U\ t27nOWOxah6rKcc4\ jVFAuqFptMlmSWmE\ riwCG7QGXX3obV1m\ 6yx0+/Z9/hqSV\x0aUX\ SGeOe59fpNLn/tLZ\ zznHp8kdnH50leTh\ i3+1mrRuP0NCqJWH\ r15o7H6b0PccFRWF\ Asno85/+ws\x0a1965j\ koTVD0j0SqkI1bmU\ PJWV1mksZtudA8IJ\ wX9BMcGpnvvHfqkw\ CkRxutqHJ05jj812\ P7BxrPH\x0aCbZfoKdq\ oXBuMfPYLQnrXjF+\ 3fHnZPtFCLCJNLqW\ hiQ5pUKSFkN8NSqy\ RYWU+khTxdLTF4Aw\ hq66\x0aK5SlhRHhzlU\ WV+V4YwMHYSefk6H\ DYTCd/rZFXLIwjUz\ 0ng563lkGl9+mdum\ JI/t97gXZ+Qv4K+/\ S\x0aef21PR/nSkO11k\ MoRTzdJJ5thZjafJ\ MkaTqBlzC2Pg6xq3\ c31RlD1RJkGhjtd8\ ahRriB59WvrXHp\x0ah\ QZvdoKyw/YLbJ7jR\ lMnTzDTcWWYBJk85\ KmjBc5ZbFFx650b9\ Nd6eOsZ9nKElqgkb\ HXISDFzaZ75\x0aJxZ5\ 84uvMnt2HmrbTwzv\ HVEWk55+bPKz4cDi\ RouQqttH12pBghlH\ lBvHxMFwHzzY5cMJ\ TrAH7jZK\x0aVI5GW/F\ sc2TlmoZktERPPKV\ 95TDdPIyIH7FiDiM\ nrWER7DaVeqCRjBD\ MQqq1HsXSBqY/HDV\ CYQRv\x0aeyWmPaBc7e\ CKknT2/nS0Xkr01C\ lqFx4natS3/Z3NS8\ rVDuXyDn9Ww5/bJz\ LeuUD42sEcZYxxdv\ z9\x0aJmseFF4I6mfPo\ dN038e60lDeamP7Q\ 4RWJPNTYbG7BaabY\ 9b72F4RCIb78Ar2g\ sriIAlVcte9Zl2P\x0a\ MaXl1MU5HBG1U6fQ\ 9YxkboaokeFc6NDT\ qRozT8wTxRELTyxS\ lRXVoMRWhtX3Vph/\ YpHadJ36bIO0\x0akVH\ lJUU/XNeNhSYLT5+\ ms9zmxrev7nK0nmx\ +nt/xQ2GxOLx1hfa\ apczDnld+czWM2IU\ If+5tnfPA\x0acNKhn+\ CRhoxDLKjQKkhvlA\ 56VwtmmIdEr2NCfL\ tXuKKCZnZoKdlRQ0\ YhgMOZiqozoGr3gp\ VuPSNp\x0atfBpff8Xu\ UdkZ89j337znr5bV\ 1YhkCMOAR97LSh1I\ 2O4dJV08fxdv99Rw\ UWhEPauXzuAlNFT3\ GqT\x0aKImqZcRzLcrV\ zrZFrTMWZ+7RoTBW\ IfBEhzz72xfNIaJY\ k8xM01u6zK//nOID\ H2/x1suQnRtF2pU9\ \x0aht/4LZy1RFnE+Y8\ +hnniDPOPL/LK576\ JGYR8+2999rc49/x\ jPPXpZ0FCkZfcemM\ J0y8xRZi2eGt5\x0a/Q\ uvYI2lyIdIf+cC2A\ wGvPZrN0kTAacuUq\ tL1m6ETAcx2r4SQu\ DLaqLLPxT85B8PDC\ cF/QSPNGQc\x0aHNZcZ\ bB5idcuWE+W5n1Ty\ GEcJFMLqWzFw2Pnq\ 5HG2OMnxjOqlqDim\ Gzu1CSQ5H7DC0Ftb\ p7e0tJd\x0av4bp5ohI\ jfLp0+AStiUnXOpg\ 1DORykUaM1jBlYa0\ Nb9NNvag4bMajcef\ ZHjjGmVv92ChcJ6U\ DG+s\x0aUruwEM4h52G\ 9e2STqjAhyybbF7v\ tNQst0bUa3lnWr1x\ mmIdx98ysZn3NAAI\ hBM55But9BqvBza6\ 9\x0atMarv/xtBAIdJ7\ z7tbfxXrD49Gm887\ z1lTdYfmsJISSdpQ\ 6vff4VeqtdeksddK\ JZeusG8o69bEG+\x0at\ sHK9R5eJUzNKtprl\ uGrbSiHyFiGRDnC+\ F/VU1Q9nTgIemdHc\ j67N1HuAYu7Twr6C\ Y4F3PrhqaBy\x0aRNBC\ BCKOG1ZUg7tYST8C\ UI0suL91+keaynb4\ 40iRcRQY0U5Qm13A\ RcEA5kFPJcX0DNxD\ QYdAHPTe\x0aodKYKKl\ j+gpRhoVKIANmCOQ\ oQ3wUVpMHdn86M41\ szu7/JkeAF5XjK/a\ 2fWApSc5dwL93hWq\ wO/9k\x0azIcYLm8Qz7\ SIphthyrN2NEVdJv\ FmnOouo/Zxnnk82y\ SdnWNw4yZr33gJZx\ whYDXkmkoVpj9Fb8\ ib\x0an/8Ob33h1UD2F\ IIozRA6wuR9rrz0N\ u9+bWy9K4LtaxzTu\ dGmfX0DIQQ6ivDWc\ +vVGzhnaJ47jWzO\x0a\ UpUmLER1zOpv/RbJ\ /BT9a1Cud3GFDe81\ 1Qi++1IiI02yMEUI\ pBnv83t8afDWB/lr\ aUJAS7kZMiS0\x0aCsS\ 7B7g9dlLQT3AsEKJ\ SD4fgSBVjBkOqtfd\ nIYcgt9PNFNsvcXf\ JMziq40hqDbwJ+7e\ yVntUthZ3\x0ahR2UKM\ BrjY8cqh6jG6ETk5\ HGWxeidUedlitHWz\ iVpZ/fonbaoabuTp\ p3GNxezLcivXCRbN\ BnuL62\x0aZ7c+vkbSU\ zNBjy8l5WonWJbew\ 8RH1YPRjxkMwzQji\ xnpA+9YMJQrXXS9R\ rowh3CaaqOHNxVCR\ yNX\x0at5IyL+mt9kAI\ VKRRUbotr11nYUvH\ WwPeI7ZMhXYqnWKY\ Y42gduFpnvueaX79\ 596m7HaI0gzdbBDP\ \x0aNUNgkEwm0wWJour\ koBRi5CYphESMaGd\ CCkj1hJPgXSjmdlB\ gB+XILS4K8r3Gncq\ L+4WTgn4fILzf\x0a0y\ XqBEcDIVW4yN7Hn7\ XUimi2EbrDfHdTl/\ t9DNnsHGp65tid10\ cRt2oHJXZQBqe7Vo\ pO0+AkaB3V\x0aen+zi\ O+Awc0V4rIgWTh3T\ 8dwr/C1Okmtjn3n7\ WBpvAsC812SzE0FL\ b5SFCtt7s4ieAQlg\ owxjUOi\x0aHoSG20Fx\ a30bGdH0wv66TCJ0\ LcUNS+yoqRc6gqpk\ 6fVr9NY6QaN+WzHf\ ioOEuACoNMP0Smx/\ lVe/\x0aalj71svYyhK\ lNWxeIKMZZBzjCzs\ p6M5YyrUO5dru7HZ\ VS1CNFF1LEJEe+TV\ kMOsD0dJ7EALdrD2\ w\x0a8dVJQT8CSFtiyj\ 46btC9fBlnLEmriR\ kW1M8sPhCS0G9HeG\ eDRWj8YPZtHwS2je\ dEiCGVkabYaN+1\x0aC\ uBej6V+ahGarQe9H\ XggiFRD72gWOa40u\ JUerlYRL7SCbv0AC\ W/lWhc7fJvahYcvb\ avNztK9ubPu\x0aeoxx\ kl0y00I1UhIBxfLd\ FXWpFbY/DPniSoek\ PiHwBJMa1cxg6566\ gKrTI12cQzUSRE/B\ lim9imLy\x0ajZx8Y4D\ WetdifljoKGbj1RB\ 8I6Ukrm+G3ZvBkDg\ JXgaHWSCGbrxgfIa\ oJA4FvpmNJLMqxCt\ UFQ9q\x0aHXxS0O8Roh\ zQX1ke+R9v7ucVnW\ D313n3PVqPXTgp6n\ tADve3U9wJ4w7d44\ 6kU3tYGBdOqaPABx\ gx\x0a9lUaI7RkeGPto\ RRzIRW6lkGztf8TH\ hJ0mmF7R+/lLrwgq\ tWg9Nh8uO/5ZQclg\ 8tvk85OI1sPZl99\x0a\ J4hGEwgFffwdApO9\ 3/HvUC53EEISzzRR\ jYxESoqb6xymqId9\ Yh061SQOkzIpQsiQ\ GVkS19Lgbjgo\x0aAw+\ kHhM16uFnw+qOzlX\ oiOg+ECtVkqGSnUf\ fppMTtxphwtDIcDu\ YDB0EtiixRbljytp\ hvdzvFicF\x0a/R4gqi\ HDlbV99zV7164HSc\ /pw0lepKlwOkI4h1\ lboej2UElMtngad8\ Bx06OA7rX37up5vj\ C4vAqG\x0aJ1mMe0BZ6\ vcDzQsXcXEglw1Xr\ uLyCiS4TiDbPGioO\ CG9cPGBv+9hoXXMk\ Zdz5zH5EF9YVCtBt\ RLK\x0aW+19n+atZbi2\ gS5L4mYdkqMz1zko\ vNqc8ES1GvGZsBVQ\ Ld2g7G0vVGOP8Wiq\ jspikrMzDK+vHtio\ \x0aSMQ6dKNxjOkNMe2\ wf6/qKbqRUXX6+Mq\ SLs4gzyVIHeMJun9\ XFpQb3WNhv+xLgx2\ WYWFSj6k2HvYR\x0a3T\ 3eP1XhIcAPS0y+d/\ IOjLyx+zlyfYmonu\ GMoermuKLaZg0olc\ aWJVKHJKlxLrV3Lp\ AujMU7S+/K\x0aFVQSo\ g4heGhHjSY+O/qox\ weBu+2sXVVhckGU1\ ENc4yNY0Oun5pEz8\ 9salXT+PNIWDFaWE\ fbBD7pV\x0aHFM7c+aR\ ILzJqVm4eXhC5W4Y\ GxQJLbGyDOxl70jP\ zYUYW2vCnnt/eIfD\ 3DgG1/RC/GcyX8eL\ B+/d\x0atVM3GC2eIVo\ MhX24ERYnzliqtS7\ eOaLpBlIr4tkm+R7\ mMrqWoZpBwuesCZ9\ TMfo8xtdxf4gdBPM\ h\x0a3awha0m4j42Kue\ 3llGuhmB+HqVq4Pw\ 9RtZR4ugUehtcfoA\ H7EeKkoN8FnhaeN7\ xAZumBT0g3CrQw\x0aR\ RmMF+6S4BSeY+8gv\ pS9PkmziYojZBxYy\ O4AblJbIZxFeAfeY\ 3o9cA45e38ZvMOrV\ +76uc5YGJZU\x0aHXb0\ 8D7uaF16DL/LGNCp\ ZGJikgDCWnqX38YZ\ y9RTT+GUxnfW6d24\ N9nWVkS1GrWFBVya\ PRLFfIzW\x0axQt0rtz\ dlGc3uNIEM5GxH3k\ FUSvDdHJ0PRtJlO6\ 0jJ0U9f4AHW+EBcc\ xQijsZ5DGkC/doOz\ 1Me1+\x0aIATOtNDNGn\ oqC3G1O0A1E7wfJc\ JJiWnnYZp0m287BF\ kpUUgO9NaAU0itIQ\ va/uNQzMcwnfAZRD\ NN\x0a4tkpVBKHra5jM\ EE4DE4K+l3gDT9iO\ LjD3fa8dXjl8LgjP\ 5ltWTJYXd32M5XGx\ PU60ez8rpGOsiwo\x0a\ NtYxZbE5EbA27HEZ\ i+72yGamkbX6HaYh\ 0hlcmYMXiLR+aAa0\ 76xT9e/Nv90Zi/Q8\ 8BCEe4FKYmqX\x0anjg\ UycwrRf3Jp4HNbUf\ RmqEZa1xRoeIUoTT\ td96+6+OqLZ7GxQe\ POj0u8NnR8lO8d3j\ vthfsfihw\x0aUaO+sz\ ZqC8ZFvWh3qLWmH0\ qXvh+c1iTnLpAA3d\ denfi+62aNZHZq14\ IuIoUfBimftyHxbv\ c4XU1U\x0aqyMIXXy5v\ kE830BlGdmZeYqkj\ ekM9vTSf1BwlaVa7\ +EqQ9SsIZOI9Nw8/\ beuP+xDOxROCvohY\ deW\x0aMePu2B1uHGr7\ Q4SqoRoJ3tj7TnSy\ w5J8WGJsharHIQO8\ qPDG7XsxjmGGQ/J+\ G+WG6CRBJa2wOOh1\ \x0a6LfXgZDl7Y1FRhH\ ZzAw0p3Z9PWkLXOw\ AD3VN/amzuLKi2ug\ dKs1oDJXGyDTCm+P\ fU7YuXoQkOVBe\x0a9o\ GRNpFpkEl7QKcJZn\ j4XeWpJ5/CHRGj+G\ Fg6smnaL/15n17fW\ cs9HOEFMFsRu9dpM\ fXVbW6gp4/\x0add+O6\ zAQ1uK6nTviYJvPP\ BuKeruHTCNULSVZn\ KZYunMzWSqFKQa7j\ st1MyOariPjGKkkQ\ mu8NVSd\x0aAbaXUxhL\ NGvRjRrJ3BQqjak2\ Hq5Z0hjjWF5XViTz\ U8gsIT03y/DaozN+\ f3Sv4AeAanWJKM4Q\ SmHz\x0anKLXw9wlIxv\ CCSMihWokqGYYh9+\ voq5b2cTbHBFGiLZ\ fHNoSNZ5rIdNwmlT\ 9nOHKBlgPnjvG/s5\ Y\x0a+tUtdKdDXG8Ec4\ Wshul3KfN+MIqox8\ gyZHjLNEIqiYwUMo\ 7uqqALrVBJPLFkPI\ 7QaUL22OMPRPZV\x0aO\ 30a0+sxWFnd/8Ejq\ FrCI5M+sQuOYjEid\ TgPpdZUnTsnR87Yk\ AgoRdBRN7I9C5Ezl\ qo/QN9/35kD\x0awSu1\ a7Z785ln6b/9BrY/\ REUxUauON24bY1uN\ bHC93XnCKGNNNFUn\ ajXCNNJZXBVc9cZJ\ iqaXT5qJ\x0aaLqBrqf\ hPhFHIQWx2Pt+qBo\ peuRWaLo5tpcfaQy\ yMxYGJVV7QBJFxFM\ tMJ7h0vqRvcf9xEl\ B3wV2\x0adZlyo8PQHO\ 0X6YZlCIOoxZN76F\ EVdalVsOZMR4VcBX\ cjMxhiuweLDB2HKK\ h6iB5VcYxzwSpRJj\ qQ\x0aYAbFrgQ0Zyxlr\ 3+HY5XO0rCIsWD6O\ c4YotkGullDKI24y\ 4IslAIhjsUKfyeoN\ CZ77PEH9n5+JM9p\x0a\ zi0AUC7foOr0dr0B\ p9NTqJmFR7yc3ztk\ rINfdxpjhsNdlSvj\ oh7Pt4Lt8D5wpsLl\ G8hs+qgP+chR\x0af+J\ p7NoytihDvvx0A1s\ UE1mgUGpPb/LQ3Qe\ lRrXRw5ZlKOyF2TZ\ Wt3mJtx28dYElX89\ QSUyVaEQ3\x0a3/Naju\ eaYdElQ+Kgb9VCIt\ 6g2JGoeDcYf8cyiY\ hnmuhGDU4K+qMJs7\ 5MsbZx3wgbrgr6S6\ lDtjT1\x0a9K4KevAx1\ 8h4ZD8owj6yUDJ04\ 2UZdKAjG0ukGGlC3\ a5OUuNiHrXqiFjih\ gbTH+KqKmi+VQgs8\ KmD\x0aQzLKVT24b43N\ GMbHIKRA12sIIUnP\ zWEHBX5ocNX+ASQq\ jRGxxBt7bBnutcce\ rtlIvHCGuN5FCAlJ\ \x0aBvkAX2881GM6jpg\ ssj37Ln7dyAtcjKZ\ L+3WIxVqb7NzxL+g\ AanYBUeS4skSmEen\ CDEO7jq8Mfp/r\x0aUS\ ZRMFMxYT96r27blY\ bi1gauNMQzDWQaE0\ 03w31iIwrfwZbnSx\ 3udzpJQKuQhuZd8J\ EXIozuI4lp\x0aD3DFE\ RT10oR7UauGlx473\ H5/kVF0YKe6B4njd\ 0QPGeVG976zL8cMW\ VVPkFu+AqmDnhpCR\ KUfLYeF\x0akNtHyiIE\ RwgtQydOkNNgw+rX\ djeldDLVYZ850uGC\ 9CBKdccqWGqFrAW3\ JBFJbL/EdPp33Kzi\ +dZo\x0aRKYPvBqOpur\ IVE8uknExN708/B6\ RRkYRUasWRnAWquE\ QN6xweRkCD3b4TkQ\ cFkXHsZiPwxmOBWr\ N\x0azcbqfVzMdTO7+3\ NBjgJ+TJCl7Qc3rJ\ BJFPwPqr3H7u6YTo\ 92g0+yEJVSdpFZQj\ TboFzaCAV2F97r\x0ae\ NsMIXBVue/ofIxqo\ 4crqzCqH5HRkrkpb\ C2lbPcw7cHkWkoWp\ hDRyPO9NJh8iK6ly\ DQZObNJ8JtO\x0aePcC\ lcXIVGOHBWW7g622\ /z7WGJRWqPR4SYVP\ CvoWDJeuThyV7ids\ WSKzKNxArEFlMUIp\ RKxQaYz3\x0abhICMO6\ 8EcF5aQzvXOi2q3I\ SqWl30I/aXjF5L6F\ UyH9Oo8nofJIMFGt\ 0PQsFsh9MIm4vojJ\ SgQk/\x0a2vPar6AHwl\ qMro8mA/3ijs7HDS\ tMZ4Cup6BkWPkmii\ jR0LD4ylH1BpjOYN\ tzZaxRaQKeY1nQAW\ pz\x0acw/7EH5bQddSB\ JKqu3tAyV7w3h2Yi\ 2EH4boKtsP7n3/SD\ HH6cDLShw0hm0iqE\ E88rCbGMTtB1TN0\x0a\ LbAzTf9wPCM7CNwe\ m5foVha25xoZSaLR\ WYorDbqZouoZ4Ck3\ elRrXVxlsa2MZHYK\ mcWhKZhqhGO9\x0ay3u\ C1AqZxOjpGioL+/T\ 1hXNkpy5te1y1fpP\ +u+9h8wEyGql/hHj\ oXftJQd+CdPE8pbh\ B1d15z/Eo\x0a4Z3DWY\ OrDLpVC6tLAb4Kkh\ k7LAL5TIhJJ+pt+D\ sco1CD/VfBppdDL0\ dnadjzMwIVh04cKR\ B5YHaO\x0ai7wZ7FzMI\ aSbCRWMbjiAEkc10\ 2CSUxlMd7Dj1sKYW\ WoHRdj7jzQyjhAyT\ AFkLSFOw43T9PLJ7\ 61q\x0aYUV+mO0KGYU9\ wAelfxW1xrH0P3+/\ IppeJJqGtNume/3G\ oZ4rhAzXVVkd6PG2\ KFGVARVIhTstpmE8\ \x0aKlYUeYeo+WgVdAB\ nIwSaZM7hqvDZCCm\ 3WeHKSKEbGSLW+KH\ BbBxeiuqMxW30sP0\ hppkST4UxvJqf\x0awh\ XlJK/BDvIwVh9NDk\ 0nR0hF5GuoWsg90F\ MZrqgOvZ+uagm6ka\ HrKTKJcbYE52nNpX\ zvH/0wr/3K\x0aW5PHv\ vn1xsgoxwWOEYAQS\ BmhbvP/8OZg59RR4\ KSg34ZkeiqMV+63i\ 5EPRX08Oh93sDvKQ\ e6u4dgG\x0akw8njYSL\ 48C0z8Io3hUmLCik\ oFzZfVwlRvv+rjD4\ cv/PRtdSiuX2rje7\ MZyxwbZ1tKqWWqGS\ BJEq\x0aoukGKk0m9pR\ Vd4Cq0hDRKA5+A9a\ NLBB2BEG+V1bhs76\ Ptqoh4fkEh8GRJBU\ 2p5DRMq46xA199J4\ H\x0aOa/HsIMC1UxQzZ\ ETmrGTRbbUanPq1k\ jCguERhUcg4phkbg\ oE6HpKNcpYh9Cdqy\ wG6yk73QOP23eC\x0aq\ wx0c0ofFDZah8X8V\ rdMpNi2oHDVqHj7I\ UJLVJqip8yBR+9SK\ 1Q9I5qpTxodjKPqD\ PDDim7b8oV/\x0a9k3e\ /uyvbn4mPnh2nHrh\ eUTaADzl2i26l69u\ synw1mCru1dGHRYn\ Bf12RBm1hQVsb8Cw\ 3dkzivBe\x0aMb7IH7T\ O0ZYlvudQeFQtJkp\ qeO+QIrDaJxfObfC\ VhSSQgfaDPAADeDc\ 4Y3FmQJJM4StLNew\ FC8k4\x0aIp4dBYV4H5\ zstKZcDx7V3tntXd\ bIJ8AZSzzbRGVpWD\ x5jysKzKDA5dVEe3\ rUBhfuKPXmv03ghz\ 3I\x0a7t0DPZ2dZri6v\ u+ifNxBy1iD3L6tt\ R9svxjZm4ZiYEfTL\ gARaVSWoJthDF2ud\ 9GNY6Jfuwv4Kkan\x0a\ EmtyVD3FjUhyzlhU\ PUZEOuSB9+/NWX/M\ I4pnwkLeOxu+E++p\ NvqoNA5ywc4AyWaQ\ kcdhekNkEhFN\x0a14m\ nmkGmW5l9F+1Ca5K\ FoDv3VUXV7uOGFeV\ qh6iRobXg3FNNOjc\ +iLeWYmODwa0VpFS\ QNvnUHz5P\x0afaOuD9\ YAACAASURBVLbB5/\ 5PiX/7CnaYh9S5kZ\ RSpQ/OrOmkoN8GLw\ TENeRsjdhY8vtQ0C\ c3Ea2o\x0aOg9u9bYVr\ jS4tR6uF4dOvRbjb\ HAxM/nO+0+mmwc3q\ UaKbo3IIHLU2dx24\ ahGFsxe/OF71PHno\ 5oJ\x0adlhi2gOqbp/s\ 9BxoFRi3LhjZqHpG\ WktDN2wMztoQrGEd\ VB5vHNLZycp7fMNV\ aYqq1cLipawwvTDK\ \x0aO8gN4AT3D1JGRyK\ hU9PzNBtTdN+9DOy\ +zSLiMKKVUYQ3FtV\ MEf2DbWdB6NLxEE3\ XA/+lbvHWIWsR\x0aUZ\ ZhbYVZz3FFCe0NmH\ o02O5j/Jmk4h8VYd\ ztnA776noI0x7vPP\ Ty8G98YJ4fYLG/F0\ Sig698rPHG\x0agPOU7\ d7E5CaabaBrKbpew\ xbFaNQftt7sYIj3D\ m1SRKJJT89gekNsX\ uCrTffLO980qG0EA\ ltUDK8G\x0aDwdbDIka\ GVld8tSnHkcoQXdl\ yLV35omaDTbeeptb\ v/ZlPr/yGE99+ikA\ GhfO4K2jGvQw/T4C\ iarH\x0afGQx4eWlo08\ FvB0nBf02nBeeq15\ gV5ep8nzPjvVuMe4\ IrKnu2fr0XmHLMkw\ h9g+TAgIrFQmqFqN\ n\x0aaoHQh6TqDjAb/T\ BjFhA1a1Tdwb5Sl6\ 0Yx4gKrYhPhTxqs9\ HHlRaG0O1c3fZ4lc\ ZEc03imSYQCClS\x0aS\ uIoCschCeRCAUiJr\ yrKjW4o8mmQ/MkoC\ pyCuZSoUaPq9jEbg\ 90v/hPcV3hjgnn9E\ cDpiNrCPIPl\x0alR3/\ PoxaR1yM3hAQQeaZ\ xPiVDji/9zkgxt4P\ CSIO5240U8dXI7Kq\ cdumb92bN2k+YgV9\ XMy3wrsU\x0anSr8dBi\ D20GBq2fIKHyehyG\ kyShEsOJ9WFDVkiC\ vdY5qTH7b8h1UayF\ xUtVjdCvBlhXV2ha\ nOR/2\x0a1aOZBqpeQ9\ freO+o2l2Km+s7xu\ DavMA7j2e0SLkNed\ /x1kuXeeUL76BrLb\ 7vx57hyz8tsEVJ7+\ p1\x0aEHDqsRbPfM9jv\ PlSnc5qwdqyYXD1T\ QY3Vkjmpnnq4hQvL\ x1diNBuOCnot+GqF\ wjv0TNzqLkF5DAn\x0a\ X125wyjlbjFmUYZO\ +OF05/cCqYPOdKz1\ dAMD1hM1akit8bmB\ ZKSHzw++Ry1HWnrV\ zIinG4Fpv36n\x0abG4\ r7LCE5S4+N+GmKhX\ IzQtSaIUzZdDGOgf\ W4QoTFiVboGox8Ww\ L3aqTnprD1FLyqyu\ TBcZJYb+/\x0a6L726u\ S/66cWkEcorROtGa\ L+gP7N6/jRtEhKjc\ pqqFYwNLF5STmKEl\ V5YDinZ2fDzwblyC\ ypAyI4\x0aJEqlEQJ85\ Enn5pGxplrvIYRE1\ 7PA1q4lDK4tH9nvc\ dzgbESUTSFPR2HP3\ Du8EYfiCkitiOemi\ GYa\x0auKKiWNoYKXok\ Ah8cIKfroVHYAiHl\ JPXO9cttxFhblPjV\ NnZYEM818fiwp96o\ 4eYM1Up3x+Pwzu5K\ \x0aeDHGc/W1DqvfCuf\ p51F86NOzfHOLG+P\ a9R7f/JVblN0uxA0\ ufqDGFZ6ie/UGKkm\ YO9MCTgr6Q4Kb\x0a+G\ 27NLsnu9fbISIFcn\ TiHWO70t0go4ioXg\ v+6dbh8aNVr5kU82\ i6TnWrd6jufFLMp+\ rkVw5+I/TO\x0aUnV6V\ J3evo+NT03tOBL0p\ aVa7wd2fSZR9RqNp\ 89TdXo7+lkfFLKqc\ NGdHc4JgH6Xwa3lO\ 2Si+doa\x0azUYTFx3d\ vmM6O0v32nu4Ufdl\ sWEUbrqgBcIplAyp\ d76yVKs93FRKNNOg\ okd58xZCwIf/0Md5\ 61df\x0ao7fSZe65ZwB\ Pf+Um1UoXpVNUPUU\ oAQqGSzvzYvpvvTE\ J2XnU4ZxCiCZRqxx\ 12GaSxHYQRAtN4rk\ W\x0aQoQuPbsYgXUIKf\ Be4KVHKEl6dg5blF\ SrXfR0PfAdROAglY\ M7SbFCBd26LSt8YU\ O0tDG4/s4EWqFH\x0aK\ XAH4GLWpqb45A+e5\ bVfW8IMh2GbQUryr\ qEsPMvf+CZzzz7Dl\ dehVpcIJYhbDXrlg\ 6HHnhT0HeCF\x0a4sdi\ w0+VGmkP532+H8bd\ uTMHY4ofN4hUgxKY\ /pBqrTsyuVGoeko0\ U8M5S7HcDrpRMjig\ 17LQiqhR\x0aw+5iIrM\ bjuK7Ca9RUqy0yc7\ HCBTee6KpZpAc3Vw\ /kNkIbE5gUFAM1oi\ mFu/5+N5vKG9ep+r\ vLI10\x0axuKKAo6woL\ sk4/kf/gy/48e/i5\ tv3eSL/+Dfs/TWda\ ZPn8IVlvb1Dbx26K\ xO1evhnYGuQNQljX\ OP\x0aUa11sLLgwz/wP\ EuvXqe73kE2QixqM\ izot2+iZ+ugoVhbp\ 1xtI3WM0Hcu5pyx2\ JVbqGMS2HIU8GWM\x0a\ iMP1sZ+iZQzdyIhn\ pvDWYasiuFxqjUhG\ 37t16DRl2MmDQ2US\ I8/NgoDh0vrIkEoR\ zdSJpuuYbj4Z\x0a9Y+\ 3NAUC3Qw8GZMPsLt\ NREc8IIFAyO1V3Zk\ Ka+E/+i8+jvmx5yk\ GJa9/9V02rizTv3Y\ NIQQYT1bT\x0a/IGfeJ\ bix5/BGstv/sI7rF\ +5yfxzz/F9f+rjfP\ HfvnMXn+zhcVLQd8\ FPleGjMb0O9fl5TF\ lQdO4c\x0a1xwWtpfjn\ Q0exlmMiFTIXX5UI\ JjosSY6VA+m3Q/7k\ CIEKAgkUTPssVfrf\ Wy+z4UuRIiV7T2c/\ GFn\x0aLKKyuLzYtLB0\ Dl2vox4LBjY4H9jw\ 1kzMf2SkQUukCjIl\ tsS4CgTu0YpTvu8Q\ zu1azMfw1hykWToU\ \x0arn7rOlVe8iv/8m1\ W31kiriU885nn6C/\ 3+NaNb2CqkqoskCL\ YuSbTTYYrG7S7b1E\ 7tUAkGugkQtUU\x0aQk\ H/nVdxxlJ0eggtGH\ bW0L0YXWvgPZSDPi\ qK0DtEuw7bbZqtFi\ 5+9HTpu8GXMRCTna\ nDGXDrq/Rv\x0a7T5pS\ 05NIYSg3OhhOoPgJ\ pmNctaVREZBlqrqM\ eWtdtCazzeRSoXrc\ FASz09h+yVCCfRUh\ p4KRFwh\x0aZYi/zQ3R\ VANfGYobYdK2o+Ok\ DpLdYAyzqUyRWlOs\ rmOLb/Mv/3qIUfXe\ YvoDio02Og5Tnd7V\ a3z7\x0aF/u89sU3Aiv\ fe+wgJ19bA+H5hb/\ VIz198ag+6j1xUtD\ 3gZyaRZZDiqWjKbr\ jNB9jg55T1WJ8tXd\ q\x0a03GDt26bxndykV\ QWqRWmPcD2CnSaou\ oxycJU2BPv7px9rN\ IYVU/AheCW+3bc3u\ 0pS/KVYXhzHaFG\x0ar\ npKBrbyVAMhQ4GXk\ QzjWedHryVGTP5Aq\ PHV9oWLoARxtHndj\ zKGN64/FE6CijPE6\ LtXOKaf+y6e\x0aevEZ\ XGW5cSuBskv3vSs0\ n/wQ3/2DZ+h3h0zN\ NPjyv3qF1Ve/Q+10\ CLuxucWVjvrjzwIQ\ 3XiXfHWZ\x0amQ99Fx/\ /PYuYyqKk4OtfWGb\ lpa+iouqOTt0ZS+/\ 6deqnT+OPmXXoUWG\ v5idZnEZlGXaYU7V\ 7+MJQ\x0ajvTlEPbIVT\ 0hnmkRT7UwvSGuV4\ D3QZpWi7G9YSDzyj\ Dd85UL/IZIB8166Y\ iaNTxQrLa3qRbGnh\ Sq\x0aFm+6vEmJM+U2l\ 0GhNCrJMP0C0785+\ bmKYnRSm7jCSWMp1\ rsU65u/sxACHWd4Z\ 8lvrpwU9OMEF6dk\x0a\ Fy5BZ4PujZv7Pn7f\ 1zMWmQJKBHOZ+NHR\ KwspQzHbxbRj82Yd\ yHK2DP7PupUR6UZw\ jLt9fC1F2Iao\x0ajnZ\ 7YysCaU7u6fTitph\ lwIio1xPYfhECJCK\ NsxZfWFwVzHhCAl3\ ozr01DG/cuXeanT0\ p6GPYcv+R\x0arDOGo7\ 4ifK2OGpnHzL7wSR\ yQ39zgt758E9ddo3\ ftPapBTrlynZd+do\ BQETOLQRPvjKHorA\ VSnWNb\x0a0qyMIuzQU\ K5c5+ufG4ITeJ3wv\ X/4Av/ma1/Z9XhsU\ dK7do3G2XP47P1Y1\ He+0FQaE083A/O8M\ whJ\x0abLddd0CQ+XlI\ 5qfJTs9RrneRSuOk\ Ce6TucT2cqK5ZlAV\ 9IbB/jUOJW18beI9\ yewU8UwzXP9KgnXh\ \x0a3yNJjhAC730Y27e\ 3q46E0uhs7zJ5uzP\ cw8RJQT8EzPAIdYQ\ SRCTxhds1qvE4Ioy\ zPK7Y36HNliVs\x0a+d\ VUPRl1u9sjEoWUCC\ kxO2RQHxTemjvuIW\ JLRnYwqXCHIupNnK\ jKHr6yiCgw/MeaVq\ EDwdH7Cucd\x0aUmhcv\ v3166cWEOUQ/z4ar\ 94L4nqDvNw7itKa6\ sgLOjA5P9yoY+5e7\ bK+Zlh79XUgXI8qT\ fBR6Oye\x0a/fRZ2ss9\ fvklj9trsjMyOPIy\ BQnPfXKGqcWpfQ8n\ dOrXaDz+JF4+uk5y\ O2EcGbxVwQBBR44U\ 2G6O\x0a7RW7LuBdZTG\ dQTCSmWoQTdXDtet\ CPoWvLLIWB8a7MZM\ O3EUa3QiZFEGK4EP\ n7yDsE3qcMbjc4Ib\ h\x0aHhZN1Sd204cxFj\ qOOCnoB4QsS8r+EU\ nXRvpnb0eBJY9QQZ\ 8kvcX6jlX1XjC9HH\ zolFUzARn0oltf\x0a9\ 24/B1vk2GqHBYYQK\ KlQ2cgr34K3dzcB2\ HFLxASyzdSlS8jpW\ da+/hI6ybYFNMiZu\ RP71y0wxQEW\x0axffp\ A/O3vbAb/b/CYZHM\ f/h5Tl2aYulqOA9f\ ++p1Lr0wtyf72XvL\ wkeeh2TT3e6Vl9Z5\ /OMXDnRM\x0azlgG712\ hduHi+66oAzSfeZb\ ua69OEtOiRi0s3gf\ DXad8Y3hjKde6YaF\ Vq+GVAQZBDmssSqn\ J9E/V\x0aY9zQBELcyJ\ nNFUHS5spqm6LI29\ GifETW9dYRzzaRaU\ Q8PxWy3A9I7jtuOC\ noB0C5dJ1iI/gCqy\ wO\x0aISU6jG9dXh16/\ 1umUYgfHRz+uQ8bt\ l+gGsnE99j2t2dHj\ 2NYxUivjvGBQDbSm\ SOCGx0uFPRxLvzd\x0a\ roy9De5w8x96nh/9\ HS/y7s2wJdIe5Ly2\ 1qb/xqtUgxwhZrFF\ gen3wbFtX9ObCjcJ\ UBCoNAuvW1WA\x0aHzG\ W9bbHytHzvXPI6Vl\ +7NOf5O+9/HVcWaI\ yjR0+XMOgRxUPInZ\ WWANSTQKGmhceY/3\ aFbzO+OCn\x0aL3DtJ7\ +CLUuii0/u/2IeSJ\ p8+NNzfOvLq+Q3Lp\ OduXSo4zHDIb133q\ K+sACtR8t45iBoPv\ Ms+buX\x0aQQkYEUe9d\ /turzljYVhSLLfJz\ icjOZqcLLBkrNG1L\ BDZhIAW4DJaccRHn\ rzE1Ru3eGe1zeDKO\ 3uS\x0ack27j4w1UbNG\ 1KqjaglVu4ftDO/J\ l/5h4P23JDxi2LVl\ rKmIZhuk5+ZIT8+S\ zE+RzM+QLMyQnJ5G\ \x0at7IDv56MFDKJQkd\ 6j77HDwOml2M6eXB\ bSzR6qkY82wys/Vp\ CNPpvXU/RjYxoqo5\ u1cJUIomC4Uxp\x0aJh\ fYmHx2T6Mu7/Fpxh\ /54R/izeU1Lq+sM1\ 3L+Ks/+odpPPkBcI\ 6ys8FwdRk7LDBlEa\ wZ8wFVv0c1\x0azLEms\ NedNZT97rafmSKnG\ vRGjx3gjMEUw5DZP\ tJRP/3UU0ipcM5QD\ frYavR6a+9fc5G7Q\ Xbu/MSw\x0aZycIrYib\ 9+7lvu01x/bDQtDM\ BF5pRFnw8tc7fN8P\ nkafPsf8Bz+IwFEN\ K/TMKZLF83g87eXg\ fiis\x0aoOiXd47eBUg\ snZUB9bokO3OJ6Vl\ F55CZ3M5Yujdu4jY\ ebK7Dg0L22CXEhEB\ 6cDhjcYOScrUNQqD\ r\x0aaej0Z8IYXmiNK0\ p8acBlnJ6u8bHzF/\ nGq+8gDfzuDz5N7e\ LjoRHbct6pNA68nt\ kGeqYeRvdlBd6h\x0ak\ phktkVyahrdOPi9/\ TjgpEPfB4YqSCLqW\ ejSrB+NaiwiDlF5B\ 8lElrFGNVJUlkyCS\ 9RUirQxvrT4\x0a0t7X\ IJijhB2E0AOZhRhW\ lSXIdNNu1ZcuRAuO\ 0uRgVLjHvu82ZLmH\ vyDEuB7B2nIwGPDq\ r3weIQRL\x0az3yQn/h\ TfwIvfwakp3H+6Tt\ SvFZe+goLL3wMn6R\ 3/Hz+ky9u+1n/je/\ QOH8Jn22/wJe/9uX\ wHx6c\x0adwgBMx/7xD\ 3/Lu9X7DdWjusNfH\ LEJDEfYoh/9Z9/g2\ 4+KihK4T18/hfDRE\ fUphFlwZf+7ZXJ02\ 5d\x0a7nHzSgle4ArPK\ 5/9Jv21HkIIpAs3/\ 7LTwRnDFR6fPG9jz\ fLFf305dI2HTI4r+\ l3qjTpOH5H/7TGC\x0a\ ECIQHiN9KEc5ZyzV\ apd4toWMI1QzJZ5u\ IuMImxcUy21kHJHM\ N3nh3GP80re/A0C3\ 3eaddocf+92/\x0ak3/\ yb25i+wV6FMM6Trm\ ETdWOHZbQz0dy2xT\ VVMRyl+22Y4qTgr4\ Poql6cBEareBMe4B\ pD5C1mGRx\x0aCqE0Qk\ mimR3sKv0oZk+Eky\ eEDkThBuNBZWnQLZ\ Z2lO7TPXLf+PsFV1\ lcleOGFaqejkgoYN\ o5vtzO\x0aVh+Hv0gVz\ B6EluhmFjp2LZGpx\ pf3TkZJkoRT3/Ppy\ f+/+WbIL/aESM7z9\ RpPn1nkhQ8+y89/6\ cuY\x0aS0/gk5T/8U//\ OF956SX6g5wvvH2F\ +U++yF/5I3+IpaUl\ qqriX7z0Deqnz+Kz\ jP/sUx9nrd3lwtkz\ \x0afPal38Q/89zkPaS\ StJ58jv/y+z+DqSp\ uLK3w1BOX+H/+/S+\ zNrLK/W9/6PdiTMk\ 7l9/jmaeeZNDt\x0a8L\ /98leRVYmLYn78Ex\ 9mWBR87CMv8L//9M\ 9w/YAhIY8KRBHyq2\ HnczxuTR1JOMtWjB\ cRN5c239Pt\x0aZPoSh\ yIqel1WXg1FIfi1h\ 8d++xdeBgQqiln++\ tdHNrAyFJWNdfAeZ\ xy+9GFrSeltfIrbI\ SO1zc9B\x0apWGBXBZd\ bHuVJGtArXUUH8Gx\ QHr6LLbqILIQ4rKT\ r/pecEWJTBKSuSmE\ VNjBkGK5jenmRNOK\ 2TRh\x0aeTUQLv+r3/v\ 7+c4br/OFd97i/MJ\ 5VBq2SYWXyFiF+9d\ oUnh7jLKvHPGsRKY\ h/EnG+siTGO8XTgr\ 6\x0aPpBxDNZRbXRHZI\ lR3nFj5GjkHNHU7r\ Ikj0f4kb5Sq2BBWJ\ rQsYrgTCTiGJmGkJ\ Ph8qM1cnOlwZV7\x0aa\ /RtHsgp0VQ9dPKEv\ edxpjkOzODeV8Fpm\ vI7n7hIo57x3NPPc\ PPmDWRZ4K1n+N5lr\ i+e4Wp/AAJe\x0afP6D\ vL4WEmmkkvzct15j\ +Wtfpj4/zx/5g3+Q\ drvNP/ypf05/ZRln\ DYvf/Wn+6o/8ED//\ xS/xrVur\x0aPHn9Jr/\ vxe/iJ7dYzsZT01B\ v8OwHnuEn/vxfoBg\ WPP/RD/OX/+yf43/\ 4Jz8FQJJl/M1//kv\ hCa+8\x0axZ/85AvhM+\ p2ELPz/N+/8S0Aiq\ LgL/6nP8x//0//xT\ 1/LscJPslonDtH97\ 0rOzvFxQ+/M/WNJv\ PP\x0afYj2O+8EEuioK\ HtrthVob8yEWyGTE\ OOJFPihxXQH+xZzV\ Q/THlFU4H1YGKcaO\ ygpVzuUdFDxCo2L\x0a\ F3Dq0bcQ9koh1Qy+\ 8sRZHZeUOHMIromS\ o2Q0jen1KW61J+Q1\ V5SsDQs+XA/34v/w\ ta/y+kYo7hud\x0aDbx\ xeOtCcMt8PaSw9fI\ dz8Fqo4d3lnRxFpn\ E6KnagbPVHzZOCvo\ +cEVJcWvjjgQhV1T\ YvAwEr12w\x0adcyMdd\ i8oNrobwsHkVoRtR\ rEC1Po2Toqz4Nd6i\ PQpR8axgctqTH35Q\ IZDHK++HYYmf78N1\ /jf/qz\x0afxL3+S8z9\ dgl1NwpQPDhhVk+8\ cKH6XQ3TSDW1sIiS\ khJVG/ywnMf5G/+9\ L/FDHN0FFN5hxeCO\ E34\x0agU9/D09cvsKp\ uVnKrdI974lHN5N3\ Ll9mmA/Riebdt19j\ ZmZTwrSyun1PfXkj\ OFipZuhMPz4/w5mZ\ \x0aJs8/9yzJ+1KfHIq\ 2jKI7zvG99tYfNHw\ tkD63dm63F+itskh\ XWIRU6FYNUVMIqXB\ lFfghoxjhrb+v\x0azO\ KRN4LAlTrs02uJHY\ ZiPoYtS7qXL5NdXG\ B4fW3HWFeVBMdJEQ\ eCqdT6WGevey8gbZ\ KebxKvrtBf\x0a2TkN7\ 3aoOMYbg+nnoZiPe\ DhSq9G2J/RMzqVWc\ 1LMf+S7Ps4/+IWfx\ xtHtRKS26K5+h0Wr\ zIeTUtG\x0a37fp5BSy\ TXpmlqhZC0FRj8A9\ +aSg74NiaWPHPRTb\ L8j7exOeVC1BNzOo\ PKaX77hH7kwIF3FY\ srPz\x0apGdmya8tT1K\ e3lcYsdwPE+BwGFR\ Vya1f+3JwadKKG7d\ +Px9ZXOBl4K/96A/\ xj3/2F3nl5i1e+dc\ /\x0ayw9//PnJ86yxyC\ 2GJ/lwyGwS01cK49\ wkpWt9fZ2/93OfQx\ oDzgUjmZVbpBcuAc\ EQRQLNRp04VjRa\x0aK\ R9sTqHM5riuus1Pu\ hxJd1wU8Xf+wp/hL\ /+9fwQr6/y7N67wN\ //sn7gvn9PDhrQGI\ oGsbhu5HnK/\x0a+X6j\ vrhI/+YScLDMAJuH\ wCXVCsEudlCEmOSi\ xJcWMZZMChFiWxG4\ woRtJ61D6tttC93J\ ImcPMpkt\x0aSig2H5/\ M7K+BPy6Qc/OwT0E\ fKx+E1HgMxfJtxTw\ NXbSzbX7zXfi+Z57\ mD3zm+xgM+/yTz/0\ HTH+F\x0a4c2waJexBk\ eISRWbr6+bNRAiON\ CNFk3eWlxVIVT4+3\ L93q2/7zdOCvo+OA\ x543bYQXEgPaMzFj\ Eo\x0asXmBrtVIFmcol\ tbff0U9knixt/3qv\ UBKyenTpxECZmemO\ H/mNC8vhUVXu9vj1\ rBAVCW/54Mf4NT8\x0a\ ZgezGaspqfo9/u6/\ +yX+uz/2I/yNYQF5\ Ttlt49sbWGM5W0u5\ 0RtAVeHKkrLdJr0Q\ +IBFewO9sMi5\x0aM6f\ 56EeeZrpf8ex3v8h\ 7VzaDGW5nSZst/6+\ 2EMb+4u/61P34iI4\ FnNJkrRkG5cp2Z77\ 4mI2V6y0a\x0a5yIGSw\ cv6q40sJFD6dHNLG\ wtNRKkVEEL7ZkoPc\ q1LnZQoNJ4Rx+GEC\ ksULUU5+y+143Uim\ R6Cj37\x0a/gl+GUPVA\ 3HVFRWMUvMmUdT1J\ LhXFgbjVvjsS7f43\ De+ghASm4cJ6xi6F\ XTwY4Op8YJAJkFKL\ LTE\x0ar7nwHiJ8V0Iq\ oumTgv6+QDYzt83f\ 937BW4evLKbfR2hF\ dmaO4dLG+2b8Ptab\ C+RufKgjwd/+W/8z\ \x0aAK6q+Ml/+a8ol65\ hBgPywYv8jT/3pxk\ UA27eXOZnfvWrk+e\ srq2HlbgQFO0NePs\ Nrl+/zv/yl34C\x0arT\ X/6z/+p7z97hV+8p\ d+mf/69/0enn4y6J\ O/9NVf46e/+us4YH\ V1NThWrSzxl/7O/8\ Hf/St/HWcN\x0a+aDPX\ /uH/wxhDV5pLl/bb\ h38m9c3pzxvv/Yqf\ /+/+Qusrizzr3/+c\ 7RmZ+7fB/WwUW+h+\ /1JNyS1\x0aIps6fhps\ n2bULj7G4Mq7wAGL\ urG4Tp+qs3nf0PWM\ eD5YnhbL7W0L/Z3G\ 6ONirmdrRPUaZbs3\ KWQ7\x0aQWpFNjOLnJ0\ 7zK/3aEAK9FSKx1H\ 1cry1Qf6bxuipDBB\ UnX6Q0qYRUgcWfbn\ RvYOb44oK6inJXCt\ I\x0aU7sFupnhCkO50i\ GaaZCcmqZa7494Tj\ JE/N7D9OhBbiUJf0\ hd4BjnP/P9v20MsG\ 63L7xfGJuyJHNT\x0aq\ EYGHobXVynXHg1Cx\ l6I6jWimTomL7btE\ R4FTN7H7LCdoZoaU\ YCp7rSFhVFYi/dIG\ S7cuFZD6Iii\x0auxFG\ cgdAMM0RtM6eJbnN\ UESW4Wbi4r21rMJZ\ RFni0kdL83ovcN01\ ysFgwidJWi3iM2f5\ i1nF382P\x0aWacOiEG\ f3j0Gy+hmhp6pYdY\ GgVm9x2tJHUhzeia\ j6vRxnd1tUgF0mpI\ 9dumuj+1hYnx/HRe\ +239P\x0alcbULp0GwP\ QHmN4Q1UxQOsLkwx\ AGNSjD6LxVJ2plmK\ KgWu7u+Hq6nhFN14\ N7JIGga3o51UYwmN\ HT\x0aNaJGcHyUcYQ3h\ qo3YHhtf8LyjsVbQ\ P2Jpw/1mVz9lc/d1\ QripEM/ZnCDknywT\ HZpEZUle9pOPkqQ\x0a\ zTgw4g+YK34Y6Ky+\ Y/BK/dI5ypsddGnw\ pgrBIEJMtlGkDn7P\ rqrCqn4kT0qa09hh\ jrMmxDWO3OOA\x0aba+\ TnVogPbt7itJ+hXw\ MLxX+t1ExB9C1FuV\ gk+HsR2K141jMIZD\ kGqfP0Ll69a5fQ2U\ Jtl0QtepU\x0agNtD3y\ y0QjdThBNQ7L+49E\ cu9nswKG5ufp4hG0\ Fs24bxpgJiGDnLSa\ kCSa0YUq108eVW0m\ JwknPW\x0agoXk7GzgJ\ 23c3qWXFEtlGNc3k\ iBdG9+XnMes9bGdI\ dFskzhJgP+fvTcPk\ vS87/s+z/O8Z99z7\ +yB\x0a3cVicRAgCV7i\ IZOUSEJyKNuSI8mR\ JTtVkayKrMphV+wc\ laqknEpV7FLKsWNV\ LCtWnJItFWO5JFsy\ \x0aSdEkTVOUSIgEQYA\ gQAAL7H3N3dPnez3\ Pkz/enmvn6pntmZ3\ d7U8VCrM93W+/3dP\ 9/p7nd3y/YlNT\x0a9H\ YIz0GVA5xCgPL9fN\ EgJb6G6BASrcOA3g\ eHNYe4spIMT4yjwg\ Dd7fZlgnLUUYX8g6\ 2jpCenegDP\x0a4W8Oi\ FI6q6tw4bg4W8weQ\ z4vvOm2INxkEFJ5/\ AmsEEwGAbNRtOkxQ\ /rHKIdg6iTBFNBqI\ sPwyIck\x0aWyxRnj62\ f8dFBSZJEKUQf7yC\ N17GpBlZo7shYDjF\ EK9nYoIAb7S0pYvf\ hnO7T8tyOk7wJ2t5\ H0HP\x0aAC3rdGnfvIn\ uarCQRB0y26IwcTw\ fgW1HuSeD3bj7lkU\ P3F76PdYoHeBWS3j\ Vcl6ySC0mXsuMJM1\ 5\x0aaFpMYhBG4hZKq7\ +T5O+pECLfJ+j87w\ JsOIZTC3HKBZwwyK\ 1Ypew1zOrV12czjd\ 1hGmqQDAN6H6gw\x0a2\ HXWehBIR+HUCji1I\ lZnJAtNzAMgLOJUw\ tzhKD6cJr+VRhcMA\ zX6WFGau3HlEu7U9\ OAO/LBTKh/5\x0aYL5K\ pUa5p7du60u0eg1z\ uxGcHF2VLDVGo+td\ TJLmcsm1It5oOe+j\ sSYf7UyzvBwhBP5k\ FVn2obmD\x0aO1mmSW7\ dwJs+MbCXetCIpIM\ 3UQG7olURkzaX8cp\ VRp/5AJ988hznzjx\ CY2mZz/zpiySLt8i\ auRfD\x0apjR6OUT5Hj\ pKco8IpcgabXQ3Rg\ U+bqmA1YZkbqWDPU\ NnGePPfjA/lzhi6f\ Xvr2bidBzjUs4zpE\ pS\x0aOLv++55fVGySI\ tyeRoGxmDTNs5C9k\ Wab9RoZjaVw+nD6Y\ YYBvQ/C6gjp8sEG9\ JX6uTtSRiCIZpe2\x0a\ FT44CqiCh/S9/MO7\ Qye/N15Bug5ZM1p1\ NzqU8yv56DQ5kI76\ hYsXODYM6A89ojZC\ uTayY4+NdBTe\x0aRBW\ pHJLF5upMuk1zRUi\ b6d54m5vbKWtDlnT\ z26O8LmzSDLdYIG7\ tvLiPG010cplwdBT\ KR19hDx7l\x0a8gAAIA\ BJREFUrju/gCy42M\ yg2xFJfZnC5CTe9A\ n+u5/5CT77la/x5d\ ffXr1/6+Y1RCYx2q\ x6mFsL\x0aUgq06RA1L\ Karsdrm8rxK5fP/1\ iBdiSp7pPWoNwFoM\ Xot69qZu0WWJugsR\ SiB9CRxYwlZdHDC4\ mrp\x0a02q9arNqtMbE\ MaabB3Kb6XxRpnXP\ pvXwr93DgN4HNtxe\ CW4QSEehSiHeRB78\ 0uU2WaOzQdTiKOBU\ \x0ack37Fdl1gcT0Rj0\ 2WKGuQ/Z0m60+XEl\ b5bmkre6ezSC2Ihi\ v4ZWrq5v9Yx/+2F0\ fc8iDQ+XMIxv0\x0a52\ US0anPI5TMxVCEIW\ tGmC3GUE2SQZLl5i\ I9sZM7y3vpUptgoo\ Y3XiFdam3ZFb9CFk\ U0b97ECRYJ\x0ax0ahd\ HQDe3D8FPHcjXy8N\ 0owWuNNn+AXP/Uxf\ u/ffYW3bs9i2i2k4\ +YLcwEjz74fWk0WX\ n+Nsffn\x0au2u9MAsI\ 1NgEHzp9nCtzi9zq\ RMx96xsUajWK55/i\ vccnCQoeUa9W/uLN\ WbqX1xYLys1T4mPv\ +wFO\x0alQucPTbOH12\ 4SnfmMmmjhVsq5yn\ +OO0FbbMWwO+Qur6\ XDAN6nyjPOxDzFOk\ onGIBd7yM8j3Seot\ k\x0aobnjiMph4lRCVJ\ jXwHPLwwyb5rlsoV\ TuuFYpoEKfrNndtF\ u3sQY37xaVbnLgi5\ RcNcoDKTBRuueU\x0a+\ 8rjw9ERKK5dDI/GX\ 2PIUeROMxnjBQSTJ\ zfclkWz7NSFs1MqX\ QJJvY03UkQHHjbbf\ XGcRRHtmRnk\x0a4iKF\ yakj23Rptc0DY5ZC\ r/AyMjrKW3MLzH/v\ uzh+kJfrjIZQ8r/8\ ws/xP/3GbzH2/g/y\ w+fP8pUL\x0al3JfjPE\ JfuaD7+Uzf/oio77\ Hjz55ni8A2dwMHz5\ 9nKcfO8c//fLXAPj\ Pf+SHSTPNK50WXk/\ 7QY6M\x0a402d4AMnj3\ Ftqc4Ll27wF3/gXf\ zeN2HhpW8Sjtk8s6\ LNPdt998PQPrVP/O\ pgLR2hF8xLBfyJKt\ L3\x0ayFodkoUGNr33K\ z5vYp19oAUTZ+h2T\ Lacjxql9TZZo50r4\ HVirDY41RB/ooYq+\ HnWIfTAEblKliNx\x0a\ qrnX8EEjejKOK2nN\ 3ZCegz9WpXL+cYrn\ zhOeOr0hmA85BDpN\ xAEJDh0FnPFJvNIW\ Bk59YDKd+3On\x0aKTJ\ wkEVv1bERehm+IHc\ 9XC9FbTJN1o1oXLl\ C843XEfHRcw0zaZr\ P7WcZQgg8KREIFr/\ 3cu5z4bio\x0aIEQqhQ\ DGR3NBqJ/+0LN85c\ IlbKOOMzbBT77vXX\ zrjQvY5TqLccLtep\ 2f+8gHkEpxevoYL7\ 95Ab0w\x0ah2kscvHqV\ U4en0Q4Dk8dG+Pdx\ ycxns/paomP/uD7u\ d2O6GSaWqnEz//QD\ 2JSQ9Zso7tJXiM/o\ sEc\x0ahjv0vnFLZZhb\ GNjxpKtwykW8kTLC\ d3J94pl630HooJCO\ whkp5qpJUuYCDY3m\ lvK3K45r0Hs91WK+\ \x0aY3fCXDxG5Sn3ldE\ S6efpeaFk32Mg+3o\ NgbPrllp5LuHIKKK\ 21qwy3IXfOzozs1h\ jCGo11NjEvT6d\x0aA8\ EfGSXtdnOp1n2g2w\ mq4OEUQ6zvrzo5ro\ 629hax2x2/cTkXxy\ lOTSJro/s6h0Ei4t\ yZEfIRUp1o\x0akp7Uc\ uj7dNbJJFtjeo6Ml\ r/xUz9GpzfyOP/W9\ 5l474cxAt6uN1l48\ 3UKY2O8DPy5H/44k\ KszLrTa\x0a1G9cwq2G\ LDSfZNwfAWvRxtDV\ +ULy2XNnqJQqeFJS\ 9V1u3ZojWZFtHkDp\ 7jAYBvQ+MV6AdNWm\ lPGK\x0azvBOdS3Id4H\ Sc3uzlnmgc0oFZOB\ ikpR4ZmmT9ONhkiu\ 5uciihwq9vCYuBG6\ 50DN82Nnq0KSarN7\ O\x0abVJ9tyevaMji3p\ fSWIgF0nfyXbo9IJ\ 9h0ZsvB7YL0YWxUd\ T4gyePeT8S3bhK2l\ qbR+/MLxBqgzM5\x0ad\ Q/P6mAwnk9Qq9FdW\ NjXot30rg8ycFCBh\ 0mzDU2fwpUIV6Iib\ 8drSXtmFmZmUQWf4\ vjkgfcIbYc1\x0aGaoS\ oozNm2sX83PWWcY7\ 3/lOvv6N56HTASw6\ S7C9sbbFpUVCJ89E\ lCfz5lSv9523WJye\ qVEU98p/\x0aAjzXQfq\ 5jGukNUmU5JcHA91\ eKbXZbNNZbpMYw1w\ 35g+/f2HtZI+Yz8B\ 2DAP6HpCBt7ojhXx\ XKkMP\x0a4eT/R7AaQ1\ bmJG2q89/7br5DVb\ kAivR6X8okJW2072\ kwB0Dkox8icMgaHX\ QrwmQapxjkgg1KbR\ B8\x0a2Ipc8rILbB+oV\ eDlKcOii8PBBXWdb\ v1+uqXCMJgfEe4M5\ ivoNHlgL0yyNorT7\ ZA09j41o+MEHSd4\x0a\ 4xWMyshaa/Pr0nNQ\ pQAVeqhSgHAUJk53\ 1M/QnZjG1WtI36F8\ 4hTGPWTrWplfDwCk\ 76LTBGEtL3//\x0a+zz\ 33Cd4M11bkAtrmfn\ 217HAb375G0yXAv7\ Sh57lXz4PMsu4eP0\ mP/7uZ/g3vfv/+LP\ P8M8++wWQ\x0akiDw8d\ 08a5fUW3TihHx1AF\ obBCDTlH9/4RJnT2\ 0c+xPW5p5SO1jh7o\ byDmcGHYYBfU+ogp\ 8rkpGn\x0agISjUIV8p\ SyVsxbQVW7qopMEM\ nc1fW113lRmkgy30\ nP36cYHmn7uB+nmX\ fbCU7myUmtdN67tp\ bvM\x0aYMoAOspHydyR\ Uq6hvIsE5t7Jx1XS\ 5famDbryXIIT2yu7\ DTlEWs0tgznklqEy\ 6j6wUrjh2DhZFO1L\ \x0arEo6CuV7eXPquu+\ NSTJoRWDJVcoCj6w\ Vgdl99NXEGcsXL+H\ XKnhTx/d8Tvsla3X\ Joi7Cy/tt3FqJ\x0a1u\ ULfEkITk1N8Es/8n\ Feu3iJLDV8/cp1hI\ FXXvkeANdvX+fFMF\ +AmCTiW9dv8+MT4/\ z5dz+FkHBr\x0aaZ56p\ wPC8vkXXmKuHWOzf\ Kzt8lKTy0tNTLeDW\ XF+FAKZxPyzf/8n/\ NWPfpBX377EYqvD5\ X0svNaj\x0aPI/C2OFZ\ 2Q4Der8k7Tz13Fvp\ WVZsNfNu6qSxpk+u\ SgFOMQCd142tzrWC\ bbJW35KBi7ImD+p9\ OLIN\x0aCrtu9lKoXGp\ Rhh5uJSRtdsnukEl\ ECUyW3kV3ul1VTcq\ f0+mJL2Sogpc7STX\ 2b36Tm1is+Rjny22\ x\x0a5YhQafr4/SNg8o\ Bi+vC/tsaQtpurIh\ 8PGsYLKJ59DMg14j\ tzc2R9Kg+qYghKoB\ vxpqyeSTKw3bxB\x0at\ RygCl7e0FrvLyjF9\ QYCcSiiScJo4uXlt\ e9trYQMHGzRp/7md\ /i1W9fwp0+t3j+6e\ RWAX/+3X6B5\x0a9QLS\ cXgdcEtjWGtoX3uT\ P0jj1SyDbs6RtNpI\ x2FucREhJMJKhJRk\ czNI5VC/9Bajz76T\ xZ751uzL\x0a36EwNsZ\ v6QyjFMJall5+Mb9\ O7gPpKPxyCSoVfro\ k+Z3WwV99hgG9T7p\ zvYvQ+rmAlSaUO+r\ nuhWh\x0aWxFurYQ2Ca\ abbE6p93aPQh5ObU\ bHuUvRei9yISROJe\ 88N3FGurjFF99ahF\ S71tC3fM6og/SdXP\ sc\x0aEEJAKpCun+unW\ wcZuLBPrxbpKoTXy\ 4DEaZ49EWzbwPKg7\ viOImZ5gajeIKzVE\ NURRLtFZ36OLOrP\x0a\ TjiqL+MLHkgr0PXY\ QpHiCZ/O7Zuk7a0z\ FutRoZf3o2zTo5U3\ qnawSYY3VkGV/DXF\ spXn7JkVbfV9\x0ajur\ LpJ0OpZOnMO7BpYp\ td6PORlpvoYo+Tim\ kMDWNjiIab3wXYzL\ 82ijR7AKOFzD/yks\ IKXHCIjpO\x0aMGYGoS\ ROscjytbfJonxDIp\ TCr4ygo4j6rTcIps\ YpnJgmnlmkfvkSyh\ FMT0/zzsfP83tfex\ 4TdVGu\x0aS9JsMv/yi\ /lJCZBS4RV3n3AqH\ zuGKFcQWpM1lsmSG\ L9awxZ6/QmHNE82D\ Oh9sp9ab7rTytjaV\ W/k\x0ag0Z321hhKYwU\ cANv1f87jROiTpes\ E6AbW19oTZohAweT\ 7F5DX0/abuKWC1Qe\ PYeJY6zJSw3duXmy\ \x0abowry3kqf587/xU\ xHllwwdi8hEHufmZ\ SjXAVkrWLlnQU7Yt\ vUXz0sX0935C9EdW\ X0VFC6/YM3O5P\x0aHn\ U9JtNknQjn3jdjHz\ jGcQgnJkjbV/LmVM\ fNs2JbfN/SRhtvZP\ cAo6OEeHYJVcltW9\ fLIGftiKy5\x0a/eJBJ\ ynLFy+iPI9gtIqsD\ t6SVW+RkdDtGN2OU\ QUfpxLina5gtEZ34\ 1yt7c77d+JcB953S\ dIWpBJH\x0ard1vRezK\ LZZBSZxSQFb3kd0u\ oxNVfuYv/zSe5zIX\ xSy++TqOH+Rjcnt8\ LcrzoFrDAlZK5Ng4\ HhvX\x0aXL/TOJzc4DC\ g98FBzMdaaw5tFMJ\ Yy9jT7+AjP/kkU+e\ P0V3ugoDrr13j6//\ 8q8S35xFSYa0GBNY\ Y\x0anKCIyRLaF1s9Ew\ mLjtpYC8rzEcrB6g\ yTxj0VJwHW4hTyi4\ 3OMkbPP83kSY/HP3\ QCx1F85TNvoZoN\x0as\ m5urmASMJ2IrNvq1\ f76n9N1KgWcUpA34\ sWaZLmJSRJk4OGOF\ vEnasRzy0jy1boTh\ njle9PN+zAS\x0aTI4S\ zSzelUKgjmNkFmOc\ Q27Wuhe4HsWJ8bzM\ EBaw7Rbtmdub3jvd\ iWG0nDfa9jF5wnIX\ 00mRYU9t\x0azYI3Usr\ nv9Oda/g6SWjfnkP\ OLxJMj6IKgwvscbO\ 5/fN24lwO18kzcLq\ zdTlCd2IEAqRa7W3\ aCpPl\x0a74NXKeUudk\ HA3O0l/vdf+QcA+Y\ 7f9VbdFqG3YfB8vE\ Jh1xKRX96fvsBBMA\ zofWCj/dd4t8UAxi\ DE\x0a/uoz++HiSzP8y\ e9fZe6b30C6EuEKT\ GSwxuL4gnCshFKS5\ swycSvPg/vFkLTeI\ jg2iRMERLNzpN32\x0a\ qpYyQuAVfNxqSDzf\ JGosoVRe186WZnnj\ lWtc+c4UThDQuXWL\ pJE/Nl5YQAUebrVC\ 8ZGTdK7fIG7U\x0a8Qr\ FDV+sbRECHafEM/U\ NN5tWFxMlqGpIcGy\ EaGaJ0rHjh9/B+5D\ jqJDiI6dpXbp4V8d\ J6ss4D8FU\x0agpUKOT\ q+tqsrlQmSiM4W2h\ dpo41bLuZbwPbOTW\ 8m05Dlu9wV3Orawn\ a9f/dOanWda3OosE\ Hh2Dh4\x0ady+ytVMA3\ nA+fTT0yYKPcHe/j\ ibLLbzJ6qZyhVAbr\ zeyF/T9E3kNX9aXd\ nyPOwuLlI/IZ3QY0\ Ptg\x0aJbgNHCGw4vDb\ tIQUSCUxxqCzjLEz\ k3zyb3yaLMmtTXWi\ +cO/+3vo2PDp//HH\ 8Yo+aZxSHq9w8ZuX\ \x0aef35m8y99F3Kk1W\ e/MTTnPvgYyRJRnG\ kxOf+0deYe/kVihM\ 1nvvlj2CMIUs1tWM\ jvPT517n+6gyL\x0ar7\ 3OyFPvYGS6wnt+5C\ zaWJSUfOnXn2fpwl\ t4pWofL2Lni4Je7h\ InmuD4KEYNg/lhY7\ z8PVeej8l2\x0arw1vR\ 7z8cAT0rVCjE1uKW\ ZlOApUiwpX7mo9eP\ 7EiHLWaXdsteNo0o\ 33tNsVzdx/QC+PjN\ K7t31t+\x0aFVf0XZ/W\ jS5etYRwHZQfbBuk\ S8dPYMMCf6ec8vtt\ xXdOn2X57bd2PHbn\ 0kUKZx/d69kPnGFA\ 74Pd\x0aRGP2g9UGk6S\ 5+9IWuLUiNjMDHes\ 6/cw473quRuMvnMJ\ khj/93A3mv/0NShM\ VHEfx+b/3h+g0Bgt\ x\x0aO8Z1XCrjFT73T1\ 8hq8+iAp/HP3QSvC\ Jgac7Weelff4tXv/\ Q6wfgY1ZOTeJWR/A\ IhYGR6lN/9+98k\x0au\ nmFcHKKs8+MIQpVr\ GdZuvAajYse1194j\ eKJE4w/MoKsjGHMh\ V1fh/K9VcejrVh9v\ 7oJUvWxOBhy\x0aYBRO\ HKd19eq+1NGOssTm\ YRGM1ogW78hCZZpk\ qZX7LBSDvrvYVxBS\ 4Y2U8UcqyHCjredO\ znGrPuK3\x0abuJN73+\ 87WeDjN+mRFCrEtW\ X93UMFfj4U1WcchG\ TJDv3K7F27vHcMt5\ YmXhu691/9fQZTBA\ A8D83\x0aXYQxdG7svv\ A4CJ+P/TAM6H1gd6\ k17QehJNJ1MOt26C\ vGIP6xaj5j2lt9my\ xDd3rd8nexuFi42e\ DC\x0ad2ZZut3Nu1xbD\ XSW0bi9RHOuwY/+z\ U/ytd+9Qv3lF1br+\ ytl/uWLl5C+4sbYC\ KWKpF4OsEnG6DPv\x0a\ QrgeT75/hKnHJrjw\ /HVu9p4vakWIpEPz\ xk1MlmKfyWtwwgqU\ 71M7/zSu7/D0D05Q\ na7xld96s7++\x0aAsG\ a3OUOhBODb+YZsje\ MdHCCYF8BXToKVX6\ 4JxPciWObAjqAjVM\ wuZCMzcI9Ne0ms8v\ 4Y1VkaXPH\x0aYfHEFO\ 0bOzcxxo0GQkncyW\ N9P+d6fjvKw447Nb\ 3vgO6OlXDKRWyaki\ w086xFH+QbpAy3Vs\ ylX+8c\x0a/esF8xWsl\ H2PFB4FhgF9F2QcH\ chOQSgJSkG6omWsk\ AUfb6RE1ow21LxEo\ PKRjmKASTN0Z39iN\ FEn\x0aY+FWSv2N72Ki\ 3LNXSofmTIPn/9Wr\ qPII048EfOC5H+OL\ f//fksWalYKT0Qah\ BUqBcgTKC6g89RTv\ \x0ae+4YL3zxNq99/TY\ Xv1tn6vSa81SWZFi\ dYY3doNwmHEnl/Lt\ 47Nkyb31niZe+fIu\ x40v9Zw+VwFqz\x0abX\ ZjBVl5CFqk7wOcYk\ Dabu/5e6Q8f5Nr2Z\ Ack2my5Q5OrYD0Xd\ jjFI4qbb3YlaURyk\ +MQNSgs7CI\x0abm0dz\ KKlOlkSEZ48s9dTX\ 3uuLN3X49zREl6lg\ s0y4sUGWaP/z5bJN\ OlCC3e8hCx4vUzpz\ hu28hNP\x0a7pi5cAsh\ wanTe3oNB8UwoO9C\ 3NzfCnJXemlpgODE\ aG6yIAXJUhPTTcGu\ WfTJxMFGvZ8DN/cl\ L4dk\x0anYisvnN9UgU\ e1rp5J+jqiwKBwKg\ 8IEpP0Z69TXb5Iui\ n+TP/yXtwfJcs1qt\ z8qXjx3BLRaYfLfL\ m\x0aS02yqItF4Bd8Wp\ fexK+N8IFPn2H2yl\ q/wXZ7bbdQxHEFVk\ P9jVepPnqe8+87zf\ xnd09tqTCfVQXI\x0at\ lEak46ifPbsUETmi\ CDLozjNDkmz/9SwW\ ywQnByq+tlWHacSb\ imUpKME0Vaogo9bK\ +2adl6hr8xV\x0aUKFw\ YqPjoExT2jdvrO5Y\ s3ZEsnALb2x/QjTx\ 0v7MrrxqCbC54+Ny\ Z8+iVzpKUHGWZzdi\ 3ZdiX/mJ\x0aJwHIZme\ Imw2K586Tzc7QXVo\ iHJ84MsZOw4C+C6v\ mIgMk13F3EQiyTpT\ 7dvfC7VZfXJNkqx8\ 6maTI\x0awEV6Lir0cM\ IgN0Fpdjal493REs\ KRaCKwhmLV52M/Oc\ WNp0sICW+90qJ5+T\ XKJx7h9NMTxB2Ncg\ V/\x0a/P99hzROEUKg4\ 4x3fmSciy9LTj1RZ\ vFWB2lTdJQiyBvez\ n7kGZYXM175o9sbh\ HI69Tam51YkUcxe\x0a\ y3cRcX2ZLLWMn6ny\ +Kc+QHMp49U/vrVr\ tl2F+XwqQNbsbvlF\ lI4inBjDyOFH+yix\ ZpjT5/3vQjv7\x0aQUK\ UarhkxNuklFe9Ivr\ MbjnVEFHYX1+JcV3\ C0RHas7Or16isE+F\ 6dUS5tufj+aPjpO3\ OnsoxKvBy\x0aT40sJW\ tvfQ3oB6vvcKrrE2\ dyatU4yJmcojw51V\ cwf8YXfC8++LA//N\ bswnaNV3eDDNw8TW\ YhW+7s\x0ayZhlJbhLb\ y2wS8/BrZVwrFlrF\ uvVma0xoCWdmdu88\ U2X739rrR4nbUrWb\ NOdn+PKm+tmKeMGV\ liE\x0azGfSX/n6PALL\ 6y8uI3REZ/Y2yvfo\ 3rzGNz9nMSgEFt2u\ Ix0XECStmG/83kVa\ N67lCkyNJp2lFmmr\ \x0agUkNydwNnv8Di13\ 5RiUtTJpu27muCj5\ OeS2YbyWXKx1FYXw\ cURnZ9Lsh95a9fo/\ WKxo+7DilcZzS\x0aOO\ nSDFk3wnTzRb8q+L\ m/BAKT7v5+OaWQwu\ jk3e0my1WCJKEzn+\ +ubZKRxB38fQR0ox\ wKZx6FZoPm\x0azZu7P\ wCQBQ+hFFmzu29RK\ hV4IPNrqXAU0svlq\ MvTByd5Wz+kj/Mwo\ O/CgTTE9WY/TZru2\ 2VtJbCr\x0agkH6Dkiw\ scEKs2YEs9JFryGa\ W6I7c4dAghAIJN1b\ C3RvzyOkxBsto9sx\ fq1KstBgZek///I3\ UZ6L\x0aN1JDei5+tUY\ 0t0Dn9uymc3O9ALR\ g/qXv5NrQQYhJUxZ\ efQ0QuF5I+8ZtWtd\ u5rKN5QJOJSStN3G\ 2\x0akJtcUY7Cbh/MAb\ xSCVEdBvMHAZ0kiL\ SLdR/uprj1uCNTKG\ eR1IvwC2UolJFZTN\ RcQre3ziSu2Dur\x0ac\ oBwFda7+/fTKZagF\ 9BNpvuaKd+RcoXyE\ xW6Vy5tKQ0sHYWqh\ DiFMPfIAHQ33mBO0\ y8q9FElH+k5\x0aYHIr\ WumVcrMtz73r1Lkw\ BrvF+1ETMIAhvV0Z\ BvQdEFrfhSnJDsdd\ cWwbQLOdkLnhQLLU\ RLd66kpK\x0abVLocsL\ CBmMW2GgJaHWGcBy\ ccglhXIQvEK7g7W9\ fR5oEpRzcYhmpPNC\ AARUUkDsccz1KOZs\ kFa3O\x0aEMpBOR6OX8\ A5VsB0U8w6MxepFM\ JTuwbzoFbDndpf1+\ 2Qg8fovS2MrdHoLE\ YOA/oGZHkUf90YuH\ F8\x0agvIonSQDudHoK\ W+09fLyXNEfyPUGA\ D9Aumr12rjVInw/h\ KfPrtalV1CBhzdez\ ftmJIAga7bRnXhP\x0a\ TZbSyY2onHKYS1lH\ GSbL1vwfBGRZF0Vh\ 12NB3k9g3M0CWCJJ\ sHd0ygMcVkPPMKDv\ gDkgQRmhZB50\x0aB7h\ Y0K38i7yTutJOnr5\ COaureRm6mCTBWrj\ 0yiKd27dAS0xXY7q\ tTY/bLyuPtakma3R\ RJR+nFKB1\x0aBsZikq\ zX2a9Jl1vbZjOko/\ BHRu7rJjiRdtFpRN\ aN9t1kdFSxrTo63o\ ej4CFJI9/vGMfDKx\ dI4wjV\x0asxS12iAci\ fSd3Mq5E6NkHwqMf\ WCFwCmEJMv5tUCWB\ zdN4kxOQS+gryxI3\ FopHzHrRGTtiHSpt\ ats\x0a7XrWZymklwfz\ tN7aUH+XnoMtGlSf\ Kq5bBXPYPPa2wvey\ w/ksH0pAPynh+n14\ tY1b2+sN3w1C5epM\ \x0aK3VF3XMIQgiUv/U\ HYsfjSZl3vd+tr7o\ FE6e5K1ukIZXMv/Q\ yCIGzj/PqF5NpiBI\ QuWiMidOeNG6u\x0aR5\ 3Wtw/mkO/OV5TJ7l\ esGyLdEK8AenkeVT\ 08D+WDRpRqlJRHZ3\ Z2bzO9ZhjQ+0UWRh\ HpbYQjN4yX\x0a2NRgM\ WSLbfxz5wf2fP6xk\ wh5k7Q1eFns0tQUr\ ZkZhKNwSwUQAhMlR\ LeWsFm26858pXFuF\ dFrRPY9\x0ajMnymf07\ Plt5CbOFbl6gOMD3\ aYXzjuDCIQT1Qwno\ U47genJ/fTlFu0VS\ X+5PV3wPyJ6pAiKv\ E+qo\x0ai0VTnqxQv7G\ 454Bujen5H4d5E1y\ mscn+DDFMpjHzazt\ wJ+wv/TQIhKNQpSB\ /T+pdRODilINdm1/\ c\x0aYgE1NnFo59kvWX\ OeLIoIx09g9yjP+S\ AF8xVsWMANw/4Dum\ X7ucchW7Ky81zZka\ 5MveS+3JVdHr13\x0av\ MnjeAegyitqI8iF+\ V7Dmpt7XkjRdzB3K\ gWc0N9QurPWkHUjh\ COx2fbXR5NpzMI8c\ myw38Hjbv8B\x0a/fof\ fWnfntr77mbYy5M+\ Xbr/MvtRfQFj4txh\ bLX+d+cfZKs/UH4l\ sjrbVLMGQPZq6NqS\ tTsYnVKo\x0aFXjvT38\ oF2CJ97bL1p2YeGY\ JHSV4tTJO9fCC8KD\ IXZUU0nWIb9UxmUa\ 3IuJbdbLW9uYT0lE\ Ujljd\x0aPGvO07l2ie\ 7N+dxfvrt/HfMHjf\ XiQn0xDOh7YsWK2W\ R60wirN3J/iSw51S\ IydBGeAyIf790J6S\ hU\x0a4OVpdd8hbXXpX\ p9f/S+6sUgy18ivL\ 7uMurXn50lv3xrky\ +HJQ4qBh/Isn1ncn\ yLQXvir/+snuP3i\x0a\ W+AogmLIf/jM92l2\ 93dFaL/xKqVHHyWY\ mqJ17QpxvdkbrrIg\ JEIqpFLoJEIIAUKh\ gpAs6iCsQXou\x0aWZw\ 3qElpV40AdNxBFSr\ oNCHtdohn8lpRUAp\ 47Ace48v7fO0m1dD\ ogra4I0UO/t0eHNJ\ RyMDDqey9\x0aZKCCAD\ OghpxBEM1dz4P4Oh\ rXrq2KUjzMZHMzJH\ tMz64EqCF3j4k64B\ 5dX4M7zU3CyQmMSR\ BKkSzW\x0aiW4s7vh44\ Tk45RDhSNLl9qoX+\ n6Jlpdxjw2ul+Wfz\ B2O1vuhBPTDeCkmz\ fji715d/fd//Nffz\ e/+\x0a45f3dSytIybP\ VqjPZZTPnCN97SVM\ YgjKRXSqiVsdlOvg\ F31cz6U+W8foFCf0\ qZx9Auk6JK1l3HKZ\ \x0atNMiS7s4VuH4Ezi\ lYt6VvlzHGA2Dmrc\ V5N3g91ndUSiFCn0\ EknSpfyUx6SgKk1N\ HohFOGE372lX0\x0aFi\ M3kBteqGKAVyrg1B\ 4u57BfCDN+o+ugk7\ 0tM4VSKC88En/f+w\ WptvdI7ywvUSgf3Y\ Bemp7e8Lc2\x0axkVIg\ +5GuwZzIA/mUpIut\ AZmpiWTBOMdnQ1DP\ 9x/ufA+sToPbKLTx\ haK/NCfO0kwUkQYQ\ 9qM+NLv\x0aX1v93V/4\ a+9g/sIs4+cm+P3/\ 5/tU3/Fenv2Rx7EC\ GjPLvNC9SRZnnP/o\ U9RvLPLqH75MsRpy\ /uNP\x0aUpmo8h/+8b9\ Duoqp9z7Lp37+Wea\ vzmOtZeqxY/ybf/A\ CnddfpnruPCPHKzz\ x4Wm8wCVpJ3zj94r\ M\x0afuc7A3vNqzsawb\ Zf7KOEdBQy9FChRz\ K/twZE5ftHYnee1m\ dJl1pIx0EWCuhk63\ Ea6TsPXTAH+I1u\x0ab\ 5Jhj8IyQsqhh/0ec\ UemyKIIc8fudGXyp\ XP1EsXpY0dytt8EW\ 5yT9ohu9Zf6tsbkm\ hkDzOrEiwsD\x0a3aUf\ Bg9OQF/XeHT2EY/O\ Ui9AWMMPfHSMP/n8\ ddb3Vn3iP5rmK//2\ 2uq/G/Ndvv7V77P4\ redJdcp3\x0aHwm4dTU\ mnr1G/dJVjj1+HLG\ FTqDFgrBUjo/wE//\ tR/nn/9mvU59fZvL\ 97+fP/lLPXSx0mP/\ eK8x+\x0ax/DG52D86X\ fk8otecXCv30I630\ QdHyWYHiWeXd7V3/\ heI1yF9B1MmmH2aD\ 9YOHb8SOze3NokXn\ Uc\x0aK/ILSTpza0sHK\ Tc8ehfRw0JG3VUJ4\ H65a7GShxQV+tumm\ 22a0bp6HeE4FKbGI\ Bh8o9wgsULgKDeX\x0a\ rt4F3YxQ5QBV8LYV\ 2dkrSbuFmJ1ZlXq9\ H3hgArp0FH/2Z84R\ N7q8+NVbfOF3LuU7\ 8GIZHaXc2Sht\x0apMT\ 25qB1nPG9V9vIJMI\ pFtCtNmHZAWJU6OM\ GHsp1Ea5EBQ5uxUW\ FazIpylWMnBxh7vI\ E3swZAAAg\x0aAElEQV\ QczeUmYGm+fZG08w\ yQm4iUzzyCNzLNE+\ +tMHVuHOUqvvLbu3\ t/94vJNNJRRLcWcS\ cr+Mdq\x0apM0OuhntW\ +/4oBGOQrgKtN1zN\ sHsURv8IFkJ5gDeS\ G1TQFeBv6271cNA2\ mpizd7+vsOAvj+82\ jHi\x0amc12q7DmCS6B\ 9o0Z/GqEM360s0be\ 9AnixvZOZyvYTGO1\ yf0tBjHCS/5+xc0G\ Ok0Ijh3HqjulsY4e\ \x0aR+eqeJeYVPOHn3l\ 7w222kO+AvcIWcqL\ rUjOmJ2BRf/P7CDc\ Esa4z2YLwBDgCgcC\ mBhMblKvwQj+v\x0aXT\ sSqy3KlVgL1thVMw\ qJxmjDxNkTFEoOb/\ 7pbS68MI8bDj6duB\ LU07kmtlrACQOElO\ hmNLC60iAx\x0a3YRMg\ FMtEJ4cJ11sk3Xu/\ ot4L7FeSHhiHJ0kZ\ Eu5raM/drR3QgeN0\ Xsfo1TbCHcM2Z3ix\ ATtublt\x0af7/yt4iX\ l8mi6IFwtTOZRiYa\ 6xtk6MIAAvrKcbMo\ onvzBsGpo/8+PUDL\ 4O2bwRozHU6fXLtA\ jNck\x0a81eXkD0ntdS\ CtJqs17gjpWB5PsZ\ 1c63ztJXQXWiipKB\ QKyCEoDRW4vgzp5C\ ORKcZi5fmKI+VGXn\ y\x0aCYSShKfPEpQDsK\ Ach1NPVFmcS1m+eA\ ErXd79iYOpzZgstw\ PMljtkrQgV+Pku+A\ hiMo3pJKQLLUyc\x0a4\ Y2Xccf6lGo6wjilc\ fzR4xRPHqN85vhDv\ TuH/TmnyQHrPzxMy\ NH+Pm8m06TtDqLdf\ zPqUcZECTY1\x0aA3Pq\ U55L9fRpiufOE1Rr\ JLf6M5C5lzwwO/T6\ Dp2Qr77eoVaUfPzT\ 01gsL3x5hpdfaiF6\ 6mLxUhuT\x0arq3oZKB\ Ymol49hPHcdxjvPD\ 5CgvffYnbF25y9oO\ P88n/+tPE7ZjZt26\ TtGNsBq2FJv/q7z3\ Ps8+d\x0apfnsNBdfby\ OlwApBFqd870+X+M\ CPTrP81J/h0qstvv\ n5tQ9HGmcs3NifN/\ B25I5s+sjLZ5pMI4\ GM\x0aLsKTOGFAyu4Xm\ Gx+Bmf8iNe21otuP\ 8QIZ/vu6/WsjDCqo\ o9TLByJHomHgiNe3\ lgZ++xcuojeqddG\x0a\ ilxcawCTQ0G1ints\ Xed9pYJXqSC0PtKp\ 9wcmoH/2n35vx9/X\ 24avfm5jx+SKgtfX\ PneTxsWLqyu7\x0aYGq\ C5Ytv8p0sRSiP7uw\ MWaq5+uJllm8u4wY\ ucScmanbBgkSSxin\ tS2/wij0HCCSW9mI\ LYQ1WW3Rr\x0anhe+kH\ 88bNQm63Z7hhWS1n\ yDP/mNrwCg/ME1T6\ 24uh11gQ6TaVTvXE\ WfqmrxcuPoB/QhQC\ 67uZ1h\x0a950z+iLq0\ F1agOLRDjJHHRV4f\ ZfZsk4bdYiqkPulc\ PZRomtXSTtbizXJ0\ OuVP02ua3EXs+jK3\ 3qC\x0aJl2Y33OTnMfh\ jG7DIQb0P19x+YPG\ 0ZQ8kVmKiTUqyD/U\ brFEVu+y+MprWCxC\ SFwvIG1r5t6axd6x\ \x0a65WOA8JSPPsEBhA\ YShWXy9+9ie62Uco\ lWljEyeJckrEdEc8\ tYlOL64dYY5m9MIs\ 7YL10VfAwSTY4\x0al6\ WDROSNUFvZJ27FUR\ /JG7KG8Lwtm9zKJ0\ 5sus0GBYLp4e78bl\ HFoO+ArnW2yQnxqB\ KcegS2COpu\x0atYhTC\ rGY3BY1dHOxrX2Sd\ joEtdFNss376Xg/7\ Uou9OFXPwjuKqBf/\ 6MviZMf+1Rf+7+jG\ swBdNLG\x0aq1XRUYJT\ ChFCoDyffpz0rM4w\ aYIxa53kFkmzYWh/\ t07rxnUczwctIBM4\ pQJeuYxbKhHfXjrQ\ wCQc\x0aiW7vzzf40BE\ inz3u9v85kVl2pLr\ dh2yNdQIKE5N0Zmf\ RcR5knFKIKBSPevL\ ovmW7HeadSNdBuPd\ X\x0aNiQ49Qhhp03SbO\ SBXQlk4GKNye1jHY\ H0XaTr7MmVbT1Jq4\ 2+fGlVve590vBts7\ /3aS/B/G503OEB\x0aS\ rnfDWkW4VQLq/Z6W\ ItQsq+6n1AOEjCxI\ b59DX9kBIQgXl6ic\ 2sGYQUqKGBSTdboI\ H0H6ZdxiiFp\x0a0Ma0\ DqarWxX8vCtfm/tj\ N2ssJs5wSiHSd1YX\ Ijude7wwhzs12OZC\ 01pCFarYI15XvO8o\ lChMQWd2\x0aNq+pB+7\ wPT5AnPI40q3vGNC\ k56CKwaaM4/2ALRR\ xC0XWt07a5hLR8mJ\ +7evZpZrF/Tf86SR\ Bz8+i\x0axif5kVDz7f\ bR/7wOAzp5qtcak6\ cFDVhhkb6L6VOuUi\ gHxw/ozszRvjnTO6\ ZAeR5CrfvIWduzBb\ VY\x0aa/asnrUXZOhit\ N7z/O+9wmaarJl7o\ qvQRyhF1urmi6Vtg\ npUX8YfHRuYYlzWn\ McrVDHDQHMwhCVK\x0a\ 0w46jZCOP9ydHzDF\ iQmaN7dWWisem0RW\ c8MWYe1997d4ztN8\ MdlYKFBhGZjBphk2\ 1aiCv8lbYTec\x0aIB/\ 1TTsdCmOjqN6c/v/\ Wzq/jen6WLI7xT5w\ ayOsYNMOATu4ZHM/\ mYgxutYjwFMKVyMD\ Ng/0uO0XI\x0ag7pSzo\ 61KBl4+epRSLJuN0\ 8PHRDSdXJ1rvvkm2\ oyjcm6mDhBlUNUIT\ ds2e0L2bpxneIjZw\ ay23PK\x0a48Pa7QFjv\ ADhBffLx/L+plwFN\ gb0YLSGO7HRoXCv9\ r73mp8NMn472iJ09\ exSTaqRqUYgkJ7Tt\ 7CW\x0aXykTjE9iXJet\ upn0/CzR8nKuLXEX\ 53+QHOpW5LnC0dz5\ mCRDFX1U0QdH5Dtn\ JXBKIU65gCqFuLUS\ \x0aKry7naAq+sjAw5r\ ct/ggEVLed25Vstf\ prptd0sU2KvDWOvW\ 3QccJ7auXobVZbnX\ IkCFrFMbHNgXz\x0a+5\ HVYN5q0r1ymXTmFt\ nsDO3b6+bEDdjMoE\ oB0u1v3+p4PmYHQS\ M1Pknp7DmcIMAszP\ d1zJ8oH267\x0a4aHu0\ L/YOXr7H5nFCF/iB\ CHSyXe1VhtsqhHKy\ WejgwDpKLKOk+/W7\ 9SR7QMVeDiFAKwlb\ XUHIk24\x0a6bU4KpdT\ dRQmyRC+2qBxf5RZ\ nUEOfbJmh72kFnSc\ 0J6dRbWbhGPjWGew\ 0wJDhjwIqLGJe30K\ g6VU\x0apiAljWvXNv3\ KxAmZEjiVECHkavn\ UpnrbjGt7fh7m51G\ eS+HsuS2f0kpJePo\ M0bUruMagJnaWzv3\ X\x0azcMteYpBNET02+\ l+VBHWYoXAtutom5\ LWO5g4Wf2jO6UQpx\ JirSFb3l+qPDg2ij\ dawaQp3Zvz6PZg\x0a0\ +3SUQjPyWvQnofux\ MjQJV1qH2hqfxBIR\ 6GKAW61gHAVaSsfS\ XGCgHh2Gd3d+fylo\ xBKEYzUVuuC\x0aQ4Y8\ 7HSuXNpg6XvnzP/9\ yFbCLnp+ls7CZmEx\ 6am82dnz81y0AN2J\ SRaa6G4nVyMUAnGH\ spxdMRIS\x0auatj6dg\ 0trhRwVKmCctvv4m\ OE/xajfD0o9wtd9v\ hDsMaOrCuhqQt8Vx\ 9w+pNBbnYPwJ0M95\ XcJSu\x0aQhXyblLdjg\ cazFfS1DLw8EZLWC\ zxzSWcsSJCSYQj88\ 59s3cDlMNAOqpX0i\ jkgVyDWw7JophksY\ nd\x0aZexEOgoV+BQmJ\ jHecGc+5OEmadwma\ 0QDcxw7amyl0qbGJ\ 5G92vbq/bQmbXRIG\ w1yk0yBDSAoj5C0\x0a\ lvHKJaTjkDSaiFSh\ ghCrM3QaozwHFQQk\ jSYmS+kuLhLcEdCN\ 61F5/Clal94krtfJ\ otdxAh/H87DW\x0a4pV\ LUK4d8LuxmWFAX4e\ ojCCX8g9G3qEuCac\ mMFlMtFhHd/an9+O\ OllGhh4lSksXGwM5\ 3ZWeqigFO\x0aJSBrRS\ Tz+fGTmQZOJa/9W6\ 1z1aRufv6DCOzyzt\ q2AOzejr3ih+5WQr\ JuTDrf6mUa8jJH3I\ h2PJ7y\x0aPJxiiDc5P\ WxmGzIESOeaR3Lhf\ tB4pdIGl0OdRCAtI\ 48/geldHaRSpK0WR\ meUzz/NqcdDbrzRZ\ PGV\x0al9FRB2uhcHwS\ f/IUoxMO9dmI2W9/\ m6SxTPrGmuNb9dw5\ jOPynvfXeFE+RfvN\ 1zAWoqUlhITRd76b\ \x0aqdMFnjs+ym8+35+\ f+6AYBvQ7EDKfPy+\ dPI5x8x2fg8Imd6G\ 1LsFqg46TwYq8CIE\ qBTilgGSuSdbe\x0aWJ\ fPGl2yRhdvooI3Vs\ ZmhnS5vRrY7+qplU\ L6LrgC6Tsoz4PMEt\ 3OU1/9XFSEUkjXxW\ qLaa+dU7bQ\x0axn1ke\ 1WflcVEcfoYNjj6k\ pVDhhwWThCQtNr3+\ jQOjI9LzVfN5l26O\ zVN0mptuO6MPvU0f\ /G//yE6\x0ajQ5ZN0FI\ yRd/8/s4wVXaV97g\ Gk/w+HtGeYt3Mf/S\ ywiR28qaTLPIGT76\ k4/xhRuX6c4u4vXM\ gqxO\x0aSRfneez9Z3j\ xxSYAxemT1C9ewBj\ DxLvfw5lnKlx8tU1\ mDt/0ZiABfS+KcUe\ dFYu89Ts+4wc96cq\ 7\x0aCMYSnEqIycrEt7\ f2K97zIUMXFXok80\ 1MvH2QzpbamE6KUw\ nxx3MrT6M1pjfmIR\ DIdaksodQmgwMh\x0aB\ AixertAYI3FakPWj\ bCRwSn5OKNFssX+L\ yhCSRC5U9Lq6/K9H\ Wf0i+MTUK0NR5+GD\ LmDLHowU+0r\x0abBXM\ VyifOMnylSsbbmvM\ NfjC//XHNC9ewi2W\ SXUbk1qi+Trp8rcZ\ ee7HMKLB+FNPY5KE\ xrUrdG7P\x0aEo5P8NY\ LtyicfIzOreeBPJj\ HrRYmTblyZRzTbuI\ EFUy5QmFykuVr18F\ asjS/Mv329Wbfr2s\ Q9XMY\x0a7tD7onvl8l\ 2JwOhGTKa6uNUiXq\ 2CSbI9Cx5sxYo+9v\ oGvq3If5eQzCcIpR\ BurtQlXAlCrFqu2s\ SA\x0atZgk3fR6t9Lit\ ia/P5b8mAV3R6tWF\ Xi5gYKnkK5a9YzPu\ vGG85cld1uXOCf0o\ Xr4takhQ446wm6t\x0a\ CikdRen0qQd+AWyC\ kOrZRzGeh7AWsghh\ LcIKgnKV4Oz51fsK\ a4nnb+JXQt7xgRqv\ fQsIQopTx8i6\x0aXYS\ UnHv/NKefSfiDb4G\ Ou+g0YezJx/nEL/w\ Ac1cXKY2fQVqYf2O\ BC5xiYvoUBrj6Zod\ f/CtP83//\x0ai1cP/T\ 24JwH9Px1x+M2l/W\ ns3gus2V1YZidMnJ\ B1ukhfIX0fb6SMid\ K76j5XBT+Xz+xT2n\ X1PqlG\x0aZirfEa8fa\ esF5k337/d8nM27+\ hXcsRLKz3sShBCYV\ KNbCWmc7+St3vhcQ\ sptp9bCR87u6byGD\ HlY\x0aiGY21mudIKB4\ bBrjPxiqfCvTSDth\ vFwrxAoBbkh1ssKP\ /fJHcglcY/nCv3x7\ 9ffexAncJOH0uTFe\ \x0a+1aeNVXjkyjyy09\ 1qsrS9QVq58/SePs\ Kxhim3zHNN37/InF\ 9mbTb4d2fehwROAi\ rodvFFkp85AMj\x0aXP\ r3V7Y5w4PlngT0+y\ mYDwKTaWh20b6HdH\ LTAG+0TGJs345Idy\ JdB+k4+3r8QTTNWG\ PA2E02me5Y\x0aCeFIh\ JToboKJUqzWO87zm\ 06KGhmMnOuQIQ8DM\ o7I2msOZMpzKU5PY\ 7yjqmm2N4TWdK5fo\ 3Dy1J78\x0ayE0n5vP/\ PG9okyYjmrmBbrQI\ xyb4+M+9my//wQ2e\ +/MnNz2uHAoufuUt\ Ll/p4tamMPoiUkne\ 8fEz\x0afOW33qQ9d4v\ ufJ03Xj5GoSgxUQu\ hFKWi5PU3llls3Js\ 23YFJiQ2qBvCgYlJ\ N1urmK0UpUYGPO1r\ C\x0aHS3t/uA7cCr5XD\ yAiY6Qi50BKde+bO\ 5ICem7CCRZK0K3Ir\ JWNw/sO4jz6E60pS\ /6gzBHO2TI3SKM\x0ah\ mitZGeWF2jdvLm6U\ JeOojA5+cAEc8jH1\ cJajc71a8ik/01MG\ ufXx6UXv8nsi9+me\ f0mraUlnLER\x0a6s38\ OF/8g+ucmtq4t/2B\ HzrG919v0+0aPvmX\ zjH13vcTFAuolQ2L\ BulJtIYktlhjkH6I\ X1J7DuaD\x0ajJ33TBv\ 0Gff+if+DMFFRvod\ TKiA9N58JT1OsNai\ CRzA9ij9ZwymHm8f\ B1j++UsCbrOCUQky\ akS63\x0aMfERCei296\ F2FKoW4o6WUEUPm2\ p0J0a3u31lE0ym83\ zXHQG9cmrzKnrIkK\ OCiNqY1tJgj9nd2F\ wa\x0a37pO++0LxMtzE\ KxtBJKoi042NpVSL\ A/0XI4E1Rrh6TNYv\ XuGt/P2m0idkFmBs\ IbiyRNUHjmJXy4j\x0a\ BEyeKvLK1xcw9Xmk\ SZGFnp5HkjcVvv3K\ 2lRTMXQxjotfG+XF\ z75NbVThlsoUxid5\ z8fHmT4dIqXC\x0axLn\ C5S+9Z2f1uIPknjX\ FfS+9P6o6wg5GkMW\ pFnArRRCQtbqk9Vb\ u8ObkzWFCyVzlrbB\ uVW3BZFnP\x0ayjW/jz\ UGE2foToQewPjZwL\ C5CpPyPVTg525yqc\ F00l2b9rZCxwlOtZ\ C/3iTDFvaeyRgyZN\ DINMak\x0aCRTWAqZMY\ tpLuba3E8f41TGMs\ 70m+G5kszN0l7ZeH\ EjXwbtjVPPOhlWv8\ GCPctpw99cXN5sUk\ oh2\x0aq8vYMZ8FeQIA\ f/I46vqbBCUHaVos\ Xr6IcBVGvg+lQPfE\ qS5fX7u2fvZfvM47\ 3lnk5VlYvLXEiSfH\ \x0aKR4/QZpaLr28xIn\ zFQgrtK+8AX6ZX5u\ ZPZgX3gfDLvddMM2\ 7HzFzq0XcchGkQHc\ j0uXWBi136SiE\x0a6y\ B8tcFIQAi5+m+r88\ BmkhQTpTv6HN8LTK\ aRQLrcRnouquihsz\ TXk0/3no1J623cWh\ F3pHS0ygpD\x0aHlpse\ 5nW/AI6SiifOIEoF\ DGNZZZnZlbvk9Elq\ TdxCiH+dP9ZJZmld\ Gdu7zpD7lQKEFY23\ OYXK7nE\x0aq7EgBE5t\ 7IFogtsvotMGIWjf\ vsUf/c7G94q0g44i\ rr5Wp3XtCliJiTSm\ vYQslJFYrNYIK1dt\ mW2S\x0a8torbaJOHTc\ scePSWjNzva6pf2s\ J4ibRYp3SI7s37h0\ kA9FyX89e5tE/Hkq\ +2j3aGl+i06Jx7fp\ d\x0aHSM8OY5TKuRp8n\ qLrNHpKyCvuI3ZbH\ tDgaPGikGMKgcIT+\ VZhijFphoTp31bGQ\ J4ExWEI/Eq979D\x0a1\ JD7G6kT2rdvYaL+s\ 03SUTjFkGBkjKTTQ\ CcpJk1zkQtr9/WdH\ vaR7E7zjdexOiOLI\ u50erfWIMg1\x0aNaSU\ KC/AZClGZ1hjsBgE\ krA2QuHc+W2eYTN2\ aYH65cuMvOd9ezrX\ Qfee3dMd+lEP5sBd\ p3ql56BC\x0aHxDoTkT\ W7C+YA/vugL+XmEx\ DptFRgjtSyksJoYf\ 187G4vQR0E6W9927\ IkHuLTfdeOjKZJll\ ukSwP\x0aRjGsfOrEQI\ 7zIJPcyi1UhXJwi6\ Ut6+13mrEopfJRtd\ 59hXLQmaZz6W2Kk1\ ObjFm2QoyMMVau3n\ MJ\x0a6oE3xV3/oy/dX\ ybcB4xTLSBcB5tle\ Zf7HgLa/U661EJ3Y\ mxqciW6PX4ysmaXo\ Dp+MCc3ZMgesGm2\x0a\ F0ffg6HwADa67ZPt\ /Mi96eOEIyOr/xbK\ 2fTfdtz5e52kNK5f\ p3PpIqK9+6LMOHvb\ Hx9ErDyI4Huv\x0aP/Z\ HBuko3HIBLKTN9oF\ 4oB91dCcma3TyVJe\ jtu3i3w4jh20eQ+4\ 9olhC+t6eP7+DIHc\ UHOoyrEeO\x0abb/Qdy\ anBvpcOkmIG4Mz1V\ rHwGPlcDd9gKhigP\ R9rM4w8cOzM78THS\ XYzCBdB+HuHqClo/\ Ju+XB4\x0aERtyNLBSU\ Th+EifMR0tz6eLDC\ +7h+OihPdeDQPXMW\ dwBdvvr9P4ofx5IQ\ N9rof/Dwf0zk94P0\ s1X\x0a1G4t9yQ3nRRz\ lEbM7gG6myAdJ5es\ veNC6AQBxckJqqfP\ UD1zhtL0cQpnHqV4\ 6sy9OdkhDxSPVUv8\ \x0arb/wqbs+jpUK//h\ JyqfPUH7kDKXjJwh\ q1QMN7CvHFsWhf8F\ eML5PcOoRvFJxz49\ 1CwVKU1OUjx3D\x0aLR\ SQjtpVi+S5wt5C6U\ EJsQ28y32FB8V9Da\ B98UL+wzZa56tfaE\ E+NlIuoIr5PDYCkv\ kmycKBpGzu\x0aK/ypG\ sKRZM0upuctL12X4\ vGTe64/DRlyJ8IY7\ BYmQgdOo07a7W6y7\ xwE0lG4lRLexPRAj\ /sw0X77\x0awp7+LisG\ L6u0mnTm5/Cmqkjp\ IP3qXZ/TQQX0Ycq9\ D/xjI7iTFdzxMqoU\ Ir28lrbyHwJUMcQd\ L+cj\x0aakUf3U0QMh/\ bsvpe9z4eDeKZOjY\ zuSJe4CE9j/CRM8N\ gPmRfiG6LsqP45Y9\ 9MP93ks8HP3fm+Op\ 9\x0aZO+2v/3pTx7ciV\ RquFPTFCcmBr5bl4\ 47DOZ3iV+u7H6ndd\ gs1734abdXJi2VKR\ 0/iegaLBoTLyHN\x0a0\ cy4HlhAfxC13aXr4\ FZC/MkK4SMThI9ME\ JwaIzw5gVsNMTqje\ 3WO6OZi7kGerNiVD\ tdNK2SNLjYz\x0ahBOj\ hKdO3+vTGXKE+Tt/\ 5adWf/6bf/bjqz//\ V5/4QQCE49HMNG/P\ 5h3PJgj5uz//czx5\ 5jT/8L/4\x0aRQBsL6B\ PnzgE6eBKDXcfKd4\ hB8tem+S6C7ns6++\ kaxsN43nYzKD8UaQ\ /gpH77+85yNg43Br\ tgm3W\x0aSRYbd1h8ij\ y9vuGOa/ajK+kdk2\ lkKPKd+hAgH/9xhA\ vecARnyM48+ui51Z\ +feuc74Q+/CsDoxA\ Rl\x0aR9Gst6A2yuVba\ 0ptN2Zv8Lmvfo5P9\ uQLunMzqMYy2TbWv\ oPGmzqON3Wc5huvD\ +R4JksxSwvIkbGB\x0a\ HG/I7ugkRibJxrQ7\ 4I2N3PM58904sBr6\ Cvd7LT2euUHW6uyr\ NuZP1/DHRkiXmnRv\ rM1N+pUKXqmE\x0aSRL\ a81vPUz6ouKUCwYl\ H7vVpDDlCPF4u8Ga\ zs+E2mSX86v/wt+h\ 02kSdNmPjE7SW6ph\ Mk6YJjueT\x0apCmO6/\ LaKy/zL174HgC/9r\ f/S+ZmZ5icPEZruc\ HN+VsUwzKL16/zq1\ 99/tBf290GdukohF\ QUzj46\x0aoDN6ONnr3\ 8ErFfFPnBr4eRx05\ nq4Q98FHcX7bnRR0\ oXMwymNU35i89yk6\ uys2/wgMgzmQ+7k3\ LFx\x0a3mxeJbt9E7dc\ prs4RzA2ief5/PKv\ /J99HUMmMcbz+aVf\ +Ue8d2KEv/7Xfp7/\ 5tf/34M98T4oP/Ek\ \x0a6fIsyfzyvq4jJtO\ sSDF82DF8IxuW7/b\ M8t79OLIoIrhXTZZ\ 3wYHv0AFx8mOfOuq\ Ziq1pN+kszBOM\x0aVH\ HCIlZnxM0mWauDjr\ dvivBqJfyp/mt2g0\ rP3Q8MtaiH3Mn5kT\ J/7uMf4//4159dve\ 2n3vcuauMj\x0a/MNf/\ Sc4YYhJU4TjYLKUu\ Ntg5B1ba2afLxf4y\ z/2o9y+dZNf/+qfI\ rTGqqNR8hLdNjqOw\ VqSVou0\x0a05/QlHQU\ 4egYcmQ4i74f9nt9\ LYyNosYHZ4XaU4Y7\ 0IB7GAH9vk+774ZZ\ mKdbX0L5PsHJ/e1A\ ZZqw\x0afPHigM/saBF\ OjOKM3juv4CFHj3T\ uFu7ENEVH8dw7n0I\ AnW7MH791kU6asfD\ it5COi1xnRxpMj+K\ N\x0aHt/yeD/+xFn+zR\ uXDuns7x5TX6A9M9\ fXfYeL4f2xVUB3Cy\ Emy9DJ9k6OyvMonT\ yFcfdvhbuew2gU\x0aH\ wb0ASG0Binv2jqvn\ 5lJq7MdNYmPIsr3K\ Jx5eOqARSX4yx9+N\ 67r8vlvvszl9tEcc\ 7HtOsov9uXf\x0aLbIO\ 1hmc+pZMIpo3riE9\ l+LkNMZdM+IR3S7z\ r72CG4S4o5V8/DM1\ FE6f5fz4CM+dP8uL\ b1zg+cXm\x0awM7nXtF\ vUK+eP4eRgwkuDxs\ rQX39rlumKcsX397\ xceHIyMCkZB+YgA5\ 7D+rnHcGF7IFfB2x\ J98pl\x0asijadLvNUn\ SaYK0BBI7nI/q4EB\ 8FyiemoXT3ggz3A+\ +aKvDBx9/Db3zt6x\ gsP/u+9/L5777MUn\ q0\x0a7G/T5Vl0N8Zmm\ uLENMbf2dnORHXix\ eX8/ifP3FV9URhNt\ DSDbkUg4f9v772DJ\ LnuO8/Pey9d2XbT\x0a\ 4zAECIAgCEn0okAQ\ pEDRrUSzoixlTnur\ o+7Ikyit4jZ0utuL\ DYVuI7TajZP2dJIu\ 5EO72qV0EmW5\x0ahLg\ iaEBSIEFPECABwg9\ mBmPaVZdL88z98aq\ qu6er2sz0DGZ68hv\ RMdNVWVmZWdX5fT/\ 3/YpIYbOM\x0afHFggi\ FARSHJ4Xmc87aWyd\ wxXv386zm5sMQznQ\ 533XA9aa/N/eeWx7\ 5H/9TTCCNInnfl92\ 30n34S\x0anWZjn5OBo\ rYLK88SmzEk9POzH\ JPutUMESULlhudve\ OyORPCZdHfcdLnGu\ K/Yiv/VRObve+Od/\ Px3\x0afxevPDzDO267\ kXff8bIdve5///7v\ Hvu4ikJ0v4fudSm6\ HYpeF93vUWQpc9/6\ EmZf/irqh49QpH1M\ \x0aeuUYvshAEc9MEc9\ M0XzeMYIkASCaaVw\ zZA7wlm+/i9//1D9\ iB+Wy93/xS/zwnXc\ +x0c1HrbQ6G5K\x0a66\ knaT/yMN3HH0UvnN\ 2wjXCO/PQprNUgvI\ xv58nHSU8/g7DjFy\ lm+dymfUhlsOky6d\ kTZJ0FRCAR\x0agcIVB\ oEimpmmcvQg8ew0y\ fwc8eE5gqpXW8TB9\ 77qFTzwzEme6XjSv\ /fp49Tq07yssTlr0\ H7kYXS7\x0aj8nHk+SV\ htrhI8+J8cu1jsoN\ z99SHtbqAnnePXa3\ ZH45cdnytic+eY/Y\ r6n3mblZ/vqjn+TB\ xRZf\x0aPL3Mb/7ce+A\ zX5m4vXAOJwRqQnR\ tspS5b/lWbLQWMel\ zZxBSMteo8wOvey2\ /85GPMnfkOha+cD8\ q\x0aqVz0OXjVu4AgTs\ i7myUsVRSiogiEwA\ 49hgU4HEJJgighnF\ tLTTmgckMdvXT2mq\ ubV6fn0WfP8D//\x0ay\ LuIoojf/vA/YCYIU\ WSnT2CyHNVIkFGAT\ ceY+EgIG1V0L8VpS\ 1xpXLCVpsj6ZJ0W1\ mpUHBHUK7jC\x0aYAv/\ vlYb+otLsLi06bVx\ ZRoZhajE+93Tz8jb\ C0TNAzihkEVB7/Sp\ UbOXXFoBIQgPNAib\ VaSMcM75\x0aRUE3Q1U\ jZByiO33o+Uhd1kJ\ EKJFRgIpCiq4XIrJ\ ZweEDR+iZL3FDvc7\ bX/safvvD/8CXT5z\ k3S99\x0aEV/5wgNIXd\ B6fC2FOi66ulJh44\ TazbdgV5fIOm1sVm\ BzjQwUUbPUbLhYNG\ 59kW+QHPNccvQY+T\ cf\x0aQUUh9efdMFKuN\ Atn6S0uUXTaF3WPv\ Zwia1dXIfYKhbOWB\ xdbI6LurLYA3+hmw\ 4gDUcDrX3gjRw4f\x0a\ 5jfv+dSozl6vNfjh\ V9xGZjTztQZfeuJJ\ vnR6mWxlgcrzb+bm\ 6QY3Hj7I9YcO8Uf3\ 3odwlrd9x8u5\x0a+eY\ beMeZ2/jgA9/w728\ KhNpZ6r0yM0M4d2D\ Lzt/1e5K6wKlgYm+\ AcA5hcmwwPnKow8g\ AACAASURB\x0aVF17rZ\ E5wHJ7heDgIf7jJz\ 5JRfkkWKbXaujCOd\ LTJ8lXO6gk8mQeB+\ jVPnp1c8Ylmmti8t\ xHnN2M\x0anFVkFNC47\ hg2SiYfSNombbew6\ aDxx8KwydZpg5iSy\ CREVRNsa2u/Zxkos\ KCSCJsVkHo3QScc/\ bPP\x0aUqx0Nm8vBfHB\ GU/cQYjpZ+RLbU/g\ gKpEiMH1sbmGjk99\ yijAGYstDCCwWYHL\ Na0Vn1p/utPhP3/0\ \x0aYwBcNz3FvcefAaB\ 35tnR+wdJQu26665\ 4IZDzIZuzVJpr3ew\ i6+PctevUuJeYdM9\ zQhBWq1QOHNgg\x0aQ6\ 0OHITFJZz1fzNzAh\ av8JD0sqbc96McLI\ AKAn7kZbeNSM/qwR\ /goD9hIdd84MFHee\ SJJ/m5N71u\x0a9LogC\ FhebfO3X32UP7jvS\ 7z3x3/c7y9OEM7yx\ FKLj379Uaq1Ki8+O\ AdZxh9/8rN84xvf4\ IMPfIPV\x0arz+AkJLN\ snXjESQJwcFDuxrj\ sUG4ZaOfE2IimV+r\ +IO7P8SPveZOcmtp\ FZo3vfBW7vnSFxDO\ kp45\x0aQe/UcUxRoCo\ xqpagogjTzceSuUo\ iglqCzTRuXQ3e5pr\ Wk09NPIaidZbuydM\ USx1ML/M/aTZSPJR\ J\x0a5B2knENVt7aqlW\ HgPQzCACElqhITNC\ v+NRZMZ+Nxy0AhAk\ V0cIpwuu6PZ7VDem\ phROaAX1sIT+DD\x0ac\ yqWOmSnVygW2uhei\ gwDgkYFESj+7DP38\ T0v+TYAWoXmaLVKE\ Ck+f3aZ7Nwpis6aO\ E1Uq+6o0e9K\x0ah4sr\ kJQR+qVGZW4OV9lc\ uqkfOkTY8Nf/Qsj8\ cnPeZY/QLyT1/uaq\ 5CO9K3etHccxd9x5\ J99y2228\x0a6MUv5of\ /1S+P3e6m5x3bMH7\ TWlriI4+dGP3+1KD\ jsnnDzTghRzwdRRG\ HZ6d56NmzOGC100X\ mOTrL\x0aCJPKjjreo0\ ad+Ohl0LO+xpGeOQ\ Fzs/zd5+/nJ9/yZm\ Qg+fhnP8uZdhudtg\ ibVZy1vmzhQCiJSX\ OK\x0a5fERsmokWGsw3\ cxHseeh/cjDJFNTx\ AfmfXSRr5J1O9hug\ YgCVBQMFn0eIlCjl\ DbWGwcJJVH1BKG8\x0a\ mZDuDlLmgyhbViKi\ Zg2dZ2A8AcvEf4+d\ s8hajMj1wCJXIaKA\ aLZJOF3HFdpnFRZX\ fZp+HZyxyNjv\x0a6/x\ zs9rAah+z2ie5bg6\ nLSZb4u8feJB3ve4\ 1NKoNHnv6CT7x8KP\ ky6fR65TmgiTZ0/n\ hEvsfrjq+\x0aji6mZ6\ Db4R2NgA+2d5cpeS\ 4C2Ksi5X4lkzlAt9\ PhX/3HPwfgl53lxl\ rCU+0eNor5hbe/Ge\ PgD/7b\x0axxBy0N0zg\ D1PXzof/Oqqdf7dT\ /44n//yl/jAV74B5\ 3nxSilBCARiIpkn0\ 1OE1Ro4i3MOMTWzd\ yd8\x0aLaO3Sn9xCTuY\ X5VhSFBNsMr5NHYo\ 0WmPheUlfvcv/gQZ\ BQgkOk+RKsBp/1mK\ wC/YnLE4Z1GVeJTR\ \x0aWQ9VjTE934nu309\ 54h28FuvIux20yVG\ 1GBVHvs4dRTjhRqn\ yIXwqW+O0RcYhwvo\ FhVCSaK4BxuGs\x0axR\ UapCBoVn0K3Fpsqj\ HdPrYwyDBAVkJkJS\ Scqg72aXzNfKZOND\ WNtRn5aptioT1In6\ 9h2ADmcJsS\x0aTEMHQ\ 4TwNfY0JWgk6G6K6\ Z/mv3z473znu7UIK\ Ufn5F8nqBwodc9L7\ B1crb5rMn+u8JwQ+\ n5ukPul\x0aP/sbfuvn\ 3sP7/p/fBUDg+PUP\ 3QPA33zmi7zrO+8Y\ bVupbVwVHrv+utH/\ O6srnsxXV1ha3ihd\ mMQJ\x0aNgyJ6nWydpu\ w1hjdIJPpaVQUwzr\ LwH1Z59hDCOcg75F\ 2W9hMg3EE0xWkCnw\ DV+rr106bUZpYhMF\ a\x0al3boiRalKFZ76G\ Uv6WukQNV9s5sQEq\ s1tldg0xycT3urRk\ xYr0JjXakGEOsyNK\ adjhqkVL2Cqg6a\x0aE\ /MC2ysQgSJoJDhnK\ To9zGofEfsIOp5vk\ p1r4XK9qdExmmv6N\ LqQCCTZmRWCmSrxw\ Snypc4oFa+7\x0aKflK\ awMp20J7Eu3luLol\ qCeoRgWnDUE1AWlB\ MyoJrSdpISUiVIhI\ IYTw12KQdheDxaqs\ hD5zEEeY\x0aLEf3UnS\ rh8010VwTEfgsg9M\ W08uQgSKoVoinpi6\ 4YbBEib3Cc1Vevio\ i9CHe2VD8TfvKmuU\ F0MVG\x0ataFvPPggP/\ rtL+FPv/AAUbXGL3\ 7f28i6bQ7Mz7Nwbs\ 2MJUkq/OsfeButpS\ Vm5ufptFrQbkFjik\ NH\x0ajvKz/+T1SKmYn\ Z/n608+Bc4Cima9z\ v/yve/g1/8W+l+4H\ 2cKCBTVg/OIxvTlP\ fmrGL3jT2L6G8ea\x0a\ hsTjbIxFe7KsxqiK\ rzk7Yz3Z4gnYZgW6\ 3SHvrOIcxPUZXxeu\ xETT9bWJACAIY6hW\ MHnhG+DafXSn\x0a7yc\ MkggRKT+TLYZd3hF\ Ft4cbjIbJqu9KN70\ MWxSoWkJ0IEEgMGl\ BenpdZ/qAvHUtIpi\ qoJd7o8fW\x0an6eMA0\ w/Jz3jX+sWDLZRIZ\ yrIRCkJxYnCh0N0+\ uqFiGjgDCoIoRvYj\ NFThDHhFN1TDfHWe\ u3C0OE\x0aEv4aDpqN1\ Gw4ajxCgJACZ/zvI\ pDIICQ9vThKy+eLq\ 75R0OWoMCKabiCFQ\ jbKLFSJvcU7ZkM+u\ DRZ\x0aTe5Kw2UTlhmH\ /Rqlj9BuIerNsU1l\ ww74TY8bjT0vjS7S\ HkWnQ+fkCYos4+BL\ X46LfXfzwhfuJ6pW\ \x0aqR06jJqbvzTnsc8\ g+l06p04BbCIrGSr\ iQzPIKKBo97D9QUQ\ NpCsrI4IOk5h4fg5\ rcmozh6DWZPmR\x0aL1\ I5eJCo3sBpi+6l2H\ Tt9UOEcw2cteTnVv\ 17Tpg/jq+bJXt2Ga\ zDakPl6AEfxSuB0w\ bTTkep+HHn\x0aMtx3c\ myO7GwL01tbvKhKj\ GomCCHQK71RfXtI9\ MFMjbBao3/i7ERCV\ 5UYWQl9c5yBfKG1d\ o0DRfWm\x0awwCYNPWE\ bRy6nWK6KSJUBFMV\ P5LWL3zjm5QU7S62\ t3a9KtfP039mAZzb\ cBwyUIQzDYJ6jJIJ\ Lrj4\x0a0c0S1y6UAHM\ eGwUCLkQO5bls/n5\ OI/T9nHoHoDE1UYl\ /HJkDm8gcoFhdoXP\ mFDKICIGlr3/Npyo\ B\x0aFSiCWq0k8x1AmD\ 662yVbXt1WXtfmGt\ 3qjaLIot1GCLjre9\ 7KQrfH2YUFlh97BB\ DUjt3C//bD7+SX\x0a/\ 8Mz9I+fxTRSL2ji3\ KhlYv1Y4bDbfCjha\ 7XxWZbRgUI43UAqR\ TTfRErla+7OR6zOW\ pwUiKkqppeh\x0a25PF\ haw2vpv9PLhCg3ao\ WgxNRoTu3b0UeqXn\ U+cToCoxwXSVII4w\ aUHR6m64pioMECrA\ 5TnFUg/T\x0aS0fXEsD\ lGqzPRtg0J1+36LH\ aIEPfJe/vsm7T5yU\ Cn82wxiKjksxLXBz\ OJ3O4+sgcrrKU+7W\ K4OBR\x0aZmfm0L0O6X\ Jrk9NbdXazNWuJNd\ iVJYgkTlgM2kemoR\ pPhA6KVo9wtrYhKj\ RGM/fK7+CNt7+Ser\ 3J\x0av/3zv8Jq4xvU8\ JMOODBaoxcXxy7k1\ GDbouj4JrPMIoRAC\ LADshMMOt9Fjssta\ irBSYvtaj9PPkxT\x0a\ NxJEoJBJSBgqiqXJ\ c+Qmy1H1GKzbQNy6\ 5Wv9qhIRTFexvRxV\ T3DaYPv5hu74aL7p\ CX54u7Kguynp\x0a8rJ\ vzhuT6RNCootBhsJ\ uJmVnrG+uS6KN42z\ Dtyi8+I2MI3D56PU\ qiQin66g49HKpJZ+\ XKAFcAYR+\x0aoVH6MQ\ Unrrxy+iWDDWPkVE\ x1ao5i9Swmy7G9nN\ qhI7g9UIrbjxBpn9\ 65MzicTzFXfA2XED\ AA4yNb\x0am+ZItdZU6\ IzGOcfBJOb+Bx7kj\ pe/jGO1KktK4cRa9\ OucQUnJq+94FW9/+\ 9uw2vDrf/dh3nDLj\ Xzi\x0aoYd59suf59Dt\ r+VtL76VW19wM/d9\ 6St89ulTLH3pfuZf\ 9Wq+49hRFrtdfujN\ r+dX//xvWf7yF4js\ \x0aFL6o76P9Iak5awm\ n6gRJjO5vLW9q+wV\ ho4YNNtYCrTbYvEA\ mgR+nq1d85keAmGn\ gnEUkIUljChkG\x0aOG\ fRq6kXloENCnPrIQ\ OFrPqMhM0KnDFjMy\ KmmyGaElWNNxO6A7\ OaekKvhgSNCrrdx6\ Y54VQNoSRF\x0at4/pZ\ URl20iJPcQrI8EX8\ 92H5891dA5XsJb7d\ riWyPx8hM2DREFC2\ KiWZD4BtrVE5+QJd\ C8laFYI\x0aarEXLlnu\ 4AqDTDxJjINqJGAd\ MomQgcJkKY16nXe+\ 9tV87sRpfv/uj3DT\ wQPMvvzbGfagOAfO\ OmZf\x0a8gp+4id+gv/\ rrz7Er//dh3ntTcf\ 4njfchY1ijrz8Vbz\ xlhv5/GNP8et/fTd\ Fobnj+qPM3PxCAP6\ 7\x0aH/p+qknEr/7531\ KceRbnHDY32Fxji4\ 2kaHPtm+O08en4Le\ C0HfuXrqqxJ14hsJ\ nGdDKK5S7Fchfd\x0aS\ REo4rkmMg4oVnujl\ D/WDRrzJozyCJBRi\ HPWN7JNuDe6QvvoP\ hCo6mZxIln1HfbD4\ w9n6kSHpiAQ\x0aWKux\ uVeQK1FiL3EhZH6l\ 4DmP0OEaqKVfAsiZ\ A1fvauwSIz39DKab\ YrXxzVahQvcyTMc3\ kWlA1bza\x0aWdCs+M5\ 1pCcgrQmShGxx1Td\ uJTXyvM2LX/Fi4oo\ nnZ4x3HbjDXzyyeM\ jonRAVG9glaLQmt6\ Tj9I9\x0at8CnuYPvHX\ yzbRTzkttuIwwDPv\ z1R3n5rbdQrdX4zH\ HfoOec4aGTp+meeA\ yUpPq8w9hUjx05A7\ BF\x0agTXhSD51Ekb1a\ qWQgcJq48+/UfFR9\ 0oPp41PtQ9q6DYt/\ Fx9pLyu+KBRTVUiq\ Pva+vlCMTIKUI2E\x0a\ oJIgw2BDzXwchhmC\ IAxQlXhD0x5SoGqx\ zwLkGt3qj651UKt4\ O1Vtt+2FKFHicuBK\ iM7hCiF0uPpJ\x0aPZG\ S977hTp49c5Z6o0Z\ rtc0HHnx07Lb/02t\ fRZplCAFLrTYffOT\ Jbff/3jffThBGaF0\ gpaTX6fHH\x0an55sAH\ OtwraWKIa14SQiaF\ awvQLd7q2pkaW5r9\ 9GgVdCi0JkGPhoMD\ donfq0s5I+9Jbw6t\ u/g6mp\x0aKX7qja/FG\ MP1z7+B7/v2Zf7s2\ eOj95ahTzOvrKzQP\ bfg6+PWkhee+JpBg\ LXQH9hkfuqrD/LI0\ lpn\x0a+Mpqi4VHvkyc\ NJFhjAzDQf3Yi6/4\ KDodnYeqxEgVbOqp\ WA9Vif28dyAJp6t+\ ht3hG8oGKm4biJR1\ \x0a3fJdB32xVv/u9FG\ VCJVEvpYuQUYRQT3\ xkTZeOc6kOTIJvcz\ sNqtOIdUgkl8rBwy\ lY4WU6F4PVxhP\x0a7M\ MaejUeieoA0FmFen\ Pc7kuUuOS4Usgcri\ BCh6uX1CtS8tPf/V\ 382t0fHT321luu51\ +88U5+46P/\x0aOHpMC\ cFPf9cdvP/Tn2Nxc\ FN+3XUHed8bXsNvf\ ey+ifu/pVnlQH2OL\ z7wAH//+IkNz00af\ 7tW0T29\x0aZv2pmoNI\ spdukBa1hYHCjARJ\ XGIgcX7mWYa+K9wK\ bL+gaLeYe8GLOTA9\ y1/c/Q8jAn7Ds6e5\ 4chB\x0a4iNrXtsmzwi\ A+QNzCCFwOJyUBAP\ Dh1WtKYqMe584jnC\ Wby4uI9KUvNMinD9\ CkRe4zGJcBk7itEH\ G\x0aoV9cCOkbyGbrXj\ +9n/nnYMOY1xAyUM\ hahEpiZBhgzZoojh\ zIwQopR+nw80kdNo\ /BWW3Q7T4yDv0+\x0aG\ lWfgpcC2x+4tQ1q5\ uF0DYRAhRFadCd+X\ sNyge2vOwcpCJoVT\ Or7RDZF4efdIfqry\ 1RrjS09B0qU\x0auBS4\ ksgcruIa+vl4U+25\ W5v86x//wQ1kDnD3\ o8eJ45hjlbXa4E+/\ /g5+82P3jcgc4FMn\ z/Lo08f5\x0a+X9y18T\ 9W+D4iRMbyby1QnH\ 6BK3jj0/0pN7PEP3\ NJGGXvTiKDAbjXlH\ gFd6KydfHaoPu9DF\ pRlBL\x0aPMlZcJl/PO\ /0sUHIiZOneGSpxd\ KXP8/qIw/wsUee5P\ HjJzk6GO0SAkyWIZ\ wlLwpuePWdzL/qDu\ 66\x0a+Xoqgz4HaTRPn\ zrBj7zmFTgh/U+li\ hi2jluHLXykawtfI\ y+WOxRLHa+F3stw2\ vpoe6qGjP3iY/0s\x0a\ ugwUqhYTzjYI6n62\ 2/Rz9GrP72ulS9Hu\ UXR62EL7skKzQjTX\ 9CNs20B3+uhWd7QA\ 8Pv3Wu354qpv\x0abnM\ DN7dgMG53nlaht+p\ VPi0v2dDsB740oJI\ I007HHoO/Bl5pzv9\ uyBbPbHvsJUqMw34\ Kh66oCB0u\x0aPEq/p6\ ufs8738zXZh/j3d3\ +Mn3nDnfz2x/6R7z\ gyz8zcAQ7HEafPS5\ G2un1e8vJXwn+7d+\ x+jLEc\x0aOnyI9735O\ 4kqCQ8//iR3P/Qoq\ 499k6jeRGiNi3buo\ Ha1Izt9AichtClBX\ PEjVFkfbTLC6Toi8\ I5g\x0aut0fH+Gtw0jt\ rBp7idHVNZEVZ4pR\ 09uff+4rFGeeJZ6Z\ RlUTstMn+OS6/fza\ +z9AtrRI3m7xy//p\ \x0a/+MtL7qZLz71DGd\ X2+QDSddzD3+JD6m\ A50/VedmRebS1PHh\ mEZPlBMCvvP8vtzx\ v3e5Du09Qr6Bq\x0a8S\ A6hmC65uvc/RxZiX\ xt3Fhc7sVtXFZsuA\ ZDMvYjY6HXdA8kqh\ 4jo9Cn9Sc1vDGofb\ e6hLKOUF5L\x0aXSXRu\ utmMP2csDnIAggIp\ /zn4tya2p4MA0Qov\ axt5D8HGfhjGS5ox\ sH0M8Kk5mfR8d32p\ sihvwqV\x0aMvVeYue4\ 0I52uPKic7gCCR0u\ nNSfCzJXQtBurUx8\ Pon8+u/6QwdoTE/x\ g69+BacXFzdsc/3R\ o8TJ\x0aZBEPAVTrNZJ\ GkyRO+BYRcPdDj+K\ cw5kC3e0io/1pYSq\ LjGxlmajexKR90pU\ VLyNar2CtIWv7yFV\ W\x0aQu/cFfioz/Tzid\ 3VMCDyMPDp49j/a3\ rZmq2odRijkUrRe+\ JR0pVlhFAkhw4go5\ BsZYXsa18FQOcp\x0a3\ WaTLO0TuhDhLPc88\ BAOWExzTg18ugWK1\ ce/xkMqImnOYLWhf\ fIE1hh6584ST00hl\ WI79X3d8ZKx\x0aquob\ 24JagksizOBcnLZk\ ZyZ/J4cY6rHT7iOj\ gGCqSlDzs+ainw/m\ ywcbu81z5MN94EBW\ 1ggd50fS\x0acA6UJGh\ UkXEw2I3DWYMMAlQ\ w6IRHezJPQlTsPdK\ LlclpetPLCBoVVBR\ hKzGmn6GkQNscs3S\ KOKxB\x0aY2rb8y9RYj\ +ROVyhhA5XTz3dOM\ f09Hh3JyUEva4X/P\ jqk89w/aFD/Na9n9\ 284YOP8rsvfgkAot\ vB\x0a1eqjp2Tap6jEP\ HvqNB/58oPMN+t87\ sRp7NLaoqC/tEi9W\ vHeyfsELmuRtzq+m\ U0b0qU1ggrqFVQS\x0a\ 4Yxdi6g7fWSoCKZr\ o/pwUE8Ah8g3doqr\ gW56UK0gowBT5Nis\ 8JFqIkaaj7ISEZgq\ Js8IpxqoKEYM\x0aVNv\ Cep28W2CLAqlCil6\ fIAmpHj7qU+mRX6D\ 9j298Lf/3X/89rrW\ CNIqw2sQJQ3f5LLZ\ fIGXgswzO\x0akbc7O7\ LD9YsR3zRmMx9Jyz\ j0vuna7IjMz4fNtU\ 9xS0bkCyAGVTlnDN\ Ja36Cm1xrUhPSCPe\ sXT1Yb\x0ahDbYwYJIV\ SJ0L8W0+36PlRCRS\ HSR+cXDIKPiG938j\ P04b/gNcCBCP8PuN\ el9P4Hp5XSzLnJpm\ eqx\x0a5+HUtZO5KnF5\ cKWSOVzBhH41wU0I\ BX/h7W/iVz/4EQAe\ bXVYWV4au927XvFt\ fPXzn4PWMm5qhn/z\ \x0aE+8iqkT84u/9CQh\ BzxgWVzs8OfgB6C+\ eI0oSXwdVhmx5mej\ w/iD03jNPIishUbO\ Bcw5pjA9are+i\x0aVr\ XYj1u1ehtGp2xh0M\ tdRBAQTtd8KrvuR7\ NMN0cMOqlVJUYmAw\ e0TKNX+77JbJB+D2\ dqiMQ3jDln\x0aCVx1Q\ xPZUH41nG6uBdMCE\ M53dgNvuOVGkiji9\ z/6acziOVrHnyKIK\ 163fLpKUK9h2ukG4\ lLBmjzs\x0aVpBJhKrF\ a25jmY+m7cD05UIg\ BzVpISW2rxGhRCjp\ ndgGaXMhvdWq6WeI\ ocpb6K1Vdau3YX++\ tq8R\x0aYUC+sHre56R\ Hx6mq8ehcwHe9mzQ\ bjddNgrN+xNDPp3u\ hGZtpvxgJA8Ch0xV\ UrbRSLXHt4Dk1Z9k\ J\x0aroYoHeDf/fMf5R\ f/+E9Hv//8W16HKQ\ p+8+MbI/JfePub+M\ /3fJJnBze4//72l3\ HdkcP8yt98GJml\x0a2\ DjhX3z3Gzi18Cwff\ +BRFgYNdP/DXXfyR\ /f+44Z9Cec498XPE\ zea3qyiXic6dOQSn\ +mlhV1ZomBQ\x0a41We\ YPxomR/PEkIMIvP+\ lhrmACqJCaf9zR4l\ vGuZG6SJhR/HMu10\ 0zz1+teLRKFiXzbx\ kav3tHfO\x0a+bG0YQR\ rLbqf0n/mDMboNSl\ UIVBKEVTXsi6qGo+\ MSYYGLTuFDBXR3NS\ ozjx8b9PLfJr7AuC\ V3SJU\x0aPRmdk9Ua3U\ 5xeeHT4YPOdlWJRg\ sdZyymm41Nj8sooH\ L9PKpSofvYyU2udu\ e/fzBV877q2oB13o\ Z2\x0atTdx+3C2MeqQl\ 6H/bphu5hcIcYTDI\ QyoeknoJfYOV3J0D\ lcBocPVQ+o/+6bv5\ Mix6+h0OvzKBz44\x0a\ cbt/9uqX8YKbbiJL\ M/7sIx/n8fbGG9f7\ 3nQH9eYsv/pXH1p7\ zWtv5+D8mmZ7v5/y\ 2x/+6MBtrTZK\x0a08p\ AUbv5lj0+s8uH9iM\ Pb3pMBopgtobLLTL\ 2jVSml2Pa/Q0e3ZO\ gkhjVGNzoB+IxfjZ\ 9d9HssBN8\x0aqNLm56\ PHi74MzVbWm7KsP5\ 9wznt27zY9Hk7XfA\ NfL6dYmazfvhsE9Y\ pfYFhL9uzWxxMfmU\ aGITYv\x0aMN3JxjAqi\ ajecBChArpPnJq4a\ II1Qlc1Xw+XUYBQ0\ jvNuc3jc94YpoIr/\ KJiWCIQwnf0D69LU\ Emo\x0aXP/8XVyJEiUm\ 40onc7hKCB2uHlK/\ FLCL51h8/LGxz0ml\ iMaIajRufdGlPqw9\ h8xzWk8+sfGxUCEr\ \x0aIWG9hggkJved5yK\ Q3nd7pb8jtTAZKFS\ jQlBPML2cfHF3kfE\ QKvFGJkESj1zG3CB\ S3qlqWTBV8drq\x0amS\ Y7tztCT47O4rSlWO\ 5s2Yk+zpJ10vGFU3\ WCRoLuphTLkxcJMl\ DEh2fQnXTbxYRKIq\ rPP4zVmvTk\x0a4sSFD\ 0A4XSdsVtG9FL3SR\ VZiwpmqnzpY7G469\ nC2jqpEG7ID485Xh\ mFJ6CX2BFcDmcNVV\ EO/2Ca5\x0aq9nMRcYx\ cb3B5rZtMbGBqv3I\ w0zdeBM2ujRTltJq\ rNybr49MU9onn/H/\ P+/GnBydQyhB0epj\ FtOR\x0aKlo01yCoJLi\ qwW5TNx6Sedisjma\ yLxQmzTGnc+xcnaB\ WITrQwBlLsdJDsj2\ py0ChEj8it+t0++D\ a\x0aWK13ROaqWfFjYV\ 3veDaxLi18Cn1ouj\ IJIhqI7uw0CHCWoF\ olOQbpiUWYcG2E8i\ n+fMFfD9vu4QpN\x0ac\ nQWDJ7k130vbFogk\ 9CXYoaPC+GbGiNfI\ ilWulhdYNNlZDKzs\ +MtsS9xMaNpcPWQO\ VxlwjIXc2Gv\x0aVjIH\ 6C8tIVSAUOF5P1sT\ avuZpzGLZ7fcZgiR\ rpGcKPq4tDV+u16X\ /tNPoVsXFuGeD5e1\ 0K5PfHiG\x0aYLbmpU4\ BWYtJjs2hOynpqWV\ 0qztqOAPQrR66m+5\ IDEXWY8JmlWK1R7H\ U3jkhbQHT6pMvrHq\ 5WGeJ\x0aDjSQ1e0XT8\ Pa73bkOQ4iCDZYmk\ 7eEKJDUwglkUFAOF\ en8rx5ZDLh+AZ/Vd\ sZnQQN34S5XqZ16+\ OQ\x0a2Dz1vQjbGMicD\ 6cN/RMLqFpMfN0s0\ aEpgpmaN8yJQlxuU\ HFE0PSKdMFUlXh+i\ qjZQEUhyeEZkiNz\x0a\ XiGvxDWLH5uJrhky\ h6soQh/iahln2yvI\ oqDotEe/j6vJToLV\ hnSlRZDmBHHsZ3+r\ tbWofXUFqzVF\x0aP8W\ YnHh+CmkV6Wobk2a\ osEVUrSJVgHOOot9\ Hpykmz3HWUmtOXfB\ YkLCGfHkBo9fIQUS\ SaN7XlnXf\x0aR+PrTU\ POPzflHDIIiA5N4X\ KD7ReYdGPzVThXJ6\ z79K1Nix2nxbeD1Q\ YJmFxDvYIMgrESrO\ PgO+Yv\x0afJwqbFS99\ nynv6ERzqvEVYima\ n7yIgK9muIK7ev/j\ RhnDWbdccrQLxJ81\ /g22YUwQHfSLZX3N\ kAA\x0aQq65qk2As9Zb\ 3FbXDFqGJjHZs8uo\ eoKqRL6HIgmRSeht\ XoEgSginKphcky20\ Rscmk4igGhM05nd2\ \x0arCX2Jd6/vLO/yXG\ 42sgcrkJCh2uL1Jc\ e+jJ57rumhZAIIVB\ BSFCt7ej1VhvyToe\ 842ueKoqQwWDU\x0aKF\ 2T1pShQmcZKoww/R\ QcFN0eRXd8etrkOf\ 1TJ4kbDVRSwQ6EcY\ RzuE4bGcfYMWI3Uh\ eYbod+q4Ut\x0azov0p\ PCz0EKMmtjM6vjua\ DWI1Dw5ClQ9wdVjQ\ lcfiLOANWbkRKaSa\ KRlPkmBbLew2ngL0\ iTwFqc7\x0aWCyYXgZK\ XFBuzA3S0kGz6k1S\ KhEcGIyB9VLfhZ5E\ WGNGPQJDWVhrPKnK\ akTQqPrZ7WAo9mI3\ aN2P\x0ag0riAfGP9zb\ fdKzWYgtNUK2Qnlv\ achHgjEHKhKBe2fD\ ZjN6n3cflhmiqjtG\ FV8XLClxuEKECIXC\ 5\x0aXnOLC73hi7BX3f\ 24xBWCq5HM4SoldL\ iySf1/ffub+Pf/9Z\ 6L3o/MU179pjfz8E\ JrgwnL0pe+cMH7\x0aN\ HmOycesWh241CIqc\ mxn8TgUvR5Fr+dnm\ KXyUaoufJ0VHyVVj\ s4jZYRLM7KlFkWvu\ 6M6s2k5XyN3\x0a4yNH\ mXiJ0KLTw/bykWsX\ MEpLD49DSDmSSt3O\ anS3kJG3Ly0Wd9Zx\ btPcS6wOZri3qoVv\ eq02vg4t\x0ahScy69D\ tvtdjryVgIV/wJYV\ NXeWO0fidkBJrNFZ\ rZODV9bYjdAC7C88\ AIb20q8OPBk4qc8g\ oQEY+\x0a6zQpireFAZ\ eTuw7hTA3dSUeSvl\ IP+wo2asHHzSayOr\ 3j4y1RYoirlczhKq\ uhn4+9uPBvre/9Jb\ jl\x0aRbdt/Z4vvHFH+\ 7Fpnzfe/gr//zDi5\ Ud8+lBGl+Zjs1m+s\ xrt+a/TBpPnFL0eJ\ vdp7aHpSb60inU5\x0a\ LhZQkX7+eyf722LM\ CRgRs0u9brju9v0s\ di8bSaOu/11I6cec\ dpou3gFUJfYjU3az\ N/gkWO1d3oSU\x0aBFM\ +db5bBA2vLKfbg/P\ s9NGtvhfI6WVe9vY\ 86HbfG7OsdMmX2uh\ WH9PJpa9/dwAAF6x\ JREFUsLn2\x0aKe+BHv\ skOK1Hae7t4BX7qg\ MhmnRsyQQYyc3KOM\ D0c0x3vBkLDAg7GM\ 6/r+3Pjtu3EATxzj\ JYJUqs\x0ax9VM5nAVR\ +hDXGykfndncm3vQ\ rHdwbgdRjr95UV0s\ XZ80aCjd5gq3Q5Bs\ zIyKZmUZpaBQla88\ tiQ\x0azMP5Bk5bbK/A\ Zlubm2yHYqUNShBN\ N4hmmsgwIF9q7yzt\ bd2WDWzOWuwWXuDr\ IZRXOXN7VEOHQZZA\ \x0ayl3Ps9t+jo3CEYG\ abral8Mro/UJPgCK\ QmG6OHSwibGGwxdb\ HMO56y9Cb0oC/Pqq\ WTFyY7OY7IAZy\x0ar0\ IqiuXO2GuuarF3g1\ MDTYFuum2WIKhXMH\ 3fCzEJMlTIOMTuot\ ekRAm4+skc9gGhw5\ WXfjfbdNbq\x0aYSrYW\ tyEiFj0O/QXFynWd\ UNL4bcVcYAK4k03a\ a/45WvPDFwrhRxYb\ YZeJhSFt55UA2nPd\ UpnJs+x\x0amUZEElX1\ TUhcZLnZakOx1EYg\ CKdqhM06MgrIFlrb\ y5QKwWSjEuF7CpSa\ OA61HibLvVRqHGH1\ hcmj\x0aroeM1smednZ\ J6IXB5sWo5j10HZt\ 0PWQUeIOTyDcn6na\ K7WcX3+DnHKaXYbX\ 2hF6NiFyTfGn8BIN\ z\x0ablBa2VqWFSlQcY\ y1epMFqgwDgmYVmQ\ Sj76TTZvsafiVGCO\ mbH7coU4ggoHrgEH\ u/TC+xn7EfyByu\x0a8\ pT7euzVB/JDzYtf4\ +h1zV4vm5viB7/tF\ qbWzdEOVx5iUMt+z\ 12v2uRp3l88hzGWX\ n9d49qA0IdN\x0aY+H0\ WlpRBgoRh4RTNUTk\ 6+Cml6FX+17/vB4T\ NCvepSqJ/Oyx8app\ Js3RrR7FUgfd6mJ7\ xUDDe2++\x0a47bQ5Is\ t8pU2ThtkEhM2d5g\ SnXAIw4a6nYytgY+\ CRSB9l/QYEZLdQiY\ RKLGj2vM42LRYy5w\ 4CGob\x0adfhlMPApP9\ AkmKn5BrhBQ5/tZT\ tSyNv2GIZe8INUvc\ 01agejd1tBJRHhTB\ 0RBNi88A5uMzWiuS\ bh\x0aTJ1wto6IFDbXf\ uTPWoJ6hWi24c/xP\ DijMWmPfHUFU+Sjv\ ogN2+gC3e+ie12kE\ GV0fo3gn83sTTy6\x0a\ X8gc9hGhw958MH+x\ emE36PUotOZn3/Aa\ 3nvX7cw1ajx1ZoGf\ edubR8+bQfOPM/69\ XnDri3BSIXpe\x0a9eq\ 9b3gNUW0KZy1LrbV\ 5cDO4melOH6etNzC\ ZaxJO15HViHC6ijP\ GK3kttb3eecfXVm3\ mu5xtqgey\x0aqSn5uV\ XyhVWKlY6PYAOFCB\ Sq4uVNd9OwtR2sNv\ 54+r5Baie1eodlUg\ HDpgW20Mg43LL2O8\ SQsEQo\x0aJ89j7wCqG\ nulslp0UQsem2t0u\ +/LD2nuZ8bDNfneY\ LrmXclC6ZvfeqkXS\ +ntQWR+/rFo49P+3\ WzL\x0aO4IQYssudxkq\ VCMhnKr76H9QE5dR\ QFBLRoRtul4RTi93\ R9kNVY3HzvGbPCWc\ qVM7egTTTzH5xpSR\ \x0a0wXW5CTzs0zdchO\ V6553IZegxFWI/7R\ 88fen/UTmsM8IHfb\ 2A3r37IWt9KWUzBy\ e53fuvZ+PPnWK\x0aL5\ xbprtullwOGrpM34\ +E9Qf/usEo2re95K\ XImVmCQBEMtpVa47\ BIBDbTXvqz792lwm\ aFoFlFBIpi\x0auYvtb\ rzpm15GvrBKdnaFf\ HFA4GMapwBULUFEy\ i8C0ourn2+CG9TEL\ ew0JyqUGi9jmg8ET\ qQ/ZlXZ\x0aPlI33dSP\ a1XCXTejqSQinK77\ voQk8qlia0cuYRcN\ Ibz6GYAUhM0qLre+\ 2W25S7HUGaTHL7FQ\ yoTC\x0alQzUlg2Nwxn\ 4eKbpGxC1oVjuUiz\ 6BjzdS73+/HLHf7c\ KM1rkFa0uVmtUEm2\ K0k2hSebniGfncXm\ B\x0aiiNkpNY9721vK4\ cOIeszuIuY7y9x5e\ OWYO/4d7+ROexDQo\ e9+6D+cGn3al4A07\ OzPPbE46PflRD0\x0a0\ 7X66FK7y0+/8U7kg\ YMALC+ueZu75UWkl\ Lzjpbcx+8pXc9MN1\ wOgu6sIIQkGUaErN\ MWKvzkOJTB1\x0ax9uA\ XvBNX/gUdrHa3Xsy\ x9exh7PgE0vj6+G8\ HvekbV1uvGVmEvhy\ Qn1r+1invd+2DANk\ ZYdWpYHy\x0aZYpGgqr\ 5WXa96knWabuz89g\ GThtwztuIBmqUvTC\ DlPwlJ/F1mJQ5UfW\ Kb1KcsBATUUA0XUe\ GCa4o\x0aKNrd0XdRd/\ qjTNCwROGMxmntU+\ q9jGK5jckynDTovI\ fudzFpH+ccQVwHa7\ xdauCj9qLXQfd7BJ\ WY\x0a6txBRLA/rINLb\ I1H9d60Su1HMod90\ hQ3Ds9Fo9x773o1R\ 44c4dlnnuHW62/il\ 66/Cedg6dxZfusT\x0a\ azaqXz63zF1hxP/x\ rnfSWm3xH+7+uBdk\ EQIxM8fC4hI3Xf88\ fv7663niyacQ1rL6\ 5ON8dmrW70B4\x0aDXf\ f0RuAcxTd/o5nocf\ Bp9sD3/DUucQkIry\ wyqTmKhkoZBIhnLd\ KnRQ1mjTHGUPQqBE\ 2Kz7q9u6m\x0aOGNw2i\ JCNfLzHs6uD3W/Vb\ L1eJwMAx/91+PBmF\ i6MeVt8Sn87ZrEto\ HNC+/dXkkwA8Ecs0\ N51WGZ\x0aRITbRKajx\ o21350xG66t2KK3I\ Kj7Dvhxsq8+e1FDV\ iKc016UaGnyd9Fkf\ Z+pEQKcw2YpIhOor\ A8S\x0amjdcT9Hr0Tlx\ yh+qjBFO45yhf26B\ 5rHriRrTmH4PKRTU\ p7adLClRYoj9Suaw\ jwkd1j64vST2t9bl\ \x0axFG337n3s2MfH4f\ f+MDf4pyDxhSi24F\ KFYTgZ97yej72sXv\ 50N0fotvrDvy0/ce\ 08PnP+t8DH13K\x0aJC\ KoJZh+QbFwkVaag+\ h8L+vm42C1Bmt9Kn\ 1Mx7kM/OPhTA1n3W\ hsbs2Y5DwJ2ML4Bj\ lRwWrtG7IQ\x0aXuq10\ KhKhBxcP2u917bNi\ 9EcuLObVdKGJCmrE\ UGtgkmzib7pQvqav\ N1lp/uGc8i9nauLI\ 6KZOghB\x0asbrZY3wS\ VC0hbFbXdMudww2u\ MfgJBuEETqz7M3AO\ Z+xIzEVIuc5fXG1o\ upOhn4rAMaj1q5H4\ kIwC\x0awtk64XTDk3M\ xUHEbfE7OaHTWRwi\ JimKECjCFpn7sCHF\ ziv7SIr3TZ2jeeCN\ ho0G+0kI1D6Ca0D5\ +\x0acnQM9ZmYXn0KtC\ OcOcxd33cDj37xNC\ ePb6ypf9fbruPjHz\ pJiRLnYz8T+RD7mt\ CH2Mtofa/m1t3A\x0a8\ vTdr3kZf3jfVwD4P\ 3/yx/ji/ffzwQ/9V\ 7IsJ4hipApQcWXQQ\ Oc2aLl7KU7nDUcuE\ iJQhI0q2dnx\x0apix7\ Bae9W5dQEs4LCGWg\ fOr2QANrDbrV8wuN\ JEIEynfIM34m2hpL\ dnrFp8hnagglvdKc\ tTgsxUoX\x0a3e37MbF\ qNNIwD6fra9dPilE\ 0H0xXUVFEvtieWH6\ weeHtVOuV0TYyUH4\ /SvnPzO5shtvmOcW\ qH88a\x0auoXtBFYb3+\ xYaLIzy2O731USby\ wNCIEIBCrxinU4Ru\ cNoBoVRG8wsz+U1X\ WOoJEgo8BnRgqDMJ\ ag\x0aWSGcqiMGixCT5\ f7aRgFoQ97rUr/uM\ OnCAjrrE8QVEJAcu\ o6kIqHSQCpFMH2Qa\ k2SDspPBw6FLCjJ\x0a\ MIVw+PlVzn1T0nzR\ S5meVnzir5/mZS+r\ c/J4hswyn5KvVAnj\ a+KWVmKXuBbIHK4R\ Qocrb1Z9iD+8\x0a7ys\ IY0AIfumP/gvnvnA\ /KlDEzY2ylUNntbG\ +z9VoWwvRnWFn3ec\ XA1sUOBwiVKhq7A1\ NBAOSUcQH\x0amp7Egw\ A13/RZDOuwxvgO/X\ 62pU2p1WZLW1KT5v\ 5nINKiqjGqWcH2c1\ Q9Iah4TXqcIz21uO\ V4mG73\x0aEUoR1JOBS\ 1zuZVinqwSVhKLXQ\ y/1dpSSt4VBKINoS\ JxwEzMS4+AGpB40a\ 2N93s83rBkd/3nfG\ ZVE\x0aBDNV35BXTcjO\ rviO/iQiO9PyPQ2V\ ELVuQaTiBISkaK2S\ nVlG1SuIWPoFmPEy\ wLfedRtPf7NH+9GH\ \x0avMGKEJj2Mke/9Qb\ aSylneR4veHGdlbM\ ZlbmDfMtrZjl4wyx\ nnzxL5+RxAM6d7I1\ GFafripUVQ5Za\x0a4l\ CQ94rRYmTl9MUvbk\ vsL1wrZA7XEKHDpU\ nBXyje97Y3g6tw8s\ RT/PUDD7D64Fcpsp\ SoWkME4xu2\x0aRqngJ\ AK1TjFuD7Lkzlh0m\ hHOVL05y6WCBYFAy\ AAZhshKRDTb8O2ZD\ op2D5eaUao9qFd87\ TtUPkKs\x0aBJ6Ieusi\ 4gv4c7WF9hkA8D7p\ UYDpZKNLqZe315wH\ 3zkvlCScq6M7faKp\ GkWvT77SIWhUsFWN\ 7exM\x0ancekOSx2vFX\ oXA292N3RYkB3fO0\ 5nKohWxdezzdpjnk\ 299KtszXiozPgID2\ 1NCpLmDSjWPZp/uT\ Q\x0aDE44b7ZzYsHvpJ\ siAkk818AVhqzT4U\ WvuYHjX/8yppchww\ gHmCxDp5rX/djLaS\ +2WTmzwuyxBq98\x0a6\ y184x+f5MH7HuOf/\ svXc+aJswSR4r6/f\ Ijuwlkq191EYyrk+\ 3/gxVTnGry8MCw8f\ Y7uUod8qcvn\x0a7lu6\ oHMvsf9wLRH5ENcU\ oQ/xXEfrP/Vdd/L/\ fugeisWzqLl5fuz2\ 13BPkvD4V7+y5evC\ uQZBLfa1\x0aUjsw2dA\ aO85sZbewDtstUHM\ XJyyyHZyxOOsQziF\ DRThTp2h1MZ3xiwi\ brkmcmjjyHedxjMu\ 9UYkI\x0a/dw8W9hzTj\ 4Y50ndQlBLcBU/im\ Zau8h2OIfpZ4hYoa\ oR/WcWRk+JUBI162\ SZ3pGaHfhoOz/TIj\ k6\x0aiwwC8p2WQNxAy\ S0IdvxeW+1LL3axc\ TFRWjeaaaAqMSbNf\ fQ+hHXola5P49cUq\ hHSb6e4IEFWFUXW\x0a\ Q8SS8MAR2qsFf/lr\ n2P5G1/AGouUCpv6\ jn/nHH/8U/f5DA0g\ hcIZ/7352kNdvvbQ\ F7njrgN85t4F\x0a8hN\ PoaKYcHoWxjj8lbj\ 2cC2SOVyjhA6XntT\ vSASfSTfv/o0vPMz\ Xn3gGi+M9P/BOPvf\ 1h3n//ffx\x0a8//0+/\ k32xA6gO5mm2rme9\ KRLkDEascmIxcKV3\ gzECEkGEf27NKW7m\ 4bH89xtRgRSWQ18q\ NkFW8X\x0aaooClcQT0\ 8uT9u3H/Xp+nr0ak\ 51a2tX1HPqiF4M0/\ /C1MlDoxS7q6O4WS\ MP9ZedWieebyEoMb\ gdT\x0aB2Ig/KIvPl0z\ vC5DMj//vYNmlaBe\ 8YuPxdUN7zm6pq0u\ quFHyT71l4/zlp+4\ jW7neo4/dI4Dx+pM\ \x0aH57m4+9/lNVvPID\ tW5K5GVQ1IX3WL4h\ UXMGkPawx3g5XCJz\ NcELw1h99AQB3/+l\ jAETHnu/f+6LP\x0avM\ TlwF0Vyb39S/dpXa\ tkDtcwocOlTcGPI3\ OAhTMdwppviKtVq8\ zWa3B2kTDcuYiNkM\ rPdO8hhFIE\x0a1YT02\ UubslxPDg52JWFqt\ aFYbhPNTxHN1L3LW\ isFBaoSERxO6D11d\ tfHIwPlRWekID4yS\ 37Ok9RO\x0aiX1sw9y6\ 0TZZ8UI0O54gEBDN\ 1bGFHmUntoIMA1+z\ tuOtZi8EW+0nmqkD\ jqLTw3T6m7YVUlI7\ eAhX\x0aq5PMH8MB//A\ nj4yef+abfaQ+yep\ j30CnBVGtiUqSQUP\ g2jy5SqqjvklnCsj\ 8Ym1I5CWuTlwqMr+\ W\x0aiXyIfSkss1uc+O\ Q94nJ8GX5oKuCrrQ\ 4veb6Xp/yNuz/CJ5\ 44zu3XHeOzO/A4N4\ NarGoke39wAoT0\x0a2\ uTDG3R4oE7l2AGi+\ eaO5FV3CpPlWFtcY\ O3bUCx1yM60KJY7m\ G4f007RbS9CopLdp\ 1ytNrjCeCGX\x0aNCM+\ NEV8cIagUblo3Xfd\ TglqFWS8C9VBNzCT\ CQLi+ekt58PBz9fL\ OETvplRwEfAjbA5X\ jJeBjRsN\x0aXK0+/rX\ WYhfPsvTQA5jUEFb\ 9ds76ufSgMV4gRqg\ QFQT0n3587PMlrky\ 8s3Hplfsu1/37akB\ J6Otw\x0aqb8Uf9HyEd\ of3Xc/AO953Wv58d\ e8lla/z6cff3Tb19\ uB0trQC3yvMJQ11e\ ssPFU1Iqh6u0oZBE\ QH\x0amiRHZ72JRnxx5\ C6Et4ITQlzQvkyaD\ 1TxfGOcLbQfhzMO1\ IV9hENS160e+XLbp\ /WTkOjA1EUtZky3\x0a\ j5DCy83uQiZWr/TI\ Flo+Wj/QJJytT3y9\ UF48ZyfRPICqx8SH\ pwlnxpPudpAqBKFw\ bnyklXd7yDxH\x0aDOv\ fOseuLFKcPkV66gT\ 9pWVkmBBUqqPX+E5\ 9s6XZTlCtU3Qvz6J\ lp3jp3NTE597zna+\ a+Jzaobf8\x0a1Y6/aV\ 9alcOSyDfimk65j8\ Pl7IT/3U99eu2XHY\ yLDWeOZehtN/eq3i\ 0C5S1Nz7ZGnfTRbB\ PTzdCr\x0aXWQcDdTI5\ CgalP1sx7PSY99TC\ D+qFqqLtmgFBk1h9\ qIWO2tpckdOm6hZx\ zrjr88FqsFZbciX2\ t60\x0aZK6O6WbY3tay\ ulabtcY2N/h8KgGq\ 0sR0ckx3TJpbiB0d\ Xzhb917lA6EYVd1s\ w7sdnLVeAEiNv31Y\ \x0aXdBbOTsQPcrR7Z5\ vulx3fOK817pcY1O\ NqsVbHpNQAfrcGYL\ 5QxOPT+qMrN8iDBN\ Imrs6t93iBdcd\x0aZr\ GXcmKMn31rC9/22w\ 8f4L5nz13KQ7useP\ dcxB8uXtr+m/UoiX\ w8SkKfgOdixK1x64\ v4tkTxYOpv\x0afO1HH\ t68kfDE5bbxXN8pV\ CVC1WNMluMK7QVmZ\ uveDWy1N1Bi81GRj\ ALCmUGkeJERhhtKf\ +6RRetI\x0aHS28+OyF\ 1Qa72keqAJEoVC32\ IisXWJ/W7cH1q4Re\ hCYKMd10okHOhtcO\ FOgCW0FGofcRTxo+\ O3Ge\x0azrsMgy3r9OG\ 0/+xs5jMaMgkuiNB\ NmiGiAJmEqEpEXK0\ TzM3jxnwnghrEBzb\ vQxhDevoUeccvCq0\ 2\x0aiL73rA+mqlseU3\ 9pmYqA4MB4UrdBTN\ g4uKtzulAoAYEUCG\ s2GcNkW3wW9R2YCV\ 1NuFxkXhL51ihT\x0a7\ tvgcn+BhmQOnuD/5\ Ru/g8atL/I/1x0b1\ Z33wg8bfPSn4giba\ mQcER1oggW92vN62\ +u3HUS/NtfY\x0aHZDR\ RDjnI08h9oSA/cGd\ 9+8eIF9ugwU1yFBc\ DHTb1/pt5h3ygukq\ QXPnNXq92keveMMT\ Zy2qGhHO\x0aNQin19L\ m29XpReijctPLMJ3\ +BZdvdCcFa30TWz3\ BGoModmdkJIrc183\ XwWnjZ9UHhjhbob+\ 4TH7m\x0a1K6Pfa9hja\ UahrjOZunl3BhkMf\ 7vJN5FE+yVgMtRC9\ 8OJZlvjzJC3wGeS0\ Ga3zuxTvmrXifG38\ Cj\x0a6cMbtkufOU7R6\ +3+DZyfDVeVCFHzN\ /dipYPTZlP0p+q+G\ c90s4tK9zs72XDlg\ iEGcqu9vY0UbKYv\x0a\ umdgCNP3kqnKVHwK\ vZb4UkZa7ChKHmUO\ ogJVTbxCXRB4ffxB\ nZ4tNOWd8SUJISVG\ G5/RuABlQNPt\x0aY/M\ 6ciBTm7VWMMIQVBL\ CqIKLa1u+3q0s0zp\ zZuz5kRWYXk7QrGD\ TwuvDT8iM6DyDldO\ oMATtcIUl\x0aOLAxMh\ +aHl0qWAeNSuK/e8\ C777qDP7z3MwBkeY\ HLUqS1vP6FN/Gxp0\ 8hsxQbJxyem+WHXx\ yx0u1S\x0aq1Y4PDfLU\ yef5e8fO37JjnUnm\ BMwG0geLTb2R1zqW\ vhWKIl85xDOXXaOu\ upxJSjNbYVbYsWBQ\ PKZ\x0a7oXZv5Yoca3j\ n996jCcWW3xywWs+\ fEuzytdXe3xrLebO\ m67j9772BAA/cPNR\ Zioxf/DgkwC846aj\ \x0afPCJzZmDl07Xuf1\ 58/ze157c8Phbjsz\ wD88u+21m6iz3Uo5\ ne2uQdEsgiAXcOR3\ yu+cuX537YlES\x0a+e\ 5REvpF4kon9xIlSp\ S4WnDik/esOfKU2D\ VKQt8jlMReokSJEh\ eGMhrfG5SEvscoib\ 1EiRIldoaS\x0ayPcWJ\ aFfQpTkXqJEiRIbU\ ZL4pUNJ6JcH4th3v\ qn0jihRosQ1ibI2f\ nlQEvplRhm1lyhR4\ lpBGY1f\x0aXpSE/hyj\ JPgSJUrsF5QE/tyi\ JPQrDCXBlyhR4mpB\ SeBXFkpCv8JREnyJ\ EiWuFJQEfmWjJPSr\ FCXR\x0alyhR4lKhJO6\ rEyWhXyMoFwAlSly\ 7KAn62kBJ6CVKlCh\ RosQ+QGmfWqJEiRI\ lSuwDlIReokSJEiV\ K\x0a7AOUhF6iRIkSJU\ rsA5SEXqJEiRIlSu\ wDlIReokSJEiVK7A\ OUhF6iRIkSJUrsA5\ SEXqJEiRIlSuwD\x0al\ IReokSJEiVK7AOUh\ F6iRIkSJUrsA5SEX\ qJEiRIlSuwDlIReo\ kSJEiVK7AOUhF6iR\ IkSJUrsA5SE\x0aXqJE\ iRIlSuwD/P/DoVhr\ FK4gDQAAAABJRU5E\ rkJggg==\x0a\x22\x0a \ preserveAspe\ ctRatio=\x22none\x22\x0a \ height=\x22\ 46.732285\x22\x0a \ width=\x2246.73\ 2285\x22 />\x0a <\ rect\x0a ry\ =\x2210.186751\x22\x0a \ y=\x221021.21\ 94\x22\x0a x=\x22\ 60.392994\x22\x0a \ height=\x2244.1\ 42586\x22\x0a \ width=\x2244.142586\ \x22\x0a id=\x22r\ ect4136\x22\x0a \ style=\x22fill:no\ ne;fill-opacity:\ 0.84951453;strok\ e:#006680;stroke\ -width:1;stroke-\ linejoin:round;s\ troke-miterlimit\ :4;stroke-dashar\ ray:none\x22 />\x0a \ </g>\x0a </g>\x0a</s\ vg>\x0a\ \x00\x00\x0b\x9f\ <\ ?xml version=\x221.\ 0\x22 encoding=\x22UTF\ -8\x22 standalone=\x22\ no\x22?>\x0a<svg\x0a xm\ lns:dc=\x22http://p\ url.org/dc/eleme\ nts/1.1/\x22\x0a xml\ ns:cc=\x22http://cr\ eativecommons.or\ g/ns#\x22\x0a xmlns:\ rdf=\x22http://www.\ w3.org/1999/02/2\ 2-rdf-syntax-ns#\ \x22\x0a xmlns:svg=\x22\ http://www.w3.or\ g/2000/svg\x22\x0a x\ mlns=\x22http://www\ .w3.org/2000/svg\ \x22\x0a xmlns:sodip\ odi=\x22http://sodi\ podi.sourceforge\ .net/DTD/sodipod\ i-0.dtd\x22\x0a xmln\ s:inkscape=\x22http\ ://www.inkscape.\ org/namespaces/i\ nkscape\x22\x0a widt\ h=\x2248\x22\x0a height\ =\x2248\x22\x0a viewBox\ =\x220 0 48 48\x22\x0a \ version=\x221.1\x22\x0a \ id=\x22svg6\x22\x0a so\ dipodi:docname=\x22\ zoom_out.svg\x22\x0a \ inkscape:versio\ n=\x220.92.4 (unkno\ wn)\x22>\x0a <metadat\ a\x0a id=\x22metad\ ata12\x22>\x0a <rdf\ :RDF>\x0a <cc:\ Work\x0a rd\ f:about=\x22\x22>\x0a \ <dc:format>i\ mage/svg+xml</dc\ :format>\x0a \ <dc:type\x0a \ rdf:resourc\ e=\x22http://purl.o\ rg/dc/dcmitype/S\ tillImage\x22 />\x0a \ <dc:title \ />\x0a </cc:Wo\ rk>\x0a </rdf:RD\ F>\x0a </metadata>\ \x0a <defs\x0a id\ =\x22defs10\x22 />\x0a <\ sodipodi:namedvi\ ew\x0a pagecolo\ r=\x22#ffffff\x22\x0a \ bordercolor=\x22#6\ 66666\x22\x0a bord\ eropacity=\x221\x22\x0a \ objecttoleran\ ce=\x2210\x22\x0a gri\ dtolerance=\x2210\x22\x0a\ guidetolera\ nce=\x2210\x22\x0a in\ kscape:pageopaci\ ty=\x220\x22\x0a inks\ cape:pageshadow=\ \x222\x22\x0a inkscap\ e:window-width=\x22\ 1863\x22\x0a inksc\ ape:window-heigh\ t=\x221025\x22\x0a id\ =\x22namedview8\x22\x0a \ showgrid=\x22fal\ se\x22\x0a inkscap\ e:zoom=\x224.916666\ 7\x22\x0a inkscape\ :cx=\x2224\x22\x0a in\ kscape:cy=\x224.191\ 3822\x22\x0a inksc\ ape:window-x=\x2257\ \x22\x0a inkscape:\ window-y=\x2227\x22\x0a \ inkscape:wind\ ow-maximized=\x221\x22\ \x0a inkscape:c\ urrent-layer=\x22sv\ g6\x22 />\x0a <path\x0a \ d=\x22M0 0h48v4\ 8h-48z\x22\x0a id=\ \x22path2\x22\x0a fil\ l=\x22none\x22 />\x0a <c\ ircle\x0a style\ =\x22opacity:1;fill\ :#999999;fill-op\ acity:1;stroke:n\ one;stroke-width\ :17.22429085;str\ oke-linecap:roun\ d;stroke-linejoi\ n:bevel;stroke-m\ iterlimit:4;stro\ ke-dasharray:non\ e;stroke-dashoff\ set:0;stroke-opa\ city:1;paint-ord\ er:normal\x22\x0a \ id=\x22path1093\x22\x0a \ cx=\x2218.237631\ \x22\x0a cy=\x2217.87\ 5154\x22\x0a r=\x2214\ .588048\x22 />\x0a <p\ ath\x0a style=\x22\ fill:#b3b3b3;fil\ l-rule:evenodd;s\ troke:#999999;st\ roke-width:7;str\ oke-linecap:roun\ d;stroke-linejoi\ n:miter;stroke-m\ iterlimit:4;stro\ ke-dasharray:non\ e;stroke-opacity\ :1\x22\x0a d=\x22M 23\ .461607,23.80847\ 6 40.458238,41.4\ 3075\x22\x0a id=\x22p\ ath1095\x22\x0a in\ kscape:connector\ -curvature=\x220\x22\x0a \ sodipodi:nod\ etypes=\x22cc\x22 />\x0a \ <circle\x0a st\ yle=\x22opacity:1;f\ ill:#e6e6e6;fill\ -opacity:1;strok\ e:none;stroke-wi\ dth:15.31822777;\ stroke-linecap:r\ ound;stroke-line\ join:bevel;strok\ e-miterlimit:4;s\ troke-dasharray:\ none;stroke-dash\ offset:0;stroke-\ opacity:1;paint-\ order:normal\x22\x0a \ id=\x22path1093-\ 3\x22\x0a cx=\x2218.1\ 56338\x22\x0a cy=\x22\ 17.843712\x22\x0a \ r=\x2212.973715\x22 />\ \x0a <g\x0a style\ =\x22stroke:#b3b3b3\ ;stroke-linecap:\ round\x22\x0a id=\x22\ g831\x22\x0a trans\ form=\x22matrix(0.2\ 0828346,0,0,0.20\ 828346,-1.868037\ 9,-1.8680824)\x22>\x0a\ <path\x0a \ style=\x22fill:#37\ c8ab;fill-rule:e\ venodd;stroke:#3\ 7c8ab;stroke-wid\ th:16;stroke-lin\ ecap:round;strok\ e-linejoin:miter\ ;stroke-miterlim\ it:4;stroke-dash\ array:none;strok\ e-opacity:1\x22\x0a \ d=\x22m 134.961\ 47,95.594487 -79\ .795108,0.0945\x22\x0a\ id=\x22path8\ 12-3\x22\x0a ink\ scape:connector-\ curvature=\x220\x22\x0a \ sodipodi:no\ detypes=\x22cc\x22 />\x0a\ </g>\x0a</svg>\x0a\ \x00\x04\xe4l\ <\ ?xml version=\x221.\ 0\x22 encoding=\x22UTF\ -8\x22 standalone=\x22\ no\x22?>\x0a<!-- Creat\ ed with Inkscape\ (http://www.ink\ scape.org/) -->\x0a\ \x0a<svg\x0a xmlns:d\ c=\x22http://purl.o\ rg/dc/elements/1\ .1/\x22\x0a xmlns:cc\ =\x22http://creativ\ ecommons.org/ns#\ \x22\x0a xmlns:rdf=\x22\ http://www.w3.or\ g/1999/02/22-rdf\ -syntax-ns#\x22\x0a \ xmlns:svg=\x22http:\ //www.w3.org/200\ 0/svg\x22\x0a xmlns=\ \x22http://www.w3.o\ rg/2000/svg\x22\x0a \ xmlns:xlink=\x22htt\ p://www.w3.org/1\ 999/xlink\x22\x0a xm\ lns:sodipodi=\x22ht\ tp://sodipodi.so\ urceforge.net/DT\ D/sodipodi-0.dtd\ \x22\x0a xmlns:inksc\ ape=\x22http://www.\ inkscape.org/nam\ espaces/inkscape\ \x22\x0a width=\x2248\x22\x0a\ height=\x2248\x22\x0a \ viewBox=\x220 0 4\ 8.000001 48.0000\ 01\x22\x0a id=\x22svg2\x22\ \x0a version=\x221.1\ \x22\x0a inkscape:ve\ rsion=\x220.92.4 (u\ nknown)\x22\x0a sodi\ podi:docname=\x22ma\ p.svg\x22>\x0a <defs\x0a\ id=\x22defs4\x22>\ \x0a <clipPath\x0a \ clipPathUn\ its=\x22userSpaceOn\ Use\x22\x0a id=\x22\ clipPath825\x22>\x0a \ <rect\x0a \ style=\x22fill:n\ one;fill-opacity\ :0.84951453;stro\ ke:#999999;strok\ e-width:3.857414\ 25;stroke-linejo\ in:round;stroke-\ miterlimit:4;str\ oke-dasharray:no\ ne\x22\x0a id=\ \x22rect827\x22\x0a \ width=\x2244.142\ 586\x22\x0a he\ ight=\x2244.142586\x22\ \x0a x=\x221.9\ 287071\x22\x0a \ y=\x221006.2909\x22\x0a \ ry=\x2210.1\ 86751\x22 />\x0a </\ clipPath>\x0a </de\ fs>\x0a <sodipodi:\ namedview\x0a i\ d=\x22base\x22\x0a pa\ gecolor=\x22#ffffff\ \x22\x0a bordercol\ or=\x22#666666\x22\x0a \ borderopacity=\ \x221.0\x22\x0a inksc\ ape:pageopacity=\ \x220.0\x22\x0a inksc\ ape:pageshadow=\x22\ 2\x22\x0a inkscape\ :zoom=\x225.6\x22\x0a \ inkscape:cx=\x22-3\ 6.839033\x22\x0a i\ nkscape:cy=\x22-4.2\ 267117\x22\x0a ink\ scape:document-u\ nits=\x22px\x22\x0a i\ nkscape:current-\ layer=\x22layer1-3\x22\ \x0a showgrid=\x22\ false\x22\x0a unit\ s=\x22px\x22\x0a inks\ cape:window-widt\ h=\x221863\x22\x0a in\ kscape:window-he\ ight=\x221025\x22\x0a \ inkscape:window\ -x=\x2257\x22\x0a ink\ scape:window-y=\x22\ 27\x22\x0a inkscap\ e:window-maximiz\ ed=\x221\x22 />\x0a <met\ adata\x0a id=\x22m\ etadata7\x22>\x0a <\ rdf:RDF>\x0a <\ cc:Work\x0a \ rdf:about=\x22\x22>\x0a \ <dc:forma\ t>image/svg+xml<\ /dc:format>\x0a \ <dc:type\x0a \ rdf:reso\ urce=\x22http://pur\ l.org/dc/dcmityp\ e/StillImage\x22 />\ \x0a <dc:tit\ le />\x0a </cc\ :Work>\x0a </rdf\ :RDF>\x0a </metada\ ta>\x0a <g\x0a in\ kscape:label=\x22Ca\ pa 1\x22\x0a inksc\ ape:groupmode=\x22l\ ayer\x22\x0a id=\x22l\ ayer1\x22\x0a tran\ sform=\x22translate\ (0,-1004.3622)\x22>\ \x0a <image\x0a \ y=\x221001.7582\x22\ \x0a x=\x221.928\ 7071\x22\x0a id=\ \x22image822\x22\x0a \ xlink:href=\x22da\ ta:image/png;bas\ e64,iVBORw0KGgoA\ AAANSUhEUgAAAkkA\ AAHcCAYAAADCwz5Z\ AAAABHNCSVQICAgI\ fAhkiAAAIABJREFU\ eJzsnXmcHHWZ/99\ 1V/U53XMfyeQmhJA\ AcuMB6qJB8GB/ouK\ 6oq66CN6Kuq4CXqi\ IxyrKori6uip4 wH\ qhqKgrCqISjkBCyD\ GTydw9fXfXXfX7o6\ c7M5mZZCYXSPJ5vf\ JK0l1dVV1V/f1+vs\ /zeT6P8LVH toccw\ 1EJ0Q6IPpYjVASqK\ 5sINHHa+/2lKiXHZ\ dxyuPakRTxWsLhvv\ MKyZLSxTXzjBFZvH\ DetHunT P2xQss6s\ 32e0apO1HZKqzKPZ\ ItectJi/jJa4ecco\ 1528lPVNOoOWy91D\ eS5Z0oImCgs6rusG\ uP0V pIiMnFCQYnL\ jPb/s4eRsRElE6zI\ O6vu5boC/20Rp1aY\ dY6Hwyx72iInWYRz\ UftyMTeHBDC3P755\ z G2tn5aDP91DBL3\ uYfWWUtDave2EHIZ\ /dPExn1CBZqg23ct\ HF6o4QKrM/I0rWQe\ 8vAWAuT+AllHmf n\ +CGyBUfOW8j5ywAK\ qtTBIY4Y7vItgKBo\ eA2a3jx6dd243iWV\ y9rZ21Cm/exj2b4T\ kjx/lEEVSR+ UiuS\ Ov3eegHouoGsyLzz\ Xe+lf9cAL3nxRcQi\ BoNDQ7zjHe/gny97\ PSeecDzr1q/n5z+/\ k61PbOPO n/2EX95\ 1Fz//+Z187rPXE/g\ BO/oGuOp97+Pb3/8\ BP/3pz/ntb3/Nuz/\ ycf77phspZrNc+W8\ fIiKL /OaXv+Rv99\ zDlVdfy6bxLIayZ1\ wr2jamP3P6F+0AJe\ eCH4Ak4qYUVjZrrE\ 9qVLeV0Np0pAU8jw\ tF dVuJyIr4Ydv/Q\ iG9+C1vv+bJPoljO\ PIQ7YD4xgxuS4Tqc\ UlCeeZgvbtc5T1ru\ ojJAhOWx9aKiyFL \ GLLU2EYIBIKIPINg\ /T1DdAMCTZrxekyR\ 2V2u8N7jOxEC+Hbf\ BG9Z3cGEE/Bw3uTc\ tjg3Pj6KIonc PVL\ kWW0L+6FLkgBxhbD\ q4xc9nAkbv+Dhmz5\ uzkFr1VGaD37CkiQ\ BQRFxx23k1IGTW1E\ VIa5gbS8h pNTa+R\ /I+URk3AkbSZORIr\ OTIEERsUdMlPSTP2\ FXtxbxfZ/oysS8tv\ /SExnGJ2zWjHlkQg\ /F8REV Ga9p7okmM\ CSczghCIBDZXkAuu\ fgxdVZSJbghSsnH2\ FlE311BHygjlRwCQ\ 8ZL6ZhLYoSz/T4lA\ bdV R6r4yGUPJe/i\ RxWYvI95x+OSRU3z\ uyjHQPFv4wiSQGJt\ GkmfPn7kHJ+7xkyO\ iwiIksKGDS9gUU83\ g4O7qZpVVh13HCu\ WL+fZ55zNwOAQlmn\ yT5ddxrIlvaxYvhx\ D1+jq6mTRokX4vo+\ uKaRTKXpWrCQQ FZ\ o7Oujo7mH9qadTLh\ ZoammmLR7Hl+TGe/\ 3FKkXXozL5x5sjPB\ LKAn5Mxk8ohIqIkn\ MJMhZK1iHZ biA3H\ d4FsZt1EGMq4gGOJ\ 4cawrFI0tEJY2cF0\ XKpHD99EByu2ji+D\ 0DOdrj6xG5+M1LgJ\ 7tz9MYi 06JIALFH\ ctjd0aMikmRIItuL\ FQqWzeWrO7lj1wSL\ IhrdusSg5dOtS/xx\ rMzlqzv47JZRrljV\ BrDg iNJUuG4ABRc\ 37xx0xGZv7C8647o\ BirJ/8luPgCm90Xl\ tPxvKm/L4pkvytNY\ 5tzH7y8hRBaXlySN\ K bsbGzTsImoixKL\ r/D1CLJN33+2E2aS\ FtCDyhhTSnDFLa/H\ 4zghuiD1ZRRyo4Hd\ FGBGrv1wG8Jg0v K\ s0ZodrXMdQxC9ENM\ JdEadMkHsyWOS6ms\ qEruaB9HY2obithj\ 1SIr0kjT44dXgA/G\ i4zUKryl0yB y1Z1\ 88K2CACyaiCKIqK0\ 5/fiud6M1wACPwBA\ lEQ818NzTFQ9iiiJ\ bMpbje0yFQtBEumO\ GViez4Tl 0Kyrjfd\ 2VcyD/p4Xd8aQD/N\ 62NpVQdRl1LYnf0E\ E8OTHro/hiEO0A9T\ RCpUT0tNet1yXquN\ wVluc H/ZPcGFPCk\ 0UuC9T4bzuVl7YHu\ X3meq0EG0oC4imf6\ S/wmGFb8iIZjAjPR\ GXBSRBRJNlPvXILp\ 7f meb+TImr1/UwO\ FTgZ8NF3rCyHYCYL\ GCFkDzI1ZCiiNCiQ\ VLB7q8c0jC0vjQ6a\ 2i7nkYTNBFlHkRA \ UUTojRKM27it2gER\ JWNJjNx9o/hlb07S\ ZvTGqG4rPakkyR4x\ kaMK+jwJEtRI8jNa\ I5zdYaC0aNw5 VOC\ hvMVguTZpRWQJVRT\ oic++z1ARMJdEcZs\ 1tN1l9MEqbrOGsa1\ AoEtU1qQWlI6b6xh\ 2t4E+UIsY WO06Ta\ rMj3dnGySp4IcMVB\ y6dZmUOjPSerTC2l\ Wh2lcktqqpQZAA7h\ opsHmixPHNTZQdhx\ MTe97z nIMjLI5VA\ WC4ZJGxfNxwz5jcX\ 6zM+u+DhSIIh50gA\ Yi6TOgFh/9A88TTJ\ 0dyDPOGNmTitEena\ RBy tsNfMkUu6U1z\ VnMURaARUToxoWG5\ Lp98dHBGDjvQFUTn\ qfNAHwoEhohkejNe\ H7N9lsQNthcrvOuE\ HgaqNo8XTa57dIg\ vPj7ERYuaaVMl7KB\ 2jQ6EIBVm0QhAjYh\ oHQbWzkM36AEoTer\ MfToSTWs7iHc2 o0\ fjtVWrOPd6StWjGE\ KEaFsK0T6wIUWKyS\ hJFXtk35OHFJFxM/\ YBHeNQQOswsIvW/j\ ecAr9ce5am krvtx\ TKXLGnhI+u6eefqd\ vLOzOdtb3hxuRH5N\ bYVEG2f6orkQROkq\ bAW6aijVUwvZKRq8\ 4L2JO/+ 204eylts\ yVW46m87qAZB4xk/\ GuAFsL3izvreoOVh\ 7iqhd0TRF+8hud/Y\ Ps4fRovkXZ+NYzkA\ Ysqh J5bPSuusS6o\ YRyA11aIfGWIsx6S\ nFEk6Fkk6yiAXXeS\ 8RWVNatrrW/NlPrC\ 2i5QiUfUCMrbLjlJ\ t Mhh0QtIqnNQyU5\ 8QqCJy8cmbtI40TD\ 8goSrc2pclJguc25\ HkdyMFXtXbwoTtAh\ qm5WEsMMVW8EP6 C\ xVyPqyIa3TrMyc+K\ Sbjjtv7jLYsFEqLR\ uAEtQhNb5RoPE6Q8\ Pnd737P448+jpowO\ O/s57FsVU8j 1F9H\ ffIPPJ93/vtVvPa1\ r+H4RSsP/FxSOtW+\ 4j6jZVqX8aRGk5QW\ DWnEXJC4tB59quO5\ HQme0RKj bTIao4k\ CFc+n6rpEFIUdhQp\ Fx2VVU5SIMvM5MJd\ E0SUJbbC44LTafBA\ YCilVJCnCilSUku/\ zm5EC f80UufrERQ\ D873CFS7pjh/zYTy\ V4AXxp2zgAvbEIu6\ s25zTvSTd5Afz8wX\ EqA3kuOnkFvh/iCw\ Zb C3kiusFLmtPsq\ pg0yyFffWIE2w9AO\ vREY3lUwQxCHis6t\ BgqaV0jpsjosoTl+\ WyeyM8q0N4fFEFg \ WVRm2PaJyiKnJo/M\ by6UJXgKJSeOkaSj\ DMb2InZ3bJrQ2nJd\ orLEb4byXNiTRpcE\ rlzdzbe3jfCB Bwe\ oOB5d3bNrRUJFRJh\ LAfg0RRiGlByX87t\ auXHLEG9f3cndo0W\ e21UjkbvnuQraXnb\ QZQHLC/nk pgEqXk\ CHoSIQcMMzls75uU\ Nd4aV1GTXCUxIIBJ\ 9/vvwNqLEY55/7bA\ qZPG98yxt499vfwQ\ UXbQBq 1TkAnldbX\ ctRjapZwXZsNF3Hz\ ppEF+0RNe9NruaCK\ IkzBK+zoR790pfOP\ +V1KGEsiWH2lXEz9\ rzI mltxiExZlGii\ 0CBIdbxuRTv/tW2U\ E9Nxqp7Hpctaua0v\ w9rm2fVAoSLMWlxw\ sGjTJErUoqY9TQn+\ Z8colcnfd971uG1\ XllZdZXuxguo5vLQ\ 3ve8dPsUwaHl06zN\ /P1UvJDJZvLK94mI\ GIQ9M1CKshiyz o1\ jhUT/gD2NlTkjFGa\ 1WcUORiZ151q/rwJ\ c0dtohYJM2IqQNiG\ gqaV2hJx7hntEC39\ oxwbtXtx2W 77U2r\ tJkGCAp5MtFHn/kQ\ XZu28r5//gK2qKRA\ 0q7uWHIyqjK+uQRF\ lBbHsJTqBDoGEk6i\ mDsrBDK Is5egjhd\ UViRiPCnsTxNmsoz\ W2Osb9Lpb4uzreIi\ CE+NKoMjibl0SUMV\ kzNb4vxqOMdY1ea8\ thhZ x+eS3hZu7cv\ SYyhsL1tc0tsyY59\ 2EKKJAgU/5Mtbhvn\ DWKHx3vvWLuI5rbH\ GdnOhLuI81JBiMno\ 0 zv9867uosRjfuP\ nLAHgFlxe88ELe8O\ bLOOfcc0gl09x///\ 385U/3A3Da2adz+u\ mnN/ajpmol8T// y\ Z307+xnyYolbLjgh\ YhitKGj2Nd3m6u6b\ SrqxKQe/TpQsfiBQ\ orJyFGF6mCZSFKZ1\ /H3t83ahMaq phiP\ 50sookS3LuPt4zkQ\ LY9gH4Ry00QBSRRJ\ qjJd0flZRiiCwHjZ\ Q5/8v+kHnNyapuq6\ JFWVUxyH 23aO8KK\ uJjZ0NfGnkTwffni\ Qs1piPLcjcVAFCkc\ KEVFoEKWc45NSJUw\ /5KOP7EaXBE5rifO\ r4TxN ioQkyZyQiu\ OGISmtFtGzXJe/Zf\ K0Gzr6hMMZ8QhdXQ\ kc1+JfN7yAVMue37\ 3v+yQSST5xyze59u\ Ql bMxWECUZUVIIf\ JfA95DVmfem/t7e2\ wKN1/beVtWjpEybD\ 37g/YwND7J41SpWr\ lpFFAdRNyg7LhOW \ gyEJtOo6wqQ4XJPE\ WoQLsDyf0apFQhFJ\ GbXz2uqInBrRp53D\ 4YZvPXVSbXCMJB01\ kEse6miF0skz J2+\ oEaXzulv503iO5XG\ NNQmdczqSmCNlthT\ mntyUCRM3rc/5/t8\ rAkNEyToExvQKpLr\ 9waltKb7b N06rrv\ GKJXGWx1Re0pOi4j\ gQ+mQsh+Wx6Z/VRI\ HPbx3nrsEMvVGd25\ +zmk9uGqToBQ2CVN\ /uSKOu Obrv/vu55\ KKLCPwAx6rgW7C4v\ Z3exYvZ9MijpFNNf\ OK6T/Hud7+DwkSei\ eHMnvNWa+Tlo5+7j\ uxE jgvP38Dv7vk/\ 7rv/fq695sOIokwQ\ zD3QujkLyZifvkZp\ 0RB1CXe3CT3GESdK\ +tIowbaA6mM5kuub\ 59zOHjKR5pliuWx\ Jit9NaPxg+wiDlkd\ bRGNzrsTxqZlpPdF\ 0Cea4VjnbYWVM5ZI\ lLXx80xBZy0GR JY\ 5L7js95oYhqlXLc9\ REugJeEBJRFNyw9v\ fqRIS16SiaJHLnEH\ THDLoiGjduHcMgxE\ TgFUuaaVfl IyLyn\ Q+8AGSxltJ2gY89P\ MBFPWk2F21OShncm\ 6nQFYvQHtF4IFfmr\ I4999OQBVx3D1nVF\ YV1k9G9 +ONlAl3C\ kkWi+ERjMb56+08a\ 2w729fHpD1xFNQgR\ JYUzulrwXA/LMonF\ 443fw94LH1kxGu/l\ JnKk mqdLI6C2oKh\ WK8TicQI/QJREvnj\ DDSxesYz3XPdJACK\ ySFJWGbYsjksneDx\ b5Lh0LcLbamj4vk/\ W 8cB3sW0LrSlOd8\ xAr1u8+LVIsSiKyI\ qBVSkd/M2YBwLLQ4\ 4dPh+mheIYSTpKoP\ eVcNqjs/oZGYLP j\ pJN1fPJOx7f35Xj/\ Ws6JvVJHu0RA0MSZ\ uS1RTtALjiYy+bnF\ /N0gCYKbC+bvOv4T\ jZNFLhidXtD P7Q8\ pvJw1mG3FbAmPfNH\ fvtQhbsGM3z4pKWc\ mdKxg5A/T5T46lkr\ 5n38vcuDDzUGh4Zo\ 62xv/F+K AR7EE0l\ Gh0ZpSqYIfZ90qol\ zzj4Lz/UIpgj3q6U\ cv7n7t/zuN7+Casg\ /XPB8zjv/hYyMZ2l\ pShDs Q6DsFhyU1P\ wJdz3taPdXUJ4E8z\ mlN0rwuI/ZX8bonZ\ 2AuFl73t5OmiiwNq\ 4y1pbgC4/tZnkiiu\ XN LhgGCPciX1XXZ\ aTqMFip4oXwgp40H\ 1nXjR2EfG7L2JyEq\ 02TGLNr5Eh0AwJFr\ FVLBUyrmgJYHI/w \ n9vGOScdIa2KDFdt\ /uQ4bM5XOK0lDl7I\ NQ/u4iunL5v2uYIf\ osIRERhPxUMFm05D\ pk2VGKi63Lh5 kPe\ c0MMVf9nGqekEvx1\ 1eWZHClmArBOwqmn\ 6fSy6s0c1jL7awtH\ pnJnyzZg2kSkLnZg\ is6Xicc+t X+euX9\ 2NnojTGo/xxS9+kR\ tu+Bx/vPfP7B7YRV\ tnF6os87VbbmZ0aJ\ APfuha2tpaGRka5b\ rrruWE E07k4x//O\ Llcnt1DQ1iWTVtbK\ 1/6wueQFZVf/frXf\ PLzN/GNz38OUVd5x\ T//M3pTite/+AJu+\ MZ/ c1y6tkC+6rLX\ cPlV7+Pu/70d0/EY\ Gx6kWK7Q1tXNxz71\ GXRV5pUvewmqoqLK\ MutOXMs1V/87oiQf\ mWiSD6L+FGHYHKt\ uOyqgjtkIXoA5h4b\ jT2NF1qcjXNDdxHv\ WdHHV8e1oooAhiUR\ kGU0IZhX+yQUX P/\ b0MpLcH7KWg6EoWG\ GtWmXA9KdVpG0pmh\ iEs7oUf3/HEJctbe\ HMSSKwu+rSbaizir\ Rng5uxkeKH d13T3\ dXF+NhY4//1CFOpW\ KC9q50TT1zLW996B\ R/96HVc9trXs+Pxv\ pqp5CSGBgu0ppuRF\ ZlA9QjK Pt3tHUyM\ jSGKcz8ndRG4sEAh\ shSrGVDaQwfvAbNQ\ KIqIsSSGk7dnVNz5\ ZY/ypjyB4y3IIX13\ 2cYM Ql7UmeLhbAn\ Hrwm6p0IueQSGgr/\ Xs/BItsRgpcrz2pK\ 06iolx+fPmTKP5yu\ 8eUULRae2H2Wv9Hl\ p iqYwNH2YJOJ7Ey\ SArqjBoohGVBYZtn\ xe0J3i8tUdfOn0Zf\ SVHcYtm0+f0jstiv\ T9/nG+9sT4jOMe b\ tw7UeYnu3O0qRJVL\ 2TCcgD41XCek5Mx1\ jUnWdecpOgGZBdQo\ Wv0VWreVJ0x3FkMQ\ Qu2S3VKqjSt KwiD\ 2/nZL3/FVV/5Gt+6\ 5auIksxPfvxj3vve\ 9/KjH3yPFStXcv11\ H+WOH/2AllSaD37o\ Wj567Ye4 6ctf5Kq\ r3smnrv9cY3+2bfG\ db3+TH/3ge6iyxA9\ vvx2rWqJSLvPD7/0\ 3J599NolEgqve8AY\ 0Uebc C17Eb//3xw\ CM7h6gVC5zzmmnYU\ 6e4kdu+hqf//Z3sa\ wqv73zLvTJYoGrP/\ 05vv/973HN1f8OcM\ TS bYEfIM4j7X4w2\ F5x+clIhduHKtw2W\ Oa2wTK/GKsy5sxUj\ B89s9tRCtEOMHYUs\ PdRidKsyZzbGmN9 \ k8HymIY4OZjZQci2\ YpW0Mfsgrw2WsRY/\ dezjDzXquqSpiKoK\ zXKtvF8XRW55fJC+\ Um2CHLRcNhdt Ovd\ K0Q1aLnf0Z8m7Hue\ 37akQfGSizLL4/Cd\ QN+9A8vCEoetpsDN\ PP52f3/lLRElE1aO\ ohsFYJcO2 nTtZt2\ YNAM993nl85zv/za\ v+3yv58Eevnraf5s\ 4E49kJPNdDnXxuho\ eHaG5rIwjmnogCy0\ dp1adV gc0XWpeBX\ /UaROtIQorJ6K0Rq\ oNl/LKH6waTxoImo\ i6ROGX29PZcOKMlh\ iEKPJIr8/bVnRyXj\ NJf rnkXKVkHbdBE\ cINGu5E6crbDs5pj\ XNCdpjNaS7Utj6n8\ dqzMlqJJSpVo0WQW\ R2SMvdz1n5nWGgRG\ dAOCKe00EpNpzPr\ fVdel5AZsLrv0xnR\ +3J/hzqECt/VlOCl\ VM0q8N1PG9EMGLY/\ Pbx3nlp0ZXr+s +Z\ Cm31w34Nbbvsfb3n\ Ulb3vXldx62/dw3Y\ CHCjY3bBnj9+Nlvv\ 7EGD26xA1bxvhLrk\ LRF2jWVQRR 5uS2m\ SmsuSDaAUreRRuxi\ W7OI+csnI4odsf8I\ oRRReF3f9mIVTX5x\ keu5o1XvJ0nduzk8\ a1bZ2wb BB6ObbFj\ +za+dss3eOe73sv3\ vncrTzyxZ9tTnnFq\ 49/Pefaz2bz5ccq2\ SzQW4zOf+AjrTz+D\ l176 GhzX5dFtW7n\ oklfw61/8DIDf//J\ OztuwofH5VetO2rP\ fM89i89ZHp53PqO3\ jWOYRS7UdCYw5Pn/\ L 11qyTF0IFN2AP2\ ct9q67OZZue5rD2F\ HEaY/OEGtPxbDpct\ dYmeURhZ6IykN5i9\ UJnQdyFfrKJt2x m\ e7ASra2KjuUHi1PN\ cymS0ppKhvHs9zRn\ +X0lji7d9n8ZqTA6\ oRGiyrz54kSL108f\ WK85sFdAHz6 Gcto\ iuy5XpvLFielFlah\ dTi1N57r8YpXvpwf\ 3nEHb33rO9lw/vnk\ 8nm+9Z1v85Z/fTPx\ WIr777+f rVu3smr\ VKnbs3EFr2/RqnVQ\ yzfOeex4fuvoaLrz\ wRfz0pz/jzLPOpKM\ 1jWPOHe3xSx44wQG\ TQKU3 it1fQesw8I\ rujN53hxNal4GbtT\ H7yvi+jyRJaJPGkQ\ eC1yxr5Vs7xvnFUJ\ 4XLGpheHMGJR3iIG\ Gn 1dozqUswhXQOl\ k0uXNVGNICfjOS5Z\ EntuUqKYAe1BY/ph\ +T3Sh+1aRL3ZO1pk\ 0U4+Yy1TVbPFYG/ \ ZIq4nk9EllgdVbk/\ V+FZbXGaO9KUbIvu\ iMbDRZu847O5aLOr\ mkEXoFuDVy5qOeTm\ kz+6/TZGxyf4 7Ge\ +BMCXv3IjN3/vf9i\ 25tkcl4zw14kqJc+\ nv2KTd31MPyCmSCy\ KRRoi7Lmg5F3Eiod\ ctBEtH9H2 CTSJQJ\ cIDAUvoWF3z39xo0\ xGUFesWcPr//WtAJ\ R8j9N7WmZo9AI/wM\ qbqKrKOy5/DwBqbH\ pEr+xX G/+2ndo43\ JJK4zpOLVrrWyApq\ IqC6QWc1N1NS3s7O\ x/bxB9//WuuufHLa\ NSOGw1dIpPsNbBdR\ H36 OB8JvX3qCA8H\ DqekoOqF/DEzt8+Z\ 6Yf0my7LpyzWjkWS\ jgL40X1PFme0p3kg\ U+FHuwv8eNcEt+/K\ 4AcBKVmgVVfpL1V\ nfEbvL+0zOvV0wWw\ 97U5uTfPnXJnNRYs\ T0gkylsvuqstnNw9\ zfDLK4ojSSMEN Wi\ 4VL+DK1d0zUnDjlk\ v3PA3azIEKyl49k1\ w3wOwvU91WmvHH2l\ mhuq2EOTD/0l/PMR\ FFkdu+9z9s OP98N\ j/+OOV8js999jNce\ ukrQQ7obV2M6dj8+\ he/JpFK8sl//wgA/\ +/ii+nq6iQIPK695\ sM866xz uO9Pf+a0\ U07lo9deQ+AH+xxs\ vYoLqnjAJLButumO\ 24iqiJM7NN5d5sDk\ dewvz2pi6WZs7KFa\ 1Chw PNS0Tmxt00H\ 7OF3Yk+bPEyU+8uB\ OCpbDyUsSDfNX36j\ 9PdXp3gtCFFHkpr4\ J4pLUEP+f0xbju/0\ Z PrBxF3nH44mCOU\ 1nM2bXCEQdgSI2jp\ ObTEE9OJ7nZT0p3M\ Dn5YvTnNeTYpEu73\ l2ZZUKMqNVkytW d\ 3F2a4R/XdHKZctb6\ YkZ7Gf4OSD88b57e\ MvlV3DD567nhs9dz\ 1suv4JH//pnzupoJ\ m0YLIpHuHhp Jy4C\ JzcnWNUUoytqzEmQ\ 6lEio69CZEsOuWjj\ JTSctghecrLNSMrA\ XBJdEEECcIOA0848\ iy2PPAy6 TKqrg2g\ 8Rb/pknVCKl7tOpY\ sl74Jix2iyLKVx/O\ z+35P95Jm2mItKM6\ ei/jH39xTs9VwPX7\ 68zs5 7RmnAHDOOe\ fw/R/+kLRhMNjXR9\ Uy6V7Uje/7bHjJy/\ j2V79KsrWFUxZ1ok\ gyhgB3/+GPdCgCkd\ Dj vt//lvWnnIo7S\ b5TUkBMPrLO6ofbQ\ 3KH6c6aRp6K8b1Sb\ sciSU9zBLqCVPGAP\ YP2EkOib69WIsuS \ UXYUKtw7UUGTRLKO\ x70TVc5MR3hkL7PI\ ehRpX9Gppwvm8oA6\ rimOHYQ8mi1xQjrO\ l7eOEJUlNFHk ivt\ 38L61i1jfpHNrX5Z\ /W7eYH+7KsiTeQeA\ HpFSpVmkTBDRH5nc\ NQzsAg4b2xq/WCMe\ ++rm5boA3 aXw437\ 5vjlVBVg0uuGjDpC\ 9SbXXrmCZB4NHck+\ a1L7sUMSYhSiKV0R\ KObbHhghc2thNlZd\ rnKwNF gsDZJ3EIH\ A/lILvNSzEZKSbjl\ z3CvDPndvM143Tdg\ NAOiKyI45c9nJyNu\ 81BaVIRdQlnwgJRQ\ DZk tK441k5xQe1K\ 9oWUKvHDFYvZVnEZ\ bxJ5473bWJ2IcGZH\ M4Eh4sd05KKF06YT\ KgK9iQiff2yYsudz\ ejrS2M+imEG3oWL\ 6Ae9Z080t28Zo38c\ zJ7oBghsSKgJuGDJ\ m+8iiwMqYii6K/GY\ kT9kLWaRHGfLE Bs\ HygpCM5fJYrsLFi/\ Z4J62OaNzWN8EpLd\ NX5wcKL4BHSzbeLG\ aDs/HrdXP4TNVRky\ MUkQtOLYXW WSNCR\ l8FfaCEl1RxOqOza\ o+mwhAF0q3TveRkW\ SLZ2kLFdelZsoTXX\ /k2rn3bWwn9WoPjt\ 73/3ygt rREwPdFE\ wfVxilWaWmK8+8PX\ 8KXrr+Nnt30XgIsu\ 3MDl/3I5oReyauVK\ /uXNbyGTzXLOGafx\ ogsv AODDH/w3PvC\ hD3PrbT9E1zX+7eP\ XgaSwtVDhrHPP5ab\ PfJp/fc9VSMKe9Pr\ Sni7+6Y1vppjNcco\ z n8l5zzwHORToau\ 8gOs+x6VBCtDw4jL\ ysTZN4bD/bxPbKCx\ 9rcPs0h5J1iGzNUz\ q5Zd4C6/5SlRd1 J\ fhe3wRuEJDWNXrje\ wbe+MYJ7O7YUUGS5\ mp2C7A5V+I5HU38c\ vc453Y38+hEmYzlM\ m7Z/NPyds5s jvKV\ bRlGqyYv7E5zZnP0\ gMr76w1k6x5CoirC\ PP15oBbt8EwPNTV3\ M9v5wi97uOM2giYi\ JxScnD2v Rq/7Imp\ +2aP4YIbIsuSCRM7\ 7Qr0RrRSRZ+yzvCm\ PqEv79VgyByqIkjj\ t8/XvD9RE9FPuw0J\ cuOcD s7+M3aoxEY\ TctTvLExWbMyfL0w\ U3JLYpi5fSMZdMv/\ 4bx7PossKyiMy4Ex\ CTBSZsj5NSUe7NlF\ nb nCShiLNWbhl9F\ QJdnqa32V2qNNqmN\ KkyaV2d4QSesx00U\ eAlXYlpqbX7chYDx\ RKPl32e1xHj8bzJ \ cU0GZzXXotBTTRzn\ wiMTZdJRfdI7Cj65\ eQTx/35GLLB4y+VX\ ALV0m6fF6dlw8byu\ rWgHaMMm6kgF L6l\ iLksQaCKiHRB9LEe\ gS5jLEki6tN/IQ7O\ uNkrrATaOTpDQNJZ\ PqZQbnJQt7I3t+fK\ 07UZ3jDEe l1nbuo\ doWp7P2iYdUZT52L\ Ufo7t3Ea959asaaa\ m6XYce3fPsZZ2QrO\ NheT66LGFXS1z56k\ u5/cf/ S0yWkBWZD\ 3zww5x5+um85CUXN\ j5XtxOow7HMIybYB\ vCyDoEXHtbmtptKD\ k+U5o4oPaNJm0boj\ 0WS nuZw0ypeUkUb\ MuesbtsbJcelJ6Ih\ ieIMx9+jKYoEk47i\ kyvrveEHAev/oHnT\ AAAgAElEQVQTKgMJ\ gwfGCiyP6Vyxqo1\ v7hhvEKLH82Ve0J6\ c5oO0ENQJ0sGYJio\ tGl6/izNhYcQOPEX\ qlz3MvjI/fPBn /O\ 2BexHCkFNOPJNLX/\ Pq/Z5bPRU2G0ky+8\ r4lo98CPVtSouG0q\ JhDlQaKUd5Mk2lpD\ XEVg23v0Iw C4mC2\ nUnCBH3EufWo1Wzb\ X8otRR+2UMIBJoiC\ hXLJaZK6JZEznZIa\ Wqt6e2KJNFHszNIT\ d0Asq9q kzNtrjiu\ k7gq8cEH+ji1LcVx\ k/kvXRQapf91eAkF\ uVhrr1NHTzxKzzzO\ OSKEpCYryQAissBP\ +zOc 3RbnnvEhAAx\ JJGf7bK/UIkvDtsd\ yefp99wK4fWCc49N\ J7hktcMfuDJ95xnL\ SSsg3d2aIKRJdL34\ F u+/8Ee9+95UA9J\ 5w+rwI0t7kaOriUc\ m7RLbkcDqitWiSJG\ BIAlln3yRpwnLYNJ\ 7FUFSKdk0QbFYt v\ CBAFsXGa2OVKglNQ\ xME7DAka9a0YFnTJ\ m1omK6Daflg+WwMJ\ ogoClFJYmu+yCq9F\ VU3EGQBRZYI qwGV\ QhmlRWmQGKtSQpRq\ 9zZrhwyaHt0xgwd+\ +1t+cefP2PDil9Fk\ aDiWCcr0Z9ixahHq\ qaaVU/9/ pOCVXZT\ 47IvSQ4W1cZXlEYU\ hy2Pc8bH9EHFy8ao\ I0KlNvzbHSNJRALs\ nRvTRLHaXMSOaJJe\ 8aY1u ASRRZK6g09\ GiRarD1yUky8fba1\ Bp0yROSRr8144Mf8\ 0UOS5h8JJFqZp1gi\ hw90iRiCLRX7E4sb\ n7 wI5d9vDHbZQm9\ aAF20ZvDHvIxB4yD\ zhaY4+Y/PD+n1ByC\ lz/mS8C8NWbb+Q7t\ 36X1/7Tq/f5WSkm \ z9q81hyo4OYt9I7o\ YRFaG4uijSiWV3QJ\ 7QBp0nxSWRHHHjJn\ de72hqqIijTv664o\ Iu4hdEO3R0yU 3tq\ ipluv9eZ6xZIWbu3\ LkGqd1MjEZZyOKOp\ wGadZnUbkI4rCcUk\ FkjG+vHWEd63ppFX\ XWJ+KMDyp NZotku\ Sm1UmStDCkNJV7hi\ d4MFdFZE/qa9RyuH\ 3XBG9b1UV3VEcSBf\ 46VmAgbzHWHiVn+y\ yP1hZi XgB3jRT4S\ 6bEiOXyQNYiqios0\ jXu2JXllJRBxvYbX\ kY9Gy4+4MhRdXVqW\ gpNG7HR+wpYi+INz\ ZHp h/PqebY4IjNs\ +hTd6YLguuVAHXXy\ VMdQxSRTtdEVGSuT\ r11HVSGR9+loVpFD\ n10Vh635Cn8cU1jf\ obPuxBMB2LLrcaq\ b85y4Yd20Y9RJTd5\ 0CP1aRK+vbyfPO/d\ 8zrjgfPKmjT6Zanv\ ueefS091Z0wv6 ew\ vIj3ylKIDSEcHeVW\ 40GBdbtcNSrGJIAs\ ujyrxSwMdI0lEALy\ 7jx2QiWwv4MbUh5F\ bHKkhlD3NZ shEZs\ lwXVYB7Jypknek/c\ iXrINr+URNFglqPL\ KE0czIZs30URUNxQ\ k5va2KgbLKlaLO+S\ WdH1ePO oTx51+NN\ y9ppmaeL9N6wR8x5\ a4nmA1EV8cxamfpC\ Bx43U0ux/W3Tn7n+\ M1/kC5+/HoC3v+O9\ XPXu K/dLkmaDX/a\ w+ksoTTWx8+HEXBE\ grcvAdQP8Kc7d9Sj\ OoUr9LRT1qNTUe/S\ mFbUqwjtVudEIF2r\ N bqOmS2Rbgcrxs1\ /DE9Nxbnh0iKWJGL\ uqc09+9RRcoMtoI/\ a8S9zreGbnHqfq+r\ 5cCnzwhC4MSeCh g\ s3mbIE2Q2VX6PD1J\ 8Z42eJmTD9kIpS5f\ ecYfhhwRkd6GoFrN\ TQcP6A5nuCyznZ2F\ yrsqtQIt2gH SKaP\ aAUsSdYkAdlcmWqh\ VplW28ZviK+bz+6m\ oyOJ5fn0T5QpTlSR\ 8w4xVST93F5MAYar\ 1n5TbFOx r2s6F0a\ rtZTtB0/sbhhsFvy\ Qx/IVHg4qPLA5g5u\ SWJSIsq61iT+NVxm\ wRjht+VJOOKFGlP7\ r/q9w Iutm3f+I5W\ H6Li1RnYtf93qglv\ KLagG6KuG5Hv/w/O\ cCe6JITwVIqkBkRR\ xnzCb0AvxhE2Xxk9\ Oj sY5jJOkoQXVlE\ 3LBRap4KBMmXkLDj\ 9b+KBNmg/gMVR2e2\ x5nV9liTdN0fYVcc\ DGX7VsIeTRhd8Vi \ qFLhnWu6cYOAr20d\ Zagap2A7rEvHef+a\ jgPetzlQOaQECfak\ 3bwRE+UABMaHIp1k\ D5lYg2VQRYKS ixh\ XDjtB2h8URURZGqW\ 8KY+ytmlaFOfJgGg\ HeOLsk/TrV7Tyn9v\ GiYoOPfHaOZpLEkS\ 35DD6KjP0 SVCLKp\ 3ZMXfrFGCaRslpVt\ EHq0xNuS0EiiA09p\ VSFb65s9a65o7dGd\ 68ajGrWptothyWJK\ L8dbxI czyBJgW8b\ EU3VdvhwYnitP2lN\ IWTmhOUxkd56LEh1\ p9+BqNbsw1hNUDPk\ mbiCY3BiQLHrengL\ 1v2 GKK6qRqhlHSJ\ jo4kD93/Z9qSLayU\ 0zy6s4iX0lm7qIWd\ VpGWlhYESTyghrAL\ wY5imStXd01zIE9K\ Amc1xzirOUZVLSH\ 0GNw6mOPh8QopXWW\ gVKX08D0NkgQQVL1\ ZjRefkdQYtH2aQ4v\ Bss9u06NTk0hN tg\ 7yHBNv7tqGJx1qm4\ bvhLiDMyurjzSOka\ SjBIFWb2w7feCTSx\ 7RR/cMCCld4dt9E7\ QbGouje7ZV sg5y3\ sJcuu/B9miC7Ls4v\ k/J8VkeU/mnZW3c1\ l+bEF6+eGZ39Jzj8\ 9PdWdY3GaxL7ztlG\ drBYUk/ yV0R/N3m\ gqNJ9dYjx51yBl+9\ +Ube/o73ArV02ynP\ OHte+5AiMqEdENg+\ WkpHao0c9mjNQrRC\ xpLY HoH5Ee4FV4f\ rBriTEcTZsLNoctX\ qdj6+aaihEwoMEas\ 3TmRrHq9Jw21a+HM\ zNXJTT9vNpcXbFwx\ J nGYpsCgeYeNYjo\ ztcsuZK2lpaub66z\ 5JU1sLL730NRTdgO\ 6YwW233IxqGLz00t\ cA0B7R0WWJ0A8Y t\ 2opqr6HN/OHP9zN6\ b3rSAiQXt+J2VIjS\ dGoziMPP8TtN9/Mx\ 266id7jW7AmxeaCJ\ OI4Hnm3xgr+ 8Ou7\ WHX8WlIXvRg1JdFp\ aEi6xpcvfycvf/3r\ OO6UUw8ZSbJcl63F\ KilVYdGU4pdmXaOv\ bM2Z7tEW x7B3lbk\ EHaktxn2KT3/F5aS\ TzuC/bvkKACuPW0t\ gBYiRmZ9PqVJDQJ9\ SJdYeZp3P4YCkCo3\ mu08m jpGkoxx1PZ\ JoBwSaSEpTOa0lgR\ mEDXt6OPq0SPvDaN\ VGk0XedUIPn9o0xP\ WnLKYnouCEAiXX47\ b+ DO86vpOqVyv5H\ 3N8vrJlmLiqMGj5H\ DdkEvgBggdK6/SqM\ zdjNyrZDjUURSTQx\ AVHk+SEgjtu0/2s \ F7HxJz/kPe+pmeKd\ uvYMLn3Fq+a1D7FV\ w3wki9KkH9IqsEMF\ KSYjSrXrc2TdYWqo\ V+TtK4J492iR O3Z\ nEfayuHPTKk5HFH1\ nAW9tesHkZm8Euow\ 64Sw45WbuNanlbJe\ oqnBKWuehbIVVkoH\ v7glh1CMp 1VIFeb\ IFziltKXRZQqy6IM\ IyX0aZwlmii+Ksbz\ OoCmBXS2iROF1Rg/\ Tpp3La6hNpUmWiWQ\ fPrbuE 20QUDZCRs\ w64HrIqoctSoyqtK\ WrwuU/8By4hzkF4A\ w1VTPwgbBCizbkyV\ x7fyUPZCr8angBAF\ 0V6 4zrPaZ37N1BP\ O0Gt4uuMQsA58Shy\ S4p1q5bWXg/A2VHC\ K7voT3JK6umMYyTp\ GAg0CbngNlJuuqIw\ tc2oNmgSyuJRpUX\ aH4YrJs/vSNCtK5y\ WjnDfRIUVcY2i49I\ Z0Vke0/m3BwfYXKj\ wqt4W7hzKc25H kt\ c1JWvGiZP8s96LzS\ 97DWFx4AeHlURoXQ\ bVbQtrMyDFZJwJi2\ HTwXjuRXzs8n8Bai\ mCqai3Bplt khftA\ L/qIR+kH9LhhBSXC\ cZtOIAIlyiJ84rQb\ S87LI9NX9lbO2ssY\ K77XvBD+ko2PYbC/\ 5VMlidm LljMJVHi\ OQt9sDpr2m0hCHSp\ oek5GKQ0hXHTJuvL\ ZP2AdbKEpOz57ie3\ T49Mp1WZkVyBj37k\ w9jF MqVqiUtf8y9\ c+I8XEWgCgiKhKwo\ /uP1H/Pi73yUWS1I\ qZLnxS19l6xO7+M5\ 3buLGm2/hB/f+gsf\ + +jfGJsaxiiVs2+\ aaG/6DVUt6p1V23X\ bLzZTGRvnQxz7B+z\ /6Xi656FUsPXF2nc\ /+MFCq0qwILEoa 3\ Jspsziq0RuvWRd0d\ yVZn67dk7QiLajRr\ 5xWkdMq1q4Kwdie8\ nhZBHlFHGtX5aAKM\ o5h3zhGko5i yEW3\ 5gmiSQTG7KsnueSh\ D5SorJl/r6OnG2az\ AVjVFOVr20b5w1gR\ O4C/ZKuYnkdPLEJc\ FtlRcSg6 Lpcta2e\ 36fLSniYuWdKK2V8\ GaAxo5kAF0Qka/iR\ Sj0HQX5m34eGBQml\ SMQcq8/I4unukyGD\ V5pWL munaaDKm2z\ PIEdS+i2zIjdTc1P\ M3+8uEbohv+TOcww\ 8nFEVkIVO90qItmE\ DWsT+ClXN8so5P2Q\ uw gxDRDwnGbfyqV\ 6tg3IfZZlISWN+ks\ zqhccmSFq55eACYe\ e8qq1NEt+TQFHHBz\ tBTIVbcOceEhaJe \ jTa1we2f7rqL3X19\ 4NZI9RNbNvOsZz+P\ pO3zH1+/iRPWrefi\ 172eXDbDuy/7Zza8\ 9AK0yUhT6If8 /Lu\ 38r4PfYze1h48XST\ RZCCMDuAQ4gkhnuP\ z6CMPc8P/3EpEU/n\ vm27kV3f+mBPe9vb\ GOdzxnW+x a9sO3n\ PdJ3GDAMH3sGICct\ FGsd39GkjujZzj8u\ 7V3XgB/Ha4gBloRO\ Q9v4Fu/eB+z/riWq\ WmHJMQ I/I0/7RjB\ Onw4RhJOkohlzyij\ +Wormqa0yxRLnlou\ 8s47dGndY+2/cHXJ\ STTw9vLQO/0tiZOT\ hn8 baICFrxpVQdX\ /W0Hp6lRSrbHl85d\ Ns080s3YiIo0zQ9I\ 7jDwRkzkDqMRgVBW\ xKluKyEoAmqzfljI\ ktKi4W7bt3KzHhV\ aJWr8fjjP9blhXpt\ O8Z8DGXKO39A8mAO\ VmoYqUvdWCRqGi4E\ m1nyemtSauaMu Hb\ YmvU86kgp+/9xalo\ gsUg0C5F0WfsYlUA\ TkqILWtf+o4aDl8r\ PdOXaWLRRRois6O7\ kNDBGnLYI+ UCIwp\ Dl/2/uD6AY4bfr+N\ 1wAfMsH38V3HRYvX\ cbZZz2TaFib3C3LR\ tQV7JjOw49soqmtn\ S994qO1 9yoVhrfu\ nLavC171Cj7ywfdw\ 3oYN/MPLLqZZmhlZ\ O+HEdUQ0lart0NHe\ xcC2PU1iH7jnTzy+\ 5VG+ +oMfATBu7uk\ qYEdU9C1j+GtS8zb\ gzdkuPZHatZZFWJ/\ SeChX4ZXL2/bzyYU\ hsiJOeVMeOaEQOAH\ q svghbRx8DDNxjC\ QdZRDtAKnioY5Wcd\ qj+yRIghsgFxxKyx\ KzbnO0QPBCAmX6qj\ qiKGQthyZF5oli l\ ZcvbmZjpsj/0xK8Z\ lULW/I+I1sKtEVl5\ K4IilIrvwfwIlJD8\ 6Io4qzaIFESEZRaD\ zJh3J6hWzok 30sT\ 54xY1d2mAz+gGXh/\ T5r3/3WAxHNaOG80\ wX2ZMhu6krVyeQ/k\ KT5DChp+2cMeMWul\ 7L1R3P4K 1b4iyZN\ aDmuT3tkQLFD8KUX\ kA4rkKYqIL81+TQt\ +iC5AWAxAFReUTrW\ DkM8+NswZzTFe0NM\ 6wwBy xvbdBnLRRh\ 2t4hsygbHw6y2a7k\ Hrmurl+XLeQc5ZeC\ kdNVmrju1a3MupZz\ yTshQS0VTuffjeaZ\ 89 7wUvYEnPMpqyD\ v/4j5fSsaSTR3duA\ 0CQBC684MWc8pxzu\ fv7P+CqN7yOG7/+7\ ZknoMhkTJsWQyP0 \ HUzXwXL3eED1LlrM\ L2//ES975XRNXZhW\ CHQJbdhENF2CSQuP\ QJcJdBHfkGaQp5Sm\ 8PB4BdMPMSSB l/e\ 28vLeg7p8cyKyLEZ\ QDZAX//2JsReKw9n\ sdr44RpKeJhDtACV\ jI0/2WRP8AMLaIOe\ mdUJFJJQF QkXEj8\ r7JT+CG6D3lzCXJe\ e9mnq6QjK9Wclk3v\ H4zUiB89qTnNMW54\ 6NVTxNQmnRWJwKiQ\ Q63lAV b8TEtQMCy\ +dm2eb4EY8NXbNbK\ dhDZi0qE5cb6Rc3Y\ 2OPmIdcp6SmtFpbk\ TnIgKiKaC21lf72s\ sP6 zgRjukCzAJlJ\ ozwnZyPH5RnER4rJ\ jfM1B6YQpINs/Hok\ ILZq2P2VeV/vTUW7\ 0bxY0GrE1plMVdXT\ khnTZXlMRS+ZxCM\ a28sOuizQre8/qva\ /Azm6IxqLExHysxh\ AzobqiiSxTVmMviL\ mksQBEaUDhZJ3 G8\ So7lHkdMYIOnWctI\ akqIiaQhBReHAow9\ ldLY3Phn7ImpNO4d\ E//YXnXPFsnBUiom\ 0hG9MXEjmz RFMsw\ cWvez07tm5l8xNbS\ MSiU/bjYExqn+pd7\ g1FRVcUDEVl1elrW\ XvW2Vx9+b+was0Jn\ HPaadP2 by5LoGRs\ QEE0a8Sq/n2mItAk\ Al3C6YzSHjX46e4M\ L++d3sPtUEOMyLNW\ tD0dsdAFzuHAMZL0\ d456 SkwuOHhJFW+\ KKDacMnEZOwoEmoT\ dHUMqunhJdRr5kUU\ BL9jjzSKaPk5b5Jh\ Ym9q10EZsAnWSZOo\ S oSKQ1lW2F8pcsW\ oJoh9SsX3s9JTJUR\ JQemO1FhfALtvjrw\ +OM27Z/HqkwIqIyu\ Wrp3spBX6AqInT y\ ITSouHmnQMygdwXp\ JgMORs3Y087nl/2C\ O0AZVHtNTsIMYOQT\ ZbNy62QLYHHc0rKj\ O32BSW5b83N UwmK\ IuJp4j41W3YQNlKp\ GSdoiLF3BAEJW6BF\ gN1Vl+SkQLvFUNhU\ tFkuy8gJheUxmUHL\ nbafvbG9 7HBbf4a\ hqs3SeGRBpoWhImA\ tTaIOl4k/lJnmJD0\ VctFFKnkEhtSIOgl\ u2IiezAeCG6JOOIi\ WhzpS Szc6HVGspY\ lpup76v0RdxVBr10\ W0A8SqS0yrzfqWVe\ bSV7+ZL37x41x+Rc\ 0OoKWjk/+46SakaI\ Sm eG1hd8M11zI+M\ oQiSrR1dnPWaWfw6\ OZN6HptP4phoMRjn\ Nkaww+hJ9WENRElJ\ kFCV1jZ2cKzV/Tw \ 8Wuv5jOf/hQn/Ne3\ Gr3Pcq5PoM2t6apH\ yABEK0C0PCJbcrQt\ i2Gmnqap5KMYxxrc\ /h1DHbMxdhRw 2qO\ zthzZG0rWQRusIFX\ c/WqRoo9mqZyQntG\ y5GiDaAaIXoCvS8g\ VH4IA0QnBD7Aknx1\ ll7d318wQ PzWa40\ 3P6GxEB8Ycn7ZJ3c\ 6g5fKlLcM8lKtwUW\ eKc9pi9Caj0wTQ9U\ 7zs03M9pCJrOtI6Y\ NLgeyN el+z+jHra\ bK923R8dssovx7O8\ iItwR+DKm9qbuFMX\ W20+NgX/LJH7r5RW\ p5/YO1ZDhYH0ni23\ hR4 6r2oE5rCZKsK\ fZIIDZR8YoFHuVgj\ Mc2CQLwaUIqIIKss\ XmqQlAR+tb3CKtul\ 6bgkSUlg0HLnjCQV\ /JBX/d8WLlvawjd\ 2Zji1OTGjj+L+IJo\ B8YcyVFc1offXxOj\ miiSBLKJkbdSxaiP\ SI1p+I0pSj47M us\ 9ZKt68lN5Ip+3Pp+\ mk5gQRWUC0oTCUY9\ fDGVaf3oWSjhJEFK\ q2gyjVyvOnIiKLVL\ 3aYqPV0Ng4 kuW09\ mYKnkPWcgl8nxZVp\ SpAJISs73N8UkcIA\ oIgQJ6saBNFmSCYS\ TbFSVF4EHjcsXOUv\ 44XG4Lz +UAbNNm5\ PcMLTu3m+JVHtzzh\ UMELwOuvoM+z5+jh\ wtE9A/4dQxs0Uceq\ 0xo07g9uWsVNqw1P\ pLmg 95VqYu2jnCD\ B9FTb3oN/3nZY3qI\ S6a1NwP+YFvjYw7u\ 5bFkrJ6Wj/Gm4wM0\ 7Rhvbr09FuWxpC5c\ s mT0cH+yj5FpURZ\ xKFSN9aAeMesrNHK\ jUROQT1qy94l63rI\ W841EtwT8Yte+rtG\ rzMl2s63MOd8Xe X\ DhQXcPen6t6ARsrL\ rbnkZ7wEEsW44JER\ QlpadYhIdNFwFZRJ\ b1ERnACwiGTjVttU\ p0GiuOwVVNR chYr\ YzKWN3N9agch901U\ 2Jgz6Y3q/GG8zBmt\ TZzSkpzhQbQ/aKMm\ XlKd/N03Y/RVMLYV\ gFqJv9MW wU1r01J\ xghs2FgNSJUDwa89\ kKNVIi5cSahFVeZK\ sC0ItsjoPywFtxGb\ 7xp3o7RHkmEwmAPf\ MNh4Q fNKODY7daP\ rarKtEJ4/5ULbI+p\ TBrqqH5bpkHY/eWI\ ThSonFmkCLXu9eXy\ M/ge/Rosj49p4O9o\ G/ p2Hr1Oat9X9Px\ QvbIgSeyx9Gc0hzP\ DspVaFVVzCDmh7J7\ jYoVCK09pfwmnXkA\ xTMH8MUZB2Ep4DU \ 49gs+HeIRln+CekD\ 0gsFmjhrY1uoRacE\ L8B8ktn73wM0UeAP\ Y3l6oyonpaOIskJE\ lthaNGnRVe4e L/H\ 8zjTPb4ty++48YhD\ wksUtc+4vcIJGp/q\ 9IeoSmIe+6aQUkzF\ iMtbOSqOceLa0WEq\ V+Mi6bj79 xwGGgf\ OXxpAWUNKsJFXccf\ uQk6SpVXazoV6ht1\ AEToCo7iXOVSVaHZ\ 9k1iOe0LBWJlkh0E\ iX5Ryf ahBwsiJPO\ gUHLF6ZJDXhsG1br\ dVGvMOgVREZMH2WR\ RVcN+C2O+7gz/feT\ QicespZ/HLJ6TRrM\ h0R nbSmsiRuYPoB\ bZpEyQvnTZbknIXV\ uyeCZi6JInTX0lFz\ ibJDRWgsBtyZpvEH\ BNEOMHYUES2fypoU\ pb3GLDcMGa1Obw7\ 7RK6AFUCmarOutYk\ zUzpnpmrRBWCyoss\ nmLKumNqUdV8NW/e\ 1XR0XdCU5rz2B NX\ mt41MiW5Uw5K+ZMk\ +ULCKyzMaxGpl6/f\ oO1IEy+QfGSZ/dPm\ u7kKcarJ21ylNpnm\ lCe8hEaVKO yHdz8\ vZTwnT2qX8Xj2EG9\ P7ijEhPznbIWS6rU\ rFp2iKY3pcJ9qTT/\ KhCddUeYXZtMCsc6\ 882T/SX LU5MRXko\ X2VVwmBlTOWkJgMz\ CFkeU3nTqg6+8Nhu\ fj2c5U3L2tmwKDWn\ /gQgcP1p9gBTIcVk\ hHH7 kOuS6tCXRhs\ ppn3B00VcOyQiLuw\ cJEPBLlros3j7zAf\ 25DOdcTwsLyStSuy\ q1gS1u6ouiyPKrGT\ J 3keLj/2h7vdUh+\ sGdE04qO0xAsuf4R\ WVUiUGix4RsfY5Pw\ hrruoJkYoSosaiLF\ JE4qpEWpXIOj6/ u\ vOn5CaGuP4zXwRqb\ V5WPvg7smc8n7eta\ uOK+3ewItoGSPuta\ psKueQh2v6MlPrBV\ qwtFKId1LzY dInS\ yfNraWS5LhnbJ6ZI\ rGqKcskUp/8jWe5u\ SAKGNPOZSiLwvPY4\ z2ufdMRenGqcV6BL\ ZMctnFEb felTa3p\ 13YBg3EZs1VAUEWt\ XBSRwijZCydmva7e\ 1s4Kgibh5F/Juw5v\ JGbPxirVCDm1xDEk\ 9+GfM 2lVBbXpqaB\ if/FjW3zFEO5jx53\ BDGzQR3BB7inmY5b\ qMVG3sIJjm97GjUG\ HTRIHfD01MK32tC7\ f9 mIo2ZBJ7JEfsk\ RzRx3I47dFjYu15w\ g8CXtST4vGixaBVI\ xctusqmvMmmos1vR\ 8sMmg69UZ0Tm2M8 \ UXYYtFy+tWOcz24Z\ ZdByp+0vdMN9RloE\ TayZFR4miLqEsJ/A\ y5oWg4Ll8L0d44w5\ 85+0paRCUHL3 v+E\ c2FiwyTge92cdHit\ 7VIMAM4THKx45L+S\ hosOY47N98hpPO/Y\ hil65/RUQBQLLn1O\ EvjahkVIl 2lSJ9U\ 06KVUiIopEVQUrKj\ DuBuyo7Dm/++69mz\ e+6Qq+8Pnr+cLnr+\ eNb7qC8Sce4mWLmh\ m0PE5M 1SauxAKIs\ WgGGNsKWEue3MWOk\ neJb8zgpXQqx++/i\ XF9jGqLaExYNleua\ OXli57c5sfzQYMgV\ T2q O2pmsWr7U28M\ DXMuSpOCUPCwh0yg\ ZlBp9MYQZBFnbO6x\ xS/W7o3WZSAbMqEX\ UN1WorqtRGB5qMvi\ 6F0G9q7yQZ+nl3H\ AB7nlqZGyfGpR3ac\ 4RDtALrhIFQ85P7M\ ctA4vqWIuS8w7FVb\ frzJRe3DnGlCm ul\ 9P3beuKERkl4t7kn\ xzR4ai41FyXLoiKm\ e1pRm1ffpLVXonzR\ Dloo2X0LC7jUlypy\ JM6iMO1Hzu aIQb+\ OScgJOaDL7+xAhXH\ NfJt3b8f/bePE6Sv\ C7zf8cdkXdm3VV9d\ 09fcyNzATIDcnnB/\ JAFOdT5 AQsqKui6\ Aqsoroojurp4sMol\ eCuyIHggI5cIwwBz\ 9TTdM313dVd1nXlH\ xh2xf0RmVmVlVnVW\ dfVM j/Tzes0Lujv\ yioz8xvP9fJ7P88y\ xL5fiT0/MMqRrPHc\ kz66kyr2Hz/Hc4Qz\ fLDbYkdLZoosd1Zh\ + gljFIS2+UV8mSC\ m5bQLZC04YMZZUGd\ UUHiqbvDQcgD5Tzt\ S8hvlEeUPvq9QkY8\ frPrIoYAUh56wA u\ ymgnnMCFEHgobKDL\ grcUYhNEIO6j7DBy\ omcUXBL8bnoJ1NtL\ czM2QwIAltTMkfqP\ kNabCq5Fh5Y rDNQ\ t9liKByt2jxrROuo\ Bq8GwYtIPl7Cz+vr\ zl27VMg1H6nqIVcd\ 5EpcWbB3ZPt6H4cW\ K2xJqDR8 n2PlgGc\ NJph1/Ut2qX6y4C+\ 41B4vEtgBmRsGr8h\ WW+SHiAkNr2wh6RJ\ yYWmj3Yoqarl5r4Q\ zZ7db X1Jeabfn/H\ BZdS8how3rGxqUgH\ gNDC5YhO7ljWVaL6\ 68b/IKRuJYLHoMUm\ o8JaKKHa2qFrRpC2\ 3a uqiuZ/m0WZBU8\ Ao6StEmebTckyit5\ X7d8APuPXyeLakEN\ TdOnn7OaJZZJ+CB2\ SI3FpYuOrni4myJ \ S9ihJn7H+yBtFIoo\ cV1Gox6kmXdD/uLU\ HEMJBU0UuW2kQMlx\ EUKfg/kkHz01y6m6\ wxv2jHBjrtvJ WHR\ C/Iv8GhVFZOO1mP6\ wmi+JE0b8xuFpLjR\ sfkDJYCVkTtScvnx\ +WpB0ifrhMkpBQ84\ ofROOhCxi B1FHu+\ mCFeBFS21lL4rwvA\ hLEKj4IcOqFHs4rZ\ KyftH3mpIRqx7OtN\ WODdkIQaoEEQk7QC\ oYDCUU tiQUGn5IQ\ hZZwOeZz7iDD37gj\ 3jr2/47ELfbrr3lN\ h6pWbzhmh287Runu\ HvnGBesi1ftBC8id\ bhI qEuXnN22HohW\ iHEm1hyFuoSf0XDH\ kn3FehxdLOMhsCep\ cs/uy3AxJEsAACAA\ SURBVOsvdDlRe7yI\ lFZIP2v0inbAdqY\ t5EG9Z0tM25bCnqx\ 3tczWan2t/KxSRkH\ 1I+zT/U+lBW6EN9M\ gdGPXfm30yjKB uk\ qS1gHJ9FadJlv+d0\ FSRp1t0CtbqQV1zk\ EyfZyJJEFSbj/eG9\ RIHilhnDY7SJY65/\ Q0gLzQcNia 0rlrN\ MfjVY0vTi/y/eM5T\ M/lX88XUUWBGwtp9\ FYVqdZ0fb46uXbJk\ JqVoJlqg+8aSFINx\ A5R7XhC 50zN4hNn\ 5vmDW3Z3hZouR2gH\ CH5ctSCrrKo70kaN\ yxJm2TI3XC2h75Gi\ yTOyBg8BeCIH8mk+\ f6HC 7QNJNFFoa4Z\ W01xZZ+qxKLygETR\ 8vKJD0JyckiSpHfQ\ beVFXxUYTBfKywPJ\ uwHKCtBKb5VQTBrG\ Q Xs5srIIEsV+Wnl\ AQRVCa56YC2BFM6A\ qvedWr+btPfYr//v\ M/DcBtdzyfV959N+\ 85Os3vHZliLKF1 a\ Qp7QbRCko/H2p9+W\ lubhZbNgDuaXPfrH\ ivXuWssx51D/Y/aX\ 4kIqh6BHZDYlb2iC\ VLQiNtiqxWs JVVA\ HzewJ+vIGRV1WCOo\ evFAyTrcvVuTfcsz\ EEVVRGienJVrlzNZ\ Rx83rsjqG1wlSX2j\ VSnqp+ri ZxWMU2v\ v+Y1TlZ4+RKEmYh7\ Mk354gSApt/VByqJ\ FY2+u/fqnKiYQsTs\ h89hilbsnMuzPGJy\ tGeR0 ldOmy86UwY\ Fcqk2QYEmPdBX9Y2\ W4bQuOH/DAQp2HKh\ bXySoQoggCXhShCA\ I7ExLHyz5pVUGX12\ 77 iLpEUPMJ3ZCw6\ dDdq+QspWScGWuzP\ lob/3C+xBZd5Afon\ dd11nRxggBZkggFA\ dEKKegqv3poiuGE \ xu1DaSarDV68JU/k\ xEQ8l1i67ryyjb49\ 3ZPceQtO/NmD2JW8\ frJC4mC+gygO6hJP\ mBefVNuVkDoE 3OI\ qfj/9wrd8jE0wwVw\ uAv/X80WsMOJNe4Z\ RFJHX/peX89r/8vK\ O40VZZoeuktfUixK\ kVovtqSJI zkQGe+\ v6c95SioTprSd++M\ qENWkiZ5QrOmTWmb\ YQVfGiJE5MxE759q\ SJfTr+Teob+FxyQW\ 2TpcCN wPbx6z6CL\ NI4UUMb1pEyCs60h\ VrQrliCBFdJUt+QT\ J+gz9J93MKSVh2zv\ 1g1J9RE7K1phObiG\ GuW 3I4FsOH7/M8b\ YnM+J4y498gMowmN\ mwZzfHOhwo2FDK/b\ UeDDJ+e5aXDpcXLV\ wRu4cn/MVxq8goo2\ 4+Blla5oh5uGcnx\ urs5Eaul8yqLArTk\ V249i4mEoPHskfdG\ 2VGsKS0rJ8ZQZqxM\ CKSF3uWRfCpww 4t\ 8uFLn3xq1Q7K7QlN\ yAozWHF0/k0TSfwA\ pRKh7jowbjSYNp0+\ LTZxd4pFTjq9+aZW\ cQE8KfeMU+ NFGIS\ ZAdIK8yZaYMah2fp\ X64jHfWpLQt0Tbjn\ NAVMoq3JmHIKCI35\ vS2+/VmQJRERFFGl\ BVCP974 9DIjXPM5\ VLFjavCafJq8nkDV\ DXzXaT+frBoIsszh\ RZOS5VC2XW4bWXsO\ f1iU2JMQ4dZRzmoK\ Zr2x zk+4MbQmZGM\ n706CdK7WoOR6DOo\ q48nV15q6F7DgPvW\ xE5cCPwR7xiSx48o\ zkAzcCMEPcBfiEqy\ 4 Dn2Xvi2JW3SQcx\ rrHGTtgqQKoCpITZ\ mIlFPxpho4c7Htw1\ NNLktuwIMVh1FdZk\ KTuqZkr+Di4JUF u\ eIRrGPhDXUJqdq7m\ qQsOLgja/dr9XM1g\ uZFJToBodb5xUnLr\ lxNFPiJvUOcqZrsS\ 0pMpAyKrsuH Tsx1\ PKZFtvz/rCnslwnO\ qIZk+W1yuxz7siny\ 2tJ1cbJq8tXZGkfq\ PmXX566xbBdBcsKI\ Q8U6X56P J0GCuo+\ gie2WjjKoEa0xKam\ NG3hldzM+Wvx8osB\ 3D2d5x6Pn+Ibnt2N\ UWni06uL4QVsXs5w\ sKoLA 7kySt18/wY\ vmBV4wWuCm60cAuL\ 8p1G5M1VGG9L6tC8\ rDBnNVjyNVtx3dAZ\ Bb8Xj9nI1xxkQ/Z6\ NN WeiTJo89XubcO\ RNvwbnkcEzZkEnvG\ kQ1DGRFRjWM+D892\ f6v5dS8FlZ+nwOpF\ A986fPMFcuIcnxt \ VIKIo6bHhz/xaS6U\ Td56wy60Pu5OeySR\ c6enOHTiKDszT46W\ Q7TCZQSp8wbX8DwW\ LIdfvHa8ne/X wmz\ D4dB8mUPzZR6eK2F\ IIq/ZtlqD9+kB/7y\ JpEto266slqF92sS\ ZrOPX49+svi2Jus6\ pZbWgXZb2 oaQK6D\ uTqLviSrl92oyrTU\ 8Ril4YBxOLQk8bka\ uVpD4RJGWUReuibt\ UQj+kvF0evhDprYl\ 67+g5R m7IIUnK70\ iT43e2e5doPJ4w4W\ vVww4hPTBbZk0nw7\ JFuTxLjVOyvdFWov\ X54BRW55q9aHQR4o\ lJn X1LlaM2h4EZM\ pAx+6/AUL91a4M6h\ FF+er/PgosnxaoOE\ LLEvo3PnUGpD4bVS\ IjaAVIa0vvUya3ks\ vXL7IDflk7z3iWn\ +YU88Ov71ks3X52v\ MNizGk8meOiAvivD\ tkM89cIEDksrzbx2\ KX8P0UU/O4O3J 4s\ 3bJPf13wYq63DKDb\ GdgDknYFjzuaOgk1\ rmS6SUfYQgwJ5IIN\ c85KpHrIDw2JlQ2i\ 3JoJl3tjJm 5WII6\ j5GLsv9DzzA77z3f\ 2E5Fp7n85rXvYb/+\ vo3UKoUMWsm4+Nju\ JZFGPrtihOA73a2R\ LVCCtnX ISGQjCK+\ +JlP8YwdWxgu3EQl\ iLh/0eJZE2k+/qEP\ 8Au/ex2Q4o7RAopI\ u3pmSCIFQ2/nLJa/\ OQ03 DPHwqYeZn57\ mpjtuZyKVQF62Nlh\ OvFs3NB0/jKg5dl9\ TcquhXUFaZWrtWNn\ kpw6MYUgCzxpM8VC\ p jul6jKcSTNcb/M\ K142iiyP2Lde5fMJ\ HFFRNSVzAafkTJj6\ cqrTC+qQ7MmEhpha\ DsIqQkIlnaFJ+g S\ 0HL/0gfMXAXnIv6H\ z1VkEWQ96QJqt5Tq\ kvanVQ4bno8WHaYd\ wNuz3dWRq+SpD7hZ\ xUk0yf98MKa WWnG\ aRO5bK+ae9bSNolW\ AKv8e8tNu/13VkDU\ FZEQtN2GNVHg9oLO\ 7YWtPF61+fCxGXK6\ 2pH11Koi rRR+X0X\ /8NMyctVblSgpCAx\ qMu/YmufeIzNUXY+\ jFZObcgZ/XrM4WnW\ 4Kafxsi0T7XaQdS5\ 2vF2O fuwAtPFYwO\ 1XPfyq1xYZ92rBtT\ Q/vunBvkxPspBWJb\ 5RbLA/0vjKYp2Epv\ Lx03NcX0gznuxN6F\ vB pnLJ4nixTn13r\ v3c370/T9UOYhdvX\ Vo1KHYlnDBiqqlpU\ oouXkHFDrvJmXqhT\ mNPNnaIbsbtAGxL \ yoz7Ar7pEdR8pIQc\ C8XPmijrIKKhHYAO\ v/mbv8U73/l2brv2\ mZAQWCjHztn/9Jl/\ JgoiXvsjr0Y1 jHY\ mmO/5yIqMrKTxPZ/\ Q91ANg1APsRZMtIT\ BiK6DGO9YRUnEFw1\ uGDJINbWDeUnD9iO\ +q9lqW7Rd Gn7A1m\ Zb1/M9MpUQ844dHT\ eVEb1zcfd8DyWVX/\ r/sgIkOFe3OFtdv5\ WEXPVIHim1CdJsw+\ GCaaHJ EkEY4oUBz\ x3Otsf2v288y/eNZ\ zlpevzpyTkGDY37F\ +rcMZhiyvJZtB1Om\ h6BpLE/GV83qzlgr\ xei JCNKCmHgXfJz\ njQ9jpvdrV5txmFP\ JLA7oxP5Ie5sXBH2\ /PApIyYtr6PW6+vb\ rvxbvJRRkO2QsBHi\ Lpgoo4knhWj6IZy\ 14m7PgK5wTRIOVVy\ +EtmMaxK7m/KaK/8\ MXiEINRFrZ0yOjFN\ V0g+b2FvThIaE aA\ XIVYdQV5DqbpeP0c\ rnMa8tkPx2EcHrLl\ dr03He0vKbsOiGhM\ taNsfKdWQi3vqt07\ z+mlHyisTH Ts7xY\ 7uH+YfJRb5/2wBfn\ av1fN6rVaRLg59RU\ IpuTzF3UpGpNm/wd\ 2/JsyOtsWB5/PQ3T\ /Ldw1le s2uI6zJL\ JMZbcBB8uohNOO8Q\ 9fHL1MaNuDVW8Qit\ EN/yCU77RDJtwuR5\ YTxam5aRthixz9KK\ qsq/ TFf4ylyNvbk\ k+YbMI2ULM2ysqoc\ RvAjR9kkdriM6Ae5\ oki3PGOfBermtB5J\ SMtpoEq9ko/SwPFg\ N DT+k4kaIgyrarI\ VXiIXLx+suw7rMkZ\ qHUnQJDaWnmN6Klj\ ROLbGqOJSkcaTU1+\ sHdR/rTD22DlhZ /\ GpEjI8M89hjh/nwR\ /4UWVW579/u4w/e9\ 3vUGg3e9cu/QqlUw\ XUdXv9j9/DyV9yNq\ On823338bv/ +30o\ kkw2m+G9H/wwAI7r\ EETw2/e+h7HRUX76\ LW9BEiI+9fG/4Oi3\ D1Oen+NFd7+c193z\ ehRV5lOf /gyf/th\ HUCQZI5HgLb/8q9x\ U2LP0vUgCH/nfvwv\ A0W8fpl4pc8uznkN\ e1/jagw+yMDfLa3/\ ip3jB S76XOdNaVx\ ac4EUoRbcjGPtErc\ bP7B1HlwUSYmxPMd\ yjXbE7qbAloWL6EQ\ +VLL62UOeGgSz/7R\ n7 2JlUWGFcjmtb6\ yY2smogiiK+5xAGf\ qz38uL/3cjztfD1k\ s1ko/ux2pSFfq6Gv\ y/fMeruL7igSlhn \ 66hjySe1quQvuISm\ /5QHwm4E4qCGdy4+\ Z95MA54EojTr+oxp\ MsdNFzuIOG6HeFHE\ BcvH9EPGdRlD Eq6\ SpPUi1ETMAznkqod\ +tg5CRJDU8AYMQkP\ qK/PMT8vUbh4keaS\ E6MY5aXLNR7SCnq0\ 40fbwl91c Tc/jFw\ 6Oo0sCP/fgWUYTOt\ vSCb40U+brizXm3Y\ DrlvkiiU6IOmtSu3\ n13LCr6B9eQW1XOZ\ bD9HxG B7NoosC2h\ EJWEsimVN60a4QLl\ ttBkIA2eVmJOKwzJ\ jGt7LHVWmqKIsKgh\ kL83K3oAd/y8c/5R\ E7Y kccWJmSC8xbh\ 9gR2BJ88V+ZUtcHe\ XJKEooAUsiW9tpBS\ n2q0c8GWn4MdYopj\ VatdJVNyKoImrirY\ 7oWWii80RERrSdN\ 3pOZxvhkALFc9/C2\ dv7PWVKGxbF1tGeQ\ lBjWUpNplneCEUbt\ t7S04Sy26IMAY Si\ FnFX7ubW/ll37xXf\ zA9/8A/99LX8E2Rr\ j22v288K7vYev2rb\ z2R16NKMr8j3e9m+\ 9/yffx8lfc TaVW5\ ZWvei033fBMBsYy/\ Nqv/wZ/+Zd/zvj4G\ L7nx9r4MGCmWOOXf\ u09ALzuntdT9zyCS\ KAwOsJv v+3nsMwq\ 97z0B3ndPa9ncnGR\ v/3jP+L9/+sjSGMF\ vvDv9/GHv/UePvTB\ j5CVBeabnykIAy6c\ P89v f/AjeL7HG17\ 6/bz8R3+M3/7gRzh\ 5+BDve++9vOAl30t\ aFujDeqkNyfKRS3a\ H/9LBXIYPnZjh5nw\ K FagFAa/cMdjTBu\ KNu4b4jcPnOTAQM8\ +bBjIc/9Y5vvAn/9\ hx3Gvffw9aKtEVPr\ uc5Kz8e1GSkRWZ 6\ rkFMlsH4wpeEPKBH\ 34fP/rHb0LPGRsiS\ VO2vyZBsndkOVVQ2\ RtEGE2mJw+qBCUPy\ VDwZhoIgxqh Ll/2\ dqJfdPFr3tOSIEGz\ 9bY91SaX7gUTY/vl\ 13klZIEbs/Ha2PAj\ /nUuHnyoeiGPVh1u\ z+tXSdJG 4WcU6tf\ 3JzqUaz6CFyJaAaI\ bEiRlBC/E3p5GP1s\ j/XDs3h07dWfx03L\ shO2G8ePsgGhg6Ve\ 2I5Pk wyfn+PkDY/\ z/e0Y5WzW5f9Hkh3\ cOM+sEbE8nOsTEV6\ tITw4avs+uZol2uQ\ Dw7u0x6a0EUUfeVx\ iE iCtmJzwvJKh4R\ LpE40QNURKJxIhoJ\ kLQxIu2rRRFhCYRc\ KYtQq1zekQbN7DOm\ dRPV/iC5OH6ETcP \ 5tp6Iy+roM04a7ok\ i5aHO5bqIomaKHC0\ avO943GbV1lG3vpB\ yQ06IjtCQ0GbstrV\ VsuP0KaaWh9F gCh\ i27J207wTsn8FEW1\ NAmqjBvWTlfa5qAQ\ RC5bH7pSKfdrELVm\ IqoycVNDS8ZSha1k\ 8/3uexy3f 9Qz+6m\ //mje8+R5++i0/xc\ vv7hzXD0Ofhx99hP\ f82rsJg5BsOsPtt9\ 7CI4e+xbbqNnbt3s\ X4+BiV WpUvLljsT\ KdAlPinf/4nyrMz/\ OqHP4oDOG58Q77tO\ XcCYCQzFAYGKJtVz\ j74ENv37kcaK1ASQ\ 17w ku/lg799b8/z\ eMOtt8anSFbIDQ5y\ /bOeC8D4zh3UKrEh\ rqJo4FzaJFxeU8kP\ xaapAHN2wNcXzQ7f\ IyuIKHoBk2asjSo\ 5HnlNQZQkJL9Meij\ DD733Ve3jWxUgPdn\ dGnVtC1XvJtyiKFO\ dLXHf+z7LD/3O 61\ C1uHL5+j97E3oyva\ pB6sWw0CNRwThjos\ 6YNPbnY7PMKP58E8\ uIm5RXoOoR+WI8WR\ Y4uMveQ8sz SE7J7\ YmvS4Vf967IKJT1w\ tiewpm2EAQB+7TZ8\ d1JCXlVI8xeCBs+9\ rQVt85bz78t2T7nK\ 93cE7LA i4cTlPyA\ h8oOkw2fIdW7SpI2\ CyuJkGQ6cVui+UML\ NYlQl9ptM7nqIM4F\ iE4Qi7R1lVBXELyQ\ 1OEi Ut3HHUkimU7\ sYrtsIi2vqcw0HL4\ 0X+eRkkVBldFliWu\ aO/jlBAmaQvGDT+8\ pkqcD/DAiu8aWcWU\ g ai8oiohyXbfI2f\ NCvLPmugJuVxutlU\ cNEmdDnqMI/HG1Ts\ 5Y0vyEhgjFtW8qaw\ 0lOMHGfW8mG17H z\ t3akUSbskgeLePnD\ cRmPp49kSBqkroLV\ sANGQUrjDgwZHRVM\ drVpD1pJEkiqPvMy\ BHH6z43ZlQq jy4i\ SRLG9YWu8yrKCmEQ\ ks5lefObf5znPOcu\ 3v6Od/CKV75i6Zim\ Fmk1OO6SA6YdxTvU\ QT3+fWYK BebOneX\ 4N7/Fc+58Dl6TJCn\ Jzvak1ogQ7JjQiAk\ Z1V7fZGNijVDlzUB\ rvSmtyMy7fzGe3vz\ 0ZImk qjCaSpLXuk\ mBpBlUvIhss30qKz\ LV6RL/dO8/4NZtUo\ UUL377y8iM5KktFv\ n0r/xf3LqNY7k874\ 3f w87n7uMTb/9Li\ ueL/PXPfJRbf+gOr\ nnetXzynZ/gpb/6c\ rTUxqb+BjWJU6bf3\ kAoZa+TIDWh9Di/ \ UkZZlQAFVQ+v7OLX\ faKUsilVptANr2iv\ ofWg17rlhyDUY4G3\ lJAvahsQuBHm42Xk\ jNYODX+i6iIf LXP\ tbas7uydkgUM1H7+\ 5BB6quFdJ0nohOiH\ KghMTobqLtGznGyQ\ VgpRKqIoEySShIXV\ ElyxHyySy VTESrS\ DOhKs6uMNJ/GuU5u\ N6Vw4O5NP8x1wdWR\ DQkwqyIHCo6iILK2\ 4SrUm5TdqxXEWMwJ\ ARrbA9 Dt/wPLbq8\ qqO06uhX7NDRRHxN\ REqHlyCP9KU7XHOC\ phRPI4crbKrh9uxV\ 9Di6yajtL26liPUJ\ IIe 7/tUtcErd2y8\ pVvyuwXazoSBO6yj\ TzWIJAkhCLq0SOfs\ ACcK2ZrsbdGh5Jqt\ tlED60ydcxM6JTNg\ +vQ82w0dY0cKaSV\ BEuMWzvT0BcbHxwC\ YnblAJh0PPii6ysz\ sLL7nIisqN994E5/\ 553/hNa/5YSq1 Kg\ 888AA/9prXMzCW4Y\ ljx7nvyClywyPcPJ\ wjnzRISALPvfP5fP\ 9rfoR7f+Yn2LL/o1\ w7tqXn+xc9 mxu+6\ zm87/+8n2KtQiGd5\ d8++y/sOXjtus/xR\ iH4Ee7w2mRjVzbJv\ 8/X25Wkz8/UmTItb\ hrM9SRH AIuTC3zu\ /Z8DIK3JPPdNLwLg\ k7/0tzzvx1/Etlt3\ 8cgnv8kX/+CzvOzX\ X82Rzz/G1hu28Zw3\ Pj82 Hw1DVE3nuW9\ 6AV//q//g1b9/T9u\ WYXFygcjfOEGc0GV\ ePCzx70WLqhcSGPE\ 13/rfFta7skoZhSi\ l 4J838c+byBsQec\ cu3yGRH65pF/KfBb\ IIZBQSGQV3zqFxor\ bmNJwzWW8SJLVtfZ\ A/GfKwE+IfLnHj d\ asXDa4LBKypBvWmh\ 9dVktQnRCdEm7ZQZ\ 814jF4V8SeSRIq4K\ hHqB+3stLQM62hNn\ K01GNQkhOaU zJ5M\ gs9PFzsm2gCUkoU7\ /PTsU1/JCA2xKSCO\ b8wJReFUdf3ti9AO\ 1hV5cakO0hO6QskN\ +dfZCs87 MBSToar\ XJtFi0ygyyCgEukT\ UQzOVOBYg2QG+0vl\ vBV3l4YUq12U2N4M\ rUgTS+zJ4lZCytHR\ DUAQB o+lkfmtWX7\ VSpwxqWOdMQjPgrG\ WzMBsgL/psSSkohd\ 4WCqKs4Hs+b/nJn6\ Zu26R0HSOR4F3vei\ cA P/iSH+AtP/82H\ nzoIX793e/hF3/5X\ fziO9/B33/ik0RBw\ Jve8F8Z2bWdU/U6P\ /ozP8v73v5zoCik \ szk+/JE/JWEkSacT\ 7Bwc41U//hbe/2u/\ xvv/5AOkk0u/VWPR\ IWkkWDAkdowM8Nqf\ +Cne/aY3oqoa Wir\ JT73zXQAEqTyhtgh\ AqOmkckuaRk3rrEq\ lE+uvqohWSOJYua9\ qtOX6HK651P0QOwh\ 43sTStWB7 HkdLdS\ RJZG8+bqephsqWva\ MA6M21zKvYzJ+ZZ/\ LQGSYPncFcrDN19D\ wAO2/Zx9/93Mdwaw\ 7PfNXt ZMa735Pr2\ MjK5tzaErLA9RmVr\ y7abZNgpeR1tKP78\ bNaCVkEeVsy9jPqM\ 2YocCOCsotfdeOBB\ F1G kEWUnPKfporU\ D9RhDVEW8Moecg/L\ BT8E33RR83qHN9TQ\ jhSZhxaYrPikiw67\ Ct3327DhUzmziJwy\ CBvxWiN86LGTT52\ L09MEStFFP1sjUgQ\ a1+Q2TIguNBwWLZu\ ELLMru37icrbWoOZ\ 6zNsu3zeRo+z4 RK\ LMnBV7n0ykjI5WW+\ t9127u9ky6ikvHSv\ H24cUKP7ZrqG+3Z2\ faWlfQ60bTtZej5A\ b8/rE5CprK SCJeJ\ LQZhyAhQrMKebFcv\ /TDi9g7s3i57uMem\ S/z9usn+motrsRcU\ 5O0UiybUURuy2k8W\ nXbIbf7 kjKDukRK\ kdGF1TPjWnDCiH8/\ 3aBRtpFLFt6WFHfv\ X927SRRj88gWlovp\ Z6tVZlyJBddHEyJG\ JY10 FDCgx+dTzir\ MuRGfPTODIYntUf7\ WGP5o0qBkWjjEi7K\ YkNGAfNKg7nnUXZ/\ FJ2bYMpjHGoifc9F\ 2 GdC7ryvT90nK8f\ eQUmXqzZZdzXZJLz\ t+5Z8fnC32Pd2WPF\ omNJS+QnNLjsu35s\ qkFIn9+Qznmg7g g\ 7rKE+U6P3/tFgqKy\ DFHxDl8gsVPH+LVv\ 39P52cqVfk/P/Q+f\ ug9r27/naxIbL/lG\ gDsRo1H//Eh vvnX\ X+eFP/kS9r3wRk5+\ 7fF2Jallw/CHd/8O\ 93zwzeg5o8u3ar34\ 5LSJF0Vd50IRYh1L\ 4iKxQ6vB D2NDSkE\ WL0qU7NMmgnbx475\ TYE+ayAkFebDzd9H\ KjOu1VvohPPHNedK\ DOtt2d/57UPWwJk3\ Mgspj ChSvVpIuDt\ EJMU5VkSsu1q5su0\ W2Ucw2LN52YJSjVY\ /Pnl8gqcRtsobvdx\ Ac2/OYNB1MzyOrNs\ MC fZ8f2FIgCgPuL\ 1oczCbYnVp6Px8/s\ 9AlJVFnG/jrGL++i\ vUhUsQOK4BdmQR/N\ VnkXQdHN/21+vFO \ uhi+PF/ns1NF9uXS\ 8SRbE85o3F4Lk0pP\ 4rMSoS4h2gG9lg9N\ lliwPLIbiAUZVqUO\ 4TbEN6FrEjIe UHL\ jbLy7BvWezrhr4eG\ KQ0mP0IDGnixDFyG\ mYehjm7UVBpFxhMi\ C5ZGSfTwhZFiXOVo\ p86ULZap+ yDPFBG\ OaxEOCiyiKjCcNHp\ wtLjOB9Dg0XySt6X\ iew5wTkJ8RSAwaUG\ 2QmbdZLJvUnJAzOZ\ NCNWgb QK40k5y/U\ EX0QjKDBkpCo2jZF\ Iz49z5nWsiiQMFYe\ p2MIpLWdGqO3TdBU\ oouoh3Q2JNd87iS4\ zJV tzD9gHfftI2/\ OVPkTKXOG/eOMqjL\ /PXpBUqu3x6rfnbK\ 4AvNxwYRbRsAUZRJ\ DxRIDaRQDY2JG7fG\ 30fz/fqei6ob3PK\ KZ1MYGuTI5w+x74U\ 3IisSbj0Wh6va5q9\ 5Y4bEZMPHz2iocw1\ okiQvijhuuu0J qf\ VCFiHUZULbbxPm1R\ AGIYnxq12BFgRZxG\ 94yCytNfZpE990yd\ zYuzAgi3Dg+jzTJ2\ s0TtQQdqaQ Ki5zU\ w1ygoCcURgZT+DbP\ l9djK+nqyRpFahzD\ sapCn5WpXbz4CVPh\ l1oOGxLagyrMsODM\ gcyY3x5 usyRuseP\ 7x3m42dLfKVYQxFg\ 2NB40ViW67Max2oO\ TgjXZzUMScQJI24b\ 7NSROGHEY1Xnqnnk\ kww/ LXdMgiUUhTC\ 0ebRsc2Mf5HQ9Uzf\ hvINwidfg5y9UuHm\ o2/tI8CJCQ+qLIC1\ /TC8EYUh6nQSmhSm\ 7 u4q0KyGxO6UyZX\ t4UcRwj2ylflBuaa\ uCkEgRsMOIw1Wny5\ ZhJcLQJ3Q731OrUt\ iKLBseSsXO6WHE u\ w+do1iSuCaSCXURJ\ wlWEDK1IlOt6i39u\ SyFWEeLKAsmVYitF\ cYMWPG41vO0KsRG0\ 6PKOVam2DSv XX68\ F0Qdf656Ycfr9gO5\ 6uHn9Z6eVC2cqph4\ RPzU/lGysogmCvy3\ /cMdTtpv3DXEo8U6\ X5yt8qLR LGqzRTV\ 1+BwffOXvtZ/rRz7\ wBtIDBX7wl17BP93\ 7SdJDGdy6ze5n7eW\ 5b3oRD37yfo7882O\ kCikW p4q88K3fB8\ DYDVtxLJe//pmP8s\ yX3cK+F964rs95Ma\ SaH8Qb1BC9sCN5Yd\ 69tJBedVgjqIrYTV\ +v 1cwU1ZyGO+esO\ 17kPyvkQR1nst7+s\ z1p4pseiYm1q+1iQ\ iY3luD0ySqDCQmx2\ uC4HSGnZJ45Ebej \ j9aWhiO+Y9ttohMi\ mT6RInYaNzohiWMV\ BD/E2pPtaj2UHJez\ tQZRFHHzUP8TY4cX\ K/zideMdbYFp 28P\ yQ3anNKZtD1kUqLl\ BR4WoH3xhpsq/zVY\ 7gmzVOQd1ttG3TcF\ VbAxy1SNUpI48s0f\ my+zNJbln x9rn3j\ pbRx3Q+2q3eQsOXt\ ndULvNCSM+dmoeJ5\ LaLbYWWq7Za438r4\ RxxkS0vJ6J8+ttOb\ bQiuZY 7mqsCALPH\ 0mQlQQOVx2O131uL\ agXDQvuhc/ONWgsx\ pNmLf3VtoTcFUFwq\ agEEb//xCxbExoDU\ /FC 6w1oq7YwW4QH\ wB1OdJnLrnWsOxyT\ l5Zvz3Kjx81Ca7Kw\ eBW0ZAAAIABJREFU\ dX00PI/HirW2Dqfk\ erx4JEsuaXDX4MX\ bQFO2z2fOlygYBnv\ zaRKigGV57MlpZDU\ FWZHb7TKA+nwNOQF\ 6Mt2eJHRtC7fm ky\ gkY8fy5vFhEFKfrZ\ AaySIralubdClmki\ 2U3ID75uNYqvTDCx\ 0TbpfacluOoOrhzN\ ldE1ytcXa1 oCFv8\ nf8dETrPLXG+8PmV\ K0oSaR6TAf3wrenT\ DgfbxpOyCLOqIYhC\ exMKiw6AbPN1v53V\ CWpNZmm FG0k0yPU\ pPaIfpCS8fIG+rka\ 7kiypynkqYoJRLzj\ 2gk+db5M0bIoGP31\ h0uuT8UPGFaXTrks\ Cm1C lFckDEns+Pd\ +sT9n8G+z1Y6/U2c\ beIWrrbbLDT/T9BU\ ylkjGTUM5jpZq/Pm\ pedKS1PZJuhQogxq\ + 5a+LWEFMkL4wUy\ UvGz2rAeslSADOiE\ H6UbOn6/iuTIL3H5\ vhPTdt7XvSr+QGPF\ B2qHohw5pEyQ25 J\ iVzTUptP8d1Ge2iV\ Z/V8Gg5bldpNR9nw\ mBYk6j5ETdvsEWyH\ F+YqfJEucFLdwy0y\ ZtCfN6tHbFJ rHa+\ jmIosXVB83ytRnhW\ gzbjoF6o446lur4v\ ZyI2sk0cK6+aqbZR\ iHYQ69WWYUhX+dn9\ Iyy4Pl+d rXH39kI\ 7hPhiyMsSP7pjkN8\ +MsWgoeIoCjXfIdU\ IyWpKm9D4buyiref\ i9bX19624ET2nEIY\ hrh3H q7SOTwylCc\ MQu1FDlJRNIUgAaT\ muXraqR3LZxcspKI\ JAWhFwwpAElzZUAf\ Hk28oJLnfBIXRD1F\ 3p ddsFlNwATRQ3h\ cA9lQhKTduEZjs+D\ ALkpIrSFF9LurRu8\ rhvLMnxRsCx6pIQ3\ woijlRdFEGgoIoU \ 3fA7hySpcw7aVJ1Q\ l3BHEm3fIcmMf0Ci\ FRAp4qqZa4cXK9wy\ kOIHJ+KW1gtGU/zx\ sbm+SVJelUmv 0JQ\ sJ0TGJehNBlS5Y/Q\ /rpJ5NPaurSO4is2\ BO9DtwH0gn6bkuPz\ LuUXyCbXDYK+N9do\ FSCIhId58 XBHphy\ j9y7kS59yoq4IE8Y\ 16IzfU0BDxsyrqnN\ 1V+Thbt/nJvaNtct\ MPUXy06rY1N3lZYF\ CVN0yI VqLkBpxqL\ DOTk0Ruzut9ib37w\ b6cwSNli3c/Mokui\ fgR5FWFXdn4+/bTM\ v6BHErZJ3GisqRp4\ eKV ow4EIaEurfp9\ eQUV82Ce5JESBN1x\ RxuF6ASEytLNP6Eo\ qKLLx07N86Y9w7xs\ a1wt7edcnjQ9fufb\ 59mTSWIHEQuWy4L\ lUnI8pk2nnZXVQi+\ xdRj4q5KelcdvVg4\ cxNqjlqs7QNi0jLg\ mrZBXxA21gNeC Oq\ yhDmvYp+Ow2o0ObE\ xaPq4gskcX0SWx7Q\ x+pcOeNJuZlEu/XT\ mpIieV2MU/JV+yx1\ QUhOyUJcJR iW/TS\ fLj77np27Xxl3j6I\ BZgV3pqi0JtbfZZc\ lzOVE1eOJrl+aNL+\ p7PT5eZSPW3EB0t1\ fihbQXs IMLY3N8S\ AI9XbVRp6YmVBeeq\ w/aTiEgR8NNKF1HK\ ayp3jg/wpQtlbsga\ XQtp5ITrGv9vld89\ L8Q5 Gwfj9gq0bcE\ JIx6qWF22EBBXJty\ BjZft3ZEE+tla180\ 4CEMWmmaHg4bCqbr\ DgezaY+eDqsg1KZk\ F O6DkR9w1uHkV0C\ k7NgPUZhzCEYM7Ct\ qGJu9Ww4Su8HP7Ry\ i5g/zyo5OMJnSCsF\ tr5uVkvFwuno7S p\ XY4b9/osYk6mFYIw\ ognmhs9P6PgjiYRe\ 3hbbQQt3Vm0ogrhh\ hHfXKhz97aBnlltv\ WAFEX99ZpE7 hnNY\ IQzpy81xFQ4tVoDe\ 7emTpsdXZsrcPJjh\ 2rR22SM+esGQ4oGB\ KSdgChC9eIhgl6Fc\ 1iqNoIlE /sa+Tyu\ I2maYp2txe3lIldh\ ubI6B5eWCH4JbstG\ G4nVjMwjRSgRuRDB\ loUwkuFYViGouR6q\ dJq3f UdNtkunHjt\ frJA2PLJQ5kNZ453\ VbyKz4IZghCH0+nR\ MEbEuom77bAJhzff\ 7mzEKHPkqda2Bvv7\ RR 8atYHyJFIDDkn\ kRJEwXee2SKm/MpX\ jiWJa9K7Uy2jUBRR\ JQ96XiXSXdALsQi6\ D96fJbtmW6C0iJI \ 67pJr4BXUNHPdtsg\ JGSZT50vMpIw2JdS\ scOQZ4+k+fJ8nS2G\ 2lOr1KoabURrtBac\ MOJ0q4oUhOST Ut8\ 39fUiIYu8bucQnzp\ fxF3jnibaAfb29CW\ d+xaO130SK06ZXLJ\ xxzYn80pq6j2Wv9e\ G58UC9Zu2 rekuvx\ xWEPE/D51n0NDQFY\ VeFFiXJD56cp59OY\ Mbs8kO4nHfhTKCKP\ Pxsws8MZDllROXP9\ OrF/Kq hCaKTDX/n\ FaEy0qQAndjcmEri\ Ji2fU43vHblC2J3+\ rIXB7fKXLkVpaCZo\ Xg5rQ78BRtBE9sC+\ evS arzhqHtdx17B\ fHLzIFe8dY3C257H\ qYrJXWM5fmTXUBdB\ +teZKl+bq2AHa1/E\ hxcrHC3VqHkB/zFf\ XfPY9aLqR/zZmRK\ /d+QCB3JLi4ZSdBG\ dYNMFnFdxcYSG2CZ\ Ky5FQFG4eKjDrRvz\ 64SkOn6/izFgk 9q\ RxwggnjPjU2SIPLN\ RXeebe0HcmCWp+B+\ EquQElN+B3j1xgby\ 7ZFVGjFN1LJkgtuM\ MJ1NnOaald 2SQ3D\ xX43NQCf/DENEO6x\ qFig784Ocvnzhcv+\ TXXg4crDlYQNp3RJ\ fTL2GrQRIGbCrGOM\ auvXt3z 8zqBsf69\ qTugItoBorXEwLwo\ orLsRtqKQfKym0M2\ A10i1KSOScaaF3Jj\ WmNCVy7aYvPDuJL3\ Px6Z ZNDQ2JpevaK\ 4N5fCEWQ+P1Pn1x4\ 73440afgRsw2HvKY\ QBGFHVt9TAUGIHef\ 3ZlUOpC/fGhs2fJz\ J OpEfoq7TYf8bJZ\ sHy067EtKCF0VYft\ w2vFIRVD2Cho+aef\ L1tDdmNZ49oJNZ4b\ 7/HVJJcgiSWsfY 5\ mp4eL7EjkySeduh0\ pCA7l3L56bLvHbXM\ F+dqzHWQ+sBcZtuI\ mVwc85gS0JmXFcoN\ UdFL7WiZAUh 9357\ mpGE0VFBkms++tl4\ yuUqnhrEU25yPDq9\ IgpmJKExqqh85mSZ\ WlbgwKnYh+Mbi3Wu\ zyfR3PVf F9IWA+9\ 8vPPyExK/f2wOxw/\ YkU52eCFBTJD8tLI\ pBAnAHdZR5xo9Bdw\ v2z7Cl6cXOV1rMG8\ 7/OGt u/jdoxdwwm\ hTtED9oLWJUYoOzo\ TBUJ+ZdxvF+YZH3Q\ u4eai3l40246DOmH\ 2ZMq5EpAj4eR3jTL\ Xn VCGAOmfjjiY7J\ i0vBa3vVK557U3XS\ ELjgfkic57PbYOZD\ qsLJ4xYcH2U5uTbY\ 6UGHzw+w/PGB1eN \ JVmOvKa0j/v0ZIlz\ Njw8V2IkqTPbcHhG\ Qd/0acT1wpAERjWJ\ ZAQjGxiy6Qd+CP6C\ 0xGp0S9Oml57 Kms\ lMopI1Qs5a3ld+q/\ LicCNVg2lDUoeXs1\ F1GXcOastyNZ7DE4\ 9GZjQZSZ0mSnbp+S\ FnDa/QwJu G9fkSB\ 4pIdq9x5ZbKDkuBV\ 3jnh15/uGCyrVpma\ ofdVSSTtYd7hpJc7\ rukJBXP315TeXh+R\ IvGE4y rncnw18K/\ v7sItvTiY4qgVzzM\ U5U8HP61SrSU4zQE\ BH9sCdRkmse+wfTe\ DmZUxWTk9U6L982y\ N6M se6xeYBSFJGW\ wS05/PmMSVaVGc93\ t1qVoktgyJtGkCC+\ iYa6tOqE3Iu2DHIg\ pbR9vTRJouKHl63l\ tRwlN2DOaVZeJBG\ 96DKQv3z+Mk4YsTu\ l8oodQ9w/b/Z01Jd\ LFu7oxhd/P6OQmDF\ 7XlctG4DajRvP zu\ uFVrVw+Zpy81CBhu\ fxiclF9mdiW5NDxT\ p/M1nGCUMMeen7ff\ ZIoS+CtBIH8inO1R\ rcPBxvAo+V 6zxv9\ NKnRDcDakbjsbNV1\ H0ZhlWJShBtqs5NF\ sGHDfkhjesyVibq0\ tcczKjsT6rMuj4n6\ pePJLVI D0HsA9ca\ 0Yc4Uml53pozbeHM\ d1aiExPpLgfty4W1\ tF4xWYIgjL4zSFKo\ idRuHiB5tEz64UXM\ g/me FaWztQbvuHY\ CTRR42Viya8db9SO\ eqFp8bb7OjkySXdm\ 1e6Y7Mkk+PlniZ/e\ PbNru+TPTFY7X3Q4\ x 7nKC1Mu64CqefP\ jpOAB35Q1NtAKciX\ gRmLcd3vuMHSRkkQ\ XXZ8r2GFT7D8mdcw\ OOVF2+O6/xlcdL n\ JFdbhrq3gTIVY/Ak\ DetwrAcfkZDLlldJ\ OlstcGv3DDR8VkMo\ ieFIHkLDo1ygFa0C\ A0Jd0BlSJNJ hwLW\ uVjHJRvymqL3i6HV\ 4lwuvK8EEffPmyRX\ yQ2TKy7mlvXpaQQv\ Fp0rCyZi0zyyV7tO\ 9MJYd7nJ 37FX0ND\ P1bqqhQlFoaCr/I9\ HzvHSrQUeXDTZm0s\ yoGsYEl2tnvXAkAQ\ MSUVfVglNKRKzDYf\ rLmOL q19s351hcr\ 5B6ViVB5o3dEUUuC\ apbBr5CDd4/gxJ4L\ q0yoQm8YTpIUkSQR\ BgiAKyGFe/lMzlqe\ Q6 0xZB0wy2RY5EX\ UJQBIRmi6/+eBlRl\ VGHDbyig5xULzlqa\ SPQxg2caYvGidqa1\ goXnOA/D0mSaz6C \ F64ZOGvtyqBNW6Qf\ Xlh11L/1sNbibgUh\ lheQVGXqvs9nz5d4\ 5nCu4wfcC4cXKwxo\ CvO2uykEyQkj /vj\ 4PFYQdRGk5LeL2Fs\ 3b+z3KjYHrRtWS9y\ szTh4y0IVk3LsHl0\ JIhbsgME+wmuXt6t\ OVy0+8PgF 7s8nKd\ keB3tUkOSa32V2uZ\ lY7SYqiwJfmKlS8w\ K+OFvBD0OeO3z53d\ +9BYeg5uMT4EwYpI\ UAsxEx Iof4Va8d7\ eKVXUI3XLc41DpnE\ jlhvPCHAn7VQxs30\ ESB83WXedvpWUVSi\ i6hJl00F2/58epsA\ 7ni 4mfV2IV7jQqx\ tSNJumSTPFpes1q+\ XoRGHOq6vOXWQqti\ NKAp1FyPLelkvF5e\ mgE1iihg+Z16zyCM\ VhVJhw0fd9YhDEK\ 0balVWzubhdSgxra\ hBMcqLlY+vg9YQcS\ hikthE+wA/DAmGRe\ LKVkLeVXi9vb7 UL\ CarWdZ5LJsVPyiiz\ PfQG22Q1cjPvq2JP\ akiX0+9giTM09e22\ 8ltHEDe9LEPVVDWO\ O6+U9BkozT Juqsi\ TuSRJ2Nd4qhJnUtL\ KEm4owbqLMmQo8x2\ Yyi8LeTZX5wPNO+0\ P/+bJyu/SO7hhjXF\ W4ZTFH0 Qsb6+G7v\ GErz1n3Dl/z5TtYd\ PnxynpGEwa5lbtyi\ E14lSFc4QkMkkmPD\ SYKwg6wUdJVfPjRF\ QpZo +AElx+W1e8b\ YlVTINqtLg03dQ4s\ YPV51+MRkfE0qssT\ dO8cAkKV4k7B8NqP\ VYrtcBKn1+XrdRHd\ l Evz5qTnuGs3yY9\ eM4fg+98+vT5jeL4\ K6jzNjISVkgoZPYk\ +aCyUbxQowVBVfjN\ g1bHRsVoK6j1/1 8\ LwQpU+tUv1wGWNHq\ qN65ExbWOdMjK1J0\ s3pp15QZxv4feppt\ BkH0fYJUvq6rALq1\ xVIHS5inNmY 7mk1\ 9Gq5QVwtfM9NW1lw\ fYJNnJaqrmJhIIid\ tyt/waUxVcOdt1EL\ GkHDp3Gmij6axNiW\ RLqMN+DR AYXy8QX\ mymrbeduLIp4wvWX\ kZGOQRdAP5nDO1Ym\ 8CLmgovZIrF8PLrc\ /UuNcDX0sRWj7KKN\ rW37o 25Lo25IEJQ\ 8p/9SRJHvSRB3UcO\ btVY95yXDi6U2SRC\ ckeaSEO5xoeyBZO5\ NtZ21tyuze/Zyq4m\ fV VXZlEc8sLPnZF\ G2PoutzfS5ecB4tW\ xyvu335I103kOWTk\ wsMqMPrjhlZDieM+\ IszxY7IkRbkSuwa \ fpUgXdmIFAF3QEVd\ 7NQJjCcNxpNL313D\ 8/jY8Qv8/MEJfuvw\ VPuGa6gyWxMaru9x\ um53BdRCM0du asl\ MbzPG/PuFn9e7bqK\ t95eTBW7P6/zmt6f\ ZYlyeBdGbd9BGjbi\ qM2rghBEXrABDFtr\ u3SuruVJK xi05yE\ 4IfZIkUZe6fK1aZf\ uzR8p83bLxrQBFch\ FbU2dBrImSKy61HR\ evpAlehHqhvmblqO\ F5HCub 7aDbsaTBS\ EKLr7OxFHLp0hLvV\ 6JXtbDheQw2J9wOF\ RsMGZdXUL1gOdzYt\ IqwJ03smdhsUC1op\ A8W 2hXB1r9Zk7Er\ c+qa7IarMWshsSVF\ btFjh2XxjbzaHrW/\ YAVMGT4T+qW9piyC\ vD1uzbbaQk9FW6pf\ 6GMp3DkLpaD1Xcl\ 7KgmSdbaONqTjLjg\ Y29dugT9tSVKrzeS\ OJLtIQqiJeIPxD3s\ 5tCkL0Q6o3dw7 IV\ iXJe67UEVrxoUkVR\ k3iPCiECeMmDRtEr\ LcNVa9EtOmxXjSQB\ AEfvqbp3jp1kF+fM\ /Quj/jkarN X5xeY\ NjoTbLcYQ1tqt7lV\ XMVVx4iRcAZ1dYkL\ wlF4WA+w4dPzHF9o\ ZMIlRwXRLlnQG0Lo\ SEh13wk M9jUaIoW\ 5KqHNtWs1BoKzohB\ aIh4AxrJb5tdx+/L\ pWgg84ETc0yaDu+8\ dnzT3xPEAlEpJbcJ\ zNGq gxdFeF7EwbS\ yqnu3KIn4Va9vQ89\ eAcNfnq/zJ6cu8LH\ bdjNalinMC3jZbtu\ FfvVC+lQsZF3+e54\ 2 rTiCIwQ3iliwHH\ 71hi2Iksg50+VPT8\ y2HdVF2yfcZDLaq1\ p4qtrgzXuHccKIby\ zU2J5Zqly1Nqmi F\ 25KRavkeBzIpxCmG\ pQmawR2gD6aJL0/3\ 1UtalUp3DmHxpkKx\ a/NxpWlvdlNbcMZu\ syEEOGXI67Z p3Da\ 9LCCCC+KKHlhO/x4\ M6CNG4QNn/rhMold\ qctC+i4V6rCGO2dt\ 2PjyyUTgRkiGgjNv\ X5QgwdOY JGnn66t\ mrEFMlEJNahMIuea\ jn6thXrv6TWY8aWB\ 7Hh86McfzxvN890C\ CUUPhT47P8qXZGm4\ YcdvI 6o8vOS5PlG\ rcNJDhi1Pz7MuleO\ uBDH9y7AJJEV6xfa\ Cv+JHWRN2DCzX2Z5\ Nr6p/s7WnkitfOgQ\ KI ZBGEiGjZa4W6Q\ pCUl2JYbA9vwMC9m\ ij9pMIZ1WIfJVHET\ 0pdZGkkofWMELkYM\ W952QheuOkEqUWO \ 5IqLvTUduz8HIelH\ F6jdOIifluPfWtnH\ yy0tKa1olpIbsb1P\ d/rNhCGJa8abyBkF\ d3H1UvtKRE73 DeD\ 2gSSfTWl8cmqRF44\ X+PS5Ypcmqd9Wm+B\ FqDNmxxp1tFTjQFp\ j1hXZmdG5JiXzpyd\ maYQhf3Tk ArIosH\ eZT5poefibFOmyHO\ 5YqqNamFNl/uzkPF\ XPZ0cmRUJRELwIfa\ qBOmPiZ2NfJwP6Ik\ pxKsKS l9xyonfOc\ 3luQcONQpScTrYPo\ hDHegxjT5pYkzW8b\ 9hoo8lN1yxJusTuo\ stpbek565eBKIgJm\ dR1 ORonakgJGUmV\ EBPiFUeYhCvZyruJ\ SBbwq/2HhV9ZZ3id\ CJJrv30/pyNXPIKk\ jHGigrUru6Zwctq0\ OFltsCdtcOdgkjC\ KOF532Zky2JHpNuZ\ bjkcWyuzPJnneWI4\ XjWawwoh7duRZdH1\ +/abt3Ddd4ksz Fb\ 53Yu1k+Hc+cg5DFL\ DCiEdLdQY1hYmEhi\ KKPeMlvIJKkJQJkn\ I7PkBYIXps6a8iWS\ BU44s4VOMq lGT6V\ yfinmR4BRXBi5DNA\ JoRFhv1LxK8CLnmt\ Z93M9EKYRWdAHtru\ qc+Jvl4ifp1Bfy8j\ lx2OkgS xOTubLXB\ 26+f2NT3thbyzWt8\ m772gi2lZKKZ/lyN\ nWkLbbST6P3dmXnO\ 2yFlN+Cjpxco+1GX\ Jknw ophc5i9OEhM\ nKvhZFT8t0/A8ztZ\ tsqrMK7cXOjzWfnT\ XMB86NossCl1rgmg\ HhCObL8x1B1T0M5V\ 2 y21LOknD89jd3M\ AtD+xthewqZY/E4y\ X83JJuZzUYp6pdFT\ DRiq9rab4e+9Fp9J\ 3w3kKrstQ4UcOZ M\ fFNl+TOzCXrlfyii\ 5xQIQGRF3FwUONIz\ WVnUmHrShv0TURiT\ 5qw4ePXA/wFh9C1r\ og2XOBGhEGA NHrl\ Sz+Euoeo9k/mnrYk\ SQjCrkyhlfCzCvrZ\ GkFSxs/pF62aFG2X\ H9w2wJ2D8fj/N4o2\ frR29agF TZL40R1\ 5jlRtzjdc3rwrfsy\ 4rjCuK2higXQfgr4\ XT+QxBJhzPJ6RMxh\ K6oRByFcWutsZLYS\ auKGK kDeokThWIf\ WYS2Nv9mrW25OISB\ E6CIVc9RBq8Q27H8\ K0fJpzM8lRi3S1E+\ p7pM634EwYyFWHxI\ kK zkSS5JFSz6qBL\ AqcM12yl6HC4XlhV\ xssjjdxkDY4VRrUf\ dySg+BDJEYgCgQVr\ 2sS7oXjBf7m1Dw5 \ VaLiytT9qCsGRrLj\ sf3wItUL44yJaAfU\ r4vXjWNlk1ftGGyb\ NS6fmHqi0qDo+zx7\ pNMTSSk3M9zS m3+\ TjhQhDjVedAkSIgg\ CGQSwlqqMzkQGe+t\ SxczLxVly+ukqwTL\ bleVBsRBXkeSKS21\ XpucatDAs kBrPXZ\ J/TmJPGm1bCvPwIr\ XHS+RuvbSBGr/uEb\ o+btEhfbDA7k0c/7\ 8YxISMmpAJGxLugv\ OkvObF YB2roOb1K\ zoTrgUpo+DXfdw5p\ y8vqqcvSfKii5KkS\ BFxhxNoU3WsPd1Vm\ OXIKCITKYNHiw3uH\ Ezy 8TMLfL3Y6Isg\ Ae1Qy4MZHSfs3p32\ K96+a0Va/Jzr83tH\ LnQ4a0McnQJc1Ipg\ LYSaSP36PMZpM77B\ 7c50mdRdxZOD5ee\ 9RZgiWeiqCraPTyt\ EfY6T9wvjjIk6Y/a\ cDG1h2rQo2i6yJLE\ /l6KxJ0vqcBGp Eb\ bf+8praFcmwfuOnO\ cPb9216W7bYo8WGM\ B3ZVW29LGjFyURr1\ lpDefjMXLCCHl8ie\ yITkjYY4ec VyVev\ 3eEj52axw0CphoOt\ 6U7SaLghcglG2dk9\ R22ccZELtmY+/NEi\ kDJcdmbS3a4Wbcw5\ wYcrTS6 CJLgRein\ K7hjqcsi1he8CD9v\ IJcs1AtND5yms7Of\ VandOEhoiJyqmNR9\ nyAIuXk437YmME4t\ OYUb soC3LOpEu2C\ tHcgdRoQ91tT1QlI\ FUvtzVB5auCQhtDv\ n4C5YbYJ0OTPG1oJ\ fD5AvY9WqXwTVmDD\ q 254+SQ/auBG3Lh\ XxogLypy1J8nM6+t\ k69etXb1/pZ2p4Bb\ 39Y14NJcfl4XkTN4\ wYTejce2SGIAx7 E\ qQHZotkVIUDKzxpT\ D/gM9MV7hzOdGW9r\ QctgvVo2WZAFfm/5\ ysd2Wwlx+VsrcGIr\ hIJArPlOqPJ BGMJ\ jWPlOm4Qf9a0qqBK\ Ujs25ULDIYpCKq6P\ EwSM6Cp5TUFXFKyd\ SdQ5meSRUntK8Cqe\ OjwVRFWu em09zGo\ t6ScqdbZ6Mi90JT4\ ixZN6kSJg7c6QPFL\ Cz6px9MmK9z/TcHn\ jns0zVF2O0A7a3kf\ L0a97 uTKk4ZyNq7\ TaqBFrGeedTlsARW\ S1GrAmCrxq5xB/ex\ o+dW6xa81obeRWE2\ 0vJ0itY85WG7zt4F\ jH cU4Y8fVFky/Nd\ oqkW0icqBDq0mUR7\ AteROpwkVCXCFI6f\ l4gSIiEikQkC0SKw\ KmKiTPncWc+yTPH \ c9w7vdB+vL0zQ+Lx\ EtqMgzOqdY34yyUb\ d3iNsXFR2DRBsJiQ\ 0UaTNM5U0Yb1dbfd\ gqqHfaFO0PDJ PWM\ I+SkcmIn8EGEDOYC\ bDWfORu2jnXylIdE\ MCRc0YU1t11N/hjc\ Ia2eS1GEH47SJ13T\ ObettNBF1 zkHww/\ aUW9ijB/nwfAlBEM\ hrKgczOjlN5v4Fsy\ vyo4Vj5Tq3FxJszy\ T5x/PFDj1AUpYumS\ CdrDt8 7NQC31pcE\ jDuTifYnk5weLFCx\ fcZ1VTece1E+3VKb\ hye++1KnReNZbm1Y\ DBte5xv+MxaNk9Ua\ yii xFgqQVYKyasp\ 9md0vrVQ476ZSrtC\ 5Q5rCF4abdq6qlH6\ DoPgRRgnqzT25noS\ JMGLODJd4ZlJlW3J\ BH8ZFblt2ZRdqMQ\ Uwh1LoZ+uwIqW22h\ C5VPnizxabvCmPZf\ uG7YcoRuuS1+wElJ\ KblcUvAUHb6Zb e3\ QxZCWBGwYyPFHtIQ\ IXhFU3ab0I0rRpsT\ eX7DL8a/ghf3Fylm\ ePFrrsH1pTu61W3W\ aiPUU8muzZ Sj1fM\ 6lMOTyvkObZtwyhK\ CLW2Tosq/x4OQV7a\ xr9TAUvv7QJU8oec\ rkZyH0R9/MyESOb9\ JkSe9K4 RWtDbTdr\ 0sSdt59yggRNM8TT\ Jm714mPslwN+CPaR\ MqIuoUys7Y10pULf\ mbzo1ODTliRBbJ6m\ zjkY J/4fe+8dXdd\ 9X/l+Tj+3F3SAJNi\ LRImSZcly3BXHdjK\ RY8eJlUwSxYn9Msk\ 45b3Ek9gzK+N41mQ\ 5 bdLLpD1n8mLHz3\ qJFWcSt0QucZFsq1\ EUSUEkCJDouLj99P\ b+OLgXuEQhAIJN5F\ 5La1G4F8DBuef8 f\ vt8v/u7d23VhWi9o\ Ncpw+JIPs1Du/LtJ\ 9xHxko4QbiCIFWc+\ KnZDQLevKOPrCxwu\ p5kpNpsT5b4 UcSE\ 6XDbFtOLp2yPDx2/\ wHf05/jA7Yd4omzy\ GycuMJTUeaZU5aHh\ Lnp0ma6LYisKqsSD\ QwUeXKaL bemgINH\ x9eV4oD/LcFrjf42\ W2mQvTEgoZRu4RZJ\ uJuiTJqEurRg7lxs\ +pu1jCQJvPtLNvYr\ Mfz8+ w13DnfeVuP\ iU7+VlVF1aYUmRVB\ Tu7ilyYqG27QG3oR\ dsm2uv0q2hdGubbs\ U4YcRnJyurVp7DRZ\ HG xY7kohWfs+UEq\ eK42H7Auw6utAsxw\ 5CBpL6CIIlW2J7a3\ e42m+BFK8xqK47Lj\ Ong+AGKEXJfWueN \ r9zZGT8znEYZXYBl\ f0ZLv5YYreNnNdQ5\ E9EJ8HMq5uHVY6Ja\ 0CWJsuFvG0kCyBwu\ UPnGHOaZBlqv Drr\ cnnoL3AjjxAJu2UH\ vT7U30ND08ao2yd3\ Za06QWtD3xKL0oO5\ dUfPM1eAvVmCvB+H\ 45SBxMId9 vokynF\ rVWPaGJkkQV0AuFi\ 23dAqhJnb8ezmaXs\ CQKhBGESy6xR7Mp/\ jcTK3jfRXHpWK7mH\ 5Mwk7X be4rJnh4d\ 4H/enyy/T4nCPnUR\ JV9W8xp61Jl3n90B\ 7dldcq2x2+cuMAf3\ LuXCTvk/qJ+RVoV+\ 9Ia yWVhlJEiIhne\ Ot9xCy81tNpsy4NR\ n54v82YtQ2ZAVkRB\ AAAgAElEQVQwTT4j\ sSMZmwaebbqr/5BF\ Ea5ohfEGuIo7M8Q\ O458arfC9/Vn8utf\ OebqcRTbyog37HG0\ USl6Np9k2oDWpBRG\ //twk87bDncVs hy\ AZljyGLg4BVsoOou\ URJuIHkorjUrZsfv\ 5IZ5uthe41EudTpy\ s4Q9kNx51sBukT5f\ akGsRRS3sj jXelU\ hTzGmpRXXNd+s7De\ T59eoEjB5c86ay9W\ bRpC3XOxO1N4nVrG\ 2rt20FAapvXPymrk\ N6Xx543 MMeWKveS\ LiFlFEI/bL/e8lry\ TRdBFdF2Xf2qzVpo\ 6emuNkEC8A3vmsaK\ bBckVUAfTGCPGyir\ rEU3 PElaDctvPHG\ NoMCD+TSThsWHn5/\ mHTvzHM4lScsi3fr\ S4m57Hs+XaqQ1hZ8\ +1Mf7nxonvaydJok\ i the7cr9pMM99xR\ Sn6zYDSYXeNRa1td\ AysDxZt3nfk+f4we\ Fu9qU19l3h+/HOvM\ 6LhsNAUmsvtHLD v\ yKL7i1cX2i12ezdu\ XY1Y7Rm8GpB51X7c\ yueqroTCmG08n4KE\ jJ+TiXzbAm3P4Vcc\ zsE3IIXoS64 9EkC\ DdPC1TTkhIzYk8Kf\ sfBKzpbCZr014isu\ F0q3hn1u7WnS5chJ\ Ah+8c4hfOzlDzXVX\ VHpg0WNo utlBkuS\ 60zHy3rJJWIt0lFx\ /xdcEL0J0rpxxqOg\ EuF3xemh6Hns8iR8\ 5lN8QKb1vIIfveTw\ ys8Dd XVl0RYkTEX\ anVrRjNwItsf22Bv\ qeFPqeVDxSbwdEdk\ joBYiKhNytx5vnnl\ ScVj9jICdVvKpN45\ l5 5KS67QaVW4E3b\ lwz0hYGwQ0l1l4PL\ 0lN0oYRRYTa6jfYY\ CpBzfX563ML1N0Zu\ nWV3ctEkaeqTd6x \ t5/A9xjUFf70FXvx\ omX5T2HIqWqTku3y\ zl27KKgSBXXrArZf\ OT5ByXZ5cDDPj+zd\ vEP3VnAom+Cp SqU\ t8A41qV0ZuIWXNlp\ tttYmW3FcVBHeNLS\ SIEFMCO5L6zxXMzo\ MEyNFwDiSb5sJuv0\ ptEmDUMmi 1OLKZK\ gKOKLAXF4isXPpe0\ NJ3HLiuTdubFo/tF\ GEwcaPSRMFfvZgL7\ 95cpq7elZuGk6/hj\ rdRJu0 2m0r0Q5w+\ 5Z0HLIooK+z3x4vm\ yTlq7dca5MG9s5Mu\ 4U3UjX4jzt7NlW1+\ 7Zd3ezwNP6kUuXu3\ vX9 4daDLkk4l5ua\ uw5aI/VrQRtMoA0m\ CNwI8bxEaAd4VRtG\ Nu/btJ0IKt6iseSV\ JWp+CGHJQdJFBFkg\ 1GX8iY09RLwU8NI\ fY1pHOAlg+z6/cNs\ Ab+rPUXX9Dj2SLsv\ cnde5uxgv6glJ7BB\ mz9sur+/PkVRl nl\ y4/PDOD9+1kz+/fx\ 8/dWj1kvuVwJmmQ1\ pZ3nITEO3r31r+Fi\ 4PStklkiSsZXli43\ WThxVt3arO W/YVm\ bdX92aJFAGnL4Fcs\ ZFrLpLl43apOP0aX\ lHFScDeVHx/Tdoxe\ dIGE+2222ZgXTDiD\ WKbW21b hRmGOOHa\ 9407kEadM9vO6KIT\ EFw0mbRataiF+7vT\ DOkiT8+Xt+eA14Fo\ xb5Fbm+srzQ9j4Ih\ sGML Xmy79mV4OJ3\ j6bnKlo8nrUiMr3N\ urhYkVSC5P4OcVZC\ SMvaMQbiFa3fbkJK\ 3dO9sBoEbYZ+s4td\ d nDkbe8rCHW3EAx\ PS9lf3rjXc8sq17S\ VPklqRCercyj++4r\ i4YcTHzpV4qmrRo3\ fqKIIw5FzDpKBK V\ Nygw//ICSNkUSQIQ\ /akkzxViSdbyrbHE\ 6UmJ1ebdLnOMGV7f\ HGm1g5ZFZ0QqekTX\ sKp+BZubMgN n+RI\ FT+3lCdmeh6DgURu\ 1/ohrLM1g5S89uIY\ JkRCXYqNB2fNDjFx\ QVM51XBwwogXm0uL\ uyiJBM2N L/ZeySF\ ywmvmT7MavjrboEd\ fIhGm5zHRWHrabrW\ t1Dm7LdpebguwN5v\ k/x1bmwAVVIkDhQx\ bLLpt Ctqshdufan\ 92z5Ub/OSh7kt819\ o4ciDLd+lpTo0scK\ Fhbvr7E7LMlH39aC\ WVvIpbdpCzCubo5T\ 8c bxWtCtKViktz5\ xyskdqqrwmKQHLv9\ aPN2g4k92cIm34sh\ HeX9vrr4zHsCsMez\ qCPN1YIvAuaSn9S \ 532He/nrsQqzF92I\ R7tyfHy8zHnT5Wvz\ TV7fn+O+YoqCKqGJ\ AqoosGB71Fwf2/f5\ rVPTPDZT5a5i hiM\ ZbcuTblcDThjxP0f\ mOjyYtKnY1O2WoeS\ NDdEKkSw/1pVYS9e\ 0aC+ZANq7cx2f80j\ V4Kf7M6u2 2ZbDs1\ aW9mdNh3krfijIqz\ K7h1JtF2bRCjvIgC\ aK/MrxC/ToGq/vjk\ mO0qPhzTvtqtB6Gq\ Wg6RM0 fJThKzeBG\ TR9pE1kYn1yyuBEz\ WpPibYiRe4rJvl6q\ cbRrjjOxS/oCKGA6\ If4uZXCdlFc+9z/2\ Zk5 pu2AO4orhaXb\ PdW2PD9utGbwYJgg\ swXN2HK85kiBl+/J\ 8MePT0Nmc+PiCRHq\ l/C6u5qQsgrpg3ms\ 8w183Msyprxc6IM\ J3HEDeZttW8wzDUI\ 7QE4p6DeRJYy+K0X\ gRjjnm0hJGW0w8dK\ vJMFSptXF1STb 8x\ Ci+OZ7y2CGhrvyae\ XungJnDZ+S7dKvKy\ SX+a4/uLOIEcL9XQ\ n6U0m+tdDk5w4P8M\ a+LL3bnMS9 3firs\ QpD6UTbsVt0QtRZA\ 2fHS+vp4GaCXPdIn\ aqSebaEZISEiohfS\ OD2JXH7klj7slj7c\ zSOdXeI facMi2OB\ zODQ+q70AL0Xkai/\ GrnArjr8bCrF96sp\ xpp2m3z5ORVt1up4\ /95cikP5DJOm0265\ SWmZ MAgxzzTixdm\ N/30xPC/ErThIGfm\ SZO5y4C7YG57aqbg\ B35hb6PBMG6ka/Oz\ BXgoJDcNf2tzlik2\ k CAhe2CasLYzWTR\ 4cXP38P1Fqcq5pc6\ SQ6RCGyw0Pt397N7\ BWOzDQ42phaPm85v\ DW9UTLkdBl9meS z\ Jqbi9K4nFSB7UZQ9\ 2JRfwDa4rl3ZoxVr\ 9erATEpb0o/dykEd\ Y/6swsxQcreXASph\ VZbNfJD7HPG zVFJ\ gtWrSRUv5FA2ydmm\ w+dn6qhr9FgHUwmK\ qsw/T1bZk+6nNTz3\ +p40r+9Jc7bpMOuY\ /MT+Pr4y V+eC6bA\ 3k6RfVzhWuP4usro\ fMVY3OqJO5JqHvTN\ za6rtBoVohaROVtY\ Mol0LpudRKzn8zJ3\ 9G/s9 Suc9MpRQOX\ ooQyap8OFnLvCy7r\ hd15roUmcMnL7ECs\ fpHl1dzFiLoeTVju\ pRsFj2Xu5d4s/EhG\ sr k3DLf26oiauSr\ KDpx6G3m7AVGKlb5\ NTO45FFgYIq8dmRu\ bZ3UmsSLVQFgoS8Q\ idp+AHFNbIdd6Q1 \ FLHzNdEKSY5U1/WC\ 2wokyyfUJCJFwPQ8\ +h22Vfd1d17lGaNG\ X3Ljn2HF8a7503xQ\ 9/AWXJBA7dPa 01D\ +sy7XWsEpqiKh6a8\ 7obUROFMW3qImJ7E\ rdU1sBa4nhG6IlJR\ vHpLkFVXkmh7nMF3\ kzTFSM/nU hRI/sG\ ftjUJXFATB5dGJKg\ /vLjDn+uRkCSdkcV\ Q/vulfqBl8z65BZi\ wH5ToVtn2r1KA/0b\ lIJUZr 7RL7Ldx4S\ IzVcftT7emp1WB6X\ kclYsqwqMxb/B8H+\ ja8EX69ZiMvu65f3\ lvgL8/MAbA7k2r/f\ C8v o58LCDUJbdbq\ cGtOKgrzdoMnSk1e\ 0R1XLi8mPlJaRhlO\ 4Y0biP0J/LoHYbRl\ Z2Gv5OBbPnJCJqx7\ WEFIdFHum6AIRDP\ RqjEna2GkblFYRvZ\ Mz2tnxi0f55cbHqE\ mESTkdlTJcoPJg/k\ 0n5+u8c7hznvw 0f\ EyT1SaHMp3tnNSpy\ u4/altDTcGkMyQUF\ /6fIU1JoO3ioFdKf\ hKGbou/V6Iq/0z43\ V+9v7BbT2O zSA0f\ Zw5G21XesUkmdaTp\ HGyTHrvtR2Fj9bIe\ NwI/LKLeaGBuigPS\ R0pXnNrg2uNliZJG\ 0zcPCQJ iNtJy8Se\ BUVktOnwE/u7MRyJ\ CddhcJ3S7t5cimdK\ Vf50NGKyaSETkVBV\ vndHjn1pjQ88cwHD\ 9TmU 83jzwPXrH2E\ EESx7MpXr8QJ+q4p\ 0Y6IVS2EuC3GeaBi\ 4YRwJUnV95kyH3Wm\ VacMisiNyDhxIKbz\ p vh0bbl2dbbp8od\ zg9t1LG3lBUyn0rN\ yotUkL0QkwD+aR69\ 4K761X9BX5h4lqmy\ StBkURYTiFO2Mh +\ KD2bF7jZ403ibwIQ\ RPb5EfOKuuSQmu8i\ XXB6LAqWAuaJDFve\ e2p2LLtck9XCieMq\ C+byJLrHqEu dVTU\ BH+JJBU0ldHakgh4\ zg34w9MzJGWZu3s6\ iVPqVDU+zi34DV0K\ ou3jZ2PC6oQR272K\ KYrIYGJj xM72PJ5\ eqPNLd/RTuIbyBXv\ KWpUgAQSmj6RLRLl\ rt3aKurwlkhS4UVu\ YLUoSYkomfRO211a\ DpAqI Ulyhu2l2Rb\ kRL1jLq0i6ojBTbT\ LScMgkoTzntie91s\ LhXAorjDjalePEQo\ 0Z02ZfupfPztQp2S\ 73 dGf5p8kFnlxo8\ r3DXe0K0/WEjCrhN\ pZ0Adqkgb9K4vgtX\ P9oxVI0jnW3N9yK4\ 1IwIl6e0vnSgsUB \ WeI/FPIgCsh5GVGX\ VpAEzwtRFBEnjLAj\ GK/Fk1l3FpdIzJdf\ KLNn6NICVW3GaR9T\ mBBRZ020CQ// SOe\ W64QhFTegsEabCeJ\ NNZREIj8ktIM40Ha\ x0nGp6pfnhbExYNf\ 6pOhiJIbTWOPNDbl\ uv3O4yIdO TLf/v2\ R73FVM8dhMne5lFa\ bVQlxFPyRc1kiatu\ 32+Xiq6uCFAXtznT\ olbcZBrrnU77kyPm\ qi5eEt Wp5oosDmZ\ 9GWIKsJRFEkDEN8d\ 0mbdjin842Gyc41B\ NxZReT5cpOS5fD+g\ R76VmmvymoCWYn1O\ L7n oOrx5+TaFmGw\ fWPx9jkDtaitWVnx\ 6w5S8spq5C4FURYI\ N0GSWsJk33BRszrS\ jsQ1Pf7rFhJETnTz\ kCTRClZMlLQy2f5\ 5soosSezPrj11kZA\ ETlcN/CCg4QckRIG\ irnJvSmbO9fno6Bw\ /tLeX1/akmbKy jN\ TMFZYC1wsem651CE\ 3lmktj7/qj37dwfS\ J1OtYhLc//mqs3eV\ 9vF4mdKe5YoxYQNH\ 0qs02MSCQl hHxkx\ qBJQMPx2adrdGsSt\ Vz8M1tEad722K3E/\ 24ZRwKErQV2sVKjj\ 8Wt27a9wP4c6RPlD\ jNFgKGk xjdqNm/u\ Wf/pVezRCOdjUu9b\ Plg+oiTizFirVoha\ TtyiExISPxhttmmU\ GE7Ho8CLOqX1MKBL\ mF4s Qt+dVtEF+Le\ 5RttYUrTCOMS1uLT\ Zh5qEcJFjuOtHPF5\ qcn93ms9PlFZkwYl\ WiD5Wwzy8/TltsFS\ h agnvowWH9CpTeB\ uBKMmIosi5r7zIvt\ cdIgzkNnm5f3+O00\ /O8rRVIaUq7fxLRR\ C4oydP0/O5M5Wh I\ Dkk9JXnXpRkZEXmm\ U9+k7337yY/NMDCi\ QuUpssc+PbbsY3tE\ VG7cw5IrJ/TJgnX3\ C9IkAXCpgdc +oHc\ Pm/g1z1EXSJ7bIM9\ z5sVAQiacPOQJMlY\ KiNDXMqdbFp8W2+W\ s81LV5CsIML0Az54\ dICzTYe/ PDtPXzL\ B8zWHr8030USBj47\ O8dnJCg8Nd/GdQ9s\ zEbLd+MfJChl1mWC\ 27BJq0oYylG7h+oI\ 2ExOH 5cRjvG7y85\ nsilZRxQ344gs1ph\ oWtxeSnDBtpJRA3h\ d4umrjuwEfunMIPa\ egKCJeycGrunzseJ\ VT mSYlJ8Ba1lKQG\ x5yxcYv6IgtUlJ38\ LNau4LUQqQIWPuyp\ E5W8Ipa+7UdmRRfn\ FxgSJM5ml17gVcU \ EU8VIaeQuEjcHbsf\ u0hJGXfBRphf1Pto\ IuLiZr/Vp2Qlr8aT\ blpyzZ/x6HiZF+o2\ dxQVRusmP7q3 h8d\ m6vQuEyZLlo+fUzv\ OSahLiBe5SCdliYP\ ZBGYYrvCiErxoSYe\ U3/5lO3WqimgHNI8\ uCc3POz4/ 3L81na\ IoKbi2wSc/9Ane99\ gvd7ymKCI/9dq9AM\ zZESN1g2nTJu8IND\ 2fyie+xv3vfROimC\ UM/Xa1 KAx8VD2FK\ ImIoowXuLhu/Hmbn\ o8dLlpcSDKipCAr8\ Xla/v0bRVD3CG0fp\ X/tB+fQ9AkaHuqua\ 1uF F+RV2oBu1FH9\ Ck2/7emkFLXrymPs\ usXiLXjzkKSmiz/U\ GTnyf902wLm6zfMb\ dONygoBnqxY9uows\ CAwkNSqOQEJR2J1\ N8fBwnr86M8tTC41\ 1tRbXEk9V4lHiFtR\ Zc0Ub4BZuDLQqNi2\ cqjR4k5ZqG0I6 YU\ Q4afK3F6qcsB3S3R\ pHh3N89MIsH9rZTS\ GUUQsar5UjKm5IZh\ lRUbpj5+337M8wMe\ fw2ycmuX+4 t/26X\ Pdwe5PrCsVbELwIP\ 6vg9qdIna7QuHvpC\ XZ3Ns3JirEuSWodz\ 8WQ0jLOjLUivdvzQ\ kQnxK97 hN7W/XWU\ bg2vukao7yJONW1e\ 0VfE9DyKusq+tMoj\ 58vszS3d/+qs2ZHT\ BhAmlDa5hFjw3bP4\ /Y9X VhrRJs/UCHX\ piuiQlhOkVoVqbLL\ OsR1J9qW3vxqupzL\ YRoPTnzuNF7gUdu7\ k4G0D6JrM5Jee46n\ H nuO5g/0MHBzEqV\ pkignSg0VQNKx6k5\ nj0xx4w+307RpAXy\ SjmWyC0I89tCQU7J\ LJiW++gBe47Ln3 E\ N3D3ZtqxbWIx3oCZ\ q/qEdgBSv7adgzEp\ EzoWtjnDQRZbE+oA\ UgZGSEU8A2PMAhI7\ cne9FNrqyGo e6ue\ l8iPrvlk5VWDZHgE\ qU5O+MR8g0cnKh05\ VOvhru48f3e+zB+c\ nuHV/Tn6NImCpjJe\ b/LOHTkS kshPHRq\ 4qrEim4ETRgTLohN\ EJ44f8C7TKO4Wrj5\ aGruWGNr0PDRR5FU\ 9S1WPjz09y89OzgB\ wRy7J 3mzsUfNGJU\ VfLkViZwopLdOtrl\ /JSadFche1jtUZg+\ ASi63c8EmMGWSfnC\ cxZmAPxWQ8MbbkRK\ 2J AhOW1+FmvxF4J\ Se2CMirK6o8iiIip\ WMjuK1Ow0E8Et36e\ ZfCU6U6b+yPyanpd\ xIzueaumEILFbHD \ 6HO0bnIsn+DTUzUe\ OTfX0Q5v6ZCWC/O3\ C3LDR665HQTp1HiV\ /gGVtw1fuWnX0587\ TXOhgSKp/NuH P0F\ yYoFuXaE2XiIMIoK\ mg2z6zI/O8KU//0J\ cPZJEnv67bzH+1Ci\ RF/HVv/kysyeniLy\ I0WfOcfJf nkNIig\ hJkac/8y28wEWRVD\ 723v8bo1JHlDZODm\ Lisf7Dc2D66P0pWK\ UleLWR3J9BkMU4OF\ qX2v8F DR/fiK+z9\ IHcLYK0CuxzBt5Cb\ AraipkJ6h7y4pTqt\ f90rwLExVHf5S2l3\ dkUpxteh1fQRtBav\ EJE 6n6I7Xloksjv\ nJ7hR/d2rxBqO2HE\ J8ZK6KLAW3d1rZny\ fTVwum53eEHJNY8g\ Ld9qtd2AkOpeh8Zu\ tG7ybjnVUXE57/j\ 8/lAfCwmFv75QYr+\ iULYN0rLYobO51DU\ pmSFBeuk9rViN1aY\ hBS9Cbnjo4404 Rb\ 4/hXF7kcSZGlJRxT\ hcIPNsCT+r4BVVko\ pC2Xb50PFJHtrdzb\ FLDBB4Xog3biBo4h\ VzOQ6aPs6M FQtyL\ +HsbQURJxZqvGdvF\ wfSKrWgk+y1z1X24\ kqSROgpbRuAo105n\ q0apBS5Q4vU0iEZt\ xWuiA5J MmKtZutn\ PzFb5l3FLHdc4ZH2\ u95+L0HDJ9JhdmSa\ F58/yytu38EdrzvK\ 2a+NcNfb70UUZTI7\ uvny X34B3/MRbDj\ x2Wd56EM/gLB4vEp\ Caf8baOvT7v/R1yL\ YcSXl7FdfYO6FOYb\ v3bupY5SSMu6cg7p\ G Zp1fdwj9EOPEAn\ JWu2au2y0Isog1aZ\ AYSiFoApEsEQoRYi\ Tc9CP9q6HlfSWmZN\ ReLc6pW3TajvwQ t\ Vsj8m8S4XaLDCxHQ\ VM7wmw3i/piqdwKI\ 8ww5LZsisE1xlRnH\ R9FgC/O1q6ZNYAVh\ Hx8rNRBCiXD x+29\ NfJ5I0KuO/iFpVaX\ 7sHgkSXx/f8+vcBt\ iMiDSYLxJuc8G7Em\ MW3bFKLNayj8iyo9\ ztBKob/g RWSfnCf\ UJNyBNG7X0ubrF3S\ Usou1O4W9O0dypEr\ 9nh4iRWBHJsWODPz\ 16Bw/f9tAh8nkiuO\ YsVYY T24nrAsGkR\ NuaMOruAHztsuBbL\ Itbn9sqkZSXlpr1J\ K7agSJV4yz7bJPzu\ P2p7CHkisq2i0dkj\ OU vWJRQaLtt1uBp\ uexJ1K44/CVW6NkN\ b5mv/IXj3Hh+HlUV\ WZhskyqK03kdV5jt\ tlAzSTY87I9nPri \ SXK5NIlMgsJta1fq\ RVHG91y++PufYX68\ hKrKTJ6e4k5jcy7f\ EFeK1rsO5KxGaAfY\ M3Fl1PNS13RK LLT\ jKohUWLpWJG6Ro+X\ wQwhLDqHtE7ohWq/\ erq61nLbdOSe2dVi\ cGLwpSgiS4ROktnd\ RfaZU5Wy1 QRQG3F\ PM8sbeFIlVTOg0US\ AlghtEvL5v+8vlG8\ Gc6/Mbp2bZnV1ahN\ U5B7lqr8izu4UbA3\ LNxcst bW6DsoZdi\ 8vqnxgv89ysydvu7\ UdRRP51rsEP7u7hv\ b0F3h6m+LzV2FSgb\ KZbQ1s2Cx7JAtpkv\ d3y a0GyY/PIxt1d\ OP1a27V5tGbQzMmo\ i5uJ06/h51SSZzrD\ Mw/m03x+5tKBoZdq\ g2wVzpSFKG28QlV2\ A5KyxBsXHzRqQcS\ X52odZEcIAtyB1Vt\ +xpE8xu1F5IpN9sl\ 5tMm4vSd4EdqkRfp\ EGb+gY++8csJg 0f\ IIl7WLeq7QpqrqCV\ Q9harpnP/GKGe/Ns\ I7f/WHecdv/TDDd+\ 1Gy2sEdGrIZCVem4\ 599z2MfPY4 p75wg\ mMP3gNAGK59/R7/1\ JPUpqs89DsP87YP/\ gA9e3sXv2fj140zZ\ SFn13+ITu7PkD6aJ\ 7k7C5JA MGGt+/4r\ CT8Ev+6h9t4SZK+G\ 0PSxzxsEMxah7SPq\ Msn9mVXbj2qv1rZU\ cCvOzUGSLtYibQUV\ x2V0 0TvmxEKNh4a\ 7+MDtA/zk/h4e3l2\ gIIs8MlbisZk65WV\ BuSfrNl+ab9KfUPj\ cdPWyj2OzqPsRv3N\ y mj1pvaNylhitYe\ 27NfZ/I0Kux9dXa1\ rKCSOedBs8VjawLh\ i8wpOx5Qh/xmL8TB\ 1TE3mlJ5HUJV7R k\ 6Dq+Zj2+oJmJ4x4o\ tTkT07P8ImxeZ5wG\ m3LjEgRYhH282VSp\ 6ooZRfBixC8TrfmZ\ +aruL6HLouM i/Gm\ 1iJW5v4coh2glJeE\ 0QVNZaRqrKtPkhNX\ rvgdBuGGM9sAPjFe\ widsV5FKlkdCWbrH\ BC9CnTHw U2uPiPs\ ZmcbdXZiHi6hzJpm\ nF8g+OY86Z2IPZ66\ IUHs5RDsgSC5dR6G\ 2/STpuc8f55lPfpP\ jn3qS xvkykqZgNS\ zqF+Z58V+f5+w3Xo\ yPRRJRsynmx+Y59/\ gZmufLCIHEjnt2Mz\ 8+z7lvnWX/qw9fMq\ tM Sms0y03qI3M89\ y9PM3N6CgC7ujESE\ 5o+gemv2Wa7GMn9G\ YKGh1tfKbi/WmhFi\ vr19QcNblZ41SWN \ kb4rdcnPVu3VCOwQ\ taAhvfU//tyvXIVj\ vKaIZJHkmRpBTtuS\ /mbKsGi6AUO6yLwb\ UtQV/veFBf5p sso\ nxhf458kK/zRVJaN\ IvFi3GbN8Xl5MUfc\ jfuLxMzhhSFqWSEj\ iVc9ymzBdHi812Z1\ deppNnDOI ZAFnx6\ 1W240Idc4jTMn4i1\ M1L1QaaJLEM40mQ3\ 0pCkLIF22b5wKPzz\ YavCOdYWhfFlEVOT\ 1j8i/N JntFjZ0JB\ VHtvB9qQcQjYyU+c\ 67KubEmeV+gOWtxX\ 1+WUcelNxlXNfy8i\ teVQAhBmzLQLzQR/\ JAw obSPy/QDFhwf\ N4w4mE8j+iBZQfy6\ JBAlVJIvVHD7kiAt\ ju4LAhOGze351Z+I\ Q0XELzkoxe2vgIZG\ QOiEyJmNEaVHJyq\ 8qT/PgUx8Tj41VUe\ XJRKL4/v6lANihNt\ 36af7UBdxB5JEmoz\ bn8QeThMmrrz/ Tm\ K8iTOYJlIE6q5Pvx\ txcBtCc0VJiW0Aaj\ bmXAOramJVTXp3dt\ F/bBhJFhn5+gsICZ\ HXPfRa9HyG bH8ON\ avRs6Obk//yHIlck\ lxvHryIwkCevoMD7\ LpnD55rI8kKge0xc\ KgfPZ9m+tQExkKTA\ 685Qu/e HjzP4czj\ Z0h3ZbjnbfeR3dVF\ JpOhebZC0PQRFRFh\ tfw+N8KbtlEKKuIm\ zr+AgDtvIekK0jY8\ lG8F YreOM96IdTa\ yuKnjf6kjaPhEQbQ\ p6wMpJePXbhLH7VA\ TsXdmSJypdYwfbwT\ TpoMQRfzcoR5+8/k\ p +tJJRqpNvn9XFy\ /vzvBLT43xrr09dO\ sK+9IaVhAiCgJWEP\ Kur73IDw538yN7r4\ w77kZwwfLo0Zc2 F\ NEJUWcNGnd3X7Nju\ oXLg1IysIeXWkIZR\ WRfWmfUUPiHiSpv7\ M/y/jt28F+eGuPnd\ /RzML/0+Qtp kV8f\ GGAhp+HNOzgzcYtJ\ 2hEvHt75Os05m2NJ\ jTfszqIMpzBFgb9/\ ZhZP6qw+hQkRZyiB\ M5RAtELU kovTv/S\ 7LtbYeEWVxNk6LFZ\ HvLxMqEmoC0vf15f\ UeHq+zKmayXA2xbt\ 2dw5WKIqIx5VBGIQ\ bym1z wog/GpnD9A\ PuWWb1MVo3O6bSLv\ 6cNoLtzmJbD8KiBq\ htROp6HE1tjx2I71\ qoeorXvec7iHTank\ UA vudy19vv7Xh/g\ dgtG+DAt9/OgW+/f\ fG9fvtrrf8PAx/f8\ 9vibgAvcJFkkTCMX\ 7v3+1614phc24qr \ PnUPd9YhDCwERYir\ BYsVRHfaQEop6xtI\ rgJ9VwrrfAN3ztpw\ BWq7IYug9afwyg72\ lEn6Kl5L1zsi P0T\ cQlCznJZuDpIEseG\ eOmeucP1dC7bnUfF\ CztSa/MjeXj78/DR\ D6STjDZNfOjpITpb\ QRIGfPNDL 1xdMfn\ J/vFi2dEn/7fgke9\ KJa0qQAE7XOgM4E6\ N13L7UrYm2GxStNH\ l/sdpRcVzu9GUeED\ UeDSOq esTfjs0jn\ 19AFkVygo+UjkmJE\ 0YUuhP09kmcmbXQF\ 3OagqaPt6inyOUSv\ EtVkBNyWxz9u8cnq\ NVc ZFWCxcvZ9Dwa\ XkhGEUkqCmFCXFc7\ E+tsjMm5V4gAACAA\ SURBVBVfE50AL6e0\ N2yAl+VjYvR0tUYt\ yJOTrp749OLK2mq\ YMD2qrs/dxRS9i5E\ qk7bXIW5vuWz7G6x\ KXQsIftQhKveDgN5\ tDLS15qp4Cy76 nh\ T+JrpAqzlmX/z9vm\ sRBjKqnuAf/+sjjB\ 8f59+9/23t19b7fV\ JWaZOiwI3wJk28BZ\ cwCNEHE3jV rdHwx\ FAGazIeIxeT12Zr1\ QYTBOb2xbLcyAhNH\ 7fkIKZjOwdlC55fk\ XMT+SQBWPtz6Bcab\ UuAtfDE bJmy63Ng\ UUvwueka+7NJCppK\ FEWcq9u0fsSxQoqG\ 4/GBZy7wJy9M44QR\ /zhV44Lp8NDuHs42\ 46mK J0qXFqRuJ5w\ w4tdOztDwow4tUrj\ O5NAtXP+Q7M6R7Yr\ tsUtTSexM8X2HCvx\ 4NseHe7p491A3fhg\ y Ul+61jVRYEiPHb\ W7evW29kdKy+h7Uu\ h7Uoi6RGLnkpXA8X\ KTsBHyoTuHeMPePG\ NjFc7M1HB9j/0p m\ dG62Y7kWA2CFyFaY\ Vuk3XJ0BlAXYrd3p\ eahLrid/83F+g5nF\ f2JlJTxSqtPK3lei\ DNltaNJNoqW kF3U\ L00Snlxo4oUB39a7\ VDX6p4kKB/NLlTNt\ 1ur4nK5HiF6AuEyb\ JonihippG4W34KIM\ XXmj2jf8 zFv4sY/\ 8BHvu39+uRm0Eoem\ D7bcfFuSsit8MkLu\ 3JpRv/a321LUTcAO\ oRQ3fcNtJ9jcb3Ln\ YQ82d dVC7NcJFZ/\ 6t2CAEXnjzVJIgFk\ m6fSkSo3WMI6uPuV\ Ycl2PFDG8ZzPCXL8\ 6zK51geFkQ4909BZ\ 6u Wjw22+B7dhbIq\ xL/6fZBAB4ZK/HT3\ xjl5b0FsqrCZyYWO\ JLV+dxkmTOGd8Vdu\ D89WUGTJLp0hUcn \ qvQntRU2B35OWXyi\ v6VHuhEhGSsF105G\ Imj6KGkZBhNoJMiV\ HO4KdQ5mV9/0etcI\ lV3un+SEEV+d a9I\ vCqhFle8UNb5zMEf\ Q9GM36yDkWFea/zF\ b445ihqQSE3BtxkG\ dbiI6S8dq78ysqOD\ KFQuvO9XR oqs4Lp\ NNCxRIz/kUhJULm5\ xVcBfsFTYArSgVQR\ MJZyy8xScZJa/CYt\ zKanCmLEQ1NuJrtR\ 8jMVrV iHLS9ni60\ kSXFRLL/KUmTI+jX\ UvrhFyxN91qu+pY5\ dxu+6/wA1CvzDbj2\ HG5SM9vLdzWq3rIa\ Rn7 vAFSLHq+HK8j\ SRWQMgrOjHFtPZPy\ KuKUhHO+ec29m64W\ /BD8CYPQDZGScsff\ re/a+vUX+TcZSQJw\ BhNknjZQyitdcAE\ SosCpapNT1SZH8ml\ 0ZWXlpZhI8GK9jCY\ KDC6rzHz/7m7GLY+\ T1Qb9msqOhIwd Rq\ QVmTf2Xbkx3kfGSn\ zk3DzHCvGi/mylyZ\ t39K7qAxWkZCTDi8\ M/b7Xcbnis1R1Suj\ Xe2z10WT/b 9EOqQ\ ciDt/d2GE5KablNp\ hLAg9Muj5suexctC\ dTpJm5vkiCrEOgSw\ uI4bcs4EeJ21Gou0\ jNNk1+4 fYim51NW\ jTjY9iKxpbtgI4RC\ 29OofVxJGa0/0UH0\ WuaTVF084kw3uT9O\ PV9uTBla8SRLcn8G\ zwvx p0zsc0a7ytD\ Cp8YWOJTPMGO6TFg\ u+9Iqk3ZnJU1u+Iu\ Btte/JmQ5kVWccEP\ tRogrb9ZYXB0Xdak\ d NCyqIpEIkhwTTX\ fWQclHCJpAoIjb5i\ MUVDxqT86hFjWyL9\ u8vtIvu+22lJJRiX\ JKe0LsciBKEmTW j\ rm4GpBFSBzMYZwq4\ 5dc5O7r/zpcC37JR\ ZAESMkdlaCg7uFV3\ bYdiCiJKF3qtp9zu\ Vu/+UhSqIlY e3Po\ 4w284koRt64o3N1T\ wPa8VQlSxXGZMR3u\ LyYZTCjU/YjsYs5P\ xQ1IKzI7gYf39dB7\ hZ6gAMq2 x7/O1Dh\ jeIw2TD7+msNkZYG\ KG/CfnznPQHJ18WC\ oiaua293CjQk3hFH\ f45CtktmCMHE9FFS\ JDyxW SdeC54V803\ HZOxCTnZbOyO3V0S\ dNUoveSG5/CrliY+\ 2LjRFbJovL21Gm5+\ GE0PR8hnSFocN5rP\ Em 9jmDaPFPi5z4S\ bE1qi9d4m9uCb1bT\ 5ZB08cZN9ri74tJV\ et7lOE0zpSFeabR8\ VQ67QYczSj0J+F0 \ w+V1PfBC1aK4LLZF\ WXBuiHssvIgVZBHX\ bTd6XkgwYeHUbXBD\ QicgWNau0/tTeNW4\ TRpcZDEhZxX8 Res\ KOasgahKitBifoYq\ Iuoyki6DLl2yLuHM\ OxkiF5O4s5lgdv+x\ uWmgd2EFMqrc56FU\ papijNQI7 RLqGDi\ uSKqD1JDHP10mpN2\ YciTvntA0yqbo4i4\ MVYRCTebVbu+LaL0\ kVbj6SBOD2aqhzxr\ oi7tUI ku15lC2Hn\ CqTS+pMWR770hoVN\ yApizxbsxhv2mQVm\ Zx8ZccvZ9yAKdtjf\ 0rh/zy8h8SiuPXFp\ sux YpoTCzW6EvoK\ sqTOOR06hFu4fpFV\ RPTFCo4dRlj+So2B\ LosElZAnUyGvv8rH\ BxDOO1RSEcPAUDpJ\ tyrjHpMQg4hwxqB\ xrLs9PaXpMqmTlTZ\ h8rqXqjSjtTiS42A\ +xR+enuZX7tyJJgq\ oXXEFNrQDvKq7 Is\ z2UvBKDtKyhVRKyx\ tuQWiDCYKm386IM5\ KdvzdJfB8drzvklz\ 0QyRUbe8+1MY7dKk\ zPI4VAqIms tnLZ5\ wyckolXc2PzxMWPT\ utPEGpLFaJWyxNob\ 2gtyMll2sggIHR9v\ KqNktexR6oxeZJFR\ FVeM6ne L7vUj5dQ\ e3TMsTpqUcMcq5Mt\ bq6aFPnhFQmmldMy\ gioubu7X1qhXG0wQ\ egHWeQMpI6P16NdM\ UL4V XG77c7tw45y\ xbYZ5IE/m6dKGJt1\ asMKIgibz73d381T\ F4KlSg78ZK2P7Poo\ okpBEirrG63ozVzy\ j 7baszm3Zlfb89x\ UT3FdM4IQRv3piag\ VJSozWMA/mb7Xarn\ Pc3ZsnJa+8PSuywa\ i9pLuQBJEBTeT1 3\ Vfeafds02VHUmlf2\ 0HT5+/LJt26QkIS2\ ZNNUvnWGIXhApQtR\ nfn2gQJYqdtt6unL\ eJWSgaRIlDp Epm3\ HfamFJ6pGAiI/O35\ Ku/aXWhXeaS0vKUo\ ElGX2pv2VtAiVc6U\ xYWSRaYBiYZBZUCh\ IEnUgog5 02EwFZ9\ /pewS6hJe/vpfWiN\ 5aY1KKgrjtrmCgHp\ eiHmygjdvo/To5O7\ qJnRDwiBE8Bdbr8v\ er3Rr sRHjKk/5LS\ HxxZUiPwR1MIFfdn\ HLFm7ZwJ4xcGY05G\ wsQg6dgMgNCewAtU\ dHLeikjhTxZkyaI9\ XN V5MCiNLbX11pV\ WxaVbNrjcRwGr/k4\ lYdmqerW2pN3uy4/\ u/kK4RQEwk1Cbnub\ TgXqaCpjNYMfu35 \ SQqaSlaVOVLoZLoV\ x+WpcpP7ip2blhNG\ /P6pae4sJq9KflvN\ D/CjlZWHIKUg17wb\ Qi9xs0IRBFKy zKm\ P/RsTX30BAC2t03N\ smEPfcSd3H8jzTd/\ HiyIyikg6KSOKckd\ UQ8s/Zjlar6/12vK\ vX/yzKp7H BTugO6\ EgeiH+jMWCJjOrhr\ yirwd5kTg999ePcc\ fDDyAPZBDzKr2yQM\ OPsBYrCpEiYBzJo1\ R91Okm csWiEGgMZ\ TUyisQH7xzij0bma\ GxyOm0tSGkZJa+uq\ i/aDLTBBJ+v1+kZS\ hLO+WiiQNXz+MJEh\ YHU 0r2uzprtLLQb\ BS2tWEIXCZp+m5h6\ JYfaMyWUnEruru4O\ ktpqvW0Ga7XRZBEo\ aqhFjSSZ9li+W7EI\ F6veclJF7lcQ0zL\ qMiNRaVcKe8bAvNA\ gJWeveVspcCPEbbR\ R2A7I3Sr2jIl4BeU\ f242g4nVUgK8l ro\ +juEbw8zrapIGf3T\ hpudgg72LsTsqcqg\ c4YdRRTfrU+QXKXs\ C9hRRWEDJSt7bVfd\ sKQv7sxVmO dWU4v\ dj2O5JfOZ1jHsyRe\ bqEn1NuEaXrFC3CU\ b9Q4sB33cOuN9xBt\ VJm6qNf47H/8rc88\ Ks/yP5C Bn1RU1KU\ ZdTFjdn3fMQ1RrnD\ IMR3HdTEBhygl73X\ r3mc90LemC9ABJ8+\ v8ADtw1hVOu8sydu\ K2lA XwCuEm8QuaE\ u7ln2856cLbeJEsR\ Gkn4qhzbjoF+oc6A\ /xTOBwXcO5vj5w31\ bOW1rQunW1qwmXXy\ f tmwRXmy6HM0ubc\ aTtkfJ9tiRSQE+SU\ VhpGowIXptA0nBi5\ BrLo3dN2bcz5wS4i\ 7YJNJpgqYfE6Qe n\ fS+3ArdVjjvtHVi2\ w1JFZD2pAiDjQUNJ\ 3ZkcOZNKt+YQ9Ill\ LyOnFJQ+9bWrIRBu\ C1C7eUI3Ij6 N2aR\ Mgqhe8ur6HLgLNjX\ RasNbnKS5AwmSJ20\ ST9XwR5OX1bS9rTp\ UHVcSrbL64qFjoX3\ 905Pc7Zu 8+4DvRR\ 1hUfGSpwxPA5mE6u\ G4l6MKdtDB4preBy\ VbY/femGW4UySr8w\ 16Umo3N1TWPW9LeF\ 6cqRK 4+7uW223Gw\ BiUkYR8xz9xbdR/q\ W/4YXPH+fed72Bpu\ vzxK9/kvr5BQTP56\ 63voz7fuBViKLM4x\ /7 EgCjT5ylPlujf\ 38/3/3Bd6AmElROT\ vPUZ57CqJrMnJmhf\ 38/L/u++3nsjz+LX\ bc48sDtvOY9DyCr \ GrbR4NFf+SS1ssHT\ ns89P/EW+o8OMtps\ cvzXH2XHdx7lxb/4\ MruO7SL/C9+Luiyg\ 9NTH/g2AI//+ NWR\ kAesiKdzJZpMgGSI\ NqOQmKkSWjncwvGJ\ J6q0W9MtyCZ5tOIi\ iQEoUaPghddfjx/b\ 38ZEzs2ii iCwKfM\ QP+LH9fRxIq/zpyF\ yHDxLAXT2dD1f6pI\ mfUztajNczVvNwKv\ dpFC8YePMWalEjtQ\ pBCpo+ kROSWKcyF\ 62in9ssREnckDGjN\ phAySu4BT22pnB9r\ KpN82wVSZdIDGU6q\ oih6W+rHxQsI0hJG\ Tml 4pZj0X9blK6I\ Kya0riZEXWpX5W5h\ c7ipSVKoiTTu7kKb\ tEidrODnVJwdafzM\ pU/L0YzMaSPADyNG\ qk0yqsIvHunjF5+\ +wJdLCzy4O9Yl/eN\ khfOmx39/2W6ychx\ X8lzd4Y6stiGCBPA\ P4yUESeahXUUK q/\ jb/MGZEodzKXRFwQ\ 4iJpsWk02LoXRiVR\ sAt1dDWVDX9Yu6he\ sHnu/xbLnOqwe76T\ k2jDMyjef6 aMDOH\ 3k19/f1sCBY/M33/\ yF3fc/L0FMZjNk6I\ 0+N8WP/813IqsbHf\ +6vOPOVFzj8hjswf\ J9vPfpN fvz/+Wl6\ hrv5+/d9lH/53X/m\ h//03QD88Tt+h5c9\ eDepvgJ6KsO973oz\ 5nAW95kJnvyzz/DK\ P34P RVnGnKsz/nd\ P8cDvvofUMgYUZnR\ OfezfKL84zas++E4\ WbJe5ZaPmpufxQrX\ Bw91dHMxr1FWBL3f\ X OPfMHH/0yRHe+/\ aDV4QoaaLAK7vTfG\ qizCt6l677HYqC6X\ l85MwsB/Pp9j3TLY\ V8dHSWXbpKUpbb P\ lAXQ7RCEmN1RDvAO\ Lz6w8n1DLnhIboRu\ xoRZ74+z905Fbfsk\ LurewVB8koOQcNH6\ VlbHybq27Ot hEG4\ YaGxmJQ7/HDcOQd7\ ogGSgFu3cZ+yULsT\ hG48GbWdom3PC2l+\ Yw5BFdu2AqIsYo7V\ AZB0CUEV UYuJa1Y\ dESURrpwLzbbCmbI\ 6WqrXGjc1SWqhlT+\ VOGeQer6Mn1Ox9mb\ XrLIkJIGmH7UJ0rF\ 8ggeH cjxRajJp2r\ x9R5GzTYcdSY2PnJ\ 3jNxcJEsA5w6Vqu7\ zqYO+Gj+9NQ0U+N1\ nmh746wv1dGV47kK\ cg C4zULMbsEEkQ0\ BWFiuNieR7vu22Qp\ u/zB6dnsJJBW1S6H\ NbeLKmTlQ3HtNzCt\ Yfne2RFGBNAUWW8 \ xZL+lz/zNM3pMgDO\ nIG+J16Ib3vNoXZr\ beDAANXF9wD07R+g\ ZzgWcfYcHqCHpXyt\ 7l1dVGabZAZ6 CEM\ fxTU4/4nnCUwXu2m\ TkmWURX3D8DteRso\ KmKga7CBut03/w+N\ Mj5d4/e/9KIbvc6p\ cb//eiYaB v+Dynw\ /1oecUwppHsh7ypo\ RG9LIh/uypSaZerD\ N82/aRdyeMmHcDho\ EH+rP821xjBeFJKg\ qv6Ct2 fK0UiBzKx\ +eyaw2CpM046GM13\ P4U5v7cde2wvRrc/\ hTJkSqhJjEEnNI97\ lGT5O7KrGrWGbohU\ kZe 13pByquxkeFl\ VOYvt9qj9mqovRrO\ lIU10SByQ+wZg/TL\ e7e9zea8UEdQRSI3\ JLErg74rRWj6eFWP\ yA/bXj7OjIHWq4M\ u482Y7a9rvfoV11L\ 5hte2zbgasM/H1h9\ tHyNVROlPbqiSFpj\ +tlszXA5ukaRl sP\ akFltwFSTDJ1ylCg\ NgBRFji0/OQRTx4F\ AOKwj5q9F59qQTGC\ HsS2u8/UuneaA/z7\ 700mKzI6lx xrD56\ Nl53jSY25AuaV9a4\ 8cP9POmoSInayb/e\ H4eMwA/DBlI6nhhy\ GjNoOa6fODoDrKyQ\ FZWeM/+ Xk7WbL42\ X1lhjBlqItb+HKnn\ ywRZZUPVs1u4NlBk\ heFsCkVWmBgvkRvq\ Iq0oPPGV47z4F1+m\ 7y2v Zcdd+xh77Lm\ O79PSaz+NqcmNLZh\ f+L1PMzs2T9+Dx8i\ KSV789FMYvk96kSS\ lc0UmqgYLVYPCQKz\ F qVkuTqVJ/ewCDB\ fbLtrfWqjz3mIXbz\ k2sLTJLtuIg6aPWd\ T59FSFn9wmkuSEEX\ 9ypsT5mQbf0yPz d\ MVCVzZ+rW+kemTvz\ nW4ht9IUC+yaajWm\ qTXOPe+FROXS00Zb\ kdLyW8GiKnLX5O0w\ QTaYAL7vIF1 vkHz\ W3Nkjxa3bRTePmfg\ VW20/lSHPYWYlNGW\ /Y7Q9DHH6jROV9pT\ ei3SYo7V21qq5N70\ to/pB25E GASoVzj\ xof376h6hGyJnVfR\ d8bUSmj72+SaiJCI\ sFh+UvEIkS2D7BHZ\ I5IdIG4gFutq4tTN\ ehFAT CXUJ8WIBxT\ LYnsfpmkHF8Xhlb5\ 66H/H1UhPDD/DDkO\ /o72trkt69r5dHxk\ oAvHGwQBTGzDotC3\ zg mfMcyaW4K59AF\ wXeuqtrTesATRTYl\ 9bYl9Z4cKizpF+2P\ Y43HF7Z1emM3Hr/q\ 7qS/OnZElZg4kcR \ w5k4h87PyJgH86Se\ L2MezN8Scl/H2JlO\ MPZPTzP1jTO87Tfe\ TdPzaHxxhKHX307v\ d+3HrhpYVQMb uJR\ Dj9e0IdiYZuTFJ87\ wXe9/G9ODRTgxBUB\ Klpk1Y9NAsWEj7sx\ A1Wgv7j3f/Upu+3c\ BX/3Qx3no z38Kda\ Ab2zH51kKdf11o8q\ 8LTX751cMrWscnJ5\ oIioQ9azBpewxtQ8\ 7gH43MAfC6dIavzx\ sUdGXV yupmkXm2d\ MNWj1pohQq3CJLpe\ RTXcNz2vJDICdH2b\ 2zYRErKlxX0Gto+S\ v/25b7pu1Ko3Rr1E\ 2Xq J8pkDhcuu3oT\ uBHWZCMmN5doo4lJ\ mfS+PG7dRu1PdVRV\ grqHM2fjzBiYo5A+\ ur0SCGukhpxSr4pH\ kjvnEBr+ivMhLka\ FhKaPM2+jFjRCOyS\ w42obgCCLuGXnqrT\ agrrHos0ZUmH96+A\ WSVoFflZDdFeO IE\ 8ZFrOmjS7L/KcjA/\ zl2Tm+uz+NJsKXZu\ vsTifwwpDBxUmjoY\ TKN8oGJcfjSDHDH5\ yepkeTePNA np86N\ MCPH+jnmbLBSD0ep\ f3EWIkf2duz6eMt6\ gqvX2dDKeoKH7g99\ lSac31+5+Q0hZ6YE\ IlWgL0z Q3Kkumq+\ 1i1cW5z46Jc48w9P\ YDdtsju7ee1vvJtk\ PkXT9Rl64C6++tuP\ Un5xmsB0ye+59FRY\ 6IZI ixNofs1Dzq1\ +3YRO/DR45IHb+ed\ fe5TEUBFZV8h0ZdA\ AbZmHk9908ApJNEC\ VJbrSCrmdA+x+4A6\ + +pv/wFt/+Z08Um\ lwVyFDw/PoVSQ+M1\ LiB4+uPN4oLXKkpP\ LJ50v89D0rfcA2g8\ dm6jSDiMP5NBgO e\ 3Od13arGiTXXNz+F\ PZQcl3CI1ohqdMV/\ IL+knmoWO4M7oQRh\ TWqbOG8sykdz+W2T\ EI33HaRcyRL qMUE\ btmicbqyKaLkh6xo\ 0znn41iW5N6NVWj0\ PSn0VTIzpaxCMhtn\ vl0qYHktr6n1sJHQ\ 5u2AM2UR OeG6ocZ\ iUiYxnI6rTX6E3K2\ v+Fvsc8amHdQ3fax\ zNlJSJvJDvIaLvmt\ t8i/8xXNnb86o4HW\ gzjmo c0ZHYnnFcb\ H8gP+wL44ySUgij4\ yVuL2Y5vlykylPoK\ CImL7PT+7vwQkjJk\ yXn/nmKEdyKR7e28\ N5 w+ZPRmb44B07V\ 4Tdnqzb9KvSmhNs2\ 4lPTDaZq1jsNMHr1\ gg1EbnhkzhTw8/rW\ JfhJ3ML24NXLCbM \ S+5i1tniU6Dne4x9\ 5QLR4QIH+wuEps9M\ tcIrDwwStQzskgKY\ nbe1Y9toug5JAVEU\ CRcrmphR/H5o Wwf\ 4NY9ZCU7XTXqTKvV\ Sg3xGIpHKUm7UuLu\ /mzM1E6liQipF5UK\ JJ/WIe/q6UIGMrrJ\ gu3TpKrsW n9b+Ym\ IaJ4yYmo4Dc4uqwk\ P39Hcco1dy+ODEPK\ 876/JkTuRVx7p5Xc\ /WWgROGPGh45PtCT\ Sl7OJn FCJFQKn66\ OdqcXxKfwqvqKJNG\ sg1F3tnBq+orZhQ0\ y/YaJP1DZGpGwm5x\ +fa7TbTi6+fd+3ur\ FS3 suzkweSGBPWt\ XK31Np5L4XJ9rS5G\ aPrYUxZalw4pmcYz\ 84iySGr/+pEdrQiU\ lollcmcGIa3gzZhY\ 5+Mq0nZUfvyyS/W\ peYrf1te+11uhrW5\ lqfIb+mHblVy/Lb8\ hfZU75+DOWdteobr\ 4+N2yg7Yrfdnk 1p\ 1zEGXhihGlwI1wzj\ f5x6f+ia8+/hWECO\ 674z6+//veiZpdqW\ 6/VUlaBWFCapeiW5\ hsWvzo3m7E ZcnZB\ /MpPj62gOEHvKIv1\ l60UPMD9qU17u/KU\ LI9RqoGb93VxRdm6\ iys4qFx2yofzpXCd\ 0ci/2Pe oH+42Ban\ +xkZ47YCyZEa6RMO\ 5oFbrtzXEscXGvQu\ awv5dRfPc5hzAlJB\ vGkdlyIKiQQVRSLy\ fRzb BjcirLqI+qI\ WwHYQdQmtGJe/fdd\ CFGVEWSH0PZzIhSm\ PRD6HKxuxoaQK+br\ P8/MlTogyd/UUMCU\ J 03YZMwPutC2+cH\ KWezQZcbzCkz0aSU\ XhTKVBQRV5brLK7o\ TAjp0F0BQqU1Vc3+\ NExeCD/QW+mRB4 7\ lx95R+dUxgcl/BzK\ seAT10oc39Xakvu9\ ROmh7YsGiiSBdQ5G\ 3XOjM9DQcfPLnmF+\ dk8ohWilB0y z5bw\ cypuX5JIFkicjY/V\ uL34ktPuhZqE6AVL\ mqRV1ibRCRGVjVcj\ nLnL87gJ6h6rZqNs\ AX7JxW/E 5G/5Bp5\ +eS/Nb81hnKmtSZT\ MM404+qRHR+tP4dc\ dzLE6btlB0iUCOyC\ 3wSrSpSAIAmpRw51\ 10PfI cW7gaA0po8\ QESRIQJQk5G58YZ8\ bA36C+SsqrhNNNnK\ m4YyHpEoIsbJtYPK\ h720aQIBbdm2caV4\ wk CX7AJ7/8SRasB\ r/9W38IwB//yR/xy\ P/3CX7oxx9e8f6X1\ h2/TYgkEdEJENyIa\ NmHnpBFXmy69Ooy \ varEsXyCRydE7ijG\ TzwFTeWJ2TJTtseg\ rnCi7nDBdBlIajxe\ NklrKjlNZW7rKQmX\ DfucgQi8/HCR Zys\ We7Vl/iGaiHEoT3K\ 0jn6hibn/xjTFeyn\ ACkLG68aar0ci1L2\ QumdwYqHGG3wBuVt\ FSktIyzKj pEXxtu\ 8uuSOHod82u1MUEb\ o16mfm46fsxSKCWz\ Fo+NCjC0w1TNKKRM\ X1ObFQ4/hCHaXkMV\ X1+Hwe DiVFxmoGW\ UVCSEh0iTLH9hTbv\ 0d1Q96kJngek3why\ V0Jgf81OoczZXW0Z\ BRFRA6hviNJ8fkqW\ V2h 7PgMbMHBerRh\ k/v/2XvzMDnO8tz7\ V3tVV+89uzQjzUga\ W7IsS17wAma3CQ6L\ MVuABEhIQkI4QIKT\ fCGBQyAEsnA+TnI\ gBEjMlsAJBMLmYIy\ xDd6wsWTLsmRrGUk\ z0uw9vXft1eeP6um\ Z0SwayfIi4fu6 dG\ m6u7q6qrr6fe/3ee\ 7nfuY7DDdAdEPczh\ heTltyARAaIs4aA6\ 9NQ8k76EfLiE6I22\ mes9HVUJcQ 7RCSk\ Uh911SJW8c0rume+\ +1LcRm/7BGMWCgDK\ 1+HwA1AeGITpV/1E\ U4SIgncOc2o4DcI3\ QahG4l/ aZqWBm4j\ alCaUhZNuLIIiYEM\ hYcm4WAJfW0COS5F\ rVrskPqRCs6kRXwg\ jd465wRB2UO3QxpO\ pLc6 YzofUyT0Q+y\ pWmRZMGWjdRgYfQn\ k9OL7X+8xKO+ZobR\ zmthAasHvyBm1CGs\ +vhWRQ0EUkRQZQRZ\ p +CFBLXremXIQBQ\ FBAblTR2pqBMO6T1\ gLEbSTEylnpEbgNt\ D6Vle5tloIZyi/Fb\ gB9sEqgiygtunI W\ ZXACrj/kZ/zt3//a\ f7Xp/4WgPe+90/4k\ xv/gF8rv2nROT9Lk\ pZA0GxkKVfn2nf4Y\ QNZFPnK0Di/ MdBB\ R/OG6pznCdKuK5iy\ RE8zZfbpx0a5YV0b\ vabGTQcnuHeqgh82\ uDT79Oh+rJEaoiai\ 9Ri8HNhf 9cg7Lrl\ 5VXwNVcBZY2I+OgP\ PkqRnJOSSi9MzN1l\ pkkQYhK1B7nRQWqP\ jHayQDaL9PlBxmHI\ cehMx vEaDQpNUzb\ pLG4Ua4NG9Js53R2\ f4yEXr2ZHTCdxg0X\ GInQa9QcBbNRA0kT\ v35VlvRpHT+UTp+I\ TD wbJFd0IimVK51\ Ib//dg4vzPYyQbz1\ FaVA0md28ZLLZG26\ ITIRYvKjpP3rgo1E\ afHwOkxEJ3wnI6o \ hrqCVJtrxjpUsdld\ sheQJIiqxGrD1UXE\ 9kQ4w3W0vicouA5C\ OEn5v3OkhmTMu88k\ EUmREOIygizQ kKP\ u7Sv9JqQ2hVh/ivr\ hEu6Ms+A1NauRvrh\ 9EbmSkgpSEs5081p\ JlUhsz1G+f4oQSG5\ rQ+1YwYsq JpPYnq\ O2r0hl7wyBlUJr16\ Jmts22KNK834woCE\ iiiNSzcJ+BG+BP2D\ gjVkRyJDEyxGxXI0\ H5SLRQ kxIqclohc\ AOCoo9XdhAbAkpOQ\ +s98xGfUBOWHEtOF\ ZIqYW5JEbgBQtPgN\ Kwv74bul9xnSdKJE\ NwG ot9A8ANEO8RL\ q02ikESZsVskKakq\ Qn59aAAAIABJREFU\ fHLvKBICk3UHkhqH\ ai6HqzaXtEeDxmOl\ WksDMekG6JLIy5u\ DzeXZOHk/ikZ9ZWi\ S957f1SJTTwWcUQt\ REhHnmcD93oYs/3Q\ wz0Pl4gL34KD5 Iz\ sxkvYsnn6ITrRK9p\ uC69GaxVWCitr5xN\ K13YbCtCHx248NA3\ BhJsHFHVFY6UCxih\ MEbEzG0BWF A8UqH\ RmRXDZDuw4XZEzKh\ 8oECWXJQU2RAEliW\ 1sCSYLXb23j9bUQ3\ /KRDTnSTIjww8cne\ Pemdr4w UyK5LkN9\ 9wTkTu83ssFU2ZHW\ KDhuVMmZUjCGTr0f\ 3LlMkCA6v9l7CqLv\ crhSZ8zyFkXwzL44\ 9YMV /BkXQRDwClF\ IvKVvg1Z59xPFyUr\ BJUNC0OQVicRqENs\ QJ7YhEhKXd+dRswa\ CLBAbfOoXiJIqkXl\ e 18k3nLd98qIc9f\ 1lQsvHnWigrzVx8w\ 5qRl1VukpSJaTeaG\ E0S4CCiktQcSOiKo\ kQhAQVFzcfEUk5 o\ WA+yQtoWZbwp12kM\ +SXJKkSNC9H4Da44\ jnP5XOf+zTvfe+fA\ PC5z32ayy64HCW3+\ H76pSVJgttA P1Zr\ aRRCTSJIKBhDJeqD\ aZxOjeTOMmpSw+3Q\ mj3bTB6aKrI1a/LJ\ xyYpuR6b03O598m6\ w7WdUY76 SNVdoF/\ qi6sMTdbIGSab0wn\ +z2MTXN2ZbJGopwr\ zhZeaKPC+wTbum67\ y7WMFLmm2MpkliZI\ T4J9F TRF/GSCXvA\ UVSdN1hwtzCSRVYt\ INWhHO00GmL84nVJ\ HP5ov0mhoHilX8so\ /RgJwiMVJz0CUPL/\ Q5 GkCqPYYOXNyR4\ a5ilcL+PNdvXd4kd\ VbWEg1YEr7lI2UUx\ iccvjyc54q2OOv7E\ hiVGs6xEns9l9f3 \ tJ9yFGkWL1qT4x+a\ lZyzZCe6fmdXA9on\ E/MJEoAqiRyp2ctu\ H9uYIKiCpusY3RK+\ 5xAG0cpcVg1k RcY\ rezQkv/X8kp8rReP\ KiduEdT9K35wkOuE\ 7AWbvmUuBSkmFwA7\ wqg7xwbPLNT02mKS\ 6p4hTsGiI Ag0nOC\ 09j6RKSB0SZzpKdr\ o4Wcr1dOCM1FAzKm\ 947Rv5j//6Bn/8x/\ 8DgOdsuYxfe8sbEY\ 3F890v 5QyoTjoYQ\ yX8tEZ1W1srvQagZ\ HVi+4vUB9PUB9PE9\ hcJ4nPbrEuYfHLvK\ D1mjK25hWHlIAxZ2\ 1x9 5R0PNwwp+w2S\ ssBA0uAbwzMMpExi\ isz29jT3TpWeMpIk\ tmt4R5fWuFzRFme4\ 6jJWd+iORT8Q0XGR\ yo1zTqh6tkOq+fi\ puUHMbzQYs0KUmsv\ H9o7yvy9bf1r7Ddy\ AvUfKfKFUQimHHK5\ VuaEjzpZtbUim jD\ VSw+g1+fKRAvZIne\ duzbK7VKc3Ef0GdE\ nErp+6kODWsTK3jZ\ foiuvcUqux8zEfZd\ wjKHrYg0ku 6Tx9A\ XCHKmHMK2n3U2rz+\ s2RpFmSINrBLyV5k\ osW1sBiZ63xerCsF\ kzLGuz/yaMk1+Xo2\ dSDO0uS FJm9tzyM\ V3XZcs12gprVSl0E\ boA/7bYmPiOnIxgC\ sqLh2tG4FJQ9nHEL\ UZZWTLU4oxZa6swW\ unj5 uXTbUhqgZzp\ iA3Fm7plAzUHonxs\ 92hrOXBr4RCxHspd\ 7HsCfchcQ8De94dd\ 4w/Wvxz5YRd8YX/Z\ + O2dnQGXGpSELNG\ SJUBZoqAJSPcQ4VE\ Lww2V9Trys2iJHtS\ 0Z3O44sccL1M/LEM\ REMrrCJfryK43Z S\ pzhok1Mlqj6PklZI\ SWLaOJiZnyo5p72S\ vlUoCgiwQp5/ud1J\ fjs/skWSWooMpLlA\ c/6Jj2T4GVV jKES\ TjMMvSUT5xvlOr1H\ PIYqNrfvneFFW7In\ 2ctCBAWPvVNVvjRS\ 4GMXraFiirSpCvML\ mtSshpd3 uMRW6V2\ T5HkdSe6cKLdIkix\ JHMZZ5hOWhiCL3Dl\ abqX1ekyDYMomW/S\ wBlKUqOMFcAqFVQv\ gBWB5 c4Oln9KQS9\ ExqhO1BVGUyERWxu\ kxf6nIkuiEhCektj\ o1hUcqFjtyyxORQ/\ fsZ12tn55NPQue71\ 7X Obc/F6Qg2ockg\ dpp4lo2WtagNl3hg\ c/fzQt+52VIzaZik\ qljbEtTGZpGlUwIQ\ JmnD3FtizDwiXVm \ kMy5Y57fvsT3/AVF\ CquFV4zadhjdZ6dA\ X4zJGD1x3HwdZQWn\ /bMKS8xXoiSj6vOq\ fud936puLrgX KsP\ TeHkn0q41n9e7F97\ Tzoi1IkECOCcT7rG\ DZfSjFYxDZeK7p0n\ unCKxK0989zRBUqN\ 6QXZFI7hZ omTuLe\ BlFEJDRh2vo046CO\ 7yq2U/jF4r+w2GHI\ fN6QSfPzjNqO1xzP\ IImHvvaM3GDxu0a0\ /NgFw/ WFmxKWXuh\ LSan5CRmqWzz+KZA\ z+lEOoy5r4iALqis\ DWXoqYImKrEbW6dr\ ++cYMxa/XfnWz7nb\ 4iI Sj0p020oi4iJ\ ZMq4NY91bTKDOZPd\ 0xUq8whId0xDskN2\ 5ZdP1ZwIyxRQqo0F\ 1hnpY1XcThO3Q6PL\ 1LljcgmrgGXgnbC\ A/vShKXqTc9HeWYK\ kD1ewBlJUdrRR2dF\ G6YoOKjva8HIG5r7\ CohTUuQq55EXk sJ\ mKtD2PrK7SEdOZsk\ /vt18sVCiPFpFMCT\ WTwCmVufPzt/Cjf/\ gek4fHSHRnaFgNfv\ zJH3D4F4e5 8/O3U\ J4pIhgC9371dkRJJ\ DEQievv/uJtiKLMg\ R8/xoEfP4bgykiBj\ leyuOuff4zUkLHKZ\ e794p18 /39+k59+\ 5kc0rAaqfupEx686\ iLKI/AS1fU8n9LUx\ JF1GPgei/4IsLplu\ EyUF17Z486+/jS99\ 6Sut fpOiJCNKIh/\ 4s7/gQ3/x4eg5TUN\ Oa8idOoquI51Qjeh\ OOmi9Boqhzdu/vOj\ vc44kGUfrSBWP6gV\ Z KjtylK7ooHxxO/\ XzMpSu6MBaF1sgRt\ 5XqLAnX2L0hDy8l1\ WxexPoR6uIlk+oRe\ WhStFFO26hzCys 4\ 9+TL/Hmplu23RQyx\ hSZdXGDz+6f5KuH8\ 2xMzXlqzNgOf719b\ avx7ZMJa6SGoIkrN\ qV0wjmSBxDq MqJz\ boRtzzVYA0lE20cb\ nVsx95gGF2YSvKY7\ xeN1l0/sOU7BXf33\ 97WRAl5S5Iu/GFt2\ G7MvTrxN I+14bM/\ E6Ijp2N7cZGqFDab\ d1ftbpEyV3+xJI4Q\ Bu6eKkR9Ps5pMEQR\ iK4xOXhBFYT/26Dg\ f2n2c D+0+zgd3j/\ DgRAWIXpuxI9E2gH\ G4hmj7iLZPZUdbRD\ bnEQQAt0PD7ktg7p\ 35pSBKohPipw3kUv\ Qd TtkeF2QSTNZt1\ qnLkwVxiYj4LMb3H\ GNszzFkRcW1bL76R\ 19mw5XnseO1l/G9v\ /pPpobGkEyJjsEu \ 2te3seO6S0itiYjT\ Q9/fFe1fEmmoPru+\ vxOAWHuMn33xNpSk\ gmAIPHzbLlwrus+C\ ok+ur40rf/MF uJb\ LnZ+/5bQa4wYVDzl\ +djuoe9MuftlFSpz\ d5wHQ8EPEZVrkhIH\ PsdFRvvb1rwOzWji\ N4eERdj60 iz2P7Q\ OitLCRS2Fm0sR6k8\ TXZFsEWlbnXlN1g1\ giQyyRQdUNdDOBbi\ Zaz59TJEk7bqGOVa\ mfl1lA hBqqsEB3N\ B9Fx+W6nhTnJVQen\ CoseE30GwRmFOlx1\ hh4WRW3Q8NZY9BQR\ Iyj9QWRpa3JiJGmZ\ BGJ 6PNjiszWXIrN\ mQQpNdrXnnyJV6w9\ tZTI6cIaqSH4IHed\ Wtps9npJ9XN/sjjb\ EGoi1kAKfbjSmuAA\ NqXjfHk4TyMlsBm\ N244t77N0Ii4wZFK\ aQqCLTJ6EXJl9cex\ xi98ayHGwHBU+2J5\ HpyYvKh0/GdZk dN\ 7RnWEwoTHjuC3S4j\ UapA2D+2fqfGj3cT\ 726DjfHq0x6QY8OF\ HhLx85xpcOTbEpHW\ drLsXWXIqL OzJ8Z\ 6LMh3Yf56YDk2xsR\ pHUSQd1okaoy1gDq\ RUr1mbTmKJ9bi8QR\ CdEO15BtD3MfQXMf\ UXskTrZ MErbpk4y\ 0QarIOBHHz5EqiuN\ lokIV+/WPvbfsRdZ\ UUnmUuipGLnN3a1o\ wHLo3TGA67jk940h\ iiJ7 btnNjusuQVB\ FjFyK/ksHAWhf38n\ Ukano/KTVR1MCN0B\ J6ziTdZwRa1Xn9ky\ EW7SQkyrCSquLswV\ B COHyWZuYpjK4aR\ P33HMPshJFkb75zW\ 9x7TXXAiCKMqqm86\ M7buXNv/42bnjdG/\ m7v/8EYRiimwmc G\ Yt//MJnuP7613H99\ a/jgV/8gj07H+Hv/\ v4TAAwPj3DjjX+C6\ 9jnjiZJqoeok/VFQ\ uwTMVZ3KDou ZddD\ E0U6dJW4qnBFm0aP\ LvHvR2fIqCoDKRN5\ xsLPGjhroghQ3fOJ\ KTKyKJBpN5hKyKiT\ Dm6zDHV3 0eKxosW\ +qkNOX3mQec5T4JX\ kjFoIPkhrjZO2E0j\ KwgKHYoDAVBBtnyB\ 29q9MzjX4KQVrIIW\ 5r0Bl R1tr4r+kPY\ WuKJSK9VXva3/V5o\ eew/5yncvaUtw2VO\ JN569M4s2+OPmhCm\ FzINMVhb1yleGhCn\ 0D qxdbSxkFa6TGh\ ekEN48X6U4bC6I4m\ 9Jz0dfhms2u6SKaJ\ LGtfekWC7M+TrOQS\ x7GUAm30yQwZYZl \ n/HJaksH9csKc+8M\ ftrA6jeRSx7lyTqX\ 5kN+evtxXpvUuWX3\ KC984cCSerCwOieq\ XilqUxotYRXq 7P5\ OFBHS4hq5vsU+Vb6\ 3WGQruE0BbugjijL\ brtnOo7c/wgWAJIn\ kNkd9/X7xrXvY/9N\ 9rNu+fsn9 QCQI90\ tuq5xd0GQkXWz5KQ\ EYgwnCfQH1wyUIwq\ fFAuBMoOGHYIfwBP\ 2Fnm4ImkxgB8sTlA\ Zc/+rr +da3/ourr\ roKgJ/cfjt/+9GPc\ 9c99wDw2COP8Y//9\ Glu+td/obu7iw/9x\ Yf5h3/8NDfe+H6+8\ n// nfHxcb75ja/j\ uxayanD/A/dz5PAo\ hekZ/vBPP8DH//JD\ qJp+7pCk2OMF7HWJ\ JQlS3nIZq1tM2S5H\ azZ/urWXf3p8jD/\ asnYBWbkoY3J+KsZ\ 9+Ro/2V/gKifAbzQ\ YMgImpwr0mDGOVi0\ cPyCpKiiiQF/a QD\ tuMdBh8s3hGbpjBp\ szy08Sdc9vRZSeTH\ jTLg0nXBVBmkWnLl\ NyvdbxhYaEXPHPiU\ ae5yLcDg1j aOFzu\ qJgex7Tjs9GYfkS7\ Fnsytvs9TzaNYkXd\ 6Wp+A1KldUJsGPKw\ ijjxR0ZvnakwI1rY\ 6s2gSsF DUpeyM3j\ FdpFGblYRXRCAlNu\ LT5m0R3TWoUF8yE6\ IaIdEOrSgiiR6IQt\ ghRqIuWMSGAH/F4u\ zWcn C/SnzFY67pc\ JxuEowjjrIu6nFB5\ zQsTeBMaMT3spIJg\ oYe3J40gSSrMru5x\ ScGccUpsWan50Mxr\ v RHHhdNI50MWRzB\ DX/vErCWpz0ZmGG6\ IkFAInuj9VTcfFxr\ Hm7rup4+Otv8PQ56\ JXX8pX3v0FALZe v\ x1RlAlDn7u+dCfv+\ 86fIRgC+2/f04okz\ YdfaqaAmwRp9rmGB\ 4IeaV+Ckosc1widg\ NANz4iR4VMN rcuk\ sncGbQlDxLMNDT+k\ YYfUD1UXPK9nIu8+\ z/d54Qufz8c+/nFK\ 5QoPPvAg27ZunXu/\ G3Lv3Xdz 7TXX0mb\ mCIOQt7/jbfzR+27\ kxhvfz6333sVH//Q\ DiKLYsq6wLRfLtnn\ fjTfygT9+P4ODmwh\ D/9wg Sepk9OOaP5\ nXPR8rDHGDBn4QsD\ VpMKIq9Jk6MxWXLU\ mDI+XaooiOGDT43s\ OTjI5XkbuTtHUqXJ\ pS 2ZFpb+mHim7A0\ ZpN3gn48XiJSxMm6\ ULA1o7FpbQAsijQG\ TNQRYGfHp/iZT1Lb\ 7ccZgeE1cKbdgkq \ 3ooESW5qDnx3Tov1\ qrVpPrt/klRzNe4n\ NZSZ1Qtxn8XTD9uL\ +gQmbdgZ83nRSbbf\ mtaR8xZta+L8 88E\ JtmTT7CsUeXCiwra\ 2xIqVZSYyoihgex6\ 6Eg3Kflph75EyKVn\ mkO0xmDMRkyK6JJI\ 5YdL53MEp xsZtgq\ TYMqr009FkagyVgF\ RLO3QiRCdEyTutKr\ UTTRFDTcRPG5G2zv\ aw+tOMFKtc15WmJx\ C4sS3J t6oee6qlR\ dGnpSq+zlbMEkjRC\ RH8SPOlTtQWOI/vy\ Ze4uCPD7qki23rS3\ KsUuWJDO3Kg4ozX8\ Io2 UkKhYeuIukhY\ jb6jfT/bS35kGoD4\ mgSXv+EFCz574Pnn\ 8fNv3MPNH/kWHRd2\ Ux+tMHjNBazZtI5U\ Z5ZDP7+Fh//zAQY\ u6ye1vouO/g5++In\ v0L2ph0P3HkBqRrZ\ 9z8fsTJDqSrP7R7t\ 555ffi++5iJJI ui\ vDvV+9HSWmceTBE1\ YMzLkrKznthBYiEf\ GbjTI5BQu/7KF1GD\ TCJ+Ze/3RB6zGoD0\ n4Ff8Z4nR0 enAnH\ QRZROlSFrV9kVWDm\ hVpMYNawPOvfj43f\ +cH3PfAA7z17b+B3\ NxeUEUsO5q7BEOI0\ my2jO1E zwWWhR7T\ CMOQMPCgmfK1HYd6\ tYYhzl3Bs54kCW4D\ Y6hEbctc+Lzu+QyV\ a7xyfQc98Th9cRXB\ 9xgu VzhW9xEUnZe\ c18e/PnqEohuQbv4\ gDozU+PI9wxjAZwa\ 7aHteHw1ZQRHAbX4\ xoiyTxiatRqup/VW\ H vATtNshlD38JBr\ 8hnSCjiFRLDr822M\ sacZ4nh6ojz04wnk\ fo+6jG4lRcGIQtP5\ GV4E27+JaHvAJB U\ nWTMAxaf8/f70Lxt\ ohorZ6cPYunHzOuz\ 0vUGOefl2BP9eTaC\ kWCu0s2x+o12ppRm\ q7OGCOjLsNB jSsy\ 6rJ+OTV89pfriEKD\ hKLSm4ixKR3nu8Uq\ Vr2GKArcNlZHOdAg\ 3qbx25vaSUkCXgB3\ TJbZf7TC c85faD5\ p9ZuY+4r4KRXteAU\ lv/QQJZci/ZLbaS7\ oxTZLlGYrt7RRD2t\ gLnWSK3moAwna0Pi\ NkRp7 VY1vjBbOqf\ Sb6IRooxai7bWuU9\ hsnxTqCrXNmdb1Gq\ s7rI2pjNasViWgKA\ r8Sl87MUkgtjGBNV\ LD PlqhOmWjtuuYH\ Rl2vOlKykfzrc+MN\ xsob7r2QoRGI+rbF\ 4S88VNv48jdB6hMl\ Wnb3k/Hxm4Cwaej \ v5vXfvxNHD8wgqhF\ 992bPvM2Dv70cQCu\ +8tXMvZwFE2ancSu\ e8+vkh8roCSjCidV\ MnjzZ36Dgz85 gJJ\ QeN0Nv874gWPN90T\ jVkMWEDSZ0G0gntA\ tJaz71A5GLUnUrIa\ kSziTFtmrOp+Mr+U\ pgZo18Kqn ZsXxTE\ PD8RG05fviNRtCoC\ QV3vCGG/iz/+8vEB\ WZSy7ezv79B1rbbb\ v0Qv7PZ/6ZhhXNaf\ c++iBb t14AwODgJ\ u594OcMDA6AIiOKM\ rqhkkml+KuPfpg/e\ t+N/MM/for16/vPf\ pKkj1n4aW0BORmvO\ 1zX k+Lq7iyP37GX\ Y5pC/5Wb6NEVBnJZ\ Dt97gOm9w1x2fm9k\ vKVKDD8ywz9PFOlD\ 4PotHWQv6kBWFG7+\ m+9y+asuJTPY1cq\ /y4qCXYuqaAqOz4a\ 0gbZGwjleR5LDBSm\ /hCLRpimM3PYIR+5\ 7nLd/4s3YtXkk SV\ EY+lk0MAxcfR4oCv\ kj0+y75SGu/v2XMf\ zAQYZ+foAXvOvak1\ 4LZ9QiDEKMkzjRip\ LIPV/4CZKu cOXb5\ lZ/OVWmIzZX1eInF\ YKEgu4J2EqDhCLhh\ yFW0EAWBQxJxArCB\ cTqWTx1mI2gmHtnC\ HWZUFco 4SJ3ZtlT\ tKg2Tr4a9gJISyJ5\ RWC8ZjNddxhMm9xH\ jfXHXUIpyxgLW1TM\ Vs3d1Sypf25bkr3V\ hQLy WYxU6hRw8fM\ OqfOjSKwiwVWeyNi\ GDCOVOUPKWdQ2pzE\ O1wh1hcBcPERFwvX\ k0k1qm8+5HRpyyUO\ 0 /UXbBQUPKaNg9J\ qcP1xd0L7kbK9qE5\ 2wdT8sd41mYXseec\ smZ+gEYbAg9egEYW\ RuBBi9JkaviZd3 s\ I5WmHn0ONneLJntK\ TRdh1j0vdr1Cul0i\ oYAtYkKhB6ICr3bB\ +b2O2MhiD4Nv0H31\ rV09HcjmRJ2 vYIo\ KWy5dntr2/6rEvhe\ 5Nzt2haJgTbkpNF6\ zq5V0OJxLnrtZQB4\ ZY+uTWtx7YU+SQ3H\ B3kx0a8d LCOqMvE\ BAzkbCZ7PxgjSfCh\ tOoHtnZXpQmiajp6\ Cm/rmzZsRFZmXXfv\ SRa8973nP54c3/4i\ 3veu3 ac+2MTJ6jE\ /9r78H4N3vfhfvec\ 8fcs8992LZNr/9jr\ e33jfQ388H/+cHec\ 97/pAvffmms5skCW\ 4D daxKddtCMWDd9\ 9mRjS7y6MNH0dMx+\ q/c1Hp9fP8oUwWL8\ y/ZQEdMxinYJHvb+\ OOuLEpOpysm4bvR \ BHDhSy8ksT6DpChU\ x4vc8c+38qsfvAHd\ TOB7Hu/c3M+I49Km\ KdCWZuJYkcN1j66O\ OOsTcxGhiiyi i0v\ ftKN7R4CIJNUmCnz\ 7A1/nNR+8AYBsbxu\ iEQ1es7n/E+FaFta\ xCnLKwOxYvI1rWYi\ y3IpYnQhR lFENAx\ 1460aD6cCnZHuM1+\ rsOK+LMCEjrtCJfd\ rxeHxm9X42z+LMYD\ aNYg2kkGo++bJFsm\ zzxb1T TG6M8anLB\ 066j2oQoHXFue+xE\ f56bSexNSY3HZik3\ dAYdT3+aWwKe4/Lx\ qTBdbk4O+sW41bAw\ bKF lxR5x4ZOdpfs\ RURnFnJzok13my1R\ t5d30HM6D+6dxpAl\ piwHVRJJqUprP15W\ xdxXoHTF8m1OToZQ\ lxaQnjZD5XPlEq8\ xYcuIi9qpo+d0hh4\ vs6Ez1rqmsxqmJxt\ yyWulwQAa8pwlwWy\ 671SPQxu1CHWZ 2u\ alhe3zsbdQZUsmzk\ jNWUBsNUmi4i1uca\ PkNJScRlDzcSfq2N\ M1CuU5ciwnFcSmv0\ 1g+xhrE4ha iBt6o\ IsIfoOG38CvRM7Hf\ mmS0A7R1hiIMZkw8\ PGXcZAIAx838HHHK\ khzh4rvWq33+CUXt\ zC3AyFs IEgigi4u\ atPhz7g4kxax/hT6\ wNlpILkUvGmbYIUG\ rs90+BM2Rs/yDZLD\ wEM3E3zz619rPXfT\ v34B s5l92bhhA//\ y2X9qRTI/8lcfZnJ\ qmmq1Qm9uLUpSwa5\ X6Ovr5Vv/+R8cGT6\ KoRusWbMW33O5YOu\ F AFxy8Xa+9OWbMA\ 3j7CZJxnAFr01vRW\ 4MSWDndJm3bWhvOV\ 8vh4TQ4LxMnOp4kV\ 3f/jnZrg723/co a\ trkBW+/GrMzCr8f2\ zNMdm0a0ZP4wV9/m\ 8KxGX7w0W+x/bWXs\ 3ZrHx2WxZ3/chsHp\ 6t0b1/Puldd SmLa\ IpYwmN55mMO3PEQY\ U+nq7+RkyTK/7PLN\ D/wHL/kfLyO3OXKy\ LU6XmXp8lLVb+2iE\ AXd+5kf0 7ehnz38\ /hKhIXPG6K0itacP\ sTCOaMvd+6U4mHht\ l/XM2IkkiA5cPtM5\ lzw92cvCux8n05gC\ YHQJV wyB/ZJqf/9\ 97cIs1pAv72PLKy+\ g0FEIn5MBNt5G+bA\ OH//thEmuybH7z1R\ z4r58zte8Y7ZvXct\ 6b noebNDlcXn3J+\ bN44ohabKhNgbPGw\ SmPl6zvYPihMa62d\ erHazC4sjA5Lkm8p\ sfkEnsNN40Wucj1 \ +LNsmu9N1yAWkZYR\ vY6gynyhWqbkeHxy\ Qw/vPzSKIUs8tyZw\ p+3Sm4hRcFyqrk+7\ rqArCoog0Gfq dMe\ iPnCfrJe5Ydri0q4\ YjzVntqwl8FsdCZR\ ug1snbI42I0tnQhM\ 0SzC0UQunxyCjqWT\ aVX44XeV7 oc8LKj\ E2BFAT54iUNlpb0P\ blTGJWRyWXHOSmmN\ hPqYTNRtdiMzIn2n\ 7kYdTs0XcqLuBy0c\ JZM7dQ sj0PqxnpF\ cKAtGEwWrOYrjt0m\ TojNYdec+H5morEU\ NlethOAZMpIAzL6g\ ElQ8wntgEYAgeMTl\ Dz8 uosoi3gzDvGt\ 88iaCmJsYdsPd9LB\ rwaoy6RWToSS06K2\ JEs0PpWzJ2/qGtZ9\ 7GN13KKNpEtIhoQ/\ 4yLqYiu9E7gB2CG\ hFxLW/UjgrSyla3p\ mIaz7uDMWatY4K6N\ ITtP3baVr3IoqppK\ tiOEsQbJrFURJ br\ 0WBj6iJJNNp8mm0z\ ijZQJJaW0rqwZ9a3\ ujx81IpmkYi/Z71h\ oqSPUQZdrG6psbEK\ ygQdn1Wv3T VoKoS\ OA1aFgN7vrqz5g6P\ s5Lfu9aMl0pvveR/\ wJAECUO3nuAYr6On\ FQZuHwjbevbeP5bX\ 0DnpmiF +29/eBOb\ B7vp/62XMvKLg4zc\ 9ggD63NUD01y7998\ m4HXPIc111zE0A92\ rng8QRDytT/5Ms95\ 4xX0 X7kJ17IIPI/\ SeIGRXUda2937tbu\ 597Y9ZG+4AqW3nW9\ /9FvM6ApK2uAnn7q\ ZmSPTXP3Oa/C9gB/\ 8 3Xcp5usIosTen+\ zhvn+7h6vfeQ3rL9\ vQMmoTRAm/7PK199\ 3E+Vedx9XvvAbr/k\ M8/rW7SBs6pqGy +\ /sPMr17hG3veDFOq\ c4P3v6PxDpSbHvnN\ Yzcs5+JBw6Q0s/ua\ oqzEXLJaU3otufRF\ tO4p+Hy0mYB QaPg\ 4s+4K/q+KFKUPsvJ\ Ah+4spdxK0BPaLy6\ PU7J9Rip1DErAXvz\ ZTRJwpAl/r1Jht9i\ xvlRxSWj q+ycLCB\ aPheHMiM1h6JlERc\ C4orEnnyJdk3ikqz\ JrarLO4bH+LsD43w\ 8k+O3ehPcLId8Z7x\ EXQyQ moubEzVGp4\ va5gzqRI3ErumWp9\ SmdJwt2TQPywFfaF\ gMppsGc6VIw+Ococ\ 7js5BLHua+Iold00\ 3y o1HbHJnb1jans\ fpNrH6T2uY0tc3pl\ gt4bXMaP6W1fIxWc\ y2i/c/5sc24PoYok\ BZ80obBSKXOBQmN \ 39zUwXjTQHek5rAn\ X6LguNiex4ztMrZK\ I1nJlFFyGmqHhtFr\ Et+aJv2cDkI/pBGG\ LeH0cmg4/rKm gUt\ Bzqo07JCgfOqO4NU\ 9RWbumcCZjFp3xAZ\ SUYf7moeXd6gfqmI\ dqOBP2K2KOCWnoXZ\ FETT7WP20 Pvepgn\ Uk+l2ejY7bzqgFQY\ i2ijRbFHGMSNDs37\ OtSea/Nv/x7OvOyD\ z9bfP52e3n/z3/8d\ l3NZvQ hyu43fEFp\ pEQVZIdqLpsiqucz\ GDem+eyffU7X4ooi\ Vz2mit58Nv3L9iu4\ YcIooSZM9ETBol1U\ SRm emiCWrFKZm2W\ +tgUmXUdHL1k7gWC\ AAAgAElEQVTzUS57\ 9eUcv38/gy/YQu78\ NUw7HttfeTFj+44v\ eyw7/+sXJNqS5A8\ vLmE9ERe+5cXUEzJ\ d69vY/ZU76GyKMvf\ ctoff+eIfYHYkyK1\ v48H/uK/1nkN3 7O\ OKt1xFbn0bufVtDL\ 5gS+u1x362h/4dAw\ xcfR5hELL1967htj\ //Gpe+/UXImkzgBV\ x0/XPxcxp9 L7yAm\ cOT9L4kCkt2b19Pd\ XiGzss28SyeWkQTe\ jSojNQcrutK80jFY\ nc2JMzDNU5Acefc/\ RRbn8Qv O4iqjKhL\ CE0ictfRKrsti/fG\ FI7IPiMVmw4XNqsG\ E2JAPibwjqrBXgce\ EiJn5i5J5cLBDDff\ PYJs aLykK8XzfAm\ j1+T5BY9vHJ7hUKH\ GuF5Gk2QeLdR4fy7\ HW9al2TtV5WOT0xQ\ SKl8vlJAlCV2SqNr\ e XC+40sLJaLZKa/\ bvSIwsnTQd5acUKj\ va0EYtzH0F7L5Eiw\ T1mAY95hwh0kZr2H\ 2n31D3xONV8g76 c\ KUlMD+ZRmgpOD0GX\ k5DG7VI7JqO9tO/9\ ERyYpsRTZJ432D7C\ VvN5ao+saO39feDE\ xUetXxs3+c1 a3Js\ TT+x9hzxjWmKO6dQ\ 2wy0laIvkkhQ90+p\ qaygi1EJv99Ydbf7\ 2t4SoeuT2JJdEIWq\ 7y+jrTdX FXmJDSa\ j7eEZV2IfuAHujIX\ WEUMyn1nHdjL4M+6\ qCdITgdSm4I+4OCO\ 1U/qss5Ikzbpc293\ zbnbP Z1+xgiaK7J\ 2psVaXSdGMGJ2AwP\ YIm42eBENATxgtUX\ aoBPircFwNg5B6vk\ IYhBx54FDr+exlGw\ Dw 6y5yZm5Aqs7rD\ 3PnVJW1MXVBOHv7r\ +5g7Zuezy2/+xnWX\ bqB3kv6CYNo5VjzQ\ w6WLGpBdFz1hEx/ \ MkZGEfjRvGOyKxZG\ ziQMQkRJRE/NXR+r\ bGFmE63Xkum5vG9l\ ukKs+TgMA9Zl4/iV\ OQIpNa9h0KyI 0zM\ Lc8a++8xdXZ2rmI0\ qzEYNnCDggB1Nco4\ SovTorLmgK9KPzDg\ EJY+wSTJC14/++SE\ 126fTspjO 23z+x4\ eZKtf5drKGsSHFMS\ XgymmYcn1u35TgHZ\ k4ouNx/2OT/P4Vaz\ k+4VAxBXzL4ZbjVS\ 69eh0G kUHka5Odf\ PPADOWZOu+8KEsh7\ /CzisVbBhJcmMnwC\ V3m/QeGubIz2/I+m\ hUOq5MOxlCp1Z3e3\ Fds VWnNh582EG1v\ VfqbWbJh7p1Bnai1\ 9j2rCZpNgc2vhDsd\ yCUPbbSGXHLxUyq1\ zZklU2W25zFSc7A8\ H1EU0KQ5/ZTrhMQ\ zaoswhpqI1W/i9Bg\ YQ2VS901iDaQW+Ug\ pM26rig3AOwXbkEs\ 6E1xyOie8DOSs ip\ xUcMZrS6bGWghOLV\ IYlD0EWaTR/IzVwq\ s6KHFt0bFo602cI7\ VVm0c+U4mSPx1Fvk\ RZOqXr8kyA l3cwN\ p2ZxclqICVU6oeqx\ DbEFzwfuAHOiIXWu\ zBdeVaSJLnqIXhhK\ 4qUt1yOVGv4YYPf3\ dS+gHzk 1rXx+O17\ AVpi62O7R9h27akP\ CQ1ZwrOjm1FSFLK9\ bfhuwHN/50XIioLX\ gH2lKKwXb08y+Wgk\ yG7T FB49MkXdD/E\ acMdEhSAMickif35\ pdHMouoJoKPS962V\ 856Pf5IbP/z5rOlP\ U7AZ2GJDQFAxnLmr\ W oS7WXGU6MxRGZs\ itj4TslfycmDrenS\ Z/ZKolYC8cL9C2IU\ oZdg50cf/XI5dSWV\ E4fnSYWM9Cx2Un I\ 6MVfMSaC8/2dHtGw\ O1cuBoaqdSxg5C0p\ jFdd7h1rMw13UkMU\ 4Zm0CBwA/xpl6DuI\ 2giGrCmt4dL 3IB/\ PZDnvHGT4YkyHJjh\ xX1tgEe3FWIXXf6q\ OokqiXhJkdSMxV0l\ h3bToDht8QfrcsSl\ uYFFkWi6 dmepDVf\ p7YpRmaiyK2+zI6d\ TMBU2S8Yic8hZo8P\ a5gzaaK1lBllZIgo\ TmUVGqazVEKVQE1t\ RJWXG RS5arapAP6\ Xh9JyeYFt0wogcHa\ 8gOiF2X2JR1Gis7u\ AHAQXbRbGgU5Z4VU\ pnIBFHliUEWURSRG\ j+ rr+/t8C9VoEtm\ XjLgyrURGqb0830X\ QE/1bbgM07UI4WNy\ G5hJa+rJxvujLOsh\ ggi/cnJUnLzYRcd \ VFNB7Vh9StSddPDL\ HsbaxROxpEooOW3J\ SXM5PFOJEoA9XUNQ\ eNKjMmctJJGg4qIm\ I6IkJxTUDg2/ 6OF\ MW2hZHWfEWnAvnJU\ kSZmx8bJROLju+ZR\ chz/fuhZNjBq1zsL\ 3PLb8ynZ2fW8n/3n\ jV+nc1MWx 3RFxWX\ dlP47toOmrF2l2Dn\ Txo4e/zy++dg8bdg\ yQ3bKGHa+4mH/7vX\ 9l8PnnYxfrVLvSdL\ 3mCnqv uYhHv3Ufj\ 3/mh/iaSumxYwTpG\ C4ycVmiN5Gg5Hrsz\ C8UO59/+SbYO8qtf\ /0tXv43v0HNdRdVx\ WVO 8D9qhAGCKPHc\ 33w+3/7A19n+youZ\ 2L+wUenlb7yKr73v\ JuxyHbtqM3N8pkWS\ 1l+1ifu/fg8/+Mv/\ JLu+jd3f28X2//F\ yKs5chEgSJfzc3HG\ ElrdixduzeHIRaiL\ qRA2nx2hNlFNNx+I\ tmQQxEb5/bIYX di\ QXTJKSKiEtMWFJqs\ TvXNCBdz5Mux77Hy\ mwc2iG/vPa8XIG64\ 5XyDYNCEdrFo9UAh\ 4uOjynGLA7 I3Gz4\ HLd4RKZXAwps/C+M\ PviWCM1npvSuW+8z\ Na0znf3TbG5f86ba\ LZ9iJ+Ojm3276XI0\ fxrYA0k MYbKJHZN\ U9uSXRXJmdMcPbGJ\ RBu1WhGoiBilFkSN\ bM/jYLlOvNpgMKmy\ QVXIdqfoaNNOSlwC\ U8Yf 8xirV/HTyoL\ qMz+l4KdUlLwz12v\ uhMjiLJ5OgtRww5b\ /0HJQchp2aXUkKXA\ DRKeB0ndqwvpG09l\ b bls6wqLkNMK6jz\ /jrjoKExtMUj9URZ\ eFZ4SYW+sxCKoe9e\ EKjmwRuI1Vk75fJo\ Q1H3Vd1BFASEn4 E\ za1YQ/BDtGbadeg5\ i0g9tKr3vXeDz+9h\ 33qiO0v4fTGCTWRx\ 4sV3rGxnTZVQhaEB\ VVtYeAjySrb X3UJ\ iVyCwA/ZcNUgV77p\ amRZRjQEJEOl5/we\ 0muyzVSU3HosCCK5\ /g66+jpAAjNrsuni\ Aey6TdvG LtS4zrp\ LB+gd7GG06lJtS5C\ +cgN528fUZTb9yiX\ Ylku6v5NNb3guxpp\ 2jKROvlYj7wZkdJX\ ehIEb j7H2wl6mRJ\ Gy67Ph8k1ocY1kZ4\ ZcT5pYXwdGMoZFA3\ 1DJzs2r0EIQwRRoH\ uwJ6pWazToGOxm3Z\ a1 eJ7HRa/YzqF7D\ 7LlpReixTXMrMkFL\ 96G57hsvHQj2155K\ e1rc63O1xe8fDuqr\ iKrEle/4yX0X9DD \ zycK5AyNtsFu4msi\ HZbWkSLX34Wp6ohW\ QGx9jtxAB7ahtoSg\ z+KpgVzxQBQJzMjf\ qts0qHoB1/em SIg\ yDxWq9Bg63acwiEt\ i5O2Vatf5acWh/1g\ dP6MjeiFyNcDPqCR\ UhbvKZTbmA/SUQac\ dUpt0uL1s c4/jsM\ 6CuCm3UtiBG9CwQ2\ 6vWaQb8GCtjuaBkY\ gmO+NwDeNIGWdNHG\ 20SkMWqA+m8dq0Vm\ 8tiCJl I9U6x6oWG\ VVGliQasoDXrqMUX\ bSxGn5WX/CeJwuRk\ DrAyxnY6xP4GXVBR\ d6BYpVq1ePtksHLt\ rWx pTtBZ84gGZdZ\ TZP6nqzOT48UcZMS\ W3Mpdk4W6J6nn2qo\ EnLVB1Eg1CX0kahX\ n9tsZD1Wd1BFge+O\ zHBJLo6LgNQQVvX\ ZZwphNcCZtDA2JVf\ s8RZYAXgNRGNlRuc\ etVBSKqJ5aszPOW6\ B0CC2gt5MTqk4 x+\ ooudUTsLDmITQiuw\ Np3m8scIMVz/fJgp\ LTkHQFa7iKIIJf8F\ Dbn5i27MmCP+PiHK\ tHlYWmjJx4 8hfck\ ZO3gJKO5jxREpFTK\ pIgoPXEWt+ZqIgER\ R+/4CFqIsIXHjl0V\ jkBSvWQ+O7pln/KU\ KlGty7y mr62VtsQ\ J2y0Ikp2GNITNxFF\ ibDmYxdsGngozVWF\ rOrRa2GA79oLHgML\ XhNFGVnVECWRMAhb\ Xkqi LDNpQ1cs2rZ\ mW/z/j03y8v5uMoq\ I4ISIhsK043H/eJ4\ g8BEEmYyu0K4rZGM\ GM3WLoxWLmCLTnzR\ b 1WKiH9Ko+ByTPO\ wg5IJsgoGYvOhYZU\ WhcjSP0ZNEbhpSfu\ VdX+Dd33k/AKHvt4\ 59FrPnEIZ+a1/z z\ +1Apc7DZY/eeKSNm\ LZsehImhiwyVXfhW\ IEuySDM6hzEoeI9m\ 4Z7KjEbyZhNNWVUG\ XyXn01FRqez k+t7\ z+9a1jV7JXz4kWNs\ k0zMfQWsgVQr9eX0\ GK2WILPtLeZrcX6R\ FHnVuhTnpWPcPV3j\ 8ZpDLCuz t2zzMs3\ kp6U6m/vSC4wPo32\ 4S2ptIJr0DSHkN/v\ b+f5EjaFybZE3k7m\ vCLCq1NsTwUqfMxs\ 9ulhU eEVP+gnpQz\ 77wBhCTuNwqcZLul\ L8bKqyoIWKNmqhD1\ da3838RsdfefwYA4\ logjRkiSM1mxv6u3\ nD mqcuulDeOY0gi\ yS2rdwsGcA6UFlRl\ +JOOjT8cGV90wrHI\ aryQjuCJeCM1JB0B\ bl9dd9ZWPfx8g5+ \ o4HoNBBNGd8PELzI\ o0k05VZfOCAiA3G5\ laILyh6NkFMSra8G\ zqhFfaiEoIoYaxOn\ dc2eTLiTDg3H f8p\ TgvX95VNqXDx7zz3\ 9ccITINVDRNunoYg\ EmrSoek2qevjpuUF\ 0IGUyVnf4xJ7jyKJ\ ATJbpimk8 OF1EFU\ X+dOsafNfG80Kcx8\ s0/AB9Xm56fu+ypR\ 7PRxj6uPbi0HDo+m\ RFmH2rJgqkVZH7x/\ OkVAW5 WTbqJyPvm\ LwbMtAMi0/ZHlN29\ HpMkRHcBkemqzRUA\ cFtoI9ZWOti4EUlv\ RclZXxXWXSssqJw7\ PFj 3P+R+7CDBrok\ 8OoPvhZZUXAta9lj\ X+m8N5gqaw2Fuycr\ 3DFZwQ8b9MYtck1z\ S9Ia43Wf+M+OYG3J\ wDMsP3+uIzBl9OF\ K63HB9VEEacFEmlA\ Vvne8yO9uPLHK6eQ\ IGwJ+Kmpjocy4Ld+\ exK7pZqpr7nNC Xc\ LpMXF6TLaP1vjxzg\ nu3pBiHw7P7Wmj4L\ h0mToHghCjuSwzhs\ r4aQN1ooafUhdM8i\ diqFihP2Vy x2SZi\ uVQcj3sYpWK67V0O\ 05PROieTBiHa4i2T\ 23L3MQ/UqlTcj2kW\ oNOWeL1qRhb1iefs\ FfNr/dn +auRSS7u\ yHDbeIHECY2xnR6D\ hiyi5K0FBphjdYcX\ 9mS5Y3QGU5XoBN6x\ oZMXdjx1BCmqtnKI\ 9Z9a n8ql0NIsnaL\ Ie/Y4grqP1r46ohA\ 2Vh8zEGMyWkxGa36\ OPW6hJTXktEJQ9gj\ sEL/ioa2LgR3il9y\ o T9yUE5EoPfq+nG\ kLsSFEjyXxCZMarc\ cgrPmEXog7vbwe7O\ lAUPYISu5TKtR2Jx\ 1EWUA6SaTyRKgd k\ SfXM4YkSfUQfbiCX\ HQITAWpNqeH8dMao\ aEQGBLKjI2fWMj05\ 3cHL9geJS8goyq8r\ i9LhyphH65h T9Xw\ yx6JLdlWFOnJwO15\ hwsSMlfmYvz3WJWU\ quAnFbTjFn5SIabI\ DKTk1jlLVS/6V/Oa\ DSiDqM1K QkX0GxF\ Bmr0OYYOcuvRX5ns\ em6+9iM3XXrTg+Vm\ CdLrQRIEXdyV5cVe\ Sst/gh8cKPDRVZDA\ dJ6bI BLFosjQOla\ lekF1Eap/Fk4fZ9M\ 5sSTyA12igCNF3MJ\ CKYXseD06VgFMjSV\ 4AYdOE0E8phLqENk\ qL 0ABNYXVkfLjXi\ 1bL9ZzO+brCum2dl\ I+U+JUQLNMjk1LJa\ BHRd40GG5sl/upEb\ UFZ/lKwPY+hZrXl \ fZNFLmtL8e7zu+hQ\ JW6dstmdL9OrKC09\ jlzyVm2+eCpQJ+ei\ Z6EmYnseewtVXtKV\ YkdNw0hLmH1n joh\ 4SRmjKVlcrrec26E\ 1e9TVMPcVyW80yVv\ RtRpI6LxnSw8xUTi\ tSOITQaMaoGY1Go3\ VERtRF/GL HoJIZO\ I4mwpoEiO5Uyconv\ px+BM2atZYVRotcB\ tonac3JUrqwu9eSi\ o0Qm9OF6RKoC/d9m\ T2yPwp l8A+M5XCo\ i7SEAX8GevkG59BO\ CM1QjukMU/20lCah\ UmqiDtpnVI050yg4\ Yd4pUiLdKrQep4Bj\ tvz yZHdm6A+kGxN\ tILbQHICRCtAsoIW\ QXJXyLMerUSjSlJV\ 6PBFivdP4pc99C6T\ xJYsUvzJPeU+XeCu\ vM1L22OUj86takN\ DQp10kKoecslBbFa\ IhZpEaMgESY1QFgg\ SMuqkhTJjUztvYXh\ Yk5dnwr5rt1KC rc\ 98AuRoKSRlgTesz3\ J+0eCbwzP0JmKkVA\ W3Q0OZsdGP1bAGnh\ ULPlUINRE/pSKXvC\ VTVKHtMFJz ePtAF\ 5NuQBCEq5osxyyPW\ yeqiKLAzslmhZWmt\ MrQlXyUZp7tq/a4b\ XFpdxvXdCc5PuHwH\ 7cfZtBp ELuoDWfS\ aVZiqVGUSY6BHBEs\ 0fZb6buC47I3X6Yj\ ptPWjFQaooCuKOwt\ VBlI6Dy3p403rIkz\ ZnmM eSIQcNuxKbZ\ k5oua1aYT+ZkjBXL\ JQ5lxFxAkiNp63Ni\ WJClpqBs16gcrJ9n\ TqSGjSuirWHNE52p\ i DJUYOVCiJ61xh1\ Plhv7uZV2zn3SIAu\ 6Mg7EKk1l/ygVJxM\ 07SPMXWZKIktPwih\ 7+hI2gnfrY7Rai l\ MlqxNWicGYXeCem0\ VYTWTydczwRzqgVk\ cK8Q2AHT2kft9AOF\ 0WJAjegUW1G9NY/9\ VV3gRWgNcXa p4On\ jSQJbgNjuIIybeN2\ xynPI0ezaKgCvirD\ Kh1E9xUqDKbjvKkv\ hSYKWCM1as3o0WpD\ jkHVJ7TD 0442JRS\ Jn09M8NL2haxV8Bt\ IVY9Qk3A7YsgVF2e\ NiZ+QqXs+43WHjKa\ Q0aPIU2JXfhHpiMs\ S3xku 8Ib1y+f4zz\ QxWgrb0gZ9sS4+uu\ c4l3dGx1IfSJLcOY\ WfVvHOMp+Osxl+So\ vSLfNIUlyRKLg+d+\ Yr TNZt/mbfCG8c6\ OEVnasboCRJ5K3rM\ 0CGSTfgYw+P0JeIM\ WU59KdMMif8liy/T\ psafefxNpX6hWnE \ wzbmviLWQHKBmSPM\ uWmHutyKIB0u1fjz\ i3q5e9pm13SRjckY\ Nx+bbn3GhZkEL+uK\ jr/bUOgGbh2L FkT\ 6vJ6EXs5o9UJ7Ipg\ lRhBFu9xOcwFBOlC\ s8jLNJNMZbw2+gia\ uWO5+OtiUibNzqsi\ 29pX1NPsa Dn5OJn\ m0ygOHZ/jbTV0kDl\ cpHq8jahKyqSKKIm\ JcRjIlpCUaB59JyG\ mlVdW23CQ9X9OjxV\ WUtLIk mdFicmRdM\ WFjD/kISuR1czItT\ +AGrf5sZwP8iofad\ fotcfyiR1D3kRQJL\ +8QuA0kPargkp5GS\ wBJ lSArPW1kQxSE\ J0QSnzaSFBuKPHzK\ F7cvIkd1zyemrP7Q\ Sq7HwVKV1/a18Zzs\ 3ABl9Jr4eZv6oRKi\ Kp2U+HheSG3vDH7\ ZI7W9/bSIUsULeKR\ QZVehhjwv5KhO1PG\ yOg1FRDtepbIj1zr\ 2kUqdV6zN8v1j M2\ T06Adtr0sQ218kiC\ utCbA3EeOhqSJbyi\ YduryoAeVTibQq8c\ b17fxwrMT56cj53B\ pIoR+tEJiZ p6RB6\ C8j1EkHJW8R6gqBK\ dOQxVYfsFkUXJ/Rm\ kVWghcMdLE+oZA5h\ Xtl/n2lAB+5eB0pS\ aAUNPjO kWl2ThYi\ sqSp7MmXAPji0Dhf\ HIIJx6NTi1yuzX1F\ zL0z1LZkW603YE74\ 7OUi+4IDxShldceU\ xVce P4apSuyajqI\ yH7loPY8UK9w8VuT\ +yRjXdM+F6l/YkSQ\ rCnxjtNBKR4WaiDl\ UOq3WIvMjRkArynW\ i w/VY3SFXb/Ciyx\ YvVgT5zN73N2zJcO\ mQzE2HCwRJkTBskN\ FV7CBEdEJcJ9J4tX\ XFODBeZ99aiT/d v\ IUeQcSreTSckNAOC\ O0Ap1gjsOeKKyRdQ\ lBFRE1ClCTkmIKgi\ 0iKhCALkWeTEo1hy\ 00yQc2n4YRR xKIe\ 9XELg4DQCZCTKl7V\ wXvIQW8zFzWStaaj\ tOBqUpSSKiH1mgRu\ QFjxccoO3pSNqIvL\ CoCdEavV n+1kcCe\ d6NyfxjG1EYSnXJk\ Z1n2s0XpL0yTpCkJ\ KQmuKz/2qg1fy0Hp\ PsqMzhMZJeqY+HZg\ 1QT5d PC0kKTJycx\ YRpFnC0BNTGa9b1O\ etCJ0wREKgP2VG4m\ fbJabK5DSVsbrDdW\ syrF1iFZLYnqN+sE\ J1 3wzxzSvrkaxHZ\ lqpudJDU2Su6Dzl9\ NwGU+VVvW38zZ4RX\ t3XBTTThjWP2nlp4\ o/OYK+bC0ceLtV4 \ 35ZuOlSJ28bEFkH0\ sipem452vEoQV1pN\ fLe3p/mTB4f420sG\ nlaSBPCcrMH3j820\ HrsdGoIXYgyV n/Q\ Ko19GROaJJey+RLP\ thdVKWZ2I6brDH1y\ 49oz45KQkofX/Wze\ 0UwoafPLRUQ6Xary\ +J80lnQm8 AD64e4\ Tr2lOtyE5tcxrjcK\ 0l9AZalWyzZou25+\ GFPv+wb5SBhM6/PG\ 8THarEbKGkIsFAWm\ PKaywg SLvyNvvLZ\ a5dk2OL5TNyQmPc+\ TqtlbAUMVrOJRsij\ yh32uHdl3Yvek2UR\ BpnIIp1IvoGEvzF2\ hjH j9WJKSFjVggi\ ZNti3DxdYrTg8LMj\ k7yqK8tbupLsyEVy\ hOUq64KCh2/5C0iN\ X3fxijZKWqcyfvJG\ 1Wq7jjs1z5V/lnA\ 1SaIcUxENmcD28cs\ e1v9j773jI7vLs+/\ v6efMmRnNaNS12qL\ txbvu9hpciQ02 xR\ hsOokhlEAoISaBVJ\ I84QUeXnhDQoDwUJ\ LwkFCcgCmG0Jsp7m\ W9fbW70q66RtNPP/\ P+cTQjadV3 Je2Sc\ H0++7E1Gp05c+bMO\ dfvvq/7utwibs5CX\ 5NAbdEo95aQBQG5d\ Wkj6pIqIWUiA8ipO\ VyzwR2r IMXkaeP5\ c8HPOauulZkNkipF\ 70sSpwnVA7eKEFYR\ JBFBASQRuUnF7q9g\ bpp7v0VJInR9goK3\ 4saX ftZdsjh6peD\ nPIJitHiUtXPbp1U\ nSYJbJXY4R2VLqk6\ QBioOOcdlfUxGEkV\ eNCG4rsEJq+T9EF0\ U ee++U0gIPLszxY\ mixeMj0ar0A/v6eO\ f2TuJNct0KoIbYpg\ RByaV0IEtsY8Os5X\ Bv1MXNOiR2NFI5 l\ kdOKhT3Z0ld2bLk9\ 3hNU5wjBYv0RD9ey\ bkEpoJcikR5tXbUm\ OOyTlPr7/Ul6zN8+\ sgwF0+U1qWi R2jI\ GMfylC6aFG5enE6w\ OX5htLR2JY36DQrA\ 6TTQ+4r15PXfYPmg\ 9VsT2p6Fj6soCoy6\ HvtyFt1J /ay1KbN\ VoBokgb/Y2QlMmhU\ qEqiSOK31BZFuyep\ umEZYagRkoOIwUrb\ Y3Zwioajcs23yuza\ V3DVI AiOWwxePD3\ NLZ4YTRY8v9o7QbG\ j8y4ksg2V7WiUJQL\ SDOUnSUolRfXqtEL\ I1pnLXnrZVrzhIqs\ Ta 7mhx1TTl8ZZeg\ XFR4O+u6l70Zyyll\ RmGn1MR35WKQpG9K\ rhVqtUqoV+l6of1W\ CNBFtHb40imBMrM \ dkZY8bEHbOJb0gix\ yHfGGSxTeHIUoyOO\ nJpory3zcaw5yhOE\ KHGNwPaonCyQTGXm\ /Bu7p4zWdv6v VVV\ RwDpSrE+9SQkVYeI\ UlqdUuWptSqfPQhD\ mXwiIhkw1DCk8OUb\ DpU0ranwZlL0lk97\ lRG1kf9oU 5DL4Va\ 06SdIHLPyUNk23kn\ c9Xry2kc1xlUMFe0\ aFRBOF+mMSAmvjGt\ c3x7m+OY4TVtFEgW\ E3wA/D GQSphsTFG\ Ur7chT3Z6k6KfQzS\ uj2qSJyUkHrMBCbN\ cqPjUasfpEagydzF\ j8fLTFk+zh+wEWNk\ +xe O13C6Yyjnyzi\ TPiUVDyf4YrDu3e0\ 1Z/3s6E8XcmIbAhu\ FdEJsDY1YBzNo/fZ\ 2F3RCdgS0+vapGNl\ l42mWj8Otf+uFm5\ fm+azPaPTiFJ5exr\ zwHjkGrwCU0b/EyE\ 6IepQmfL2iAykVZm\ WmMZwxaHkBXjV 6r\ THOuMGHz8yjCZJDD\ jBkkmSKMmoenTe+5\ 5fT9GuYbYKlShMjk\ /XAl7nOgf6y9H23l\ Ovds3fcnn/ JV18p\ b/MXz3Rx45MkjZTp\ 8M0GKhEOqmp8BvUu\ gN1DTViJNoect5dV\ MVotOKQrMAVqRgbU\ gZd2+YX f8qGjFty\ 5/z9ciNwA25pi3F7\ 19LtHRaCpEqgclam\ 5E6/hV/x0NdOBsdK\ LRJqi4Yx4lI8lMUr\ OUh6 CnHpA0d1VD3\ qGp6g4OGMOISWTzU\ MCWwfOabiZh3Uxtl\ 1PvWKDRdGvIhkSIi\ auOAkXs16IHADBH9\ + ywI1o5E7nkdt1M\ g/OkryyuYVI/iBFa\ Ct8uJhKimuQcloy0\ oGV9VxW3CrxI7kqG\ xJU1Umb+SDZYtr W\ +J8rS/Ls9vnF9mtT\ +hc3ZSoEwF5YiLBl\ EQS80x/AagtOoQC5\ eN5goKHN+oiiCJhJ\ aDcU8DcmEJO KEiS\ gN5p4o26VI4XIoOx\ CUfQY2WXvrJNmzH9\ pvOPh4dpNqILd5up\ o0x8+cyDkWbDT+nI\ eQdrU7Qa PJQr8sb\ NzaQn7jbDbsA3T+X\ oTk7oNo4UCOIKTrt\ B0KATOzqO32hQVQQ\ Sqszj2SJjgchGUyY\ hSzw6 bpNQZL7ZN8\ 7O1OqtimRB4KJUjG\ +dzhECCVWOWh6iiH\ 6qiNt+DlfB36AOva\ 9CVRZw1pikVZntTS\ mE oEp70kT1XIpBl\ T2tjfXH0tUAWVXJ2\ i7PzCSW5LoNoGgGB\ 586yEOPPMzWbVvxv\ flv/uNuwI+HirSb \ BuqwE+ll2nRCXao7\ Zeddn9PFCmOOTUdM\ 57XrM0tqB25PqLTI\ Et8bzNERN8i5PgOl\ Co9ni1ieX3ek lks\ BoheCKKAN2JiHcqi\ jNkFcxV4bx14fn+G\ QXdvHwbKNNWpzqap\ xe0rnpi0ZuttMUg3\ agi7KVSnS 6CgNq1\ PlrQZV/KyLMgcJOB\ 8Iyj5ezsPclJj1eI\ mmhNpm4I86lHsKSI\ qEfJbHKyh5+OMe5W\ N5Kj1F 5JhC6PgIo\ oCsK4iKiJaJoXWYB\ OVJV2w/6+KNu4RWE\ BGONee/igRRJUTvX\ Pz1UpREBGWBSpIuo\ bfF 8AsReXR6y2hN\ +oJ/t4N89JIAACAA\ SURBVFQ4fWWURh1x\ ngia5Yaf8wgmrEQE\ VYrG9RvUZX9vq1pJ\ kkseXpNe19dMxf8\ 5OsqpksXL1jfNWwk\ 515HW2KYESkrDPlX\ EHixjD5aRkwpq4yw\ J0VuThK5PcX+W oJ\ IktinBL47nSJR8mi\ 9W6ThjvPVMsbl5MI\ /ghXUtkjPF7dYJw7\ rnUb/t8ZGDg2xPRQ\ RKO20hWj6l nZEwN\ IiJVLak0HuLlLdFJ\ PLi5hQ/HRjlOa3rG\ HYDPtczREyWyNoet\ 69Nr2o1SRMF3rO7k\ /sGyuwb y7Mr04DT\ EZkE/qbttjyIWkfT\ z7c/fNVL+auPfRI5\ HiceRmP59/zOy3nv\ 334UsTNFOoQrW6LW\ bT6o 0iAJiJKMKCm\ IokgYRquvMIguNKK\ kTPv5wJFDPPX0U9z\ 23FtRdZMwDPFdq76\ NMPAIA58By+OnWYd\ n rWlGzwXE15rEYz\ EqYcBwxSHdoHNDSw\ sFSadZ8uuvc2Z1aj\ G4rDVBVzrGRw8Osi\ vTwDOTKv/aO4Yq i\ fVqZmDKKGMW5oHyv\ BWjccfldCnahxtlg\ 4vSGklNR0rJZ7Xal\ lSJqrP8mqQ54VURL\ rABCcmUIQjn HTuX\ VInkpU2U9uWwBspn\ 5bxcOVaicjyPpEso\ KR2j3ZyxnVrLj7Ba\ 18oEbkBQ9tC6TJx+\ C3UW64zz BSFcmfA\ LMRa5jQcFj+LBcSo\ 9JYwtiWWtKAVWgNa\ 1yl5cQUjVDmcMBCw\ 3VpUkhbqMMmrDGUI\ zP6wy ULG4vCHOmO\ vPIB/LDaVJRWnKEC\ tF4/Jzjfwrioijyu\ htMs5AGTdrcU2hzD\ fGHB4+mef3n9VNW5\ PG j0dKyNL0E24qQ\ ZJsH9EJ6lNqY47Lj\ qSOE8Ipy+WTR4bYn\ koQU+TIN6qvSHlHe\ pqo3WtU0U8W0U5b \ OJ0R6bD9kK/0jnKs\ 5HJZU4qTJYvL2sxV\ JUg1OCEczE0/DqEe\ TV/9BucOL6OReGw0\ alM3T//axkSJ ltj\ 0i/0a0yATM3AqBfr\ 6+umhjb1ro7ZMsVA\ kkUwwMhaN5Le2RHq\ N3t4+MokEZjo1zW/\ L93z6BwZY 09mJbi\ bq2zAMg8cKHiBzWa\ qKJhgk2nVG8+Nouk\ pheITuuMZFbesIQ5\ /SwCCkGxBFEd9zUH\ UT115Y JHwmWlSJd\ 2xrq+ulHina6ALEB\ I2Hh8fZY5gYeXdWB\ 2/b8+grO1iezxpP4\ nWZJO0N6pIyu+aDK\ K7e +e5mnfOSEbYQ\ tPUm3ikbaYGbl6RJ\ +JWze42g7CInlXk1\ o2JMnhHyKqkSNKh4\ E15f/5MgJRUSF2co\ PDiCcFTA3LE81gh\ Ov4WcWn2yGTrhOcX\ +LBarSpJqFSSpEtb\ /vycfXSTbYxo/HMu\ zpzm24iSphtrk mj\ SPHELbmsQfjFaboi\ 7RElN5bRt8bzDHH9\ 23n107Wiib1KMgBL\ dKrKdAYGo4rVpEdO\ zINLIGQxQ5 lKvw/\ +7vB6gTJIDYoXHsr\ gT+LD1ya1MD5tNZ3\ GadqipwaVOKnw3n2\ NmYJKbIOH7Ac9bM7\ sy70tif K2NK4rQ8\ LdH2f2MFsEyoxYCY\ B8ZhSsSCmvcxEgKa\ phAGkx5Zsizx7S/8\ Ow98//s0ZDIcO3CA\ T3/y 46xfv4E//4u\ /RNd0iqUSg0ND7Nl\ 9EflCgcD32ff0fu5\ 5xx/wvOc/H4Djx3t\ 4/RvfRCJu0nP8BB/\ 7 x39g/foNvOvdf8\ r1L7yD9RdfjqkqfO\ CP/4xbb7udm269iX\ f97u9yyTOv4+nHHu\ fOF9zG1rvu5Lfv f\ g2aFmnq0ukUrY3Nv\ OvP/visj8dUQXm/5\ WD7VZ61JsFdZoov9\ +e4keni7VrVyPAFX\ hA32NCaJt60 /Bf2\ WnVuNaA2ajgDq+uo\ vBhIqoSvsOBElahH\ 03BLNTusHC4gmepZ\ TxJKSQUKHl7OW1Wj\ xQsBkiqh tcdxBkr\ ohdjyaLGCkGoQ4o1\ N6KpWUBw+FWHZX5X\ IlVUXboeahGj7BLG\ IAY7YDvfsaCejyhz\ MV3jf 0/188upNcw\ qwVxuKIqJ0mTDhM7\ Gv4PBvPSNcu7ORLQ\ Jc3O9EieVEBMk8FE\ 3b1QkSEOgyfoOGXP\ Tx EzIxRa5PsE2Fc\ bJCVRbrlaIz4Sdk3\ JYYsZ4C5W0NZAyVm\ 7uilVTF8yn6PidKN\ rtXUZNUw9q4xv39 \ +dphQnQiH5dwFXvU\ /90gOiGiHUxYZlh1\ MbKeC8CMWmLv+8Cf\ Y8YmJ0ryY2OMhXnW\ sobn3HYHz7nt Dmx\ F4Duf+SQ//NGPeM3\ dGwBobWvjA3/4dlz\ b4sq91/Kxf/wHrrl\ mLz//+S/43Gf/b50\ kZQtlvvaf XwLgX/\ 71c3zmk5/lb/6fv0\ GWJZpFkfUNcYoFm5\ Qu0RqXaTdU3DDEdz\ 3e/0//xLZ0gs997n\ N0da7h A//7fQC87\ W1/sKzH6R07OnnVj\ w9Fztumwdu3tfGFQ\ 8docwMkFB4dHqc7o\ fO6eJLOtD7vZNe5Y\ jUr SZIZjbdbE6Pw\ aqt+wdzwtS4zChSd\ 5yasZDSsgTLjPxmM\ /IwSCnI8Iq6SISHH\ ZQRZiMiMFXlCCGEV\ N2fjFzyM9Wef/yU\ lFaSSjz/qEsjiWbX\ dVmOsfiUQ2xiRpMq\ J4qLCh+dDUPAQYzJ\ u2UMJiNqbgNZl rO\ i5GLgBwipVUVedJP\ kNGqI1ae50UWOSD+\ 0foFnXaNdFPnz5ei\ 7k4kNf2UFXZA6XPN\ q6G3AHPGKH c9hdC\ dThCqEh13VDNVRVg\ SCuYD6dxe5KTCNBU\ iVEHneQiy5VWcDaO\ H8J1F5jknx0BCXrT\ psQPJAr cue6JrYm\ z88I5mzVv9n8e36D\ +SE6IVp/VB1Qh8pR\ 9EjKwOlMRBlqmhiN\ TU/Ei7z0tXfT3bwJ\ gLEw zwff9U4yYnQ\ OPXZ4Pw9/978YHhx\ i5HQvN914Y/11tm3\ dEr2GbpBIJLh0zy4\ AmjJNZIuTcTq7Jp4\ X BiFXXnE5X//mt+\ u/02MaGTsgoyoIUy\ IdVFHk+ttuY9zxCE\ Ofp/c9zVVXXlX//W\ WXX8Zg38CyHbMG S\ eBt2zv4/mCel3elU\ SR48c4Wfu55HMmV+\ L1MinZZXrWgz9WsT\ mgdBu6wg9qiYfWVM\ c6js/KZkFPa vNPB\ tYqD0RGPMsuCKkHZ\ xS+4ddPLqf5LoR9G\ 5KgjTuLizLIcYzku\ 4+ddJhPUFoafdXFH\ bZDEeUng UrGaRox\ ae5yg7J4z0bOHLeS\ YUjcEVVs0woqPc7J\ SN/oM3InPchm/E06\ fhd6+Ove6VSdJQVx\ Bydo4 RF+cmCJzVW\ sjB3MlHs6WuaQxzn\ cGy/QUyhiSyB9ubz\ svGpu5cFNrgqLjs6\ 9g0Z5pwFoXBe/KBQ\ e/ QZszu8xt0QjiT\ cQOjdcJkTLhOBtZI\ uh4KXXBgNipztZeY\ 6Ql6cmXefHaJvak9\ PN6rPY2J9ifnzD1 \ 00TknEVgyrPmiv0G\ kxCdMBpRH7OQ8249\ 5+xMp+fZsGbTNozG\ qMW6SW5H0jQaYg5H\ Tw/yiff8Gb/3 1+9\ l29btfOnT/8RI2Wb\ Achm3fE5VXIackNa\ JFYmszn4js91IuyF\ KIrbloE7RmNmVid/\ FJQrF0uT7 UVR2NK\ dom7j4qtLK6gbyQZ\ VvnMqyM20yHgQU7Q\ DdtblN1pASGn5GRV\ ulDLOqEoW70rg6JK\ l2AwrK PuoF4p1WQ\ 9XxF5xcq3kZaW3mD\ DIVVnz8UoBf9AgtH\ 61ZQb54GatlQUhgh\ 0sSjtc8iqS4giCLd\ YJ6 zrviBtNz61YY\ oiDgFFzcIRvjLElS\ 5VgJvcWYQbLEmIyx\ OUFQ8LCOFOsGmMsV\ jeJNZPytVltv1Ws2\ oS4iWjPzxbal4mx\ qSPD5E6P0FMpIoog\ gcEERJIj25zlr0vh\ TJhHcFo3qImJUgph\ IaWcjoaEQGAql 3U\ 3kr26hvK0h2sYivy\ ReSq0H5AJUfJ8tcf\ W8H6ubWhOU/ADbi1\ pBTmcC7fTyhn7+d4\ LohBjHy5j7 sxg9e\ fwGjeIlTZS3p5bkL\ 1V2PY7nJklKvqIRy\ w1jGAZ3XHkxDZLHg\ UcfodnUaTdUUrpEQ\ jHpGRpb cNsPPfQw\ Q8PR8+77z69x+WWX\ A9DW3ErPvqcBOHX6\ NPv375/5/iam2K7c\ ewVfv/+bkd+S5/Pt\ 7/1w 0e9tMWiQBNY\ mYny9d4z3PtHHF05\ k+eesy8HBHJ93LT5\ 4ZJgPHRyuu3ivNFZ\ z4qxaCpBSMkE5WNE\ 2 4lIRVvwoO2yBG7\ BXchBkcdZqkxiTUV\ s0YhvjxHel0LrMsy\ JIoiSjm4kZ/2Idcx\ tMzrmtCQIgx2XC k\ r9sDutOn7WqRozKG\ h05qeKMW1SOlXD6l\ 6Ztc/rKkV3OPJ+vl\ FQwNiciLytJXNAhf\ bEInXBZTCIX i9WP\ JRGEaTf4qWhQJIYQ\ uKElQUwWWRvXVt0c\ cTGY7RroNuvEnxzF\ XmPOS3aqqoC1bnm9\ gyRRZMwL SJ1nPYI\ mCrx+UxN/f2CQS1v\ SuC0aRk8eOe/9xlR\ yCuS8h9ZfrleNrO6\ GBY+PIgh41SrKlLZ\ W+9oN M57X2bUet0\ Hmqk2Xc/meS3nJy1\ 5Ba2Mzr7jrLmw3ql\ x2dbWxbW0TcizG4b\ zFxu719b/XDZ31a9\ cB kEqleN3rXst7/\ /Z/cep0P9u2bOEtb\ 34DAK/6nVfxnj//K\ 779i7vZuG4tL33JS\ 0g3Rjq7DV2dKBPO \ 277nc9tzb+XgocP1\ fbl46zZEdXkFzvds\ a+HV3Rk+1zPGuO2i\ GBL/tD9Lc4vKpS1p\ Hh0eX3gjywDB o55\ 3thgEZR/JlM+6Ree\ VPSS/GjlfXyAICh7\ ukI22iOucmtJxc/a\ CzzsXqLrB8Z8f4eT\ Dx6Y9fsVL n4EU08\ 7q2EvJ+QnCUhC4AU\ JYXVU9maRKGGvi2P\ 2VupWCM1iOst80Cb\ 1dn7NSE7gBgRUQW2\ RlqGZ+ 6fSV8XPeg\ sHEC0GQVyb+Z87X+\ 9RTx1bGnGEOJB4bw\ 22JzSpOPpgr8aKuN\ LuSF3Z7puZrdFnz9\ Emy +FPjuK2xFW8v\ SZWQ+JOj5K+ORNt5\ 1+PJ0Ryv3NDM1U0L\ h0UuJ/YVHP74kR5e\ uq6J3+mORsy/O1Dg\ wWyFzak4Wr+FnHf\ +R2e5yXkPqewj551\ o4k+XCXUFp8OYNv1\ Xi78AuKQpRdF16St\ HLa0mQ617+jSo Cr\ dv7EAVYNzx6q7bV7\ RHK2Pb99k1h3hfFG\ XCMKrkDhUK9OQcul\ sztGoivucjT1RERV\ HG91zCMKw/ BpE2K\ RrfN/A9HypV5CkEb\ +r2XXtCW6VP35cPf\ /gjpMwEr33ja7HLy\ 19pzAdVpHGX/Y+c4\ nutKoUq 7EjH+e31\ Kz/5afWVUePqoqo6\ tec6Y/Y036paJUox\ FYS4NHe4rBvgDtmL\ fr3VgDfmEFZ8JFNZ\ 1Hi2 n3XJPTpC4zW\ tK9Y+0c0EP/nYd8j\ 2jbHlxu31xzddtxU\ v70cTyV2TtjS1czw\ MfFTdnGGzUPu9rEw\ 3 GPU9nzDwZpzvtd\ +Jolh//tTvhlfwEI\ wJc+Qzvmu154dBeF\ Z2GYtBUPDw8y7uuF\ PXg8lJhcS29KxE s\ HK4gLZ+6VU9p9+CI\ EQ+xwGDwA1w+qwZ9\ g4rhVWtJEmVEL/Rm\ Ht6KwhoVC9g1fYEO\ nSFmCzXw2hr cFtj\ qEOVJZMkwa0ilzz8\ uLKolptU8nDbJ08Q\ RRBo1hQuaVx90eau\ pMZXrt/GHT8+yNak\ wdVNcW5u T/JgtoL\ teYgZDb23uOjA0V9\ 3zDaR5k/oMryMgd+\ gRMRxil5r3HHpK1Q\ wFJlNpsrRssuPTo/\ wjI4m XrY++kxzJY\ c71jSQlqQJl2ofUZ\ I5NFKsE9Kf94+iCA\ JxIWCTkkSUZn69w8\ CvP94gCaTLHh978A\ h/ cmkHAL4btSesv\ iJy0qBquahtsWl/D\ 2CXi4iSjJezcAsyc\ rMybfu156m6yeFDR\ /jKvV9h89Yt5May \ fPP++/nsZz5FGKzM\ arBBEgiSMptNk4sy\ CX42MWHpBbPHqSwX\ arogt+RiLEBarL4y\ aqOGPWajr50e dxK\ UfXCrBF6I31uJbq5\ xmaofTmtL2YMWmnH\ hEKTalJ2SUBddLag\ RKW/MQVthjUnLhjZ\ 23HJx/ecw CKEBBF\ fm9BO9PPWtx5AViS\ te8Qwa2tO4toUoiT\ x47wMUTkaVSDOTYO\ /d16NKBmMnRnj6/s\ coDBVo uaidK+98B\ igy5fEcR39wBCWhc\ PzBHhrXZLjq1dciK\ yq//NKP2Xj5FtJdE\ 95kD/Yw3jfGJXftx\ fdc Hrz3AYafGiCe\ iXPd798CwE8+9h2u\ e/Mt075Xy4laVUzr\ MiPR9WkLr+hg9ZaJ\ 75q+uHX6LaS4clYk\ R+swcPrKBDkfqeX\ sv4iSKq2Y8eZsWPW\ 7ljpQmvazLAoMVBx\ +eHoEmSq9JYdhN8B\ ZxYNwNnjVhgxP ZQ\ tUvMmT1kupSGUPwV\ 3cvqvDDrGjBZKPjq\ CfLJJ8dITEY2MYJy\ vIxdm/DHLRx+jJE0\ xJWz6cK/G6 La3nr\ S2piQKf2ruJv3mqj\ 5f97AjvfqyPJkNlx\ Pai6awGtT6x9d8No\ hOiDjv1tPvEY6MYP\ VEUjdOZ qGuMyttT\ uC1a5He0wcRPGWin\ izx4cBhDFPCrVXRJ\ ZDwUcYOQu7vbeEln\ nI2mykZT5bLWBC2q\ NO0m HwY+N7cn0SW\ RB/qj/LxfDWX5/mC\ +/vsz/019HGD92gR\ uJaD3qSxWXxmn3+K\ JbzzKVx+4j3u/9QU\ e PPoUXsGe9jdTX9\ +1XDzbnrH9+nPCkO\ 7uDVx747VYjkUq08\ i//du/sXZtF763co\ Z+khpNRVWdkJub d\ XbFJSqs7DXFz3tgi\ gjepKB6Nlh9ZVQjy\ hUz18Zn3HAkU0ZKK\ 5EeZ1MCZY1eby9Uj\ hax+spYfWVk WUJu\ Pv9i7cAN6gTJ6DKX\ 3E5RGzW8iXiJlUQh\ W2DswAD5gYjwiJKI\ qhsMHx/g/vffx+7b\ L6X7is18 /i2fmai\ qRovdJ/7jUTbu3Ur\ HRWvY919P1rdn5y2\ 6Lt7A3tdcz7EfH2b\ /dx5HFGXsvMd3Pvo\ t8v15 rn7xXsaOj/\ Ct930VgKDk89AXfk\ 5QDgjKAQ996ecY6W\ gRcv/f/CfZo6Nc+r\ Kr6NjVhayo+J7PI1\ 99 GABZ0ZBVY9bFz\ 3JBjMlonQaSruDlb\ MLKlO9yxYcgPLcpU\ UlEkKLq1dkgCvYtI\ 5qrV985L2aSglut \ V0weHhrn4uYUezNt\ rI+rM8JtL1RsNFXe\ vLWNfzk2UjeSrGGh\ apA67GD05Ak1Cb/R\ oLS7iSAm1itK 6rC\ FdtrDzDn4KQ0/oRI\ kFaqSiPl0Fqu7geo\ UHyldnH0EfzXRoSv\ cf+N2fjBY4P/b34/\ lB+zIRCVs p8PEPD\ C+qGmtXxeoww7a6c\ kKmZ8yorR7XZqzYm\ Z7HlZYxRAFxIkLTe\ epcdYlPPYr0JWI0V\ esYPkB l2QWL+J8x\ bo0799X4Z5tLRwru\ /zZYyf55NER3rBpc\ cGn73lmV1TC7q0gJ\ GX2l/bzmte+CYDPf\ ubj XLZuRxQ3MQuq\ Toi2ae7P1XctZNXg\ 6quu4ppr9kaPeT6u\ bS3bqtjPurO2pURN\ wi9HmXPtxsp+P4Jx\ j6od4o+6KK0a3im\ bsEGuO3kHbkCQ8/E\ LbtROMwSMpsV9HyR\ VQppyY7L6yoiSiDx\ LSsBqw+m3CCo+ Wr\ sx5zmyECRdwSutvA\ N23xO92PkK+aE8ru\ Xxir+7m0R7mgPfe5\ INl0f6Pr05htlg0v\ 9YL2uv7AbA ylfYc\ M1mxk6M1LclijKde\ 9bi2hbFwRLN65sZP\ Tpc/71maOy9+3oAn\ n3P7fzd7e/jee++k\ 923Xsqn X/Mxfuue\ 5+K7Fqf3n+YFH3wV\ vudy4Cf7ued7fx5t\ YEsnYejXI4KKvaMI\ goDaHKu3us8m1mcx\ EGMy WkcMq7+EdaJ\ cd+a2B2y05nOTkmg\ dBk6/FbVkl6DpqrX\ Y6hOAQRi1/dpmTtc\ tN86LmaRc8uoeP13\ x GMdyRW5vX95R/1\ qsQk0fsRLbHHMCpC\ nmceICicwAcsFDHa\ pEBpRn9OyrqoDXqN\ Yfl4s+UsFDLrro f\ ZF2w22P47ZoKNnJw\ FE75IIRuN/UliSQV\ L5/avKCUvP3UYedX\ 3s7ADnvRQRXl+cUX\ PeXLWKBgDCh MckI\ Ck9lS7RqMilJ5FDF\ Jd6k0bXBJO37PNqT\ ZVtbAloifdm7d3Uu\ en+8AAYrAc/oaGLA\ 8thoqtzU lmLECZb\ UXpJUCW1tDOvwTI3\ QXG2xytEiWvvCq8q\ VupjDhC4n60A2ymW\ cCtlUcbMrW8Gsk0t\ NxJgS w+EqDn7Fxx\ uPSJGkyQTOuZGJGo\ wuk2Dcw+mtzHjPq4\ GphE+Kyee8D0qTjt\ VfWnF/qZ037uKaN0\ Re YT/6+2/zyH/8g\ hvechul0SJWyebJ+\ x5FViQ6d67BTETnd\ XmoiNEwXYBe09198\ 6//g8Jogc7tneQH \ cmTWNtWfYzTECIMQ\ a7SMakQLHq/qkmhP\ 033FRg7/cB9e0WPH\ s3aiSTLjgyMYDTFE\ SawvIGq2HL7n 8/2\ PfxeAkROjbL12K9e\ 9+RbCYGXabwByKso\ zrU50dPychygIy0J\ I5LiMN7p4j6aaZkp\ OKNPsFgI3 wDtl44\ w4qEl1xaqqq++TlF\ CmmUnKkoAVhJyauM\ CLooysnimI8/DdxU\ 9A1PKlAFzLWhaiNH\ WbvudR ti1+MFigz\ Vja2KYy6hCYyjSCN\ Ga5DNsOQRjSnTTrO\ ic/IeMn5LqnlOBWk\ Wx/giBNHp8R2+UtD\ x7n A7u7aIydf33C\ zc06NzR28ddPnSI9\ ceI6nQmEVZxIWAkY\ x8uoQ2XstYlpob25\ gk1u3MYKqxQdj+e2\ pxgUAUnkgGsxLIV\ ktQBPETg6ZiE3KgS\ ux/hIjqYOjU1yGjl\ n8ej+UcQ2eclVj9G\ JwzocyjQFMOIE XN\ kYW7L+RlIljC0Jdv\ Tt4LOf+TgAm7dEJp\ NnmgI6/RZyUj3nG/\ 65okYUgnEvIm1T9D\ 1qo0blRGHF br6BG\ 2AdLs4aFjrV1DEY9\ /DGXdRWbdmOl5RWk\ L2Qcm8JvW2F3Y3HP\ dySOy28V06qy0bQp\ JSMpEv4 o+60itlK\ QtJlAju6LzRO6IP2\ vupGlImbdm1BfPKJ\ Y3TsnLloGTswQP/B\ fl7/728FItI1FbnB\ cYJy gGro2Lk8mqE\ hKxG5uuRFV/LLz/0\ E1/G45c3PIQx9Ei0\ NWPkKXsFDTRr1fXC\ dSMz9wve9HACv4PH\ R Oz/IdW++ZQWOyn\ SoKQOrv4h1pEi1Wk\ VbvzydACmpgC7inC\ ij6eK8525tOEFp1m\ e0cSVVQuqOdFTu o\ INjuSvyXVh9x+2kN\ s1MsuKHdMRUxpyAN\ UaVciijDWU5/uBRA\ Fo3ttJ12YZFk6Tay\ f2pV3yUuz/x BkRD\ JnTPjSTVtvn1v/wy\ u59/KV2XbkATBfak\ DX4xUiStT7bbpgqq\ Z4Ocd7A2Tk5SHMyV\ 2Gaq3LIh gyEJfOL\ w8DSiNBVVVcBXJ06\ UERslG/LLoMxbt7X\ z3cEiPx4sckd3I05\ Y5YHhIs9oSZy36pI\ iwWUt aU6WKnSYkW\ A58dgoXkb7tRNwi0\ 6IuT9LqMvTQlMP9O\ ZolSVaTJ3UulTUKr\ Pgh76FG4RYfoAhS6\ yJ qXSZDawb9ji50\ aRdk7g8Y07mj22Bw\ hNjPDVaQRlemm5Gk\ SJS+tiYzXo9+lnwP\ BrP8nOXVImLbt3N \ 1uGtBE70vRElEVET\ I2I0UTkLKv55qWJM\ ReVoEW2iLSmlFdRq\ NVpZhiGhHaC2TKzE\ V+jmK6kSoi6B V4V\ 5FrG+5VNVWHZCqbZ\ oiFkBp7eCllmeuJW\ g7OPno9ZhGIaIokh\ Vic6BUGNFHL0lVUJ\ tNAjLK1MV 8T2f0A\ 858vAhXNuhNFbixB\ MnePn7XknVDbnsxX\ v53Fs+hWu5JNelGT\ k4xLPf9QLyR0d44L\ M/5Tnv fN6MbSY7m\ 7DyFR689wH8rMvJx\ 0+w7uL19d/Lisw33\ 3cvHZet5cD9T3H1a\ 59Z35fOPWspfSTS5\ ma2 t9enSp/x8mv5\ tz/4NNtvu4jCyXFu\ +oPb6n/zi3/+MQD9\ +/rYvHfLihynM2H1\ F1FSOl7FxexMLiv5\ kFQJtUnHH7IRMtq\ sk42BG+CcKKOvic0\ 7+SjGZPRumXJvCX/\ IprqEwYHFYPXbbWe\ YSbbHNAYqDt84 le\ VzPR5v39nNtsYkw8\ eHGTk8wNa/vBNBlK\ ZVciBqAYRhgKxMHg\ zf8wj9aNulKeZ6sq\ rPeJ7v2nOO d9ZGL\ c/8O7fi1Fcf+woOX\ +sbIyZPnjiCHyBnL\ ZjDH0Rwq4hOQKBPH\ nbb87l97aTo+sVdK\ T51bIQO Q2NjKkHF\ 8zmcK5FUFbobTAYq\ DkNli4yuUhizGLAs\ tu7WGbU9Pnl0iN2t\ cb50YgwvCMhoEnvS\ 508H 9LxWk78eHqf\ DNOoCbjnv/dq13LR\ +i1CXp9kYBCMRaY8\ 16zxeqMAYdMYN4qp\ MX6FCm6nzivWN0zR\ 2 Fb/I9XPkTSX3ZL\ jqwYB/ffwUvaJEY3\ NsxmTJfJiqYaoqCt\ lzHHyIytpTStsTNz\ A369QrCjVtjKRI C\ A1zj6rPh5pP0FL/x\ jpewtgQR5kSwyM3T\ k5LBWUfN+tEouCss\ 2KRJFpGx806GPO8h\ 5Wa4oPo/cqN KnZP\ OZqqOwsSE7gB/qg7\ bT9nq3pVjhZXrCon\ KiL2UBlj8/ISb3fY\ QcrobLl5Jy3b2gBY\ qxvc+OZn oxo6pbE\ 8RpPJqz/6Ok4/3Ys\ 1XmH3rZegToQx3/b\ u2+ncsxaAZGOK33p\ rVPlRkgqv+cTv0vP\ QcZp3 tXDpKy+nPD\ K5kG9oaeBZb7qZno\ eO81tvv43OPWvrFg\ EoMq1b2mncFLXnon\ a0wTVvuJF1V21k9O\ gQ 3VdsRlZUqm7Ic\ //kBchydB9ad1U3H\ du7ovvfCrXaIGqvB\ XaAKgoEOQ+pafk7F\ HKjCgE4py1EXawb \ RAqySNXxCe0Qbb0Z\ xTAtAuba+GRVadRC\ a9QXZUOx4H6e8xaW\ iECXEZ1gmni7PabV\ ydKXe07zyq1d BOu\ b0fIWiXVRKbTvkeO\ kmpKceOIEpfES17z\ mJiQUeh86ysmHj9H\ Qnmbncy9BPqNVISs\ Kvuex75uP MnZyFL\ MpycV3XFYnXU997R\ HW71nPvh/tA2D3rZ\ ditiTwPQ9ZUTj0o/\ 2MHOqnY0fXtO02qi\ JtMZ2U tvgPQcm5B\ ObkmL8sCugiOOGkQ\ eWetMmd66Ib3L0nR\ lAliZeub6bkejyYL\ dMdU3jNrk6SsoATV\ vnf PzzJVx4b5mWX\ 2RNtygAAIABJREFU\ teJU4a0PHuPqTILf\ 29Z+3kXwihQF3447\ LmlNxcsYKGPWrxVJ\ kvMe6lCZ4iWTegN\ 12MFsUylYIlZYrQv\ 3j+RKmIrEPTvap6X\ ULxbXX9nC14slfiB\ UaT2RY2dMYm33 0m\ 8aRdejSV3e/rxkyk\ jmpBAZojZM4IV4to\ dQ9JC6F3eD9rMugq\ qi6TqyBtSu9TGBMP\ Dmvfj7Iy5u 3iG+K\ 4UoybN60oRBiFXOI\ 3ggqjJ+xZ1lS8sDK\ a1QHZu/ym10mStKM\ AD0brM+9bZYolRrZ\ dQWipIm zxuxIWji\ OY9vzwW1Vad8srDs\ obF+0SNosWnb0knb\ lsm2WRiGETkJPXJP\ D5Hc3syWm3ZGvwtC\ XMcm s719YtE8oRE\ yDNZdtbFOdszORvZ\ M0SGpuonvuWD5BEG\ I0Z5ix80XI5kSrm1\ F52rNIuCXR3jdW2+\ K vMaIiFIYyLTvWk\ PnnrWEQUhxYBzUgM\ 1X76y/hmvZlIeKhE\ 4kdA+dEIKQqgeBXE\ UWBJgQ9Z/LueYO W\ 0i6hNVfwlyXXPgPz\ hJyc6QlqumOJF0hs\ D2khIrcOn8rbjbUq\ ko14u9NxKKE1SqiI\ CAoRBN2sogo Cwjy\ wjqrVSdJVVXAT2nE\ n85ibWrAT0zuQntM\ g5jGuBeS0FQKXoDv\ eVRlOPSjpznxyAk6\ bthBalMr pUDg5A8\ f5/Ev/4q9v30dx35\ +iN6/PcHz/volM17\ T6i9QHC2y/oqN7Lv\ /cX7UN8rNf3Q71TD\ g+5/4 Luv3rGP3bZ\ fSv7+P//vHn+eN//\ x7KJrOQ194gKf/6w\ muvfsG+vf30ftkL5\ fcfgUQTXPd0Jrg4b\ HK ot+7VPIIp4zu+\ 2EVVZYo+T5JefKDu\ jpj8qeP93FtcwO3r\ 01PVJkMbmqbfrJqo\ sBfPGs9h/aPU+4t \ 8lvtcW6dYpZ2IeD5\ nSk+fmSYtKbiNygY\ PflfK88krb+M22rW\ 97c575LsUOkNRNJT\ 3sORXIkuUztn w8I\ PXLuOwV8OMdZs0HQ\ WBYgByyMpQFJf+eM\ rpRWiszkKV7V7yuh\ zEKVg3MO3/GgSKqV\ jtib4z3u/ SnZ0gE\ CUaW5s5spdl9PW3o\ pXtKa1js6sdNTafK\ Kk4Hs+Nz7rZh742U\ 85ceI4X/zi5/mjP3\ o3kinj Kg6iLlHNr\ VwlJxj3kGLyghUxQ\ ROjnKwVDKBVW3WCn\ F/3YJpvf6y+MlUnR\ IrJyA3Koqt5UQt2+\ Rc5 UlKZcH22ljU0\ toa5jBj9vIveruO7\ Fv4ZXHrmz9OHANxZ\ yLwU6AgeSDXTyKCM\ ZEv1sf1vv/8++p7o\ 5Za33YpuJuqmkjB\ hqTFlm/54tM9SV/Q\ tC9yA0PEJKz6CJlN\ 1fJBExJiMNHFf8cY\ c5CYVe9Cqh87W EB\ Q8rN4ykibNW7Er78\ 9j9ZdIbE0tKdfuXF\ DzanL6rciI9BzbZW\ dOhMKEs7lfJXSrhG\ 5IYEfO4WrI vK93X\ lSX5W0NqMMOyohNV\ YrVrQFqMGQRC5AUi\ UfyLobsM+KHyGsby\ bzoKlw/4HShyEOff\ 4DrXncT LRvbaNnY\ xsdf/nc8z6vOiAVI\ rMuw93eux/c8Atvn\ gc//FABBlKj6Ide+\ 8WYy65vovnYrD/3H\ g4RB iCRKPP7Vh3n\ Ou29nze4uuq/dysE\ fH5y23TUxlR8NLd4\ x2G2LEX9yFKkjXn/\ PbTGDr53K8ZruJjQ\ x qg7d1zvGm9e1sH\ GRY+Bbd6Sxj5fxBy\ 2UCygFHKaPXoeaSK\ iJdX1PqEdTb8HEBf\ pCiy5RhyOH7Fqb L\ dtf5IQX0K0nCbWZ7\ ayFCJKgiQRln2olJ\ PACBFmcsXKXVIm2i\ 5oxj5xdjEaTqtDoy\ Tz+6Ai9GYOr Exrq\ OTrcLgZGl4nTb82o\ ZLjDTn3sXW3U0Dom\ fV6+eO+XuPnqZ9C8\ ppnsqdO8/O8/wqf/\ zyfpbluP m7XqAlZ\ ZBK3FJNT8aZWjmiu\ 460Z3s3Qqxc4dexD\ FKKtLrqWEr29GNpU\ VGZt2S4uvUq10AK2\ kSrhO RMTcYSfybT\ oDYRBSdULUBg25a2\ n7U6s4rVRFTEnp+E\ s4nsuBqgehW0Vcpq\ SoqurTuLud3/7sG6\ la 1XrYca06+px33\ 15/7kI2GIEVENsyu\ TCWVAkpI0G9mjuTr\ GoxGXfYQZYlnL4yW\ peJn/Nwhy2c4WhB \ b9sBXtEhvi01Q+tT\ PlpYdYI0FVJMJqj4\ K0JMJFUClWmftdNv\ ERTdC48kQRQKq3kh\ sUPjFC+ZHjRo ShL\ Zif9v0hQMItLTsa0\ LQxb51vEB3rxnI+M\ D4zz0xV+gTtyIN12\ 5Ca9so0yJZBBEif3\ ffpQHv/hL GjsbAQ\ jPSLpMtE6eDIIsEo\ YBEgqlXIl0W6puD5\ /umK4RWWMoBOHiV6\ lBTMRtj2Mcy1O6KL\ qhxhSZ gbLF+/cP8\ qoNGb47kOfSxjgbG\ 5c2NSetMfBOroxt/\ bnACyCcoo8p72hEt\ ANEJ0TwQ0QnBHz03\ ohs +g1RW+5CaMlJ\ ZR+nM1pxDVQcWiWR\ nakkvxgcZ1PKrJO6\ ccdlU2xxlRtnwEJt\ 0BBkkcDxqRyNxqin\ amaktIIoi4T20hN\ ZFQlu39XE/Q8NkEz\ L/NdYmVucSMi8FI3\ T2UDrMOoVpaoSeSg\ tNAV12XXP4JJL Ix\ fkI/2nePiRR9j2qu\ 3IDQr/ee9XOXjgAN\ u2b+dFd74QUTT43n\ e+x/qN6/jpT3+Gly\ 3w2re+qb6t iu2Sy\ 0dGmgcOHGB8PMepI\ 30cOHGIzZs387KXv\ gRZNZaNKHljDoIXh\ YUuRBoEj1VxxlZb9\ bpWbMY+ yCKqISN1\ nd1+yE0q7pC9Yi03\ pVGjuL+8rCRsIWdm\ qUHGHXMQYktv7cyG\ MPDr1aFQ8uvaHq3D\ qLvU 1543H8q9JbS\ Ws9PRqS3a5Hh8X5m\ qB85wBa0lRmxLkqD\ gUTw4Tv7RUYyORJ0\ g+DkP60SR2IaG80K\ Q AISYSDW7irlsso\ icUnCHnTlbzee15+\ F0GlRlEePkZMtKnm\ cqpzGmsDtl8Ke7Ok\ krAun2NNe89kZe +\ L6X1/8ps2RWffMDX\ +PO972C5//NXey69\ eJZtjw74qk4udFC/\ YJTGp9OQjRRoEFd2\ gXHSytUFXGa o/bG\ VII2Q+f9T53i5nSC\ KxuX/uVQFDGqVJRW\ Tsx3Nvj3vnGazcn3\ Ewm4FdwWDafDwNpg\ 4nQY5K9u oXhJE14\ mcqI2D+QmCNT5gei\ EqEPlOlnLjVrctTX\ DpjUqlkB932zP43T\ J4rq2hdtsRpeJltG\ pilEg qdFl1gmEtU\ wJ2RBV7+68rI3C0S\ JPCyEHEkRTWKuAWh\ Wp6oTENiXm1bgADA\ wM0HP8OD//+S84cu\ wY V++9Cojy3Z58/\ EnueMELefiRh/nwh\ z8CwEO/epC3ve0dQ\ ESwpiI7Nsx9X/saA\ D1Hj/Oud/8plmvz \ guc/n69/+zt89Stf\ m5aNtVgEboA77ESr\ zgkBuzfm4I276N0L\ Z1gF5Wi6bTUgqRKC\ FxHWM/+pLdo5 EbV\ oCk0jXKFrTG2h4I+\ uXjVJyWioaRWnb/k\ qjFPd55U1+rSpvdm\ c62eD6FTPqeUkqVK\ 99e1XopZw rSolJR\ USF2dQGw3cok3u0R\ Fyj45Q6slhdMRXLR\ Ntrv0Oq6uXtiHHJb\ wxB7/o4WfdWZ3yz6\ /JCWBt bCD+5Cheo\ 4qfkNmYShBaHoUTI\ zhDOezxPIm2JprlS\ T4Xhj66AFe/+lq+/\ f77uPqV1yApErmBH\ Ne8 5qYZr5FIJzjw\ /adItKd4YsLifT6E\ vg8aXPzCy/neh77B\ tXffwFDPIOMDM1sg\ Xri01b7gC8g5B3vt\ 9NX16XKFV21cfIt\ tNshtBs7J8nkfza7\ huyM2h3NldjcvroI\ RaiJuizahXSpg7s9\ S3tF4XvRLct6r v6\ 7tebTKEqEu85mDg7\ S1xghtgWx/ESelck\ lTisoip8mktILbV0\ YVRZhYrNUqMDUvos\ ANEFUZ6Rza jw2my\ gsvbeV0T4Gm5c+Qn\ Rd6t1n3LVLSKtVgw\ gtnFjLxpS9/iVgsz\ vBYlm1bttCciYSwX\ /zSl/jn z34KTdd5\ 3vOfy1+993288533\ AHDF5ZfxO7/9aoC6\ 8PVMOI7Lpk2beOVL\ Xo7coHDXC17AU08/\ xYvu fOGi3kPNG0i\ Y6FiFYaTfcbMO1YH\ ohrro79kiY4qWA0H\ ZR1hBPZpkyvi6N+/\ K+1ygtRj4FQ+Nc59\ G rBwuoK9ZuI8mN6\ q4o4v34VsKqpXwrC\ I0qstk3SJoMqJRxc\ tNf3+SKtWdtIOCBw\ v4Ff13hRiT0WJy N\ EwiC7gnK1RFAUkV6\ tW0806SgpiI3ZXAO\ JqntDNqh/n5EnrKp\ P3aHZSOZ1nf1c7WG\ 3YSi2l18abv eWy9\ YQfxlgZ6HzpKYHus\ u3xjfbs3vP5ZMJGs\ /IoPvZonvv0YALf+\ 1e30PdoHQDUMuPFN\ NyOrWr2l dsPrn4W\ sagSex+UvuZrG9jT\ 9+/vo3L2OF/+vl9K\ 4ZvoNvzum0V+26TA\ XR26000Xc9klNUsX\ zOZAr 8uy2Bq5vPj\ cGrygiK5+AtDjc21\ NgX7lQJ0hPjuQwFB\ kv9EkoKnYQMlyxad\ AUwrCKKApkDJ32WO\ Sj VN6eQuu3SDw2i\ tXdsOrtN6ns40+pS\ h4tWLzz0RP1qJXH/\ QqXyjq+pOBVqxTss\ E56FoIoifiWP21V \ b3SZ2D1l/BEXJPBy\ dt3n56zfgymz9qLG\ c9rGWb92WkEcdwny\ URUlGPJnnZ56+9ve\ Xm+3ffjDH+Ef PvJ\ R3vlHf4DjOHzuXz9\ ff94NV++t///mzZu\ BuQlSDa2NLXVfJ01\ TceyFoy+cfqt+LZA\ 0Gak1IneV o8Wztx\ FQhVVbHft5D3GFFx\ Vah0HlaBHJlJbd+6\ nqh0silbWV/5k3eO\ tIEbVJn9dfZyoEYW\ X85Pys i7Jm7ntDb\ WRdTiigCAgiCLKAK\ Aj4I+45u0hLKZmw5\ Eci5TkmB1c61mOxC\ NwAu7eMfB4MkUVdx\ C8F ddNKb8yhcriA\ ZEjnnyRB1HZTsjb6\ qTL9pozRnGTji6Oy\ ezkI+EnfIDfvXoMo\ SvhudKHzXZvQ92nf\ 2k7njmi0MwxCnHI\ JWdW4+I4r6j+ba9I\ 8842/VX+9HTc14Dk\ 2oijVn+faZVTdnPa\ zrOp0X7uV7mu3 1v\ 82DML6PgA06TJ99u\ JWIbW2ojXho9RXjH\ 5+w+ZWNpqTXwYnrO\ KEkJQX98Wt5SeJko\ goRS03KX7+ PtpHh\ or8dCzLMzqiqkB/2\ eKyljR3dExnEbXYD\ C+AUdfjl+MujwxH7\ bn2WNSOC0wZ88A4g\ j/d5Xql IdoeXiZ6\ vVgokUnrXN4e5xun\ suxMm1zbnmHc9dH6\ rSXtV+VoEVEUZ50C\ 07sjohSG0eSFlLog\ vp6L QuAG4FXrN83\ K0SJyUq2TInfYoeq\ HdVfs2Ub3M02N7B8\ cRI8lSCQSvP0d76C\ 1JTPjeYuBX3YRlcX\ f +GrfISkmL7vQXT\ JlxKywYtUXiI43gC\ iKKKvwPdEyOn7ew8\ 97y+5BFfoLV+drmp\ tqECJIUSi0aMr1 y\ S6lQV20R4435kQ+P\ SuEuc6loODhDFroa\ 2J4OQ888P0AeWJUX\ TTPfZ8kVcLXReSkg\ jfqXjCE6Ew4 fWVC\ O0Rft3D7eiVQlQXC\ ko86cV1WMhpKRsPP\ eRcGSQIob02RfHSE\ cpPG42cIq4/lityY\ mXlxCUMf 1565mjz\ zsdmeMxvOHBP1XXt\ Bp+9fjZXZmIrK7oJ\ fxW2ZvbwrF33UgRK\ l3RFxqHg+bhDwJzv\ bgcic 8pHRAsdKLm\ U/4D27u2bdzmyouR\ 97Xgj5869J6k7HuC\ EQ+dVQlktb0gyWbX\ 5/48yw1VpshiJFOp\ o7 DIXntZp89vgIR\ 3IlNqfi+A0KxUuaM\ HoKBKa8ahNwct7Fm\ SB145bNVt3g5vYke\ zImLarEsBvwoxGf \ wJSR8x6dzZM3iqmZ\ aYEbUM0HBF6wqCBQ\ QRcJsx6SfnbmjKuN\ mjan5sxca0Wd6QBd\ IwdB2aeaD/BF D0K\ Br3396zz48EOMDY3\ y3R/8gA9/6IMAvOn\ 33sjb3vZWXnrnS7C\ caJuvfvWrF7VPVTd\ ENhd3g5w6 Cr+SbW\ q1UYuS38e9FRNwr2\ abXUoruCU38jdazm\ gUSYiqSXMgcAPcic\ Wm1mlMqxT5WRenz0\ I2pCWR US/nIYRVy\ kcLaE3Gsro1z1VBr\ BGkmk5Im3gfK0Ght\ Q4DZ6RSN0K+kFA7D\ lqbcdYDBcsBSZVwZ\ zF9 lVPKhUOSqqqA\ 2x5HOCMktidf5lnt\ KzuVc7b41kBhWmVY\ HbbwE7NfnKWCh9ek\ 19tsh3Ml/nhHO8Nu\ gB+GfPboENvSCXZ\ lDB4fyXE2FXNFEeE\ CSAZPqxJ3dJjEFYk\ nxwrc1ZFadI6YIsE\ bNjXzlf4yj43m 2J\ VpmBB7a2j9ZfyGlT\ 8XaqLsGiEbdXxu2h\ q9bs2gs0WVSIsh4w\ 0KWr/FA6M2cSFAHv\ dpETU2qkwT 61adc\ NHhpqHrIyUuzBXfV\ Ng9ZQK5ij4lL20hS\ KaMmJRRZI03vuH15\ HI5ADZ3b+btb3kTZ\ jqF77m8 4hUv45Kd\ e3jwiYeRJZlrr41i\ HV7wvOejJfUJx2EP\ WdH4yz/7MwDWdK7h\ ja97AwC7N+9iQ/d6\ IKr+ XrTnIjo6O6b\ tS+VoEbVx4VH4oOw\ jnGMLSzJlgnIQuWK\ vwpTbakBt1XGHbPR\ M5M9Eau6qyVIQzkO\ S nD4Lbd3s51vNfX\ yp0NujtlxY8bEHbI\ KiuyzTXYEbIM7Sxv\ NzHt6IPW28f6UhGw\ qV3iLGenPRLchV Q\ a2Ctwq+bgthLh3YB\ XO0lKyLOlDCbp+sO\ Owbi8Z5Z5v26rc9M\ qp83rLJAB4cK7M9P\ VFFcqvIOYdK 9+wn\ flUREbOTFbKAKh8+\ OIgzYSFwUWOyntcm\ iwJjrk+HvvDF1PPC\ Wcd9LwTc3Kxzc/PZ\ CdHv6DCJ CwEPZqO\ KkpfR0HuLyHlvxat\ JU0XbAG4lYK0++8V\ XEQQCU0Y6XaECJE2\ Jbd165I8C9fFfiG7\ KC632 ZUOmUvExOi\ 4M8f18CMMQPbP0Ck\ IY+HiSy3VXPAMxLk\ W5YEGUFWaXJ9pGks\ zWXVvZvmf7xN9ELs\ hb d0Wtb99zokkhS\ eHW256D69iYpskNN\ 16HF7p0NLYALZSHi\ igNMms6O1nT2Vkfz\ 67lvi2mquNmF9Yy \ LQZVP4xiUsacac7l\ v66QVKnuyVT1Q5ze\ ClVVmGFiuCQEVapu\ SOVYCVGYqeUKLX/Z\ K6w10iDGZGIb 47j\ Dk3oUMSaf9WdVLQW\ IZ8ge/BEXL+cse/z\ KQtDXxKj0FvHGnHr\ V6kKApEpIcQV/yIY\ G9by1A/2c h6RewC\ RJqoTEDuco70jXIz\ v2jeV53prGOcfhP3\ JwkHt2dFD0ArBDmh\ u0RWt4lgNOWMWZ0j\ s/M3Jk NkjlSVn1Z\ c1zj4x3J03+5dgov\ 7+1bcH3pCgi3gpmQ\ 51P3Nye5Omig+156\ JqC22quSjXpTNG2I\ Qqz VsKubEkQtwN+\ dqrMUGfUZvXViSmu\ xmi0VJDFeotF0MQF\ 2y3VapXADlBaL/yb\ qNZu4AxYZ9Xm8V0L\ a6CMGldnPR5nug/\ Pt53ZIDYKFJ4Ywx2\ xSexoROuY3JbdU0Z\ Jz/66ZyIY96Iq4Dl\ MndZQ8xkClp0k ie\ L5WyidqTs7W/g5D6\ ToejfXGPpsI9rLDb\ VFQ23RIp3MudiQiA\ JB3sFxfHwnQBBEJF\ VYdYIEEQGU kwpe3\ kNbvJJjVaB1GDh9Z\ QI7pBp6y9ruXCyCC\ Rfz2XDeSZLgVokdG\ sfuSuBPsMh9Y3m6k\ yZXNho4 YXVatcgJ\ q3zhxChPjZe4+4HD\ dBoacRl+d0snu5Kr\ d2P5wolRuuKT+iN1\ qILbOve4qZdSMWBa\ Zt1c GKw4XNxorir\ pu1BxfSbB/YM5Nqc\ UvEYV80B50bEmiiD\ Q3RB9JsMVh3HXRxE\ E4opES0yrP3Ympoq\ 2 bc8jOcGQaoHINW\ F/PAixjpfYclGa7L\ iLd8aqV8lEVQO35N\ LQnkLflsDPexT7xq\ ZV/4KKHwmNJQm/ 4\ kZ6pEW05aYGNC/k3\ rsSkEy57iJ+tlNOg\ ReymLpA4Abce9+Xe\ eAXPwPgGXufyZ233\ zVvVSG5J0Pl aBHr\ VJGqHSKnFPychxhf\ fHXAGbPRltBOnA81\ nyE/70XRIcskEHf6\ LZT0+W+zqy1aXUC+\ VDh9Zby8 Vye1c2E\ 1dXpSQiUonr1nk5x\ SCCo+BCHmpiRhxT+\ vrS4lruGVnBXNEDx\ bCJqMqIpUz9eCPwi\ Za6by vJOkWE+B0J\ BxOo36OPxtnWnWxF\ Re9rMjAOxJxxEESA\ sSPxzL06zJ/MOVG9\ loqjhhlbwfrnqYa7\ /l s3Gi2iC4VaSyh\ 5ea+0JVVQXclhjmo\ RxVRaQqC1TFKPk4l\ AWCpFLPsav4Pnszi\ ++JX6jttuXA+oSC \ czpaPS61zbYrnUBT\ omOTiRkcGM3RJEJz\ Y4ow8MnEDB4aGJtB\ bqaKtq2wSpshIasG\ YRjyq8/8mL2v vxE\ Ap7eCsSVBXJW4Gvh\ p1qHkBYy7AUmvilM\ TMa+NIUoiP/nYd7j\ uzbdgyGZ91FzSZJz\ BMoIqIsYk RE1CaV\ /4sxclGVESeejeB9\ hx7W60RmPVSRJEgm\ Q362CcBUkSJXHRlY\ d77/sywyNjfOiDHw\ XgE//0 j9x735d56\ V0vm/fvYpsShPsC3\ JyFX/EwtiSWdIMQN\ BG8KiwTB5FMGdwqv\ uXjDtnI59DOqSGo+\ Ms+ YXa2EDRxSSG1\ fs7D6i3iF1zURoP/\ n703j5Okru//n3VX\ dXX39NzHzuwxe7C7\ wC6HgAgKiLfgjYTE\ IxrvxGDUJMb8km9\ M8v3GGI0avyZ4xCO\ a5KsiivGIFyIKCHI\ usCywO3vP7Mzs9PR\ dd9Xvj+rumd45 e6\ 5dkrwej33AdFdVV3\ dVfT7vz/v9er9e6V\ 0dq9YB2CxiJebliU\ z6FQ9zS0zBON1cIL\ Vbx81auIcr pyWbN\ R/ULo3ykdLySrXLQ\ C2LNFsAeVpnV+NwB\ dHy6zyeR7IFLulu4\ 1DR4t33HuCdZ/Xy3\ p39bDYV enUZXRP4\ +2ds5FMXbaq3zGui\ cFrc7ls1mUpVp0Ud\ t/Ez2oIZIrvfxO1O\ 4KdUIkUGSYQgRC66\ mI9l 69u16Rq3Tdi\ MLTK1HP4XLbcBDbp\ PzSpwG7rKoVvu49Z\ XfhRhLM+mTBJR1/C\ PjvOzd38RgKQioQg\ C Z2VMzsqYbNVlpD\ a9HpC1airPGOxFVm\ Qsy+Leb98LQJiNkN\ MqWjKJrBqsSxqclT\ G5ptuk3dAgktF6 U\ qQ3dmK2xuXBu/79z\ vh7SDLGQIrU5g4S/\ RkSg7Gom7EtReaCb\ lKbO1B1E1k1kNUpr\ 7PavrJq1Fvo 937/\ EexsqfkfdoUgmTLR\ EksSgrz44efOu3/J\ O97+u3z8kx/h45/8\ CO94++9y112/qCtg\ zwet1yCo +Ngnmlc\ 1F6Wl2cPMfiwZUZJ\ ROqoK2G0aoRNiD5X\ jjNfR8gzV3/ham9W\ s4cxJNpj00NuS826\ zlogz ZYvLvpT35s\ ndN0Zg+yQ2pDB3tp\ wxAVINoiwRVppbfA\ RuQFiJLUmEM2hoFq\ uL8FBYO3HTxaLmN3\ e6 IKrxWHRq4xicx\ kxSjahd2tVRDy62t\ 6Y4UrQIwohnd2Xq4\ opLselYTThhxJGSw\ 3nVtm91rIK9YeHI \ PM4mzRwE5IKHnJsi\ h/aZOo9MFHjpPOW7\ GuyDZbSeM+v3WUm0\ SjMfnGYVuFPtSe78\ h+/zrL++AV2W 8Se\ mgoquhMaORNUO4eg\ 4abOFzktMHi+X6Ur\ E16o3DCiPFpkuAhy\ pAomeOPixRnIYvRk\ u6TLwPR9Z kfHyRY\ wOk/xTY6RoR22d2l\ lWtFhQ0vMpH4qD44\ 4L1gMgKhJhKUBsEb\ FOlkENqh1fPmHgoe\ rxZ5SO TpAcmFtDy\ JtwcMveyrVmzwNRF\ JeUwpdMCT+/uFlEm\ KWVOhIEvFEHaXD+Y\ Uxp1wjsADmtNH2Oc\ oeK d8xedrZHN2cZ\ H0xw01Nl0rrKd87D\ I9bNkhWZg3c/Rddg\ z6zZQmfCpm13H0fv\ P0hbdwtGb2ZRXK7V\ gmTKOCcW1o1zhi2\ s4RKJTS2n1QZjIYh\ JuYHsbA+VCaMIURD\ i9vBqN13gBrGdShA\ SVVd2ggLaxjPH cL\ x27weFtTURXgz8oo\ c2cPrmMTmjxBw0QZ\ hhdnxagiS54KFkbS\ rbMvWWeICC45F3Pd\ p0jd8ZXJqI 3GrgQ\ NnlJ0dyvH1HFwBfH\ JriI0mVENEJ8JNLJ\ 5sJfkSoSXW+UsXz6\ dYX37l3OoUjVxsVo\ gaD3KWg //m7OP7L\ Jxj+0WP0veDsxvdM\ g+EnR3joI7eS3NTF\ xJPDXPyua7n4skGK\ XsDef76NPb96ks6N\ jTpP yfYWjj52hB9\ 8+Fv0bOvhxJMneNH\ 7r2HDRVuxK0X+7T1\ fon1dO67t8Kw3XsG\ G87fU9xUlkaP3H+T\ n n/0JLT0ZDj98mB\ e//Vo2PGuQsBTw6d\ /8ezbs2gDAif0j7H\ 7pBVz621fgVyIOPv\ gU3/vbW+nf0Y9d t\ LCKU+UAP+vGyrqVu\ GVd0RX8ky7SKpdiB\ F3EHbXrvm2LhWTK9\ ZLkfAjcgIt2XsJNn\ /k0f3DjHwFx ue3i\ 85+5aJKn2qYhqs0/\ J5IqLVvFvpbd+fKb\ b8IqWkiyTOfGTp79\ hito39Fb7+hTOgy0\ 7jRh4OEV bKyjZeR\ enXv+9Zc8641X0N+\ xseF4Xt5HTseT9EP\ fuY/tV+5kc2+mIZs\ UBv6M7NJql2UXMpU\ N3IDK UB69xzyjAy\ SIy0D2kI8zbCElZA\ QF1JSGqArYI3ZsYB\ sGiJGAqItIKXXFzH\ JXA3JaXRa5fjUQFO\ LO svlEN9fCNkUbM\ Kk8WZihcr7ms6sxV\ EIdq1De2VonateQd\ z1es76NXbOY1J5Ol\ FyPMddh2I6Hy+GK \ yzntcYlEtEPc3uSC\ pbbZILgR+oiFOlJq\ OMaE7fKM9oWzSDWc\ boXt1cRQzsGYZkrq\ di9tZXbFn7yC H77\ /K7RfPlAnCqeqhOy\ 9n/o+5/3Ry2kZ7CR\ 3/3Ee+Kf/YMNlNyK\ M5XnqPx/gxu/8IbI\ is/eHD3N4 z2FEUS\ Yi5Kef/C4v/sAr6d\ /dz7F9x/jpR77Lm7\ 60FdGRGTs4ypVvey\ 5brzo73t5tHJgGLt\ zE6z7z 1vjzf/gwe\ +/aw5bn76A0kac0U\ eQZv3E5/bv7KY8W+\ fyb/5FnvS7mQf3s0\ z/ixe+9lg2XbsayL\ G56 xScajlsagnNP\ AAAgAElEQVS34ah6\ wLmjdl3lW9DF2Al+\ hUsaoiYSVlZ34H3V\ Va/klp99i/e//3cB\ uGjnJbzq0pcvShe\ nbkqbW5o/VxiuzHf\ LjeZ5yxfehdFhsu8\ nj/DV9/8LN37vj+O\ y6nTjXUVG1Q2U tF\ Xv9vIsjzAMUXWTsC\ ovYXRohKGB4E8tNE\ VJRJXmHz99z5+zK3\ AlIJoy1lNFIlFA69\ Rm8JMq+2Jp l+Q5Z\ 6b+3anQB02co2XcC\ QdtYCozm9icJHAD9\ DM0IJoNsqHgTC7v2\ ocVH+tQGUGTkFPKn\ L6Mi8Wp 5dmw4sem\ s9WOQLVdI5hnsRdW\ fCJ57iCrGahdBvZQ\ ucERYc1mVrnoY+zP\ ExoyhQs6ZwQV+3Il\ JFHk y0PjfKxaejh\ T0GmoyLLMe+87BMC\ L+qeyCoIfIFrNrTX\ lgoc2XEHOOfgZjfL\ ZbXXSNsCY7fDM9pk\ K 1bNB6l++qa0oyo\ Thyq8uZdVAFEXCMF\ zyoHzbeIEBM57U5b\ yHnLNYtEna9HMZ6G\ TTC85jzyd+wsVv u\ brhvZGnRog++9P63\ 7kTOUxF4fChHOs29\ yArMmEQsuG8wfo2g\ eAz8tQIv/zcjxEUi\ cgLGDs0Xg+G 1ITG\ 1qvOrvqL+VCZWl2L\ okzxyBj3f+c+skez\ lLJFkm3x9dN0HUmR\ 6N/dD4DZncK14kFE\ bTUYOzzG hks342Q\ tzA6T9r6pTiC5TcU\ 6Wq4T+Ws6NlBVunZ\ iu5OVhqhL0CRvowZ\ BW7hUJ6kSiS0pXrf\ lDbyO NzT9GZIpE/\ rxd19KJ95Kt9eLks\ jOF+7me3/7HYqFIi\ 2ZVo7sPcRPP/JdXM\ tDNRSu/qNr6N/eP7\ WP IqIIKvvvfJxff\ ulnALiWx/X/5wYym\ 3timw7XJwxC7vnKL\ 7DzFlf/wTUA3PLHX\ yU/msMqWvWsZBjI \ q5ZRqpHIAzfAH7Wx\ xyzkhIKSUfBLAc6Y\ RbrqPPB0gTYQB0ph\ 0Udqn7pXz9SM0VwQ\ TRn/8Pzz1XyZ G+d\ omcrhqQ7GysEAtVM\ nKHoIqoiky4iyhKB\ Ji84SagMmlQOlOLC\ OIkRZQunX0aqfXz5\ SQp4myhkU PPy8S2\ iHRFGEZEgEbrQiWU\ k5o8QZ+WnNB2sSJC\ lZl8STuRlGpUP5Mh\ XfZ6Ti8IyWJPsqFh\ lNndH2 f7rRpyv8y\ dm9FPyIDz96HCeIq\ HnwBUkFYyi/qOMoW\ RfteBmp7OF2JWYNF\ h+dyHNld8uiv3/N1\ HYp 2SRRlFGNqei8\ lvZfCchqfNzbf3YH\ z33elUsalMfcgEnb\ ZSAVZ9WUCWvJmSSA\ 7b/9HG57y00cf+hY\ w+uSIvPM338hiqY\ SpRozeGEQ1nlGNUR\ uSFgOkBSZl/3xq4l\ UAU3XcWoefgmhTkI\ MAw9RmlpJ1wLS L/\ 7eF3jxe6/l8rc/jw\ N3PM5jP3pkxvn6+a\ nBTKgSC6XqeWhtBm\ EpIDiFtC8nZPxZAh\ bJlLGy5VXp hAzKS\ w+8Iidck4lG7zCxK\ S+Kw3QqIoVlyRzMh\ r0/fJhUe5KWTCth6\ PPdP/sG1/zVdfRv7\ 2fi8RG+ 9qf/xju+\ /gfIioqgSEiyhKCK\ /Prrd3HVO19A37YB\ SAixHcy0LOU9X/kF\ w48e4+V/9lrcSQu5\ ReFF /99L0c0Urm3\ xyZd8lEte/2xESVn\ 1spukSkgDJhoxB8m\ bcAisAL3HPOMI2ou\ B3K3jHbMJ8v6s3ot\ P B0hVbtV8HYjeSb\ ehFT8SBSRVwMt72C\ fKGH1J5GmL+siDKK\ ESeiGB5+OVHORQpb\ w3j7mzZcFzqpXb 5\ O7Z+ZN6Jm4GcI6WC\ dwoLs2ZCto0pfyaA\ OhyVcwDNyCwfRR9S\ hdtTbrb9MNFKtsy9\ QCp4vncPz7J 7laD\ Pz2njw+c288NWzu5\ YVMXF7ebTMyiXXM6\ 4JxSW0/LAh84Zx2H\ i1NdMjVOlTRPuUEu\ eKQenEA/ XCRIaxQ\ u6MQabCzRDZdt7h+\ f5OreFl7c29yF1no\ M/ELzzAlRlhkez/I\ 7VSsHUWycBERRRlb\ 1WV+f /m/GcSUZWZ\ FxSiX+94f/ZsZ7tX\ +zvTb9vYcnynSa0w\ jPeZdgGROVKMlc+M\ FX8+vP/QCIzSQB+p\ +5 jcO3/pqoqwUMB\ f9kjrxls+ncXkYPj\ JLfP46f99jznfsAi\ OQQuUVh8wWbefg/7\ 0erPlB+wUJQRcJg \ 5rUQk/HDH7lhrJNT\ sNiwO85M7bt974zt\ /byHmJTq5bNapm/9\ 7g08eOs9yIrMiUOj\ TBw72bCf0q7N 2W0\ mr1ILcuCcGc/rfFD\ 6dURNwi0useS2Qhm\ 4r/ze5/ncDZ/iyds\ f57c+FnvRlY/F5P3\ +7f2EQUj7 jl50Qy\ d7LDtj/13XXsB3P/\ wtfv2tu/BdC1ES4x\ W8KnHwV/t5+HsP8P\ K/uR4xKeHYNn7e4+\ T+PHd/ 6efc+Zmfx\ 59Xbr7Lb7mQO1SQR\ ARBwMvZ5O4dWxNhy\ JWEpEoxmT6jUDlw+\ jpKlwMhIaL3mFQOz\ b4g Lu/N41c87NEy\ 9miZ8uEClYN5ik/k\ CIOA9K4OzJ0taAMm\ 2oCJZCoIChhb4+7E\ 9O52Mhd3IScUrOFS\ nJVaAPaxSnysORZ\ LUlqJxTBbVBKbk2g\ D5owyu9qlofcnsJ4\ q4o8vnZjuHbPR+xt\ 10VY9k6Qdt4hk EW\ /al3oyV+K3NnbUuU\ e1dv5YPFLnzrEi7V\ 2nz3Ik5wZMeAG/GK\ /weK7IpqTOtqTGyU\ CkWwXtlFZF P6Mhl\ TyCROPqSHAjEkMFA\ Jx1yRmdbRXPZ8J2y\ bsefQmVv9zVv6Tv7\ Be8JcsACL7L0NDBG\ a9PFypE iSdq3/OQ\ ldlXH74XPwxzvS8r\ GuIpzu+1c54tuxEG\ ISOVcVprVi1Vq5Bm\ tZL0lhS1NcHjJ3Ps\ 2NrL 1hddQHk0hxU\ BBZsLr7+K+7/2Mw6\ +Kdbg6X/+Lra/MsO\ 6TpNXfOg6vvt3tyI\ pErteeD4923rrx37\ + n1/L7R/7T774jp\ sAOOeFu7jsrD5ESa\ F7c3fDeYiSSO/WXr\ zIRTE1Lr/hcr74jp\ tItSfZde0FjO4b w\ SvHHY69W3vrwRFAV\ 5U0HoY+17zvGr77s\ e+y9/uP0LOtl2e84\ iKixNS2waQ3Z3kod\ MJVkYsQJRHZ aH4o\ CdxgzZSiJVVClKSl\ ywAsR3l5Gl7/f9+C\ 2T1VGvc9F2uOayJU\ Zk4w2593Lhu2D/DA\ Dx/k87/1 GX7jk79\ N16YeADzbw0gZHPz\ lE2y96mzM7hQP/Mv\ d7L3zUa542/No625\ hz48eXpHv0QzCio9\ 73EI0 ZURdRE6rBL\ bP5B0nSA5mnnZZGb\ lNxZ088zrE5sN03o\ 4gCng5l9y9Y6TOa6\ 8HBJUDJazhEsnBzK\ L5 YqIuEszySOmDJ\ tZwEetIed5jWU/Ff\ nILYTHdpWJCxtiaw\ jlaxtlvN21W7I45C\ AozMmyrGiQJboR+ \ tEhplvrzxqTOmBug\ ApUw5OFJi715m5+O\ TACwPbNlUd5ly4ET\ RjycszlUiPkyWT+g\ TZZ4vOQQhCGy JHF\ hZyuTtseegosmijw\ +6bAhOTXZa8ct5Jy\ D09dYphHciORjWUJ\ DpjKYnlFWq5Uar+5\ toT+h1gPF pWClJz\ 5Z1QnDgI/9/Uf41T\ 0PAnDNS57Pm978Fg\ RR4l3vfBeXXXYZ3/\ /BD8hN5nj1q66tv3\ fbbbfx 8X/4NElD4\ 7kXPROoZZ7gq1/9K\ jd/8xb8CC7cfS5/+\ sE/QdV0PvrRj9He0\ cbtt9/B+Pg4u845h\ //z N39NykjUhR6V\ rNtgFbIYTFSsejfb\ RMVi0vWZqFjs/J3n\ xhtYHgceHaHv3B4u\ +uCrGvbbmFFxbYtN\ l25l06VbgTi7s+t\ VzwBihWvTNLn2Q9c\ B8TUISwG+5yIrMr/\ 5T79Tfb2aZVFk3vi\ FdwDgeS6XvvUq Lv\ rtZ9e5ShvOG8Sxbb\ Q2o76da1uoeuPfZn\ 8b13/8DfXzIRHfV+\ 6JCna2hJSQ51RfFm\ QRtUVZcSf6 pYoZS\ qqEqzCDKLla0PsS2\ CdiLaKlGKGuJGoK6\ bJq0Nbfhu8FTO47Q\ ev2Hk4ePkmlZNGyp\ ZGXWCvz mhvaePbb\ rsYpWgzff6geJJ39\ gnPp3dLDl979RXq3\ 9JDe0M2Rxw+z64Xn\ 07trgNxwDqtQWbPv\ GFZ8 rJM2ggf6OqM\ upqgNmAQFD+tIGa/\ kIBxlRQxl1xILdfC\ dCagZ6XrFePElyFP\ irYIqIsoihXvHSe1\ s I7ADKgfzmBvSTT\ 2LkSzUJQ9OhdGXoj\ SUQ2nTZh0fnOFq4L\ zCGW5twESuSjK4Ew\ 5qu7aoYMnPObOW 6\ 1Y1SFLHbdzeZEObP\ 8BAMsGHHz0en4AoM\ Om4+BFMuj7v37GOZ\ 3SkVt2SY9j2+OS+E\ 7SqKi26AiGI gsyE\ H9WDoJrhbKuu0Er8\ I7cb8eBayxKJlk9p\ V0fDd5SLPuZjWdyu\ BNbgFJlspOLQm9DY\ lyuxwZD4 jY19K5I\ tW2meiawofPELn2d\ sPMc3b/4armXx5re\ 9g7O2n81ll1/OidE\ xhoeH+epXvkwxl+d\ lr3oN N1x/PU4Y8Z\ d/+dd8+UtfYP36AT\ 7z2c/Vj3n/ffdx8z\ dv4d/+5Z/RzRQf+t\ Bf8aVPf4a3vfdGis\ UC jzz6KJ/7zD8hi\ iKve8Mbue0nt5Pcc\ nbdNkTOWViDC9e3p\ +OJXJnWSjxA1I5Te\ 03PBZSeGKe8s43R \ bIHWanv4obECr9na\ Xiea2+VivfxXHslj\ ai31wMc9pb26PJKv\ e5GJ0hQHKwz8+nFq\ r/lutZVbg/Kh PJE\ T4hccpAs6Gvhbp+4\ 3/Xy8nAW2gl+wkHQ\ JbX1VlmKOtHVN1VY\ UhBVxovezLk7JRWx\ St2o6jAET 62gZ62\ i5aQmBZiFoInJawc\ 06TQVJ0yeXZUMNqp\ pXtfvAQjdTvPzPXs\ 3NH/oGZiZBOVfhZX\ /6qrhh oFpmDaql4\ R/8/bfJn8ghKzK+5\ 3PJW69oOHxyoJ3nv\ vP5fPN/fYM3fuEd7\ H7ZhXzvb29l722Po\ KcM +nf2s1oIyj5B\ OSBy/LpQrqIrqOtn\ ZgGktELynEzsrzfp\ PP2CpDPU5cAfdyk+\ ka03aEi6hJSQkZMq\ ohyXm4OiV39f6zI\ o7o3LunqPibauucW\ OpEq4cyzSa9kk96Q\ 1I0gKKz6BFayaBIS\ kSkjVDl9/1Mad cF\ AyypwZKWfYQu2Y3Z\ 9xVYMkyfIIjJmDcb\ uh0m6oVDyfJ3Mlnt\ Ge5MKO9Jp6ryXl+K\ sPtiyhU2pa p17p7\ LaGLJHgRhj789gDK\ ZxpN9yBXJFWTebxy\ SIXt5tN847mg9ipE\ RxbmZbeGsfol3fdy\ ++8+U2E QYhqGLzk\ xS/mzjt/zmWXXw7A\ lVfGg3Mq00JbWxsj\ 41lGhocZHNzE+vWx\ g+LLrr2Wr3/9ZgDu\ v+NO XvL8q9DNFGE\ Q8trXvoa/+NBf8TZ\ uBOB5Vz83VrWOZNY\ NbmPv8eNc+YxLmBz\ LITph7NemN0/wnc2\ b LV90CfecxBlsId\ REbM/jroOTALzu/G\ 5aTwkyphNcvZNWQx\ YmDKrtqhU/lv0ftT\ FaZyfFnvpa7W9v P\ L525lmZebeb8bchA\ M1lcfR2HTfrLIuIb\ A+VCcMQQRPRU9qys\ 1LGQGzTYg+VUbq1F\ SVIT4ef9/AL HkZ/\ c52gNU8yd8xZFuH4\ xu/9MRBnkabDtS0G\ LtzEW//93fh5r15q\ rWUSX/2R3wTi1f+1\ H7quQVgU 4jJsLaM\ JsPOFu9n5wt2Iosz\ my3bwrm9ujmUMKhF\ iUkKUxBnnsBS4Yw7\ +NGFCQRPjBZsUS03\ IGWXB LIFsKLhLlG\ Y4nQhnETc93QgrPr\ mHx9G6DJSMiN6XmL\ EY0KudwYEbEFVC/K\ zbdDfadDhHy0gtcy\ 84 tN4klYN5jNyUc\ a075uAXvTXRyKo1D\ 9TO1cq6SC0qclJCT\ Mj1MmRgBShzZJtWN\ Ujy0xrqaKUhWKih \ FiC9Z2fvmtqK1Eps\ Px3J0ZuYeV41AnZY\ zWTVAiC56NdVwgEq\ 2zINPKsa9JGYg1X7\ zrXveVZa442D i2v\ rbxaKIuLLy9dLEqu\ BoyBKOI7T8J6iKFS\ sqYG1ta11xv6O66J\ r8SQSBmFDV1ch9DG\ nSZlKoozn TU3+hm\ Yw6oT4voUThaiJ+A\ ESnRBzbxa322xaaX\ su1I5X44idGC7zsh\ 2dnJPRUea5FdVuHe\ dIBaHk IlW9fvyCW\ 58c/JPN8xQCNxZ/1\ HrMpoODpQQTkimju\ tGSurxqCMNwWZITs\ 0HrM/CzLm7WIZrme\ beS nW9e1kFOK0sq\ DWrrEzhHKnh28yrm\ YeA3BCWzBb21DKGY\ UBrMiu1ykTAbIbYJ\ VaK2jCgpiFLjdrXs\ 4qnikbWSHkCo+bj\ DFlFyeR2FgRvgHbO\ JFJZ9H0iGhH9k6XK\ dgRsQ5Hz8nIMzViG\ wA9Q2DblFR1KF OK\ N1CuSkvGhvudkQVv\ z42GcYSk/lkdMK5p\ b0gsGppEqgSk1xdk\ 6Fc7RM5IE2MPfCIb\ E5SeQEOMMV hEQS7\ 5iNoHBaRES1AbOeW\ fL8EH+4gqxJhHaIm\ tEalNVrcIat1Q2Sv\ IyKMZSvK0k3vBdFn\ JXW0Och bh4ou0vi\ 6jhhhBMyo2T35aFx\ nijEk/+2TLJeToOp\ 7JDfZtQDoVPhdiVm\ FcGsQaqEdauVGh7P\ Fblx e8+q86vUVg3\ nhIXWYyw5UJpOuj5\ v927uuutunvWsSwG\ 4/fbbufLKK+fdf/t\ ZZ7H38X0UC0VS6RS\ P 7Zlqaz9v127+5a\ tf5u1veyuiJPKzn9\ /O7l3nNuw/bjlEfo\ gmTN0T2rCFnzGwNq\ 1MOt58PEeoyzOO 9\ 5Ttc/4C84akSmjtO\ oEXEjix7tBiJwl3z\ MEds1C74gkr8kOCi\ o9fjlWytd61E1CVW\ hW8SRdneGYa /HRC\ blMbbB6cIxVEUURp\ VZedrQrcAC9nY/Qt\ bVKX1Lic6Y7a8aTs\ u039dotptw8Df9bt\ 3FwFJakj qdKc20x\ /7dT3p2uUhXh4ox5\ q29IzdpIq4YQh2iJ\ skxaCXM1CLGSK6wx\ b+H6AYIcEdrUEafv\ 1rl45 rSCl4n+iJO\ GXHCrjUxkqqZqFrn\ FxBFlElCXkVGww3A\ wvJnSjuiHqmQJn2M\ Idt0nv6lgTI11/3C\ Xy WBR/SenQKew5i\ aiISC3qaZV/qGWWw\ oqP3KHWFwt+ziMoR\ FhPTXX9iXqcFV3VX\ zNSBUJNQi55M7Iu \ Jys2793RgxMyQxfp\ 3qzFbSdyHC7ZvP/s\ dU0HSk4Ie3NlJFXj\ orSCE0bcemSSPTmL\ c9vSDcGR4EYY R4o\ oJ+16iczakKi/ByD\ 60Qxe1WwwDuQbOFg\ Vz8cPI75zLMel7Ql\ 2t65e3V1KyigbTLx\ jFs6JWEJ/ sYP45O\ Qk11zz8vrfH/zgB/\ j9330n73z3jbzu9W\ /EsmwGBzdx3XWvnv\ MYYRjQt24db3jd9V\ x3/W8w uGmQ/t4+l\ Opv/bwXPI9f3X03r\ 3r1a2lpaSEKff72I\ x+dcRxNmfqdjWzcN\ rFSAZJxsIxo+xTPn\ wpi w9EyhQQ8MDbJ\ K3uS82aSIA4wmPTw\ CwsHSDWOhl9wCe14\ kp7eXSWnFURZxDwr\ s2olprmg9OtQCJfk\ vL0WHWk1AUl3zMG\ bdJcdJHnHbARVXBZ\ BXFKleklVTaprwqO\ a/tkrAblNxSt7uFk\ HY5n33EqcUy0w 8v\ PunEFSeX8B90Slrh\ UGoLUaiLJEclMGoU\ Wa9VwCN0DwI7wJp8\ FPzXcCcCPcrIU1HD\ TwduSMhqiK 81qLh\ G6IuMqc2WYQuAHWs\ SJal7EmAUi84HAwt\ i5uwaF2aeg9JvZom\ cQaj3Nz4dRAUs4oc\ 2bVhM8/ cmBVi6vG\ 4QoEYQOBGeCe0Sy7\ MgYpI8FLuxNookDB\ j3jbr/YDcH1fO5f0\ pZacgfnLPcfYkNQ4\ vy3J 947nMBSFPrO\ RmKWOORhDefyMNms\ HWjOQKiHqiQp2vzn\ jOCMVh+Fyhb89b4C\ CHzGed9jcPpMktpI\ i mpX9xQUn8ZqYZK\ 19vwZZURBEiSgMOD\ GZo03XUA2jWkIT61\ IAp/63Bte2cFyfVD\ pVF2Ks7VssFBGD K\ dPWUTeiV5cY9+Hek\ Qk2ZZKoAiTzISPjR\ R5LrcztWbvWxfM76\ mU70Ql5bDjP2y7so\ XcW7typ8LMu XtmL\ W8KDsE7SrplbRnZV\ 0iApE/khsiFTfGqS\ yA2RUgqJgfh62MMV\ xCrR+nQq9jrDFmEQ\ Nj3RW0fL KKayZh1\ iNRXx5WS97KEy1nC\ R9MWdK/Kbu2NOXR9\ K7dZX/DoGZR8/7xF\ U/KYWPItFZX9xyfd\ fMOnh W0vraJwNpU\ dzyAll1gDWm3DIP3\ gStU0j9MOGlvXFov\ JkAW3j7Do8NQsMZ9\ zCzcZVBr3HxK+4iL\ II koAgCMiGUg8Kn\ KPlprNPq4nKkwUqR\ 4q0PqdnTcaTmuJ1M\ 2T7wA0o3DuOnFZJ7\ WpbeIczCKt+lb1W \ BeNAAWgMki7pbmO4\ bLN3NItBwBNFlx8d\ H+c53Rneta2nXipb\ bOBw6nYXdab58oFR\ DlV8NiSNhuyR VAk\ xDuQR/HDe8lkzEII\ QOe8QDc5clQ+XK7x\ vZx85N+BHw5P8+ES\ Bz7XHQoIFPw4CDpV\ sOnR51cty 0xGGPq\ 5l1blINfieh+8WEU\ WZjmT8ILiWRRj6cT\ u/LNf/Dn2/4e/4fQ\ XDUKqWHFPtzqIkYx\ gGYeDx ZN7i83sPk\ 3c8rlzXWW/1L43n2\ VaAXL7EgYEkrECMJ\ DohxlCe8o7WeoD0V\ K6EP+lxnqbTctzG0\ txZ J7tg0sObdOtE\ ZZiSXHBLLtGETWgH\ KG0aSne8ivPzsW5V\ GIaobQZONXtUCyqS\ p7n9fDqkJZQN1KSK\ N9nYRj+9A+9UTOf\ LLBWnylw0e0ylX6c\ 0lMM5UlkSj+ZU6xQ\ pI+MfifloSz3mvJ9\ XDojscNUCaTmt 4h\ 2zkZaQWfMm3TllJp\ YCv+IiqjOzk4Eb1A\ MkUZVJX9C815s/7i\ JntDl/QzEhoyXk+o\ QfFDwCO0TK S4ReS\ OgHRH5I+XAB0YyD1\ ciLW9/PBHgTDoHtk\ 9jUsnYLLl0kGG9uY\ A6LPlJKwRmzMM4AC\ Y5msOpB kp9W8DpM\ lKw7o+TWZ+r0mTo/\ GclScH3++JwBruiM\ gwwnjDhmeTxZDrgw\ oy6K3D3mBozZPvdl\ LZ7M lXjVpt6G96c\ byp7afbZcRJKI6AS\ z8q8kBH7/3iFaVZn\ 1ps56Q6kTyL92aBx\ Tlih6Pi/oa6W9u6o\ l ssyMkqCJiwoww9\ AnnEPhfLb3Tn1tob\ 8b9g18HNfniO3SoS\ v8wfYePr7vRD1AAh\ BGbY7VMj4r1EFi 7\ s1iDbbUhShFJ8Sf9\ PjgpQNMBgEJVcIdc\ 3COVOK0uyHHAZATx\ pyY/uYyBbXSWeAGi\ Hk/5hz1LK8s E6uY\ a3W5h1oQFgbekoOP\ yA6Ru5X68Rd7HKlV\ wZmw6/up00RCp5OJ\ AXRzunDi0oxVBY96\ AAo0GMKG QYhrLyw\ QKakSki7hFxwCd/G\ Bx3RulFM1uq35EWq\ 9BpIpE0x6K6715Bf\ cFQ+8aqh1pUlLyIT\ YQ2XE pLyiOluiLB\ L5Ee6YU+86CtyA4k\ MTMdeoQ2+6JFxDYH\ t13tNiIKUVpDRwSt\ kqd+8Yfs5F7lAJo2\ je +yes+FSGSmi9x\ oIiiAv5Fi4Ed9TGL\ 7hrmp2RVKkpnSg/5\ 2EfLxM6AVqX8bQJk\ GpZxjXJF/otEube \ yRl6QjXIosCNO9dx\ TlrjthMF9hRcfjU2\ yUUdLbx+sH3BAKng\ R+wr2LRrEv/81Ak2\ pEzO62xcddTK LfZ\ Aas7zWA7q9iROgK8\ 2/qzbMklkUeCctMY\ L+lqphCF3jhW5faz\ YwJG65fAYD0+WeW5\ Pht0ZfVmB UuSEPJ\ yzubht9Ym5nhdy8y\ 3f4O57fgHAZZdezm\ teft2Mh98L4M/2HO\ X8TDxwtOk6Leo0X7\ Nqxseq tuavBIyD8\ QQ6Xe385ESZrBbw+\ rufouwGvP6sfl67L\ onapcXB0oSNoInLX\ sXXxBLVTh03a5Fg6\ ZOe rGhkj2UZvv9Q\ /Lep0LV9HR0bOhYd\ KMwGN+uQ0pLgg9pi\ zAhy5kPgBohVpe2b\ rvs47/jGH8zqCfbD\ D9/KjqvPpf+CjQs\ e08/GRPbIjoNAiIO\ S6ZwtWZHZc8t9lAt\ lLv3tK+Y61AxoPSZ\ +wcGfx1H8VDhH Kv\ VgqIYZWaVWhcALZy\ 1xB2UfN+vUS7SLKW\ 0GZb+etVwNhCUfrV\ 1vOtApHykhKsKq8F\ 5CP6D85CRS IjYj9\ gte1eNt+TwbYQWyP\ kpSI/TjwE3SZSpPF\ kASq55jMXVC8COs4\ QrWoSJqm1bPgiW3Z\ 2aU5pxh C+tYEb/g\ 0Xpx15K67QI3wBou\ kVi/OsH0fIiamJuC\ io8zZpE6K/O00cMK\ Kz72iI3eq69RkJRW\ sAdS JJ6YnKErNFy\ 2ySgyPxzO880jAQX\ XQxNF3ri5m1sOn+T\ xfIKuzrlXEbeMlOn\ XRL52aBxNFNmQMhu\ 4 R3LBq5b7WLHS2l\ xwuxKYj2Vx1qVxur\ X690woMue0t/DQeI\ 5hd5KRikVvwmAwbT\ aUAXsTGu/Y0kWm O\ gDfm7X47rEs56QNX\ rtx4ZVCLXM0bHv8O\ mvzosG1cdq++ZZvc\ HLiJH/30U8B8Nmb/\ pGbb/0G11/3 Gw3b\ KRJc15dhf8XikbzL\ FbpeN6+FuJMNQDte\ RCr7OH3GsoIl0QlR\ R8t1orZtWxwcsdm+\ TuMavY0O VSWti7z\ nniEUYYBX9sUPsKC\ JK0bIFSURrTOBl3W\ WnW0Yvv8Q991yDzu\ edw7lg0Xu/NId9Gz\ r4aV/ /mpk1cB3rR\ lZFt+LeRayUi0FVv\ 8WJYXk+qnn5O6v3c\ Gl1z8HtcWol0mnm/\ rWskCyH++T3hj/V6\ wy 3XMncvV9ZCVV1\ /IBsPIWnuVVP7cxI\ 1Y7blACTdeR0zpin\ 1QPKnzPwR4pE0x6G\ L2Zqf1KHnZ+cVmp \ Gr8H4qBQX6ROkj1U\ Rk6rM0j1swXOapeG\ lJGp7C/G+ygi3qSL\ oE/dv4LH4tS+FQFh\ 6V3xi8MS+JeK rhC\ W/GVnP06FIIsEdpx\ xFVQROaGiZvS4U3c\ FxuuVKI1pfQkqhwu\ x96Lr1vWhAjtAzep\ IikzoTwk4 BhUfSZ\ cI/ZDCo1lEWSS5PY\ NfCnDHpu5bSZcWtO\ 6YC/5JN/4Md+Wthl\ YFZ6gA52yIZAEhjG\ LPuLX6 UGedgVx0S\ QwVKG+fUk7uM3WGy\ 9QDm6F8mTtGswyVL\ D54Tj9npXWGbY92N\ fZyO1B2+Y/jBfKuh\ yZC wbUNtZYAACAA\ SURBVA14QpEYSCYa\ giOpEqIfKSLnHKzB\ lhm+aasBazCJ16Gh\ DVdIP1DA69CpbJkS\ jTyvM0PF8+kzZ2o\ MAawzE/z9vhMYkog\ VhPhhxHmdGR4az/E\ Ct6UePM2GYdvjRyf\ KTNgudxw4yQe2 rY\ ya92Jw9z2/4O8++i\ k+8fGPAfDe97yf9/\ 3h780Ikh6csMmGEV\ sSBg/mHCbDxofG2m\ TiVFf4xlAB c69Fe\ WfbkgIldcxBO17Eb\ 1ER7YBQEzk4YvO68\ 7tndEt+4pJBvn00x\ 4EWhW4RVrKyX1Nr9\ isuoeuj uMsj+XZu\ 7qpnT8Ig5Os3fpl7\ vvBzLn3rVYhi7Le3\ 94cPkx/Jse2SbbTv\ iEvOpaMTZE/kWX/R\ IGEQ kn9qjOxYnq1\ Xns2RBw/xwK33Yeo\ JUgNpzrp6N3alyJ7\ /eIjyRJGW9W1se+Z\ O5KoL3sj+Yxx75Ah\ y Umbns3eR6m1FUm\ TKo0X2/OAB5KTM+c\ +/GLWlMVsjSiKqZH\ Ds4WMcffBAfX9N15\ HbBI7ed5Cu7Z0c /\ slh8iM5tl51Nh0bO\ qAXREemOHSSvXc+T\ ktvhiARwuTsv5F1t\ Fw3+RVFEUEXkXQJu\ UOlcqiAPVJC UsR5\ MynOsEUgR+hNjBu1\ jjxn2MJ1fNRWFcyp\ Lqla6e50lxsEXQQ3\ gibjdbVLw3L8WDB1\ BTMCgigi 6TKp7a0\ rEhRNx1yWGc1Czii\ kM+0Nr1UOlHAnKrh\ VqQG1U0frTKCvM4m\ q3r2REytLB7ZPaV8\ OJAF3 3EbvMUmf01\ bPPCUGk/VsU+AG2P\ tLeCWH5JYMiAJ4EW\ 7BhSCsk9DlDpVgb4\ Acrm2QFAfJS5hbVs\ E3 crUw/Zld09CuM\ phGtHxSD04gT3MHn\ h7cFFyPT128mffu7\ OfmI1k+tOc4H9s7w\ of3nuCm/eN89qlR \ NFFkR2uKwZYU53Vm\ 2JxJ1Y8huBHGUInk\ npOEhkLhgs41CZBq\ 8NMK5e0tlHZ1IBU9\ lGyjwOD0zNGp aNU\ VBtMmmzMpzmlvqZc\ MB5IJvnw4x7A9+xP\ /q5MlPrnvBBO2y8i\ xEh/etZ5Ltza/Mlk\ L7Mnb/N1T J+g0Zr\ 8moSYSaiLlHRlCXc\ bcm0VswlxUdELMx3\ Nox4tx2U5XMB+fRB\ 1z6G03+PbRHN4p5u\ ObTZXf 39rFUCXkb\ s+pT7DumENlf5HSo\ 7l40nQDnGGLyV+e4\ ORPjhOU5y9L+VkXU\ RCQWxT0DpPQD8FbG\ Z5V TZzwkt+6nMd/\ vhdRlJEVlf/4X99g\ +NGjdGzo4Ja/vJkj\ vx5CFGWO7D3GA7fc\ W/eYGzk8yiM/iH35\ Qtcl9ALkpIJWteT\ 51p98g3KhTMeWLkb\ 3jQCgtho8+ON7+fl\ nf4KZNvFLPlqbQVR\ dyf74E9+jpTdD /v\ AkN//pV+PrITbe72\ EQ8tTtj9KxoQNrrM\ zX3vcvyC0Kqqbz8H\ fu5+b3/T/8soeZNv\ nXd/0z5ckc eiJFc\ WSCL73ni5hpk3Kxx\ K///Vdz/jY1/arEl\ hT6oInWF/MgJFXC2\ NYCQYR1vNxw/YKyj\ zvmYB0t U9lfJLLD\ JfNgtD4DY8BEalUa\ y3KLDI79ky7iMkRh\ F0IYhEvKJEGsjh6t\ kNlvDYIoENj+igdI\ 9eP7 K9/AHbgBckp\ BadNJnZWh43nrSO9\ uR+uLeUhqV/xPGzB\ JbEsjiCJu1sEdt0m\ dFRvIigkZc0s6ziY\ d isvllScLTN5xAq\ /kELkhlUMFcveNkX\ t4HHeigjNWofjQRF\ XQUkLt1FfOMmeR8E\ +6TWWFBDne9kzT l\ loI2joD75i9dpkki\ HWTiue3o445mHsnC\ UwFe0OyoQTWldD57\ FOjJGR5Rjmq4vlc2\ Dk7l0BwI5Sc izGU\ x+vQV4V31AyChEgk\ z/35StZFtAKiqi6Q\ 4IVEiogKRHJ800eK\ SKBJtBsqIxWHj+0d\ 4X07exs6 4IZtj28\ dm2RdIHPkWIl3Xtq\ /LLPcpeDSS57NZ2/\ 6R97zB+8D4KabPs1\ ll14+Y7vBjMYjRYV\ uTaFf i7WJNrWY2E\ FEyY0DQCcI0CSJrZ\ kkTp+JNlxGG7YWpZ\ WkDVvoR4q43SblHV\ WLD11CtD2MoTy5Xp\ UH QotXDcdeRX9x9\ jou7E5xoOxyf87l2\ W0aumRCuUJlf5HKo\ QJ6j0no+lSGbBiqp\ tc7daSETPGxLJmL \ u+Y8n8AOYh5Kp4mv\ x5YYKCuT3QsDn1BS\ SPW1UpyMxU+LR8Y4\ vvcYb/5KbIh7yaTF\ w9+9nw3nb5na rxR\ AQkCZxpvrO289oiK\ x+bKz6g71ge2hiSq\ bLtjG1qvORhRjH7G\ 7vvhL3vKFdzU42Qe\ BT+D5XPXm 52J2tb\ LtuWfz8Rf+zaznLU\ oiV934ovhzd67nnp\ vvaXj/3Ct3102E99\ /1JGP7xkld1sFDP3\ yIi19x MTuvPQ8qE\ dn9J4G4k7DWuh1/P\ 39eYU5zfZLCpIOXs\ 1HyGm7WQfAgUkBOy\ KhtGijCqnUKSQl53\ pKb dbSM4IE2uHpc\ wsgJ11yXaz6sBGdo\ LsgpJSbfyit7Tf3R\ OHukdy2uJJgYTCKI\ Anp/Ysb2Wm8SP28z\ +csT8TF7TJQWBbl\ bxztmk9iYRkhWxTD\ 9iMKjWaxDZfQtyXo\ pfy0R2WGss7ZIiLK\ A3mPGnn6cPiHJ uR\ BWfPxSgF+M56AoCt\ E6DISESOgHaxsk1e\ B2aXiZTtRxG224gj\ YM9voUQUKsd7zNhl\ OzMDWrEDlr IToB9\ kCK8tlt+KkzaACYt\ oqRKiHyZHxD+63ar\ LYmghshVvcRghAl5\ yJ4IRuB1qTJ/903i\ iZLaCJE ERS9gAsx\ eMy2+PMrN626MfBs\ eM2rruPmW77BH77/\ 3cAUcftUJBA4N2Xw\ /WMn2ZIwcASFvZMl\ ru5p oUM1SesiKUX\ i20ey2J6H3qIgOgb\ a8SLz1QZiwncB0fY\ p72itd7EB7CkVMY2\ IblfkyqLD723uQdm\ U 4vaxAn/x2HF4DA\ ZTOn+xe4BDRY8uP0\ Qqu7jjNmqnjt6dQG\ iRwIsI7SAmEbcqOM\ MWlaH8nHpUNbuR W\ qt0jaPQDGl4IYiiS\ HF4kkQ65nVNjOSw8\ hbf+pNv1Lfp2jgVx\ EmqVPcFmw2CG1E5W\ kBNG1zzRy/n zq/+\ gs+++R+46IZncslr\ r0DwRVzLxexONcg6\ 1LrbzI1tUInif7Oe\ r8zYwRP89BPfR5Yk\ JEUi8PxY Q6u6nkg\ NTJWnFVPBt+NMbP5\ Eju4rd8RvJATSPZk\ 6J0mQIHSmNKoWCgD\ Su9vJ3TuGl3WQWmb\ X51kt aH1GzFs65d\ mvEbxhcSrGS4UzbK\ H1Gsv2oVtJCEI8Zq\ 001wlA7lQJjnp4x2\ xoskt1LgRuQGAFc2\ ov zQYxIWPunN2gW\ xswiJwAUZXj4KhFr\ QdSMyQaVEid107xo\ Qm8hxyUngR+xV2V3\ 242+FkXQWlSSDQA \ +0QZpe306iP5OY+g\ WOWSuRFRFCKJUvx9\ TAVtILYbCtwA56iF\ 7CpIhnR6giSIs0rO\ OgPX1dGPlUnu OYk\ 9kMLt1OcUdRTcCLn\ kIedc1LEKAF6Hjr0\ hhZ9UliUGuRqoZ4n\ cCHXcJjSkBWUHIlU\ gqH8PEaYF fMmCx8\ WRgVCJs06RLCC6AW\ 6nRiQ6pyVAgtg77o\ brr+eG66+ffzsJzm\ /X+YeLB3l4okyvJn\ HDroEG leuvHRzjs\ ckKl/VNkc7rBrenc\ JNEJ0SZcNCPFLHXp\ 3B2TJUYbc9j72SJZ\ yoaL9nagn2siKjKV\ A4V SADPFiWe/9zt\ eAH1zzfyNtZwkYDY\ bLaBd6E2eqVpfQZB\ xSe0A0qP5hCr7eVK\ p4EoibEf27SuqJr9\ yHxBSjOotdbf+/W\ 72X7VTgASXWmMFoP\ rP/6G+nZ+3kNQRRQ\ 1bquuITeRq/+/rMh\ IikSkCpjdqXqJ 7M\ V/9krKkzm+9u5/pW\ dTHxsu2oosi5Qnc5\ itM8u5siJDy5Sm0f\ Tgp4Y7PvUjzn1RbM\ Dq5z32XfPX i/q+y\ Y4k9milTib3KlVCe\ ouCIjc/2csJlTAIk\ Fg7XbIa1DZtThK/m\ ly9LHDt+kumHAtVL\ mFiXY3O O9GUkSwZ\ f9Sum5GuJLSqgbJz\ 1FoRzzDvmN1UgLQQ\ JDW2R0ESG6wy5ts+\ fU4b+QdOYj2Zjy1m\ 1kgj KfSXYMlSPTV\ BFhe0n1lN1AIkKaU\ iz6OoLqkS2oBBkKs\ 2sKzZGc6BSBWwBpO\ 4PQmMA3n0o7F3Sqh\ J hIZMJAtEioxoec\ g5h1CT8NuMMy5jNB\ ckKwDcpjSZJhyXnO\ VgzUZ0k0BWJdabCi\ lPJJ8SyblOQyv9 m\ Y4uVeL5velZ33vBu\ nYezE0rn1Q5SqIdD\ /By3kMq+8g5qx44T\ VfRhlgoUnRC3p9O0\ 7o+GWvkZOSq 4quC\ X3Bwsw72yTJqm0GU\ VutBlJLRMbalFjXo\ 1ExP3ayFf8JDTit4\ 4xaiKjccI5ic5i+1\ zDJH/kSu Tsx+8o7\ H0VsSXPqmK/A9l44\ NHbT2t/PDD9/Ktit\ 2UhzJY3ak2Hrl2fR\ t7eX7H/0uB+54gjD\ w2fv9 R2jpzhCG8U\ CQ6W5hzw8eYOCZm1\ m/cyN7br2Plo1tiI\ pIEIQYHXFQduErLu\ I///f3uODVF1Mcyb\ Pz 6t2orTMJ2lAt7\ Z3So2C0GBx98BDpn\ nYe+c6vkebh6E3H9\ peex7c/8P9o2diGY\ 9k88Ysn2PLMrUv+ \ HeWEgn3SrZ/rWkJu\ U+NV7aRXJ4+HdhB3\ 9IXhijYOTEfNgNkd\ c9D6jCXZqqw0HwlA\ ySgU92aRF6F6 v1R\ ofQb+uItztLysNnR\ vwmk+k7IAAjcgtEO\ MrYs/LzEhk97eTmH\ fBHLL4ktfy0Xkh3U\ fvMVCrDZO FPbEJX\ K1TUOQRRLbpwQwg4\ KHM+4gp5RVyXD6WR\ ffCTC3zD7vnApJlZ\ C6JEBDetm7bvyLFT\ +jJSBS BNxuA7crg\ deZwM+ohIYMCESiQ\ JBUsDalcfoT+Bllx\ XR0VhNywScw5aaI4\ 49O5NmoK1ze08JVP\ Wme 05Xmqu4Uz+9J\ 86zOFM/pStFtqDww\ UeSY6yAIIn2qyKVd\ KbqeZsS42WBIIneM\ l+hKxA9+qEtIdoRk\ BajjFpLlE8kSTp+\ JM5BEHbeIVJnAlJl\ 0XB7PFrjaVrhhRwf\ JnkR9EhQlEWN9En2\ didabQOtOEJYD rG\ MlnNEKkiGj95sYG5\ OLnjhFSURp0+JjVo\ /njFtxN1vBQ9YURE\ Oi8MgE3qRLYl0aeY\ lKxZKsoohx p5yTt\ 5BbFHa95GKe9cZnA\ +DaZURJ4ewX7MI6W\ ebYI4fxHJfB3ZvQ2\ gzUtEHftj4O/foAg\ ivw7Dc9 B6PVpH1T\ XI7btHsDRx46gmtb\ 9J+9keJEjkP3H6Aw\ kueS111Bz1k9BL7P\ xku2QBRx5P4hkATW\ Xbge SZYRBRg4byN\ hECKIAmIE63YMIEo\ SkgKZTZ2YrUk27h5\ k4uAoE4dGOeuqs9l\ wwUa6tvYiCCKiGNE\ 6 2I2e0uNjAK2D3R\ gtOumONH071nPwV0\ 8iaAKXvvFKUm1JWt\ a14nvuPL/c7PBKHn\ 7WwdiYmlXteTUR T\ HpERHgFl8iPZQnkl\ ILSrhHZIZEdIhorG\ yrZQ2UiIULvT4Ai4\ AxbKLqCX/abCtwjO\ yRwA5QmBBoX gqCI\ CIGAPVpGNpUliVwu\ BqIp4Z50UZbRXeiM\ 2Kh9xooG16Ik4k04\ iCm5qeOKCQmcaNVE\ R2dDUPQR ZbGp+1N\ QRNQeA6M7gdYVl7S\ cMQvneAVv0qGyv0D\ lcInQ9vEmbMJSzPt\ ckfMteNiHy0RuhDa\ QWNJ1 W3Xvtv/OMP\ fl8VPqorNIeddjwr\ L5wM7ehTf+L4oRy+\ OfnhrjnPa4fq8NW8\ h5B9H2G1SzazAOlp\ Fz FnevV+hzRK5d3\ 8a67sUHpYEbgBetG\ JG11ubtZi3UqpCnX\ 3Di7NKm5JI/51Rla\ 5jSQZou3ljTSfI9 \ P1aGLgWEWtVjTJ95\ H9b0jKZrF01/j0qE\ 3KLUOUjTdZhq5xCf\ n1gXtVT1WIrAz3s4\ tl0nebu2hSgp 9f3\ 9vIdYJaSGYVh//dT\ tap18s51/M+KX02E\ PlSkN5eh43rqm910\ OgkmPKIrwyh5qUsW\ 3Zp57GIQo poKgic\ u+L70JB7/iz+p9N9\ 0fbjoETaz7Es44/y\ p3ajWMfXP3jiHKIu\ kLVk/fzXqquGhj1l\ MRuAHu 4cqS958PN\ fHCZsqBS/FQWy6c4\ dg8fS4z2MWiJnMQe\ D5yUkPr1JDSSv25X\ Eh4smYfE/lhLC0gi\ UiK RBhFsexClXMk\ a9Kyf5+nf+rhDEaz\ ImYtqsK+yWKDLtR/\ F0y6Af8xXGDvZImd\ rfFAYRwso46WG7rV\ IOYbTXohJdfDxyN\ dsnmLkGb9Rc0TAyV\ VghWkgUiqhNauUzl\ UQG0z4lJcwSM5aCx\ rwgsDH7tcXHA7 37\ VwJn2ckepg1qEiBX\ EgMt/+7hyBRuVQIz\ Hddy38BRI3NfXvoB\ gboWZPxArEcptKGP\ j1/cvDJWRZ IrJD9\ EGz4bjTt6thMd9/s\ QjDcMVWq83ALbmEU\ VSXF5g1EJn0cEsul\ EEYdRB0sSEYlRQJu\ XPhmzYo +3VS9Gxm\ tJI5O8m9FjzVrGcE\ Tax3/YV2sGpCl4mN\ LZSfnFxxi5fpiERh\ ySRnf9RG7V6de0ZM\ yEiq 0FQ5MDoNskP\ CPB3bzUBSpVmJ7Pq\ gSWD7FJ/IIc1hoh0\ UPOwxC1lrvIaRGMV\ WUgkZuVtesZLo/wR\ J ZwDuH59Eq3pDrU\ +ZyKL43yZAOlB2+f\ KBcQDWJQ0u6GqNu9\ UezyHn3boQqO15jN\ se45aDYQvsTqlc k\ DCROlRSiSLhLCvy0\ wVnwkZOK3WCq9qpN\ 3iPrTbcrLMizvGBG\ 3fzLRVSqxJbdlQnX\ Xd/sa5m7mdd 9HYd\ N+ugZJS6J9hK8hFq\ hHqlVUXUpYaAwC84\ IAlxt05SWhPiqztW\ c5mf/7pIrQpGNXhy\ xxzCko+S ie+nyAk\ J7AB3fxwwCpo4qzE\ zULdDaXZiPzV4qmW\ PalIJ0SqJF6pdGt5\ Jg9JQDrlNXXa2YjZ\ IqkBU CqCt+esdWA\ HawOrxpmot/4vePq\ M0qHevBURZIKj4q3\ JtatC3JAlsj9L+3A\ yJFX/cxc5VSK6hDu\ D/ BEmnGUP5Mq9e3\ 8HFbQaPFhy2JtX/N\ gESwJcPjNdLazCll\ B3qMsXzOzjs2kyO5\ +j3JF7QorNpoAUj \ 3bhKKI1bIAUETfIr\ Vgtu1kLUJNSkikMZ\ pU1fs/NyxxzCKMJY\ AZkB+4SF3CRJczZM\ n3SDSY9KdYLX 1sf\ SBXKbiiAIuCUXPyu\ smCJ16Pr4FRe/7CK\ bKnJaRe3S4rJJ1iG\ xMY09XMHL2aTP71j\ 1axSWYhXu ZgKywP\ FRu7WpczMbB+2g7O\ Mds/GITYCnmysLHs\ htyrIDQMmUMab9Nr\ XrtxrQ+hIEtkfx0Q\ laL+9Z lc8IlyAu6\ WddpOTqNsdIqoTbp\ Cq12mUsm4zeDISkR\ DDZPAewGUiqhHlOK\ 4V7x6kcKKF1Vi2V8\ i6B G61pgAT/EySt\ KiJRrGsezYWK77M9\ Ha/0zkmfGbolq40H\ J2xC3yOTbPy+08tr\ 1iaTRyfyXCAqvLC9\ dc7VMsQDRWHPSZQ\ 2vWEwPx0I3KBqzqm\ CKsT/37FyGjCBG0A\ 5nL1M4wb4BRd9HjH\ FxcIdc5Dl+XWV lg\ KpVSFRPXdn2JqR5V\ jKBDYbAjdATmtx2b\ NTwjkRlwDDkh93kO\ lStSQa34Pl/XnMHZ\ lVyyj5WZdI mb28N\ h8WEn6UTBlpUI6Dp\ VEHV3GQNDnOPk0Pr\ p4mkDNKnAnVJUqP5\ pbkaTYvJBFxCVIpf\ s5rSkBx qWjGOBbW\ PpskqRKiIKx6K7+k\ SgiqSOQEeNWuTKkl\ LqOtNZ5eT9DTDU8j\ Q7/pKPjRqmgueQHc\ Plbg pyfydBoa+dE\ CW6pCiHLeQ7S9uhj\ koxN5rpINnrOlZcG\ JS+3SkNPKirUnLys\ jVZ7iukROPBmHYbg\ y AVLZx56wEQWBaM\ Ke0dXijtqxZsoKTI\ yRHyLIyycOz4daOd\ DPuvXgSDKX/zvVhD\ 4hLnWaOzKUH88R 2\ gG+68TCngmZwA4wN\ 7VgFx2sJ/OIUnFFX\ Odng5/zUFex5FoLl\ qyjZSRRJFBYtWsna\ HE3ltK+Ot9H 6zII\ bB/7RHnRchyLQeAG\ +BVvSWXoKFiZZ3gh\ SKpAWPHrPm6Lgd6f\ WFUe16kQdHFN+FCS\ LhPY3pwi nGuF/wm\ STjOcMCQMQ1bWVnV\ 5sMOQf9uf5U2DHTy\ cszlUsFifVFmf1Oq\ WKE4Y4YRQ8n0enrQ\ oOi4b 0ya7M/qMcu\ GPRwrcm61geT6tus\ oFXbF4zsC0bZSsW+\ UgxToWYRjxzNTiRd\ JETYrLXENifbAI3G\ BJ gYM36iANNnIyY\ JGTjiogShKh65N7Y\ By1U8fNWiRYXkdMM\ OnVO6GMARN3zMEeK\ te5TjW15pUqVUV2 \ iNy9+tpbftbFz3mI\ SXlZHVPOsIUzXqkr\ pSsZHb0vUf899N6Y\ KG2PlBBUEfOsDGbV\ fsRsVdDbdcr7 8xT\ 2nEROK5ibW1YsCAj\ cIA6Umwxa3DGnaeF\ GY8Cksr9YL2WuBkR\ JJMj7+BUfOSGveLA\ kyhKRFpEc XDnBRo\ iJ13LiDNeTk0S8nI\ fWRJAkJmSiwGo6uF\ oqJF0iKLqryksCkA\ 0Fe7S8qp+xqPM43S\ fwXx7z 1Jj35Upc0\ t1GZo3UUhfCsO3x4\ +EcvxwrUvQD7j9ZR\ BYFrlrXyfeH87x2Y\ wdHSiV+NlpsELpsN\ 3QS ssRtJwp8+8gE\ 7brKczvTnJPR+fej\ kxwtO2zNzN7aKuc9\ tOEyfks80Nb0r0RR\ IDAWf3uaOzKUH52k\ NJQjDENEUYzVs+0\ Ar01D6TRmZJpEUaw\ GqNT5KjBlC1Fzkxc\ 0EcEDJ4zT2lq73lA\ 2CSY9vEm3/rli lc\ cj6XFQ4xe8ZWWn3D\ GHyA8JgynTVbVLo2\ x7iOWAsOSDwoq1ZQ\ dlPy4NrUGpxs95S1\ 4Bu2MO9khp yoW9T\ SOxMd2gdA5TZUitX\ Se9u33WY0mmTGIgB\ UGc0co/GAdLiY0ty\ 84suaP2vH5ycyHyQ\ 6QlaJ/9 /+y9eZgd\ V33m/6k6td21d6lb\ u2VJtoWwjReCWcMS\ CEuAsCQQEpYsBAiM\ E0MIeX5MMiHJMBMC\ E7Kx ZDKThBAMNhB\ nwAwTyBACGDBekSV\ LltqSWmq1er1b7ed\ UzR917+1975Ycfnq\ fR4+k7rvUvbdunfd\ 8 v+/3fUXeQFVk0w\ xvY6FcifIk+X0l/C\ EX6cmNJ0mmTjQZo3\ VvXHtLVmIQOuYmL+\ wbgbVMkFm78wRD 2\ fXJKJmIzo2b7pqLN\ E0vSpdEd3RUoC5a5\ MpiuEySLhGG6h5l0\ +BVA+tf2CqR4rQb8\ OCUx3iUcrDD 4Xlb\ S4sKwMMk5TtTEWeq\ NfwEpkLJeBhj6zrX\ dzr8+VOv4F8u1Hne\ 1hK3nxpnwo841NPB\ 589MYus6 V3YuXBV\ puX4HcczdIxU+P5R\ VjuYSpFaciHXBRQ8\ Toq0F1AILshmtvKY\ rLEH5hl68E3WiSZ8\ 0SjL3 7LxJY7CCs6\ OEtXPxi3k8EbYFqa\ 0pIrvHQSwwzRIO+4\ QTQft2mq1jLZILFQ\ 776EJkmpdd5VVpUl\ qe S5qtYxZM7O7ZC\ 61Tyl6P2kCCBICfX\ hQnan/IXVMLSkWK+\ oMTGHkLVLogMWrfd\ iobZbd35Ze90Brd \ FuXuXtRUjG65JJGk\ 9vB4Fjjabc9q06z0\ wq0iteZA2UQlmGsQ\ zhs5g3Ai2JS2YXje\ b1epWlWrjUZr cRT\ O+giNnIxQboxMU4y\ mFcLFqLSsF6lcfS9\ LWIL8lcVsQ3AhIBy\ KEZaGsYSWc61IPIm\ xgWaii6J5 DdrIvM\ u14Il/xvwIYiKMiJ\ TitgN9a7p/SzP00J\ TLZ09PYegaecOgJ2\ exs2RypOrxbxdqvG\ 5PD9d2 zj+5bF3j6\ V0W/3TK47qeDgYME\ 03LLAiu7ixg6xovH\ ihTkynDvqS3eWG5p\ ms2OdKibNc9NzPPM\ U32 L7Bjs0ZDzAkf\ oxohO6xZ5pBGNZ7n\ or6WHVV+XwnbzV6z\ KGSCVmPcJDjfWHJ3\ ZfbYK94Rr0bTYG/L\ YXSYTN1zAYBy18K\ VjJlokSNg0cUfMhG\ weybzGtpIqCRp+/J\ sJtZCHtRUTO2RiSy\ PrtvG3ra0sDdq RI\ j86nbVosuk2Myma7\ XxvMFqO209rmSVq9\ LB7mXbm9GFAKO8tg\ UlDROMnau/r+gy0a\ eiDZ/2DAZd jPLs6\ Tx7IAvsbXtybcCCr\ NkGwhFEtSiLYVplC\ 1mORahg2szJMARSK\ sx1kq6LhfU4jgtLI\ HYWMrI0 HhEO+e3g\ 1rmQlXhNLTMZKuyL\ kL+mGTpOfwFZidZt\ Z7IeXCZJmwhRCwm3\ T+/wJ/yIE7UG13bm\ eMWV vWse9W9IyX9\ 7dByVJFzfN3+R2Fn\ Ks7OU5/ZTE5zbWuY\ bF6rYTb+bDsvkKZ0\ O40qnZBrkm67Gezu\ y v794tsK/jLr83J\ 4uvnJ2EkuIeblwRi\ 3GHvZIcibW+Ub754\ ktSI0seDdxZkfHzK\ wa1feWl42VSZIU Y\ a6tmjFzYRAFA3ugQ\ HC6jnt4isKhroteu\ hUFg8JVnbjHKlkK+\ xJf+FaLbyWVD8g8d\ 1bjrbISZO+7 seyx\ rhXhsE+iklWTB3/I\ xT1Wweq2V/w5WkWL\ eMbI8kzPn5X4Mtnb\ ctjbcjQOVwhG3Ezf\ ljdQXvY4 Sy3g0Wj\ 2PEtVMDcLqZk5mm8\ USQqHfVKTee+XKBj\ k95UyMtmsei41ibo\ SpDLJiIJKUG5MNBV\ h9dgr WtDDIbd5XL\ ONCNfzCYTDF296LH\ Hlst852Qj5zBfu4N\ 4HvwfALTffws+8+m\ dnvefCEohtmT2AHI\ +Q KmlXleRkRDQeZ\ EajSboqEqpqMUK/O\ NdPoyiQFZ1w1KPAp\ RNvXyZJmwThJQg3R\ s7w1hhqeLxl39Z1 \ eyH91YlxdhdzbYIz\ 93lVPiMX1/d18o0L\ U2xxbMq2SYdl4sWS\ h2sRmqbN8idq4Zqu\ Eue9kD9/dISe nMP\ OZktHi1LMSoR1wUO\ 4MdFAkWAgR9DUWug\ yRZMKPUjQZIIeJhj\ V5s67J0e4vbRkhp0\ eJiTO9Osx fRiJEj\ YiNCK3s0AaJkSTPl\ PfHKFwVeemxCosdw\ zxWDZ1tdhF0G9e4F\ eTxSQsQbTBmzrpZx\ fqYNDN RMBzNFgrw\ WLtKH8oIxrRZLjid\ lAw6BJVsuBgp7+wq\ rFw6UvMLqtNzLQYM\ MHc4RCe8VZ8DMVDv\ Y66 tQAAIABJREFU\ ne3nlZMRlfvHlhTk\ q6kYWYvWnKulIrVq\ 0fa8x/BkOxNsPaSl\ FdDcsktYCPa23HQF\ NEhgPRsR1ZysLJr\ t74p3soHyliYQLYK\ 0US2mcNgncSW6o69\ 6NH+tWIkj+O23f5Z\ KXOdDH/ozAD75 yb\ /gH27/DL/wxp+fd1\ vNNrL2ndCJzwaEUq\ EbgvyBbEDGO9lAd/\ QVtyFlNUIlinDIRU\ UpZqc5qwKv IkXqJ\ SRNqUSrdajb+qq1a\ 3reQOREZp46uvLrx\ UbjMknaJDhn6kQDx\ VmtqB7HWpEXUpiky\ 5KoFkHS ohTnrItw\ Y4QbkzSt2v19HciS\ wRbHxlUJO5vVoPyM\ 6tFM4qMKJnGvjSyb\ DORtBvLT5MgaC7BG\ s/ZP uL24INlRlgb\ osLKQ5XnQ5vTh4xz\ 0Fzdux5LfV0If1Ik\ Mn+B0HVWNyW0vrHr\ xXw8KV3VSe2Ac70R\ 9 3uKppmK0mDWJmD\ cjmd0fcts6q2DQbR\ OnlaDlEi3mvJaWwa\ GsxsuSVDUV459z26\ 0tkTfWNJ6fqATp y\ 2zRNfRZVR17ILem0\ elg2EM4AnsRPWFLy\ L+e4FFVkWsSbUNWL\ dOFjiJBehKtKpFOR\ rhWWxlUkSKe ijC7\ rGWrUsISiLyBbMh1\ eegkQUI46pPfM/3+\ 5a8sEg65ixonhsN+\ s02nr5sghcM+0osx\ y3Y7p01F Cu9kY1X\ ZamuBri1Pxu595Hv\ 80R//BR/96B8BcOu\ t7+W97/m1BUnSct8\ Xq8ta8TRd4kk028A\ AjA4L g4w0BVVJkq\ bt49daH73Q0QwdTU\ ASJmsSYBtbHawxm+\ B8Y8HXcjFE3ZdJ0g\ ZDi1JyZ+oYlZBac5\ zd iyVHK3V+Ye+WZ\ e4NXzlf496xGr9z7\ Y4Ff/9wxedsw2/rg\ /KDNQDC7QUSx0Dld\ XKnPQqPTOLv7WDn \ lvmjwEYtxhr1MccD\ VMEk2ppH+IrCkSkS\ WyC7c6icQDRirNGM\ QAW7O4i7N+90ySpJ\ 0xfWQpKJotnA go+\ zt0ByIkF5Et0RTN0\ 32vbRuSgeKAUDUTK\ R7nzH2pa4+IkA5cl\ MC9V8T5y9BfwhF3/\ IXVEFToWS XPM+Lb\ uCpCHRHL1dwZl3n0\ jhH6+TRBKERjSWRb\ vMHeVfLdIwwRhY2A\ JCFAxiwlVrd5JIIk\ rmguL2 FqmQXryud\ mXSkKs2LwyHfaRUC\ KmhOfqslq17poFVM\ FclOJfjEYlKMpfw1\ WwmVqBnm2tGqCKFq\ khk JUQ2IoQj5hEt\ e2eBcNifR2xVpEjc\ bMpuPeRMRYrwlIvd\ n5v3uQlLIHJi01rQ\ M6HJdEPzJJeC0W0R\ Ha8B055lyo0RBRP\ 0rB2XyCw0FgChzyK\ pK3m/VS3OAnxH/PZ\ 07kohLIFZsgkuuCS\ eJBoJUYFEBVkw sw\ oU5Wt7V7R5aona42\ qM9CKMvLUiH67LJG\ kDYY2G5AaryE6b2g\ 197SpSiyAtVEWqRI\ pOS3CyuXCO +iFHa\ j7DQdz2JGohTFL2F\ J1ZVR6jEs56LgB/d\ x6VE+QGqwi/SNTnI\ Box5mSAUQmJex1S0\ 8B9Ujey ZMy6X4tA\ 6bqOHql5t7lYcPWE\ sBFtmO9PC/l9JZJA\ EY64lA52E464TH1z\ hM7r+lYUGroeqEgR\ jQU4 /YW2ziFRSaZ\ BGlhYXLkSrCdfbS7\ a7bU5pCG3MyM9Mxe\ Jma2clo+T8iRG2Wq\ /vpao19zhkDZUexz\ e PdOYdcH0j9eJKw\ Fmp4ORN3EGiusur/\ tDbibaXoIAmV1W1v\ preiatBHZ/gfqRSY\ yCtSDpkF5MEknC E\ Yl/to7VnVuxxqyF1\ RqQttqJTslekNA4P\ Q7KVctaA7Q0W8I20\ G0dQzdWRZCMXotwy\ Ccc9ucJuWUl RtUj\ lK8QOUE8HmXBxpWY\ yg+yDYuqx2iWTunQ\ wgMO9rZcNol6spEZ\ LwYJuqNjb8+RRGt3\ a2+l0jv7 iou+7/a\ 2HO6JGmJSbPh1qQW\ j2yKeCJes7Dztqc/\ gk5/8C2699b1A1m6\ 7+Uk/tubnFMUsO1E\ zQUUp dp+NrE5v5D\ Q788JKjZV/R2Y9ft\ kER0cN+asWi4dDLr\ qjI/IG1fvHUYHCKJ\ sYeQujw0FWA7xTVY\ TT tSBhk5WYcNhDB\ XHbS87qtrG7coRTP\ u7hKco39C55DNp//\ +HJjckB+P8xhJeQO\ 1lFkwnB7hLxjC/Q \ UN2j19J4097Zk2yV\ SPGRR0cAyBs6U5Ek\ bxiEUvHgVJ2f3d3L\ T+/qxdZpt95qMuUP\ D59li2Ozs5TH Pud\ j1CPcqxcWtQkvIX9\ sCj1UWTut20F22W3\ N0hMJucddElsn3JY\ jiGMCKXlTvrhpu7b\ G4QrSyy4E VncO71\ SN4t5OzEVG+TcC/p\ BLcLpO4UBX29FaN7\ R1Bay23KrXSyiUK/\ Efbyy7s2rpplrELg\ myyknL pkAFatnPL\ BoNkbVm1EBzMagfm\ aR0sHv9obyuJDzf9\ IuZ4X21FNwzDYTUV\ tV2807U2+fMrKpGc\ /rO 7i8QjrizLuqJ\ UpnRqFIkoaK0v2tR\ ArJQS3a541nu9tFo\ mFX5FqgGtn5nFbOq\ UTwRomlrz9GTkxHR\ VISWTC8vuqMjStP\ BtS1di6wGKC+rVOT\ 3dqzoHFC1GM3Q0PN\ GFqFTFBm5WIPWUNV\ igrPeipydW9UM q9\ /eNDsB/7F6u823EF\ Sk+Nw/3sF37/k3IC\ NNc4Xbq4GcjNAdHX\ 88WHWlZ7UIBl2MTn\ PZ86p1/oic wOjNb\ isvBJg9s9/3xJP4p\ 1yiSR97Sx5rSw6j0\ 8yCcC94BCMuwhGYn\ Q5mtz2LuLfIeWF3e\ cn3+zJJ WieEl+Cc\ qZPkTIKBHKmlcd4L\ 8WNJLYq5qmzzuj3Z\ JFuragRw0o3mhbvO\ xGDVxZPZheP/O7QN\ W9f4 28ExvETQk8t\ OmtIDE4tqhGZCi9J\ 5Y/pPJFhTHrljDep\ P6SWxdabCiMerLr/\ b272pAuvWrlk1y6+\ 6 LbBKzqbZ+1e+P4\ qRtzY0j6rlrrweYi\ cnoyzwdYWLcjjsY3\ SYyGom6G1deFbTtv\ JO1EkChZE3ieoB S\ ajmJX6vFCpSxGcDk\ iRZ03RVy5k9SdNVL\ RKNwxXiSjBrYW8cr\ pBEEt0yKB7qbEfJa\ FHabrNaJQd/ uE5u\ W2nBc80fchH28pN3\ LcixCBUvT04h++xa\ hASyKqTmZNoRFWZa\ pkQlmIXlF7L1QtVi\ 3BNVosmQ wu4y1u6\ 1n8fhkAtCX7UNgar\ FRBeCJRfJec817MO\ MabGNRkuAfrFCa5O\ mwH8uAdkstKqAC72\ +aDRE VTPSttLXP5\ MoqUBhb8kha1FWwe\ 3LLdkh8E428B6vLt\ lJuNxuWwWElyAaMa\ potqsxuZNV4m6HcH\ t2 gTo8UeXKosUtP\ WXyhj6rxeYlCV6Q8\ HeD44wFMVd3Lf7F3\ NuRnSATfsTvPHyWg\ XyOUS9sj/ybk9kF \ dzmCBPN9jJ5IMKox\ uWMN/KuKbVuAcw2f\ 5/d38IMGPGsTn7ud\ br5zemIJwNlIIVQT\ ciwijRJy+zfu sYN\ Bd11tuhZkJV5V1aK\ 1GM8lRKsdN48rAXE\ lQOQNilesjTi2LRO\ W8JNaDsISWN02sho\ jJ1fe4i0e 6qT20A\ TeYBWj6Q6fRE1H6j\ 2ZHlEUDBycbBw/b+\ ANVpFCkNtWIp1RRG\ ppgJQnsbrtVREUWV\ +5a/lc ItWK3MHUs\ KzsWuKdqK/Jn2k1S\ DxJ/dEpzKJN99M71\ 7042zsLWWVqRjsx8\ SSykTnSpyprywGz3\ aJV siqCBNl7GA65\ m6YdMjosmCNb1EXz\ /FJygXtM/76FxW63\ EOJKTBJchDC2Jloi\ fO9kA3tnUwt1ISCN\ QTNZNVnW8waFgx0\ U6MjE/WM+Zqezosp\ g/soiyo2oH5uk3NG\ 34PNeJkkrRO60h3W\ +gSqYiMFsBy07 bY\ Qb416VXeAPT1R52Y\ 5untq98I7uWyN17q\ u47Ososrcj+2JqUY\ rTbA+onCA1NFJTb+\ uAenIWPTmL ahRzf\ V9n+/ZaLAm3b25pd\ DNhVGPMyQjrgou/t\ 4OoK7tAB3GMkyQ8U\ 4oNJRTLHk+3hdXno\ IvFv5zh sE8aJKuq\ NDUOV9AdQRIoVKCg\ sDGtTtkkyas2Y3Ql\ RCkUpqeAWtEsFxP5\ fSWkG6HqMbndJYye\ 1a02 LSdtq8NedEG\ PJ8K2R5Jm60tWJUX\ BIA0TYjdeFUEpX9d\ D5fuj1B+bIo2STE8\ zx2RSuYpEJeR2FhC\ O wBuqkyQC71itXf\ WKLmRTfKsle/6Qi1\ lau1j5YkTPzIWKFO\ 6jFdIowdlXRN+gao\ zZYxOcz5zG/cfq W\ XvPMTGarbGWOLwlQ\ hYFk0Su7fuYBAnpJ\ oSA68LAGSgR12LMg\ kkU+FjO9HoiY4mMZ\ vs2OYUSiUra gwSJ\ SkiEOe92i0E1Yuw9\ BYIhf8V+VOuFvTPT\ orU83lKVYG/PbQhZ\ Xm0FztleoFGLcI9W\ FowteuKJ U56AcIY\ CRC2kcW0vjSd3UX3\ alqagOXONnlmpubq\ cTaS8+/4z/O3gGMN\ N59fhIOZwzefGvq5\ Z5oz5 wRqiFoJKMC\ cD7HMuuRNVSg9MkD\ vttV2texsphUerlO\ 8fQ4slsmyvqIr0RI\ EeJtjDPoWjFTq+O0\ qu mdLuXtPVfh1TY\ cSRqQY/X774PkZAW\ y8yFypSNA5X8AarN\ AYr07vvZeAPZdEW3\ qna9A/j9Xe3o9EQ \ Fah2uO1qEF8IiRoR\ 8dkg09U0hdWXAoVr\ OtEsHf/0yqItVKQy\ 08JmLIy9K794idzK\ kevooHxwC93X baM\ 00INTKM3bcc+6T7e\ 1JjuF0vU9GHkLUTK\ xBwrzSJYKsyDY1nM\ UdpWJJn2Msol7eKp\ dDVttEHMW eaNv+s\ DBRsN7NGuxddzQu6\ HtKj1voGtapqdqTm\ EZfVZ74RWWwNpitx\ fSaHzt0S3aJsX26M\ LkzJkh fv233w2A5\ eQ4f36Et731HYyOj\ WcDNTPO4da/3//+3\ +Ho0aN88A/+K9/93\ ncxTANdTP9ZDO6ZB\ lZv RtSNkomqz5+8\ 3SwYnSbO3kJ703mp\ ImPMHht7oEg0FhAM\ TgfqJp7EPVG7XEla\ DlqUYp+rzZsgkyVj\ 3tSX0HX+4dQ4w17\ EzmKeSBN8/PgoH7h\ 2Oz2WgZgzhVR4tIr\ uSxpP6p712FqUYjS\ yKbPy/Q0SW6CH in\ B7GW9v+QndPpsLPU\ zIDU6TBNlh4y/guH\ 3eCwnHfP7jji60KN\ 3wSIUVQ81+7nA4M4\ DULB1ndwn3 WAXM5\ d9/FSniMT/T+uwp4\ 52qIZoVpfW+LtFpE\ J8NkMRtXVCrUrEck\ iTJglyfABCWoHhFJ\ /VjkzQO VxbVailX\ El8ISZIsT6+Vm7fU\ AmuYBhPD5zl39BxX\ PuMqvn/7t3nWm5+P\ njdX1YpY8es41Il3\ oo61 df7YfhommDP\ 8mUSXSen6HqILAe6\ xCrplEFcCkkCt2Lt\ LTkarrmquFJqtb9r\ 3zzteIxz16XhK76Y\ s is7eAu6R6rKtFl\ WLEbm1EzTN0TctRD\ gIAs6dPQdAtVbn19\ 51K++57Vb6t/YDoA\ sdGcsmYdLRdYM/ +\ IMPoAud/b+1H8vOz\ sGZFSiYX4VStcybr\ UXqswpcdEkCZXVHv\ 6RBtvbOHLqm4Q/XE\ R2ZiWX1/nGM snWZ\ JC0HXabtv9Uy5OSa\ rhLVKOZQz/TJeV4I\ PndqkqONkGIzY6tl\ ALkQQYJMQxR3W8Td\ FsJL0AM5 a2Lu3wv\ sYT8z1dxawL9i/sU\ 8iGP8JGWo5rEjFrz\ zuv4sb63pmbMSD4u\ NhOgwCY65qAfG29W\ VaDLE 6nOyce9qvM\ wjTCM846E8OUsQGI\ 64qOr6U9OFJZCO3i\ 6xGzkD6ctL6kq7Vh\ h9Fk5QIjidVbVaep\ xW a0SFcl5MS77LR\ E5GeCfqpJaG0z9fl\ yVjSc81Azxw93186\ 9P/yk+88ycxOrL2x\ VJILa0tYm3BKWSk \ MlEJUeAudld0fT5x\ U65c0KKhpYNK95Tb\ U3CaF+E+LtHPLW+c\ uRqh/WqhC73Zkt3Y\ xw2HXLwz9WyK dJ3\ fgaWg2WLZBVdWI4w\ FCO2Kn8PQm227zXs\ d1Vqdt7/jnfzyW97\ M05/+dAA+9alP0dX\ ZyUte+mIA 3vOe91\ IqdfB7v/e73PG5O2\ m4dd7ylrfwx3/8Yb\ 71ne9kx2paPOPmm7\ jttltJlEGiZFs6MN\ cc09rq IC8EiEtQy\ U8bCrovDUkSlkDsL\ RA3QhpHpwDQLB2rN\ 3eZJK0UmkpYqDs5c\ 7ot7rbomKMPuLqzy\ FDd a5s/alGKfSHE\ qIYLEqS5UHkdlV8b\ QWoRLN1XCD/O/m66\ cuuhartzJzmD1NCQ\ TZF54uikhiAxtDVV\ rYxqPKud1gqxhax\ iJJViKojociz21TV\ etLWDPbumL/jCEuS\ uKK7JfGw9mFmJaRG\ iwlW59s8bhysr fq\ wkyNp2LYLU0uBIL0\ ZNxet2+p5ndtdlZi\ Tj3xlJgux9d49ViC\ Z9rG673X7SbH3RFp\ TRbWVkaiom POPNG\ /dvEZNbfvGZHHj2Q\ Xp2ZRYchmkTLVFJ0\ jUNTdPaAm7DypGoh\ H/5k7t5wbtfhi6MR\ StRC2m7 oskQo2OR\ gOJm7ll+X6k9YRhN\ +ugWBGfryFq06OSi\ ruubRopbk4sb6Uav\ ajHe6Tr2ltymTY9C\ 09U9 SZfdXMlQYa9\ jA2YUBXEoN636IRP\ Fb73nt3jRT7yAl7z\ 0xW1tUn2ilmWuAV/\ +p7sZGx/H9zNdT8O\ t MzExCUBlcopfeu\ ObeOnLX0IU+PzM63\ 6Bn3zeC9m/dx/uuQ\ qGIbD65587omwSjl\ y8rLqZUIG65IQk f\ 3UH7uEpEplQujrzX\ rrUx/SEh8rrGZlI5\ 2tJhJdQfHicaEseL\ ZYUHsnCXoOdJZKcQ\ BZNUktjZynf vn3L\ T2klBGk9MGoxhSNT\ qIKZ/cllPkmJY1B8\ eBx/bwdJTqDFCZpM\ Eb5CixOMeoTuS/Rw\ WpvjHehc USWrVSG\ zRj2CXSXCGQv5Y5U\ GcSI5VChzVaoz0GP\ TVcwjrl74QiwKBtr\ 5i+9OIWwDFcoFWz9\ GPjvW lVwUpRdlQu\ 0ZKOwqU3tkgrgS4O\ wubbjuSrP1VU1nPZ\ EgHIFuZzlNq9HmiC\ 6T/ByCaDkFZBzy1Q\ 98 idMPnWZg3wDVk\ Qr7nr6fZ7/jhUCmW\ dJ1nSRJSFRMoiSxA\ qurgN2dAy8FCVgZ+\ fnhVx9ukiQTXWTn \ QaIyIq0LE13XUf3M\ I1HaCouPLdKXp4Sa\ ipm6bxSEhjwcLmh2\ 5+wtZJl2LB89sVqI\ gtH2mtoIqEhR f3Q\ qE7Vf271hj7sQ4rP\ BivRC2jpnFfS8ARM\ hcjxCrMB6oWWkidB\ BJUuKi6UnkTLGjxY\ Prp4an+Sv /+5vec\ 9tt/LpT9++4G2+fc\ 93GJ+aYGJikt27dr\ N79wAAhqZl37dF2p\ 1mj71o/MtmoSW6v5\ QtN8iu 7XZ/AVTSN\ qe8TJJWgNTQs3HPG\ WgTpIEi/u5mnMS+M\ kY9q9w4p+ttE0dVt\ kkMDWeoPvv2mwQtS\ nFO N7KpsUUuoElO\ LOikHTL9hW9VvZzT\ deLuhR1wZyI/WEOL\ k7bfEdD2PHqRXeBp\ naVV+b8YZWvFURgb\ iYXiJiDTIVh9zoq\ M+3RbAPEsbYfoMil\ d1Y03VMM9ViENkw1\ tmQjbWHY3Njc0VUU\ K4vTS6L9mHIPI G+\ hCrMlMUkWqXTnKhK\ o6//wHd6Mixdvu+H\ WMGUHQiUra00BTxy\ /gdBcpbC0hY5m9bz\ moHRnFlSHd O3opF\ jqI02kxq2Ea1GuZ0\ LxUzj67KPAZOTlBV\ y6P1XyslvbD3OEQn\ w2Ip6Is10yqZaujo\ suk68Yt 7dicxfRa\ m0qU8sa8tuNaEZ5y\ SaOE8lP7lr/xOrCU\ /85ciKK57tfXWtjn\ IvEkcSUmDRJSlZDq\ GsLS ZlkPLBRvoiK\ FamTnjWM5/OmffpQ\ 3vfEt9PX28pKXvhh\ dnz6PP/hHH+Kdb38\ 7trP4WmIIg2KhBGH\ C Dybv50Jlij27ys\ u+P2aPTehJEk9eND\ G1njewd+basTDriZ\ dZL9IgmVVlu0ySVo\ DU1LHPuei+IjV1 U\ kMjf7yyIOGRJQNKB\ tEWuy3ANicDrMkY9\ 2AX8iJ8+Lkz9SyTb\ YELZ2ta7pjrUQ8Sr\ ugozJq2m/Aj qlFM\ f94mbxmEW23sczWM\ WrzksQsvmRWREsQx\ xysuu02L9/SW6eou\ rGghnukHIjoN1IXV\ i2yX8xRZ CktlZtn\ bcigvm1aLJn1yO0q\ LLupmdxaxoNzZQm2\ jz0K/YCAcue6U97k\ QBUE0ufRrnjm91Up\ t13Wd MMmiaMytq5\ uw2hDEaVu8vCa4CZ\ rTIkmZ7uiHX3uYd/\ 3Tb2RtqRk6JMO0cS\ /UufO3P03/gQHGHh\ 9l 9417efYv/gSxG\ /Lp3/hrenf3oes6U\ kpe/h9/NqsqNTF+e\ pwvvu8zvP6Pfg690\ +Dkt4/y1Y98id3X \ 7uHskbMcetG13PLm\ 57S1Hy2tAzTtF6rM\ 0l4tBtFl0nlDH5X7\ x7D6nEWDeFtESZn6\ hrbH7G05vBP1 dZM\ k/7E63pk6nTdt2dQ\ KgXeygdVlrbiKqts\ 6yTqDofW8gbA0gkG\ 3TYa0JM2sBwomxhK\ E339s4YlO LUrbk5\ Ad5RIf+9if85Zf/C\ W2Dgxw8003AXD//f\ cTxzHPe/6Pc9/9Dy\ 76HNddfz0vf+FLMc\ smj5x4 lAfue4g9u\ 3av6LWZPTbBWY/8g\ TUmlq8BwhLYewqEQ\ z5mnGyqbm0ppCqZR\ Q4vk6QVwNtbxhoLM\ CcD hBsjO+0VVYRm\ CrAvFqzREHM8oHbD\ /F2boWvozbZhFCW8\ bUuZr015HA1dwub3\ +aqyzdMHitw9XKPT\ tunJWUQDRexhD1l\ efGLEGguItuRJLY2\ pMOJcw+ftA330aSv\ f5bYEsm0UgGhl4+H\ t43Ca46TNCZCV eo\ W0sFxmVn5fCXtXHv\ 94nfqRSfyz5oLxEl\ a3TXjeJWlImPP6nW\ 15ghEXq3vj2yTpKt\ ok/vH6rApF izRtl\ iB4MYiCgfQizE5nT\ eV26UuSGaGqtQsuu\ XKeQlcnUeDPIsu6k\ +Oev/9XDr7kydz8m\ meQqIQ/ e/mHuOEV\ TyXJQX2ywRs+8cvt\ 6pOm65BqJEJj4uh5\ vviBO3nV77yG0kAf\ SSL56ke+xGs/8Dq6\ Dmwl aSg+/qaP8uT\ nHyK/rWue9kkUjPZ\ gQnjGQ9O0JYmN0W1\ RvraX2sPjoFLMqYW\ DZvWiQdSIyG0gSYL\ m lNs62h+yEuOerl\ HYXd407x0VKaLTHv\ ZWZ1XVB93USbz1Tz\ maPXYW57F3dd+ZVN\ fmvbfBiI/TXYQZ X\ +GBgX7+9KN/wn+49\ df55Cc+DsC3v3MPd\ 931xWWf41Of+hRf/\ srdVKpVOjs6eMELn\ 081mtkrWBx6 3sDZ\ kV82ImWjISyBvTOH\ vBAQevKitvygmUc5\ Z5N4mSStAKmlEW7P\ EW7PtSsxT8QxfOEl\ 5AaruAe7 Fjw+maQ\ YUaaT2dKX55/GGrz\ zadsAGDnnUVIKwzD\ QlWDnFb38yYlRenI\ WwUCO8v2NJatJxqS\ Pf2W2 6zjX8Hn7/i\ 10jkdYKzzJW9Wf29\ 79m/g1DzNnsmfPFb\ zx1W+gu7e7PVW0UJ\ WopQNptVp+672/zS\ te +XKe9mM/tuh9F\ kI8Ea6outMa+c5tL\ +A+XqX2yMQsjZGKV\ NZOi5JZrsotRJMhR\ tmcZyWgXDkd9dFh \ bkpFJwkU/pCLFkPu\ wOyLn7DEhrZZVgN7\ oEB43l0TSUvmpM7n\ HJsknv9Zt86DkePn\ efwHj3Psn48A EPk\ RUyNVdj1lDze+8mY\ ++bqPcs2zn8RNb3k\ GHZ1d2X1Vyh2/czv\ XvfQGug5sJW6EhEF\ AfaJBx7Ze /HGXYk\ 8H2/Zt4/yJEa7c1r\ Xo8QpLYO/KE57xsC\ 1tyc/Z2mK3yXT9sa\ kFo1taE4Abreewil\ YW2bHG hapxfAqr2\ 960RbZFkMy+1REkA\ ByddHz9x7DWdpTZa\ SLHI+i1sinOaoTW3\ MAeOLCfz33274Gsl\ Xvg wH6+9E93oes6\ v/SuX+WX3/5LGKZB\ ohJuvOF6rnvyRwB4\ w8+9vv3473//bxFX\ JaKYbRxbEoKRap1J\ KTF16BAG9hKni54\ 30AvGRZ+aFZZAkhH\ Q1QbirhdxJW67gLd\ wmSStEk9EctRC/tg\ U0UBxybaYFick dp\ b/9oiaHmfu3z5dFY\ vjhLuPjbPdzB4ntT\ S8A90UjmSTE20xeD\ H7kxhapr9ypk+n8l\ hIbg2Taffe +wM++\ Ym/ROgGX/ry3bz1t\ ndw5+dun19lIhvzn\ qk3AdB1g1975zvo3\ 9KLYVrz9EVLjXFLL\ wv4XClE l0m5q5fG\ 4Urmn0RWwfIGq5id\ DlZnjmjMnzfCHk36\ mUi5IonCoN0CaxE0\ I5+5P7sTjVVP94m8\ gXei vqjDtOgw0YU\ +70LQwka1WVaL3M4\ C8ZiPd6q26iy61me\ sIoVhQWFrCdA4+9B\ Zth3aRiLMthBbiuy\ c ed7bX8ju6/ZmD5\ DX2ufRLW9+Dje+7q\ ncd/v3uf1X/4Zf/e\ xvNFtvihfd9jK+/F\ /vYv9zn8SWK/rR Y\ 4GKJXpRYOOQGglRE\ GI4y59DM4mSyBtLa\ rEKV3Uydc8FjLI5z\ 78oGHQJhuuoQJEEa\ kNzAUWXSTqx thao\ e6RKGiUUrl9ey7ha\ tETQylc4O/JrIirC\ EoQLDOOsCdHq23Zm\ T+YKHgdZq7hFJL2T\ DcwOo902 TpQkcOv\ ZlGWSoDUnKFu/yza\ GJoGXVdxb/5ZjMWZ\ fNmSQJAkyDkmUpNO\ ATsPgXCA57IYA7C0\ YdC3y fROO4HwjYu\ cmWh0sBD1vEFfidr\ jtxYCKFLqmzbv2XC\ ZJPyLInfZIDX3ZFq\ DuZ5UkL5bkyiaqIR\ HF 2aeBaeo0HA2rp\ tCctNk2NKg+bUvbV\ sCoRFgXvHZES2KLN\ oHMSQ3DWPuOdlf/A\ IWuTm676lY++7nP \ 4bouuVyOP/i9/8zx\ xx/DMg3e+ta38sxn\ PotHjx7lnu99l4nx\ Sb7xrW/zVx//GHfe\ +QVe/PwX8qSn PJl\ PfPKv+Nd//SZKKZ7\ 3vOfyq2/9lUXHuNM\ wQexc/a6leKiTJJI\ ETedoFSioBO0cr2g\ ybJtJ5raV kLWY/J\ 5sUVxokqsViqprqy\ fkiUqwOmw0I9NKtE\ JfdaGjPDlvVH4xXI\ opE7u/QCKTeW3A5d\ AaWY/P BkRmQGmgh\ +f8/HP50h/cwYtue\ xlb9vajvBBd0yh3b\ eXg857M9z7zLQauG\ MDqzzNycoS+NLm0A\ AAg AElEQVRdB/cQ\ TflUKlV6d/dy7Suu\ 4/t3fJckyc4TwxBc\ cct+XnzbT/HF932G\ t/zd27Fsh6ufeQ3f\ +9S/8WO/8CzO3Dv\ I+NkJtj9lx4qiXoQ\ lyO8r4Q+5eCfqmTl\ g0UA3tPaYdzgRIGt\ h+z7usQr5PWWM bg\ vvRJ1wxM1IVn8hC/\ i8VCascxBN+tgDxQ\ 09h7zj2fi7tdUBoZ\ M/sL5WjJZc2mz3xS\ pssR8irNnX p8VkA\ 4mSs65licpsCcIpn\ 3x3cdHq+XbHIK9rD\ LqSfx7zuTJvLkiWa\ g2PmnvxY4taJHIlk\ 4MbBTke oS1w+b/0\ 36bL2BBosSTunhYc\ Cy/h5kBycluBsWB6\ Drlljpk3DbxUEU2F\ 5IrzT4Of29PLHx4+\ y9PH gnZ4L0z7Ns3\ UWQkvIZmRY+QbKee\ lpO9MA2t7EXON18m\ jDx0ln8tTKpfQdYO\ ffe1ruea6azj60FF\ + 8/2/zd1ffhau6/\ KXf/lx/sO73snnPv\ XX5EtdnDr1OFNuhR\ MnH+Ofv/4Nbv/7vw\ Vg+Px5YOG228wJ q\ bWgcKirXRWYm0TeS\ pmPJwOC8WbbUNcXJ\ SuiYFAoFHHPNNa06\ GlGpnVp6VfUVIyKk\ xVXaOyB3CXR Jtnb\ coRjHsGIS+6K4spt\ AJpanzYsjRveeAtG\ 0eTbf/MNGpMNit1F\ nvHmH6e8dyvXvuom\ ZCPmjt/9 ByI/Ztd\ 1u9h1cA8A//pnX6U\ xWcfO27zst16Jrhs\ kKmLXtZng9cpnX8X\ o4AhH/teDXP+ap/G\ y972a r3/sbv7mTR\ +jo7+TV/7e67CcHI\ G7ci3dzDZtdCFAEw\ Yo8IZqKE9idjo4/Q\ ZG3sxicbxJzE4nCw\ cu mZSv60FFWSVp6\ p4L5PeUV/xZL0aGW\ 4G7kEVXaFG6bMVrJ\ jRLJw3nR/ysFXIsw\ ui0EZ0GwYiPsYYN \ xFyk+sZ0BfR047oL\ Vpe1bidveSHA7lh+\ I9RlCW5sfvYnvZiT\ XkzZMugzNG5sZmm6\ GCB0QsWSrbkf Cai\ FyeBlkvQjAlm2MSe\ D9gi/yuuM9OSYCqc\ JQeHRKlqcnQi5wQZ\ 0wFik2LXA45UNjTf\ s6eXPHj3P vjMRAS\ l20aArb9PlzKbbKj\ +bXAg35X+HDV5xqJ\ f5Di/L4xff/g78SG\ KZJh/58IeyhSqRdG\ 7p4l++ 9g1GRkcYG\ xtr376vr483vOH1b\ W2KlNnFecdAP4Hn8\ qd/9he8/vU/y65dO\ +c9V2thArDWkIXWQ\ qsq sNjvcjsL5HYW\ 2m7ijcEKqcmSeg/D\ EKt2PtZiYE5LWHSZ\ rOb6JgoG9kDWdltt\ 62u9KOwqk4QK90R1\ wbDJlSDbdee49lU\ 3ce2rbpr1u8Crowu\ Ta19xE9e+4iaMptF\ pkkiMDpNX//EbZt0\ +CgMM02j/PFEJ t7\ z5Oe376EXBi973iu\ nnrsa4pydRSbJqHY\ ewROZ4PB5lLtxNgj\ TTfdtvttZMwOx02h\ W3lgFrEknC ERfpR\ vPev9a5rqoxcSVoe\ 1IhsvNFFwLdEbOyB\ oWTffYibxCOuPhn6\ 1jduWWDeI28RTTpU\ 2D5JPaV QAUxopRt\ Pgq7ingnG+vyBGu1\ VjYCG0W2ALSiQA75\ a9YAqVqMilLsVVTE\ W4TopBdTiyS1CKoq\ 5Rld 2ab7eBxyYUr\ nGV3ORSNK0WiI7lz\ caFmzxyaeCOf9/DJ\ J+hGBKppYF7xZPzv\ VbK1pUUqhqZmJtub\ R 4gRnqM7BfIH/6b\ u8d0gsuFjvylu878\ k7uLJgoRqSE+ddHq\ rHjI75JKaGZ2l4qU\ LoOruLOUI/Yngy 5\ MkDHbxm79pHRz/4w\ T9k146dGKbRFjJ/+\ tOf4ct3381rfvrV7\ Nkze4y1ry+b5JNxO\ EuD5ORLfOGO z3Dn\ F+7iV976Nn7qp17a\ brfFfkh0Ich8m7rt\ zGH4IrQpWqJvyFon\ utAX3Z0budVPLSVJ\ sqJsuWWP s0mU4rN\ Be4T9YkB0meT3dBC\ cb9A4XFlzNI2MfGQ\ 0LdaG6QpioiSqHpP\ KFMOYvcgudPvW47T\ +v9jw AEBiSBCQ1C\ SqIFZ9TsnxCP9snT\ RKyG0rzRv7Lz+1j6\ Qu0Z35jy0KRqaDY3\ 5rJhh0aQxWEE4mzj\ c7 HewmAQpHXDRLJ\ 0GhRzpOfwHdERhlC\ 1HIbiOrme9PMO4Sj\ rhEkz5Ob2FR92xhC\ 4JAbVrb1t6ZIxzy \ nxDGqRtFtmDaqHau\ R5GsxGj52bE3/mP1\ NkHTkpRU19A1bV7U\ yEpwY5fNobLN4VrI\ SS+mesHn7gs+ B/S\ ULl1jNJScDSKuLGz\ e+61qMbKaGW4mrsT\ aZD/BudDzBsm5+d+\ dyyTpRwR6IBFuTMd\ 3R4l7HeJu h7jbyi\ wBJgNSU58VjmvUI7\ pOuey8Is9nxur8Qn\ 8O05zN3DstQWfzSy\ mKBlft7+Cq5u/iOI\ GqRPox j9V9fjAZs\ LVk8tM3b2PLOi+KW\ zu7MEyDKPAJJl2MD\ pMv3303v/nud/OUG\ 67n+LHHVvxYlpPj5\ 37u dfzUy17KS172\ cn71rb8CZIuR1W0T\ TYYIc3GislkoHurM\ du2DVZQnF67YrHFI\ YKMWJVEwCJOLH1HQ\ 2kXXHh5HetGCFgs\ rxWKaDNFloqbiedW\ yRSNH5ug+lvq96DK\ hoK+6ZSknpwmS3b8\ wARGWQPQs/vk6 ew\ tE92efWYughMM+jc\ FMy2T3OPPeS3tXnv\ qDE0DWNl7o/GkRMm\ dvAe9EPfMKM3xMd2\ FfLd3JyNZm hcAKS\ 5Cma9fKaDJFGRujS\ dIcfUOnsOydOfwzL\ oV92UZTjkVEtQh9U\ iNSSbvCYnRbGzpgY\ YvpqtIZ TYOpiBN1\ Rdyb/ezh5oZ1s4hS\ OOIjimbmSL49h34J\ nLc1oc8jqJdJ0o8A\ jFpM/ngF70BWobBG\ ffLH KyS2IMkZyJJ\ FuD1HTmjc2GkxHkh\ OW4K412FLPeE7HQm\ Dj1XZc3Un9gpLx6a\ pQ6+FicW1FLh2g1+\ T jCVxLUA3NGQ15n\ k3P43f/8P/zE3XP4\ XxyiQdPcu3Yh555I\ f80Yc+wtVX7ufUqd\ O8+Cde2P5dohLS M\ Lnobt4zkd9XardGv\ G/W2otYCypOsjHsS\ xhcu5mJ8EvB2mLTd\ ctW6o9MUntkAmtXc\ cNz/ESXiW1p hGc8\ rA67nbO3IY+9hgu8\ N5TpmAoHuohG/UUN\ JJeD3V/AG6ziHp5C\ twySSGJ120u2gxey\ FlgM+X0l rG6b+pF\ J6o9MUtzXOa+iIwo\ m4ZhPcHb9eYIqUqQ\ xaHO6L5q2Ph+njdA\ 1ARi9VlbV2iCSJCy\ RvbZa TBqmyHo8qz\ rUcvTerAnUG7ts9h\ YMvmcK/FEfcypu63\ UeCGxOlxOe17v2cO\ CFoGoxVpeDitVF9U\ aK RkNSOU22zR0O8\ YUAewZJ0v77D09eW\ on/ZawLrXiUhSJIC\ o9WSSyBvzf7guWEx\ hV5g5zQeHiwgX3O \ Jdqap9Il+JcTo/zd\ Cw5cipcAZO0Ky8lx\ 5swQu3btJAp8/KE6\ mqEj8ja243Dq1Gli\ Yvbv2UelUqVv +xb\ iNGJiqsrWLT0Ebh2\ nUOLC6AQ9XR1YtsO\ 5c2cZOT9CT28Pu3b\ tbFsArCRa5GKgldM\ lnCy3rPX3 TBhlEy\ NvLZsMD6x5YV30+C\ JFfDbY1FDS5dCqXD\ j9hQ0dcZ+JcNhHeX\ JDz4nVnGPBoIs/XG\ +32FSk cA9PtSfZ1\ vLc0o0y1/dAUTrYv\ eHVUuVK/McbBCMuw\ skyr1papZb2Lq4El\ J/at2oioyKFvBCQx\ pCk 6YJxI3IyIpHp\ mkhY4kniiXBdC7Kc\ jIimorbL9loea2aG\ YGuCTRcGWmQQ+QEE\ MaJ3Y8iXYeXmRfQs\ ZofSwkNuwmDVRz/\ rEffaGWECduwtcqh\ sb4hGKRrNdEDWlsw\ XiSS9KG3U1jlm9ti\ kxvTofzQaIjqN 9v\ 8vk6R/RxBegiYVop\ 4F0OqRIrEEiIVH/3\ OnPXQ/xr16vnhSi1\ LK94/hPqkbWTIYGa\ nz9mu3zmu5 XUy0P\ D8SFRPXAuILYTsmo\ /W7FhIVI8emp/bSR\ CIjiZEzsEslErulH\ zHnBZk+ERb+mVBTM\ WmaNqs2 imh0usWl\ N3Ujsha2TSit7tyC\ 7Tk5FpGka1s0loJ3\ or6sUHezEQ77bf+p\ 3PbChkZwtKBcSXje\ X7Al tRbEEyFJmCx\ LTtRUjPt4FYQ2S2w\ dDvvEk+GaiWHjcGX\ T3quZkJMRwbCH9CJ\ kLc7O0U6HcNRDlEz\ s vvzy70GkUBVJGk\ qSICGxNeyihe7oS/\ ogeScba9LgrIckqV\ pMPB6hOfq8SdbVoE\ WQTn37MfY8Y3+b K\ DmFEtXHRlG+ovvag\ VVNSi4GXRgYps2jX\ 3+Ygy+8niP/50EOP\ PdQ+5q4FE66EYcfq\ bannPUwwRwP OfSk\ jjW33hJP4g97aJqO\ yE2/f5qhk4YSUbI2\ 3UQyGHSz59A1kihp\ V5QMy0BGsn3OXm63\ PcFh1CXO qTrCnfY\ jSnIGiSWQJQvZZc+\ bLmshMTTILXyiieZ\ 4bmvaDbKTn0tIklq\ eH/FESKqyXn9rYZ7\ rBwKg d2fl8uwCm6\ AZOtKXSH+KRCVoMa\ RmZs44szSdNtSCTt\ iXCjMXMVFYLAA4S4\ f3z2XCWe9UDavPmb\ UA RdVwU6pjLdPDS\ 1l5s7flMDpM3BNVp\ u4bpXxt78aHujbF6\ rIakyTrz44ye2z8I\ Zdg0MXc4Sw8aj8V \ U3tkAhUoOudECSUq\ IYnWHp2hO4JwIsAu\ 6Js6oWh0WxS7rXbc\ iqyFGUHKGwgzm4pb\ jiTFZwOUkeL0 51Z\ 1rMLS1qwHSuPlbzM\ XKlKEIz72nsK639N\ ExRhmjgf+6V7qYzW\ ue/XNQI5EJfzjB7/\ As978XHr1 nVhOob\ 3JM8zsnEySJPPVmj\ GoImPZJj0tUtT6fW\ vyd+JUZjNeHa4CmW\ YzUZnZZHDexTAszI\ 4cqZVd bw0rxzVOg\ Z6bmoM4SYArJY+FC\ msigjWQJFmJiSZCn\ F0Lv4eJJ4hGQuRkh\ NVvb0rIrmyEaCYLV\ qzi iRApVds+U7z8\ Hbf+pw0/gstYN4y6\ JH+8in3ORfbmcQ90\ EOwuEg3kiXsdZJeF\ KpukS0wyiSDBGvWI\ BuZXmexzHqmpEzR\ 3Uj9sNLhKWHR1XPp\ pEVmJSeLMTXchqEh\ xxxc+xyf/+uN85at\ 303AbHLr+yZhl E6\ OU/TE7LIwuC2SK9C\ R6oqHnBMqVKFeiW6\ ufPLrU0HMCa4tDbl\ cRzczsAbzHa4TDHq\ om0Qwdc4Pz 4CBzt\ E5lNuFklC4du9QtH\ bs/T+IluCerkGjrf\ r3BoIv3eA3lKnRNR\ 5RN4kqUZbY1n3M9M\ DssNDSU pyA1sIq5\ dkVU1hMQAru/iGEJ\ rDlEIh4L0UomqavW\ 9L7rRYNwqEGSgDXn\ ex0O+6i6RJOQJikp\ KYZl YecLGJYNmlh\ 1QLQu9OxxQ0nXLVt\ RXoKmZXYARtfi1xX\ 3RA2RM8jtKDDXIX9\ ZpBrRRIi5yvZMkqa\ k vsRY5fUuHHQ3hC\ ABpGmCLkz6d2/hKx\ /9Eje+5mkIQ3D+2F\ ke/foRfvw/vBBhGB\ z/v4fp29ePMEwm j\ 40QeCHlvi6GHz2Db\ qSce2CI80eHKPbly\ ZVKoAlM22byzDiPf\ f0Ik2fH6N7Th2nZ7\ LphD+ceOsPu H9tN\ vlSmMjzB1LkJOgd6\ UA2J2ZHj/KNDlLq6\ 0FODqB5w8p5HqR0d\ pss22LKjB02D3rJB\ aTxCLxmr +szCIRf\ ZkOSvLC56P83Us/M\ lhXg8IhoLSMKExE9\ I45R4Mmob5K4FKlK\ Ej3tYu/ILPobIG6S\ 1bPpV 5A0uXdngMu\ ZBi1Lscz6lByYwJy\ NU2aZ2Qx/+7vya41\ D0UJE77WGf8zFqMc\ JLMCcjtCQh2jJdai\ 6Z Bvl1mCluJIwOM\ /P7WQR33nUHo2MTf\ PhDf86HP/TnjI5Nc\ Odddyx4W7Mny74KJ\ wLUVEw0GWJvy80S \ 6/17RG5nps/pumUr\ mqUTVwLsXZs3Mmtt\ sUmDJ8Z7VjzUSX5P\ Ge9Ujcbhypofxx/K\ xuJ1K6t2TN03 SuX\ 7o5nzuqkTTc73TFk\ LcgOdlK/oRXkhtSO\ jJCpGDw1sx+Hkt48\ xfOQM5YMLC6fVVIh\ /to5yFyYs KlLZeT\ 0aEg77yMko2wg0Mx\ p1y8Awsgk3yPQW3o\ k6Rs5oW0xEk5kdRl\ yVTBw9z8Nf+MG8uJ\ +VQE5G BCMu+T1Ze\ z9/ZRGRE5i9Vlt3M\ heJJxG6WLNeyug0M\ TtNgsGltTULQUVrU\ 5psZFVOxiE91wyw7\ cA2 fviP9wFw/+3f\ 46mveRqmZpEkkrt+\ //PIWHLuoTN86UN3\ Ue7O2q8PfP5ePvuu\ TzNyfJjxE6P8z7f8\ d9ypSjvX7bt/+00\ Ahn94ljtu+1Tm66U\ bfPdT32T0aOYzd+6\ Hp3ng8/cS12Ks/jy\ 1c+P834//H8yy iV\ k2Of3QyXb16bPv/w\ eG7nucDsumyxI4O/\ LEZwPcEzXcEzWCQT\ cjQZPRgq81Gg0RBR\ O7b2UbG6Pb wtlbI\ H+gDCprh6l6BCppG\ 52uBcGJBs6+pd3gj\ a1O+3X8+9pK/4jCn\ IywRn2MSogqmAS7S\ 7McrefC iyV502Cw\ 6jIWhNi6To9jsbM0\ e5GMttgIv4jux4g4\ wRpN0Ge44Pq7ptsn\ MkkpqY1zyF0rWiGv\ S7XD vn3Pt/jwh/6\ c//bRPwLgN259L+/\ +zXfys6993YK3FwV\ jOlB0V55w2L/oI/+\ bBeUqZC2mcFXnpps\ + riRq42Ihv6+U5d\ QNVmkcrqxatyPHIt\ xjFaw+h9yBEjlKyP\ GIeDJstzOd/gJeuD\ 5DzWQyJSkr7vhP f\ 09tpEqhM8/YmXFe9\ YGfYWDfDiaGxnFqO\ fY3d7QztXflg7nM7\ 2ksgtRoezWpqRiau\ YqyFmHkDER+ euGJ\ JjPCYBfydF7dTxgE\ aFGKGo8Ruo5o6ssM\ K4e9tXmczVbOyLFh\ HvvOMQ4+/zqSWhZJ\ ZDsO0giy YwuzJSM\ MAlI/QtbjdvSNqsY\ 4/YVZbVB7Z4FoNET\ W41li2JlYKApiNTB\ 7bBJPEg65K9YYXez\ IncWQ yQgSnvWrL+\ Azv/637Hn6Pk49dI\ qffP8ribwQs5nDWT\ 03xdc+ejev+eAbMM\ tmOy5n/7Ovapubej\ Wf h+96iFve/Bx0o\ fPS3311+3k+9NwPZ\ ESoKc2QniKNEuJ6T\ BonaDltwRzMgy+8v\ v1/r+5x9odn2Hnj \ Fdnv8wbO3un7qEiR\ egnRRJj5OpnM+jxS\ maDCZE06sLn38Y7X\ gNVdw2UlJhr1ye0p\ LGsvICyB7mR2 AJd\ J0iWC8BKsEQ9r1CO\ xBdGW/Cwfo4XgxZK\ jlTrblcHpSPHMgSJ\ 7tnZQCBL+cmIK4QZ\ sK8wezZwp 6NaiFB\ FIUkOQGNqs57INgW\ FcutOh5QYs7OwY0j\ DZ0NH3liP2Yjvaf4\ 9QkcI9PoXTX7goVg\ a6fmns ABaDvS1HG\ iQ0BiuY3faKia9yJ\ fVjk1jdNoV9He0FU\ 2zLtR+jJZqeqf+yS\ s4sbVFruitRKnucO\ e9L 7aEJClf28Pj9\ xwmqHm/5+Ntm/d7q\ yiFmaABbae3uhTrR\ lEvH/i3kS11EVkD9\ 5Di53i1IwCg5hEHm\ Et+xP6tAuVMVogs\ BHfu3UNhayvRMTR2\ Lnc9RPTGGk7ext2X\ aEsM0kLGkemKMNG/\ Su7sXXTfQTR1h Cv\ SiwMrnCYdrhIDtOO\ iOIBhrMOnW6B/YCo\ 5D0p9pV/whl2DEpX\ DVfLJqbcniRKLTmd\ mt2ee0NUTJ Gqs5c\ 2HvLGQ+U4/V0YS+I\ lH1WrLbNLE+24GFI\ OOQnj197LluD5+77\ e+57iXXY5gG3kitT\ ZLuev/n +PG3voDC\ 1hJR4GM52Xla7ukg\ UQm60One10vt9BS6\ bjB1boz/+6f/GxVP\ b3xFQaCZrRBtgWbp\ mCWT x+45zvk3fgw\ AJSW5Ug5dz87lhz5\ /L0e+cRjbtpk4N8H\ Vz71mydei6lF7ElF\ WYrzjNawtOYxOkzR\ I MHdsjHWA3Z9bMS\ mORkPiWoiRN7FXQJ\ BaMHvsLGR3vQd7GS\ uHFqVYYwHWqIceKq\ It+fZ02UJoVYxa O\ N3w+cVCmav2dxDHC\ XqYkAQJ/labN3gxf\ zwxQadlzLrPTKSWh\ rQW3rZ5UuL3WujjE\ eZFTF6GbEFK ZuTm\ GL0WtpXFYixEkp5x\ yzP5+Cf+gt+49b0A\ fPwTf8Ezbnnmip5L\ 1qJNbUtdTIRnPDRL\ J3fg4giq 9aJBEqg\ nDEkCMJtal/qRSTR\ jZWJu//FGloe2Lb/\ oa7FnECZ/yCUeyww\ ZxbDA7HRmTXIB1B4\ Yx+4v tMXt/pBLNB\ ZQuBJy3R3UJxtENR\ 9nW6bFkLFsVwOA5q\ Ik+crvf5GJs+N09H\ cycnyEn/4vr2fLFf\ 3c +Xt38OL3/TT9e\ 7LSz//6/Tu5+Weez\ v6BJ/Ht//F1Tt5zn\ J4dvYw+foFX/ckb6\ Ojs4vBX7uPh/3U/ \ AIWeIoM/GOTVH34D\ uw7uYfTxEb74vs+w\ 67pd+FWf7Tfu5Md+\ 5jnTxyN0Hv3aD3nw\ H3/Az/zpm7Bs h29\ /4p85/C+H6T/Qz7k\ jZ3np+17JzhuvIHD\ rqGqcBTgvsmgJS7Q\ DXcMhl2jUR+QEet5\ AszfmfDK6 LYymgF\ yOR0SnPcwee9Fxcm\ 2NmpaNRGvCDeApr3\ oqR3/9b7jhtTchY0\ laTIhrme7gRb/5U9\ z9X+5i 61XbKGyd/\ r57da+tqwlGXfKl7\ P3/2oe/zL5bruLgT\ 2SVoD95xQcX1fAce\ PbVvPT9rwJg4uh5v\ vSh uwAYe2SIb//D\ N3nr7bdimAb/9smv\ LflaZDPeqUVcjE4T\ o9PMPu+JEC1JN87o\ tmwSj0dLivaj0RBV\ jdALxqIi8aWg5w3\ U+eAySboYMGox9rD\ Xbqf5V5ZRjjGrkuP\ FkokgQug61YmAuht\ xsDvPP0cee0vZ xb\ pWjZjckv3bNHUwdU\ QRTKC8v4P3xAn/o1\ Lnxr6uecdw39gU+z\ qKdDRJ0oNjFQxdI2\ 8Y7O0osMWx +T/DV\ X5K2JhcHJI0Kzeta\ M0bVRZ5AzUVz/v5a\ 17xWu686w7e/ZvvB\ DLS9JpXvHZFz6nrm\ zvpc7Gg XIl3qkbp\ YPdFez2pTEjXPmy1\ OWh+h4p7O6k9PE7H\ U3qXnEpzzzSIKwG5\ baUVe7HMzN2LLgSk\ YYLl 5MjtKLWJlHe\ iThIoGocrWFtyuMc\ qOP0FzA6DHVt3cOM\ rb+av3vYxnvS8J3H\ zy59Kx/4t7d16C2f\ u HWTi7Dg//4nMFf\ 7IVx/iX//sq7z2I2\ /i0PMO8ejXHqT/l1\ 9EGASMn51g/48/if\ r5KQ5/9WF+6e9/ D\ V3o/Nsnv86Dt3+f5\ 7ztRQDUJxr8ymfeh\ Ywl9/7Nv/Holx/MS\ NKj5+g/0D8rd24mT\ n7zGPd+9h5e /5cZ\ Qaqfn+K+L9/H2+74\ dQzTYOLoee74ndt5\ 2x2/gS4MpBdhdq6s\ StBaRBNPEo2EzXbb\ xg0cCEsg tuWyz+u\ 0t+TnPNddeTmoROF\ s4PfNMA3OfH8QTWh\ 862++wTPf9BwKXZ1\ EgY+Zs6Epvdl6cBs\ veNdP cudvf5rX/+\ WbcPIZUTr81YfpP7\ CNVCY8+KUHeMOH30\ gaJQhTUL0wRW2ywg\ Of/97aDi5nkKiU6o\ kx 3LrPo/+PvTePj\ +Ou7/+fc8+e2pVkW\ XYs30d8JA45nKsJh\ JQESBpSCJBAOAsUK\ DQUWlrot7SU0tIC \ aZNwNZylQMJNIOE+\ wxFyX05CHNuxLVmS\ ZWm12t3ZuT4z8/tj\ dkf3ZUtO0p9fj0ce\ sXbnntn5vD/v 9+v\ 9ev3isRkzSepSE7/\ HmfS50ZWJLUdqC/v\ yMNdmqO+qTLJraeo\ fKTkdZamJkj/yeq4\ URseDpMVG an8dva\ +GtyxLbWVuUrv+sO\ Ozt1rjhEDlnHyKPa\ 7Hq7cvJWOqyEHEho\ cPc2pHAdUPER0ymR\ lIb2s3 tPDy3XBru\ caJhSx1X/DkwSpmQ\ eUlK9v5372HSKsKh\ izzirVLWJnW+dv79\ mGqCiOez92DI4SpP\ Be1 6bSmF7eLqalJ\ M5OzuNqux63nE4Mn\ XeHlL71yWg7SrPte\ JD+pYwn7yRpqXjsm\ 3Kpma/d8XOCPNSIN\ zM4Mbp+N22ejprV\ JHCqtqGPvGkFfYh6\ RRlbTqHgqpNfnEIc\ 9qo+X8MsOal7DXJ4\ mDASeY3Pmq85j 24\ tPZee37uML7/g8V3\ /k1bRvOIHAD9H8kM\ gLOfjAfk7YEpswC1\ +wascqfnL9D/Fch+\ 3PP43Pvf1G nvuOF\ /LQt+/j5ItijfveR\ w9QKdf4yls/C0CtV\ OOELSuS4+rc2AnEk\ 4NMW45SbwmAjc/dy\ q5fPsbn rv44p7/4\ TLa96FSafRul7iG+\ 9U9f46pPvA7dTCF8\ j/7He1m2fllSpmvb\ vAx7pI4Y8RGV+L/c\ hsmT s5nQ5LS4vfa\ MMglHCkVXkBR5XAl\ u7POrrTBx99eTDNd\ s8AZc1AV0eG36/fU\ f6OPwI/1s/5NnseW\ i Uxqt/HEbv5SSOO\ NPdyDLMmvO2YDveO\ z73V5O/OPtAGx/ya\ nsv2cPVqXOn37gZb\ RtXkZEyPPecSl3 f\ OlX3H3z79jy3JPIr\ xq9N+vP3kR+eVwWL\ XS1sabxeRiEmK1ZN\ r/wJADaVi/huW/9Y\ +64+be0nFDg xe+7\ gspwbdrzUXQFLwin\ DDyVvHZUwcp0MFek\ cbrtRCur6f9mNCY1\ Ue3oeLahdDxIWlQo\ 9RC9r0bl 1CWTuEZ\ 1X7CrXMO1Ai7Iprj\ 45HY0TebssQvJEme\ dFGunaJo861xL02S\ 2d+X43sMWNbfGftv\ nJVvb 2VQHURO8Y0\ 0n+32Ps32FkWqAUX\ N4Q7GI4wWsW95OcZ\ uOLUJSgx4scpDk9t\ mzEmIVXVlQHkww7C\ Nn n/mPvCh5cTdb5\ 7ERw3QP1J9yMcmJq\ Dw4BEGErKsopkLkx\ gGRbCp4JRun30JfY\ hJUfbSCiV92qO+r \ oOY1MiuP3Hx5JqhL\ dFLVHF7ZJhQhgRMg\ DfuoOZPQDci15Dj7\ tc/GGbHZdeculmzt\ ijlJTZ5IUcfp LyN\ 8gSzLiEEPzYyveXZ\ VK8vWL2P/XXt47Kc\ 7ueyDL4/XMXVWnHg\ CL//PV099TA2e4cR\ Si6qpXPYv L6PUU+\ L2G35M366DPP+v/x\ TheARByMVvewE//p\ dbePXH34SWMZA1Gd\ +J0xrN8pAQIaQl/I\ E4KDxS 0UpjeQpR8\ mJrj5y2YDzEoBKTh\ 821cRDkD7nUd1VQU\ gqSoaIUVGRTxu220\ Nqm1t1oe9sAACAAS\ URB VOMJvABJRIRO\ GJPPdWleBPGZ0CRt\ 77jiXLgi/kz4IlHe\ DgOBqhmc+9oLCayA\ MBWy8blbx23DkHRO\ /4uLkvvrOTZhIEi\ 1Z/jjd12aLLdyx9q\ YpxZ4DT0m8FyH5Zu\ 7WL65K9FYyizNseO\ KcxG+h/Bdtlx0 yj\ jydlvjGKe6TmLQI4\ qOrTa1nFYTrazQC+\ PymiknqtmhOPrjef\ q89f4PIrVnBG9Zdk\ oy9q5yjTfn 8pywP\ o0yw8A9XwVsJatyz\ WnL+OQTA7x609JYE\ bUQJ7NXDnqsVE20T\ h3XCzB0hdMaHQL+o\ Ic4WCel yIRBiO+H\ aJqc/H86+IMeoRcg\ 68q8uEySIYMVwiwz\ R3NtBmevhbL26B9V\ YccvJV1/anzQFgqi\ HFtN HAtuVX13NVa\ gfhoFSKIUa6forQa\ i7o3jAgGkySFKHvV\ 9FbSCmXS+icNxN5Z\ X80gtkgq1ttTA7q3\ G gVnJRV2dYqQ3bq\ FuSS/BLdkcfLSbM6\ 88B4j9+TRA0mW2nL\ WZz3/pDs7ZVyLTUe\ Q3X/k1m8/fGrd0 h\ 4KTLzmFO7/8G/SMT\ vuqdoTvccKzVnD43\ wc4cPdeVp6xFmu4D\ J5CbtnUWZ0wjLNWp\ Ud6UdIqqXyK E5+3\ NeEuyY5KvrOFdedu\ om/XQX5w7Xe47B9e\ TteW1dzWcws9D/aw\ YvsK7vviHaw9dS0A\ 7uE6qRVH x4tTW2N\ 1bX/Ixe2NhWGPNlg\ SNQFjgkOtzUBrM5I\ B1e22kcKISJaI+l2\ iwEbOqAR2kJC6m2a\ yKDJG Vyx06XZbWA\ dqC+IlOJstiOdYuI\ dsJFVGzSqIdGz5oi\ sZooYQsKzIk1S5Z9\ tuE2JCJ/3E7cxV7b\ tp ITMfYvRCwejKY\ D9RRTblJCvYLLmFT\ ghH8RxJknw8SFosa\ CWBJEKcZaPpXVWWE\ I0fX4stsfKU8TNa \ N4zmbDA7Ewq6wnu2\ Lpt8TGOCmMKEB1lr\ mNX6fog8Igh6bPwG\ mbopWSQZcjJjb0JJ\ x5ocqqlhd1uo KW3\ cfqYrbaW6YjfxiaW\ 0qRBpTMlNmi8iJ0R\ foO6KpxJe2UZfsrC\ lialgd1uo+clcsac\ a9e4q+hKT dFcuIe\ pOhNqqk29tH//ZEh\ 2pRcE75CyaabAYiQ\ NYs0Uj1ZVBNzMMHT\ jM7Z/5GbVSjVQuxZ\ YXnsSG C+KMQPaEH\ IZsEIaCzIpWLvnbF\ /G9j9xC4AecsHUF5\ 732wmTmvu78zdz7z\ buSAMtzLMxMjqv+7\ ZX8 8rM/50fX3kYq\ b/Kct76A3LIiqXya\ QldrcmyZ9hyFE+K/\ h0eq/Oa6XwBgtqR5\ 3l88H0mXMZZnWLah\ k8zSHBe+6xJuec9\ X6fv1Eyw7bwMve/c\ V/PzTP8Gtu3SsWcp\ F77sMt2QTVH2M7Ud\ fhpXTKqoqIQ45 Me\ G31z4q2w+CcFyQ1E\ ST6DvV/Q+8AJXJEg\ FhXSDKAiE8RFXglW\ z8/jp6wcToTC1KKa\ kJRVOQWhTc Rnegp\ MiktuQ5780XYuTVc\ U0vTwUCLyB0wjmXL\ RcDE/et6ApKV4b6n\ unLg3OBmtOOe7ctF\ oyDNrKI khZ8VZbQ\ JLCDiBHPJ1fyuPK0\ pcnyvx+s8eDhOtuX\ pDmrfWHdzo8GzpMW\ yorUrFmloCbwhl1k\ RSao j+3aiZefigM\ yHwPQo/UPCyyBV3L\ RW42nVVZkvhAlj/J\ 9hymcumTRTSAX2ix\ 3IRB4AcO395NdWzj\ i Y2vy4RbDZqW2s4\ yoexR2xK35TeNmMR\ JPNdSWhr5Rs2RRb7\ x+0xJh4Cet3RAHXK\ 7j4A1bsVxBx2h2 q\ FmWaW5/Ippt4c1/h\ 2GY7Gtsl91YCF9MM\ kBtduJ5/fUkI26Yo\ xONyr7DhE4wLwmGu\ cAbcIlcQeRz xFyl\ poDmkRyXqLl4vS6B\ IwgcgazG16r5btNb\ U0RhhNNvoeY1susL\ i/J7DLwAd5+FklJQ\ l45eh7F6 Ws3y3FO\ Fp5sX5ljYT1SPOnh\ 75o4WT3NEmoxSqgN\ xkCTCiGbooEkSdSn\ C7rZ4omrzkQaZ8jm\ teZak nnpbkIloer\ rNVHZTsiqpacqGbq\ 89KT1td1txyW2OMN\ pMxEismD1XTaBgOC\ 6tRG4Ylxa6MtjdFq\ ln cJDk9NZRTOWYu\ GQ/ncQjYdRIVc1rR\ 6W3omTUmOu2CAT+M\ AjQW1Nj/hZxi3wYD\ yTpDS3j7D7cgUa2 \ xIuPw7GqCaE3VAVB\ 3cU/bMfPcGZUUHLi\ 9pvrND9rYuzyzgEL\ UfcJPYHcKk25jvDG\ r9NcJsqGWI+V Cd0\ Avz2DV3XwDjsoppI\ ovqst2oJNQOIsjxF\ zlfZZc87WNH3BIPZ\ 1m6+8QDMoEQ0l8vT\ KHIqp4pUd RMUntT\ o3rp08tTGHtXOY8n\ 2HyazKL2g2Jaj4uI\ fdKW1QpvKyfKqg6A\ pO+NQLEU9EUPFHy6\ VHgWfu aPE0R5DVU\ PZO7a2R1lQekAV/e\ fAQB22XMzM57itVu\ KWvxB1enfef0kWbr\ i5I6e1oMZ9AZjoYy\ 1PQ a8cBSkP0TfKn\ zi5NB6Wo4dU89KyO\ 2xvX6KdT8G3Cq3nI\ ioyxPoM/5GJ3x3V6\ cdhDXfL0C0bngmNJ\ 2H66wO21sXuqiS5\ RbkPxqIObSAMx6KE\ sQreeV7JJMzn9b1U\ dzGD8vQvqAkMffwx\ jBz+9w0DvMKjv rs\ 6YeZ1uwGx+XttZjs\ 1yFYn06vyc1hn7b0\ VXyG9vIxj28Yc9jC\ XpcQKalfsGGb7j0K\ wSDPNFU/uo vquCY\ c4s3xF4Af5hh/QRB\ irBoI/dH78jgrqgu\ KMjCczSTE32V3SF/\ KntOHst7N4qziGLz\ MbigpRy AydE0aVn\ fCfuU4VggWyUjhvc\ LhIiTcLssfA60qBM\ DnY6MyYFXWNz2uQ1\ +RRXru3g0o3t7KrY\ 1EXA 7/stTmpLo0p\ PbaAUVAVEEkr66H6\ okiHj13zCIZ8gCNG\ XGPM2D9VadKIwQpZ\ lojDCH3AQlkCbwqT\ S 7bXROgzCemwOqq\ RVtBYdrUXH6asTOu\ FTatZ6JHB7466p1P\ rcEZs7zgd+yTsqA9\ nHHt/Dz3/xYx55 d\ CeKmmJJe+vsK01A5\ cEhvEOx/EBmfYHMx\ hbk1PyfxcASRFZA5\ IRETkhoBURSNOWzM\ +dtDvs4B+tI SMkx\ qTmd+p7KJPPdwAuI\ 7FhnqhlY+EMuUTS3\ YxCWgCCa8Z7Y3Ra1\ h0tEXoRsKMi6TDDs\ U99TxS87 RH5IZl3\ LUQUxckpBLeqoOW3\ c71dtWIPU91RAsKC\ BEoCSUnAPOshZZdp\ n3368SvrE+XcuirK\ PvbeG X/UIgwBZVc\ huLqBk5/5+UIs6Wl\ YncAShHeANOIB0VJ\ k1r9dGOyE1r9964A\ UEZR8JEnXtYwEx6C\ 74 PT9aiBEfZOmo3\ /PHM0mLiNBQUGsBf\ uvUl7ktpfNArc5DR\ ZPbdvWzYWmav9jQy\ U8HRhiOAmwRYjzF \ swhZVwinIMbOF4qu\ kFmZRRz28EZc0I4s\ +FMyKmRAgWSG3bQa\ kVUJSZJAlwiDEEVX\ mGqubCyLOSIL QQY\ /lgjqgtB95mg8PfT\ Q3bzu9W8B4POf+yS\ bN62b87qBF2A9Vo5\ VqzcVjsp2xe21UVM\ q6FJiWqsv PXJumr\ M3LlvJpjKJJ6dkVN\ Kr87j9VtwV2Hi+vE\ MOxrIU/iE36bYRdY\ E6RyFDPavjRC7BsD\ slV8zt tWMvulYDt\ 9/C7bcS6QMAc1VuU\ a1rmpmm+u4qQd2n8\ uAQ6VX5adWQ54uk1\ Xua7J+z18JYPv9uz\ /qe GmLESUprohx3\ TgaOj7kiN6+MUNws\ 0EZ9Tw23r9a49kUU\ U4ZG2We2324c5Agi\ VyApMm633VhPGkdC\ l1Q5DoKrHsINkKP\ 4fRo1ggKv3yWMnKQ\ jb7EgSh7eoIPe/sx\ viJkOx4OkRUSQ01A\ sMW2QBDGh+8bd h9\ gkmdw7WOV5y1p42e\ r2aZc/1pBNmaA6dd\ nwSKAu0UGJB42FeG\ nrrQa+FR9f4IJiqI\ TDItY/6bWR pygXK\ hmVwArwh71nVJAkK\ i7yAorZPZ3hHqjjH\ XbIbWldGEJwRsY75\ KAvPfquQDmrkp2hV\ GwsS+H2 W1gHKuSL\ bcnn9pM1UmtGeXmS\ P/eMi1LUyBQ1RFbH\ 6a0nCt8Q86Ag/i1k\ 1rSALuH2NUjLnZmj\ Muid L9Lrc0lzAUG\ EljMSnk5YFzg99SP\ uBmu2ek+EKHlIGvM\ OyJy9Ft5QncgLk0a\ INHmCio+1ewSnp0p\ Y E/MmJKfXZdHbDO\ r7K1QeGsTszBB6gl\ DE8gt6awq1MD57GF\ rxdC6SpUTHyeiKn4\ 3ACwirgnBsQ4yp E\ FQ9tDYDY6pAu8Mg8\ AKcAxaKrCw4qXoso\ Ty9cWF0x8a27TfFP\ xVTQVIlJFUiUp+a0\ uPxIGkREaQ0 1KoL\ TI6yh2yPvrrNKWmT\ y7U0q1dlyZhPDx7S\ WChZFf/wwprCSoaM\ VF6YbTU5C+PQmP3Z\ 3RaqOfWL U+8w8Br\ LHAtz2IVAKEL0/LF\ TvJaMoxPyPPnkM/j\ 85z6Z/Hs+EJaH3mq\ g6kf/igqDEDHoLdh\ 9nim7 EHgBbp9Nan\ mO2t4yzt6GXo0Gyg\ Ri83yI8U3V89AJ8M\ sOQSNAUvNa0nmV2T\ bK1VqMzr25Qm3VyZ\ /c TuWhQSRVTtzhq\ zuHAKgfqMaWLa3Gv\ Fv8I1mapOjsDTrzH\ qj9IRe7t4qky+R3L\ Bl3DEpeI39qO/U9 \ NezeKnJWnTfHSC1o\ 5AttuL02ouzFuk8t\ JqEdyweoBR2CEMlQ\ UbMK8gwTAUVXUNoU\ aATUbrdFYPmz Clo\ qukJmfRz01XdV4vJ\ hQy4g8KJEpXo+aGa\ 6ghFvSkL50cDtttH\ bDIwuLXlmgrqAICR\ qzNPFmNf5 dAKgEN\ /fwA6O6Bwn4niQtI\ gI8hpmdxXJiyYJSq\ oNnlLWgc71WVqnGc\ yfatjd1oI/JZEbEh\ 2D0w2j CLwIpnmX6\ B0Gzl4Rl2Om6MwJv\ AD8iMiN1ZOPtHsnG\ PZxhxwkQz7iTEZgC\ UTFJ7OuZd7rHik0U\ yOw jtzQdvOmdfMq\ sY1F6AbIhoLdb6HY\ GrIyu6v7Uw272yJy\ Q4yVacSgh77ERNTj\ t7tsKpMCFzWv4w/N\ jcvhHXIQFZegLkg\ tzyFn1VitW5dAe/q\ Re/UOg8yqPNb+Coq\ pEnpxh6m5Ioeo+rh\ 9NUTdQ7fTyJIU +7\ cpMmpWnTXLFKmj71\ JvwJ0zd0iUfYKqR+\ iEWPsr6EtM8tvbpl\ 0+vS6LN1TH6anO2i\ QyHZpGyaLk Ue+uY\ i7LIuoeQc1HVhVCx\ 0MpzL1MKMo+0XybX\ vIa6bxGWBf4Q258n\ XPz6+4M6wK7t44Ug\ qwqC66J VN9TQ2sY\ 4kKjLKkrk7KDzWyT\ 0ZXB7bWnzKK53RYo\ MvoCcaSOB0mLCJFT\ EQWD9N4K1onjB7cW\ XaOl rYU/9Fe54/5\ DbF6W5mWrR4mtZS+\ YJPh4rOH22kgClBU\ Lm73wLf+YEI9VVSH\ wQ2a6iubaTCwVUHK\ J +sbrjciynARzsi\ LHVipjeCZzgdtrEz\ kh6fW5OFg60BCEM+\ R5aTYFVpw5kHML+5\ Mdq7cSBv64ziaz m\ Md1HFQ9lWjyqJqB3\ FBlD8PwiDRadDMzy\ UZhItKrW6g8NBg7y\ 2/M4fc4R1wuS3XFq\ u1ur70o3nNN 3SW9\ 1UDtirOaAlAzehLY\ AIROkKh/wyinbi5B\ kuSDV3LJbCoQMXM2\ 6+mCwA3QWw3qB6qk\ 17Qk5653 GGgFreG\ zV0uyYkAiKSAbCmp\ KI/TCcaUqgNAWybY\ iESbZEWgQ5EcCRNV\ vaBz5hCJEVEYpA3q\ rQWp5 ltTq2QON3I\ lFhu8aQB3jD9bERD\ mGmaC26mSyBep/GE\ EvmLgDdSRdRssaOL\ trZLbMbfKjFjS8gS\ PT RZLTahJUuL32n\ Lo7Ay9IeFGp5WmcP\ ge9c2GfPWdvXLaby\ +9A0RVoiScXTCOiK\ dwAs0NfMIHP40HS \ IqO+Nk/2kRLGQRv3\ hMkPZGdnjhUVn3vK\ Fn/k5FhualiHXTTb\ I2hNzWhZspjwB2N9\ IXPNwteyYVRU b7H\ gD7mxTEBm9gFVKWp\ zsqkILIF/yJ1zkNS\ UHEg1Zn1KUUsUxpu\ BmXTIndOsUFQ8FFN\ Z8IyBbqao VqrUHY\ +lHW1J0KLqKdBhuG\ +EztYUuhkf4+O7Hm\ fz5s08vutxNm3cNK\ +BAppBmcy1117HG9\ /welKp 1JTr6x1GU\ kpqCtVZB2r4PQ7KE\ fArmvY2C22k6uy1C\ MNwUpYoqAtExQVFI\ rOxiKjENimhJ8hsK\ jR4 cXO/bl7ZRs1r\ iVL90x1utxX757Ua\ UwqfNi1CvAEXUfUx\ l5mEXhQ3J1gCv+4l\ ARKKhJ41kVUFv+bi\ 9FtoLVpcbmqUrAC\ sR0cSgcdmsKWmddQ\ WlfRqLS5rNYOEbgu\ /7E/N5xkDJa9RPKU\ DSVYxMw1uVRCi aj\ phGN+/sYH+WHHPsT\ 5sEA/wuZNbUQKT3D\ rwbIfh3x/E6Jg6UB\ k7mWhC+AIlZSFK3l\ FppRnLU1Py uyZCH\ HIwl5nJdZMladoS1\ 5Eg8AIkbX6Cn0peI\ 2xoYQUVn9APE76WZ\ KhoeQNJXTjayrHrE\ fz/KSJd or6piD5Q\ J3f/EFrJm7SMyGu0\ 2BJ93RZ2t8XDks8/\ l8r8x+MDfO6+fuxu\ C+tAlaB2bMTDgpog\ 9IIF 0UiaCDEYaxc\ ttuq1qAsCd2GMcZt\ QMmqsrzPFPZyIptr\ vdDwYpRgPeHJWjTu\ CZhkwQydAWcCX01h\ c +5//xcUXX0xfXz\ +qFs/mVE3lyzfdxK\ VXXc5dd9+NqunIis\ ynPnUjAJ/+zOeAOM\ iSFRVVjwMpVU+h 6\ qlxQoXjvm9s/8c/+\ TE1y0LV1GmXbz91J\ WreINLiz1rWLyG7s\ o2gxqR15gJthUkYh\ tMGSMGwP6XF yXTL\ 1naW0Yr6lPwft98i\ FCFaq4neYZBen6N4\ WgehCKncP0h9d3Va\ 1e/AC+KAvKHtVd9d\ xSu5qOnY gsVoM6n\ vrmJ3W3M+3mOFwBK\ U7xqgvr+K0ZEis75\ lxsE8EiFSGMWWJAU\ NY3mK1IYc+e1tZLc\ VyGwr kt/eRnpjHn\ NthtzJraSWZ/FH4u\ sf+SDrMuW7BvBKNl\ qLRvH8Top/1ElhRw\ fZbYWYSN0xnr/SDL\ Ca nbFTQVbiwEhbm\ uIHd/6cT13/33zlK\ zdzaGAAgOe/4JLGc\ tqYdTT6+vr57xs/j\ aqpk55RVU8RKA4f \ uf5aAArbYwPzifex\ OZn4n//5X4Qv2LXr\ Cb5/2w9QNRWjK4M3\ 6MzldsyIaBb+a1gX\ iOp4/le4wAa2 iq4\ QePPfptZmoOR0xIg\ XB0iKHHdAFmL+mD+\ 0cDza45mkY4AgLVN\ 9Vhv6gEt6VxlRMKi\ vzY/jKalF jdvsGr\ +OTPqGbNa3ZGnRNR\ 4brvLfto3t+1whyb\ QO1WlbtfAu5v6gh1\ +OHyzJkAmjEH3Zwm\ eRgrpY dFJp4AUxh\ 2URslX6UhP3QH3GF\ /98zlPvMFAKKu6B+\ owluNATyPMkMYuSB\ wFzEs7csmUzt331m\ 7zh HX8RZ5GA73//\ B2zZsjlZpq+vn49+\ 5MMAXPvRD9PX18+S\ 9nbMdI6DB3tYtqyT\ fQf2A7B2zZrEU0pW\ ZPr6+ikPDLNizQp\ aCqP2GrsefwKAjZs\ 2JCU8VVOT5Ve1noC\ eT6GaWrK/gf5BnJL\ D5s2bCYNwTmae gR\ fg9NtJy33SMeQ2dJ\ PCEMmQUXwVIbxZZ7\ b+sDeudBZYYhw3SC\ uYOP0W2fWjz6BS1C\ js6KC2s4zb byHpM\ uxmfJdaEA8YoRgtJ\ ahpHbMzg2wq4EdJR\ lKUPPweBzeM+T6LU\ UqcK5pq6E6/FWdGT\ EitzE1Z 8mjySlBk\ hAgwV03PyZkqoM1s\ aaFy32CcdfIEtb2x\ 9IGxIjeva2A0yrDh\ mAzTWKiawd4nn+St\ b3kb J287ia0bN9P\ ff4hf/OKXXH311Qw\ MHG4sp6JqucTWxdR\ 0splssg15km1Mita\ OVvSUCSkTWdFIF0f\ f 6WMzUBs2rONNb3\ 4rrcUCf/93fwfEGS\ ZlnYlXc9BaRkvgEz\ NXsyFyA+p7anGQas\ rx/aiPliVVQ5lU k\ lT0ycT5o4WiSwQVf\ 97lMXUMhwnGkMqJg\ 6aFUtQ/HiQdQ3gdB\ n5hCWaPRf6+w3jLs\ om3W1cuDaSp +4Ll\ mdFBZHMxR90XZDSF\ mypVRlyPN3kRLUWT\ Yqt+VN1wvh8S9Nix\ plBaRVuVmdF65Gjg\ 9tqxuvAx cK6PakF\ 8TouQrVJ0BcmQp+W\ 3eAMuYU1gLJtH+li\ PSb12t4UY8ac+bkW\ KB8lZEAz72ActQi/\ 2qlNM heDBmBui5o\ 34/1MEeBdffBE33X\ RzHCRpKrsef4LW3H\ gn+Xf81Tv5p3/8Bz\ ZvjgOnd/313/AP73\ 4v W591Ele/6jVs3\ 34ypm6w78B+Nq7Zw\ D//6z8D8C/v/wD3P\ HA/G9atoyWX5//94\ z8A8KEP/TuZdIa+ \ g33ki3mu/+h1yFrI\ tddex8MPPMTKZV08\ vPtRbrz2E3QUO3nj\ m97M1s2bkUKZ/sFe\ 8vkWrr/+v5AV Fbu\ 7OqNzvN/jYC6NrW3\ qu6sJ30wxVNQVemN\ GGyAGPcIgxO620LP\ Tm/s2O9PsbotgZHR\ gCYOA0B3N CkjZyf\ csu62A3W3hlxy8Uj\ yoyaoc3+NGIKzmle\ QYm8dhd1uxLU/j+R\ jb2ekNxPpJ2lHoPx\ 0p3F4b tz8+tvTqP\ Oby1LSDaPMaG10Z3\ G4Ls/PIdHzyp7ZTf\ aiEqHikV+aQJOmIg\ kRzbWZKf69mJuf97\ /8A L3/55bzq6tfh\ 9dfRWlIYhXg/iqJy\ 4EA3P/jhDzENk8v/\ 9HKKRhFZ1ygWCsiy\ ivAdvv3t73K49xD5\ 9hYuufQScpkM7a1\ L0NMGgz2HeHDPI7Q\ cLnDPPXezovMELrn\ shahajjAIcWyPs09\ /FpmWIqmUhiyr 7H\ 3yCfr7+jhj2xkomk\ LPwYP09HRzzjnnIG\ ZPcicYy4MKvABJRL\ NeQ8lQEbUAfQGDJD\ mtIka8o+YQ KbqC0\ hE/S263hTjkoCxAR\ +vxIOkYI9Il7LVZ/\ CUm5r4qufttnFU5/\ MbLLq1NviXNz1r0+\ CG6ebiK 21Nl6e6I\ 15y6/IgI3s6T8exb\ W2IsKu+p2dmlpNVj\ 1pYcOAHKPD2b5oNU\ V2xzUt9dTbI/eFHS\ wSab R1ZObPJNJrb\ dB5ZAVpREJDC/tW1\ GXpSoe8iqTHp1HmF\ 5aAWTMAjwSnbcQv5\ oCSWnYSxJYzYGh/Z\ i G2tWrOZ3v7uDHV\ tP56abb+bSyy7h1u\ /eNqdj9zyPK17yYs\ 4552yELzj3vGfzT/\ /yPh578DHueeB+ v\ vXNryXLRl6IFMKzz\ 3s2F593IZIXcfErX\ 0RtaISB8iA//8Uv+\ Opn/hfDNLn+s5/gi\ 9/8Mn/91+8C 4Pzz\ zuPi858HwPMufyHV\ ShVDVwnqAsmQsbsF\ +lITMeglhOnmPcGL\ UNv1STYgTSi6khBZ\ vQEXf9jD qbpTDuS\ SIceZnJJDUPXjZ85\ U0ApmErikV7dMGwC\ kujLzkiQIhn0idzL\ 3qQm9w4AGEfxYt/+\ 7h+t4 JXdOmlbNzi\ RvIO7qk49ipp87OW\ 50sR4dwVh/5IOh0q\ JPmvTIisbwYImHH9\ 7JZz99I5Ed4QxWqe\ w+ TOvZy9HNFIoic\ /31N/DcCy7gwfsf4\ q/+6l184fOf41B/P\ 5/5/Be49E/+hA//+\ 0cBePZzz+OJJ/bg \ unG2/hOf+iRXXP5i\ Hu99gvd/4INceumF\ bN28na9/7Zv09B/k\ LW9+CyOVYR548EFO\ 2b6dO++4k799 7/u\ 44YYb+MOjf+A3v/k\ tZ2yLZTV2PryTn//\ iF5x15llHfg10BeZ\ AcVKzSqOUtXDkba3\ NwG5QGIa9 gPsrPu\ cWTY5GEq6ZJfQG3K\ NucjgeJD1FEDmV2k\ lF9AEXc3+V9K4AUT\ DwW038gj5JMmAsTm\ rLI8II Z8Tlunv7+\ LszTwBg70GLHx8cZ\ l3K4JwNRVrTkwfSZ\ lntWKTn/SGXKGDeH\ WELgUgsrjmr1mYgm\ wpe ycU/5CKZ8oKI\ 9ilpFa/koo8p3VTu\ H0TJaZirckRuyPC9\ A+hLTPRczLEJnQBR\ 95IOHjWvoS1JoRgq\ SlpFNmS0NiNJR8u\ mgqi41PeOoI7RXbr\ 0skv47rdu5fRTT+H\ ue+7l79/7nslBkjf\ eYX4stjcyTKqm kk\ 6lEb7g/kceZPvJJy\ F8Qe0Pg4RhiNEZD+\ Inb9gWO8qb0NLSQi\ W0eHTXY4yMjPDGd7\ 4VgFKpxClb T0n2s\ XnbZtQWDTHikysWG\ S6XaTMKSYbM7bVjc\ neLirH8yIOFZtDhD\ bj4PQ7BGK2cwBIoh\ ookSaSX 56h3V1By\ GpnNhUVpxQ+GfYQt\ MNpmVzWWDHnOsgJH\ fVxegLVzmKAuKGxf\ MmtZN6j4KBkNt9ua\ UeNm qv00y3MAsiE\ jazKiJoicELVwdNI\ QeocxJYl5uDpCsVh\ E1VSsWhm93aR+oIr\ TZ6GvSeF5Hn/5l29\ n 5couXnjJCzjr7D\ +atA0vEOiKyqnbT+\ Kcc85BllWGGpymJl\ Kmwbvf8V4iNaRQbO\ HLX74ZgJZ8jne+ 8\ xrCIGT12lW89S1vG\ 7eelJIIrICoUaINr\ IAZW3kXAHJaJep3E\ 85lE5ETIpmTZTrcA\ Awl/n8Tvx2O +VSb\ sionmKPPwEFH8HBV\ UPEEf3BCtmeOrqph\ rs1Q31MDjrwbVJS8\ 40HSUw2vw8DrMFDq\ IfphB+Ng jdTegCC\ j4beaiKJBkJ7Q4RD\ GPwqzxYARmx89XuL\ eUp27vRqXdbWzIdL\ JaQoH9lQ4YWkaJas\ S1ARu v42syMdspi\ kaM3m949iKNcqGTO\ guvoO9klGT0sdCIt\ UVd3KZnSmsx2LVTa\ Vo4B+28UpuouDbFM\ OT DSXu4knHg5TWa\ iQBcODF7vNam5Gko\ /UOg2DYxKvFs7fIj\ 3Bdj4vPOJ9rr7uO7\ 3z1e5yz40zUiVnN \ UCLq93Baa0S6RKVS\ xQlGCZKTBqp6hKmb\ jFQqeP31WKm6tQW1\ RSOSIdORHccbkxWN\ VCrNSdu2cf2/ XYt\ XsSeJZ6oTiLByXQK\ DJHuz0IG/3mEQaDJ\ ezcPZK9BWmHglN24\ +aLx4NSeF9XgZWam\ O4yktFMIw jMvHc5\ xoiLpAzh2Zrs984P\ c4hCLE6MzgjbhI6Z\ kzqKImYg5SZ2rOGS\ S32yLwItSclkx8wr\ qg+esO 1Ah1mlbw+\ UArGOOySZEd0WYWG\ B4exq/4SDWZKAhIr\ 8wRiRDhx++2lSu7C\ BKmKQAAIABJREFUk\ m2E UxzHe/72nXzs\ Ezdy+RVXctHzLuKd\ 77wGWR9/H5ct7cSr\ u2h5DcNMEzS2fe99\ D3D99ddTaGkhk87g\ i/HNHaqmggaSIiH\ Lx04uZmw3mjfgErn\ x70IcchCDHiIIUZe\ a/KriM+gK2htZ/RE\ voEVXKFU82t2A XQ\ cC7hERKDItaZnhko\ sfRWiSxN4Rm+2Zox\ 830uuyWAdqMHBkgZ\ I/5B4Pkp4uCNJyzE\ 9alUbyIrSy h1ZyM\ LurhIaCaDFwVmQmZ\ 5hyCn0S5NsM/tTI0\ l2t8/ss/OihQxxUB\ OdbHs8tpmZM1S/K+\ SwieXo2 iLo4JjpM\ i4XaznIsODfsElT9\ 2IOrv47emkJbEt/L\ 1AmZKQfN+u7quEBB\ 0RWEGZeGQhEhKnFg\ JMsy aouKYZpEfvx\ yNwo5zjvrXD76yev\ 40r/dGBtENhB5Icu\ XdnL3gQfZeNYWbr/\ 7t/T09ADgDcezSlH\ y sGrxjFwEAtdx2L\ HtdG74+MfZXzvIpo\ 2b6Dl4kNXFNdOe+x\ k7TuODH/o37nrkHn\ ZsPZ2+3T1IGY2V x\ dWTlg19D19aOMucq\ SArKnK7mnCCYl+tk\ NSmmM/h2y7O/mpca\ jsKM+CZoLUZBCNz6\ 2xNdWVivtMR SiXM\ hGZLehiE2H1lanvL\ qHkt1gBrKIJPx3kL\ vICg5mN0zJ2DVN9V\ iW03uqa/rgbMqZV9\ NqhLdLw9 NdxuK1b\ BViPSLVlWr1nDj3/\ 5Ey657IWEQUi6a1S\ zbC4w03E26G1vfRN\ //e738JWv3Mwll14\ ybhlJ lfFsB20CJ+\ eD//pv/P1738Npp5\ 7CgQPd3Hn33fE2zR\ SeP0o+Ojw4mPxblP\ 0F88ubCUHFR4x4qE\ tN FD2+P2FajSeni\ ow45CAdttEMharT8\ NYE1qYUNmRVlhVMD\ qVlHq8JRryAgSiCR\ uecH0VsmofA5mww \ 8gahFx5R6S30w+NB\ 0tMRkS4lGSYAreSh\ lj2yj5SobW0dFyht\ LuZ4bLjKqmyKtKai\ 5TN4UUS+TSP0 BHc\ 6LheKFKljzFNoEmC\ PNYkUYqKrsI+NXMJ\ CIvAC3H4LNW9AHWR\ FQV8el9RSraMaLU1\ hyrlaqhjL Uzh7LS\ KNcSXBZvvzqrUrKR\ QKyFmFl7/ypdiezZ\ pTN+JVbFavXkXKTO\ FbLn/5trfxHx/5CN\ //2Q85 c8eZvPpVr\ 6KQiYOFbZu2ACTq8\ idti0tpK7cU+eAH/\ 5n/+PC1DJVHuOz8Z\ /Omd17D9pNOHtc6v\ bVR qsunW/jYDf/F\ Jz/533yo5z9pK7Tw\ 7mvemSxjmPHLU23R\ 2LZpK+liHqOYOiJR\ y9nQ1MVpImgViBEf\ ozOXaOH4I7ECdhi\ Gi16+nqtFTKqhRry\ QljvNjseHvnUPGy/\ eRCQi9FYDc0V8jRQ\ 9Nvv1Su44ywy3 10\ 60jLQ2A1HycAcb90\ qXSbWbU5bdvAEXtW\ DMqWw4Wyv7XBB4Qe\ IWH7kCucNAy2j8/X\ vfw9ve9nYe 3/0Ep\ 2zfzvBwmWXLOzh3x\ +TS2lT4+te+QbFYo\ KVYYKRSoXNpZ/Kdp\ I8xrPUi/Mr4gL/Q0\ sLdv7kT 16nzne98\ L/l8/YZ13PXB+/n5\ z36J49jc8r1bWb92\ LVpew9rvLXqQFPkQ\ iWiSLcrEexWlFIqH\ bUjL LCHCXJlldWY\ 0gD4BOMFU2WN53Fv\ 2aDdUnpXX8Ino0Bd\ ukqsW4hJvjHkGSSJ\ A+szDexZW+OA4Fg3\ p 3RVkO6B2Utx1pM\ oSpw+63JfR8IzJL4\ qdQyO8IZNj5bqFlw\ yYDQst2jdfPBUE1q\ NF013eLzuxMemy F\ M6Qg9mZwjvkoBgqg\ SsSiw6AoCzGzY6mu\ +713dUkQGp2GgIYn\ bmYFwSQlsaV2MSIj\ 1exiXQJyYtI d039\ HIVBSFiLZ9duaJHK\ 55NMXrMteixkWR0n\ xKebqbh8UY8IDZEE\ INMhWaeR6QoNMS9B\ y7mgKQr4 gw98m6G\ eQa7+7zdiDZfBCjG\ W5rn/lju596t3ceX\ 7rooDpGUptPwoZ2j\ i8cyk6TR22eZyYSD\ GreNX Yqf6VFdm0r\ bGChmO/czttVFTKl\ p7ak7LT3WMzc91M8\ UdX/gVlf4yF77rEs\ r39QFxp96447RdcE\ IC J0RUfZSUgppVE\ TUxyXJElH2CeswrC\ sIASZJRUvFzG9T8O\ fuxLcS7RpR9RMlD7\ xzlSjXPu9nBVhoo \ 0d6W5+JLLmXV8lV8\ 8hOf5A1v+TNkWU40\ jV73utcxXB7mpz/+\ GS992RXcfc89/OqX\ vwLglO3b+ePn /TG\ e6/C1r3+Dq6++mn3\ 7nuThBx7mouc8D3/\ Eplwb4Y5H7uWlL7u\ C/kP9fOumb6JoIRd\ fcikPP/Aw f3L5ZQ\ DJdtvaWrngguew+4\ k9PPfC51B+uH/BzW\ wnwtpdIbN+9ntz77\ BLZ0rBCUJWlPxYCX\ vl1H5v ZQGFRZxPW\ 7sr0+57JlTuGzweJ\ D2TIHkR2UdKiNZUI\ h2wJaeRqQXcHU2uh\ 3dX6zyrYHKOrWCuy\ eCG 0TEx0G0qUy/2\ j3UmPBODpOHf9KMV\ zITXEngB3iFnUqm0\ ScBuiqaN5Z80CZVj\ sxregEvgiqSVvFka\ acoORG6IV7Ip7Og\ AxtstuL2xRETTDmS\ mAXriYD/d4D/2HAI\ 3Ll9NJPdPHMCn2qY\ 47BH4AZETLnhA 3h\ wgv/pXX2S4Z4gXvv\ tFLN/YhVexSXfl+f\ RVN+B7Hle+7yr0Fo\ Ps6skeYJ4T34upgj\ 5ZblyPCcHi 2O+b3\ zVR766gd6Ync8Wmg\ efY+COCzNIJ7e1Tb\ Humz5t48o4nWHP2B\ qxDDT/KbDguIG5C+\ AK3ZCPJ 89PTaZa6\ IhFLksw1I+L22iim\ MqN2WVgX+OU4qA7s\ ACmMiGQp8Y0LvAij\ a3IpcKwVT7Kthp5X\ ZEf4 IzZyqzSuFBm\ vJ49rcHjNa1/PZz9\ 9I6qmJp8LXxDZ8fA\ rpSTc3gqSrBLpEkZ\ rKgm+xp1HECJ8d8p\ n SvgCa88gclpdVO\ J+fU9tTsaxPx90eF\ ZeI600tMNcgdd/7M\ eFJtVgvv57QcWn8t\ DQ8XLbMwlN9e7s Q\ 4P4RQ2R13i0Oj0no\ yuX5kf9w9yl62x70\ OJhNeCdmzsXNVDy/\ RC/zz4mekizYaHEx\ I4FmlYTWmvD qqHB\ HVLSKuGY911gxfpH\ mqklAZE/HPvBybKM\ tjReuFl/D4Z9wppA\ HxNENHWZ6rurGG0m\ 1b7hhPQN 4zMbiqk\ QWqMq1dNlbCZ+Ptv\ fzXKsmlbRpuCcTLW\ fiZ+pS3RUSDzxFqK\ 7cCpsuWArD956L8v\ /30r0 dJqeB3tYsn\ oJh/cdJnQCzNV5hC\ /45ru/gjNSx7N9zn\ 3t+Wy5eDsAVk+JWz\ 74bZyqw5J1Haiqyh\ mv Pg+An374e1z5s\ dehmynCIOQLr/kkr\ /74m1Bb4Jt//WVqp\ Sqe7XPmS89my4Xx9\ n70oVvoetZqfvuF \ 2+nc2MmLPnAV1b5h\ bv3Qt6n0j6CnNM5/\ 44WsOXsDsiK4/RM/\ ptDZyv233oPZkuaq\ 617Poz96kLu/ ekd\ yjq/87zdA3edrf/f\ F+FqHIXbF4Y03vR1\ ZVvnlx77Pk/fs5af\ X/5DlJy7n4ndcFnc\ Z+oIf/est 9DzaQ6\ 4ty6rtq0GTOfu1z8\ ax5s4VcvY2JEnaFJ\ w+P8mUzgVaQYsJtj\ MESf6Qm9iXpNeNNj\ VIIiL0 IqiLKXV1w\ kDgTfPM1/dUcAfqj\ YnN1PvVzQy79+zhn\ HPORtXUcdekaTirL\ jWJ+gPUdp3Kg0MQR\ Cin ts94ztNdW63N\ wOlzCEbEuKzYQkIK\ Z8+rHHTia1Yc+3tM\ q2jtEc5e65gGSqGI\ 4sD7CN4NWsE8HiQ9\ 0xCkZey1LWQeHaZ\ y6pIZpQIATlsSl+Z\ 2lmo81lflia5WtuU\ Xb5YR9NjoLQb40Zx\ 0NxYLequBd8hZ ME\ 7GYiKwBPV9FdKr8w\ R1gZoftboIhn28mp\ dkfCRDRl9qTnlubm\ /c/aZndSQFrAM1jJ\ ROoEaEB+qT ZB+ah\ FtR8RPLi4kvEt/y0\ bMLfyMXUnldKWoYu\ pRkxxYaa8/dwnf+8\ WaoR5CWePi7d3PSC\ 57FT274 frxAo0x5\ 6fsuI1MsYPWU+Myf\ f5otF29HllVu/eit\ bHvedk5+8ekMPdbH\ p9/0KXZccRZLtnZR\ L9cZ eqyPts3LePK\ 3T5BZkkMvxvfo+X9\ /Sby94TI3vvwTbLl\ wO5qkY4/Y3P3VO3j\ dp96cLHvrh77N5vO\ 2 cPKLT8fqKfH5t3\ 2O13zxz2kpFLGGLB\ 7/9eO84hOvItcWD7\ 63f+bnvOpjbyCzNI\ fn2LGFRlHlFZ/8 M\ wB++tFbMXKjz8ppV\ +3g/LdehHWoyv++7\ TNU+4ZoK67g/lt+i\ 1t3eeNNb8dzbP7nd\ Z9h6wXbku6v uaC+\ p4ZeHBXGVHPanMxX\ m4hUiWgG/r434BJ4\ EWbbeGXtpjaQnI55\ K/U9NcRhD6llbh6J\ 6Y15vLKD qHvTisu\ GYcjGjRvYuHEDv/v\ d7/jC/8S2PmefdS4\ v/ZM/jTNYuoLrxK3\ miqbiVY+cXyenVdL\ rsoiy j9PnTJkdOx\ qEdRFrjs2APZbHQy\ M+O6ZoZFDyGm7/wv\ MHZ8URdEBGIsIvO8\ e9256J8DoM/HaT7C\ Ml UvvrpPbWSO2tk\ d5dmdIbDqAlo7Muk\ yY9sjjdQEFNJOKKk\ irFBE4vaCjXTv5vs\ aG26kTHQAZgIVB9 \ pITeaiAZsdbSWI5R\ 0+NNy8RdRKmuDGJw\ 6ntsLE8hKzLukEPo\ hnEpQZXIrMwiGTGP\ ydlrjdM4aW7L 6bd\ wD9QnbTNy5956Pl9\ 4Ay7ewKg/mbM39i6\ ceIxzgZJRkWWZYHg\ Rnm8DNpy1gUd/9iB\ uyabn0R7W nLsh+b\ pZ/ho+UOPub/yWe7\ 97D57tJSW1Aw/uZ8\ ufxFpPbZuX0bZiNE\ tw+ovP5J5b7gLg4R\ /cz0nP j7NFYSgYP\ tTY3k134drjvaied\ enpjUyORxiKeB8Xb\ keM+GRWtLJ8/XL67\ z2QLL/t4pPJFAt4r\ kMY CrZfdApffdcX\ eehb9yQEeqceZycO\ 3L2X/l19nPtnFzRK\ SwKskIe+dQ93fOlX\ CD+gWo2fle7f72fr\ RScBcVlx/VnxdYn\ sKDEdnQlur42a08Z\ lgWRVQojZO8gCL4g\ nBvvrREFIfU8t/nv\ AjflOXhALflZc 0u\ uys2ZVlJSCnJEJyg\ K3O34GZ/PGy53SRu\ SF+CV3yvMVno3n2N\ z23e/z29/dzoc/fA\ Mf/vANDA4N 8fXvf\ HPS8mpOJXACgsrRP\ cdqQcNcZuLum92yZ\ z7w+mfX4Npvh+xoN\ cZpII2F0ZlKMofHA\ kpBnZM/ 3LAXMOAJ\ 3CD+d7+QeNQVxzNJ\ z1TU1+dJ7a/HEXKj\ bh0YSiwbsL9KfVNx\ nL5Sm6Ejd0h8YXgE\ pafM e09fflQWJEF\ NEDohQdVPauxGZyr\ WZGoOVFaYzHQnYr4\ +Q0cCWX76zwFqO8v\ IhoKeM9EaGaKp/Nv\ G DiLG8lTcjj5Ft1\ NQF9MKhUa1ADkbk7\ +b8Evx4Ks3Zn2LkQ\ oPhn2cqktUEfhlh6\ DhVaYvMVEzesxH 6\ ooHalHyYjNXVU1Kk\ JIhoxhqUoJsQm8xE\ gHDwAtiq5CMTGAJ3\ L4GN2sM1ynwAqJag\ G/5884wbr38 NH75\ nz8AYNN5mwhr8f6U\ ltgq4lef+hEDu/o5\ 4+Vnkz4jz53fuHP0\ /H2BLI9yVPRUfDxh\ KDjxhVu5 /Yu/5Nl\ WlZ7Herj0n68A4L4\ v3sGuu/7Ama/8I3J\ nFLnzG3ciZxWIGm3\ JmVhQ03UcDNOMtXX\ SEm7T 5mTMb1vWZD\ L5+HyFZ6NqOc5+4w\ VsuOgk7r3pt9z56j\ grZRZzeMM2P7r2Nq\ 76j1ckfJjue5/khx\ +5 lXNfez6n/NF2B\ nYfSrYdETW4YvG5K\ Y39KhmF+iEfDaYNT\ kTZJ7TEJEsQtVUns\ PwZW7YDL8DdZ6G3 \ m8mz7vbaRE6I0hor\ sAdDAYouIUlz8/Ey\ lqdi3R8x+k51u22i\ KMRoT03JkVJ0hdy2\ Nsr3DCDJ0jir jyb\ CQHDLbV/jwx++geu\ u+w8Arrnm3fzN37y\ dF+24bFxwpbboqHk\ NZ8Amc5Q2HZEqIUl\ H5os2E6a7 n24AOy\ vx+2S6AAnibJJ3yD\ lmdIjmPibur9lVNx\ 2kww6mqR0Pkp7JsK\ c0hkyR2l8n+9AgtZ\ Pbk0BJ lSVKjkOra\ dAX2lR6a/M2yvUHP\ YTtIzV+05Ihx0rQE\ /gDSlEjVdQISxHWo\ So3vup6tPToy+6Sv\ 30R a87eQBio49rA\ hWc3Mk2NQSTwx5F2\ xy479ruJ3ze/i7T4\ h2Fks1Ou81QisATV\ R0pEXkhqeQ5zbdy2\ rZlaXDKDGdu9ZUU\ e5/PWDJgkQ0Yxldh\ 7rBFsBVZM2vZqXsP\ 6xEuW11qNcZ5wtb1\ lnEGL3IYiSlFL As\ 3azvI4kcppz6vhze\ WXXETdI/JCAidAzW\ vIqoxWMDEa+xMVl9\ AJxmWq1FYd3/IJ3N\ FynD/kIkcy +oRSm\ t1t4e12kQw5Jn8vS\ +H3xGq+zXXtbgtp2\ CMMw5gIm1XRMtq8i\ f0rTlyBXXH43U2/5\ uUfuArX iffTtL/Z\ f+9ezn3tc1h5xlp6\ HuxJBAEBlm1Yxv67\ 9rDm7A04VpWBfbEx\ ahiE6GaKdaet42cf\ +TEn nndiTOwNBU/\ c/wSnvWQHa87ewNB\ jfXj10UySrMlougp\ pCRyQswrLNiyj+54\ nWXP2BsSIT89jPVz\ w +ucSeeOzqaME+p\ D2Ve1c/Hcv4qt/9U\ X6dvew6owN3Pqhb3\ LmS88m2xUT0WVZpe\ fhA6w/awOrt6wh 0\ iUOHxjV5enY2MmTd\ z/BuvM3AdD76EFWn\ b6WwAowlqdwuy1UV\ Zo0GAZegH/YQZ/G3\ FZt0XEPTx0k hXWB\ s8/CXJ8dt101qyIC\ b5Lxqdttzbl8N+3+\ eurTEsnVgkZ2bQG7\ t4o2YM5Liye9Lkt9\ VwVZbfAF 8xp6W5r\ 6kyPIkTQpgJwrvAG\ XYMRDadEXLEASJQ9\ phk3Vg4CRIOLc4uz\ K8PpSc1G0vKaDoks\ EZTHq 7RYwY4AEoG\ oKsu0cD5L+L8JelU\ a2fZSaT9AITkQYcc\ qSAr/uHeLyTI5C2/\ yI1b4fIuw4QzRXvz\ e9 M43XH6fl3/w/1\ wDxC11WZGRZTTo0R\ GOmnc4Vk+4a4YuEz\ Np0hm+i+R3EHTyyo\ iXfj/0uKEKmmEs6 \ TlQtdUwyWLMhGPZj\ a5FWAzmtJ5kb2ZAh\ hDCKcPvseQ3ibl/s\ y5bamEPR404ff8hN\ 1KElNeYyQYOv NcY\ oVTLkJLOipFXcfiu\ xPtFaTWo7yzj9sWn\ udCaygRdQfWAIUfF\ RTCXuTkrrKMu0mNO\ UkccNaIEl EBUXv+\ xM2pZiqMiSNBrITZ\ Pebx6zN+CitCoEVh\ APkGOybtNljPxZMh\ VTYdvFJ7Pr9sfQix\ kM04yD LjXmBJ588\ bP4wUe+y9I1nZg5k\ 7YV7YShQJZVLrzmU\ m79l69TXNGGqigUl\ sbdi02T3JNeegb/8\ 9pP 8ebP/0WSkTnp\ +dv5ycd+yEO3PYCe\ 0elYs3TS8ciyjJKN\ A+bL3n0533j/18l9\ +TeUD5U5/9XPIbe2\ nUiZuuT8lbd+Fi1\ tEPkBkqZwwimrOPD\ oPv7wm8dwqjaP/vx\ hAF523WvYcMFWbr7\ mCxx6Im7779o8 qj\ J9xit38I133sxX3v\ LZ+DnTGoN9RsEvCY\ yuDOKwlwSVkqGiyD\ LuiIveUIGfCkpeQx\ nxJjnON1v1 p8rYK\ HkN97A76XOOUlhWT\ qsoKSVRwR/3HFd8Q\ j+25JB0mfq+EfSOj\ knbOPusc7nxxo9zz\ TXvBuDG Gz/O2Wed\ C8TcpvquCm63hdGV\ Ib0uS2B5WPsrRFE0\ ZymEJsK6IHIF+qqF\ a2QIvGBWcvxeS9CW\ 0ufk uabkNfxpaAO\ LhUiE/HzQYVNW5a7\ SFM9JA7IbYvTZqA3\ 7lOMSAP9HkdpbA0U\ el22q+4Ihx+Otmfm\ Z aybr764mJbW5QN\ VT2LbNZ664gb/68X\ sTLRwtYxCpIZ++6g\ Y2nbeJx3/9OOe+9n\ y2veC0pIsGwGxJ 8\ 9KPXI2q6ez8wb08+\ fvdVA9XcOsunu3zi\ g+/ksyK2OTyoW/dw\ +9u+jW6odPa1caL/\ /1qvGGbX37m Rxx8\ pAfP9jnxgi2c96YL\ 8Rz7Kc0oVe4bBEUi\ dAPM9gySKRPU40BR\ MuUk7Q/TS+lbB2rI\ kpQoLIdR hCIkwnB\ ULsA6UENVFdSUmmS\ Rmp1zsiwnvm8TrTS\ aEgFeyU4yQenVedx\ +C0mX0VtT6C0Gkiq\ BLqFk 4tKY22+RWp\ 5DK+pz4jHVd1ep76\ tQPHvppKxZU3pgMY\ n3s2WTJopJNnWjml\ YpzYC/GdjM1PIPcU\ eS mcnx6atuGPfsD\ u4f5Lt//1Ve/6W/G\ LeN5u9lrGq9GPGTv\ 5sBf1OuAMAaLpMpF\ pLvx7aRN5dvnpc1 \ XMaQM6iNkmEYiknW\ GrIiIwkZqy+2xxmr\ lTW2xb15br+47oe0\ rmhj+0vOYOQP/agt\ Ok7ZRc9oSJJE FEV\ EQWyUOhtHqFn6Gpu\ 9rO+qYKyeXu9mqvb\ 0qbYzX9T31FBSCqE\ liGQJKYyQFDnOrCh\ y7JGoS1R2 lkityE\ 3aV+AFfO07X+eO3/\ 8WiIOml13+0nHnUd\ tZRmvRUBuTmeoDQ0\ ReOE4WZD7Hay6bWq\ hzLL62 7zDPW946v\ guNUYmOqFGaF1GEW\ TBmzEo1W/4nbms62\ E9UjzhTNh+4Adyxa\ 5jDbkC0ZPosl1b20\ fss 1BEP0aITpjTc\ ZanjmaT/q4g0Fdkd\ H6n7UURGlVBTR5Z+\ 1VZlcPdb8+4gEiLg\ yTueSP7u2rIatUVj\ qGcQLX0yb7zp7cl\ 357zxuZz/1osA+NK\ ff5qDD+xn1RkbEJb\ P/of28aabr0HVVG7\ /xI+597v38Jy3 vZ\ DK/kPc/sVf8oYv//\ m4gW3X7x+lNljjNZ\ 97M2EQ8tmrP86W87\ ZQ3Lh02rbexUazhd\ /szJBek0Nq lkPb9\ biNvb2R7Wk4uk8XJ\ GVWZnH2xiRnCVBNh\ VAKSXeNBkhmZyomZ\ mdkqJGobs92/5oSA\ cawiT/s xbICmkR9\ XwU9p1HfV6FOLA8g\ 6TKyKoMioRXMefGZ\ jGUp3H4L+8napEEg\ DMKklPVUwbGqqHqK\ MPCx 9o0QjPikl7d\ Q2XcYUXHJrGxBW5p\ KBBeb5d5mZ1cY+Oh\ mij23P46syeSWF3n\ 4Bw8BkFvZgec6jOw\ + zE8//kPOetUfNd\ YZ1U2SFQ3S0rjtWX\ 0j5NLt40rHYSBwrC\ qyomJkswhfTCpVj9\ 322GWb+5p4Dk0I 3\ 6X2+DChE1A4sXPcs\ aiaweD+QQb+cJClK\ zvoK/fzyC92ctV/v\ SbOADshUSYis3J2T\ Z2pEIkQxVTi kt3S\ 2BtMb59ZD2uq9nSl\ oOJ2zz973CwdQ1yu\ mSnIStr50zp2T3XS\ soqucNXLruSql105\ 7TZSG3M4 u2uIyCb\ VbpI7sUjloSH8sjP\ vrKeSUgjsYMYg6d5\ hl98M1nnO8rgDuqm\ OHjoNraeMmmThDFO\ ZMkBq 8pBGgoi2lE\ 5xHkrZsilPyhQuNI\ a9gJ8ctmPeZz1kbP\ 5IdkO0YR/ZEUnWSB\ RNnGIK9BA/YxAa8v\ Eg 6f8qgoyMWh7fm\ dGia+wcqvPNkWGub\ J+cvp8NmiYTKDJBT\ cw5mwQxcXXXrx5N/\ u7ashpJxD+m067c \ kbx4VQ1Gdh/m0V8/\ Sr1Uo3xoBM8aDfS6\ tq1Mymrt65bSff8+\ AA482sOq7aswM7lE\ 6E7Pp+i+fx8j h8r\ 84APfBsD3PA4dGKC\ 4cf7nvlBw+2zUvIa\ 5ND2la/rYAUBJxyT\ 46bIyTR5TGIREjVm\ 9daCGIiTM FXFZQA\ BYIWEUYS4152UTox\ S1cfs2OzPIpkJ+e1\ sS7AUjPmEQxATseW\ pjKRmV1PIcdm+V8l\ 0DaJ3p ZEBdbO+9w\ AvmROx3azXcA3Xcf\ gujM4NTqiEsDzVvY\ B2skG9v8uCmV/02O\ jL84bYHsCs2LUtbe\ MV/ vRaAcm+ZO7/2\ O7Y89yS2XLx9XNv8\ dNuL3HDacvF060z3\ 2VRaVhM/C4b9mDsm\ QoTqwNh5l2aQMg2G\ 9g+y53e7SOVT/H/\ svXmcJHld5v+O+Ma\ Zd9bVVX1Nd8/B9Ez\ PDDODwzGwICCIuIz\ ocIiyoijuurqo 6P\ 58rQcePxUXEe8frg\ cCrqCgwArocsmNDM\ 4M08zZZ3VXd9ddmV\ mZkXF+I35/RGZUZV\ XWXT0MQz+v Fy96q\ rIiIyIj4/vE5/N8n\ ud73vJqBg8N4zlNE\ lVZtz2zERIvRgIIF\ X/CRVU23l6iKqsEu\ sIQm/L2 6amedFrU\ ekUniRKi1voPVWpO\ Q+tYEXhTzrZEycIQ\ GHusjHCZB/IUjw3i\ nm/iXVj7gakftCEj\ C7aG lMz8/P3neOP\ RMa7uRIOc70Q3jRh\ azzTpVtp0c2HEkby\ 26erRcoiiQVgPMXe\ RJN1b8zndTmUhV+f\ 0 7BhjU81sAMwFF3\ UxRnVD1M4QSTCSIx\ xKSdFKXCFJT1Ikmo\ ISLZXOD9mCcVdybL\ DMmYUWH3lghu++ Z\ XXvfCOI/faWq0mmb\ fLiX7gr+29V1TJBa\ betoKpqNkXzkl94O\ dWDBVpzrZ7tGPb6N\ 8ioEWYEyaja CF1w\ +GlHOHZn6vR2x93P\ wBooELck/kx/X5PL\ CRlIYk+i5YxVBCma\ DdBKKwTwliByo3Vb\ VyuPITnj oO9JtR4\ ykKnvkq1t+2k+23c\ nImoHWVtH5LVU03R\ ggz9ca3udRUTfb6F\ YKv5sG/dEg+B8KzV\ wy+mY Ry7f5xPNpQ\ Lf5YuZdNJsNtlO9V\ LZvrYjpCcJFtxsEj\ Fqh8T+xmPqgeey//\ r97L9+f/azWMZ47S\ ZD Vw3x0jd/X7o/T\ wCtXD84ZxuohoY+v\ PoajEIfeyjPc97wg\ p6fd1uGwhZEC8G2i\ JIMJHGSkNvidzRJ \ +psGqpaKe7KJaqnI\ IEntMSyVxEsfMIC0\ fWapmemkIiD24rSt\ LOMNw2OFIWDIgDNs\ yedpOfRBk0BC VPf\ TSc/a9nQ7whD4yRI\ xnAsjZjw/I0gAzxu\ y+PPH2mk7cpuu9et\ NsW0EraITzK+tDdo\ K+k2qdckS pFUjNY\ wp3j+P6kuisoHqSb\ zDJcJ1PlNbXKkkPW\ mRaAJ12U183F3695\ GBAl+arTN2ss7t12\ 6t163r Ktt18OiW9\ TXDzipCy238p85eY\ v8N+9l/y/5sQuepL\ 3vahtsduX5rhqSVA\ AAgAElEQVQfn/jDf\ 8H3 PPIHStkT+VW3\ HeYr7/sSz/qx56Pp\ Wk+qfSzjxzW6RDoR\ i/fPoRgqxaf2ibBo\ +Kv2JXTCbVVUokYI\ upIaekIa9tvRDm1\ 33/1JN22r7QJSfyQ\ XtSPwTryY/NEK+YM\ x/ryHP+XgTTkETQ+\ jmJIorazvalhy 4s\ V4HfFmLCXI9FzFUY\ yWMwi61gjDFtZVxV\ W2DNKJqH15ek0TwS\ 66rbB+2Ioj9TcCbi\ cUNKx7iHI6 EaiqK\ klnTdHzOvHA2hUWc\ 69N+3QL1VK33FKJm\ xFiA6PclQjnffQ1j\ HK7Yazt0y3MYRMsF\ SVKSPpM 3vWDKOk4\ pxY3jEoRJR1jwCRc\ 8Lf9EGaMmKiagnep\ jaIqqSXBDvFHj0zy\ 0r1VTncq81fnDdqd\ 6lpz sc3gNdUdv8d\ 2oG7RomAmiPjMbO+\ wx5CpMeevfR2qfox\ 9ZpHY1vEOp5q63KM\ 1mrcO9a0cQVqFur1\ q 4ssrlaQnLeLO1I\ 1oxz1+SV08dbjCR8\ 7XeepYYUutM0gJzW\ ZbbroAu7wyYDMEXc\ Mu5VK/GTMiVlVu e\ M7N/O0//DXv+pF3Y\ JVz3Pj8GzO/Fy2vY\ 9i9N0DDNkmCmEqlz\ Le//gW85yf/AqFpW\ VTDU15wC1Mn p/iL\ 1/wRQtMQQuVVf/QD\ mIVCJmJ+vIjS4v1z\ iJyGfVWx/5Ouqq7y\ PVJCUPt8dsux/G+i\ 2QBR1lAt kRlDpua\ eKv6ku6Z/0kbbr31\ 5yRcHsbNIm3SqLVj\ Kp6uFREQE0+mNTys\ ZGXGK2iHupWbmqwT\ LdFCm wBzObZk8Lb\ deEEU9JUdCQTXS89\ a1CbD35det4Im8hj\ Wax73QXHPi75sd4W\ zq4F69faTHa4owgS\ Ah ciOCU020ktH3+\ P0JB2EL3Dlv1VTYR\ ogWgjXtAfq+vjP1t\ pEQ2DxgE5xrp6/bR\ idwM200YW1e89nV \ Pa38XmoDBhYQ1AKU\ SCK9zWkofQmfmV3k\ q/NtlNkQ32lgCMG4\ 43K83uK951L7hpIu\ GLFMvseq8Gv1 RX6\ olqNiKAzoYluts+1\ C358aXhpRsmHF8f9\ OLdKQq++H6xEkgPz\ DNaKqhXsoJcr5R+o\ Eo/lVBOmu 0cKqyT\ xTXJlue1LDmPGxzz\ QIxgp4Y/aqCJMH5x\ v8xGCVwRFrS8aS3l\ lnUzYAy6duYOnJef\ nPozCi faGOMWKum\ ibqh+WWAN3pn5Xp9\ V30S6AHeqbbupNhW\ 2lHBTP+lsMS5z55E\ Ws0v+aUSjcUONHTE\ f2u GeJaBK4bWgtk\ zuLmmI3IazjnW6uO\ RwaS8IKXCaulE4G+\ 8VN0+1STYMHNst1U\ S+yIVLoTTha0u9b7\ 9dt+N54l8dOJvFh\ KZDNE6QhFVVMgmyF\ 6xUKU9Z7KjwwkOGm\ Vqj2+iDFgItsResX\ akAytB/+Smzot Bx\ H6sH3ZI3BWfoaXE/\ 4ll/aZxqYmq9qnmt\ m1txzOqUXsvTnCeZ\ 8kTBfEaC4gdjrX7T\ rj7VuZfOr6 GG12V\ H67U1VRPUQ2g6wqt\ RachxuELT8LjO6H7\ j5HrQDV0FBUBa2oo\ ZhaD+GM6iHtc4vEv\ lx3e76E 33zoInGc\ MJQz2Zu3Mad8/NGl\ bd03U+MVh0YYtQVT\ ruTeRxeY9SOaZThe\ T6UNJV3ww9eM8rzh\ 0qZG +XcL3enBtR7\ iPj3nbUiGVmL5KH/\ z1sHsZ8X75/pWkYZ\ MjecPrZ5+u1JJehI\ jGDGJrSrWuRaFBRd\ / X4Fg2RdwrGDzp/\ M1ftQrMnawsCWiFJ\ sqG32HYhll+oTlgt\ DlP4d0isWdcJADEX\ rJQhV6Wm1a9vqV E\ zr+dAi6jmz7GJpJF\ CwZSvZO/qR/t/LnX\ XRH6N0JZ1OLXFcoL\ ae7k0Np3Md6ZCOaT\ Uvc9r4lguJP ukRO\ QOxLVE3FqNjoe1L/\ omDBxxy0CFqr9QjB\ jE/cSo0yl793V3Qa\ LPhYg6u/6MIQ+B1f\ nm41RTUF qhDYhwt\ 9qzEykPhTDqKoZ6/\ xL7mbPlf9kPhx5q6\ 9Et3Fth+6BqXL4Z1\ xCOpuZ1rQQK0I4iA\ iPOfh PJaOrHdNLI\ FsqtAcs1GLWyO5K9\ H1jrJG81lrLvHjy1\ uVdFI/nscD/mxaid\ zM6Lk5ZhNO+4T4Pb\ oW NVFQcxpmTksrP\ dMeIq9nC2HcjnAeb\ qwyhfQvuelk1SYgA\ 4l/oY15aPPXo9q5j\ rdaVdUqOuHsal+v \ lUjiBHUdhhHVQ+r/\ PpNus6QjLAXphQQL\ LnrFoj3eIHeojDFi\ olV0lPMKqinW3efu\ 2908vPbnddtI lfe\ Pz/D91+3jny/N8ey\ KxXcNFhgeTL9XDRl\ x/0KbIdN8XAkSdEw\ 1T7dWVeouehFfnN/\ 4nOv1ENWJ MGbaPT\ KT2BQ4Nyy1Eu0zi3\ 2rSLB2ReoKSXqSIy\ rptG6qoi8EWOeamB\ dbuFeXiEo6g6bBoG\ nwjtk6 o8cdnp2zu\ LFsoQ6baxKmrgHYZ\ gnVZlLjuzEbwYJPO\ O2jFjSSKCaKJMqKz\ B3FVJeRAwhqEWBm2\ 1wr fX49XyRjwMTb\ xBcRloJZu9UJGcaE\ Fzw8LcEqmn2rEu2J\ xc4bKdni2jVc7BKV\ 1pk6RWsgIx/uhIMq\ 1EwXooSp+aBWMtY\ UWC4en0urJI2w7+K\ mqmk8Q7Dgo2oqway\ HsATqpOgJ1PWaPnL\ OI45Sj6TSrUMZ iT\ L32llcyG4imEmdsz\ fbOvMvubiX0v2o3D\ bcU6rPppSiOBVhOw\ GialI9Vt2xuV40G+\ BNtwnrHtZo Pq1El\ fWUlIn0892qp81mE\ bSCLD7mciKc9wlmP\ Yo3DGzq9SKvIY6kz\ u7++TYoShoHskxPt\ 9IFG9KJ MOuaAtG0\ R+DFJGr6dyKvp/ll\ G7S2utEk1v4c6hY+\ V23IIDi3OqdwM1At\ dUMxehxE67bc4iC1\ Nsgd KYOMUyF5nGA\ O29nfOydqOCfAGLD\ xZ1yMAbOvtUAXvoS\ 4ozFS/RjR0aCaFzs\ Po53P4mY7z3tPXKR\ g 6Jyoe7xjfpbvPb\ yXV+4rMCI0Xjy6Ne\ PK3YRW1ImbEVFFYI\ qNY0O6MKd8rPEG3o\ Ei3uES0k6vhZVE S\ PVjtEZA88jax/jBS\ w45VTJkmtxeTb9rV\ 0jStwjCAYNwYBDzo\ kv+4RrukXJWVXrqc\ IV2GPF39SYv VgU3\ zCSUO184o3OhBDU/\ rQLkNJLLcNXYB/KZ\ 3iFqpK7NWmF1haY7\ gRRMe+h5HWFqu5IB\ pCrra21k IAmmPZT\ OFy9NEBdpNW3EJFo\ IUo1GK0CYGkJXEVU\ 9DdzsVBrCaR9vyiF\ 3qJSRkmDGZ/H4HMI\ SJF7c 44eideJegm\ kvnVhbg0BIJ8J5rI\ 7WET9G7aDvjVwtaC\ St9OYp2xG5QyViL6\ 0WdY0j9YqFN7UUPm\ mN 5ndVMN13/wNJt\ Bhsugqz+MA8wWyHp\ Fy3WuMlDJHFD+wW/\ Esu7oUm0WKINZqnd\ ONgRojtqo6e16nf \ N4sxbF02opT48WX7\ LLqk373oZBWyrVZa\ RF7LHiCShsT3vVQo\ vU4SvTAEovNg0M3W\ k04IQt0wtiJp SRA\ qibY1nZwwRDrlto1\ MM61sEDXWJkndidI\ u4en7/paaksBW2Ld\ FqA+aBFM+YctHhhG\ 5w2WEnT5U 9UMtkL\ zzzDzD+fQ9zUkXY8\ ohNkXP9Jbqx9iu5F\ ZpcWK6DbbBq47s47\ v2PD7RIBtBWCqPXm\ zykLd6 NEivh2j1A\ LWT+hAv8/ozphy86\ 4r4A+tfr+tVkboIk\ 4SGVGm0Q867ES/fm\ 79Ckr7V4O+zkSWd/\ EML xPYAUTG9BHyZ\ IFD46KU6HwVeOFbh\ nOPzY5iEsz7G8JKH\ hLmDYNz1kBKP9TPL\ RF7Lfh/O+whd7cnk\ 2Q6CBR89r/ctZ3c\ DV1VVxagasMbEjTZ\ goDgR0pEkUUzgRyT\ zXubFY43midop+Vt\ OBowRk+p/GMV5 sE\ bUDjHLWlZFiuYCFE\ 1dt7UVLQS0TtWJFk\ MKRyroVYPavTN4l9\ oUVtzIRUXLBN3Akq\ /Ric7vx1It j324k\ MWZLHd7hs37C20F4\ QVvzTZbP8hmuCZB2\ m1EswHticU0T2/Yo\ np7tW+1UBswqD5zD\ 4v3z0GR y1pR2m14\ ZxyidkhY9zqO6ib6\ DipWcTMirPnkrysh\ F0P8cWddl+wuhCFg\ QGQEJJoNlqbROlA0\ JZuU 6wbhRtMecoW\ Wp4tw3iesh6tcuJM\ QpBcjtlg46UafrPV\ gFk17aSRPeR0Rcqd\ lGtQ9cqzeATWnYR3\ R sNgceQlJWPACbh\ 6uoPoxxpRD+/oqWj\ 1AqwdIWxCbKl9bXC\ RKEgq2Tr5g8/QDQw\ yJ+HFvra2FKUPh Y\ T9Gr4c9Y/mqH5N7t\ IZ3qExcUiFQUZcJ2\ dvXV9cd4+9uY6Mq0\ kqEScL/nVpEvOwn3\ virWz6aK/im Rmyq\ oKhYEy3CQRuEwrmW\ y112Dl8oeCR8da5J\ TtN5uqKjDxiIgoYQ\ CmKH0027CZHT8Oe8\ 1HG6uP0Q x3DWR9E\ FwlAJJj0UqRBMeam\ Hh6JgX5WHJCVT5uj\ ai7lqpO0iraijlw3\ 0ARO/GaCqaRxDtBh\ gjuZX LUCqUAnnA+\ IgwqhaxGEMQYI+aq\ Jv8KQbNSOCGRdzKE\ fuKSVUW6AiaE80Mf\ fkUJc54KpCJfZinJ\ P1 NDph2EpT6Ucsj\ BELvWygGiqqoaKXD\ YJpb9XxJosSKSX6e\ ovAOggXglXHL11JI\ tcnx8uhaoL22UXi \ ZgiJsqPPfj1IJ6J9\ bhESKN0wiH2ogGqv\ vaKohooxaiNrKeGQ\ ixHGyMZhn5val1oI\ ysbXebQQEEx6 xJ0\ JtCROeq6BlfDOOHh\ zDsG8R/5gGWtPHvu\ a4rbPaTQbEAcxxl4\ 7zWg0BWpRwx931sz\ gWwtqXhDO eSATYl\ 8SRwmyHiFbYUZCtL\ KBXAzRChrutItQUv\ 2ODCThJZfIkRhVA/\ 9CG7WokcgE92Ibc6\ 9N3AgI 5gL0Tfo4y\ cWQcD5Az+nIVtT3H\ IUzPt5Um8LRtQmyK\ lSCubS9rxeNdfVLm\ 8Gfn55nb95GFyrWh\ TaJ UPAO5IkqBuZk\ G73mEw5bxIpCK0gr\ MVNuwP1zi3xxpsln\ p5screYp7dDiwz3Z\ JKyHCEtFWfYgPRNE\ 5IXKRS/CVFRWvs2\ n5zy+WvOYcCPIawg\ vRp8PSEyBIhPyD9c\ Ih3N4+22krSMLGlH\ FyP4XWxufP3He ga\ JBOLS1a3DSDa9Ukr\ 5V4e+zUWIF64KDe6\ TA9ZUCH55vEMUJz9\ lT4pxjUA8iVENs2S\ Lg8YQxYBJO 78yQb\ LnGSKvoRF60qr2lD\ RhZq20rSBajtPJxV\ RF9wMpCZldCy+m4d\ Q+lk8e2WXQn3OzDS\ 0/K1pE8 3pxD86EF\ itf2Vj5kO8IYtjZ1\ LP3aX5Eboee3uYAu\ BH2rUIqmbskLxtxr\ o5X34DxWX1ensVP4\ k+6G U0UrIQxB4Vi\ FxQfSOIndspjw571\ VjubLhxm6FcWuSWv\ XNqGrfQNQDY1YSmJ\ fZpl8xoCJagqq/2F\ w 5y1roaEoISLXK4\ oXhsDan+ubq7Yegh\ k/nXha8X0Q0gIJiq\ 0QBS76oIl3oY1mC6\ JGgD/roxV1oiQh f\ 3Uh3S/DQNZ9Ej9C0\ wTRtJdmpE17qZFrH\ /d76LSCpz1kkGT+U\ NqQAdOrW0IykEhfZ\ m3v9RAthmgl PTWq\ 3AFOOwFzbZ+9eTur\ IjVvHcp+7x4pUbx/\ Dr0eMlYxGcuZzLZ8\ YEmDWQ8ifufBixwq\ 2Pzs9etf 68v9U5d\ zu7gd4ddcosUQf7K\ FVjLQbJ3pqsKHaz4\ 3VfM4UYwrPZ43bGG\ oGh+fbnHJcakYOrl\ lU8hh RYeKjjnlo9\ VcYktk4/vbgerH5G\ faPedls7CumEl+ay\ McNCgcX8TbnycxFI\ 4NlmkEIffMp5qUdh\ Qx 2fA4OLT9aIHLD\ ZHX8DRv3fiOTW2no\ zGCtYV629GD2NcVs\ cP+02PLoVcNoraFP\ ++R2+RxSCciXPDS \ sfcV2zfH8shGiHO2\ gTZvZgu1P+Ugctqa\ ZG0jJF6Mtg1S4l9y\ U61Gn7aaMWKm040r\ fKLWQ7DgI9sR 1lW\ Xb5oscoINn/JVoaH\ pq59OB77NpvXoHO6\ l1IBxN8b2lxOPriF\ rFEaEjYjmwwupUek\ NA1m7qmub IBshUT\ tA7XyNtZwBOdBJyX\ migzflbtnLqIvllh\ 5qRctatLGMiUI/nU\ 7NaQhDWZeQLIcMJF\ HdX6XZ sfJFPKfJY\ //yKNc8+3oM28K9O\ ItWMbN2mwwk/oSLP\ dbJQbRsVBGhDuUJP\ Kdne+JAnvaJRZSyy\ I69 GwsS+RJFUdGK\ OuaelPjF7Qh3ysUs\ mfgTDnLZYImqKMRB\ lNllrAdhCfSCuaPc\ Ml/CO0/OcE0lJZ7m\ pJsGsy57AIpNFe9\ QmdyjNaKyQVS12VP\ VGS4sXbPtMCKna9w\ 3U+P3T8zynOESx0p\ mNu020/ZxJOQF OB\ IebrTJCZWCofOSvV\ Vur5qcH2/RaIbc9K\ w9hPWQYM7Fm3Z47H\ ibsqVywXaxByzaFY\ 0JR1IxYtph xN68T\ TvsP1SjehGqJ7Px/\ e2i33nZDHRF4fsPV\ K6QpG9lyJxKVDGza\ hLAqUaLEcskjBMq+\ Rx/OdXg l7ZoD/B4\ wxq18c+3N00uHk90\ dVYbvq6qE50MoA1m\ sLnspOZDCwCU7lh9\ E7EP5Gn7zVSE3Zm6\ ygiK 2JzLcD/E8db\ cf8N5H9mIUCx1w4p\ K1Ag3TZJkY8kj6XJ\ ABhJVCLTc+teUYdk\ 88sAjTM5O9/z80NV\ X ceSmw8RxTND0iB\ 4Mt62h6urA3AkH3d\ LxpttUrrf4x098iP\ r8Aq/+rrv7+hlltg\ kHOsThfBtvvHdw o\ Lv9pJX+vlthVIWK0\ EVa6cirG+53N0BaR\ hF20WbwwBDPff3zK\ B4cyvzR7ENlgqnVU\ 2XditjStiKi aY/C\ 0YHsv4FO2HDMR9/8\ YaxKjonj53jxm+6i\ eONIj2WIaqdxOeFc\ gF20iGXM/3r1H/BD\ f/oGzAGb KHB73lP\ YAn/CJUni1LbAUtH\ KBuaKilAw4yMbAZq\ lksgYfdDsyR2L2xF\ B3V23vQlp2w5Aq+z\ s4fNP Ts4wnLfJ6V\ oqbK55PePuXfijJm\ F1CH3Ox5hsYY3LjD\ CFVZ1cJ4bltpEq7T\ Diny/VeNdpnxnPZ8\ Qy yQkVQ6hUDJ22j\ MkJleurRU7VW7zr9\ BQjI4O8+/6LiH0lb\ ulYPnSruy8MJB95b\ IHGrI+74MHFiJuf \ YXM8SMjpGrZQ6fdY\ ak75q6pi20G/6tpm\ 0A4jnjOcwxRXptu+\ 5eEdLFI4PpdVk0xV\ 5XW2xWcNwRcn 53n\ 6vgLRlIt+mY3yrgC\ KTx2k9rmpnqke6US\ 4Z1uE9bQ8Lop6lh2\ WBDHFp6w9pq2qKrl\ DJfwpB0mY jibnNK\ yxneW4bQZdJ2FFUx\ FlbUM9ilEw+vpCrQ\ XVEqiBmhlp7jbcE0\ 3Cuod9XZG/e//7+O\ KXvwDA nc98Nnff9\ Yoe0nD/Qw9w8uTJ7\ L8/+alP86M/+iMcO\ XyY0g0j0E7wPY9g2\ kHpmCrqtommmz2xM\ 0tB z8sWXhnjthwK\ 1w9BOyFYTONcAJq1\ RaZmpjFKNrkDpZ7K\ zUoIY2lgoD2+iGIu\ DQQsF0x3285xHCN9\ SeRKRE3Bj+NeAmU\ JlM5EaJwkqCWN+Qt\ z/NxHfolI8zj+z8d\ 53//zXn7svT/VE0N\ k7s8TtH30kk7g ua\ vOQSxjZKBRvDbf8/\ P0tRqNyRrPe/0LGD\ w6xvl7zhC4HvlSEV\ aYxhqWTShCCNKx/R\ 959xuw8kVi Ga8yr\ VX2aiTG2gHFkLaKE\ z9a14RSzWkECz5aY\ W3yE80GuJMtpCfRN\ xAbr4e/Hk99wMZyZ\ iZsbl9f XbNaEpsq\ /j4bf1/alusSJq2W\ XkvRHpMwb5IzNa6r\ FLiuU51qhxEXHI9A\ SuodPZOmKBRilac7\ OlpN 8n9OX+TQWJm\ 5UQNf9rbhhCG466Z\ hAFw35D1fm+PTn7n\ IdNUgd6iE2+e2oNd\ DrPHGusezWWy1itQ\ O I153qMK/zHrstz\ q6tx3twRV80yOrJk\ 26uFflGLQt3h/6/P\ CBIb4yvcCZdog2cv\ kX1Z3AP99+XPxj L\ jfcE02EJTL/H2/OW\ dIudKI4gCyqI3eot\ LaWouNqnLummIW1d\ ie0Ho8IjfCCh9QSr\ E3GhoiqTrJJ rypI\ DQxjLw0M3m34l1y8\ KYfiDQN84MPvZ2Z2\ nre99Y8BeMef/Qkf\ +PD7edUrXg2kxOY1\ r3l19rdf +tKXeeD\ 41/mB7/9+VFXDdZt\ 8/gtfoDXX5Lan3sa\ hQ1fh15uoBZ1/+8p\ XmLo0zTPvfAZTk1P\ cdNMx VFXlS1/6Ml\ dfcx2f+uQneObtT+\ fI1Vdz8qET3Pe1+9\ h/7QGe9axnoqoaWk\ 7Hyuf4+umHOHtmnK\ fd cTsHDx7ocZRfi\ S5Rch6ro+VWk9cea\ wu6DmQpvDNOpstZn\ itoH7DRur5AOQVLL\ /K0lz+Tz/7Jp4hl \ jGFa1C7O8sm3fZSF\ izUMW+f5//XFHLj9\ MACf+9OPY43keeRj\ X8dtutz2qjuQrYhH\ PvkgUsa8+Gde ysE\ 7jgAw/cglvvw3n0c\ GErua4+7f/EFUVaM\ xPsXn3vlZhKkxfWI\ SGUi+8xdfxvC+UQA\ ++Asf4GW/ /nLy1Q\ qNyRof+60PETjplN\ oL/9tLOHjHkXWz9L\ QBg3CTYaxJ1D/EIp\ jx8S40CRZ8ik+pbL\ vV9uk5 jwuOx3WVQ\ uYg7R0qbzjh1cUqw\ lQLMc61sPxmT4UpN\ lVyupYRJkh9l1LDx\ jmisoF3uEQ+X2YhC\ Pnk xTn2WwqvPDTc\ 931tW+cFNw/ylXKL\ WyZdLj1cIxgrUBsU\ mSZJ9WOss4tbOp61\ sJ0q0sFC2qL99gEr\ I3tXSNIV4O/Lk39\ oAW/MZixncsnxeN/\ 4HO0w4o3XjxLNBuj\ bCTp6HOBOOKlIcBt\ J408ktE+lrbGu 6N\ O91ESvWFhD+TSPbZ\ lDtHRSZ+31iKE/6W\ ZC3/yxKov3pB4++X\ 07M4tTVTVzHRem1j\ eepd3J87K2 SMa0k\ tGzEBsFY81Wj8hr6\ AMm7TONXc3fk06q7\ +n6BH3xy1/gbW/9Y\ 97+B/8TgJ9543/nT\ T//k0sk KXCJAjCs\ VO/yq7/52/zB7/4O\ mq4RxxH/+KEP4Xke\ xUKRH/vp/8J7/r93\ cuCag7ztD9/OV7/2\ AN/5 wm/nLW/5HY4\ ff5D/8+F/BOA3fu3\ /ZXTPKDc99WYAvnj\ PF/ndt72dV7/sbt7\ 3vr/j3/7tHn7u594\ E wKf/9V+R0mVkzz\ 7e8OP/mbe/5Xc5es\ vRdRf83DVFIieg9U\ itxyh0I6ylq1LF0m\ IWTLXxCzHHP/wA +\ 48dQNPT7+XHfutD3\ PIfb+WGFz2V+fFZ3\ vvT7+LH3/1GzIpNc\ 6HFxUcu8prffz2B6\ /Gnr347z/6h 5/Ij\ f/NfOfO5x/jiez7L\ wTuOoKoa+27dx2ue\ 9noAPv6H/8T9H7+H\ Z7zyuQRxwsOfeYgf\ +dMfY/Do GA9//Gt\ 8+S8/y12//WpiGTM\ /MQ9Beh0VR8oZYTr\ x6YeWti+0datJiao\ Qt6N1yY2wRF8xtlw\ M8SbT 6A9rNL9htM\ lauLfm8/GJWW4bqa\ aC5IdrBKP5nviRrS\ A2VfxRE3/U7KkwZS\ 25kkmc1zI366hqEY\ wV sve70GzTdmKGD\ MH/vvO6Dd/v6rzBw\ DVlvjBgUbjURj3bo\ NTOIXI6saWiejGqL\ 4l3wVl+O1qkY6VO \ xXPZLecKSboCoqKG\ zOtZNWlv3uITEzNc\ XbIZFoJ4G0n0jxfi\ JEHdhZTsbzRiT2J1\ 7AE2Cm0VeQ1l 2t9\ wceuSC2EISncM9/x\ su9D3W/jn24iclsa\ jRDHLl5VYxhgD5rZ\ IqzFiIpdp34JWgB7\ puJ7Xk8UG EErwyg\ JzNE97fBFz0NqRcL\ +L5kMLGMNWz7TgRk\ jjcFR+53d/n1d+x4\ s5evQogediWDY/9J\ 9em73u wa8/yPHTX\ +fgDYf4u7//ez72z\ g9gDRR46XNfwgu/5\ zvxaz62ZTI5M83v/\ c/f5dobrsUwLf7HD\ /4G v/yL/4OnDB/h\ pd/5Ep5/13dmJOng\ gQP8/M//AgDFXJG/\ /t/v5ndu+e0N97l0\ yyD1e2ZwHqtTum1n\ uo/leP+b/xan4VD\ dO8D3vTUlkoHvceH\ BCb7/j36YWMYMHhp\ m8MAgFx4c5+pnHwW\ ZcPVzr0OxFfKl Iv\ mBPDe8OCWIe56yl8\ ZUPdu+bps8/NGv0W\ 62WZxuUBpZIv3FoS\ KDR8fSv7tuH19937\ +hKwZhvNTG VVUNi\ Jg/ucBD5x9i4dQcr\ bnWpo7NPGDjd8Nx1\ 0Ec9N6PooWA9njqt\ VU4Utm2iP+Dlxzun\ alx20iq O7LPLO54\ 8ms5+rbkOsRouWFj\ O4x4dKYGwI1li9ce\ Gd3S+7TjhBuKGjyl\ xFcsleqZJjR8oqqV\ mUUa kw5hZfs+Y8v\ 9oraCEWP1PfUKSbo\ CALyrCtinF6GTvD1\ sGbzp2j0Ekw7G2BN\ Xj9QVbX+zozuavVl\ x b6Kz4TTYcsO73T\ JdXK5t8c6kk0JZVS\ kviBrhjqp6y4mOXd\ WznLhgJs2003IasR\ /TlAFvOTHPswfK P\ H/YYvGheUp3DO/oO\ N2JtL1ZuaWSndc7n\ /ls3vFnf8LPvPG/A\ 2m77c5nPrvn7wzLz\ tpsv/i+vyUK o6y6\ 8he//yd88fjXKBby\ nHzsJHc+61lMTk1T\ KBSoXrcHd86hUilT\ rVSRtkJsQbFY5Ogt\ R4nCiDiO uDB+lre\ +7W3Z+x246hBeO60\ U7R/bC6SfweEjh/j\ AB/8BYMOqCEDx2iq\ LD83jnXF2LTT3B97\ +enzP 450//me4NQ\ 8rV+zNYYzj1JvL1I\ naS61SUzF6tFia2n\ tdq6qGX3f5q9e/g1\ teehtXPf0I/qLb8x\ rD 7L3uZCDTNnXY+\ 5D3kTd/AEVXufklt\ 1KtDDLxwHnCxXDDA\ QthCBSxNafuuB2lT\ uwDJtU7Rrbs8N3F \ e87Mcs6VWTZb/pGU\ ODrr+DHtBMKVaJ02\ fRoQmwbCnqi3CKTk\ p46OMaRr2zKi3Gct\ fbb3WxrTx8rk 6xG\ iGSGqNsFYntyjNex\ xZ9sEsFtF2krL7vY\ 1hPRXSNIVAKB6Mck\ Kl68z402OHCo+oSf\ bhCF23QH6 G4H8wR\ K1e2fSKb1NtI6MgT\ QM116DJJkHcxvGOu\ wEwUyasbd87Bon3n\ XPIlWkeXOflT6fmm\ swbJsM WzoP11pce\ 7jCA9NtDhwpc6QZ4\ p5obtvlWgYS2QhX6\ bzuvsJ/e4oAACAAS\ URBVOsVfODD7+dNP\ /+T wJJwuwvDyuM5\ zd42m4zRdINPfvyT\ fPH413jnX/05AD/7\ pp8HYLBaptVKqxf5\ PR0xtdsm1xWKrpj2\ qg4N86u/8iscGT1\ EsOhilGyMXHqe5+o\ L2XmanJxkaDCddNy\ IIEFKSEVRJ6i7m3Z\ 37odYhkTtJR1O fk\ +RO37wmXzybR/lFb\ /3OqxckcpolYl7z3\ Lg9sOEiyGTp6b4jq\ u3VsGaOTuJXbR52v\ c+C72k829/ +XmGr\ 9vYw6rb8uvmQJ788\ gne8J6fwrAtHv7E1\ 9Lf2Qrt8Y09t/T9F\ sG5NvYaZEcxVGK5R\ P7CeR9h iW1X63wJ\ b310ioIuMm2QPe6g\ erLvJNtuwB53UN0Q\ rREQjOZxD+U71aMG\ LzowzPOHdscgFeDu\ IyV8 Ce+lDhUt0yZ\ 5h8pY4w3ikprFjXT\ 1U8g1OgdCBRkT57U\ 1J/36YcjUuLNqrUn\ 4rpCkKwAgtgWytNT\ X vq5S4H2tNurnav\ zszWPkh5+4wuitjq\ U/ESGqejaJ1q91JA\ NJ3IyQjSg73vU0Sc\ IQ+JfxvKzMWlvu M\ 7VbuDjt8/mpRU7XE\ nwpuW2kiheGtGc97\ vQNcELm3IhLJ9tc5\ UnWemaUToRzqoGWN\ zArFmJo9SuD aY84\ iLLJseXH9apXvDrT\ IC1Ht832e7/3x+zb\ s4fJi9NMXkytAMb2\ 7cHKmTQaDc6cPcuj\ Dz/K/fd9 jRc879s\ xTIun3/Ft/P4f/BH\ f/dLv4nP//HF8f7U\ oOJYh6Bqvvvt7+a3\ f/i3e8IY3UGnmeLR\ 5lrtf eTcA99/3NT\ 79yc8wtm8P73rPe/\ ih17521XbWgzVWYP\ H43LZ9xqQTEfsJxu\ jS38Yy5mkvfyYP/M\ N9 nPrMQ1zzvBt56\ a98Dx/99Q9RGCrQm\ KrznNc+l9z+CoG/O\ bF+EsSMHB4jcEM+8\ It/A0BpqLRkQupu \ TAoTQyEJYm568c38\ 7U//NYWhAsOHhjFs\ HU1Px9bdk03UvLYm\ WRKGQM1ra1aTrKE8\ YWvps4ya0ZqZ axv\ htBPwzpMz7C/mGOg\ Q6OWj/jud/OoHc8p\ HdUNUT2ZxHwtewJw\ X8As3HaByGRiDKeB\ 1hyq84+Rs RpL8UR\ PVy2Oca0PQiXYabx\ CM5rOW3Eqoy4Y4gp\ Hcps/PRqRP+Yuvn+\ 4vxb+CbzkU758nGM\ nh70tv EJccj6qW8\ JpSmcgNt+QE/XihK\ 2J+Iu7bdlC/ZwZVU\ 8kfq5K0JFE9JO6MX\ 3dbWpv2EqqFRG50W\ Ryp vTPOuqG7O4EM\ JP90Yp4HmgGHx/JY\ eroYaY0Q85KD1gh4\ OAxoD1rs03VecaSM\ NbjaUHO5FsQYMFEN\ Lcsn00dzPeaJtS9\ MoVfSm+Vmq1FdE8V\ 3vfs9TE1M9vzu2M3\ H+I93vYx3/vU7efj\ Bh7nh2A3cfOwm LG\ Fy46034bWbvPsdf8\ WZ6Ule+IIX8ptv+W\ 0+9I8fwLZt/vCP/o\ Sf/dk3EnguqkgX8I\ 999J+558tf xfN87\ njGt/F93/O93Hf8P\ gDu+fevcu7sOZ797\ Dv5rpe+hCiMiAK33\ y73RffY1zvu5YL69\ NhVYhmT +KkGLbe3\ ShzH6Zj+yRmKR4Z6\ XtuFM93EHkrH+6Mw\ InGXlh+RF2lET8dH\ KHA9DHv1AuY3FjHL\ JRRb 6fl7AL2kE4V\ RZrTZbeF1/x3LGOl\ IgloTo1pEL+nEMm0\ BdsXuwYxPuOijl8y\ +k6D+JRdk3Fd8HS0\ E NB9eQK9YaDkdb8\ 5B1dQtV5JOOwF/8M\ gkzx5b8kDT62E26r\ /Tya9+6ArBY0vgHi\ nRUmPOLDoYQmSm k\ ZcTF72IT0y1ety3u\ 21F1ZNEVQt/mRltP\ xLUnfbbyjl65b719\ YdXSNIVZNCaEfmHF\ li8bZjEUPja bJ03\ 37wPdSGEskY861+2\ CIjt4nIu1t8IRAsB\ 9ftmsUbziLKOscfa\ ts4mmPFJohhtyNjV\ IFgZSGQ9 FW3v5vU\ gA8nnTjX4XKNNoWp\ woJjq41Q/xj6zmP7\ bi3CPlPn6QosfDgW\ VARMtb6R2AFKCTG9\ nqqHh TTkZOdIHTL\ QhI/M/EkUdZILaEW\ pG7YBoMVxltLgRDK\ vXz2czUNV08q2L6Z\ l57r77bj7/uX/Nfh\ bL OHOHXu4zFDWWn\ qJXhg8DWyZIkE4jB\ gsuhWsqffVkwYyP9\ KOscpn4MXGUoGpK9\ vq0qqanrbemRzjv \ k++007r7031Nenxh\ ahpZD1E0nWiZvkgr\ 2ejlVFPV/ZsocPHO\ OOSuLfdM03W3IwOJ\ 0lJJCnFa7REa SqA\ RSAdhCIS0CFwPf7q\ FWTYx9/ZOeXa300U\ 3jiT2YlRL7SFE/oS\ DKBrEQZzmlC0L3ZW\ BJLzg0TpT xxgwUT\ oShuLNa/uZZe+5rD\ r13/79HIcK6Xdrf+\ d7ULx/PiMKl6WKdN\ FFW/Rxj5SYDkNqUf\ i4kKPl eMfphaxqB\ kvELapam9YnFe+fx\ ztc2jWS9ORYWa5gV\ yBXNGVNTaC1JVEg0\ XwVtZQGOz6RstziO\ H7S ECRI/Vhyh0rE\ nVytnZAb6UfYB/KZ\ +PmJChlI3v/gHI+1\ AwpDJkcPphUN1Y8x\ L7kY0w7ewSJaw8e5\ YYDYVEmkwr4jI/i\ TbuYDpRoaXYMfUda\ p7htZ1UIqHKvQPtV\ MSRUyjevQVIwBe02\ SsB5WxlxsBla+ yK\ /92m8wPT1DpVzm+I\ MP8l/+8493trfa46\ hrMwDQerROHESpdk\ rbHdsL82AutQQ41Q\ k+XkF8pR/1 kvU+l\ 1Isl8wY1ZwG8z7tC\ /WeSszy13ShGgpRy\ 0fkNGQzyMhI93XL/\ 0ZqSd9tQNoGk1qIP\ +6iVUxk o4naGSMP\ Q1B0hyTsTKhNuFBq\ rfvdEoZAdPYlmg1o\ n041ZOawCUJFttN9\ iBrp/ydTPoqlIl2J\ qiiZ ZrB869CaRqp\ xO8K/6BI206EEAK2\ kY4/lefvN+5mKE/7\ sxDT7Sb8Lqi8xphy\ MKYfYFDuO61gJNUx\ b l7GpMrno8ss37d\ +WMHu7uLfm9xCk7r\ 4sP05dUQiTJPv3y/\ cuXYynnYBTTY/IEq\ hOhF41OGhrnG73 b\ 89tFk+e1eUKdgy1Y\ 4KWGKnPh6FAUEtbW\ d5ZB+twZ8F9gpAkd\ 8J5UphI9kPU3rz79\ FpQhZpOwJm7 +3kJ\ Q0A+IZzeWAeyGfzT\ iXku5hSO7lkSWnbL\ 5lHZyCZrjOlUsBqb\ KpGE2NI6VZ+teSTt\ lqfSTvDm N/8yk5N\ TNBebjI2NUiwV02m\ 2TQiuZTttMe+WN5g\ wBPlryjiP1Wk+vIA\ /a5E/WslIROLHWyb\ romhk RKIfuvloIq\ +T+BFBM0EYSs9E5k\ ooG6x1oqRjRAmoCt\ o+m9iL+54j84Cdiq\ 83GOXvQhs20IYN4n\ aE d6GNtT+3yiupW\ 3kyBk20io62oKNoL\ VqP1Hry9KJ6iH+pT\ bDgIr00DFdYGrmDR\ ZIoIVhw8Rc8wkbI \ Y6MWFaNTeTNVGs9Y\ EqnnH6ljXnQzacRu\ oCvWBlDVJa+nLvk4\ VsnhyRhLqD0TaruF\ q4vmhoTm5Xvz XPQ\ iHmtF3LpCE7bfMqg\ HCedMDXPRJyDHkbz\ GsZLJvy54LAarr8f\ vGN74/D0xVrsreMK\ i20rQh03C uZ0v3L\ sF6UQkfox24JvbRH\ IlZC3MXKS3WyHrap\ ESL0Zq8rI4bIu8Rl\ KJd2V8/IFmkFWPuu\ iSoeUj zlHFRl8Ii\ Mo6VcvgnWdnecM1/\ d19AT4x6/HZi3MM5\ 21+4sgg+uP4VLweP\ KeJKjSGh4YYHkpbU\ uu5 ZC9H4ViF1oN1\ 2uOLRIs++rC9K1VC\ kdco3TaEO+HgTzrU\ PjdF7lAJc8zO4ki2\ gmDexzywtADJxRDp\ xSR+hAwSVEVB0UF\ 6EjWnoZVVwrkAJUo\ 2lXW4FqQTIvI64Xx\ 6r+pHkoQhSNT1CVk\ /eBfamKN2XzNJ YQ\ goG4RzQUqSBgxsCr\ THF2mdqqOagmA2Fa\ lrJR29YlHcm1u1f+\ aCTf2+WbSSjjqbwG\ pfSoBsTD4c Mnet9\ RbbOjQCVD9mwDL4z\ YcuYgiBF0YM522+O\ DONIQS/dOPWfJE2i\ 4oGd40WaEvJJ2Z7W\ 8ZX53SO dQaL9lla\ X5J2wQs4W/Ox/Yio\ ZBImCZ+ZS895t+JU\ CyTtONmSfcEVknQF\ GZRIEi+7cvIemQO0\ KGgE NQfN1gnD+Bt\ uCxBO+30T5b+Z4Z1\ xiNohYd3LRMTbgqE\ Qt2KM/dvXM20G2oC\ B9OTOHa/l5mSR4YC\ B faYB5DlQzDHRXN\ 8f6/j8IjcPV6j5AT\ 933zi/fttVlMUaq8\ 56u9eJeOlHWr0zDk\ HTI/YlyTITQcVQ 0\ XJGpoVa+Tms1TbaD\ ArHKugDJu6FJrIRU\ p+coXjjwK60ne0D+\ TQc+VQTf8pJTU735\ La8HVVR8M6n rUhF\ URGd6rQoGphraEXC\ uWDbUR2QErHQC9EH\ TbSBPO7J5ppEaKvV\ JPdkE2PIWtfnSJR0\ vBk3e09t wCBfqBJ\ e8AhbPuaIjVE113X\ b1gYM7ENFgqk242c\ aHNhXIOmzi9IWPff\ q3YA/ZqPVPPRayN5\ Rm735 3vvrWM7kQr\ PN34/Prhk9slOYAk\ wheOW+Ahe9CF3tb/\ DYD/fWA3RXpg9YYx\ rtMOKmsp2RK4CqId\ iq ccIVknQFGZRlm\ UONIGTAFD36o66+R\ Q0kfAMF3NKJnlRap\ C452q54eCVEXiOZd\ C8rQerC3Gunmo0d \ ECWrD29R/Zh4xdNi\ VNY72oyYtioR6vqE\ 56tzDWZdH0OoPGdw\ gF+57xy/eMsBRrZ4\ XpzH6sh2hF5J nbi\ 7151/yaV1po41mkf\ NCdSBJc+u7ufpTaV\ EoSsgN0bsVVEuXRJ\ GkKwZw7IcMpC4F5o\ kQYw2pGfv sZvIXV\ PEPJhj8Z5ZAAprZA\ SuBUUH3ew/HbYWkr\ X8bzaJcC6gcO1S5d\ HcZ+NNuOSuXi3M7Y\ 7yZ1qj A/aa592fc\ NArm3OR13I60bSX6\ ZmEIRBH8lvyocpfU\ 2I2iDl/bp5DtkY5S\ HoqRsvFzLsp4I5Nl\ dgS WOMNtFoaSRIO\ pZ+fPucTDpnsL+Z4\ cL6Bf2aW794/wD0L\ DkOmeVnE3dtt6am+\ 5K7DxR0R7uV4cqwy\ V7ArUKIkM5RsRzG\ Hk9WLkGbrxMHuh4p\ uBd+sVSQZSILptPz\ bHaH2zqVhtcISaQn\ +qYO7Qm6MAZP2 qS\ bmmL2+K7cTETVC4m\ ULVLfFutnJNW3YQN\ GU9P0O5ra8/2VDww\ vDbNQfQIliYqvP9F\ bZQJ/3sfba TNVaN\ GTStzr07vEa15Vy7\ M8ZzPqS77iqyJ1jN\ r/5wAT/6eAgt+/ZH\ KGLFoLMQiCse8SPR\ RgVG31P mhtnjeY3\ tAzwL7mECz5xEOGc\ qGWftyjqaHmDyAnS\ /1/0iTu+P6qmglDI\ 7S2uDjF24jTs2EzD\ kKu3 j2zeFmIDl/b\ lEEa6j3EfLcdmsVH\ W2VaQJOuTqDjprUi\ qOQ0lXrtK2b2+5WL\ YQ2xWQgYJ+uDmyIi\ i qTsmewDzYzZz7Q\ IHpyOsWoC26BPbOr\ GlodXcXY0jWQ7naC\ X1SvLSrLY0zDbNcb\ MmmniHyhwbLTPZ 9\ vmdhy4xmreYay/Sk\ EO7ajLZxUwQ8ZlLN\ cqWyfOGSxu2yKJQc\ ioKOXuxxuGiyTVFi\ 6vzO5NkiJf9 xBt/\ dUdbuIInDbR6iBrF\ hEMWdS/gBlVnbIWw\ TeQEWnH3PTo2A+lE\ uFNthCHWnBh5IiOR\ CdFCgFkx iaMYYQv\ CxQAtr1O8dRBrLLf\ lcfK1oNqC2ItJJAQ\ LPnq5/40iuOCiFTS\ 0oo6wNYStoVqCqB0\ RzvrI eoTS8a/Z6P\ 3UgpZGxCRsyUBvTD\ P49EQdzVKxtfQuaM\ wFxKaKXHGtKYmCXv\ MIhy2iOKEeKRwtrj\ 62 fzi/QCBjDleKi\ ERy51Ceoi5oovGRC\ /M8a7SMtUElSgaS9\ okGwtaw9hexR/N4l\ xyiZpC6Mw/lsPfl \ Ue3179xaUccYsTDH\ chijNsLSSOIEZEIc\ xchmiGyFJGHcMWeM\ ka6EOEG6IdKR6MsG\ FJI4wXmsgchr Kan\ ewiBF+8QicUuiVTe\ 3cMiWJKz52Ac3n2U\ HKfEw99oEUy7aGtf\ eSkQLwbrf66gWoq9\ TzZH1cNVx CVvgjT\ vrbjdRQNajNc+JPm\ Dgnm1t6p6jKBC7ct\ PHvBb+fqLG4WKO3L\ 4C4bCNPd4krFpY51\ MrjNZN G1sKbBeyo\ BFVDIKxHNGAhayYJ\ KpKnNPRZ9vo9QB7M\ MdoOUfR0NmTt/i3q\ QXuHC6h7aIKoxZIf\ v34 RQqmxZQX8pEL\ C9w+WMAWKr6E6SAi\ RuWhhs/XG22+OtNg\ FI1qyaaVF0z7knvn\ HT5+qc6c57OvkGc7\ ublXKklX0IOos+A\ 4MmbIevyVrjKQuCe\ aqJZAMdUe0zqtZKB\ p4gnn1bRZLI1Qq5j\ V9BiKapXavTPw SL\ 1nomg3oA0ZBNMeuq\ XjX3JXj3YHMjUA7L\ PwdONOpBMRXvDw4/\ T8Awhd7dsWEobI4l\ DCWrBm+00G EsIkq\ 2js22PyJjHM35xdY\ KIYcaCYQ/VCZH715\ xyVdewzDVQ/5kAxx\ /1zdQ6KOKsMhRJaU\ qIqCW4k 0RWFh2oO\ b/yqw+uOjPLKfQVO\ 1lv8y/lZXnV4/UiL\ YNojWPCpPnNPtq+l\ W4fwJ11iT6JaYssu\ 1cIQ me5HOhHoSm/\ rreNBJf20ehPOuql\ I2wko3ZKOQou8hrA\ EqhBbul6CGR9R1pF\ JQjjvb/pBQ3pySxW\ o rmu1P5G2Aftde/\ 2g7PABYWUlCTrVJK\ GuW9EShiDS199PrW\ LiTzjr6okAopZE9K\ mAbhWtUGaaIOGm W\ tFu+OzjidhU05ZeR\ 0emVwyMSYfi/XNZZ\ AmApWtc8IIdV22W4\ 4wTkRNqZgtQMXTe9\ vAklq7hhVE2 gWcI\ QdHQuXm4Qu6ROrGt\ M2Cl52ksl17jk22f\ t3x9gm8fK/Pi0VL/\ N1wDV0jSFWRQfZnm\ 3wCRlHxD JD9OjCj\ r6SJSC5FhjGaqqHu\ 0rFW1FqQTIZ3V01z\ RQpA5VyeG0uO0/Hj\ DHLSI5gJE52Ysqjr\ WaJ6o HeA8WNvVRP\ bugiydiGg+gBWLgK\ xHGOX1F0qR1xBHOk\ aGswGhFyJ9UGpksS\ ddHU4cx9m/FVOlfa\ qJ qqooVkp0lTAN5\ hWmhtBV3IUl/6bCk\ MnolOB0531VL+qrt\ +jetLvTb8cGy3x4u\ pGRpPNewB8+fImR \ nEXVgkOm4HVHRvnY\ VJ0PXpzn07M6zSDk\ 1JohJktQQlJTz84X\ QRUaakmDICFoBTue\ KutHOoQhoALR +QD\ zYA5jj4V2vk3sSVo\ P1rH35XHONtKWnZT\ 4l1y0IYNoLsiChhV\ BXwIUt6JMzN8+1UQ\ tapv6Hmgl fd2cwO\ WQtZDYVLCXXWfOqU\ VMNl7cN2pTrdc6W+\ /31pE87dOtvtqkDJ\ 3cr7WgFQShv3HbMW\ qGPVN9 uwFj0iGq7\ n4razsIKzphJW3JW\ eMNYl3F32eTEyrn3\ Jird6ED6Ev4ja9fI\ EoSxgpLQwM5XcsCf\ vtB 9Ts+T5aGOZX6\ Tvmj6fdgLGcyljP5\ /FR9yxqqKyTpCjIo\ cdxjKFnQH/+2WtAK\ MAqdikVVZ/kt3Bgw\ iRrhmhMrXUM2dyL\ KkuMBQi/E2pPGVvi\ XXKK5gIjNa252A+G\ 8T1hLx5JXjlTb1xV\ xHqkT+52F8Lri rp\ I4kdfI5wt4Z5weY8\ mV+WsbQRs20LY4n9\ 2tjBgdd+jYk8R+TB\ SlURBdHZOsR/x7FH\ BztYKuKNx4 /R6Cq\ 4o4QchjdYeqoXGok\ MPUVeafqXHhkQZRZ\ 5uBjDntpE+x7zkzw\ +3DZSxd58H5BrcOW\ rx7vMaQ bTDnBpxv\ tjlYzHFzeWnRUYXW\ d9IsjmPCuodzvsXg\ 0bGl1+/R8edntnQe\ Nn2+nAh/0sUom0Qd\ yw1z 0MKf92iPLxL\ W0wcFYQlkM8T1mxh\ tG6NsotkaQSvIQoG\ XX0PeGQetomc/MwZ\ MgmlvQ6KnqipJEKN\ v sjriz3tYB3un4Y\ QqtjxuvxLeGSczh9\ wOhKFsWD3TB801Xx\ NM+ej7NyYqSpzs+L\ vrS/DCjjGnH6M1 A\ ppHtlb9uNyIO59Fn\ Newxx3cMOCqAzvvt\ dUjeMvXJzhUymcVJ\ NWPMSddYl0lzmvIT\ ntbr4WoXpRl zam+\ JBjNY403su0Zk4LY\ EsS2jnsoz3De5nRj\ kdurm5/Ou0KSriCD\ 6kqiZeOS6uNcbZG1\ ECVkzRaG yGsEC6l\ ORoz07ps74RAnCda\ gRbDg0z7VROTSrKb\ llSNhCUInRMtpqRn\ lDmI/NnVMnUVP5LQ\ 1CYkw BPmjFfzzbd\ rji1klbbeh77cIpt\ NF3yqaWdXnckIYou\ ezWlk9OX+mCRfafK\ neZqiQXnuHTAHthN\ l7 T3Lg6Ueptn1Gc\ iZq7DH1qQn2vuhG6\ gNtfD8mNlXGCjk+N\ dmgXrTwoqRHAD7ph\ hQNg5rj0QxCXndk \ lL8+M8Xzh9NFZ3nk\ x0qvIsVUETmN4HyL\ +LqYT7z1n7juuTdw\ 1R1XY47ZtE81e481\ t3Yw6mYgnSgb ShB\ 5jbDTrpJhmt1Xunm\ IaDFA5DQUTSVaDIg\ WfSJniewaeRX/fBs\ t1JFIcGKCVgB6r2e\ QNmCk36U+ bbTugE\ Hix/hTTmpnsM50m3\ 8p9bSJZYzIra5Oib\ KGv8aU2abOSyCJk4\ SkKdHWIVvJOhozbY\ +FP+Fm BEgGEiVKk\ K4k7phehvWQxIsJ6\ 72Ght0KVTTtEQkVR\ VNRRP/2YNKn5bcRZ\ oKIBxcj5lpNLgWw4\ AUM d1pt+pxPbIrL\ EkOyE2j1gGA0T1jR\ cZWE4UbMvukQjmz+\ Iaqb1bbgBbRlTE6o\ qKrCWGEp0Nec8jEm\ W0RVC2ui9/sWm0s\ EKKrahFWd2FRxD+W\ zqpJwJaoXY403iCo\ GYxWT+2ZqvGg/mw7\ rvUKSriCDEsUk Wn\ qjsUOF80qM7YXs3Y\ Ue+2bgz3sbVjaMgk\ HkRj03Zui0RvanZG\ i9toA2YKT+Pk4E7Q\ j/fHtbE1kb QQaSa\ C4g8eJNVWuEITDKJ\ m1Az1+e8y0MgTA1j\ LwgaceoTwDn9I/Nt\ 3gEn8PlPHvzNqofY\ zQlDTXg xLu+wIGn\ H81e277o8Nj7P8/e\ F93IdYN5bM2mvUJP\ 9fpSmfFWm1Yo+b6r\ 9+JoOreP2BRqguft\ HSBv 6Lzp1mvww7S\ SpekaX/3AF7nhGUf\ J7x8g6jzBa7qGdX2\ RaCwkWHSJWxK34RJ\ 3/i4/UiU/UiWWMVH\ o o+kmcUuCoaCqKl\ Hob9kHKVjw0cpaRl\ qMPRbhBY84jEBP22\ XLr6Vgxs2iL7oQhs\ Acs/EnXbSSgSLS 9\ ma/UXzzYA7/fDvbp\ qyF+PNppapL1GJP4\ k051O+ZwRiwV31XZ\ CCz72A3gHml/kcfN\ FFiBfdkE33Y QlvD\ J2lNkuPFCENBO1Ag\ ONfG3Nff0HE9CEMg\ DCULp1VMDdVItUqi\ aKAaaf7a8nw5SDPd\ AELXR4kS 4iCBMCG\ WCXG3/SZTob2wBcI\ WuCebKEJF38CnbCa\ I+F8n5wikpGLo5HS\ NiqFmWiS9HqKGMd7\ h9atI uqJwpGyTMw\ wmGi3mNtEW3An0eo\ jqhqn5JBDkVGxLI4\ 4kzvkW+Q1E/rVA8r\ dn60y6LvuLuSybrh\ 1G eDLOCJI9nkawR\ GWDqGLgj9kIN52sT\ n2i1iaO3d9lr5FFj\ EmHsFLhUCnPP52f5\ bVHNldN+sbfJa/g \ CYWkYxKpGCqPzPu0\ PcF37tEoaVs34dsK\ 2qeamIMbl7NFVc9a\ CkBPa24rEHkNO68R\ zPibajtsFf75 Nnr\ VQN9CZcGbbqOVdJT\ C5atsGSNmluj+RMh\ zqwiV2wfKWfXHPrN\ I/royzWXys0OFHIq\ mstyDt7Bv gMc+ep\ zRq/cyft9jjJZtrG\ v34kURR68dY77tMq\ honPngv/OiH34OQQ\ ILn36M6YlpVFvjqu\ 99Blau yPmHx/nK3\ 3wZd8ahMjrAU+9+B\ oHvcfwf/5361AKV0\ QGuvvMpAMThkmale\ X6OiUcucuwlt6PpB\ ue+ epLxe88AcNtd\ d5DfU8xS5deDf8lF\ s7W+12/XYwfSSqnS\ p90krNWTniKvYR7M\ 4U256w46CEOglQxa\ D9ZTEXqfamfhWAX\ 7cAH3bAt/yiFYcFO\ y1CFR/vl2ZsfhT7p\ 4F9IWt7W/2EPMtGE\ DxVSI/n/23jtO jo\ M+/3/v9Nm+14vqWV\ 1ykeRubIpNxyTgQM\ CUQKgxxpBQQsL3Bz\ 8SEvjRIV8gGIJJiD\ GmG0wCBoJN scFFs\ mxZslXuJJ10/W7r7\ PTZ3x+zO3enu5Pup\ JMsO3per3vZ2p2Zn\ Z3dnXnm83k+z1N08\ KseYlya RpaCqjen\ JsgrhlNvgiIit2q4\ 4zaSFFvwjY0Qlwiq\ HlJGwbcC/KpHzYWY\ QESQFE1nZHQMAFVV\ yaTD 4yHJKo5lIMz\ hq2n3G0gZJTKb9Et\ uOPBQa8St1IgFNYJ\ YDUkV8TSRLxwZY1U\ 2OS31PtpXO0DrK+H\ l tFmDWtdm4zTH4x\ iWgxV4aILEtod3cM\ WFW3HGCrNGcCwWpE\ LYBm74mFl+AAHE16\ Sp7ikds7W633D4 6\ p5hVqQTM/RFcVkiL\ k8GWktFB2tFJtIVA\ SdcUbO7dbT+MuoRk\ 6ZunT2FCp/bM8q13\ RmW1EnZbf0F Xr00\ O8Nm4CxJOosIgu1T\ q5OPI7bF9fE42fbE\ aSFISpM6b6KzmC0y\ pU2lum9x41bm4080\ G9yCNWu7 YjEwtUo\ gpRWEU/yZzhcbkwo\ /NmxWZ2WkYpgdVWx\ OIhwpILg+drWEAOB\ Ara7p0uu7fuA3j7D\ 7R/ey ZmsP2vplAG\ z77J1c/aW30BzXGb\ jrMcb3DjBsBxQn8p\ TGxklt6mToV7vZ+Z\ k7Of/jr4n2Q29LkO\ rM APDfH/0h2e4ml\ m5eydATA6iahpxQq\ RG2UozDE3z7b2/j5\ R/6MwCCwOPAQ710r\ VtC8cAE37zxa7z9 \ u389p9ZpKvyqF05v\ 1j8bD29WTYxQD1V1\ RuzIjNItWKgdsxNd\ URGPe0cP4ff/eIaP\ YkIiuSkbtQMr vYW\ ILAmCgFd0MQ+XESQ\ BQZGwhgz8qoc7pqO\ tSk62utMyMSnUBgl\ KDGfEJqh4+IEPTg0\ pq0QTZF7B xS870S\ BJo3IkZWX8sjNry1\ 2sb3O29+OO29gTJj\ 958L+474H7ALjs0i\ t4xbUvwx108CoeUl\ on5rj8 yZ+8jJU9P\ QAMDw1x1ZVX8eEPf\ xBFSxAEAYHvEvhe3\ H6hHgAAIABJREFUV\ HUKfBd1aSKcjmupt\ 3Fb dNQWqJk1HNNC\ UnxkXUUQZexKhfv2\ l3jZ8laSmo4VhN+R\ cdOJPL80w2ekK8Fo\ u0aLKtGsK2iCFC3b\ HI/z0C/vZus1z6J\ TibPv0GHuuf1bXHH\ hVpTT8NOWig5mT5r\ Bqk3ZcXlhV+hjrXb\ o2AcM4mtmr37d dm\ CCdblURAzVIyZSI6\ C6HsfU8GVqZDYuFq\ rrcsQfzyO4ARuzKk\ Ulxm0HJnB8nyCo4d\ Vq3IE7w038 LEk6i\ 2kI6hfPnCLTrsuop\ /hiag+EItWFhHUuN\ omIqQJ+3l1wNWo2n\ ChB8vMuclYj8E/Mq\ NOvG3yK ihhN+fm2\ F4WC+lINrd4qcUZs\ vIJLLBZblPd8MmjK\ xLGHw3gR0fBw2hPE\ BRELKAwX+N17b4+W\ rZk2 ojT9uHZuPYe\ l119J3Kwhtuu4VRu\ vfxRpaSu9v9jOhld\ cCUCmKUf79VdFpOX\ QrfcyaDosWbcEVVd\ Z edFaWpaHbSvf8a\ l5PksvXMnKy1aHj9\ XXM8bK3H7zL3nhB1\ 5G8/pOrGoZRdO54k\ 3PJggCnJWd3POf v\ 8axzPoF9NgkKaYKS\ HEJeemkVmY2qF16R\ JCcYQupThpOp6lqY\ 9JRXqJh7MxTPVAiv\ iJNMOFScwLU JWHV\ Rc7IlJ8oYA5UkLJK\ NMkJIdmRpBjWAQMx\ KaN0qNNaZ3a/EVkH\ xFSJmjezuqQuDafV\ ZpAhUUBK itNaPs6\ ITc0OiecP77uTglH\ kk5/8FwBuvvmLfPc\ nP+Tll12LoArEnBq\ NIbwvf/JzJFpS1Mw\ a177y T3lo28NcdO\ GFHDlymM7ODjzXQ5\ IlBgeH6OwMs8zEdo\ 2JQoHxsVG6upeQy+\ Y4MjZz+XR7N6vWJR\ gu FEkHMNp/kBVNS\ 1jZ3ULpSJ4DBw7S3\ NPB6tVLWF1/a8OFI\ qPDB1nS0sqyZUvpG\ x3ma1/+PEs3rUNp \ TrJq2RLe9MEPhe95\ 4bKoBSGYEknl+z4X\ NcejaTExLcOQiVdw\ Z7RVfzgQfq5xWYoC\ rAGcjsQ0d/1A E2a\ tnp0s3KxMeXMLem+\ J+JCB1JEg2RmfRsS\ 2jeRBrvAnHcmoonS\ WJJ0FQHiCmIJ4TIx\ y204l/KqH uurJ9T\ 1S2rVQm3GShMEeCH\ UgJxKX0pikmqsycD\ y4h8NKRENyKiSlsD\ o3y74obSp+VqoLfI\ MZF5uT nURaCJLJG\ GJvDZqhJgkIRTt6L\ r2kmau/9Jbo3/m9g\ zz8iTumrZ/a1Iklx\ 3jwiRGuopUVzzuPP\ Xc9 ysZrt1IZHKf7\ kuUAjD60l0O33ovS\ Ed7xWvWL787CZBPP\ cz0EIeAlH7iO337j\ V9z8qs+z6epzueqG\ 5yHJCjFi/O7WewB\ oWZUh8AMEW2K8b5C\ ff+G/EDWZdFMKz/M\ RbAnmEXkWcyEWTN6\ IHOu4+7aHO+SS WJ\ aksrMQVh2nfL6SEv\ 6OBEGYVvE4HiQlrA\ hNNQw9VuCuqIg0Xb\ oUqjUKjw9hDRkk1m\ ZRu/QoIFdK y6g5f\ dZWnzdsIeqztwHlZ\ hX7iHncTLW5xv29i\ o/oxcKWsh9EE3Huu\ M2D2+/jE5/6Ip///\ CcAeNe7 3s/73vdO\ /nTzi5EyAlJOnjbF\ VzMbrxEjl0xTcwJe\ /JKXcv8f7o3E/i9+\ yUt5ePs2AP75s//E\ 9u3b WbWqh1Qqw0c\ +8mFe9erX8eMf/yB\ q2732dX/BF771LRR\ F559vfBudrV0A/OU\ bX41TzPG3//AhVq3\ f wL7du3jp9a/lNd\ ddx9e/cQu/vusues\ 5ZzZED+/nQP32cb3\ /zm4yPjXDbV77EeZ\ dcyjPXb+TTH/4g n\ /jGf57ySlKQkAhUE\ dmwWdIU59eDeUaqN\ s9fkqNNkVBXJLAPG\ BFJyjs+tx+cYMB02\ NSciQiSl1Ew e9Kn\ VZTeCM2WC27d78kI\ SVpawG7S2dKWY8Aw\ +eLeKn+zLvRRO0uS\ zgIAoZ7bVlNiVF2P\ Njf8Qp3K S6U7biP\ GpdN6UZ4NohIaV85\ Vqp8PfMNDUAW8qgc\ sfBuCIITeNycQ4eD\ n3Tk1RvsNB61So02\ a7p0j KiLxVSnsAZ\ PqvjJyTiEWi+EVXI\ SkhGNbp3zyDyCuKV\ HAbeh/NPPCPF41SS\ jHJrBOm8pBqqy55F\ zu +sdb0dJxlj37X\ CRJxPN8tn3qp7z4M\ 3+BtLSV/N5Btn32T\ squT6s+RTcjSwiCR\ JDxePa7XsCVN1zD \ 9/76m+z6+Q42vXAr\ gizwjNc8E6Nk8NMP\ /5jrPvUaxITEb//j\ HjY993zOe/mFBH7A\ zl/vjLbZEPDH JGH\ ad8sZsfFKTmiQOo9\ cNN/xo+EEAK/qoDT\ VSVFdS+O5HkP7h8C\ GjhXtKBn9mGQHQEu\ EF+/DOw4z sqOfwb\ 4BnnXT1ajJ5JzrNc\ jYwR29LL/sHJyhKk\ JTeGX2iyFNj6/IzP\ pb8p3Qi02cw6hWiE\ sImnBc A8rADSIRd\ s0NjSSFWAxpiRLp7\ pT2yUDauSp0sVqAk\ JBmBNf+1fvejSyJH\ D58hL984xtYtW5N9\ FzN rOGa0yfgHnvs\ UbZv384Pvv8dBFFA\ EGb/Hbt1b7FUzKe/\ r4/Xv+HtPOOKK8i1\ pLnxhht43Q3vYMul\ VzBcKPK3r34Fr7n\ uOrb97rf8+ZvexJZ\ LrwCgK6Hzhr96C7/\ ++X/zrg//A2lFYt+\ hw3Meq8WGr4sI to\ 9QChASAVvackxYDv\ /38WE+uLEbxsI2aV\ D1GBTg9gMTxGXpSS\ dIU9Hwe2ron5QhB6\ EjwO4Mg333 FCr8z\ 5jFFTntLEk6ixAxP\ 8DpDEvUtl+jPSYjy\ 6f2C+xVvVB47dZYo\ P3OKYGYEMMAX1FAq\ nvwHO2I PCfkGDWD\ WT1qFgJ3wl7wGLlV\ thFi028fi4bDV3aM\ YMbAT8Rw/ICmJ2Jc\ 1prj0iYpIkxql47v\ +FEl SsrK+HVtgH2\ oSkwVTqnAWxZBr08\ 1NXyPKtXqtBPTSNW\ mDTjet3EsgNauJMn\ WLHvu+CPXfOx6ym7\ 4 XtLZJIf+sJ/sYJ\ XHf3wvAJYXkoCm7i\ bu+/qvWfvCi1l3+T\ k88L3f09TWgiAL2F\ WbdEfztNe56GWX c\ 8fO73DfN+7hir+8m\ mRLkt4H9pFd2sTuX\ z2KJE1+9o0Jx0AOp\ mnfxLi0oKnKqVOYv\ uPjlVzUzkRE kB75\ wYP85j/upnVlG6qm\ MLRvkDd/651Isgqy\ GjnXT60wKVoCI1/g\ e+/5Nk1Lm+k4t4tz\ X7QZNZlE EISIDHm\ OOW3qSxAEzDGDR/9\ 7O+dctZagtf64KJN\ dp1E5NE7Nnv1moXE\ 8pGN8x9WlCcy95WP\ +jqSs gm/6SCkZuV\ mcMe0W0wS8ohORn5\ hX46KNl3DzzV/kXe\ 96PxC22y7aeMmsv7\ eP//NH0XSd/v7D/O\ NH /pF169dz0YUXA\ iDXt9mY6qs5AQ8/u\ IPzNm1CEIWo1SodJ\ cgeOapar6oaF19+O\ RNyDNMw2b97N9/+ \ 1y9z+7/9GwClUpFS\ Kc/1N9zIZ//xI/zs\ +z/g+je/mfS5507b\ TsnxqBbzcx7PxUag\ CpG+B8Du1KOJ tH9\ 89DB6oRZWxo3w/Tf\ rGk2aglxwiT+ef9I\ J0lQcXVlK7LJwOpO\ s6Uhy73CBu/rdsyT\ pLEKIpXCs E6Diul\ x0isf+vQkHpV07JZ\ NlJwKlXaNW9JHiEj\ U/DNGtyWE7hHY1Mq\ qEkAhJujQtmkNURD\ zPidyP xQUSnYbzt\ jVkIMVltJ75HRNvw\ kHWZMQpph+HesvcM\ lBg5ZLkNM8ggJ+OT\ DAsZvjDw0e4cXUrK\ 5al oimq6r4wbHfq\ RcMZCT2nlIw6r4rH\ iWBNWmGkZJFNa5g9\ GZRRn2wuzvo/vXza\ cvHuBGtfcSVmDXTP\ Z+m1F9DZ1YJbb53\ lHQ9aZDa+9WryDx9\ EWtrK7rEC61uyXPm\ h69hz16OM7DvIFTe\ 9iCMPH0aTJMar Jh\ 03PJvxnzzKnkf20X\ VxDy3dbfRv7wPgOe\ 94PkvOXwLAuS/cTL\ bur/TCd13LY398lC\ DweNZNL+CB W3/P/\ nv3sPFPt9JzySqIh\ 8RP0iUc/+TduQVh+\ ndNaVKxDpZJdTZz+\ InD/OKrv+Av/vUtk\ a4qXEci CDzGDo6R\ 7coytGuITE4jtawl\ bBWKAv/zuV+w+SUX\ ct7LL4zWazxnDhZQ\ 29MoWgJBFBg7OIae\ lkg1 t6A2BTzj7de\ E77FOwsYOjlEeyNP\ ckUOMq/gVEI/Sjte\ sAKXj+JVWtVvHPlg\ 9ZttN1MU5K79ql47\ V a0RCcCEu8erXv4\ bb/uNW3v/edwBw4e\ bLeNUrXjHr+plslk\ w6RVtrC1dceRH33H\ 1PRJKi4xQEeJ5H T\ BFQdA3LqQuQRTlsX\ woStToPcGswWKpiV\ YzJfVTDfQ+8ACRQV\ JX3fvxTtHV0RMuk4\ hrnnXsun//P b7Pt\ D7/nE//ng7z/o//E\ plUro2XSyum/jLtZ\ GWtFBilvove6OJ0J\ mrIKLTEJ2bFxW9SI\ BAl2gFof 53c6Eti\ d+hlBkKaiUVmSCy5\ aXwllsMLGlWnctuR\ ZknQWIQTbj3wvKp5\ Pi35qbfBdw0Wq1VC\ aTqy9 tdgQFRFap9\ y11k++ft7FmbCp2U\ GUJQehMzgVoqiNxu\ P2oeoJv6fkpiyB41\ HpLeBVXcSMfNyWl2\ +F PjWKEr6mcajCz\ aUi563Mzbr8lrYch\ w2T1Suz/Ot4gddYH\ hu6U4iJcPz7aFdup\ U2NxMLOPnveovSG \ j9V8qmKXnJPj5oeG\ yKY1vIzM2BGDbC5D\ 1/M2Ml41Q/IDJLLJ\ 6DGApZesx/I8DhQq\ 0bZ2jxVY29NK bkk\ LxSfGKQcOu4EVrRk\ 2vOk5AGgx6HpehvG\ qya+PjPHynk6ueNf\ zAdhZqGCc0845562\ gu+5X1agM nHPVWj\ zXo/L4GEo2ztaXXR\ YSCkHgsjc8M6zUVH\ zkVcvwYx6OZUBCIL\ YIN/lBMF3AnN7SQn\ VfGadk suNHf+Til\ 11My/IWHGtSY9WYv\ Lr1hn+jY00nzUua6\ Huwj60vvJAL33AlQ\ eCx7749bLj6PG7/6\ /9A FiUufvNVLFkX\ ksI7P30nV7ztOSxZ\ t4Sxg2Pc8sYv84xX\ P4Mr3vZcCgMFfviB\ 23jLbe9EEAV2/XwH\ e+7eTdPSJn561x2\ 86G+upX1t17RqkDN\ iE5OZl8eREJcQM8q\ ceWliXAqn344BrSc\ RCsHrrTtREXnt m1\ /P9dXrccdtai74Yx\ 6xjDCj3VYsFAgcl9\ 5Dh/jVr37L+9/7Pg\ Da2lp5aNvDbN1yAb\ d+6zYgrCRd dPFWP\ v+lL7Jnz17WrFnN4\ OAQ3d1LaG3v4KEHH\ uKSZ1/N/T/7byw7r\ Nj6jojve/hxBataJ\ YHCpVde xXdv+Ro3\ vO9vATi4fx9dW7bw\ yKOPsmLterZcegU9\ 637KeP8wwrnnYtt2\ KP5ua2aZNg8B3CLD\ 7lBx czLqoBlViLy\ 0CqIwzQ0bINDlaVl\ vZyrcrIy/IYc8Zkf\ v6SxJOgsApKKNtbx\ uKhcENMunTv3nGx6\ i KhHYwbxDNp8siD\ kZKg5Kkxo6ME8hCI\ 2gVpwaNa+Ga7lhVt\ lJ+Bwl1maRBk08w8\ F6wsB4IszOElQR /\ BrxFelpk4B+1Yv8p\ bwJh/srDnq9zN/o/\ weqgN2dwqkTv4ZZX\ a5N4ceFCr/fZfHal\ U0kW9TwwjJg TtOE\ TM2AswdN1GZt1qk4\ b8IJw1CrXmRkWN1X\ Rs1qiC1zVyY7dZnz\ syqPFSqsziYZ7o5T\ fWAQL1vA 7tJBFcg\ 7HvmRwvQVC8aMbeU\ djz8Mh8tJgUtidx7\ DDtjeNqmv2TleJAh\ qrMkm6Csa/GG4wDI\ pfH6V DLcfHqVXTf\ CyrskTeuB7ePVrch\ AETGwbQOnXotDZCB\ KUHhtFaQonNkVFjD\ LuTgYxVZjhjp1cm0\ Ow JfIDEyw9d3lI0\ qboiBrtscp4mZd84\ AYS7SmM4TI3v+5fu\ OA1lwBQLZn0PbCXl\ 3zgZYwfGuX777mV \ v/r+TWjx6RWcuz5+\ B5tfvHnWfRMEiQ3P\ P58Nzz8fADmucujh\ PpZe0MP4Q4fQOxNI\ 7RpewZ5zNHw2 KG0\ q5t45iNBxctyifYu\ H55mjH1PrRM0eMPE\ q3jSSdP6mc/nA3/8\ fAHKZDO/8q3fwrGd\ dBcCH/p8P 8unPfB\ aA5z/3Gp733GuoSQ\ ErVqzk4x/9CB/7p/\ +PfLHAVVddyXvf+x\ 7+/n3v4Qtf+AJfu+\ UWVp93 AVe/5Fo0U\ YAA1q0O/bfGTQdNk\ Hj9jTfynzd/hb998\ xuxPY+rr7qKy7ds4\ ZF7fs2XPvZPxGSF1\ evW s/WaZwHw6re+\ jY/f9Fc8+xnP4EXX\ vZLla9fN78AuIhoO\ 13anjjpoovWXIyds\ CMlRoEmRG/ZTAeH5\ UsdtUVEHzbMk6Sx\ CCLYfjWGKRg2t59R\ MnDUEq3JOQWl7cqf\ a5gulXQuT2Y3pIZ+\ iIoZaqvq1dKG5 Zr\ OhUdEBIh8Zr+oSOB\ 5+1cMaqCJbfqhzCY\ Jwmi4nU/RrfG7XMF\ JOZnU27HHovSWc9g\ R+QkI9Ukbv LeK0J\ 7C7Jsvdq7NJBhWbj\ x8e5c8nEmxoTYaVq\ SYVb9SZ1mJr7JvZb\ 0S+PlPRyKSbakgoN\ 6vh8vuO 7aZ+7Zpm\ hnaMsJeQKBkbmtB7\ S6S2G5g9mYjgLQRe\ RsZYnyOxO0/MS4WE\ q46tbTl2jOdpi2v8\ fmCM rVklSjD/85V\ tx9xufFWKwPJxC9a\ 0qtvU561eI7RZOIm\ 8samo2cGsFTwpIxN\ PJfAqLuaYMaO9BaD\ E VRLtKQI/INGeQk\ 2pmGMGapNOPK1zzX\ teAkCiPUUql2TkiX\ GWbZ78rB743u9Zcu\ 5S9LYEXn520nLo g\ V62/eB+Ajdg/Mg4S\ 89fhmNaeCUXEwMxb\ 6Mvm39O4LEQVL1QN\ zdLLMiMZe2AmDT3c\ jUriDLZvLJF zJH4\ l099Hse0iDk1avVR\ sfy2AaSUxEWbLuI/\ brl4ht7IsS0uv/xy\ Lr98skUcBB5bt1zA\ v3/j67g1 eLwYVvk\ SooRvuXzok5/HBww\ vYFe+zIZcitfdcCP\ ccGO0jYrr8tK33sB\ L33oD3/zS/w2fB/o\ KJV76 qut56auuJ6\ 1IJCSJd/xdSOyKc4\ jUTyUaZOlMrxQtBI\ 33dJYknQViNbzT8u\ N1F2tFQFyEyArfmc\ yO qtXv5mKqMGcl4\ kxFQ28kzOOkvJhQ2\ tSo7Wf2GzBqEjgeg\ S9Hae4NHHxwZBpBU\ gdMvIwaEQOnTUUq \ uqgD4dirl1GwuxJ4\ GTlKyP7ueBF1INRV\ /GWLQvMcOVQnoq+R\ 0scmkKIi8vaLOvn2\ tmH21itKxvos UtF\ F7y0ij5snJPacSpQ\ EO8BcmWBTc4btYwX\ OS6b57fgEl7fE+cK\ uAT54/lLa5imkTm7\ KUto2hnWw PKvVgt\ aTCCM7yh4x6eTIc8\ N762g0qkadazs58E\ gf6569Eb8SQ22aHO\ l3fBff9SKdEYBdtl\ E1DUXV CMTQDLIxq\ OD7AfqUY2AOFnn0R\ w/z+lvexvY7/jhjH\ wRBojyY54f/73d58\ 1fegppKcf/tv6NaN\ ki0 p4hd3o51uEr1\ UBlRk+aMJFkI7CMm\ giYgZY5/XGOSMKvX\ EoBXcAk8n+rjRbxS\ WAUVtTG09gQxUSAm\ Q8wL40ukrIJ5uEz\ 1YJn48lRI0OrxJjU\ viKYXBXGK30/982k\ 89pP9A6zOJtkZ1NC\ 2jSFvaaNcLOPW f2\ c7JkrookCiTuoML8\ D0Ay5ry3Bw/z6qpd\ DBfWfdUVsvW9OWlU\ UB0/Wj7Z3F4uB/BU\ mSSi7qQJVA EcNSo\ C4SaFJECv63Q7A8g\ rpzVtFxWXkSg/9+x\ cPJNwSM4USNklQQl\ z51SNFsULvCQNMn0\ 67AmbBJ 9mTRjiIp\ 9oDJd1SX87Khzb8y\ YqMdKlOekukFIWHw\ MuHYqzxuk9idjypN\ TpvKpuYMlutiBjW+\ vDdM ub/JTtKyNHN\ S+70QcvmqLe3c8cA\ oD7gFdFmKqkrqgIk\ 6YEb7uhB4mdBELrF\ rAr2PiCg9OJLnJUu\ a uPPwBLok8tW9o9\ y4rj1yPT4eEptylB\ 8ep/zYBNmLZ1afRE\ VEbD7JRPgBc4Yf0l\ RU+0uc97zzuf9H 9\ /PHH9zLec87HxSf/\ KEKyzavQBBlfNfn4\ Vv/yHmvvojtd/yRp\ iVNESna8oLN3P21n\ /Osm15A/4N9 +J5H\ bk17tP27b/4fnv83\ L55ROZkK0wp/70Fa\ pnhkjMd/s4uei88B\ wtaWPRLG7aiLUGWw\ +w3EjDJv q47ZCJK\ 5t4w1bNRJURjNone\ lwlzHOUiclJVRu3S\ MXUW8sodvuaHgmlC\ T5Fs+eleSxIaZv5U\ GWSo4 LqYfINcDdC\ dqMys+ph8So6moej\ U6l3bz2ne/B9Pzos\ iRo5c9er2zWBw8rU\ mSWA3Q9xcRDRdraV\ jq FU0XZaSKYIdf0\ EAVcdriBLqIuwDX5\ 6cTpLKHnwpPDuOmw\ 9b4iR2H0ExRRkkqO\ BUHKSOfkLHimQh/ \ zA01SU8SQbIHDZQm\ Fbl98uLgOz7WkMm9\ coBQH6NvVF6M9bk5\ qy6BKmB36dhderS8\ eqSM2ZNBy8ho QE5\ VsFyXLx4s8fddGeS\ TeNsNggkc8+LmjNj\ 4tsdzcxoviCfZU7G\ 4dSTPhlySYGUCqRh\ qjEQjgbly YRfcQB\ UwNjSR2DWBMhISrQ\ 25JPdPVGmLh+2Wi9\ uyfG3vKDetbpvX+x\ UVkdTGJkrbxyjtGJ\ +pTzpJ +HkXv+rN2\ ab0JhysgSrZdR284\ XNv5A/fv487Pxmab\ S47fwXLNq8AINmcQ\ krKfOemfyfVlubPP\ hbG sXiuwzNvfB6/\ +8ov+faNt5DpyPLa\ z7w+vLkJPLrWd9O1\ vptlF4URHU1tLdip\ mW3WtpUdXPyKS/nB\ u28l1ZTmWW+9hvJ\ oCQg/UzEuIaaVE/r\ tHB16K7VrOAerUYV\ 1oTD3ljEOlogvS6F\ 26DME28fD0SSo 4b\ /kDVuUnygQk2Kz6q\ 5GpmSpKYMGTtv8hd\ Z7ihWWpTQIPHpHze\ OvcBaLitjXHt3/tK\ vNxZwa8d4S gulhd\ ydxs0rUWz56OdHyi\ Hk1tINlBNvH6Uzit\ GrHrTI11hWsANH0E\ UyXmBvgp9V5rX8mI\ fF4ES+l YHfr7D5U\ 4J3nt9MUX3jlx+w3\ CGoBWvPCYznOZPiO\ Py0t/XTDGbEpPTJG\ Ym02NKpTBWKxGAMF\ m+86 JpYfsDqbjIT\ aJ6LhUUZs9N7itDY\ cwP7hEhd2Jnlu5/w\ Ft7PBz7uRuP3o9lS\ DHIlqXROXEBETEr7\ h kR80+FylzJpsAk\ 2WEeyAxK4JAk3CWJ\ +d6+XmRMM8DsBYn2\ WwavPL/lEubc9ycV\ uWXQWDUcPkjavb I\ o3S8eCM2FiD4YTdY\ hGlxnfueNOElZ0Fv\ KpD21UrZ63YOZbJF\ 1/6Wf76rr+f8XjDK\ +no9RzLjMb6 IXQi\ h0mzTYCRvqFouq3R\ yjOGy6iaFlWpPNfD\ ODBBedcEaptOTAi3\ J6oitVoNQRKRUjJC\ Qphz4s3c W55hA2D\ 1GjPiTOaCPWBGrbA\ GQUr2ZOdtsbEQlHa\ ME9g+WktixvZ/PlT\ i8bJLZ1wl84eRRc8\ lO4tT h6fPlawO9U\ iosHfa4lR70hE5Kj\ ouJdslLkkcqBi0aS\ ppVSZTv5Nwm5qRSi\ 7KiEnykTH8hEytbq\ YY cwNi9dJqg0gpg\ 5V6604i0GXcJo2aF\ EOesEg+MhZVqLyce\ sYTJsH08Lsm72xOh\ CCFaeYycsvTrxrX \ MPJ7shBUwotUUKth\ tSh899AEh6uhgHZV\ Oh55ISV2TeC0J05I\ 5Oy0qThtbSR2F1AH\ DLxMSEDOaU+z va9\ w0iRJzMn4+bDN4BV\ dvKI7xaE8FMdHyzb\ 8gBISLasyvHsffK5\ QZmk6Tk4Ngy8Tuwu\ kto9hbGha 0MWmYR\ 6X2F0gsbtA5/osr1\ u7BDkWo0WAzrhKTh\ b46p5h3rWug079+L\ +FRnXM2JOntG2M9J\ aW46xx fDjD1jHbb\ A3oK5Pk7xumtGsEr\ ScR6V8C34vMIBvwX\ G9GVIljhROCU9cDc\ GZx2w780Lhy1893s\ PsX O1myYUm0Dd/w\ cEdsyLl40uQxk1oU\ 1DadmhdQIyDwArww\ qo+aExBTBLySi6iJ\ yFkNpU2Pjqc7biPU\ 379XcPEmHIJaDVG\ J4VV8lHmQpJgkULM\ 98r8LfRhSG5oWbNY\ 6XyTWZ7EPGFR6C1R\ 6C4iaiBiXEBSJ B8\ fKrMnqSI4bXjfOEq\ SnDJ42lSSp5KLvD+\ 8QzVUZvFT4Ayo6Ln\ 1Fg2VJlSZJJBh3eV\ ZHiu/1h2PC A1rAy\ kyCzJTYg5hTQy6EF\ 6FaPeC1JsUgFqMmC\ gRSbNbK1FTIEw7Ki\ EmgyyiDFfyEHP4lw\ 7/5bGPq /oiWh1j2\ EGwfPynPWR1bKGJO\ DW3QxOrUqSkxRvpL\ 3Hhp14K3Y/YbT0uS\ NPVO9MmAcajC42qN\ nz0y Hu5Pu0x3Uie\ nTh5nZcRGPVI+4er\ KVGT+MIKxPhdVkgB\ 29+X58DOWntR2p8L\ Pu6HPVB3ziT8xDlX\ 4 4uECaqtOZzz8LP\ Q+A2XYmLG/80Vid3\ gOmHrM5FgMt1bDcl\ 125St0JDSu7c7Mq6\ pkD5hUe4vEFIHU B\ c0n1Zqt7CwgZuRpV\ Z7AD2YVzZd2jINfI\ 7EpN+01BVFCklX2/\ 2Y3q5+98bgRJfOBl\ kgxvnuQwmiJ lVeE\ 8asNopX/3RBqR2JB\ Fdeg6uGO25HOp2Ha\ qjSpiJpM4PnUvABB\ kQico/ZdjCHKEjEp\ FlalsjKx pBgdA7/\ kUn48j1cKq5dH22e\ cKjgjNvZQeExqtRr\ 4Nb65d5yehBYl3J/\ s7/QsTh+e8iQp5tT\ QD5WR xyyspSns7s\ m7hHHT4UDF4K9bm8\ kENYpCjI7usCJgBz\ VUIcbQkSq3DBXobI\ 4TP4Y48VjIl6oMTN\ h0 tCdo1mf+CMVqg\ GB5SOXQXEsq1IWOq\ oiXUUPSpAn4moRo+\ wimj1hxEY3wr7Gsn\ 5KpyRLShEmgSwhm \ eNKo1SccGpWvmhSj\ JgjzIlNiNSD5yBjF\ S9vIl21aawIvXz+7\ EeGxYA+Yc57En6p4\ Mttsrg/f3zHM TsF\ FlyU2OjLyuBmdXBv\ ia+1QORxV7cmcEFG\ YigbZOlrw/chogY8\ sb1/0iUSr10DOKfP\ erp93+c7B Io9h0Z\ rQyckC6XyA3ls8YZ\ uA2YgShGQJYMSy6S\ sa/O3GLnLzID32gI\ l5ONRfnQxRarQnfd\ eP2lkN T6yjj5c34\ VDYNjprG6kRXhsEA\ Z5z8nqWBvGNbcf1A\ AAgAElEQVQCZmyzu\ q+MPWSQe0bHXKsfF\ 77j 4w1bOPnQKgTq\ ES6tOr7pU6tnTAae\ HxGQhoBaiitYQwbx\ ZSl8y8MeMUO/qqSC\ 0qKdFoI0Fz70yBE2\ NWciR+fy5sXVr53\ FqcNTut3W0FG4LRq\ lLa3TyMDufJmkJPL\ +XIZsRkFMSkwtsqp\ 1QWBHd5w3Al8+ MI\ 6WlYjFBJxaDc8PBX\ miIOAHARlFZtxySI\ sSdsUjCGrEBYFqEL\ A6o/KuzR1865FRds\ ZNOuM6Tq1G rVajK\ xHqk/y4Mk0YHnNqS\ BUXwfSRJyykgh218\ bysSqDL2N0JAk2aW\ XVaHo+qSxDmEk37r\ xueNNQj FfReH7dF\ w2nT8Ro5RvV15fwk\ AQMYGK9y7dYTO8EF\ T5PJisbYtlf1qNnB\ k0KQfMfnMw8MkGvS\ OS8d XvRiAyaC5ZH\ YXQidbO0Apz1xwlW\ U2RDzAuzume9XEGJ\ YZZvEIpOkmhw6lyu\ J+QnixZzMKxM5jhy\ u 8oRe41dDxVDUXR\ /xD9SFH4uprbepFg\ NurYYci5FTFY6IJh\ OuPy+SpHbpBH6APW\ hQun+U9MWtCyZK v\ uPj5h1qMpF1BnEBM\ S6Fx0uJRZotr+hij\ 1ZRWjWEWWw7FoMYT\ UXge7O24gDUTp3qg\ dJJBUWLioi4 NDGr\ y/Yx96vq4RZcYkIM\ e6RKTBFILE8jt2qL\ YjtwslDEJy/A+yxO\ Dk9JktRoEUkTJsaG\ XHTxb6C3 aHBxc4K\ LHUh3JRGPE9Ta0R3\ nQxmFPXmLckKk1aq\ h18CxPMyghqyJDFs\ eK5dk6Hcczjkn1E/\ kazVa VZl0vSX3tq\ 0d9B4os9ewUUQRoV\ bjgXKJshiwPJUgNy\ UPrabEItJkT6Fv5v\ KZ2pf+cpU0Mobrh2\ 7Y mkJckfCOk4xud\ +uI1QBl1CKxK+zJe\ 1kVqWBHVaxYEOCnZ\ KquR5MIXSeY2SZ16\ HhDJn7FWxSPpdMJ \ 3/H5zb4ixcDjJV1Z\ hJSE6IPYdPpPbA8N\ l9kzaGOkBFamw++Z\ YAcowwZ2d4qYF+B3\ JQi0xdU1CHaA dqh\ M8dLZjRTNmM9i1wi\ luISQkvDGHDzmF2E\ iKiLdS+K0Dlucv7G\ Lzzw2wJa2XOSFNNf\ +HwsNoqT3 lqZVlB\ p+MxlFprdkTWu57T\ ccSlbApqw2YxKuUU\ 11R82QKG1umfcgQ4\ P41OTpflRmvxEJ3s\ 1+A/eJ As6EHelel\ Kz+pLWEGxATEkqTi\ jNinvZ9abhoq106C\ U7OsuJUICmLVF2PD\ ERu1Gfx1MBT62pGO\ K6e eGwCpy0+Z8my\ 5LhsHJOJnZOad5K9\ mJRYkY8RKwbIreqM\ C31P/b8dU5Ktm47a\ hiwLrF2dYe2Ux64B\ Hhgoc2TY4YmRIgB\ FvUZKFulM6LO2+Kq\ ux8GKSdXzaNNUNmQ\ 0DhUsLgpEQOSuI2W\ 6mlRUXZm2fm/R iC\ IQlifDbftxAXN5HH\ N5HKkc3gFOFbQnHi\ 8S6DJ7ChXesuzES8\ CyLITGdCX3KUWSjg\ zbfG3vCMkW lUNGl\ XPVLJlDFXKdYRXvd\ J7OiobDnXsLdHQl2\ KSGJ/rG2PuJtpPmC\ 6no4s1hztekKTxa9\ nn2Ir6e PWCG8SU+\ iJpILBajuq8c5eMd\ yz5CVESUdo3EkIlW\ v0FpVJDC97Fwoj9X\ RQlgaSrOr4byNAkx\ Hipb 9JYtWnWVUdP\ mv4ZkXtSRZXPz9Kx\ DfWk4NWaPVjH7KiQ\ 3za1B8R0fb8wh8AN\ kTQ5DYJfM3F5jWXf\ U JPCCkCClZLTO5J\ NOkBpQOxKUd00QE2\ Kzegb9b0XF9elK6A\ iWffyFz+KMwlNKk9\ Ror811wai6HkNV m\ 4OVKnnH4xOd7Sw7Z\ /5TOdV9ZeTliXkTq\ xOFMWpzuGDx65jDs\ DVZuvaDANGo0RwTe\ FF3mvZaDUmS 8DwP\ Ja5GouiSV+O3u8bp\ qzoMaAFL03EOlAzW\ Z1Nc2RoHK+DOvaMU\ ajFIiazPzd4y6i9X\ kXdMUGzR uKQ9xfM\ 2nXyf3Ooz0BboYfN\ k4dE9eX4wUmHlkiS\ aLGO5LvtKVYKghlw\ Jfxa6EOM9F3ZGLZN\ H9+Rp ysTpbl+8i1\ LRr7FvrMIDhyrEmt\ VIlN0QJp9qggShNs\ dt1ud8nW0jed7enG\ XFIkVLzBaA6zs+zr\ CF vjQxa9zH0fAdn\ 10HStwVuCxNxdH7Q\ rHsQj2UpqJxjrGWT\ Y8xsVyXUctFFGJsz\ KWouD678mVs36do \ h23r1y9rpicXn9aW\ q+wsYA0ZZM9vnRbx\ MhX2gImoibiGi6hK\ xyQ8ft7F6CuGQmbf\ xxm10DoSxyRh pxv\ V/RWqfUWktHzSAva\ nIvKOz4TrU3BqbEq\ r3D1a4oHxKmuySfQ\ D9e/o0yi+4+mOpwx\ J0nsrKCNV jI1N0e\ Ta/kKZsuuTMesiy8\ DjrW1ZWpQYWixGOa\ 7Q0TL/i4s9YCIo4m\ mb0DL7DZScSmAFeK\ YbeuC0 qgsiaWP7C\ 3yrYHJRWmdLQiXwg\ 2jKzHUDeg+UuXmkQ\ Ism46gxMorMhGUjC\ gLnxVUuO2QRTysk1\ rYg LsLvtrqv/KT5\ Cc0XvuPz6QcHqSRj\ bGoO73YFO5i1fbVz\ vMj6QGVTXCQjSTyh\ 1/j5rjE+sLwZLavh\ piUmXH/enjqz4au\ PjTBQcuhoD0fcG14\ +guUteMT9RNDwVzq\ Wd4vlugwNGLz/8iW\ L8pqzkSSYNMiU JH\ Fe7bfKWJg7d15rNq\ q6nUjLbSoaBpvArI\ J4ORZjhSpy+6FR/u\ 68JcSJMea4fOtgnk\ Pl0Jzygxsn tX0N/\ 5zZXLmhLmBvnxltM\ huMQxXcoSpqZwJ9a\ QKrNxw5V1o1EqsyZ\ 4w/mVdwsQeqOBPmS\ Qm5n2r4 +VCJXw8W\ SdalEJbroclSRJCU\ IeOsR9JTDE8JkpR8\ NNTTGGuzUZvoj8MT\ /FkqzZaEynbFJy6J\ rEhq kT7oRFHdVw6\ dWE9Dy8iveNhD5gm\ 9njvm4JddahIoORU\ vLkZi9KNR8mqMFm2\ 8CZuDtsfWlExSlhE\ U Eb/sYh4uIyaksI\ SviGhLUidEFN0xh8\ DxT5kPycliv+Egjt\ t853CRTEd8RsUGwG\ lP4DYp0y6Mg1Wb i\ uNi18X8q9Jx9pVCs\ xexFDCh+nxqy4oTc\ qX+6mMjDORt1q8MJ\ wobF/rTOSbcIAVHT\ 7Udjb4DeZ63 rnVG\ a+lEMBdJgoVPFX57\ 2zDFrExOVWa1MFgo\ pGJYGdJ7i5FAfmoo\ cAM7x4tsbslyaU6h\ RZGRxbAq +KFtB9n\ alOD157SG7yfvkn9\ ohPiK9Kzv6Xg3Fla\ vgVO2CGyfmhMgZzX\ 0lcmIEHkTDuVdE+E\ UWEfi jPn9+SWX0i\ PjKE36/5rW20cfG2\ JNdmbKcDhw4WNsmN\ sJ/yzOTJwZtx3HgD\ JiE/OCSH+0c7yIF9\ RY 6Uhc3JlETEpcu\ oivp3bouKNh3/hUE\ KUGuWmM9Z5I1cXsN\ 4h5IKYmfYmOdX1OS\ zHSzRo0a9P0Un7F \ wy9D8tI23IMG9qAB\ ikhl9wS5Kxd+9+eZ\ 7oLXOR1wffi3bYMM\ 2x5+WqB7CkFqTIuV\ N7cgWD7yhFOf lBK\ iSa/ujEyQnV6RbFS\ gaIbdhwqMjNkkkzE\ yC6go2QMmz03pfN0\ Pj9vp0h9B+LuSx02\ CulDfaT9+ GXFZc4\ KfHZxgc/PCfbSmwn\ f8cJx9ltBWCDVHaq\ c+r5YbwDVpjS9UKu\ RUBac9gTzhLJgk6X\ 0GUsFE qE+TOe2hJ\ g08lGEDt0mZcXELg\ hp3HxnloRGJct2VW\ pdENjSn6TcdvnOkw\ iu7k4g5GaVVwyvZm\ P3C tPfkHyex3Te8\ qFKk1INrj646SU0K\ 6c0tlLaP4U7Y4bFd\ Fj9um8vPu9jjFoHl\ TyNdiwUxLRNfnqL8\ RAGSIollM8nDUxW\ 2D985OIoqgB2AKkB\ GU3H86Z9n6BCfJ9D\ Es2P/T1Gc8SRJPVL\ BWh5erB4vVLi6 M8\ OFZo3EImkjjoaYlO\ oeHW7078WAO+bgFu\ xQmKoKiAgLuuPzKx\ 7uqE3gB2GGWErGM1\ 3cfeE2F+pP 5LoB7\ pAZabDkVSkCy8caM\ tA6Tqzv9mSNzB8Lv\ uPz2QcHyeY01ndN7\ tu0eIt6SytQBbyMj\ FnPCZMn HKSCid4b\ Xji9jEKgyTMqTVJa\ 4ivDY4h7A3QhxjJN\ 5hUrm+b0//ENjyPD\ Jj+zbQ67Nk1aSKzU\ AeOE HbMXAnXARBk\ OX0uwA6SCSaBJ0zQ\ 4s0FMKQjjxkm9dsN\ IUm3WjnlRFhMStcH\ 5ja9nchpUw1gQt0m\ p t8rm/x1uTA82Wm\ sLudN/Q08HPdmwzf\ 2TgRKW51Gumx7+fm\ CM/nKVN69uJbkqQ/\ 6+YYAw8HnKd0MQ 5\ n49dzi8YUuszx6T9\ IgJidwzOqjsLFA9U\ MIznOMKus0j4WcZ+\ D5mX4XA95ESynGjU\ BYCdWkCe9TE H7Pg\ aUSSqr6P4YfkCOCw\ VeMbfUd4w5pJ01XB\ DpDHbLycdlaD9BTG\ GU2SGtNYjVH5YsEm\ JagkTsDs cEGv26F\ DMUyz10+AJPkVL9I\ ZxbzQQ0iMS9MIRHV\ fGb8RN6EKx9Qh+ZV\ wXwRVIN41+WOTUaJ\ tLRTu QQM5O13/1B\ B/elWH8sPjKG3xeW\ uk3DEHcR4xAacbP9\ kzjtikkE1NtojUgb\ Bi4GX1OUW+XkauE6\ Hw ecEOkIououGh9\ xYJNCmaglrdKK83h\ 9qdI5bLJ/pGuamcZ\ pQa4yr05OL8el+JE\ cNCjIvsd2xWZhJs \ SmembN+h3HNy8R/H\ Q2PUf2pLShmRotbS\ 8QhCLHZy7WyvboA6\ HwPJmCrgG95xL9hy\ s8qWQZmDVZvO jBp\ 9VvOtJjUIcuPvmK9\ Vf/9urcaabIL/Gip\ g9nvoU6ZMNVHAdD1\ ymsShcpWPPXKYt6x\ pZ8Vl7ZS2 j1Hemy\ e1sQkxISEqYjSROh\ u8ahjZMV/xc3JTFq\ VNp3qgSOmRMbSOBP\ qa1Iz1fcMj8H38cn\ gzqHRp mANhSy+wf\ PTuxKKZh4r1auXRM\ SlHR6Q8lZBTRN6+u\ jX690N5m+oUrzi54\ BJ/PI+1NHWWID3Fc\ eZd 1aZAMP0onT5v\ uVykaWw5xQQJwnF2\ c5bWkTsWOsA2yA9A\ TWJadEDD/K3xuJST\ Z61GyVkVd7ReWVJE\ rLI761SYO+ZEou6\ 5Kk9iXFqQP5HZbxB\ ThVl1R3KTGtn/V/c\ X8Xf5Yfp8q47Uoc9\ JmNyCfeZVkQyP HW\ WH9ctC8teooMDsgt\ xjIVCFeoVHRbB11A\ GT1PYxrGUp3GY1ur\ hqssxSWWavX+FjE6\ Gbs2wCfgE3 GWNNa\ 4JRy+WS9qbIhwdA7\ y1h9mROuV5B7y3ht\ IcBto+Mhvt3QSaNl\ 1GQx22C7vi0/ZoKy\ 3URm5R5 t8HmwmxB\ rLNBadfmrU3aEtd5\ zDQgruK0JxANb0Gf\ r5fVj9umk2MxrmjR\ GHQFnigYaLLM6rpR\ 4d5C BU0USCoSlfr\ vRxYk2uISpuvx7j/\ 2ctP6Lp6zuQXjicJ\ xbQGg7plUdZCzC9O\ AKW0qYrYZ+1AVe8j\ A vd9C70pFbty+42\ PUfZbS57VE1aaYJm\ AeLuMWLALfJ507+f\ aQubeMlFVIrGhCOt\ ruRJbwXG/RDS+f D\ DwwVmJJIvycGvmh1\ XU53DPAyPIsTg5nN\ EmqSTEEM+zxWkFAW\ 04+6RP0QqDk1Kgq1\ BBJC6IQTqSp QliN\ KLnRRFng+LN6LM0G\ uUWJJtAoesRUYYZo\ 3K94BI5/TILkVzwE\ RSSwAsTjVLMbQnGx\ bro2G9Qu HSkt1/2\ OPPyKQy2oYR0o4z9\ RmFV86o45xM5AMeJ\ QxcdPhHf+DYK0GPE\ dgSpgrgzFvPK4TWr\ 7WEii 2hMRYVp9lH\ jTct0oiHapLE8jIg\ 1d1OnQITWqVQOGyT\ Pb01RqIgcrVVYDyr\ BB+Rgtt37D5kUdWR\ RN ojJmk1zA5OhUi\ PM001vI6HhHUsEsh\ RNpbpOCPOEcZ43pc\ JuUUA92DPsAt1bj7\ tGZF3TLDW+onpXT \ ecz00DWZsuvQqopU\ A3jL6laOlF0+tOMA\ 1VQzF5ouCS04rmDb\ 7KvglVxSFyycrIiK\ SHxVKtR29VUw B8p\ YYwZqZwLrYJmYIhB\ fkZ7WjmucE9wJG2v\ IwOo1ZsSczBe+42P\ 3m9jDBi2XreCBW3/\ P7/79HvTM pFnuqz\ /2GtLrOpmahTBXdU\ kQJQRRnrHcfB6fus\ 25lp/63NHbmPrvcL\ mZ6ydE8KlXavvLZy\ fYnkY4 s0mSLBCr5\ /IUbIc1zQm+m7e4b\ lQi0XpqLyiNu117y\ CSmCihHkR8RQBZOW\ rMkywLUKzquG+AeN\ gms IKry1OzgmL5D\ XslFUEQE7fg/SHvI\ nNdduZiUpr2vBpGz\ h6pUD5TwKw5KW3zy\ pLrAKtJ8WiiLAdWx\ CIJJMhJo0qJFeEB\ IluwuHbdZDTVM42a\ UpeZl9WkTUQ2CdDT\ 0PiMa9T9VaEyvCXa\ AsT6crpmoOPR0 Z2\ iSRT47VsDLqGhF55\ htKk0UuP3QKD8UBc\ RSwMvbkpy7ZmGV3c\ APkJLzF7erWe24F2\ s/7+LbHktc MSSjG\ ZnE7vwM7dix4GVkr\ GUpUtvHppHd+UCTZ\ cpOhf1ejI26xERQY\ 8IJz099RYPPPBaaT\ /7D+Su4 9eEBekcd\ rl6ZY9mEiTQSHgvf\ 8aeRQt/wcAsW8RXp\ k/IZEhMSyU3ZKN8N\ DOSsRuB4SOmZn4OU\ kQn8 gLiWxqu6+Hl\ 3wW236p4S9kg4/ak\ 06cj1RISLXnYxz7r\ pBdFyghCeAxxvkhQ\ pmo5lTJcPSIqOVK8\ 6 TV2ugaMfFwSJIP\ BwLBPXtEnkword1O\ gkQRQw8oXoOc/1ot\ dQND0arDn631NfTx\ AEJDnc36QW55Bh k\ awvc5YgPX1wRpMkX\ xUR7LCStDypc/dwE\ ccPuI4k7phzSv2MB\ EXEK7mntYUky6FPk\ jtq4xZsxLh0 3Ew0\ QRHxTBe95dRV12RZ\ wM1ICAWRxNosxhNh\ m8YZqeI7PlJcmbc/\ UnVfGc8IJ/zkrLao\ 2oejUakJ JIJG6K+\ AYJ0a/UOjFdeoBDU\ mx1LbjYgwuU2h/5F\ oeAhWY5rNIVCFU+a\ FJBVd1AEDqejMMEc\ USwHt Zo3YuEkQ1L\ C7dKSijTpg4GXCC8\ dg1WbctHD8ANPz2d\ qaoei4bGrOMKjbjL\ m1BRPemh0s6KIvts\ gg ht8bKa1Mq3w0z\ CdrdoDaqbO2rLLD8\ eiS5ROacrO7dGqSM\ I3sHk2YpKI7ayTMl\ rYcedvh7rqOslWT \ MYMaG5rT6EKMfsPm\ G71DXLGuDaW9ilEx\ 8MoK1QNFtJYE1pA5\ bfrL7AuF6HNNAC4E\ zoiNsSePVCcr bsE\ i3pPBKzmICXHa51e\ rhmRAWqZh7MxjHCr\ Nu+3mOz6l+0fD/W6\ LI+oiUvvcrcIGkbn\ thn/HMV0U XeYvvv\ 52BFGaVk0SBIG+e/\ fyk4/+gExHhonDE7\ z4A3/CumvO5/Ff7u\ CnH7+DpiXhTcY173\ oRSzf3 8MtP38nog\ XBfHMPmNV95M4qqs\ f2797HvvieoTFRQE\ iqVsQrXf+4NpDpz5\ I+M8qMP3l7fB4H7v\ nEP v/v3e3j3HX+H\ mtX5w3fuYdvt96On\ dBzTJdmS5NX/8kYE\ UaKvZIQDGE+PCMuz\ mIIzmiQ1PJGkskc8\ JbG1NcfO8SJ9Ktj\ DVbI6J2Xidyy4BRt\ 5+ekX3DWqOK4bENQ\ 1S64bzKkFklsUggH\ /uG1Iv+KdVEss En\ q3KEi6TPHhUaS0jB\ Svi8cPlPBKNoEXIM\ UVBE1EyajEpBhMCT\ B1JkwENcybChyP/E\ MjiJqInNXQ uuKLm\ tQ9rkLOD79Dp/POb\ iphakzJiYaHVLQJN\ Bkvo1KTBOxTkMHWg\ DJiIxoegSZTnhKz0\ V+u4o3b TKg+1bRE\ HJCPhOvYXYlpbapx\ 0+KmeHjhjiOwW4dR\ K7zQamKMbb7HOcMm\ 3UvmMW5ueLjD4ffZ\ m3AW 9DmLORk1IWA\ fqiJmQ7GzN+HgGi4\ xF5T6uPsFqzL85v4\ BulaGVbzU9rEFu28\ 3PjvBDhAsH3XAiAg\ T hNVIqejM2k7JqQ\ o9qbCdlHc8GvRg53\ iRVek4FzeF8SYHDI\ t2VaajKcZrZAnGDK\ S4gj1gLrrHkZ93 c\ UbCFnvgBehLUpMV4\ HEbZ8JGkWOIihhqF\ V1CiwFFREqr2ENGK\ AOYz8SbW8O3fERNJ\ L5m5gDC47/d TWEw\ j5aJ03PxKtY8ZyNa\ PMVffP3tjO8e5M5P\ 3gFMVokaeiVBFCgN\ FrjgJZu56obn8aO/\ u23adldu Xcmffuz\ V0x57zrtfFFV+bnv\ nLQw+0s/yi1YDMHE\ kz5v+8x0IosBvb/4\ lv73lf3jR3183bf3\ yoTH2 /GY32Y7JSu\ nvb76Hd/70/UiyRP\ 9DffzuG3dPWycuS6\ EfwFk8rXBGkyQApz\ OJMlzFS4U/up50gi\ 8+ PsC7c02njCD5F\ Q9BPPbE2amGLAswz\ xOm2qVj9RmRB5Nnu\ Kgd8WmVNidvo+ROr\ EVp9U0SJAiJWcs1 \ 3dOW0VckKW0fA8DD\ QXAEvJINYgz8GkG9\ beqVXOIrdNROHd/w\ UbI6XtXFqzoUtoX2\ A4tFliamtdrE yAP\ ndGJySo7jjtgvFkL\ H7uIMU8Wd40WeLek\ suyDLT44UyYkij/h\ VlIgAiGGQbr1N2KQ\ pfMUONThl x6Uj0B\ DrhqU5VcHya3ytUi\ L5YHFadMtscIdthK\ SEmJVwD1u4hrsgba\ F72EIQBNzDFo4cjt\ EHtRqJ nsnqS04RU\ eL1lpsajvLrfcYJx\ ZRMWkKEVbWGwaSXk\ dH7DNQBc/bteg2SO\ Xnu2NScYW+hwr6ST\ 6uu oogCq9Jx9hQM\ vuQZPD+Z4NwBg8Dx\ EGURqVVB64rjFizc\ YRux58RP0+aRcLva\ ktQMOwC5WSWwg6ga\ J6UVlKVTNErL4ni\ GExKlA6WQ/PRk5h4\ gqZOomDL7eXPppmV\ c+srLKY6WuPvmX2L\ mq5x/3UVRtXzi 8A\ Q//egPECWRTEeWC1\ 9+OUoiPMbF4TyZ9m\ O3dh3LRBBlJBmOPH\ yQJ+5+jMpYmfH+cV\ xjkvx3bexG EAUCP\ 6DnkjX88vP/NWNbd\ 37yJzz3fS/mxx/6X\ vRY05Im7rvlbpZsW\ s7QngEAjEBkyLCmT\ badxdML Z3zj1GnV\ kMcsYk54wYvLEjlF\ ZklWY8TxGbBcSt7i\ moY7efuMFCIfC2JK\ RtAEYqqAujaNW7Cx\ B8xQ 5zTmhG2OBeq\ n/IpHdV95mmnlnK+\ flEhe2oa2IoXcEUd\ Kq+FfQkFQJJQmHSm\ uEF+RDn2eEmFGldY\ T 5k5lL24jfV4Lge\ 9T2DZ6QrYGMyDN3O\ cngyidTjT8n6xlqY\ ggPTJa4MDBAlsEmW\ dvCG8u3r2mFVkE Q\ ZIRrdmPSVdCZ3U2y\ epski1tueixBjrjK\ puaM7gZiZ88FrZgJ\ UWP/hpCV3vApCbXp\ 64UEa0ngazJ oQ2G\ MVVPkkBLpFC0BIIo\ hdvxQk2SmJHQehLh\ dto1rLI9qznhK9e2\ 0Hc4bFUZG5pQhkNC\ c7KYSnbd JgVl2Jj\ 1u5QPBPLBzHPH6my\ STc0ZlqbidCd19pW\ qtMRVtrTluLfm8MN\ OmXLFodJXwOo18C0\ /1A4d wx5gNpj9Bv\ nfDUUmlYHvgxjDtz\ 3c8ZnhqoEfIKoSar\ M2g0SJikj6/GbUjg\ TJnixiXMIeMnBG5g\ 5p PZYoP5FL0Ly+k\ 56r1rL1ZRfT/8jBa\ c8nm1Ncet1lnPcnW\ 3CrNj//9B1IcvgbH\ u0doWnFsR3hAz/U \ FR26v5effepONl93\ CS/96J/TtWq6+WnN\ DY+pIAoEno+SmP6+\ d3z/AVpXtNK1fum0\ x6//3Jt49Oc7 eOI\ 3uxjvC1t5+yZKfK+\ /SHzKxKZzgj5zZ3F\ m4oyvJPlxAS+roox\ a2N06VdcjLUpgOnx\ 53yg5ReSm rZ2L93\ oVD0l/ao1tum4waV\ QpCrgHjSgHriG4Vt\ cuzH+nMQm3EE2WLA\ vI86gOzEWAlDYV3/\ YIbD88 GU+Y09oDC\ 8X5GZl7bY8mqFcFT\ k8m35MJvbcUGUP2l\ 6tUxmzevCzLigtm/\ xw3N2v8ov7/jfaRY\ PkE qkBOkcg7kyRm\ KkGaitXZJAcMk3JV\ oHVqS6YuhJXawsaT\ hxU9JbUqxKRYaJbY\ DmouRRAE/PGbv+Wy\ NzwTRdQ5vOMwuY4\ MyWXNeNLkun7Bm9O\ 9+ZyEQldOZcAw6Ur\ olDf//+y9d4AcB33\ 2/9nps7P1+p10 6p\ YlWW5yb4DBwaEZQ2\ xTEgyGgIGQGOzfS3\ 6kvEAKJAFCSEIPzR\ BDwHSbEgzYphkbW1\ iWJRf5TtJJ 1++2z\ k6fef+Y3b1bXZUsy\ VLC8490W2Z2Z6c88\ /0+3+fpIF2vcB6tS\ l5YJwKCHSDYQawzm\ 0WYGpoz AK9dJ+GH\ BMbM0EBeVZqO7xBv\ v4Lj8m9ph1e7Iv3D\ 8fGRUAS05PIvuPaA\ iTlQRNREyvdPoPYY\ hE6A IAkk6h/JGjK\ bIbrelEPkhPiOCxl\ lXtf+wA1il++VGtW\ BIlJGRszNf9kI3ID\ ADpAWqCQ1YBaK7Pn\ V 4/RtjUlIgwgquk\ z75vhcXhyaYmJgHA\ Cv7DGyZ5TeM/rnX+\ AhGN0/Qt+mPtrXdG\ KOVTiwa4izrjqn +\ fzeh/dimxU0I82OO\ x5i5ekzy3Utjwe/e\ T/Xf+7GOcvd9aPf0\ r22m9///1/K0IOD/\ OSjP0SQBE7N GZTr\ x4loBUgFG37njfQ/\ Bic8SQJwu3S0fRWc\ FTpJWaIc+HywXGV3\ YPF69ehOBR3OtNiJ\ goZ2qSXu oOrj1Mm\ SviaFd8BCWKY9AcT\ VtGfCHFLvN/AmLAI\ 3RJAEagMlIjs8rFH\ kwA3Ai8iZQcsFE0C\ eco5b 2+t4w9hdJN\ TkZhvIn3L4q/P7lt\ QLbcwojDluy4UbaC\ FIS+G0fJqBKOC+d3\ +NHT98mNMu38rV73\ 8l ckJhz8O7Wf+sU\ xECEdc2m6PVUreOm\ o6o7p9CzmgIjsT9X\ 7uPC15zGWIk8YvP/\ 4SL/+gyVpy1GmwI \ Jj2UvIHapi9qRPi6\ TV38831DFCSRvKpg\ bs5j7C4QScLTtllo\ RMc0vKYaBMzPzUwy\ hmqsOYv/LyCb Ptr\ +OH/Szyr4WXXO9Fx\ eVch3Kdw2XuAP8yn\ 6ix5+2UM+ZXnEvhF\ fklwT3wyFdnyjEdg\ BWo+BPWmS 7m5DDC\ BwfOyBeNslN6QJTJ\ /ICVsIVHO5RZ+EJm\ CPWoiaiNZhLLw/eX\ FFP3LnVr+S6SQP3/\ kQj/1s N3paZ+256\ zjvDy+ZmUzTJayKx\ Rde/6RWaY0AACAAS\ URBVAkAUm0pnvO2K\ wH44ls/xWWveXbTZ\ ynV kUauu9TLmkKq\ Y+YGwPd8Tnveadz+\ vUf4wus/QbY7y9lX\ n4Okzdz4rty8gjvf\ /W2mDxboXNPBBddf\ Qhj6SIKE57pccct\ VzXVle3Ik9ARO0eK\ 3dz7INe//Q7wIdtZ\ A7mtDl1rPkVLRxc8\ //WzD3+HEwUkR cA\ vEwZVb8vj1CY2Rmk\ Ot7PCmjhSZvhRWIv\ G0w20baESIzNbhnM\ hwhi3CIFxQ49EwpA\ QW9VyaDXvQ RFy5s\ Hnk08GS/jBDJkEp1\ ikJqog7YaO0qYR+i\ KCKyG0aCS82vwtqP\ qEdELo+Qc0nsFuzk\ 2pigq+P ldmU0mJf\ q+MYHHs8ITgh6e2T\ TUHxk8Uqp0UCV2+d\ P3l+Nn66a5odckRv\ Uj3igNhh0+JF/d1s\ zqp8 8Ll/yzvvfje\ SrFAZKXDb2z/PDbe\ +pT4yrRCGPmEQYk2\ a6B1GPI49FldP/uP\ 1H+NPbrsZ2VAJEv7\ M 2HXJQ0iJWOUysq\ 6iaPqiRoTVSYePPT\ GB0qHSZ+jN7XM436\ 0h3m6I69Vha45beY\ M0LccXp+EELk9Z S\ KVYI+N2G80qU+P9O\ yaKPKcgEEzbPLheZ\ n1W5fkr2skvQnbLD\ 00S+iG587uaAcEQT\ 4bZkyZ+2SO1 Lte8\ 2Tj0nNEY/HDHHcJq\ TIwSkkBY9dHWGRR+\ PoqYlsmcufCk24zN\ AC2axcYI/6EIg7BJ\ mmeP9Lds s/o4P8y\ M6c9+f2P/aCwLQDP\ mP7cIgsT2r/2Kib1\ jXHHLi1uW43vOHFu\ BxroaVgWNz+HaFvt\ 9CdN2 sUOfgZLV9D\ 0zdhfx8zpOz7G1qP\ kdjh9OikoSgN2fRh\ 2u4ddjHHqTKrsdl9\ trNuftCTizPw1HKW\ dN 7lAgKxEcsBC0p\ ++FdDywWItQ7lCQi\ Y0r/VFrjmnlofAmX\ SKJYyZcXyyrCuJqE\ vUKeOAGJPsCKo9P \ xw9IAva+CoEdtBAn\ QZFATKAeogdIAjXf\ 5RFD4lRZRSo5KOPO\ MTduPN4Q6uQwVAUK\ jkt7LeLq85Ym SPM\ u6zB0W42Yjmk7vui\ P1bWDI3bAyijkR/9\ yJ8WxIl9/521svmw\ LZ11zIYO/epJ7P/1\ j0m0ZRgdH uOrvX8\ HKTSubREnKyiQEga\ /d9CUuevWlrDpvHY\ 5tc/s7/pNUW5rpg9\ NsvfIMLnrdswkDad\ 6KUqpD 5Ra9h0/vm\ mAorNGfTlI5u6OZ1\ 2fNmvg79LvLUw5Sy\ WlaNDT8pQQnnEOG/\ GxsN9BoUS6GQ60iG\ jE3 8pTVDBt2+nTO\ 6Mzx0FSBEcdipBqw\ PqsuSpCsIRN32iF/\ Tvx7N4wkG9DWGdT2\ VOJ2WU5uDkUobWpz\ 0lBJKQQFj8gPkbt\ VAjMgcHyUlRrWUEw\ +jA3ZlvUGpo9f8vC\ mHfyai5RUYnH36la\ S4rsWYdB6rpn9 m4\ VBbAUwZ3vNMnBs/O\ 27NB+b/fzs5dlmpe\ V9DcxMzQX1f/2Wiu\ TszzB7XfOtZ5UEpA\ Q++1QZqE+2 Edt6W\ Mc4Wuh3OL448a/+d\ bidGtpQhYQbNa0BV\ qd0pmyXDlnkr/eM8\ ob+Dta3H51SZzjhI\ KblZTlZ P9OInBCW\ Ya45WzNU21NZsFLm\ W94x02UFBY/oMBYt\ KiJ0iuQ7e6jtqRDa\ AdrKdFMX4U+6BDU/\ nqSD eStUb+tV+f7\ jBfYkI9YaBsbuAn7\ 2f5YjbjhLMGv5ASU\ /wAtAXoYlUYeUoOq\ 6kFy+geKh2NqeZWe\ h wlbi7V/wfKwINl\ 3/LIafOMgrPnx987\ Wrz1/Pay+Kx7EfuP\ 0XPHbnb1m1ZQ2qtv\ Cxa3Sn+cMPvwEp K\ 2MWivzHH32Si1737\ EU/k2hIvPHMLj70m\ xEKikReVaic3YE+a\ LZUlRrEqCHG9rMKX\ rveJFL6oIk8 7TYn\ /2ajEY57JC3chhjc\ 6dPrE4lljF0W1ros\ p0UJ1vfn2J6K2F50\ ePkCv2XgBtj7Kmg9\ i/uNJTek 8U2Xyq5\ pkuuyhEEYV2CdEIn\ YZmF2hdevT/PhRQQ\ lDzEpUXk0vlGJ3DD\ WHmVkIjfOpRQkAa9\ oI+c0 1Hkq2ktltC\ 30/HyPH0qwlv++kJ\ VbVpLujEnMoVXIxd\ Z16HONvy/rTPLpJ8\ bY1pX/Hz8UcqwgFz\ 0C /dhYoRwNnDQkK\ VISLQJugCeKVTKKy\ F8NjnLmyhwrj3DEf\ d71OSEhHHXfkmOBM\ AjRDrPqk9yQxhoy \ CYeDOd8xckLk/iNr\ MwqCBId0PWefYHzL\ RzaOjIDNR4DEPr1Z\ zp9dcm+g4AYEIxZP\ qRH9moIvy/hZ Ban\ k/Y+rJjWgSyKlIGK\ /7S7LJiMrSTh2rfm\ 3PBVfPJazfWbHq6z\ LJtHrWpH6fQxTKoR\ B/Jq4hQHW SJEd33\ +YyQOTTA9N0da/uF\ mhIEi4js2uHz/MwU\ eHcGoOrrW82BFREb\ nxghV84r4DTOZcTs\ mlsNYa zRiSZrxQV\ sFZkW5pezVgrTWaT\ tz6QBlnVsh0bL6pP\ O0TfKgKmJtzqMNW8\ 3OJ7WnO6FQZqTn80\ 2Oj dKoib9rQ2fI+\ Z38NMSmhb1x6wMLY\ kKW8fRJn1ETKqAht\ InJ7/Bu7460aRLVP\ xxoyKW+fREzLICaQ\ lNj/rAExKSFlZUR\ DivPgdhfj3Leaj3A\ Chl37nkP75l7aN/e\ 2uHQ/HazUZo6vxnC\ IOmL9rwi1lYsx kQ\ 70eJ84kmPA2F1stp\ 5DVcTPa/g55YTKvD\ vx9uRF4PQl0Z8qN0\ lSu6bwWLHK363tYd\ X6o1fiDKo+ kQTaS\ UCQGjgSB3K938AZt\ rAHzUWjT5YLQZBQ9\ Pm3WUM/EgYhknr0D\ gBBlJBkidtu+wrXX\ XvNHLfe e56Y4qdW\ ja6k1owGkUpuy4Xu\ fxrsIOLMnHpYPmJC\ YobseO068pSFPlDC\ 7TZa4lUOFz3En6Ea\ iqTk mNB/7m2f5cq\ bXsA5r7mQPfc8wVO\ /fGLJ5fzoH76LIAs\ 86/pno/Zl+PCV71/\ 2Z8iKCW6+sJ+fPz7\ N D8cLbMmn0LIylb\ M7mjEsS30/a10Wfa\ BEqEnoA3FGXKhJ9e\ eO3rmnEXOjDsctOD\ 8r05tUsWWBIdPh 1\ r0Frl8T2zEEboA7b\ cXVnGW4mIuGROa0d\ goPjhP6YYubtygLe\ FWf6s4igiai9urY+\ yoxETKUJc0k RUXE\ 2JyLXbr3lNFWGE0C\ dqIgDPw5kSdPF6oI\ 1/Wk+cZYkTM6c1jr\ MqS3T55wF/qjBcEJ\ UUcslFGT UK1PeTq\ tOtBDp4jDelcibNz\ I13VkUqHuwXZ2bO0\ gFzykgkVyNL7RdXu\ ME4JsnlQkyc/ICE6\ AWAsJ kgJTtsu7Vn\ TR25NseV3DVDEMwi\ MSXzuj1jPitn2kSG\ 5Ix2aSRWderZE36c\ ZBuYoIWQnBCQnr3j\ iR E7ZEn3jejBjyc\ CFIcTXnoksuo7Mzv\ uPVkgavvvZaXn7N1\ U1dgpzRWoIjYW7wZ\ Oy0Ozek8tDHGvj4 \ Jz7Jy1/6IiRFj/1S\ lPgCcF5nlofGPLbk\ 06RkkQ4BxJUG0eoc\ 4zWHqhfgRRFyIsEa\ VUTQVELbYa8T tFR\ JTiZoYoInyi4jlkf\ vEm3TwPQJpTixfjb\ MzbmmW3gjwLdBCma\ jMeIerkjSnmwlyGl\ ZpJJOYpUt BqfLnN\ mVxS9ZeDWXtZeeii\ AIPHH37kUv8Im6ee\ X44BgXv+YyjNVt7P\ rhw8vdFE3IIly+pQ\ 12wUO2 R78sNzVCy\ 4GflbHWZeMQ3HXZY\ 1qFbAQoq8NWs4LFW\ oNTcjJPFqv8yxMT/\ Mn6ziMyuRPzMsk1m\ Xjy zQyaxMeZsnFG\ TcSkhF03j/zB4I+5\ f/f9AJy/+Xxe9epX\ L0mU5E4dv+BQ2j6J\ 3pdC25B6WtlzzzT8\ RrWk4hLaIcrque7\ y23pz7ItkHi1U2Jh\ LYa/Jog2W8c4+/GD\ iExVy0UMquiijceX\ UXpPFy7feXAhO iF\ gPpBdCH1wBghCh7k\ sllWf8tQQ7wO1NNQ\ XuO6dKIMPW+lBNY3\ 3qQatZFHmmcFKRpA\ YSfgAIqJJI L4k4W\ 6w+keaMmHH0QXnmA\ pre0rbsttmJ4LZ9J\ NDWGgRVH2/CwS04S\ HpsLtkI6AXAhWBfX\ FZveCgl VIHkrKqK\ 4IT4T3OvcByHO777\ LQAGBgd51av+iIsu\ uZDe3h6EXglJk3Ft\ a05wJMyERybT+eYU\ VBiG c6ZfGsGTh0I\ QhOZ0i+/5rO7PcX2\ bQeSHcSvI8khuSDK\ tCGyuX9SnalbzAm/\ ZLnpbjk5g92TxsMb\ g TwQIThiP8vfAh3\ 45xPufs25RXZJf8v\ h6zaJDj7PlZocAt2\ hm7KCpuTi06qJOWf\ SHIUk1zT2fuINU d\ 44H//E7PPfd15LOa\ Gy9fCv3vPlTTFx5F\ lfc+HucfuUZfO76j\ 5NuT7HluaczNTRZX\ 65PrntGHJzK GSSk\ WPdy6esu5ycf/28e\ +Op99J+9hnXb1h3R\ 9rm022B4tMRD4wV6\ U0l6k8snO35Wxtyc\ Rx8oIU9Z C4q/jxZ\ mV5WM3UXMzTlOyaU\ YqtS4Y8zkZX0Ggio\ SzDNyvxiSG9J1U0g\ LpUvFHohJkdYTG7t\ aQyZf /8HXKXgVPv\ SBfwfgE5/8KF++7b\ Y5RKkh3o7s+DhNqA\ Jqj0FCEPCqDu79Fq\ nN+ROuqrQUAjfA3F\ nA nY4v7KImklAEQ\ i9ESktI3VoLWXpZn\ 4Hn1ijur9AtSk2H/\ xNVZ7McHFo1cntTL\ YMLE1WHsaqNIoqk \ FZmsLJJsVs9ab87U\ UQend/6K9IFKja3t\ WdYnZb62d5yUIrMx\ l0Iquk2C9UzipCNJ\ gSGTqDtsK05E wo/\ HWd3xGs6kjdZjoJ6\ aQZYF7EGT6lPFZrD\ josut+phPxK7BgiI\ 1y85yToWsdFKQpmb\ uW33kPyqG 81aWgq\ qPdyAmT2EQtmRGhQ\ u4Lx8p1qxaTSqVwv\ M8Er7AZ/7r8/zkJz\ 9FFEUUWeI/Pv1pJF\ nh2uuu 46VXXcVtX\ /4KL3nJi7jxTW/kL\ 971V+zYuROA17/2d\ Vxz3TXc/tXb+dKXb\ 0PTVHp6evjgP/1j0\ 5U3 br0p3P7V2/ns\ Fz6PYSQRRZF3/H9/\ z6otK/naV77MwM7d\ jIwN4zkOds3kLz/6\ adZ1t7N956N87O//\ FiOVYnJ8nDf99Xs\ 4+8wz+eXw5FHdHsc\ Kh558DlYtXtSbW1K\ 4/cuihR2F9KsK6qA\ 577IaER0Lwc/m eC\ qRoE1P8Ow3z4xWV8\ o2tpzglHe8mFOICe\ hjhQqb33wlVxyiSw\ vDmPS+9rNvbv79on\ fHeVqe57L6 zHXcc\ Otb5oySLyUInvNZa\ z7X5NNc7Sf50ZTDf\ dV6+01u/Ty25zUfs\ z2PghfiBwGdSZlwS\ xv6QLnF cuFYIVQF\ nD4dY5eFOmzh9On0\ p5M8PFXgZX0GkqHg\ TthLL+gQqD0Gvuli\ D5hUB4pNgtTA/bvv\ 50Mf +Hc+/JF/AuA\ dN72TW/7P23j5yMu\ QMgp+eUYTJialOO9\ tFnlSulTKD0+BKlL\ dXSB/ac/T2ArHB+a\ u El7VQZAEBEUiqP\ loPQb6mhxqm05kRZ\ j7pqjtqxA8Hpt2Sh\ kF0VAILZ+LKi7f2V\ 9FWJnDz5xcpHA2 5\ KKHMhIHY/tZhdqmf\ LN1WPN8pis245bDt\ rzGtWu7GTID9ls+g\ 2WTA2a8L7pBgCKKz\ f+rlZBIk3Gr caVp\ 9nNtmsJ1K+LpqFLQ\ ybf2jrHS0FA1qdmS\ eyZx0pGkUBebJMlV\ E/FF/qkKCVUge1Zn\ S2vNK8Wk yRmdf0M\ 3KhiRFLedAtNHzmu\ Erk/oh0SFEGfEjA/\ +09tOCqIEMyP/C2E\ 2mRLqPru1PRUEUWj\ mvj1d vPe9f0vkRe\ w9MMgbXn8Dq1b143\ kub7jhBm580xsBeO\ tb/5R77/k5Vzz/Cj\ zPZ+cjO7nju99CEC\ S+ 9KUvYbszFSlBk\ Ni7d5DPfuHzfOsbt\ yPJEn/+znfxrW9+h\ 2uuu6a53oMHD/DRT\ 3ycb33jdtKZNN+7 \ 8/t87N/+ln/4+CcB\ eOKxnfzLZ28DXeYz\ H/5nfvmDb3P6H9/I\ ug0b+Odb/xOAn3z/\ e9z1X1/m7DPP RE4\ kTsq2WxhGnK6IlEy\ X7CLapPsLJqesyTe\ ntMzNi+djLQQvini\ gWCZVZ2VaMcA5UCK\ YtlE258h1 J5kMoe\ oFjB0ss35Nnit7Zs\ ZGZ7ddZ/+/+ZwE4W\ iEC0idcst7FkJg+i\ 0X7sYou9qnowJXr0\ qxbUDh exNVRj2TK\ IqwhQRaGNGWUxktm\ QSawIqszJaUSodi8\ JOJMuDRvzmHPmiiD\ 5SPue9WqArNVl/TU\ ylK sH3KZktdIB24\ wWG3tUInoDoRG1DO\ HopQ2lQSC+zzYlIi\ rPqoq5J4B2zkldqC\ 682c2U5lxzSBHRCU\ PcRl3Kw+U6g9UcY\ arqL3pYjCCDkrI7e\ pJCQBozs+j2w9fSs\ rt6xASEkEJZfQCwl\ sj8gJ8Io2ep2r Kq\ MzwyOH0yqSEwmyio\ jph1iHkQWniwKGJF\ Byj1wiIDgh8qSDMh\ 4PcPh5rRmMrY461D\ y/SYAu7s5x SV6jL\ kmiS5E4J6/CAjpPJ\ 4DqYIFir0GbLJIUR\ XbWW2/9hkiXMnOM/\ nayzLaOLElZItSiO\ GT6oIXg hQiWh2AH\ +HkNwfJwe43jovs6\ 6UiSn1HRB0roA5D3\ XWrt4ZyDvAE5q2FP\ mFCbZ0HUR+frSKgC\ +sr0 HAGz54WY2yc\ xt0+SO//IfGdOWGQ\ lvH0myQ3po26aedV\ LXoJlW+zdu4+v3P4\ NLr30EtasWctju3f\ z 03vuZnRklP1DQ1\ jWzI9z7bXXxO03AX\ 7z4INc8dznthi9/e\ b+B/F9j//7f98DwN\ 79+8imZ0Szgiiz /\ aHtnLttG+lMmjAIe\ f6lV/Dev/07jHpVY\ Oupp0Fdp7Ni1UoO7\ j8AgOfU+On3f8DQ4\ F5GhkeJ/Pgg Tsni\ SdNym+3XszFn8MFC\ GX/f1KItN7t+To0F\ zMphm0jOhhdFM9sq\ CWzMIDgpjF3THJj2\ mk7gbX1p tj85Cb7\ L7/W2ip4XG+8W2hK\ 44w7249Ul43IC08c\ bc/A1DykrE5gBCY8\ 5zu2r1qW5Ppx/chJ\ i8hFV 47iNsBawMZ\ nk/dNF+tNJvDYFfe\ D43OnO1kTZq9Kc0Z\ 7mmwen+LUj8EIxgV\ PwWdG9fJLklx2kpI\ LS ps/97nKC87Zcw\ Cc++VHecdM7gbjdd\ v7ZF8YGlPVt6B260\ HmQPqON4P7xOOLoB\ CVJ1pMVavsrGKsz \ yJ0aUv3C6wxbiHVP\ t0KxiG3bCKKA1msQ\ HqJJM8jyYMFhZF9E\ dyaDXPDQ9pbwOpZn\ qyEnEpzXO6Nh emK\ qyKSz9HmnQ5XY2D5\ D0h8YmTosojS7peZ\ nFey1GbycXCdFNdx\ qXAVqz2i8oC8fk6H\ DhCpCkJBp n3Wztt\ Bynt2d5Zv7JjijMx\ fbAmgiUtkh1OW4Op\ cXCDUBCdAGyySdAH\ tN9piad550JAnA7U\ ridWoU ClWMlbkFn\ aa1tcaiU1tB1Y/1O\ z0LO0vLskB6Sxvl7\ ZNUdxZbStK/w8I4e\ 9tZAFx88UU8/NuH+\ end d3PRBTZvu/kW\ 3vOX7+Lqq1+O8+EP\ t7wnm4/1KA1n29lo\ uN5uPOUU/vhNb2g+\ bhitF9kojPDqF1dr\ 0mTnrKkt0QlIZFt\ fLykyYiLBu978Fp7\ 9+8/nqutv4MCex7j\ jK1850q/+jCIeSc+\ hyTJSIsG1WzuJ ph\ yYR2gcuHH4KYBo+o\ Ta0b+IhaqAuaUNY9\ c0+iBNorRmdY5fPl\ XguZnkomLgQ6F0qY\ iyEBui9up1 8bE4Z\ xnemEMkgyAJOCMxk\ TmcHMIGREWENrF5o\ jT3V9HrLb+G7uR4w\ e1SCdU86rCJtr/Ce\ d0GU2WL L8rgPzlO\ b0WbYxGw4LKmHbQe\ ac42CUwfa7DKyy9/\ Gd/41be55f+8DYDz\ z76Ql1/00pZzbSQT\ R5HM ur9yx505Qbl\ Ke5LQ8o+o2nUsEbg\ BzpCFM2bGbbVTWre\ F2qcTTkfYZoXenl4\ ODB3Er/lsOWvznCk\ 5 QZQ4pSvFazSdqm\ 0xCCgjIqK1tMkogF\ 6/i/no+/+OF738D1\ ixej2TTnnJ97XrCu\ Ojo3z5kx/jpnf/ D\ bos4i3zpk4dddD2l\ ua01A5UatSCkBf05\ dmaUUlMOUR+iHoUL\ XYWwjl5lV2F2PaiN\ 6nGthij8Q3r bCLk\ 5WRYYyAXPZKPFfDy\ x67tfdKRpFATUA86\ WOtSOPbiTtNLQUxJ\ 6Mtw0xZTEmqvQW1v\ GUETj+hk e0Ki5B/\ xJNtyMTY+xfZHH+X\ K51/Jk088yeYN67n\ 44otwbYsdO3dyycU\ Xt7w+DGMh97nnnMM\ PfvhD XviiF6CIOr\ 7nctElF/LRT3wcw8\ jQ3dXerDI13xt4nH\ vBBfzzRz7CUwOTTK\ YUHvj+dzn1jG1olY\ V1 G0EUsX9wgOe//\ FXomsIPvnZyEiSnT\ ye93WwKRv0oYjqMC\ HyfwJXmXKCiUkBgH\ J0on8WwEFEKMgL3 \ 7ivzrA3Zw7p4inkZ\ 1RBwx+I7e2/Mxwmt\ ps9PUPORMkrzYj0f\ iWqgEeC6HDjDFt/3\ 55Ki4ynQjcX0 ubg\ CMGzRqUgk6+2+wb0\ F2LD0MgKzHsZ6SNU\ wcAP8ktd8/Lorr+X\ a5/0BQc1HTEotwy/\ eVF3QfKiI u+ziFx\ 2SG2duRiInjg1yhi\ yS6595Z15nyMQaia\ Na9L4UUkZZ0mfq17\ /6Nff8/F7+/n1/D4\ CiGS2R KJKsMPSb3\ /DUdJFtF16CpNSQf\ IlsTobONJbvM1SqA\ tCfTbVkvpm2S7Xu9\ j06NASAoSlc3NfBV\ K3G SM2lN6mQVBRq\ rstAyWJdViepKOiS\ xN6hfQwfiCviyjIO\ Z8EJMXbFWYKNKTXZ\ dHiiGP+m57UneU5n\ ptlOo0vF3FNG5ci\ nzEQlgTNkzms0eii\ uW93JBx4bZcqyOc1\ VICHg9KjUPJ+B8kw\ rUxFFNuZS+Fnl mL\ a9TzqSFEli05cho8\ g8MmGy7TjkqyVUge\ SaDKEd/I+pKPmWh3\ AMTu7pdJoXv+RqAA\ RZ4Q+vvobn Pee5l\ Gslbv3PL/GKV76at\ nSeZz/rwuaIdyZtI\ NU1KL7nc9211/Dkk\ 082l9MQbt/yjrfzx\ je/pbmu 9/7VX3DO\ ueeSzcZVqJ62Tl5x\ 41u56aY/RpAVjFSK\ m9/xHqY0kUAVkZSZ\ C4OSTJGXJxETCV7y\ yldz y2tfRXt7B+d\ eejHJ1MlHhBtmdo0\ Q321dee44MMn9SY2\ bdIlURysRGa7MHsn\ 18LPHdqz9UKK0tT3\ L L4tVHvjNCDdesI\ KsuHzCJipia6BzPa\ 9MTM6tjixEkPxpF3\ faQV2GS3/JdPlqoc\ I4IafkUs3vBCwr k\ uRooyHoTm+fuWgkE\ svbft6Yg6iJKG2zg\ mzr7cmEFgdl+9MuC\ VXAnY71R4eSWEETi\ Qou1pCJklIQ 8zLO\ iEVyQ5qw5lN7ooy6\ Jg7DDf0gjg06DJ3N\ sUTl8SJKp4aUgcD2\ CGo+5fsnSK7LthDB\ sObjmQ7Z /h6e/dz\ LeGzP45yz7SwEQWL\ //kEeuP9BAC6+5EK\ 0XJbPfuazdHV1Uyq\ WeOlVVxHqSe758d1\ MjY+y 8ZStbDxvKx\ lFYscjj6B393HwsZ\ 2URic57cILWN/dA4\ 2idzngwbvupuzXuP\ hZl3JxXwdl1+fBu+\ 7m nCuegyZIGJrCg\ 3fdzeUvvOKwvru+1\ 0QZNVs8iNRRhzHXZ\ 3W3xGvWzV+JlFTxa\ enK1H4Db8pp2S8W \ fK0If3VaD0P7q3z/\ YIVH9ABhyqZPV3jt\ +s6m/9tX905woFJj\ Vd2b6ljdrJw0Abez\ kb1vnPK2TiIl wch\ QgZsu7D8u6w2qPs6\ o1bQZOJk1Sp4XNvV\ IRwsLmUn6JQ+SiXl\ DLhvvmx0eGQZ+y53\ actbrFiz2 uh67TZ\ PNHTGBTU7HEzjVrI\ AbgVa/e7N9H9P1mm\ P/aVmk4gXzLvtwe/\ zPNKSShz5Qahq0PT\ Re4F1n rEQbs1suA\ AU34PqfP8mL13SRV\ xWM3UW8dv2Yu5A34\ jf8rNqM8ig4LsURk\ 5sv7F9WjMpCaFzoD\ 9Ud zftaN4iFx3ll\ 0TgPAC+A9/1qiFz3\ XMsAddhqiqmfCaS3\ T/LQWg3L81npibz5\ vN4l31N+eAoAtTOJ\ lJXxxhzCMERt11q\ 2hbm/iugnFtyegRv\ gjs1UaGeHZ4c1H3u\ kPuk0VUPUJJQO/Yg\ TDIKyh19yEdNK Uz\ N0pKjsmCbyQ1Kbcn\ hFD7/oEvoBzrhF/v\ yuJhFwhi0EVcBY0c\ Z9v76PT37qP/jirb\ eyd+8gb/2T P+WG1\ 76OqlkhZaQ5/YzTe\ M/f/B0re3rpXXUKr\ 7rheu799S945L776\ e3q5b+/921edM0re\ fWrX8E/ vO/9PPrb\ Bzn9/AvJtrXxjS98\ nn/63K1sWLWSm/44\ lhKc96xnM37wII8+\ vJ1Pf+E2CG2uefFV\ fP77 /w1A5Hu85gX\ P5zv3/IwdjzzCxz/\ 4Af7x059dUMukTls\ o+2qEmthiXTFsWkz\ WHJ4Xaly6Or2gVYM\ / 4eJYLsaqp1cJDN\ wAa1+F5IrUoq7sQd\ nDmXBIrk/hBMxUtW\ bBCeDvHz3I1vYs+l\ 7zmIm5T7pKEsT2 5\ aLt4ysyxejYtwsaE\ FPxXWpoB3iFwx+7P\ ZEQHDj6hplh6ONa1\ pxYktr+Eto6oxkY2\ TCSbL5vngDJ Rjr4\ 7NceajwZBh7lMZM7\ 9hdx2xTSioIXRdy/\ e4QNFZdSNsVwu0h1\ PCZAjcmrap0Qjdec\ 5t8pWaQr GRtJAs1\ JrJOJIAHNLLKGk7Q\ iCgwUHbYc8jq57HN\ a3og9lQDB9o9LNSS\ e1Mpg7JpGKjmYm3P\ kVQWr M+AzD40s6y\ K/EAIzQK4Hsi6kU2\ zAn3RjTY2x9HcW7H\ i/m89TSXBCBMd9xk\ iS4IR0IRClVF6Xad\ Xb HTrdNxPWKiJoY\ hzjM+2gzEMUAzcg4\ UbIvVqs/zqEQMFMN\ S9wA/xJt4UACUmJ5\ PoUYc3HGakSSSHy \ Mi9e/rRLYHo40zah\ EzSz4iCevEuuyTRD\ eo8ESodObaCEV/Ti\ Scc+HWfYwhk/RIQf\ hAjpueuZmJxC UVU\ ue/aldHV2kPDjfWh\ Nfz/nnHMuL33pi5m\ 0I7ZdeAnbLrwEALk\ tw5P3/QrlqpfiBT7\ rN53Ga94a 671G9u\ 7j0ft+zZnr1gDw3K\ teyuW//0IA3nfTn3\ Dvr3/Bsy645Ii/by\ P6Y7bAedp22Vs22d\ aV5y3r O0lMObimN\ 4ckBW6AXyfCop/AS\ YzjXwAAIABJREFUH\ jBRetQjjp0RFRGtP\ Yk35aAutgxNIBHG5\ 975 CNKhj1trDNLb\ p1BGTLTBoMUFPFRF\ zC35Iz6/nZwkSZcQ\ 7BDq54Sg6i+YaH+0\ YQ2Z2KMm6S1tx2V9\ xwJBNT7pHwtLg/l\ E12E4U2YPA3/J0Mr\ FXrv78afYseMBAJT\ cWn7d0cfanEFelvG\ iCH3QRBkz2bM5 j5\ +OYJaI8dAptcIhz5\ 0sU2xLwe02mgLure\ 1Zvnlwiu+YEc8qJt\ m0Nk1XmOCBcZNOPT\ 4hxhf6sCUk 91ii0\ XrTB8oYu4tY6zL0G\ To77RI/3TUdO2MfA\ SI/jucIo4janlhYO\ 1ub1EDDCiDhgTtmL\ 0moREPi jHVt7BiY\ Zu3KVk+lwJBQD1ZQ\ xqVnLAswJUoMjddQ\ NqjN6k5jcjehCqR7\ 25FmkThpk4Y5Xmjm\ rs0H 74AdEyNDao7\ 7O1PxYxhCS7tEz2Q\ IhQDJkJuV4AaEpER\ gB4hJiUhKxMMC0PJ\ +f8LFLdi4RbtpAqx\ 2 xYRLyWmIukhClY\ gcn9q+CrW9ZZJC9m\ lVlKSMgjTrmhHZ4R\ w/vcCNUOdpC5137r\ lc8/KX8frX/zGb T\ t3In/3Zn7JmzdqmX\ ECSJdol+O7Xv81dd\ 3wXQ09SKhboW7kSL\ 60jixLd+W6YiPdRT\ dPwajMEbW37 Kizf\ R5ckulatYXxoCC44\ su9p7C4S6nJznB/i\ zFOA957R36I7Cp50\ 54jrnb0mUk5FSokI\ SYnaU9Uj +yCzEJj\ ekiRLVEQETTisHMD\ K2e1z8uQA1JHYud7\ uTx+Re/dJSZK8No1\ IijdCYCSwpy2M46A\ h8SZd 7L1x4vbJEH\ y7ELwJB7nz+JzQA9\ Ofcfw+Ctix4wFueH\ 2sSfq3z3ycbVtOA2\ gKWQXbO+YGfyc6Gu\ aD DZfmre1ZaIcfj\ hcY2+3xkg6De4IaZ\ 2AgD5pIRQu322hqm\ Y4HGoGuxu4ixq5pz\ C1tbG3Pct9Ymft/ \ McT63ixnd2vLzp+z\ B2Li4wxbyJqMskpt\ /t0gTGJSmiNCtgdM\ goK3ZMvtZX0GZ2Rl\ vv7weOyd1Kaj yXK\ TGKkHK+gDJexVabz\ 25Y19Hy08atd4e1c\ aZ9hqitbFbglZV1E\ 0ncHHB/nqv3+NvXv\ 3oWeSXHrR JVx52f\ MQF+CG7nisTZI74o\ gfURER1xlNAiZYAm\ J9+8VVXYF/+Nd/5M\ KLLuI5lz8Ldx7PK4\ DCvaNz 1qV26TjjF\ lJGRtQk9F4DISkhp\ OcOGoAKokBl1zTu9\ DiiJiKmZaSUitqvL\ 0v8H9Z8rAMV/LJHc\ tOM u7tbtBA1iciZ\ Wzmer+1/3bXXcO2L\ /4Cvfvd2/vr/vpsv\ 3nrrzOsFiapZ4bP/\ /EG+ced3mUyo3PPN\ 23l8167ma6KkBJ1\ pIn+moq5UbRJhQGl\ qH+vdjeC6lCanOe+\ 0uA7s+16TWJX3Ty3\ 6PRuj/VLJpbIu Q1\ UIGZiK33tJV5ore+\ bmDSrdGv6YTThr+y\ cSCcScFEdaEQuwl6\ wCLQJnyETKKkTLlK\ eFdoiwiG3f a9d38\ uknxtjWFfu7eTk5j\ jipc7k+Q6dtjYGfU\ 9AGy0hlBz+vE2rCs\ oN5T0qSFOfDBHhtE\ klJ4nHT Z9sxXmdQ\ 9bEPxKaVJ6po25t0\ ETRh0aqaM2wRSRy3\ yptf8pCPwWj5bEgl\ D2N3AbfbOObGficq\ Glqf UJMJDKkZyKo\ PmgT1asFFvsbjZZt\ /mbJICiK6FQe1Oiv\ ShKqAsbtw3C/wDaK\ kDltYaw3Wd8cn70K\ x xpe2lzitL8s1Sw\ TIWkMmyMxbEWqQoc\ D0wY3m3NwIKQm36q\ IvQZIA1hsK77x4JX\ v3V/jqgRLVVIKt 7\ XGOm9ulIpW85nj+0\ w0GXg5m2w9k12aRx\ fj4blTOFE1n9+7dv\ PWtf8ZrXvkqnv+C5\ 1OYjlMFUu1Z vMhF\ kqWWaCDf85HatJbK\ UyMqSDMkjHx8TEuz\ HNMFQeJlV13NqvZu\ BFFo6gm9soeIRNu2\ Pqp7pxDr lUo5p+H\ XXKSkgpyV0Vemlt0\ +i9tjK+KUhUmLyA8\ JTJfCvSWSq9ItouC\ w5uNNOfgVH6/qzGn\ bNV7n DJkIioSgCC\ SyrUQrnI7wAo/CZJ\ FK1cSuVTiwf4S9Q/\ vZcMp6NFVHrFeQ+r\ p6+dV9v+Tsc86kvT\ 3W BA4P7gXglz++i\ /bePqqe17QoAUhIM\ oIiE8rgpuIBgtu/8\ x2y7auZKk2y65GHu\ eXmv0BQJdKZHD/9 \ xU9Yu3kj377jyyQS\ CcK6/ijyXMSaS2J/\ Fb2en6aMmtQ25ZmM\ fIbLVovoeT74JRe5\ XcWvxtYIiTAi miU\ 3iC1D4jy2IzIvrfl\ xRTAEYZ4xPGfYIrA\ CEmGEYEj4UYSsLX7\ 8rDcUrl3Txdf2jrM\ pn+aAaXNJ V5rz2w\ ymvYCfTdR4aLzApn\ wa7+x21FEHZSRmUL\ Nbcn5WWTBmSLzqrT\ e957C+6QkA0fRJeC\ F+XkEV BUYqDmf3H\ rvR0mZkSQSpTXkE5\ cSpUjjDFu6YTVDyC\ cOQyIuInAgxOf8O7\ BVjMbOcPfYTgY31S\ Rn5 aW+z6qTD6KjF\ uOXzw3vu4qGHH6Bj\ xXpEN0PyySLWuizO\ ypO3uvd0oA5bGI8X\ 8XMaoSogF2yUibh8\ H2oyUsVBtHwEJyD\ hBgRFG7HmIa3L4a3\ PEBj1rCkPlAkLr3P\ paa+jiUgRUUequL0\ zt4yaJtOZ19k1 XG\ IrEQU7wV37K/x8vE\ K7HWL4EFQD7CkbSZ\ ORO5RFhf6CIiDoc4\ 8J0ZBwSy5B2Vv2MZ\ HLqlzYbdBV DXlgu\ MzBwKUrqRFqIl6nR\ pBWEK2A5J4SUsUjU\ sRj0spMBBHqaI1Kn\ 85dYwUuTqhIbTKCK\ CCIEqIk 884//wuu\ vfYPuP6G19DZ0cHa\ dWtYt2EtfsXl7973\ fs45dxuarvGFW79I\ zayxdt16Hht4jA9+\ 4J/5 xle/SalS5qy\ zzkSSFe68404+/sl\ P8d8/+hH//eO7+OF\ //whZVFi3fh13fud\ OUm1Zuvt6cZ0aH/n\ X j/GZz32WvcP7Oe\ fsbaRWtiFmBNTuJE\ qHir4mjdKlIWWVeX\ +XpSClZdRuHTmrkI\ hAVCXcSQt3wsYd s\ 6g9VaY2WCEwPRKyg\ CAJyFkVbUUKY3MWf\ WV8vSjeP449XENKK\ WjrW8N4vUkbbXWKy\ kSZb/3gTnq6 uykW\ y6zbsJY7v3Mnd99z\ N2EYcvMt7yCVSrFu\ 3Rp27dzNfffdx+89\ 7zmcfvpWvv3NbzMx\ McGb3vgG 2owU52z\ dwpTnIXf0YORyWJ6\ HVS6RXLGKLatXMVU\ uc/X1N/D9O77OwQP\ 7ef1NN5FbtQLZD9l\ 41pnc //Of8fjuR3\ nJtdfRYSQ58+KLkM\ MI1w7ZtHUrk1Mmfs\ Ul4Yf4eQ2nR+OpUp\ W3beqmfxG7HHfcgS\ Ak IQgIGQm1U0NuV\ 5Hb1RkCPeVBGCG3K\ YjzhF0vBXfUgiAkc\ gP8ghdPl5oeoi7iD\ JgISQmtP4ncrhJa \ IVHVR+lZ+pzep0us\ zejcPVqkO6nxylU5\ dFGgTRE5K6exOW/w\ vaEpeg0dwY8IdZna\ KWmclQZep06Q U0k\ ENI/XIKMQSTMk7qS\ cblMPWghOgLUu3tE\ H95e4+dzeY6Kx8bw\ Q65FpAtMnc3bHcav\ ALPqZ6mG+ AHJObY\ 1imXQJKh5hMH9uW2\ Oqbb7njjYaE0TLmT\ aa772FsSojVsgvSj\ YH5ABBSNCmKfQZ8Y\ HT0B+Z m/PPmHD2m\ Yaxu4hg+1jrsvNuA\ 6nkNS/QoSqwe7DAD\ X1xte0/ixX0lEybI\ jV1Ntn7xp+R7bnQe\ kdq DhOmhR9FrFdU\ VC3BHtNFFUU6VZFH\ CyZbk0lef0r70zIq\ bJhTHo6xZQOPPFHg\ exNVKkaC/kxyRgxf\ bwErY+YxqSwJTkh\ 6+ySlC7t4sljl5ky\ 6WU2TFB1BENh27vn\ 84id3oaZS+G5MnAV\ RQnAkrvyDF3Pb bb\ fx47t+xMO/fZgPfP\ ADjIyO8epXv5q//Z\ v3sHbtWj7wwQ9x6q\ kbecub38IHP/ghAF\ 78olhU/OWv fIWe3\ h7e/Pobefs73sHv/\ f4VvOjKF/HWm97G+\ Weew4uf/0I+9ulPY\ rSnufnmm+YYMB5th\ DWf2kCV hJBA1CSk\ NoVEUlhwvwjcgMK9\ o4iaSHpre4vGyR13\ iBwffU22JUjb93wU\ VWvRXjb82rySj9Ed\ yz5m T+wuhF8cmOT\ nk1XedsZ6TN+nVLO\ o+XMvx7sGppDaVTa\ 1Zwj9kKSUaL5OkIS\ m55JpuzwyUkQdsQg\ 1 qdlS+k2pxJ+f1k\ d+ke3gDFmoneqiI/\ 6NbbIcr6ND4TQigQ\ 55rzfl4E05SDl1jn\ bwaOKLAxPs32/T q\ UqEXSpt2twbokY1v\ gE/oxIa0snZbgNIz\ BIDmwaM7K+yav3iZ\ fnDRSOSJHLCE4Ig2\ YMmUf0jLDS6 L3co\ TdJkD5q4BQclryKm\ JIKqTzDhIK828Ccc\ /LJ3bLVVZhhPEC0T\ /rTLcNHhe1NVxvwA\ Twddlujv 1Dhjlli\ 2sTMLtv+/Wn+kDlu\ Emrxoi7FBOgqOy+i\ gydpejd7VaWQR3uk\ muXdPifuqFm25iLy\ qYG7O Y+wuHPft6n\ YbyNNzp8R6k+qcqb\ Kt9YvWSM3hkr4Ohi\ o1vvtokavPbudIIW\ WU2KrCjVr0SYEbxK\ 7S cmLBi+3pG/Ocv\ jHPwTGHnx0sskOox\ futoRKujcmROlwXj\ 65KHzXdV8Ofadi0u\ DihtPgeAU2jVT2T \ aRmemI17vv9jfvbz\ n/FvH/sIkRvyi3t/\ xgXnncfFF19EGIS8\ /aY/4003vpm31L3J\ ckaajaeegl/y SKc\ ziDW3ZXnVqRIPPPA\ brrn8pez4zQ5WbVz\ Nt797BzfffNMcjdL\ RhpCUDksK0cgAVbu\ Sc0TgfsVD SsuEgT\ +H3DXI5qFwRyqIh9\ HQ+NrecS7vzSJaRT\ JARgbkeLTdisD0fZ\ 7YVcSVAqo1n+22yf\ pshnVh TAgfa9PZf\ rDMAdNuBsVqokjS8\ ZhsTzBtW6hjAZdvy\ S9IkKAu0l+CIAGIO\ Ql3nxsTHlFA6lCWf\ WMS uBFq/9z9Xm5X\ EdIS7r7avKkARwuv\ SGV4slvkQF5id9lh\ x0SRDXW/s8cKFRRR\ iM0pN+eaOXZS2UEY\ r52cJCmSBRKVGcb\ dpqkM2R6rjuI6gqq\ PuWv6hCFItT0V5Jx\ K6AaEyzRl09YacdV\ pwsEZtRBEgYQq EE\ 44CIpI6AbU9lSOmY\ O4by19QvQC2Fm0KY\ 7VuLdUIzASrGjX2a\ zOMH3BCZHGHUTTRx\ mL70j+N+uP GtD2V\ 5qBtHIiwbpskseL5\ pzXFRyX0bEat2zqI\ tUxcyISFZHLt7SRG\ atw6/4pLunrqDs6K\ 0gl77hO a3ltCsbu\ QtONezlokKf+dJL7\ rAJXTKZavt/hQMxJ\ +JMubtWFqtuS6ygm\ Y93OUlNwK7pVXtnd\ jT/t snvS5I5pi1B\ 1OCWXwqqTJX2gjDJ\ mLlj5OxKYXkCHLLV\ UwcLAQ9F00uk0e/f\ vY82q1c3nBFFGSMU\ E +Ps//iGXXTIzXl\ 6cmiabim82wzAkn8\ thmq3hl37Jwy3X27\ miQqLeStdUnXJoIk\ oiT0wPNF9/zctf d\ lS+59FGwzVcXdP6u\ 9aeqqJkFKTOw5MkJ\ EQBJ6AZ3rrOkOYlJ\ 48+/hQ7Hn6AzR449\ inQc07zucAN kOyQ\ jJRAL3p0dOpzvKGs\ Jyvop6Q5EzjTiM+B\ BTfg/mmTku1ghNCX\ SbO2X6SnFiJ5USyY\ 7p4bRuxP xCR3OSa\ RoiIiGBIJScAeqRL\ ZIc4szVLkBASeD0G\ EnFZbYl5EJYE/6TY\ F//Mt1xkySaixNow\ welo2 D7MR1ny8ss\ Om9VlOU0Su7IFx1+\ ffHxvDDUL+/LQ+kq\ LIu3fEbuehKoAoND\ VKJyVJOhS6KDImhA\ ta ASzHIiCo+vjlu\ E2V8MErxd4Q2pr0M\ 0qQGu2x2W212p4Kn\ hcuq704u7I0H4Kqj\ z1oLppx93SwmE7k \ KdPlS9vHUJIioSqw\ edUM6ZFKHmI9PkHb\ X6mHr6r/q1trsyGV\ vLrDdrwtJgvmvJ5O\ ghMyOmzOIUiz kUu\ pXCTqDFVq9KeTOH0\ G+kDpuJKkxvdo+Ds\ dLnpTSe7YX+TaTMc\ Rtd1ERUTs0wkKHm7\ VbblxCEwf Z8Ra1h\ QcgNSmcHqbwpZCin\ tHKvxwvMCWfApNja\ t+yriDsbuwqFh0uQ\ g1CScIyOoS9oBJJM\ f6HDEX oGg6Vzzvu\ Xzy45/iH//p/WjGT\ CsocmMS+Je3vIu//\ tD76O7r4SUvvYpNp\ 2/m3k99Kv4essQjD\ +xk fd2/B8Cvj/Ar\ GZ2MIBHUd5EGUVqx\ YiWiKPGyl72Mrs6O\ 1s96DKtIB22fFYep\ k3Gm53rd+dMuoi4u\ iyAdtH0er/qs1gX\ WGwpPOQ5f3DFNqu7\ q7wYBiijyqjVtrNS\ U5rj9jocf4A1viCt\ zn/nMx+GiGZLk 7D\ UR6xot0ZCR2uaSij\ Ax9zjPKyJX9mQI3A\ BzukCmQUaMWLcKNM\ XYgiaQUCXCqk8YRY\ i6SO2pKlF9 5ExSx\ TltsYZfkltwECQRt\ TPZNOEESAhC3OaUJ\ RJ6AmEewXVgzW/YC\ yB1KIQVH0EW8CZdE\ nJMYgVN OKL2HtTJ\ UdEjskO0Va0u312K\ xF+etoJaEDSJ7OW9\ WR6YquIG9VDfnIHm\ naQkKVIEmHVBsIKA\ fCnE Vd05WWzeuAN\ ivZ8axsI0AFEVYkF\ fTsIdm4lnEAUBsUe\ msqdAalMbyjN8QfZ\ HbZSsijSL6CRUEcE\ P 4ShosMSUBGGENW\ A2072PFsIgRJ7HjA\ 2gMmlz62MTrF2ZJj\ nLiVsfqCLXTd28Lh\ 2vXaV8TieRfPxM Q\ 08GyFMOXnssdN45V\ WJdxmDnVCke9wfEW\ siesRK2mOAFWzpIt\ S1MeFZqCp9wHDbk4\ otoJIsk5hmF PtZw\ +lJzAmPlRGJZhp69\ SZUdVYtz9pQ5ZUv+\ iD+DW3WR1NZziGhI\ qF0abimuMqntyzPT\ E/Myl+fb 2HpA49/\ 3TjX3dbdLxct3og2\ ZpLZP4fYZOL36Ye/\ jghNCIoEbhIRRhNK\ vEdZCgpqPd9DGT3n\ c9Cdv 441vfRvXXv\ eHbDv9DOzQ4tS1p/\ JHr3sNiUQCVUvzsb\ 94H2/4y5vIt+e55I\ JL+OJ/fpmbbnoHq9\ as 5yc/uYv3vvs9R\ F6IY9okMyoJAcS0j\ J8QkRq6myhBUM/Vu\ OXtb+fGN76ZSy+7B\ Nty6Ohs58Yb33hY \ 3+1QjLs+d0/YPKdT\ o0uZ2fZOAF8YnGD7\ dJXLV3SyShc5NaUs\ 2l6C2NGZIEJb2Xrx\ FFIibsFd5J3x Z/n\ XXaMIQoKcInO3Wze\ 7DSMu8jScrhliY3s\ +n3tyHEFIoIgiQeA\ zOx9CmPWTu+PL0+Y\ kEvOf98O6 tkhKtZ\ 5zW6JW3AB/wiWyfa\ S2+d3Lnf0mftFrPu\ dPu9jDNcIgQOtNNT\ /fQlINZ7+JM2EhZR\ XEjIw3 5RC4EVrvw\ gMhoiIS2C6+6bdoW\ P1pF+vJCpGQQOvV5\ hx3Yc3Hm3Tw3QC9L\ 4mQlGIRuhcS1Tsuy\ kqt aWHQsl1EUMWZ\ x6/syXBlTwa35DFi\ WNwnupT84OQUbstF\ D2XEbLZbnihUeI1u\ 0JUQYdaJRhQS+JaP\ 0qa2lO6Csodb8lC\ yMm7JQ1JFhFyrL0f\ hZ6OovcYzGmZrDZh\ IKQn5kIPmWLTIrAE\ TZeXccuzTwUKf 0w\ ngI78+SFef0UKQlH\ EH9WCF2qltBMn/nT\ qj5UIfqBJqIk6fzo\ FKja2yykMlE8cJ0a\ MEE4mA6zd1 cXp+6\ Uk1J4BHH5/me5FLp\ 67SJkikH5ykck7Hc\ SWnYi3E2DHVst7lk\ iSAmudTtgPeaGhLt\ sbmQ+gG 2PtrCx5b\ Yc3HHXNIqEI8TXcY\ x8qI5fHFX4+i9STp\ Sc9qedZC9KdKRLKA\ vSp9WPu9Mh7f3B0I\ Xd66 ubPlAmIPmkh\ ZGT2XQUzL/OY3v6V\ QLGAkNU5bt4l8Xyc\ 7d+7g1P5TsC0be7L\ KYG2Ms089DduyeXj\ P ToqFEttWnUW6O9\ 6W0wcnCQyZVev7EE\ SBkZHY92jFipW8/e\ 0384IXvoDfu+Ly+P\ uOjLLr0d3oSY1z z\ z4LRdePWLhd9iPe9\ 8gBegyNyZrDWzZ1I\ wsJBqoe39o3yVpVp\ SuSOWg7VBMhlhWg6\ yIvWNfGprQ2 r2Nz\ dWcRt2Ch9aXnhO42\ 2lkL4b/2TlIMhaZA\ fzaUcYdIERaMxrA9\ n9zoXib3PxY/kO/j\ nPPO58yc Ru2Jcks\ w8HxoxL3MFxTsFz1\ q+8poHUmUBUwT7cG\ 4Ha+smJ84zH6dskL\ DPWjH26nbWHCZh8I\ 9aBEF Ic6khdqhI/\ doeKM26qrFj8nFtn\ voBrgHbcIwQpQTyB\ 0q3qRD6ISxriklYg\ 9ZSJpI6IYkRBAzRx\ Zh U3uqitavN7fPS\ VlJgpmoAADbC1jRp\ 5FIiUS1kNlEW+ycK\ y4TMzJ6neFKSXHBv\ JrjAUGQEKTWHzL0 \ PZxRE+TEHIJ0LNYV\ hj5yTsYdc9D7F3Hu\ WgLLDUD8zlCFCdtl\ jTxj5pbwIrSBMrXN\ ud8RpGUgHlyI 9+t\ py+WijgxX9KeoeAH\ 73ZBVaY3sMo9uVYQ\ zV6b55ZOTRKpPpMa\ /oeBFBMeRJAVJgdC\ QUEcs7FXx fng4sT\ BJWWLHVImP1BzWTl\ QZJODNW7vJLZPMOG\ M24iIVIiEpoa2VsI\ ZM3IP2YbWoe3WZmy\ 7r51sP j7G7YCFmJ\ DbmUgRJgerp+bgFd\ whBXArytM2EIbBZl\ +bcYWtrDbxxh/LBK\ RQjyVlnnoYgiFhTJ\ mpe w3UsNp26iTAM\ EAWQSiKbu9dRHS0g\ ZXUuOP3c5rLsagVE\ md6tK3EKNtZ4ETmn\ 09vb05ziGj54ECOp\ xZNerkN3VxfdXXG\ 2ZRiGR0yQnAB+Pl5\ GSiToqyUYsULe89t\ YO7LBkzk/p5GIJLy\ cTBcyjTRN2/P5 4a\ 4pvsUsn59UgpVJhT\ 9K6LgFCyWvz0s2Im\ Hh7X/Q9thesJrmhY\ 0IoEiJJ8ncLhVtyF\ 6QJGmyhNu1 jnx6N\ VHo4wcJvvSbYXJrO\ 1jRsfQNjTfpIC1gJ\ xG6IYIa63vmgz1ok\ hBZkqxAbJlhD1mEl\ k9mW8eS r58NZYVO\ 6AYkRAF7zETu0Ugs\ I4czVBO44868lTRB\ EZvHW1D28CYdxJSM\ umqGqCrtKu5UnPfW\ JGr7 4/Ufzg0NQdj\ y+pOWJM2GEQozlaL\ D2BiLkaOEKhDaC/d\ QjwYkRUeSpaZZ28z\ jKp5goffP//kSgoA\ 3 5RwWuWusa3L3MG\ 0bewjMADuyMVIGru\ 0T+RHSQiE5y4B70C\ IhC7iTJlEYm9MtdM\ G5dk2arOlyf7HK x\ vqEQfKpMl6X/ju90\ WGi4Hj0hCLp+gk2q\ 4icfgRdUzEj05kQG\ I3ik1loSCS8ADi+h\ NVelSK5u4gy bDbb\ rUFSWpI4ZBSJNjHi\ gKFzwLTI53VyXshH\ HhzhhlVtrFqxNPlX\ 21WcKWfJ1+n9Bv60\ S21PpcVN Xu1e/GS\ sivCKbd04FZ9Hh8p\ 8dbxASpHp1FXyXSp\ iVSe1c4rq1vZlESW\ x6DKaV7kgOX9LW+5\ SkVFj srSrGh+Tho\ Q/z/4h52RqA7G5qN\ qn4zGj12nc+PiuTe\ S4+KX4ZigMQvY+sZ\ eb33ULa1av5sILLi\ AM gzjD0T58/dGn9\ kxwoObynK4M53akG\ Kw6fG3vJD2WwDkZg\ ydLNf5gfRvnd6diP\ ePD4/jzaHYgJiNr \ Vs/chAlOiGgF7Nk+\ ztCqHN2qOO8kXOgG\ SJqIs98kIcbeWo1r\ ixPAxx8bY0s+rnao\ By0iWcDtUpGL HlL\ JI+HFSfTqwVgyEMk\ CCW+mhRzVJRKRIpA\ QJGQBVueT/4+99w6\ z6y6v/T+7l9OnaYo\ 0kkbdkuUG LlQjDC\ H0cjEQkxASQgqEXE\ JC+N0bAklIKEluCI\ RcQuAHOJAApoYSOg\ ZT3S3LliyrjjRFU0\ /bvd0/ 9pwzM5ozV\ ZItO1nPo+fRtH32O\ Wef/V3f913vWvzj8\ QkePDF77RU0mVcPd\ LGjYNCmSJRUaaYdp\ 5L4 rTcOsRUiSdI8\ o8bYj9IWbNVHzMgr\ GrOP/YjIDomjNGpm\ NdEgDYiqhNpnEFoB\ waiLsoKBCkWSkHQR\ b9BakshJeaXlZjy\ 2wiaBVPsMvEELuag\ 2xelySVn2eUTVoGl\ 62sBjkiRFhkRYTD8\ cZ2yPq5Tzv7CK 8o\ VfHERR5OiPDvGlP7\ +FbNvsjuZX/89vov\ XmicNgXuUn9B1EUS\ a3swNv1G5WhhrVoP\ SY8oK/gVSE efunf\ 8zE0XHGjp9B1GSe+\ /+9mEw2vRgFQUAwF\ WTVmPd3K4FzKp1+k\ SWaLbtGefTssNHYj\ wgmfAxN Ai/t5etT\ DlLZx75qdTuW/8oQ\ woREFilpCnf4NayT\ dTIbz81QdV9Xjg9O\ TdNjasSGhGSFjzhp\ DQsK 1Ws7kSvpomM\ cqyB4CVFRJWjTCUp\ qSwLhBBHjkcD6nMn\ 6XEqIbDGkokbEcxb\ ssh9hSFLLFoxoyiT\ D K7vu5TYVMSsR1y\ OEGeO5pVp1c6HlZK\ 68pI1dpzROuCFfcG\ YecyCLeSQmc6iMtb\ O4JFESgnSh9LyY z\ buWZsVKl4bSpS252\ ImmTBwtvymU21T8q\ XQxD32PTdvX88Uvf\ BaY8Qvy1xb8XQ0Tj\ o47XKdnePB4 jR8e\ LZMRRPaaOvTrBIBV\ jrl6XXqNd2oK8Sqq\ jA1xfLGgcWzcZduz\ 17f+vWpEEEVk+rOp\ fqecXjsN 7VObrpK\ zEkTLIdevMxGl79H\ cypFSDha03BqZYo3\ vHS7Xm8JudOhZn+W\ NSgfrRInJHhVTFOf\ pqmI/ InFDokBctO\ 0lSBBaEcGEhyAFJF\ GcVnAUEUESV+xDZB\ +rIYoiak5DzMi4Iy\ 5qu7am1pWoSERBsq\ IY E7kzJTSCJDbbf\ SutAMV2SGSH89p1W\ n+GsByklbUwmdEee\ yjt6qIdDymv4I17x\ H702G63yWUf0U0v \ uorns8Fce4toMYiq\ TBRf2EpSA/2XbuTG\ 9/8aQGrln5HSqTBF\ xhqrEkYRhZ4SspJe\ AL7jYPRmsQan MNY\ XUQ2jWY1qVKackTJ\ GTxE9k2v+bMe+3Vx\ 9U4na4ASCIJDd0E4\ cxWmVqc8gcZJ5f+c\ 7zrKGaOlJ JwtE34\ 3yaGPHbW7NMX7a5p\ QbcDs+E17E9mIWIU\ hQTlrYu5ZeFP4bi6\ OQVwk7VMZP23SuX/\ tnIdeu Ip1KoB1iV\ Ua8wJXUpZCH5kIbA\ AAgAElEQVRaESi4/\ SaSHSOXPdQzNvqxK\ nFGJmjXCYtaszUbJ\ AlB NH/RPDJd53d3\ 9nD4RI1f3H2GQ15A\ nZgsIn9yeTe6sfD2\ p3XpC4j9YhBVCbFt\ zk18bHUEwdiQYYcf\ 8cbTMn9bmabUVcT\ emidzqIJ5tIo1J1v\ sbEh2SDzTVhFWWLR\ ZNlS0qOEPLh9gqnb\ ozYlY35klla3u FV\ 4Ef3NolD/d3b3kMf\ OywEt2dPKlh8a5yj\ DpauH6nvPhH382zK\ 9va+fuCZvMIgLmxR\ BrIr2izP5C wrUAf\ oQdx7hRQj2IOXi0y\ kHX4+HE5d3BOroVC\ btb58ejNW4dq9IVS\ AyICokKT9hbpENR+\ Pa4hXPW dSf48YLJ\ 0KCooA05nJYCplyf\ 5/e3c7WugCzMIwLe\ oEX7iI+6ToM5BUL3\ hIXaZSxJVARJBJkm\ MZIy MoIIgiwgmis\ jSPUDZSRNIoqiJhk\ TTRHvpE3sx6s2fJR\ zCn6LKcJWaFSfGuJ\ y94SFvt5cURXLHqy\ T 3bmwMjj39ZI71K\ au0Bv3WgrBG+ccjv\ vN5/+YJEnKlEtYSN\ 8sN4jYkL8wVR+hhf\ vphcQs0VGJ45DP v\ PHjKDPOoJIq8dL3v\ Brfc/mXV32I7q09R\ GHE+Ikxnv5b+9jzv\ DS97tD3D3D7535Ov\ i3L8KEhbvyr V9G1\ u5/a6BSfffOnaF+f\ JqyPHhlp/l0cxxz4\ 2j3s/9Z9s3/396+h\ bX3bisrmySJGdTCz\ 49ZF6gfK vK9WRdN\ FdFVuEqTsgUn8dZn\ /brOdA+p+wLsPn6F\ kwZ+cA0nSDZmdmsK\ I7bFRl1CmguX/6BF\ AZIpE poHXa6Sket\ pHmXLRBuskmoC/Lo\ PfqS8g2Z1Zg389Ok\ 67oaMbKru0lPiM1j\ y+eajS0nxSyiskY+\ 68 neRKMdfuIp4Zl\ V/uGKIqURzI8Iz7b\ H44M51ob8mTOVQmc\ 6iyKFFKrRI08u0CP\ z42zTMv61zVubZC \ UlsZ25KLCv5E+hqx\ xKT8fWWX9x44RcUL\ GdrSTt8yGY7Xthmw\ o5MfHZpiEwtJUv/2\ EiO2x7tOjVFM JLZ\ 251jszlOpuJyedkh\ yIn1ZY57IuiMU+Pt\ Ds2G72TpE9YBj+Zh\ 2U+FNG9fTXTC44+5\ xvnNqik5R 4kpdJy\ wpUAkIigq3T/kMWl\ UmnVkCoErSzH2t9V\ lNhSGiKPNnm9dBPc\ SbdObpn4Q4QTJlBI\ kZUfJM y04UkDPKs\ pWc0I3SCtAaku5jP\ 6J+sIyoSURehLl9t\ iIjqhLGthz+kLNqu\ xiB1HNoNWiQJdlXc\ U85 qAV13nQ3pJWj\ 2I2JnYjYjzF6V3ZO\ DV1hbIc4wzayKs1r\ 7TUqdo3/i6r02CRJ\ csXHmQm9zMQiRvH8\ Z01JpoK4iEAuLAd\ L2t2vFiMPj/C5/3k\ zcRiRacvyone9Cmu\ sSvlMmdd/5g8WeA2\ Vz5R5xbt/hbbt 3V\ QeHufmt3yCS55zOb\ KisnPfHnbu2wPAzz\ /5Iw58Zz/7dqc2m1\ NDE7zi719NoafE0M\ EhvvO+r3Lp Lz2Bx\ Em4/CVP5PKXPBGA2\ z7yXQ5/+wBP+q3rl\ z33yI+atgqLQTRl7\ k0CCnm1qUECyBwqE\ xvKI5Y8 /3hC0Kaj\ DdXwu7SmiPTuselz\ riZt0xUe9n1iTUN0\ Lg6SNBeJIjQDZYUg\ QbJDJCskd9fEglH6\ Vm7d AN05jfumyzz\ HCVtWk/ReY9XCbEj\ bTc4pizhO+PhEjXE\ n5Mklk2fvXt4J/Jm\ XdVK4b5zPz4RxsrN\ I 9sAkxrF6M35pLu\ SKh7/OxAoCPjRe5h\ KnSM8S2VxLnrcfYR\ +u4Y5aFPaurOWt95\ tLthfvK7v846Fh B\ rIGb722j7y8sirxN\ 05PISQxRx+YYMvuh\ ecy9z1dylL3qOfwh\ 0/sQUHgA4dGMEQRX\ ZGJdYVuNyDX XkAp\ B4hWyEE9ICrovG3G\ z+jLpyb48skJunIa\ JVFn1PY4ndgYowLt\ gkgX6eNHUcRvb++i\ T1fwIvjJ eI2fTta\ 5FAm3EQo8196koDF\ 6osrXPLi2K89kHLJ\ xc3HJ1yb2I+JqRFg\ LWrZLG1EscRQhShL\ GCkTZ rR6jfrCMVt\ KX1AKpfQbBpId9tL\ 4ih24AZ7SOsoLfa4\ XGBkOcqRbHfpS2Ah\ UZSREQdBkxIyN3iq\ vf 0Jgyma153OMW4\ ZTf1J35Qy5xECEIQ\ nMi7zFHkho+KrEm4\ vghpVhY0Zu1WkR2Q\ OyHwBxTOT/COVxD \ KqgkE+lOUTZkpDYF\ qcXNdqXo7O/ghtfe\ gKBJRDNGYrnuNrZe\ t52P3vQhLn/BFVx5\ 47WoM/4tkizR sau\ XOIrJ9rahmSr28DT\ 5jeuYODnBga/cSXm\ 0THmkTM/Onubj5Np\ zFHrSBbXYnsOtO/i\ 2h5JXmD50 hvu+fQ\ /l0TJTpyYZeOKWFb\ 5Qy1fbahMuX6k7PL\ G/rfm9zKFUJLpUS+\ G/sTj8Li1tPw3azU\ mwdRmd /ZMWz1wjS\ QrLAd92Xbavy5PYM\ WHhkQ26XS0SRWi25\ cKihnG0gjps4Q7kl\ zXCzJVUfnSs0pLAi\ KZM InurHo4wt+aw\ Ttb5+3qdzpLO7m6F\ 7wxOceURmY6ty1/n\ T7isk63HLN4zPZUS\ pT3tZA9Mog+Kzfe4\ eY5WyGQcYEoiV/Y\ U+cK9Y7zxur4Vn+t\ cuIM27qhF7pK2FU/\ TiqqEZMp4w05Lv5w\ fjNW4Tslw0vK5 e9\ ri+s6V6eVe1t/ON2\ 4fZXNfnqMPTNC2Nd\ 9y1H45ZFWFA1MO7b\ rC3MJOrIrI5QhtyK\ GsChxUXJ62 Ls9ze\ 9P357d+njqF7ypms\ aOYLlni7Zem+qVKF\ PKhO0boK6fVpA5d5\ Z8Pj/Gy/nY2ZzW+P\ 1rhjOuj BAqan/om\ 2VZaafJn9F5qn85/\ 1mp87MAE/Tmd9wvL\ eHqFCWEtaI7jJ6GD\ ZMrNalFsp09uqbH/\ peAP ObhnLOSsuqK\ pN6VdQ5BEwrJPWPa\ RTIXYi1qKomM/IvZ\ DomBta2M45SMpQvO\ 49rEa5kBu1YRoKYg\ Z mdiJCCd87KEaiq\ kiFzViK0wtDB6LJE\ ku+4Qzad0Trs++zI\ UZ3w9tH9mc763kjb\ kY23PzKkjhuI83 5\ CBoErImrWlkX5REc\ ps7m4w7DHxESeSGP\ 3we1liVn33qNj71+\ o/yG598I+JM1SaO0\ gmyiAjP9hE0 Bd9z\ +fTvfYyXvOPlrL9q\ E/v/4y7OHB5uPo6k\ tDDUKhrUTk5x81s+\ wcv/+lfo3tPHnZ/5\ Kfbk8toE gMSJkZd\ xJP/BSI2eOX49xrE\ 6ohNQ37P2rK3/Bjh\ bCmT2TxJ06ESmSBI\ njCrCPCO41eALx6Y\ I50xr KWNOyyrGxY\ jGKH1D7K2esXH7s4\ u2ce0oZoO6+GfV2J\ BJo4BWQZJiP+Jrkx\ a5nEJpxkZhd0+ev5\ 2u cumDPr+kqpS6z\ CU3dcWBDG85LfB34\ 5Nc2VXC3tGGMuEi2\ fE8awx3IE/vUI3jf\ TKv2NRBWVubYDoY \ 86gN1ShsKa46x1Hr\ NXCPWy2tP57RlePL\ ExPs3lTiF4emOVxx\ eP3WxVuCXgRfGa1z\ uFznMtPgedsK jHZ\ k+Pp9I5zunxXjrxT\ bi1l+OnMP217MYsY\ i8piHOmYT6xInSiJ\ RFPEnA7PBr589MQH\ Av1w70PKY XZLM07\ cUue1YBcdPUCWReh\ DxvdEqrx5o402XdN\ OlylhHqmS2zvc78i\ LmDQsMuQE5WW45QD\ AXwYSH nFPmjcA3D\ BYFubEWRAsIkjdok\ UQpCZCL8jxiEdsh3\ pBD5KXELbuzuKrpN\ bmoIIgQ1ULimWPEb\ kww kXowNUbu3VMO\ ckFf0kRyKcQzDt1R\ NcA/42L2Z88rQQJI\ 3JDADognIhRTRdto\ IqoS/lAMUlrhe8yR\ pLl6pGnXZ1v7hWn\ VJF6M2CbhHLOampt\ WpWW5czbjxx9ysI/\ UkA15WVYf+RFRFBH\ N2LonSojvhAiB jG\ pq+FUP33XIdOV5+u\ uezQdu/JumMDIKIx\ 767v3s+qXLGLz3KJ\ qpkutuo3ryDADrr9\ pEHMcc/uFB Cj3L7\ 2Cdeh1Fk+ne00ccx\ xy67RD9l7Se/pj3H\ KoB/pS35ETPiaNVf\ hq6XNmW7pj0QRu54\ q54zPlC Qq4EyFFI\ HKY3GyGc3XK20rhc\ bIhMEb83gzZcx96a\ Z33O5MBkhYfHbXYV\ V1ehe3DY4X4hYG8x\ FT8K QdQUBj+WEBY\ Uald0oA07mAfLREU\ Ve0t+wXvpRxE7+jJ\ LEkp9hgSstO02NVj\ nHsHnSnP2901F5sq\ u EtNewAfqdcwjFq\ KbVl/bNYnnXtK+oE\ 1WVCVu2tTJV4bLbC\ 9m0e2AuC4RzWkd+l\ 0a2lCNSxOdrwyX +\ ePS2iqyzkgdo6itO\ ZZILigEk/4CkvS90\ Sq7zHRx3N6W5XgY8\ Gf7h9jXU+C6tiyaB\ PvrIXtnNlin XZ+f\ j05xbXcbBysVHjhw\ hoF1eV791PW8/7bT\ uNvVea2rlaDR2pen\ HKYnPKYmLIQOk/7t\ RbA9Mups ttq7Hhj\ lZM3m756weclj7uv\ Oca0lIPTqGC26B7G\ djuGfjbPJ0HL6rAY\ iN1pQ4ZHbVOQ2NZ0\ UHl1I juuHysiaQm\ gFxFUXRmZ/JkpS2p\ rTJJS8sqLqUSvMHc\ NvnEcUJGidGt5JG0\ EWCSvuqj2WGvBnLB\ Qi NyKZ9Jc091wr7\ KN1wrqXthnPEn2LG\ RmxJqWtuPP+yBcQ6\ hkX0Q3xZpy2dUVCl\ c7/U4iqAaEbkjvL \ qXvZ8+szUEl3Z6mH\ ioS6TlugXWpcAHRn\ UAyV6kSdT7z2o82f\ 3/SB14AHt/zZvxGH\ EaIs8dw3Pw9R lAk\ DF71gMn7sDL947Yc\ BeN7bXkwch2Q3tLP\ 7mXv4xK//X8yCye5\ n76V2ZtbEra1vtnI\ Ta0Lz667d /Wy6fI\ CP3vQh8h1Z9v7SZQ\ TO0tb8jcraUgSpNu\ Hy4WqlqZlRxzzUYQ\ tr76NPkMwjVRJRRP\ QjGu9O IgvN72mDd\ ay97Y8JY8t4TkyD2\ uIGvRJM2h7tc6qyk\ hUSG+d31/ZIwus18\ Dt19FNWS70SwO1lj\ 8si Fq+6yQKhtTJd\ VjDm8S3fZ3OhdeWt\ pCmUtPlExnJd/vWe\ Mf7o8nXzdvJSUWZn\ LeSWmayzyFSQ6sGC\ lHRnoIBRCZCJ+Xy\ 5zstKSkuN1WKI/Yi\ oGqBvOrcFKGnxkGU\ /YLNiEpBOdg2Mxfh\ dJndP2nzzdOoP NW\ Q5tKsKbbrKDevbuK\ bdZP94mf4ujb4THv\ dodX4mJfza0/q4+U\ dD9G0vrpooCcfrHB\ 2psMfQ+eWn beI2p\ 8aI7dFjahyYrHBf2\ eXDh1MWsVgFacHzT\ WLMRV7nyImQc+dH/\ uGPeQs8e+ZCVKXUe\ boaUD9Q Ru0ycE/X\ kAs6oipitGcuiBSl\ 1XnIRRXKftOoGSC0\ gmU9j1rBPlwldALE\ mXuZnFFWPUgR2yHu\ aZtw CV2lKElkdxV\ bHlcuKkjjEv6E+9i\ JJRG9mNw9E9g7S02\ vif1jZd65ed2aWgt\ LwTlmUT86Teezlq+\ m LIVgzCP0IgiSZm\ 5cEsco+XTiSykaqE\ brilPDyTaOYiJrdh\ RbMATe/9z38Uff+V\ +zj1MN8K0aWkce e\ QU3Ed9x5j1uo3XXO\ BaAMmMW57sLU+XDc\ oA/sTRBcp2Qd9810\ syr0qcc1MN1vP4sc\ tVfdQTDaiDZ Mepo\ WrFKZImgXZ9XGZIr\ AebB8gJ349M1u1nW\ 1wftJqG7mIlS5lCF\ oE1vanAOl+u8WjfZ\ tGXpeIOz MX7abrZ\ 4IH3+wAItzGMRkh2\ jD9aQyv48vdKByQp\ SEnOjmWcgoyJn5Vn\ jxCmfwAqQTXnZllt\ YDhi2 Av5pbPb1Wy\ kOl+tcF0oLptOcUx\ Y/USL2l102xQr6YJ\ 36pQuPrY556MeqDL\ crnJQTfnmgjWtXOO\ kT jHlU9k/Q9rTuN\ bUxYj8iKofNcNvGf\ Xh/PeTzx85whWQ27\ 9UNM8egqHC4XKdLk\ xjzIjoNFUMUOVyu \ 8/ZL1+MlCV8ZnGSo\ 7LPblvhJxudVmzu5\ 854J1I06mra61s3g\ 4WleYKpsu6KDQJL4\ 2VSdH4+lbbgn tWd\ w45g7Jmq8Y+/K7/X\ 20XpLp26YITaihNR\ x7pv3xmZ6qa5EVA1\ wBmfv0ZImNVtGjyR\ aRarEfoR7 wkLrNl\ ZM1vwxj7AWoHVqJD\ GE0z7+dNq2k/U0eH\ glz61BGltZFsR2SD\ gdrMhc0h9yHjuVJO\ NYFX9d Zp5BVyYWz\ ztBaj5ez7lrMUIvQ\ tFl5A1pNSryo3lVp\ TgO5/mMzP0+pEQJw\ K85yEWFaCpBM0yIo\ yaZ cScrhPUQpU0l\ 9B3isEUJeM7xGv93\ rdq8rxuPFUshzjEL\ Jae0TMJeCUEC+NaB\ aQod2mw2Wz0h7NCQ\ 7IBYlVYdwbAchCB\ BHXdRz1gIXkLQZWD\ vaEMIIrQRG22wTtB\ l4Heb6IMpWbOIODR\ WI6sqRGHAJYUi dz\ Wmi/pNYl1CLntE5s\ U7fSc6AbE2Y54YhE\ y5Ho66+vPNiwI39B\ TYX06JomQHBG0Xt3\ B7pYhMEWtn oWlQm\ b1/GmdLoRkG/O+TF\ a7IFHlBnJKTM37Eq\ CFxGUu78jcMUwE+N\ jTFzvWrr8isz+gcH\ LF4Zouf nbJ8MqpC\ JMqIVogQJAvbhl0a\ Ubad7qMVuoEfnShz\ 62iFN1/Wu6jexRt2\ 8EYt/CkPtU1bG0Ga\ 8ZtJ ZBBDkcSLCWe\ CYTd1yfhRTJSdc6/\ TRCQnag7e7G3Lckl\ e5533neLy9jwb8ia\ fODnFbw+0cePGDv6\ y epqwZHDVdMI3bh\ 9F6zdZvwhBUsoBQR\ DhAHlFohqkm8q8Ir\ FRUfiPwTJJFFI1E0\ RRYGs+w+FynY05 j\ Tf9/Ch/fdXSLbbVQ\ O3SsA9X0fOZcyYqS\ RSnFZpF4A85uBN2U\ 0sT1UJiK0yn4bzZT\ sBcMhD7EYTJ qh20\ l0I0ESJnFq7DaYVJ\ wzpSWVHbLfbTKT4h\ TpqkSi4qqOs07ME6\ UZwQnpoRwJfURbs8\ UTVIdVqL 6INFU0Z\ d4fNX+4zHBknShh1\ EN2wG2gIMWy5X6xf\ mJj472XaOCJImQQJ\ aWgYsZdbY+FlshUS\ aAEgk TsJTfu3pCI\ ZAHAZNN93VHK/V13\ P/r/Zo+CMegRsizf\ HxiOIEgmRZgvS9+8\ a534zYnpslmmdXJI\ Q4 XtYwb6VoVIaio\ oozUJgn1rWDGLZky\ AU51FGbzP7J1FunU\ +dYtcrv5AtNTYgoi\ zwxKvDh6Qo7Szmk \ rEJm/+RFbVEgeAnJ\ HEH+JYbBts61VX8a\ izLQjFd4PKExCacN\ C2T2T+L3ZnD7Tfa0\ F7hnogwdRXJK xHc\ nKqiWSDWT5amnLGR\ tYch0MOYRz2jY5IK\ COCrMC2teDUb1hGD\ Mm/cY46LAQ9U0I0y\ qpBuixTYU kSni9m\ dRxx32jngc6VX509\ sH+cPLexbonap3Tz\ TJUWZHcW1BwHaIN+\ khaiL6WZ+N2A6JR1\ x2ODLH nNq8aJCgq\ KCUA3aj8d2RCte2G\ bxldw+fPTHNlOsTJ\ gm3jqtc35lFFAUiQ\ 0LxFbZsXnzDKnoxD\ 3kO elbBFOG2So31\ GZ0p12d7JotpmOwp\ e8R2grVxdv24Z7LG\ PZM13rFnA5et0kJG\ FIUl2z9yUVuThcTZ\ iL140QqMfbRO7IR\ ktxWahEdsl6BdI5y\ aL5UIJjySyCMJYwR\ ZJI6TRY0U1wJ/2ll\ UM6R2aUSVVGiu dO\ pEVZ/IjQidANlQWr\ bDzL75xxJNmezO4v\ wWWhQjZqXme9CoDo\ VuRFj30M9DkaOBi5\ 4kiV5aKq9d MZ+JT\ lguezvbFvmrc8PZk\ 20XAxInRm6TkXSJa\ 1/ztDQCYCVu2GuAZ\ MgYA3IzbiSdkFBwj\ lkLnLXP RlQNuCMK\ 2N6Rll4b4mj3rIwl\ Z2OO7IFJtGHnnEiI\ NuygDdbxt2ebjzFi\ e4zXHXRVxpREHqpZ\ PLO3 E2cgizuzKCS\ KQElX+QE+z3Ago8l\ 0dmn0F2VuPBJyq+u\ T0S9ecgSz0RTxnMX\ TQJiX3bRSiLJIRhT\ x ohBQEK1wHvl6PM\ HrNZqWAbl7bOwdbe\ xpL3C8amFHcbNl9v\ 2xaa7obKcI2EdSbZ\ +gpVWTRmabsTlD b\ cIlWON+rUGshmoem\ +aQpO+MVtnZni4Wx\ rEK7sDi7VPjWNo+i\ kwFOmDrsEd3SeELD\ 07wxqtmLUDC 8syg\ xaY8ev/aWjINgiRr\ MlJx4fIhmjLmliyv\ 2WDwL0cmiUdtxO5Z\ 0h4UFUQvpnLM5j3e\ MBs0hVd2 FBgMQ24\ 9U+Gbp6c5VXOR6gm\ SFC1r5SBXAmw54c1\ bOtEkGJvZ3P6fB0Z\ SXyTAuqRE5sFpMgf\ LWLuK uEHIM/va+c\ OdXUseezGIqrhkqr\ 3apeEPxUu25c4F9Q\ NlgJbZc8CyOlpv0M\ KZcDG6jXOudnmD1r\ Lt aLVk4IzWiU5bi\ KqIpEsrdtKeC9GUm\ y095+Ea9QPTaZzOz\ ISdqEnImoK5MX9eO\ 0yPKEnqMFRKWvqC \ OmGEG4VYfogTLW4L\ lnlwCrc/t2BXm3WS\ czLNWwqNyTYAVc8g\ SuKi+pwljxPHOKds\ jA3ndp5ze9Kr PYe\ 1IpzyIUhQB8y0733\ MQl2//Erw1SOV5hi\ 5ZMfN7K1wlzyvwpM\ oAvaOtnRHv8ZJMvN\ IFanmN3VD DXJ0ta\ zxurYiqqEwEkR8ZI\ 4Ife7j9GUMDkxWOI\ 5HXE3YerrCy3ty9G\ zOMXXoTFOf1KrNcT\ FADBLi zPzw11Nuw\ PsHp3jBhiLbMisn+\ oIscNj2m07oMJ98P\ d7QsAxQx7zURqHLY\ MOGzLzXclNO5weBy\ 0uM TLN62qqC8MmT\ 03Tm106ot5ayfHi6\ wmseTtjWaaYbEj+i\ S5FRx9KctMXIgj5o\ U6o6jOxOW9dCoCNE\ MY4X4j5c457eDFf\ 0pAuLV0krSKHlI6o\ raw1aJ+vN66EByZS\ JrHBJuxNRlbhhY5G\ P7B/lirKMOKdt FG\ siT9zVhejFTLs+/3\ J0HIB2TWaHZjDhRu\ zuzhOsoJKZqCJE4C\ UJzOSo/WC4TE929p\ 4bayJ+l4l+ qobox\ TjE9Olrr5KGbrTsW\ LvaZyBMejgP11alE\ fIGLWIvrfgIZ+WHx\ naYTq4V9HMiX0qHh\ uTG86I3 1oLYj1pO\ 350Nb8pelNCtFUpJ\ m+cXdSHxiJGkvCqz\ vZQnKKfViY6siiCn\ F/Jg1eZ03V7wN9qw\ g78u s6DSMGy5PKs\ rj57JzYQqeivLGFs\ BIickdEMyhtwMe73\ 1A9/k+jc9Z56GZyU\ wt+aa2WVqQWup8bl\ Y MXe0f+7EwlI4eK\ TCnYLbHCM3jlYICz\ pBu9ZSKC0EDfuD1S\ 3GQpBgHq0S5lWcjT\ kSReBwuU6fLvO6 t\ iJG52wpWXECRgd98\ icrVI2EDYVM08MGa\ OpSIK1AvXuqzPpAQ\ 5Rmz0kMEqKLkDBEp\ ohohTMRFQqm IlMX\ Yo6PVXjVxtUJiAVZ\ IArT0rc4syhejMTw\ fMPv0ghKHZhHq+Tu\ msDeVWyS+TbD4HTN\ JvZmN3Fn L3YjTsC\ 4E7K7e+0TYg2bgH+\ frBAfr3FponCSiC5\ AG6oRbGy9CEl2jDp\ sMTYn9/Cu6TLr1ut\ sOA1h h8H3fjjEZS\ 9N9TFJLWxWklYC97\ iFKAsYW9e2IG/JqL\ zpih4+ctcou1toa2\ JNpKDpFOaYlgZAAW\ VJ N+1WeOd9p7ihp\ 8ChqteSAHl9BvqpG\ pITYWRE1CU8shqIq\ gGCPt/NOSwHiKKwo\ ipIo8ISjLppgkNe \ WpIsOQ/XCGwfNa83\ pyobQa/huI8/7Z0z\ QYK0IhNOrzzAfDEE\ oy76MoWKcMpHVKQl\ w5XXArlDxTpS ReV\ xRZLSD8nXX/MB8v1\ d4Ph4QcBVv/cc+q/\ ZxqTjokgi62ZEsoI\ fUS2XGduSb1agTFH\ EjmO6BJnr BtqZOJ\ maf3Vs7MB3HER5xr\ chDIjjsElyGl+Lot\ z8HVEUieN4wc8iyy\ azuYC+YWbnGMfc+Z\ U7uP5N z1nT85bbV\ ISshH/afcyQJH/IQ\ Smt7lwjP+KzZyrs3\ ZS2QLVhByGMcDekN\ /CgyyBzqNyc0JHsG\ LkS 4PWv7gMvBAmZ\ Q2USRWxWoA5MVtgY\ SLy6M7dgd9tjKLx+\ R9py2Gwn/MP4FKWu\ YpNoxapE0K4RFpRm\ 5IEdhFya11FXmAj\ /aMLfnp1HQEMS3tL\ bteqIiiSGIE4XWiG\ ISLTHP0FqIFEErJ0\ F1DEP82CZsEPD nj\ EDtJeocgOY8fkbDm\ 4Q9mkvYLeoNatIZ7\ eqG4hMkbBDwzhWwd\ 7RxoQUcWUxw42b22\ A7fOWOcVQX qvdOo\ rYZuKMW2S3FZbUys\ R/hDtrnZWPXpysYh\ pSKq8/zkI3oxUSGx\ J4Za4XDdQc7inmgG\ szb/DQQ axKiFUJG\ oe46wMLXoSFsDutR\ qotyQwh8UEQIYiI7\ XJXBqNKu4UcQexH+\ CRd9U2tBt3vcIrB9\ zL5c M6fMPlrHr7q\ EXkDsRah5/Zx1Tg0\ IuoggiS2NQFeCRjb\ hUvDHPAhiBAn8Mx6\ C5DWNJs8HhFUGHK8\ V j4om6Znv+1USQ2\ HqgUF+9Kef5cVf+m\ N2tBUwFQnBCagOT9\ GezdH55I3IQUB/3i\ Qo2yhFDXl4is5E Q\ 1ZUbv/kbfReuh7DS\ M0Ufc8l9B30TK4ZF\ uvYDrlC+rWsyNQqN\ byyR6FUoD48hZoxS\ NwYoZCAF1A7 Mk52\ fTuqYRBHMfES4a0r\ RWLH8BjZlUd+ROiE\ C8Rzy+Hw0SryzA5c\ smO0wTr2nB2uM5Al\ d89E6rbt R0hlP/W\ uWaUeyTxaJVHSaaV\ pL+D4WJ3f1LJs2Zl\ f9MN3dZuRCkqJ0Wc\ 8hZRpP50MUyXMg2U\ STSBo Nwk6dErlAG\ 1wmjgjY+8qXtQWAG\ 6bgaJZKNM+fpfGqZ\ pL98bVh5064exNT/\ Ri4jXmgD2W0agqaS\ NO UyvXiJNYDDlBx\ CS1EwDoy5rzKpVrQ\ UlTEIIE/dg09q6l2\ xT21jzasENm/yTCr\ iK3exbP9gsYksRX \ wxolU6BYCdgFqG0r\ M410B+01a5ZaYXOb\ yvSkT5YLe031Zpa+\ l8S6hOin93NnEXLr\ D7kIEgiSSNKo SCl\ iKtZWxDWZGjamrBq\ BrWdXgrxBC3/aWeB\ 8bW7JElU1nEELUZP\ wqy7+3Q76usw5t5m\ Udq1pMbAW khSWQ5\ QOjdiNEVsUk/whhy\ SKkfIqclEhtkOCCY\ +wHCLK0ar8BxeDnF\ MIJ/wF4bfnE+HEo2\ wm2ba7 n9BNd0u9G\ Y0DXwXpzUIAACAAS\ URBVL2TQ5/5MYVtv\ Uw8NMRVv/ccdl2zH\ YCvvv0zdGzvYeLwC\ Fc8 aw9Hp7o4fvdR\ yiNTnLrnBC9616s4\ dttDPHTrg7zgL16O\ rMgc/v4DPPjd+3nx\ X78SWZH5+Sd/xL1f\ u4vubWllYejB0/z\ 6R16P3p3l2G0Pcec\ tP6fY08aJe4/x/Le\ 9hE3Xbsf31mb3Pxe\ Jf+5E65GCN2ij rd\ IbJwjhc2WLXf2zbT\ a/N7MgEsLe0TbTgt\ NauiAvh4Y2wp7xAB\ o9Y/GO9W0rmtCJ3Z\ g73dlJCm2o 1pyEc\ wayyJUAddxBHbUR/\ Whe2+VihhAkqeXBT\ OVvu2IgrMEE0nXjZ\ otRCGPiR9hn5WJBI\ w/OOFbB 6zVQJYmj\ wPZFnLlFU+aPr+5l\ arBOXRD4lJPKBs6F\ KMmVAG3EbvkZagWv\ 1yDKyJgHy1yxOcff\ PjDC G3d38/odPfz\ nQ5N80fH5/b4S61d\ YHRYlkcSN4TxdA0/\ pLvCBkRGuKCvztEn\ nCsmJmlmXq8GRqsX\ L +hePRGos7Ocboi\ oh5xS8QQtBEvFrXl\ N0nN1TaklKpbwyT8\ 8TTHo4p+uPiBZnKU\ i6SFiPmBeMN4NG J\ IraN1s1Ek0ZpVtIL\ TPUc990NuwCtAucL\ xnWgkeHJFWHpwA4/\ o276blqC0VVJqg43\ PUv3+G5H30D ZihR\ 9y2+++ZP0PXZP6Q4\ x1H40vfexBO7soii\ TN8ld3HJDZeyfd9u\ AGJa7w5EUaY2OsXP\ Pv1jXnfL 75Mr5Dj\ 6o0Mcv/MYeJA4Cdv\ 37W4e5/7/uIuDP7i\ fTdduPy/PV+nSCE/\ Z50XEfSERlgMETWp\ pVbAU Dpwpo8658E\ UrJNiysNzdEMuuFY\ kiIDoBkh2m5EZPOF\ jzuHRM5oexx2k35l\ Ubii39YbyazzcqZf\ a0 F9Gn0h3U3AWoM\ R7+WIMy7c8Tb8dRQ\ pu6+udhebNaO9GNi\ Jdw+n28IzJlBC9Bs\ mPWZ3RuGZ/grW1t \ iy6coirRsbVAmx/x\ xtMSHy5XGJJtBvKZ\ FdsCCEGCMu2jDaVT\ dF5fbtnJrrkICwrW\ 3nbyD01xaW+W fzs\ 2xVO6ckh5mU4v4bA\ Usk4zWckRG2Gq58u\ tuU9XeP3ebm55aIL\ sqE9X9+pa7KK3uB1\ FrIn0GxKD zvLtn3\ gmCkSVpHlj/16Uxq\ Lcd6zC4SDAriWMH/\ Z5eX8H+85Ba9YKap\ eGNxjiTtjoHSbywM\ rMERtQ 2jWc0/Xzo\ vERNYnIXpmj/NmQ8\ gpRbaEcwT1uIUi0r\ Fg28ufc49aKzr+VB\ jj2o2bsiaQICBd4O\ U3C +NEhSfd95Dto\ BZOOHX1c+rvPAmD0\ 5AS5nnbkrMrE0QqF\ He1opoo3PAWb0lHN\ 7mu3skkQm47RkR8R\ WSFBNUAwQpIgzUJ\ rGC3OxdjRM6zbso5\ cIRV7912VJmZr3Sa\ JkzBxcJh7//MeKsN\ lapM12jec3/BV Y4\ OJP+SkU2Id6iNiF7\ 9axNbaxO+/GHbY0n\ uW2+oFai+GBb0pVN\ 5ZyvG56Rr31WIGx1\ ziKKEqqwum HhvBo\ +25dPelnLTwVtlOv\ FihTLn469LnO+0FX\ JExlw3NbAUnTpqRJ\ qIfEWUvvuvzkUKiC\ IQdGsqE i9lvUjRN\ /m2sxm8uU7EUVYni\ QIa3+jpHj1T52HRt\ WQduIUjQRhzUYYs4\ Iy/w+VoNIlPEGShQ\ OFjm ngGZ7dl2fiy\ JTBUEvvXgJFwCN3Q\ vL9puLNprDUpuhS0\ ZlTdf1stf3n+arnE\ XOpevACjl9D4u+HF\ L wpjEqV3FiLuySn\ 1YUjEPTXO9luP0gT\ InRmocTCImACmr0K\ HJDHTnmfZ8VEniCR\ 0XJtzZm3bRSvqa q\ 0GKqeKethc4XK8Wc\ oeKf9RfdeRHA2qfg\ X24iliWCad91IJJd\ kM7YnbhseI4RhRFR\ ElE3mGAneD7 1qKP\ 25gqhzQhokGWwnJI\ bnMnckGZ9/0LhSRJ\ eFTEFk995yt44v96\ KZtfdg0TfsRQ1QFF\ JK7bCLJM fmb35dk\ +ojn7YcqbBp1Fdd4\ LI82EcCbObBVJmSE\ gdiUtfSd+jKzK+DP\ tFlESmZEsoc64uH7\ yzZ9g x9Mv4WV/ex\ PXvPK6C/K81T4Dpa\ jgV4IFhl8XA9Q+A0\ kUsI/UiFYgzFsKYn\ Bh0m6Cdg112EoNJB\ vh oUHMrv4iSklhN\ CPinLIIZkSvAM6Iw\ wNyQI+pIVcCBC9Z1\ S79YoUQJEhlv9lqc\ 6OYnLi21u7Drk+n \ kb4mqYv3xavDeiTg\ dxook+n9o8fUGHQC\ KtbKPrOiKrHtkhI3\ 5vIcHCy3/J3UHqNO\ 7q4JJDvA3lWk fmn\ pnKuZYUHB782wezT\ iPQ8Ms16TuX7GAiA\ br3whlEtq00H7fEG\ T4Hd3ruPuxGmK0lt\ BKQfpz0sq QTGt8D\ YI01zEGS0VhCcru9\ cERYVLn9JHIS9zRE\ 4ItndSUSTkisduOy\ HbnTpxn6ravGnHOv\ LyHCPd apA6XB+3c\ B6upeGoU/6KBMxzY\ R2popgqgrT2z5e20\ ST241U/9oWA1m3gT\ 3pkd3SgdpsMP3SK0\ 3ed mPdv+vAZVE3H\ rVY5dddxsBMO//wB\ 1GyWaCJMHbLPei6i\ JPKTj36fU3cdR54z\ iWi2FSiXKzz8/QcW\ jfQ633jUNEmWG3D\ fVCp2XJ816d+yjiB\ OGPvFw6zf1Mexb92\ L0VWkWMwQ+BEqCYU\ 5ZxtHMUbeZOrU JN\ v3KYiiTL6/g7Fj40\ 3R9oPf3o+WSUlQz9\ 4NVMYqTBwcpmNXLw\ e/dl/zWL7rkAQR3d\ vWEwYhD37n AOoFM\ pOU21QEQ8Qbcs6Le\ O18Q+0zkPwIb9BGy\ atLeqE0sLdo8LOqz\ Yb8HG+SNVSShCBBD\ BKkeoBU D0hkcYFT\ d1hQsHcVMQ+WmwaS\ DT+j9RmdW05NAlBU\ FX7bMQkigZt9j5Ke\ Po9GJMnjAWe32nRJ\ 5ES4 tvL5uB/BzIb\ jbBfv/4oICwqClzS\ rlsUunTuPVBZkrC2\ F3v4MjNfmfW9ujlz\ YoV2QbEC336TNDnj\ q FBzORNxdttg9UO\ LWB8dXnOsmFxX8iX\ PXY0LazvrKaJ1ndR\ r06QrP7iny00mLPW\ Pz/Z+UckAShwRt B\ oYkMGNoTqyJyJUWJ\ GmGyK90cm7YcrA2F\ PjEv32CdkXhL/7kD\ 3jGRp1bfjzK+OkKo\ 2dEtq/L86Lu LJo0\ E+I96hA3NKUyyJpC\ FEXEdkTshBjdWSId\ pBXcUvwhh8gKUNdn\ VzUhdzZEVSKOopYi\ 8DUhTGCN S5GUV0j\ G0rabN+Vw71fvBGD\ w/kE61rdjljK0b+y\ gc/cGQidm5Ogw7QM\ lpk9NgZ2gFbP4VQd\ VNJrR JnEUI4oyky\ cn6BpYl1af1LT6pG\ R1hOEJxo6dYccNlz\ WHtEJ/JudOT6/v0E\ 9JuKxqTZ/DtVoFPe\ Ik qWtbD7EiMGnP7\ lLOWA79eZN9776JO\ //pWxwY/R65gS6e/\ M7/gTWjM9J6Shjm7\ IUVWRFXv/wavva+ \ /+DQrQ/y6o+8jg27\ N7L9Sdu4+Tf+GbNg\ cukvX8700CSJHCMj\ 8/K//hW+8Q/fAGDP\ vj3EYhrHkW0r cvX\ /uIZ/fcNHyLbn2Pv\ CKxk/MgqkVgHrd51\ b0G0rCGvpiTxCkFQ\ JJa+m2XMr+P1rNub\ 49h1DMIck rdZbSB\ 3zEN0IddgiKqqEeR\ X1jEUiCwsm4OYSpa\ Sf5s9NRW6O/o7YHu\ +tVPCjmM2FLCUtrS\ I1rAMe D5jbaoO0k\ pSlteFhK8R+RDDhE\ 0cxIzp00trF+78qg\ i4DZdIjLCiUVIVTU\ 6uzhLDq82/ImUOV5\ lTn WgYXVgN7S57s\ gUkGKip9vWnLL1vS\ +POfnWZXt5naBCyB\ 2A6b7Y5zwZAb8MGD\ o2RVhbvHpnnO+hJP\ 7szx/dEKfld2XoU\ oMiRiTWmG3zagjnm\ LVn7nZsItVf08XK7\ zlHUFBopZPvSnf9T\ 8vp7J0bmjzhHb pX\ K8hqIZRFaVuh8jqi\ KxHyMaMvqGWXdq5+\ Ea2cuKyKqBN+XgTt\ XRyRJVnEVbaN6ghT\ fhLCrQXi30 DjMVf\ rf4rIdTfppeLwhIp\ rxokGtYDlBL6qITa\ nNRP1RGMZWWI/xGf\ wbryASFXd288C9vB\ OBz//Nm rnrp1Wx5\ 2s5mLmj5dJmrb3wy\ ANe99nqO/vAg2/bt\ RsnqnD5wgnWX9DB4\ 53EAtj551/wTsBNO\ 3neU bdfvQW/LsnP\ m50P3nWLdpm7UbEq\ OnAkLd6pO5+4NxHH\ I5MERzgyeYcOu9eT\ 6O9bUonvESNKk49K\ f N3nS374GgKpfb/\ 4sSBIOTJTZ09vGk9\ /1KtQzNv46kyQMOT\ BRZqCQ4+o3v4COTr\ MZCOuMTtOxq5df /\ /jvNI8TBj7Xv+k5X\ H/WYzdS7nsv28Cvf\ fh1AEycnCD3xTsAi\ ISQq55/Ldfd9Ixmq\ 27nvj2pf5Ik 8sp/\ fG16nPPU/4ztR79M\ uhySFlMLi0FSJXYZ\ GtNuQElPy/3mQ1PU\ 97SvaCHQB23UYQt7\ VxG3f3an HhY1Mvs\ nCYvagt12Q6ia2T+\ JECYLKk4Nz6PmOdo\ x5sHyPFuCxzpiVZq\ 3MERRxMY+k2DCR1v\ EWuFL wxai5XFqwu\ GF/SX6+0y8CPzpMi\ VNQbTT9/3x8hqdCx\ omqM5AFlORGVNWTk\ AB1ityM65ErqR2E/\ Z5 DHVeCnMd7aOMj\ NlpQHeODcMOd5RtN\ k0ZXL2I/xKkvjZyS\ V2QKbdauFGCHyd0G\ ipZReKzx8e5vjPL \ 3s40HsRoV2crRknC\ jow8bzx/KYLUQFBU\ lv09P4q4pitPRo75\ nd96AwcOPcCT9j2T\ 9/3527mhrxNC Cfl\ 0nXHguKmxRQlRCyZ\ yh4IoK8QNo1VZQS2\ l64CsyHz7zp9w660\ /4D3veTeOGxJNhGi\ 9Mx57YYA/ 5eCPpd\ UofX3uvNkqiJoENb\ CP1cjuTKffGtlmMK\ sBcidsxGkJtaQtIH\ DhtI+oistqo4JJDz\ WnIWZk nEELWZXmk\ SVRlRAkkan9I5hbs\ uiZWb1nHMWEgUscB\ nzpz2/hD77+J+n36\ xFf/osv8Mf7diMoA\ j/5 +A8AyHcX6L9i\ 4+xjBwHWmRqff9un\ edKvPhWA0YeGuOuL\ t/PKD/wGh299gBOZ\ h3ny6/YBcNvHv0/b\ QFq5uv1zP+HYjw4\ z8LTt/PuffZ4bfvu\ ZDFy3DdeaX91dCqH\ zCE63OVHMHSOTGIp\ EEMULokiqfshP hy\ fIqzK5SRvbcZlW09\ /51KETvKG3HdeaJR\ ehEzaT7GE+gWl8by\ 5Uw+Bb7/0Khe4Sqq\ Gy/z/v5Qkv fSIwE\ /WhQeVgWj0yNhdQc\ krzmKt12l4OYSVcU\ cTHo4koTlDXqI9w+\ 9MU+YZ3z1IwjtWRK\ +68aJGR uo0qiRRV\ hYGBPJn9kwvcumEm\ 3X1vO+ZDUwhhjDPQ\ uvQs2TGZ/ZO4A/nH\ 5ATbUmhUOjKSyLPW\ 5fnK cJkn51uL0h8\ cdvjpoTHaixrdPRn\ +aWySq4KIjfnZz4t\ UD/5LGUkuhca10mi\ 5TcrhkgT0bPje/Hu\ G MuYseo1eCESmiN\ efTbPfvJjMlItU9r\ m2Q+OLJycoaetaRt\ c4p6zm9jmyQpQVzc\ S1xpaMyjsv28Bb 7\ jzOrmKWZ/R1cut4n\ bvHprlmXRtOlKAIA\ le3qTxcDzlmR02N0\ UoIUgMN3dJibbe+r\ ME/Hxrm9y/d yu//\ 1V/wmy95KW/733+K\ KMrICjx7cwf3RCJb\ Shl0UyZWZUy1MTEa\ I8/oX8IgRCtmEXUJ\ UZR57vOe w3Ofl6Y\ xZDaWCCtBKkqOLVQ\ xgz/pIQgC+voMsRX\ iDznInaubaDsb/oy\ eS+9Oj1+9b5LsriL\ 1hyvI hoKoSOh9s6\ aV/pCDe8ZqGmHKbW\ qqAwqiFRmLxlaIlF\ WQi+m/cMrHO2nPi1\ tR+wxkP8I9biFvWH\ pt i1sYtEqySKGny\ PVveg7ynInQwAr44\ js+yxNfeS3b9u0mj\ kOEGSlAEiRc+uIn8\ Pk/+leuec3TwE54 \ 6LZDvO61v4c/7fCz\ T/6YN3z5LciKTPem\ Hn568w8ZuG7bkut5\ 7EcEoy5BNSCOIhRT\ fWTbbUGSEPhL k42\ qH5Icr+JuFmBmlNk\ IBEpeQuRHSKrUHFW\ H1tWds7/XIE1XvfL\ JjB4YJIkSnv/WF9K\ xq7epX5Iy AsaWLL\ X7p6jefYb8NZ3NUf\ jzraBP4njVY/aPNB\ IvAn3lN8cn9Jf41M\ NjlGa8kuwteXJ3TR\ Bri/sN NbLXGhWnu\ 8emuS6b4TWFNoyNG\ f7m0CjlkkpHh4Z5t\ Iq1cxFbgT3tZA9MY\ h6Jm07JDQhBgvnQF\ H5v 5nEh1p4Lv9tM\ yd+GDBYxB+2Y123r\ 4ItHpnnhhESuY86Y\ 84x7eGGdwUAxXaiv\ 7CpxqmZz37TP3q4i\ ciVAP1Zd1sDw8Qh\ hkSiWufq1SBAJg2h\ FlCH2I0QrRFdlRmy\ P3hmN4yOdA9hoRat\ nbIJ2nahLRT1c Z2\ 9XgY8dPsNNmzrp0C\ XaVAVNmrEBCWdHuM\ PptU8/NZCXBV7S38\ 6HDg7Tm6kjiwLtqs\ K4bVM0DIIk 4faZQ\ ZalCJIbhOiLWCo02\ m6LoaSpGGLIt0+Nk\ oTpY3XoCtPlad70p\ j8giARcu87U9DRf/\ Oa3+OC7 34WhG9y7\ fz+VSoVn7nsGSZJw\ +x13MDExyVve/Gae\ /4Ln873v/oDvfe97\ vOe97+FjH/k4Yezy\ re/c iq5r3PyJ/x9\ tXdqGmzs57J20Udf\ pa3e6DmJQxCZp8ce\ U1FW9qLd09Fb7DOS\ SQv3hCkmSEDsRoRu\ h tGvUD5Wblaiz4Q\ 1ahH6E0Ts/jFZuUx\ GzEvaxGmZ/tvkzUZ\ UwtxRgRvAeh63fj7\ gegbnwM7Dxis1g J\ 1j2FJqZbvRuv+XnR\ GHI9n175pErSRaJC\ CgWC2TacwzfM0jg+\ qzf1Ueup0T59Bi+5\ fHp13+0+Tda ZuEn\ N7ZD3BGXsD47SKCY\ Knq32TSpfFTNJBdD\ rM8/rUgTEBQR/7RL\ MuOALWgSkRMiGcs/\ hTgO8R2H Ym+Rjo0\ d6feieEF/UjJktI4\ M7lCNpB5B2/knMnM\ J3sUMrd/EG7QRNAl\ 1nbYsqdvSobLuuNR\ suSWK gNefRR+st/\ RGEoKEWJVx9sxmr+\ 3L59lXMhCzEoMnqt\ T9ALOYxdmYQz9lLb\ rAJIpAfU87mUNlMo\ cq iE46wdZAVFQXt\ OMeD4hMkTgjo9XcZ\ nTFuBUSmApfHbd5i\ RNhbMjgDTsoRYXhq\ o15ls5kfc5kfc5s \ tiP97dnHXbVtKQhB\ gnGyhlTziQ1lARFv\ OMdDOgzwvarD8/2l\ 09OjaoBf8clszLL9\ uM9QEDWv20cj B9D\ rNebp+lTqmG7CzlK\ OLw6Oc994Gpp9rZn\ jyQWD7h6TLY3fXaf\ hD7nnHIfxlK48Xxq\ c5I07e9mc 1dAEgX\ fsP8WVMxWaBjlqaJ\ TOJkjDlsOU6yPVE3\ ZtbL2oL9d20xWZPl\ MhCdPX/+GKTbdZ4O\ Mf+yjl SOAdb/3fX\ HP9pubvDw0P8W+fv\ hnfcXjaDc/hTW/4X\ T79rzdz+x138A8f+\ CDPf8Hz8TyPcKYVF\ 8Yu X/ry17n55k/Q\ 1ZWuM2EWpOz8ymMw\ 6RHVwjWRpGDURZDE\ pos3pN5LalfXkn8n\ mnJabTowjZxR0Do1\ pLyClJOxj9YRznI\ gT5IEtUNHa2v9vou\ qRHZnkfqhMubAWW1\ Ee/ZYDUIkygq+5aW\ VNsAery56rpEb w8\ zt+rKXXIk1UuO7f/\ d1nvO2F80/B0lELI\ hc9ZIn8OD378e3PC\ 5/4RMA0Evpa37T+3\ 8ToJkGAbNF j6ga4\ AxbiIqM3pOd95rOe\ 5xFz/RRhjAj3HP8k\ KyqEHoRxkCaxq31m\ 8iatCptTxynCnjXq\ uFaNXzX WlAhivwI\ v+4iaOIFmzxL/BhF\ vyi56TxIqoS5NYes\ pblzUQvvqbPx2h2d\ TJ+xOF2zsYMQr9dA\ CKNF x33VYav5f9c\ PebqhElgBg6csPly\ tND1mxCBBGXOW3IE\ nikD90hJufw5noIC\ 1tx1rbzu1qzpaVqA\ e L/DXmchDs1NIB+\ 0QU5HZ71r4bQp3H6\ lATuFON+C7I5XmJO\ BcyJWg2Y5cLCfs0Y\ Q27LScbjpXSHZM 9\ kCqaavvaUd0AvTB2\ aBtuZK2HhukcX3O5\ Kehy+nxxcfXTxyt8\ pnTZe7PiNw+5XB32\ aIvY6AP2sQZ +aKI\ uImKKkIYUxoPuG/c\ 4lI9w6+va+eVG0uc\ MRUm55jyiqbcsj2y\ HKrh7DG+MVzhfQeG\ uGlLF5cV dfKygCa\ llcwRe/a1FL0YwY9\ J4hB5ykEpB007gMq\ Ex1t7O3jqQIETJyu\ LPm5YUBC9lZ/vt0+\ N8sC0 y2e+8Q0mJ8\ 9w4yt+lWkvYNoL2H\ Tp5Uz5Caph0F4q8q\ RrrgM7YevWbdTrVs\ vj7XvG9XR1pQLhxb\ Qv yQp8ncIpH3/Iw\ R9yiO10nYrtkNiL1\ +yvJKoSSAKCLjYJW\ lr9yWJsy837Z27Pr\ 2gNVEyF2J59Pmev \ qZ7r4tfryIqMUTQ5\ /PMHsK0aP735tkWP\ qXZpTVJT6ijy9Dc+\ mzMPjfDgt+5dIKUJ\ g5CdN+zl1H2D DB8\ aYvOTtxMGPqphMPC\ EAb77f79BuVxh8uB\ Iaj8wB1EthDCNf1m\ MIMFFWkmai1OWw/N\ EDXXd7JNI 7BhRF4\ lqIcGkh5iTz0v7yj\ /t4p9xKK5izHe1CL\ 0I+TFQSWpA6dIQcx\ L+iIexzM5Hy8u8eU\ 83d56q 8gPLJaNIb\ BwoYB4sE5Tma4oSR\ SDRhKZ7NsDfj06zv\ ZTjU8eHeeHW7ubvS\ vWAaIVxBuki9OgvR\ I8U gpKKfqyKZMfz\ FuCsqvDuw2cAkGs1\ REmYZ2woBAnquIt6\ xkLwkos2hkUftFEm\ bQQvIezQcDbm1tSu\ Es7y7dJqLurhOn5\ vplllbAidG+7r+mB\ 9genoJtPkzopHf99\ 8sjl+2ubjg9PUs2l\ +27dH0oX8yq5S Gn\ kzbFG7qmPV530h4P\ WYSFbI/WZEW6jy6r\ 2z2qS8H2FI8+9Pgi\ auyuF5yA3YXw3R4p\ BbBie4oi3L vu4Cu\ iQx5od0zSQoPKvT4\ L0PTKNLAiVNJdbEe\ VWguRNruVrE1+s1N\ htpC3na8ylpC+8Js\ SauSst0 bWeJwUqZ\ r3/0I7zzLz4IgCnM\ Xl+aKAGzJEAuKDAG\ 0SKtpEIhrbwsJ9GQ\ SzPxJLrcjPaI/Zgk\ jElE AVmXEDMyxAn\ BhEfsOURRtGhrbCV\ oeBGdi/1A6+POvj5\ RNUDuMNj0pC209bR\ hdGSoHR4jFANe9Pa\ X cc+X7+DIjw9zxY\ ufSK5j9rO14erNtL\ XPf24br9hMW08boi\ Tykr+6kdv//adc8k\ uXk+8tseHqzelj h\ wGyYbDhsn40Ix33d\ 60aqp7hRW9/Bb+45\ TZ++MFvohgql7/gC\ fOO708vvtmZi4uSJ\ MW6ghClNzU3 iNiR\ U4jGfRqXpWhI/D/2\ 3jxMsrwu8/2cfYk9\ 962y9r0oegO6aQQb\ UJYBRBEdBucKog5X\ EcdBLzw+ 3gG9OKO\ icJ87Mio4IqPIIoi\ CyqJoy9o0Ta/VXXt\ mVVZm5R772bf7x4m\ IyqzcopaGKqj3efL\ p6qyo iDgnTpzf+/\ t+3+/7xn7696EdQS\ 3stOHMPVfvpBxUHb\ Re/ZqmObaCrElXND\ n23URbAyYZMknc3f\ iz lpe5e1uOu5oh7\ 6nUqGcUtKKKNuus4\ 3l0yT376ED6BXl4o\ cqr9gytinNQyi5Bz\ 40tdP9uoe0OrV1s \ riIQ+4prBcLt6Aul\ JeCNiuo1OTw/3WiT\ C+toL7EiYJxvkPv2\ Et54dstg5PWOVaqu\ Nke8nBiuFDrb +3v\ SeJ2WUacdhFT8gHn\ b5QXZ1bq3qRmb/3F\ hicMjeXa0rtt2dps\ QJJ025o0yMShZIfU\ li9F9Wfq0 HFlRYM\ 4PGVJliutsNrXBNK\ ZEHaQrojSqK4zqCl\ 4EX1+2mGi4PFJuYk\ gSqijw/ME8Lx8pUF\ Il3n54 hL+eKvP4Y\ pU+U1sVUrtycnMsZ\ /JPFxZ4Vl/CXbvyP\ DRRp7R9/Y2TP6CtS\ 5QMSaDXzLBUTwlsS\ VPQ RIkPvPXX+amf\ /Cl6iyaxIaG1SNyQ\ ZpKR406LSDOv47og\ C4QkaLJA5MZpC210\ 7Xg9gJiVcM9Z10SQ\ IHWrFqXru0EXJHF\ VfltY9dHMpDPq7zs\ OypCOV20yvGeMbf/\ Pzs5jt925Mw2Rj3y\ e/RP3EgYh3sUG Up\ 9MGIQ8szVYFQYh+Z\ EeXvy2VwDQt72Pvu\ 19iKLcMZS88NgUP/\ o7r+tUPX3XInLhOT\ /9/FVC8PZ0 fLjkI\ xoydFElvSFJUlhS0\ SfTgEldkXisV+eek\ kIQglf1kKxwjU4m8\ iP8aZew7F9Vq8y5Y\ OMtu5Tu 3Ly3e7UI\ qwFB2Ucd04kWbzy3\ 7cvhXLCJaj76iEkS\ Xpl7tpRXcFssvRZE\ 5MZzZB5fxhs2Vi0U\ 7RHr oE/vVEHuGe5\ hXBM53ioxt12l3fH\ vjRiRpwPeSBbjbI3\ ssWWcXYWOEaQQXNr\ tKste2rLUBLzR3NP\ u 03M9IHox3ni2c2\ 3Ye/LI/QHGRG1dW4\ iVyH17iTgjE/TqeM\ Mm0WWL+0bHLtd9wo\ KOdrFJMJBer8eW a\ 6iSxAs0nYwmsX/7a\ gL6makKh4fz6+a0m\ WfrhH3aDdXGlOs+M\ wq8eVuJU02f//vRC\ +zIm/zG4aF1 Hy+q\ ElJGxll0OxU5tU9H\ LiqbTgppEp3n9CL4\ xPklnqw5fHa6zLTt\ 8wuHxulX4c37NJwg\ 5BPnl3h8 sYoopp9\ Nj66uIk0/tG2AWdv\ jKxM19hc21xgmqrj\ GO6mntaD+ybt/C4D\ /8d/fzStf+QpOnj5\ NzQv4 1Of/AYAPf/\ h/02+a6C2xvZiVyJ\ qrP3Mzk1aMNE3D1N\ I/y2J3G7nYjwkXfT\ KtoYCt1quVY/7Xgr\ AR ID1NXYzYDgmbE\ VGQEMouoXVJAiCqE\ r7nYM9XUOWNvwexH\ RLaHhIyoe8Qrlgmw\ 8uWzDZBevATX+P0 \ /SfYeddO+rb3dUgQ\ gDffRMpCHK69Rt05\ mziKyD9z6/gx4U+f\ OPv05EdcI3KPLOHu\ LBAUFY4tp8xf shL\ e8cwhtHV2M/aZRtc\ O0euh+uACgi5ROHp\ 9M9sgJRwECcauTOq\ 66sUYu65NCPl0wj7\ TQC1oCJqA XwtQMj\ KCIXYlko/8iAstTV\ Fq4qiQOZF+futpg9\ QFD32i3rEAKFY94o\ EMURRjRTFyLV0UG7\ ffGK2K Gxl62SFxv\ l7l+AAAIABJREFUU\ 7ExQKIJJHJ6U4wyC\ v6QeUNoYrqFXAswj\ 1c79g+SHWOeLBMby\ qYk 72qvmfbrtf23\ rKO9POY0eHlfkds8\ UHrXz1z8+MPzOD3a\ GpKkXXRQ562u/cK+\ U8g9ssSDvTLvvGeM\ WSfgf00s40cRI6b\ Km/eslRqIoowoXzo\ 2wQXXcTF6L+VrxVG\ cWqnAqh0+XMreOmv\ 5PLRY50Axy0kr 5E\ BB50CUkB/p6eh3vA\ hiRaGgqkzaIVYYIU\ QJZxpNrGbQqTxvFZ\ vT1iVd/rjb+lOykZ\ ElTEFAU2WK UsK8E\ 7HkBiSSwN5ilowkE\ Mdhx2OvXU0Ss1Lnm\ FcSxJV/Xnku1oNzu\ oGxt7tNnzdlpeP31\ 0EjW394 CbmgXx+X\ btL2nT3RQNYUBAkk\ U+lMhF0Of6bliL2F\ nsqbstDGu1sb9UyO\ pfNLQFpdWum8DRuf\ Z3/B w51udG3seUN\ WkiDdHeuTNYLb+zo\ uysetKufjmH2XPbZ\ 8pkq+L3PVYYzOBZu\ g5tPzjPV3UleLqB3\ v UVI7fWB11CCqB9\ dM6p4uOBdsZENG7m\ +NP7oxgRVi9Gw9HR\ aWff5ttsk/+RYHSj\ lMRcaYaCIEMdYG O\ 6G0JJ7vLErVogYrb\ CJSH6BbrbZu0K5Wb\ NWKulkQFhTClv1Dm\ FfRWpEyWx2fNmvjD\ 258o82rMk4Q rcr8\ arfF3F155KpHVFSJ\ TJFRyeTJ2QZ337nx\ vWFMU3jQD1aRJMmO\ 0aaaWEdvLIIkBAmC\ l1BTI/7r 4zP4Ucy\ BUo6CqvDIUhUvYlV\ Acpvw1OYqiC1NS+z\ FyAUDWVH50vs+SxT\ EPP8XX4iqZ/BdC1n\ VmHns At/+5Dc48v\ Lb2XXPXnzHYXcGdm\ dS4tqX1zj/hSf5h0\ dP86p3/XuUFsnIZT\ KEvsc3PnQ/y+eXSL\ b1 8YwXH+VIT5Zvz\ c/hD3R3bcu1gOI2E\ 12EKSfi8cUqzx3II\ QU2ViLywMUmuxYDF\ k2Z1zyjn14JHmik \ m4vPnZ/njTt7KKqX\ vPLiOCKuR8TzEeqo\ 0SFFK3361vPsuxxh\ NUDqUtsVVgOSaOtK\ UzdonqgiZ9Xr RpA\ AwkUffai7dVfKyUS\ NcEs7icjtfhjLdxx\ 6xno6f1553tv6K/t\ skzhIBdqiKhK3ZDn\ ZA8WubS2k V/3CL7\ +r63f1HUSUlTHON4\ mzKrGeHoxkBYiawO\ 5cumguTttMzTRZzg\ qMDlx9ZSZc9kniGH\ PH9Wvp RE6IN+2kk\ 3i51ReRqEkoPRpRN\ cBbcCGh6y/Opq/pR\ yRWRFQL8ec9wmaIc\ gV6k8iPiKwIpVdFV\ NLd kpSRCRZdlJ7N\ ydzxMzU+U23yqO9x\ 20AJRUoFlNq0RfNo\ z6YLRZSRQRQxTtUI\ e4w0v80OUco+6kUb\ bzzbuQZu4fsLYU5\ Fn2wguQH24V6CLRY\ MIUjQJxs4e/IgrX/\ NeVGMIYkYioTX0iR\ o8y5iGCNZAcqS i7\ szR6xLGLLEmUWL54\ 4WkDcoXizVfZ7yfX\ r19L21zUvtg0Wi3I\ 21D5W8BKXqMl2QWA\ oCDFFkPJ8h BhYcj\ 7OWx10rxr4FQURSF\ D70hj/izDdOc+bBs\ 5z6xklkWWL40Db6d\ w5QvrDEk194gv0/e\ KhVeZEx ihqD2wb5\ 9G/+NYfvewZaziBq\ u1aLMpKi8djHv8Ke\ H7ubBTlK22oJyKrK\ l//nl7DrNs98zb3M\ XljE kg2KQ1mm4oj\ RrMmerMmwobMzp9O\ v6UiSRMNfPf0oeAE\ NVcKOUtn1vO3yup3\ 9DOsyg6rIjO1x4dF\ F TulwcEDHFGFQk/\ nE5AJRkjDrRhwtqD\ x18gz/8q9f5KmTTy\ HnM/T39uBOOwRLDk\ IiIBgCSdJyqU/i z\ p83gjvjoA7rWwbcx\ n5EVA0QJOGKrQK8K\ YvYS4isCCkjp90LO\ 8LYnb2mYN3L4S446\ CPdWauImkQS Jnjz\ HsoG3+HYj/DLHqIo\ Ihpb3++TJCYKA6Iw\ WHXeYz/CPtUg8kMQ\ QO0xkDJKGmzf8FEy\ GrEbIRe6 I5831jf\ 4MtgHSqizFkExrUJ\ MyxEvqMWcd+p8rmx\ xUvB5hZFDMDIEIWz\ gM9YVEi+meaxK9sj\ 1MdLz Zz20cXPTqb\ t2mKw/7RJUfARRRF\ oZM7HCuyLxIgRx9Q\ Xe8YwSRZI4Tv9eEV\ AyMuqwhr/kX3GsQO\ JF q9pqkb/2dVdi1\ gn4wKPzqKrISI/J0\ WImXaguWEhW0PVOO\ rULSNAuNpGXPOKMT\ GxIeOPfX749t5CS \ jJV6KvtgEdGLUZZc\ dDuN99isdZhoAuqi\ u2XFKVoh2mzn+UUZ\ mUSRLumggpCMKLKZ\ lMPxoo7/1Erz 0hv\ xutWnGkQ5lawqYoh\ wMJ+h3PToyWoc6S3\ w8EKF05a/rhP3j73\ rx8mN9xEGAYKbxkA\ ZvRme/R/v 5f0/+j\ 5q9Qbzsch4bCGrBr\ 0Hhzl83xEe/ey3Or\ ER7cpU1nG491V30T\ ta4qImMXWhyq5daZ\ VJzag0 luqMHBigP\ FIgF8CE7XNbf5GML\ FGeqEDkYe4dwp+vs\ 2MkFdLPNFP7BtGLi\ VvGge1q4ba8yX97Y\ ppf OjjEqK5g1tPP\ foep894nZ/m5fYM0\ g5gzdZtdWYNHl+uU\ /YD8Yw/xljf9nwB8\ 6M/+iEP792C2SIs7\ aRF7EUkUo/RpIAt\ bVieEOOmqghFWw3Q\ Cbsa5Ip2tfbYJUUx\ cD0CGxA3TzLgrqJx\ 0CzG5sgqp3KMS NQ\ P8BW/VyL0/4xA4AZ\ IkrTKnvFq4FxzkjE\ Icy2sqZ+qoQfNEFQ\ Bpyd+wPbjqfV/Tu3\ maERQV9MkQ dd7FH\ 9TZls/wUctGjUT6e\ 3Tu0XN863yVdxzeP\ KxxK6hjOkkcY03W1\ s24uRp066otqVJHn\ xTVA2I3 JgliBEVE\ kQUEQwRJuCqLA0kM\ Np2ki/yIuBqSBDGR\ F5PEMfJluqO4GsIG\ JCcI4c+fWmR33kAt\ phe9 6MVkniqTyBL\ WgSvLSXPHzdQw8jL\ X7Fv43odcCzricmB\ VNEqUUxHChMhUCHp\ 0pGbq6wRpCG3Qq3U\ I STuzTJ9q4PfrG1\ 5/VhSjCKstKdYjVR\ N1i58Z3LjCvHSmxm\ d9q2OvYJ6tExvKDW\ leKtcCKmWbE3sM e\ iSZRggPlFMt0N3Z9\ PsrI1DxIsjAg2UHQ\ xB41lh6XtwkQYwkJ\ mqp3ubxs1Ve2Jcnr\ 4LXdDj3zyeo 3r2f\ waxA3bYZKORpLNWZ\ f2Cee3/2hWkEiKqx\ dH6JT/7qX7Djzl1U\ p8sougLb+qj++L0o\ mkT+1Xdz +jc/zv/\ 6qfdz26/9COzsZ0B\ UMGWJB3/3b2ks1hk\ ayHPcCaifmeVlf/H\ WVccpWh7hZUL5kqZ\ CAf5h usrP7+mn3E\ pamLAcMCGniIzpKu\ +4bSe2HzDlROzPyJ\ zY5PalDmqElQAxIx\ MseSQRxO2NbRSjj5\ lr Fnxho3LkCvgLH\ kHdQ5R1jL05nNMNR\ F3ckjzYZ5uENRd9M\ AMZCK0Ar5L+/7USj\ 8sRlv2r6n5o4xns \ U3UIYpIoJgoS5JyC\ njOuylzTOd0gSRIE\ QUAbNdKpwaaHYqqY\ G+i+sgeKaVTLnI0a\ J5t6JMENTpIA 3J0\ FzBMV/EGdkq5Q0le\ Lf90kvuYqkqRKqAW\ NeDiLNVFDyslX9YG\ 1ESx4V+WqLeUVpO8\ AP/BnnLRK FSRp5S\ mnoI5e+fH+f6cXKM\ VChyCp8y7GZB1vJH\ vVi8SNpN+4hacXQp\ CgzTodH6RgwOjOr2\ lAw9mV 7RAr83i6M\ 2xXb4yJWkewvhlWa\ pJOVZuMZXTmyjaim\ 9DMJjSDiEFHZHzP2\ mu56kf87cMLnNBCD\ pTS m/FW+rvvJoQg\ wZio8diwzlsOD1GS\ ZP5uqtwhSW3sKWX5\ 6kL6u49NLjCWMRgu\ FgmjhI++7S8A0FWF\ +37+RTz38A5OBSG\ LH/4KI/cc4JtfeIz\ bnneAk07IjB3wzGW\ f+TPz6AWD5eOzlPY\ NIkoiX//Tf+Ge 1z\ 2vM+L9gTf8Mbc9ey\ dHBwwuVAK+8nt/g7\ C3lxf9h+fxpff8HT\ t/+j7ueOFhzh67QP\ PsPC/6wH8C 4PwXn\ uTsTBmAINjc88YNQ\ iZrFq9uJS5EtYgTC\ rxRVhl+xgD5VpTG0\ awMyNzd+nfK0bv40\ J/9EQDP OLraZ0c0\ 5XQBlYU13kOxH+Ge\ szD3rb2hr/Sciv2I\ uBkROxEo6Ti9lJMR\ Zb1TPTL25tZ3tl7x\ Wvap BqIqrhIjqxi\ E1QD7Oqxpl8Ov+Oj\ brryYYJ9too+ZuLM\ usi6h9ymEzQhv0UO\ Xha7JXGyHNE9UUXI\ a ki4RuRF2a2BFNp\ QthfHqqIFoSNjnUs\ K2WWHkhidJQVEhLK\ gYkxbONVrjbwa5X0\ Wseemo65SFsS93 1\ QaVoRchm999DY2gi\ GsqSf6Mg2hIRFbY1\ YSdWJRhen0hYlDx6\ WlFBBiTFnLVwT5Q2\ jBk8hZuAdKK hj7V\ RLTCdb2a2i7Mwy1f\ GjsImahb+FGMjMBY\ TqPHMDqmjysJk2SF\ eKO5Tc0E2883mjUp\ aQqnqk2G XZivNLh\ 3KMdd/Qq/vVThP8g\ mR+4spX4qK+BF8Cc\ PXqTQb3JHNr0Zqwt\ pFWy9IOYbAZIdUiv\ pFPvT +5ImwY+M9y\ Cj8GjjUkSEqch4cc\ IXZ2v06BoZVeGinY\ 5zH/rVV/OsQ/0YSl\ oREiWRUcfhj/7tSX\ 7g fW/gK7/y5xSrN\ hOiwJG+LI98+MsM3\ HeY4aLG4198jPsOv\ pQ4iqlMl7ntlXcR1\ gLErMTQth40WUXV \ dOpffYQMCTtfcx9R\ RuIlv/Lv+Pz//CJ3\ vPAwjYllsrsHAbDC\ iNyuXhLtMr3nilbb\ SkxZLs8Z7OHu VoX\ pQddmIIZz0xbykYC\ 8nBKSVtBDp716aP8\ eDu3fs+F53WhRF1U\ JuajhzzidBTj2I+S\ Cgj/vEUU2 YiIgyC\ Ki2qoute7VYdVfM+\ Gl5jTcC86q9lFsh9\ gTTeIoQu8z113o5a\ KCuauANVnfNHrjSi\ GKW7cW L0dYDZCUl\ AitPA7VlJGL8prQ3\ I0Q1QOsMzXUktGJy\ /EXPAhiQitYl5iuB\ 7lHxYzzuHP2piTyh\ idJ AM6uPLlHlvBG\ jC1HP68F2qiBX3ZI\ 5FQnJGniFbfenInW\ GOwNQJKQIFqRYRa0\ 4kGSJMHY1l2lR1Kl\ jvZpJf74W7OE+fQ\ YRS9Gnbdo3N73tH4\ +t3DzQ7Jj9Kkm/qB\ JUFLXEIqKF7DsuKi\ SREGRMBWZE5UG b9\ o3SE4RKUbw7hNzeI\ nY+XugQ5g2gx2ETE\ 43GDcUfqaY4+8rFs\ d9izFV5o0H+xBNOZ\ 089SPmXJ/b 9g+sb\ T/7EZ/+1iJKn0ZPu\ 0XVCga+0SbZViJRJ\ AoVl3MOfDuf4d4eg\ aIq8WM7cyyccal4Q\ ccAs6Qp lLTUeuXf\ j5fIZot8ExjvyVDI\ X9qhi6LM8c8dY89z\ 9jA63sfoCw5z7F+P\ cc/rn49rh0x/8TGe\ 9943 EbsRj3/4z+l\ 7/fPZVcwiaq1zagp\ pttcKlC8sM3RghOG\ CzgOLFZ6VMRG8S6L\ swA2wvZCMJrOydqQ\ o Gnj2uq02SM1VH1\ mq4vsOT9Y9hseyHH\ QdnsiIfP3ReQ6NGv\ zkjj7e+fgFduV0fn\ 4dK4QrhTqg4Zxu d\ MbfIXXaFkMZvctBo\ 3YqPbCaIPkRzdM1R\ Ekiu7ewaQVGLirof\ hZ/wbluJEnOKasI4\ FaI/Qh/wdmQ wIiq\ hDZqdI51IxuAaCnE\ mqqhD2Y6E9htJFHc\ NUFqQ+5TYc7GuWiR\ za+uAMd2SLDk3Rz5\ DbEm4g9m MCbWhuL\ pgnhNrbY2Ij+i8UR\ aujV6zY4C3z7TwLl\ gE1Y3zo6K/Ah/xsG\ ZsJCzMsauTFeeQk8\ 3REUk 8dL3Fiyk02\ 5Sj3LNtvRnl3yqQc\ S+Tpuhjj+YuUWQbm\ FLaBebhAUNf0BbQy\ hOVZtUqg6/1FPiNa\ rB 5HSDc+drPFvLM\ l6LKC0FSI2I12dz7\ HRjTlRWt4rsIGTW9\ rCDELulObGDkOmGz\ ZOTFRYuWrz5ziHe \ dOcQO3bnecudw7zz\ njHedOdQZ5Hxaz6f\ bwbkVYnAWvudr0+7\ PGoGnQy8lcHAN7IH\ VWSKOLsKjAZw /P7\ zfPLMMp+YLFP1I+7\ tzXVEzyuhShIlVSY\ jRciSgLJcZ/H8Iov\ nF7EraYvzm598gOe\ +9rkMaiIv euWdLP\ 3bUxQzOvWvHmPg9p\ 0UR/LoozmMsV4W7z\ +JF0fsf+FBHv3sQw\ BUqzUmH57Ea7kF7r\ 5nH099 6UlOXlxm3\ Bf5yke/zJ6799KnK\ 9z9op1Ujk/jTi0hO\ hFn/uYBYislIDty6\ WIthht/Bkd6C8y4M\ Xvy GcZyJtahEoet\ mOfOBUycavKH355D\ lUSmbZ8Hyt0lDGx4\ vusB3tQlryQxI6OO\ GoTNCLnYZUvJj/Bn\ XKSssoY0NI9VkA2\ F7JFiVy0qdUAjjro\ fr98Kcp9KZF+WfVo\ P8GccvCkLd9LqEER\ vysI7b6OPbb4x F0\ 0ZQRI3nMALlj2smR\ rmeB4xI6+qOAV1D2\ Xo6q1ixMuGk2I/wp\ txCOrBjWsBcDnCko\ o+3QRRJMqm F8WFu\ s29msZ4l94Zm6HxZ\ IXEishsz6f9Sl1Cy\ isoPRqiKhDXQ7wFl\ 6DsE5R9QisiaYb4S\ z5h1SeR BNRBDbnL\ jLHvBERNggQIE4gT\ lAH1qsibgIA366K0\ IhrOn6sxZQgUtDRM\ 0jjXwN5XIJFvzF30\ LdwY EIIE42wDd+d\ aI8hjyzXu7c/yGlW\ nOJ6hv1enL6cx1mf\ w4vEcck5BzilIGZn\ +Xp29JZ3eeszXFhp\ U kpCZug0C7BIlrK\ qH7QQsLrvofsxeSe\ a1tw3xou15csrGFd\ 7Yj6jZEZ9armDIEj\ 9g6CiXjQlPLjmc J\ aZXVxGChMzxMsFgB\ nfoxhNqX45Yl1B6D\ IYjgfBcg8Veg3+6W\ OF4w+l40bVxbLnGy\ 0ZLjJkakqKw cPwi\ 5x6a4NwDZzj3wBmE\ RCSbyWCVGxx+1R3E\ UYw5kKMyucTS8Sma\ S032veIupmQRU5V5\ xq4Bnvjk 13jG3fv\ Yddd+Lh6b4qsf/Bf\ On57jhT/7Qh7524f\ YfdduBg+OoWcVHvm\ z+5m9/xi53YNse/3\ z6ZET tIyJMTzEQx\ /+EhP/+gRjL7mdyP\ aoXFhi4BnjzCxbxL\ q06X0orynIrUU4kQ\ X8YZNElRlxY/rnXU\ Yi iYKq8vi8xeeW6\ zxadTmQ1zEuW7i9K\ YuoFhB7CYmXDtv4F\ 128ZZdo2ScJ04k3d\ SgVJAcLLnJBJaoG \ yKWt14jYDvFnPeTC\ aiPJ2I9oHKug9RoY\ u7q3rIn9CH8ptXK5\ XjYAsRWmm++yT1AN\ IIgRRKH1nhUk XSK\ oeCg9OtqogaBs/bp\ SXsGfd9dqvOwQd9Z\ GKxkIurTKm8mfcVI\ jy6vQXPkzDiRpnt1\ KIbp1vE4i JKh9xo\ 3ruL0elGqAeaLSae\ s8vlDll/t76N+CoW\ 4F54KNN9tE68ugDm\ vdOUs7IYmXIJjidQ\ nXfTrR jmxp2wtcz\ fReuxIl9mm89/QCI\ z0mhiqTOV4lLGjfM\ waGt/D0QZ+ykewA6\ 0CBjCRitUbwFUHgm\ /Nl 3tnXgza4fn7V\ RvAaIbMLNv2yiJpV\ EBURQRa6Gse+HM4F\ iz+oNxjL6EzULV67\ rZcDgYDU2vlH1ZA/\ mF5mqMfEVGSyT1S\ IDQn7JpvGlOwY7WK\ ThSTmYr+8Kuev4gV\ M1prcUczwEzvTqWE\ 9s3YxXmmc2HaY Vv\ XUgXvl351dLvPxcx\ XeuH+c4axCWAs4Hq\ QVOidKG2bbMlmGs+\ kC13a4frzikGsV8k\ 4sNfn8xQVe VsoxM\ FQilEMO9/Yy57jYX\ oguQ8OKODW53HWw7\ XoQvbjjkj6VExkRZ\ Wxd5tuZgKyq8Nb9g\ +RloRNM K2clwmZE\ 4oYIkpi20jao6sR+\ RLjoI2pSV2Pn/owD\ irimPdY8VkU01o62\ d/N87pLdVQzH9UK7\ XQUb t8/Wg3WmTua\ y71TbLVwf1led49i\ P8M7bXTuYX472+ZR\ zSudc22ebxE6IuSt\ 7SZx/syAopnb0ctX\ H H9QZy2r8y0KDn7\ xGkhQs2gi6hNrXfa\ VFMmS4SXhB22bAn3\ EQdLHz3ytpuwmygN\ qn8k+LTVRTxmiF Q\ IpuSLDr5lokbuG7A\ /WihX0w7ftbKzyKg\ iTBEEkX2CskNlpOZ\ kfu+lx/n1lsYpoip\ iJzpLfAX19Y RrJW\ aPp06DFVTEXGPJO2\ /m82ggQQKwKJKLLg\ +fzwcC8fm1xgez7L\ sKkx07T5z4eHGVIv\ 3Qddq9Eh Pquep+U\ y3XY69l1r1ePiOGR\ UV/jFvQN8+OwFmmF\ Co+yzTVPIDmUQvRg\ Hn7+qzXJXocCPr7i\ PXKw1 qSwEyL0qXh\ Sxp2ByMg5YKteZiQ\ IyQsyYrnIyCvmHC5\ XUjPIa9TaxJuLszF\ AZ0xhYCJAvNMi6Ef\ eo Jg/bLv60jW/KJ\ BForddSTRnY+nVFV\ UI0JMJa0BVJQhGJr\ RDQUoJVDfEXHERVv\ CrXbL/ioQ9fP7ft \ biCaMtq4jDdlrfFG\ 2gj+jINirK4INU9U\ EVUZfZux5v4QNyPE\ a5B5xFEEAfjlEHe2\ 2fl99uAlX6kb t4m\ +AWJdJmmNHvSYBpP\ uxlqhbhDVA7xlF7V\ 0dT4NNxPUUQNREYn\ ihMTdOv14JeQeFaf\ q8nXLYlv+ EiltZy\ Tdwi1shWDAwDxeRV\ 1YPa5tByG9oYz2Xa\ xGHj9d40k57GiNIN\ WwHBwvdn6ODhQZy5\ loFx2k hn9Djvp3g\ 0QREOIYUZZ4do/Bf\ 79tO5oQM2M5qJLEX\ 02UmXVW31fjOFzz0\ /79Ro9rQ5Pg5/f08\ 7N7 +hkqqtikxHM6\ 9EhEmbsxmZtv8oEz\ i9RbYdp7cxqnyk2c\ KCHWRAoFnVLBJNZE\ hk2ND56a50TD5WhW\ Zm5FmOq14FS1ybH\ lGmU/4FHd42+3CTy\ qJvh+hCgI5Fsj+kr\ v1Ukq5B6VOE6I7Y1\ jS9pQBzREVUy9 jx\ b9zgKuj5mE1VT7E9\ W7W/tiOySOutdCXW\ 9o4xnCqrflccd+ao\ MgGhJhOdWotXVdxn\ hmffsDJ0LK Xt267\ U5aKKZK9kCR7IEi+\ Wf2kt1bIP/M3lWvd\ ROSJIWoC8vybuFMW\ SgFtetpr5sdUl5BH\ dSIroLc PO5FGMEt\ 3dHNBiFI0KdsjIkm\ kn11pDYjiWzPZtie\ zawyYYS0XbY9m+H2\ /iK39xfZnl2/tO7s\ ymIf LKLNNMg+Uem\ 8F1ORqeoC3sVrE8t\ eCz672Fyjy4HWNF7\ ZQZ+yyT5RIf/AIgD\ 2/s2jdm50JC2h6qc\ v WmgSvG5HP0mc0K\ dJ9Ogq73nqIqctf4\ tnuTLkZQHdF8FPP/\ fdeZN7+00SVWRgPI\ +yEPK+p2YAyEUx d\ mt1coOQirf6vdwxU\ OKjk4ss+CGycPWfQ\ /t5pxs2+4pZfuvoK\ P95Xz/vPDrGm/cNc\ 0cj5oztEpiQ DBlp\ SsI1bKYlRei0oLaC\ mJGJgxB3yUYxVZR8\ yz6gnr7nYNnvinDZ\ E03U/JW1sa839B0Z\ 3Gm7k6m2 Hpy5dPp\ OzErEYYJ9tklQD5A\ 1ZcNzHvtxmjtzFQi\ tIDWgXIH12qU3Vbs\ NQJ23rpv+JfIjgoq\ LNvz0 +S/diGhrqC\ InvCIhd75Xx5+uUS\ kGlHTlVhXpJoC64K\ FP1IkzMkGvjnaxeV\ Uton09eSrNBrpmcK\ SU 45HypUnT3YUMh\ iJDkE5I9RgmVqiwt\ E6VNywoNI/0os06n\ XyzsKDg+iHzScLYC\ qO97xTCsk/dSCsY \ bYNLyQ6QquliFGdk\ woJGOKoT6NoNPcXW\ Lfwhk2ecLPPkl6d4\ 4Pnj/ONSlThKCB2B\ bY7P7X7C+VF3 3Xi\ Sa8EdhsTn7IRjyzV\ USSJX1Tq+apntOXq\ n6nxyos6zEhAFATc\ IOVVt0qOrOGEr462\ FQ6Uc73z0 AgVF5t\ hyDYDRrJG6a2+C6Y\ ZN1Q/wo5hdOZ1T1S\ ZZReKi5fDuJ5s8by\ DLD/ZnmX5oia8Q8N\ LxAe7Z W9o0mqYbe\ FMWUlYham5eAWqbQ\ wKp/mgjE0k7zegED\ 1Fd366mTaJC79o6L\ tcKUZVQ+3TCRX/N+\ /Sm LIJWVax5rNqZ\ wlPzOtp4ZkOCZJ9t\ IusSkR0gc2XXabu6\ 1s295qYjSWtx9bpz\ b8omdEPyN2CEwNMN\ uSDjL/kY27a+BLx\ 6iNAI2B0nvGpfgY8\ vNOgVCmSeKt8a/b+\ BkXtkCaBDRNrJ9ML\ 2ZNMqiBCk3ykp AQ\ 0RXwNDkfn8P/49xd\ 5e7nvpy1c9vqiKPP\ K1rzB96hTHjj3FG9\ /1Lvp0Y12SBGm7xx\ 03Cfp0Mo8v 449k2\ DOc5QMLZZ5d1njF/\ p50IpONzfquJ04vO\ +gtDY666CL6IUGPj\ jue+54gROshMkWaR\ 3rZN+vw 1S9PsWMo\ x2AkIDoB3mgO5gK+\ 8NQyDyzb/OzevlUa\ pWtBXpZYtD32DuRY\ 8CKqTgwrNLdDg1km\ 5hp8 S4g4MmRyum7\ x1kND3L/odkxGDUl\ AblXCDpTyNPyAXzs\ whB1F/O6TFykNbLx\ gnqo22ZuReeOuIQD\ e f3qR8YxOv6kx1X\ QYyRj8y2yNry40ke\ KQQk7jwbKNPS/y8p\ G1lcZu4U1ZhCRIor\ CpiNlf8HBnmyim i\ jZqbHr9i6aMvlPGX\ /AQRYGoHqwhFGElS\ IXJN0BAuNyj4pxur\ Pm9V3ERJQlJk1AH9\ a4qde6klU68 FmX8\ matvt3pTFsrQ5lW2\ m4oktSsXKxdl7ypK\ rWE1ICj7xG6EMZy9\ 4afTng4ovRphzVo3\ PPEblYD7 JxYRvJi\ iInFSSBPO/Zap5J2\ iQe6RJdzx3K2pths\ YgpesivmITJGoqHb\ CXyU7RmoG9IQxkim\ RnEt3 4/FAKvDcua\ 0XBYGgtRF53oteQv\ /QADpwe38xrR4BTh\ By5wvu4/Z77+X5TZ\ tSscixpeqW7y8yRa\ yj vZgny/SGMeauI\ g8uVDnx0ByOkL7mA\ U3htUf6nrZWQWyH/\ F3DYqxn9UbpWqakb\ ha0yerOPh19qkGs \ Sh1iaGYVXniyTK0K\ /++Ts7xp3+AVV5Ue\ KDs8Xm7y78aK9CkK\ mgRDisS79g3wpAZf\ DW0SVUxdslv3 9Fg\ T2bG9wC4vRnLSisJ\ TNZcH5srsL6XXpRM\ l0Ko2DJsauiTwnhN\ zvG5Hz6atN7flnfW\ 8oQIfPldm znLZWc\ iQU9smmunxtduuCh\ rmiQpfz8SYl1lHhN\ UAd85CkqRNyUzb60\ iQwBhaKzy+HIkbIm\ c1BLH7 iA6eBCFkA\ AAgAElEQVR1QEsn7\ jxxDcFIopjYCZGvI\ kJkM4RlnzhMkHSRO\ IiJrZC4tT4Lsthxw\ r4c ibj+52PuW79a\ thGSMO4IwZPwyjsa\ oikjShKhHyFUQwjW\ VrjauGl8kgCEKEGb\ s/HGLn0A86HH3b5M\ 0gyJGiFJDElrUmY\ lIickqgR4sw5xlKA\ UVdw5CzmnovR8798\ Q14NSUnFnbERZRNQ\ kIifkr59Y5Jvz dQ\ 705dByCo4qcqAnR6\ +hMWDqbJ+PMC80sQ\ +U8Pu/P8/bTQNRRJ\ uz8QcvffkzskBhpg\ GzDupFm6Fe hR0Hh\ siPFCnu7ae4t5/SS\ IHSSAFXTvj7T3+Eu\ 267C9VP+I23v5Xde\ /eyb3ycCxfn+NRff\ phcxmRg cAgd+Nxn\ /o4vf/4fedbzns9s\ w16VjbYREkUg6DPQ\ LzSQrZCebQWKRZ3+\ QvpzOvS5/1ydYwsW\ +/pM 9Ovk8dLGhQW\ Xb3oOo9mUJAkxKMv\ eqnP2vY70M9AJVzi\ gJ4pAVNDJn60znDP\ 5TKXGDwwU6CKftYN\ y JPCXZ+aYbPo8UU\ v9hiRDQmxEDMUChx\ KBv/Vt+l0BMqsJQS\ ILSG6MIok8VrfIqg\ rTTYex7OrPZX9G x\ ooFMpLI1xYbDGd19\ udUNEnEilZff7Ik4\ gQhX5mrM5Yx2JbPY\ MgSMeDHa6/VWJdQF\ 12KusqMEnFn T7ru\ xHaIN+uQ2V9AyskE\ Cx7BgkdUD/HLPkHl\ 0k/cjBBVEUGTEPWN\ jRI777Gg4lxoYOzK\ XpGfkVxQ 8eactf5\ CzYjIjdCGr1+3JFz\ yiawAQRaJmwFIIpI\ uoY2Z6esn4F6wkHL\ ymmMIKn7HqDn2I9w\ JC1EW Ua/A6zCsBg\ jQIYRh2b9ig+SoHq\ SxOKKAbCqps/mCh1\ /xSJphet4aId7iTe\ K43UZ7Z9GG44f06K\ tP TtAI8Oc97DON1\ C17wsI+08Bf8hEEA\ XNPDmObiVxUkE2Vs\ N6diO57FdqogV8LK\ J+p8sFji0wbAgfH \ i8SaiKHKDLbys0Qv\ JnO8ilx1aNzedyuf\ 7SaA368jWiFyLW17\ 5VWZQ4dG2X3fHsaf\ u53GnX2oe/qZ q1V\ 49y+/BScIcYKQ33/\ H21mcW8DQVe7/1y/\ RzKY7vOc++27OPf4\ Igijwnrf/F3K5HL/\ 36++gUq2i KBLP+s\ EXcvqpJwEwNjFtvB\ yJItA80ovU8MmcqH\ XafZDGSRwcL9Jjav\ zJgxdxna2FqleCwB\ DJXpr8 JVEkROv6v\ sbNisgUU6H9VJOxW\ OYri2sTDzbDfkNmP\ KNzu5Qu0P/Xw+cRV\ Zn5OOLzczaf91JdU\ Byt XwkIigr9Xkra\ XjlaZDxndKpBkA4M\ 9LXaSLqS+j2VNBU3\ hoq//nOO5UyO9hfR\ u4xpCPoyZKsezVb7\ t7nk4c66nfgLUZX\ QxjMYe3PoOzOYu7O\ rfvSdmTSwVhSuqC1\ 0eVxLN5AzaVRI+8c\ +20ytBKKI5rEq 9q\ l6Zxx/MwH1hu/Jj3\ AnLcJGgDKkow5oaO\ MZ1AFtVTdC7lHTEN\ tzFuHSasG9ECf4Mw\ 7NY1Wax6tE UbSlE\ /fliOo+cunS+iPIq\ a1NbIdpYHDrZ6Nja\ J6o4s05SJqEuS+P3\ Kd2PkNBEBH0S9eGv\ s24uUgS rG61Ha82\ eL1pog5qqKPp5IGx\ zcTYZmLuyaWEaFfm\ EjG6LOtF1NOg1+9n\ SIZMU4DfazQQevTO\ eL/o xSjVAGPSIvf\ IErlHlgh6dKxDPbc\ 0SNcIuRasIgKXQ7J\ j5Fpw1ZNobSSKgDe\ eRVlONwIjps7i3AK\ f /JuPUSgZJIrAhY\ aNlM9zdmICbbGObA\ U8+vBD9PYViUOf2Q\ sXkNwG+cEs+W3baN\ geC6fPkc8W+YmX v\ ZYffO4PMfHYI+RUl\ UPDQ9f0XptHUqO73\ LeXyJyodcgdgJxX0\ QdNfvfROY6frl3Te\ VmJsYJOEsdM N1LR\ edyqpGz2+Xw/ISwo\ +CMZds96PLC8Nrpk\ M2gSvHp7H6drNiMW\ jEQKjQsWH601+Wq9\ Qamk8uqB HnRxY0L\ tD2hkm/B4ucmc5a4\ iN0GS8LXltZvcBS/\ qqoq5EoogYEhrW0F\ RTkL0ImrLHh/6+ix\ /f75G uP3KBn2kvA\ Ky0Mk72wz+jIPYqj\ pdjtgOCZY3Jjhyv4\ qgi4gZmSSK0bcZqA\ NaOtJuyMRxTBQkRD\ Wf 5vHqFRElf8bBv\ eAgl1T0neuP46+Ea\ MroOzKEjTSeJbZDn\ NMNAtvHr3goeSUN5\ c1pXU/7dc6DF69q \ RaqD6UY+rAT4My7h\ oo8zl55nb8rqWCX4\ C15HEA+sMaCM6mll\ SR24xCdEVbq5NEmC\ FxHrq9+yEUdX rSm\ SDRnLXUuSqq2Lp/h\ 9oFXy7JD3n1/i4Eg\ eQ5XTmJGJOnLNJ9Z\ EwqKBu7Nwq3J0HSA\ ECebZemdq KiqqRA\ MqXk5HDBKUJRdl2U\ bwEhJNQGiFEyeaQG\ woRKZCrEvEmkiiSK\ kp4CYCbMlOg4f9wf\ Sm3mPq fPGL/0ij0\ aBsuyzMNXhuweTOA\ Z3RgQHe+tafwcxk2\ Ta2jbf9zBuI45jnv\ +SlvPn/+GlKPT00a\ jV+ 433vx+jPMzM/\ w9t//S1UymW++cQD\ fO4Tn6LerPL8l7wM\ ACe48p1qoghYBwoI\ QYK66GJM1BC8hGDA\ wB8yGTY1hsc1Prp\ cI/PVOs8rZbj3cM8\ Vv85KaBK8ajDPp3y\ n8x4AxCAhuolH/K8\ XhCBBWbZ5TIe7 e6\ +8ZXN7weBzSYxc0h\ lzRT623MDzYp6zqw\ 9/PmBWjQm20H/tya\ lciAQOla7MVbni+V\ tOurURJAnE 65AkQ\ 8IfzHBXAheHFWYcn\ z89s8hzB3Icyuvku\ 4xikosKQYvQhdVgV\ azGSviV9DGX65HCJ\ R+/5iPr Em7VQWi1\ BwVZJI4TxJbWR5BA\ LqprxOHm7mxaYWlG\ iFkJYUakeby6yjRx\ M4RuhNavXZH9gahK\ qKM6 /oybWhd4Eeb\ 2/Jpjb2e9qYNaVzq\ sWFhNgEVTbpl6tt5\ rNUCqxDinGyRJQtD\ O0GvnKo9n132dYNl\ f V0t1U5GklXD8kB\ 2hjHENmUl+FNKUfJ\ wTNU74PhNeSph29x\ U4MqRQ5HufJH3mdJ\ XegUzHQbsdItyO f\ rmF6wO5FmAerxL2a\ TTu7APSSSr1vAW9C\ epFi7BPw9lVWJVmL\ wQJkh0iejFCGKOUX\ UQn6BAoSElU IkvE\ hkSsyh0iZR6v4o9k\ OuJ6x/WxLIuCJPHs\ gRx39V66ISyVl/mL\ //3nlEOJQqlIeHGe\ jKbR01Nk ymuwfG6\ Kbc84CkAQRLz/Yx/\ n3OnT/PavvY13/sa\ vo6oG2/buJm7A7Gw\ FK7n6KliiCHgjRkd\ crs7Z mCfLRDkVby\ SbCmt74Z+XKkw/HP\ Dqofw1GVEmGZWHz8\ 924jkSTUAIIm5CG7\ nrDskOmc3KDO3I8u\ Kh K7eO0CS4bWcP1\ XN1CttzqJ7HmKGQO\ NEVieOHTY39GZkJe\ +Mq0cpW3FOVBocLB\ seWa+v6X62Hlc9r \ SELHyFJ0A2JdYdFp\ eSpZLlOOyd09V0ai\ lV4NfyH1ORLNte7y\ sR2CnC7iK+HPOIRu\ 1HHaXkn7Lq8G bUZ\ 4RFVC7Gm1J3dmiM8\ mXRGl2A4RReGq/KH\ CRZ/QC4i9aMNIFG0\ 8TYMIK8EqsrMRJEk\ irAaI6vri 9tiPES\ Tw6z56n4nrpBVQcy\ S3ZkhpJQRpfQJ7U5\ EkIUqI9fQALlgOr8\ nqSGoqOC4v+9heSK\ 8iYAyZ m1aXvHrI5\ 09W+JbsUZz3CPUGm\ X6DfCtJ+qFyla+fC\ 3jOeIGX7r45XXW7x\ VnLYVdfCQBjMmXc1\ sHv 7WOGteRDsgNE\ JyLo1VGW3Q7hICsQ\ 6NqWVZuNXgNAm3VQ\ L1q4u/LMF0Rm6nXi\ KGGspNEz0ocQJLiX\ 2VC0fV8AiqrC2ED\ 69yunCYUgQQwShCD\ qHIfoRijltLzsjWc\ 7jz+2XONZZoY3vPS\ VvO5n/yMFQ+K2 u+\ 6hUq3wN5/+ND/+il\ czPDzEYBQTxxHsHE\ xfxIUpX2Z4z17O1y\ x6Wi27r37pC9z/95\ /hVa95LeNH 70JRJ\ M7XLGpNF+vBOYQ7+\ 66L2WKaXp9FCDKoi\ y6Zx5cJBgzcbRkO9\ pWYbtj89lKZu5ZV7\ hvOERsi aCqFK7iz\ HRoxeMNyLw8uVDk6\ UCQ2bnmAtSFZIYoT\ MrxO+6dbvGjA5F2z\ y/xANbiqqUFBlDsG\ phsR pGPLNcZMlam\ mR5gk/NLBIUZ1hd9\ 8fBpI22lX0oKr2g7\ nnZDxjE4GOGY77B3\ LcqCY5bMzVe68yiB\ z dUAjWpJwpqw1+W\ ReqxW3cuFvt+f04f\ UT7q9l6tPcncWdFL\ BPNcge2fieHzkRwh\ W+jD/j4Fc8pJa5 l\ Ll9c4It6O0Ylq2hD\ motfyjQd65DkqwQv\ +KQPVJqVbO620Apf\ Wnr76YmSStHRd0gY\ iAv8dePLXEm 9LHE\ GF2R8K0YaaaGliSA\ QG9B4bV7+yiqEkEI\ Z87V+LuFOkpJ42i+\ SGYZ4ljBMS99eZ+z\ s4+SpjHd sPidr0/\ z2u097B793vNSWp6\ qY2dbobfzLnLVwTp\ 0be2LGwFyLVilZwF\ SImQFq0S57TZWrEp\ EpoLf b5AoElFGRr\ JCRDdCXIhQHGvd1l\ ciC4huhBDHCGGCEM\ QIYbSqygNpHId1tJ\ epxIMw5hcODJKph3\ zi fJWFWoOBodVtB\ DsIEeoxv3qgH6/q8\ aW6y/FKlXyvxugKM\ 71EEVotobULWPaJC\ kJLbDrdsDkcymzP \ xGhykY985CP85Uc+\ yl/91V+RK5j82I/+\ KD/04vsIg4DQXy0u\ rZ6z+GytwtGB9CZ6\ uyLTqCzSaDT4 5f/\ 6Lob37Ofxcg31Yp3\ Phx5HB4roIxkkO1x\ VEYPU2FJqBsQtsa3\ fr3dNpNrVJb9fxzx\ bJ/ftJfx9 WcZ6TM\ aAMw2bBy8sobgQRw\ kZUeQnBnPs2N1d9e\ NFeYOvl9Njj0wF0b\ 3yduH3IhJZRGgGnK\ kFvHgd yZkXsaXJY\ l4WeMVoiacmGwxcR\ ds+MiRwI04mSccIE\ lhVISqqCj+/p593P\ znHHSWD0dZmOmJzc\ rUR TtZdXjxa5PPT\ Fe7UFeRZi5/csQMv\ gmceXnsi2ufBi8BL\ EqI4prQBgZH6ZDTZ\ wDndQNtuIqpSOl1l\ +2T3XjqmsJwG4sZ\ x8rT5hek7MzinGzS\ PVTckSkkEktnd5+Z\ OWoRWkBo1ahJKScP\ oIqtO6dVw62Fa td\ riWNv+UN6UhT/jIP\ erHbLozzj4dZfsgU\ vVsc2qTpc/bxS4xH\ 60inzeVCQpMiWE1l\ inrki8Z7nG aNZkt\ 3nZjXBFVW+faTIZS\ JhRupCIoz382Hgf0\ 02LcjW9KYpuQO6RJ\ WJdxiyo7DtcYKGyz\ G0DffQa Oh+auMgz\ l2xe+8y+Td/fyvTr\ Gx2RH/Htqke/obfS\ r5s3tSi73ZZRFtKd\ 18ML/8rMyW8DMLr/\ Tg7f 9UqSokQoyUS\ m3Fmc7SCk4geryIc\ dxJgFAzsIMVtC0cu\ rNqIbIboRiSwSy1L\ 639a5S1qTXfGKcWq\ A 5QWPd473E857KD\ mVn7ptiPc9dpHFyQ\ qiJKBpIgcEjYXYp2\ HELNd8BjWZn7xjkL\ Ds86lzFU4FTZp+ w\ IFSrvPeZiyHecslq\ yr0GxqaKDAhR2DZ2\ MsBu/IZXp3XEFUJz\ 7fIegpv+5W3rDp/b\ YIULHsIkoho inzk\ Lz/CQ088SJgknNl/\ J3tf9lrKTsCug4fZ\ dfAwM3WHp84v8PJC\ hvhQP//0jQsAyDVv\ DUGSawH6 RB1/JEM\ ii6jzNqIb4W7LXFH\ Fqa1bkmsBxkQNecb\ F2V1gLGeuyl2zg5A\ /rtR481m6IkqLYYz\ cWlBj XUIpX588sJ\ sd/oBG74zC5+bL3N\ Fv8uye9HtS9SPee2\ KWOIJ33z625fMc6T\ G4f6HOSNkh7Lmy1m\ is ichlh1gzyKgyf\ bqKRtjRHOUUiYbv8\ 48XazT9gAeWIl4+U\ mBmHTPTtrv2Sufu9\ SCKAl9daPLq7X18 \ +UQZATj5zXk+pPoM\ GBqjukgtTLBjaAYR\ bhBiRzEnqxbjOZ3/\ dtv4ps8vFxViPyaY\ czsu3KKU3jfa Whp\ BEFD6ddSrrFp1C2N\ vblOilLghwgbvIfY\ jgjmXoB4Q+yFyVsX\ YxCV7M7QrROtVh9Z\ DFCTIEgRz bmo1oI\ idIN82IWq3Koli1D\ 5903YbpLExbVfw2I\ 8gTBD+9ImzN80Yh+\ jFV2RiaEgitw/28M\ VPfYLH H30UUZLp6\ e/nhS9/BduHxjj15\ Cx2zUfamUUSVZq2x\ wAJO3b2845f/E+86\ dfexp6Dhzm2VOWh+\ Qr3 CBovWiEUXZmA\ reqpvkOURMIgJPS/\ ezlU3eD82Tp/VK9x\ x0CJzPEqsa7gbGAA\ dqNCsmOUJRf1Ytom\ bAt8T/7zJ8kLNj/\ 3cykR+OAH/5B6YrL\ nVT/R+bdlx2G64bE\ zltkhSzymJdhRjCm\ JSJJEFEWUFJFJ yy\ OOEnRVxo9CQGA0a1\ LSur8JTDdsyo7Pnl\ KW1woyme1r07hjO+\ Sj5ypMJhGHSzn2GB\ KHNbl102j5 s/gRz\ qzD18KIB10H2Ytx7\ Ig7Czr3Dec4vWAzH\ UUsSAkv1nSM6SaDL\ xhJR3enbPTx1q7VD\ nEvOph7 VlewrPNN\ 9JJG4iV89LMfo+bX\ 1z2Hp6pNonrIPXmD\ Hz58aUfypccWedyA\ /RMu7nh2FVEyJpok\ sriq rWieqROr8pp\ WY7doR4ioF61UezV\ srCFcT05W+PV7tm1\ a7fji2RrfWGiwfTi\ LqcjoUy6xLnxfGEp\ 2 A/NMnaYs8qDu8d\ 47twPwD3M2ZxoOs0\ 2bdxwe2XLIxYvgt5\ +c4XbJJDKkrjdjSj\ VA8GPCgtL5Nw8v V\ JAFgW15syPMdoOQJ\ ddnLGdyqpp6OjT9g\ EOlXGci7uGFCj88X\ OTRqkNGlTcVdbtBy\ KPLdUxJZNkP GAhk\ vDmbAwGIdw/ixDFG\ y/W7/fwPzJV52+Hh\ jnFmN3AnrTT0NggR\ RZHYj1HyCl7FhSgh\ f8fmG/Pr CftUHSS\ xo33q/P5sMx2Fb1e\ 82qSoVS0SRbErAtI\ NnNONNVNn6+HB+Sa\ DzZjtu/Op51HVJwo\ S/GUb YyiDIImEbo\ SkXHI4t87UUfJax4\ RyPfgzDkkUE9QDnF\ ao8E1VSYo1kcbtfW\ nVx5S7nrh67KGH2b\ 1r B3fc9jxOn36Kd\ 77lzbzvfX/KnttGE\ OTVp8AOIhJFIpFAb\ qb88UhfkSN9Re5/a\ gZRlFGN1QQtjmJE \ SeT33/s7vPylP8Kh\ QweRlRyutdaC/TuN\ Zmu8ch6B3a2yZ3Oq\ wQfrde4YKKFUA+Sa\ T2PXlYsyn06s W7n\ xQ0Qn6rTMoqJKrEq\ rXKUBZk5+m7f9wft\ 57/v+AID/8itv47+\ 87RcxrFciCiKLTYc\ 9nsTb9/SR 60t7/f\ dOWgjr3biNDEHZQy\ lpxFHMvB/xpYrNMc\ VeVxBa8QIma01USS\ SOEoZiiWcVDG7blk\ ePBeIw xrvorBEai\ 6bM6w/1r3m+OLpEt\ kVVIrM9y7MnLEChf\ 1jh0EC+c0O+o0/nD\ i5lOjWDBOeChazJK\ CWV YMlHG0ndgdU+\ PZ0oGdWJ7Rh/yUU2\ ZWI3RspKPPTEg/ze\ 7//hmnPoLr+EV8sG\ d9yztuWwFMWAiBCu\ bVUpCw72wWI6aq1\ I1P0QbyRL5vHldcl\ NN1gZb2KcraEs22u\ E74U+jYdOlLlnb2F\ D/cbXZusc3pnq 8i\ Q7Rr3YwDq6vsj0+x\ FhXiM/b9NTvLS49M\ YJJ6OIHabJbz0xza\ 8dGmHY2Ph+rEmwJ5\ /hvB+woxZ3 RUCVa\ pASqqKSirKDmH5T4\ 46B0prH6orMmCJzq\ tqk31AZ0LVOi+2i5\ bBke7xuZz+fnaniR\ xF9+uYL uq7I7C9l\ maxZ/OrhUQadhEfj\ Ob4x57JdkdFZrRts\ BhFZReoQpAU/ZECV\ mXEDcrK84RRcZwPU\ +s6K ikQSgZzVYAP\ /qMtx/4kKD5ZtBk2\ NKIqwSdg1bLC/YNC\ vKV1P4Jn78jSPVTu\ TZmElrcTFQYioSoR\ L Ps2JKlrJQB0wNi\ UbV4NuLQk+MdPk+P\ kqjpHw+jMyz9hjdi\ pXkiJ0qlpqyVg15Z\ fZk0+9o2Dd9x4u +\ bhLNt6Cg1JQye8vI\ UjizUWSICVK9oES5\ okK9oESkSGtMpkUv\ IhEkxDtkCwJQj5lp\ aW+Qfbu3Mve nXv5\ 1iP/P3tvHiDHQZ55\ /+qu6upzTs1II2lG\ hyVZlm35JsR2IEuc\ JSGAMSEJLJgrgQ82\ nBuWQBwn kGSTfEA\ OloCXK2Qh3F4bws2\ GAMYY4wtbkmVpRpr\ RjDRn33Uf+0d190x\ reg7ZMoes5x9Jrer\ qqurq qqfe93mf52\ 4OTR3leRfv4Mvf/h\ bfuuNOKtUSl158CS\ 951WtQGhfTsROP8f\ nPfww3jPjdF76cKy\ /Z jSjLfP1r3+RLX\ /4SNcvm+uuu5WUvf\ Slf/cpX+dzn/o0DB\ 8YY2DjIu2+9pa3S9\ HjhB1AH8h2+KT+A \ ehRiNLQnBCAFEVHj\ eHy3ZPMlu4opSchW\ xC9Pp/nlvMGn6i49\ ZkIO9LEy9nD2Z95m\ E/wYpZhMj+ij i6Z\ 1p+uGoi5lVSH1gt2\ 5gieJApeLCkXb5+V\ Di+QIkqc5yZRROvx\ wIisgdqMWqdkK3Gy\ luOtoke9N VxjpXy\ SXJy2XMAx5SyZLLq\ sjNUwYWXKRUlQJ60\ h1Xb13ALVLayNVwa\ yHpsCzRjrfxCMvxB\ qt4Zyq o/bqGEOLF\ wnryCJpl/MK+HHL4\ E7QRJS8suY2pQKBC\ 4eXE+oP//gUJ3XYa\ RpAvdVyBFr6sCCno\ ABX 5xT+71xI0Pj+\ lKL3hKo2YUqkdlEB\ fcFGH68RGRL2lgyx\ IrApk+LOmSLzj4bs\ S2kMGErbflbnHEJz\ 8fvRx6v4fcY5m9n\ 2eBCmFcTRAFC49cE\ Jfn2oB1EXCQ67bJ0\ P6CkofHh0nnc0tDp\ uCB84OsuC4/H7 O/\ ta+qDnbsrx1w9Psi\ mXbdOXroZIEym6Ht\ +Zmmd7NsV43WlNIZ\ 6Ok5bLZlNnvO5giG\ KrwnOq7nBp weD28\ TkGUhp5o/P7l2Kqn\ lxHfnfHALOuzz8/O\ sfwpEN5l8nhUo2UJ\ HLj5uQ32KNLpESRB\ 8s2Pyja XN9jcMqD\ Wx4Yw2i00K7e0MUL\ N678uU2dTRPW4QrC\ OiK3anMuXylWuWxL\ F44fICOTBUZP2jx8\ rEY9 jhAFgRds7uX\ CTWv/xlI7M4mHUhS\ 38t6MweQaIveoiJM\ SUkp+wgTp32drfOd\ kiRCBvd05nm+ohLX\ E xbsTKkHMfcU6Dx\ Rtan7IxYaB16fxb6\ PzXLR9sRKtbTZx75\ sjqPu48w5e0UbJaM\ k2bzQaYvU63mSE X\ EiuA96kjTNdb60jd\ 3Fv2/79wpEkSJxY7\ eEsqUPF1muRJrY8l\ PyuRGfjZxcPuGSoe\ HmJcrXGsSOP Mbhl\ C3YYkM3nednr34CZ\ S/Fnb3gDW/dexLOf\ 8UwAfnDXd3n9K97K\ dLzAn/3RW/kf//QR\ lMwWunt6 edvb/gh\ T0fndV72Syy/bz/X\ X/hKbtmzhlS9/GRf\ v3n3G+3S45vGd40W\ yLhTDiJIf4goQN/L\ SdEHA iWM2qApXmR\ rHnYgHbAtBXNxHW4\ +5PpthUyEhAN+YqX\ PNwOLN9BszRe455R\ BqAjuzGbSp5ELg9X\ ee nPhpQC77qLM28\ pybpK1v1Knv615zm\ szyAxaqHqaqtFpfD\ 8+XKegqV++7ittu+\ 0fe9MY3A0mr6Iq9 \ V3JNj7lscsGeqCNq\ YkeCBGDPOqhm+3vE\ lMzTL+rle/dN8chY\ EaWQpNhnbYHXD+Xb\ iEknKFkVe9bp 2HZ\ bisgLcateywMFwCu\ 7y9pkreWtgPKP51A\ KOqmt2RWXa0LuVVs\ Gq/6MizNlo/UlAZN\ X7L962TG8 5rJruL\ E3h5Zpv2wcmLI54Q\ Xs3pBH8ONlwvUmBD\ /GV+DrszbqjEtmtE\ KYV/ELZ0dz4XQZCB\ kdfaJO 5sdzrem+/\ X0FTro+99aqqI7ER\ XWViTmbp+UMLjBVx\ IaJoGRFSCUP67KfX\ ovjFwFhSiTWBPZ6C\ qWC zpcPzJE5UWNv\ Po03aJKequP1CJy0\ fQYMhTuPV6j5IRvT\ Bt+eKvOSkeR4/u2B\ KXpSWpvGaD2YqFj8\ 0d4hNqcU/v7QyY7\ LZBQJUhqHSzVu3tb\ NBw/PtCq9+/sKTNV\ thrPpjk7bjh90fH1\ AFfjYo1N06SqX 5N\ OkTvn4MwE3X96HlV\ VwopD3PHKS3GxIue\ rSd2GB3xrKUwlivj\ 1VpFdX2dudw/EDDs\ 6X+LYUs7fL 4KQVc\ Pv4HNcN5Lm+t/M1I\ LB99IG1yZxg+Wjmo\ ut4cyozVUi1kdA7p\ +f53HjEy/qzDA2tb\ AYpqhJq Vieo+8hD\ 7VlzkZe01+J1VrhW\ woeOzDLjhuzuTvRP\ M6dqvNsNuK7L5Ppd\ y6uEAMeckDvGk/y+\ TbJG TFIIWCm6JbU\ pi6iKWJNVasfKaH0\ GXtVFFEWQRGRNwp9\ zcedKuPMOWrdOaiT\ X0b/qF5IkQXJjX/P\ m LonEjRLwv3zwn/\ jXj3yYSqnM697+Tn\ YPj+B7Idt3X8j42B\ gTDx0la6aYm5psvf\ 2G599IV08XWbOH v\ fsv5+BDP2bftq3s2\ 7GHx04c4eGJSfKZD\ CcmJtm79yI0WSKfz\ 2Nks3i2ve4qUskL+\ eSDp9ieN3EK EgbQ\ tULqtu0FfNvxUDMS\ e/qXT6IdqjvcO5WQ\ x9359ptks0wtuhHa\ WB11uo61wkn5ZOJ0\ LZE3aFLf l+749G7\ 5AWU/pOr5pCSRkue\ 32ljXGxp3FR0esZM\ S6u/0Z7lgSxpbez5\ f+NYX+G9vSfQ0V+y\ /mpue eSN+1cOveo\ iSiJyWCWoBoiSu6L\ ETlHykSFiRQL1t/y\ CnvIDi8ToDhkx6i7\ JiXz6yAkI7JLACtG\ 4N eYW229Ll7VkHL\ aXiO36rCiRKYscqV\ JMgSaaMlFM6EjVBE\ zsGGgMofRpKn4Z1p\ Iquizz30t/gi/fc \ wVvf2jiGe6/kxuuf\ h9bhN3fn6By7G+2q\ 1NEKQY/W9l0GOQW/\ zyD98Dz2SA5jNGlT\ nN4mPRuIFQF7 JI3\ frWGMlltmmj15jUL\ jpnnK9VH6U9xes6B\ sozae9o2jZdzN6bN\ iXXCuwd2YQR+t0N1\ nsGEmwNvS jZNTCF\ My6lSdvKrwSNlmwF\ B4pFZhn2TiV0Lui2\ 0eLDlcnNdRJYkudX\ 3f91ILBiuMWm2yVC\ Cizk1/ 0YEAACAAS\ URBVCQSgrhfp6CKz\ Lgh1YZ5aUoS+YeDp\ xjOtZ//nYTaJ6oWM\ 7aLLAiIotDWPh80D\ Q6X alzSnSWjKsgi\ eP0mpZMl3vutMYJc\ ck3YochcIEgczGg8\ 8r0pTl5g8zlEuroN\ Bhvr0xWZDekUD1Uc\ vn6yxLX9Wcp+xB3\ jC+wvmMvaYc5YHVG\ T1lWtsSOBqGEsqZR\ 85KKHuqQqEuRUvAG\ zVfG+bbbEtnvr PK\ PfZMsKAw36sEnlwf\ llHkrBrIeSUggfpx\ v9pOPz0aPzpCSRnf\ k0SimZNt6kKGzYkO\ J7tsX3HkmC iredF\ qZ8cK7EJlOnGxnJD\ vHzCuWyg037tniTN\ kHdR9+UaTlnezMuz\ okq9sRi/lDzCGl9B\ oUr+lc0 94RfYJJ0\ pnjx7/8B197wbN72\ qpejagqKKjFVXOCW\ 176WPXv3sHX78upP\ Np+nlBYplH0Kpk5o\ exw/ cYK3/uHruO6\ 66xnasqXjZ0VRtG6\ CdHyixkfHFxjYkEH\ VO39RzQuGZIcoQM4\ VEcIIcbpOmEomcZr\ + UduSdyTbYfvA4o\ RHLAlIVti6cfw0DS\ Ob7TR12kKsBwQ9Wu\ smWXR9JmtVapUki0\ 92I0QnJiVAIaey O\ Z9ia1ohLgZ0mToDf\ alWNWM/SXlfLLlIh\ kRYTYzPfue5L+KFN\ 9xE7EbEMsiqjGd7i\ e7GjfDnPQRN RFql\ vRQUPeQ1buIbVJme\ 3hR+1SMo+/h1H6Hx\ 1S/NpBI0EVmTESUR\ Z8pGKaiIioh1pEqs\ CG1VpbDi E9SSlYi\ miNG7KNyOamHDI2R\ R0B1WfObun8XIqBi\ bMiuSOlESiYOVL3C\ RF6Jk1UTkvcnkhV0\ 38YL/ dCOylhyjwA\ 2WPYHed2ABv5GjpM\ 64iLbfihdZCnskjT\ EK+ngNd2PmSRdFBz\ mF6qU9qDMuyoKDNl\ 4j 1oQWYQpTIgVt8\ aaoL9gIQbiugZCnI\ rw+Db/Qg+jHyyYSv\ UETtehTzZqc8gKse\ oQceqSm61zWn+JT \ Y7Ps2jfE72zt4rbD\ 0x01RZ0QGo3MwEIe\ yQ4Rwoggr+BpIqIb\ IRU9ioDcuNaKgcim\ vvYpx9VwsFTj Ty8\ Z4rPjJU7Vl08zNtt\ 6sggZWWRm2GQXJCS\ kGhFpEkFKIRhQYbz\ MxXv6udsN6PJDNh+\ sABWCnEqQ 1eju0Y\ gaN/67ZqqkFYlnDO\ RwopDsktuwN2kT+S\ GpkfW5ixvi4u9ZPV\ knyGqUr+5r3TPUGY\ /UoSJB TsUeybKvN\ 4/jB9xWqpC9q8qzN\ /d0bMMpKTXRN41WU\ TMNstGIExE6hAGvh\ aN1j9sOT7eE9Nqkj\ Tpj IbphcoxyCjvz\ aRw/4ONHZ9mUUtmU\ Url7rsamlMpo1eHy\ XK5FkB6aLTESKrzx\ yo1tn+MVXeTTKv9q\ XyLW7qR5Wo/P1FO\ GJDXxyje9mffc8k6\ ecd11HHroJxT6+rj\ 5rW8HkvbaUkwcOsz\ 23Rfix3D44BGe /W\ vP4vv/8V22bN/JS1\ 71GgbSMl/64hdayy\ sK2LaHrMiIoonn1D\ kdByZtfjJdoafRIv\ qGV2+LBJFL HkIYo\ 07XlxnaLW0pRnoy7\ RFrEn6X3rJGgEVSd\ fr7RcfH79J/6m7a2\ pSNNl7D7zMINuq4m\ cQf5+H5 MqlpgT2K\ wq+ZGUxNJq820rJ1\ EX/OS4hGCErGQB5o\ P/mbI5qiHRJWglaV\ ppkILZNUg2IvIooi\ FLO9 0uPPuPhVD2/\ OWZEsLV0+WEiI0FL\ 9jjtlE7sRclZG6dY\ S11zoOD3WhN1IyLZ\ P2pjbM/gzSSCzvjl\ F WA3wix5ql7Zc3N\ 1wzJW7VOyJeqsq5M\ 44SGs83TW1VWJ6+X\ 6GFZ84gtAKkFIySl\ ZNAqDzCu6UjSAL e\ Asu+pIptGal6wuux\ b6+PJIVoY9WqO/rX\ rESY4+s3T442/D6N\ Lw+rWUeqs7aLcLkd\ 6eBCLnsItYD rKeA\ ieoTwaIvVzuCnEL+\ kTI9vSYFyaTnhA0D\ GtauAtlDRYZ3p3n/\ YzM8c0OWa/uzHK7Z\ rD4gn0Cs u0i2TGh\ Iy4Z0ll6/osa1VCk\ tPhCuxzwyo8i866E\ T9OrqqsTNDmOKjst\ XT8wC8Jxd3ciG3No\ GG+jL mxRHF7hIUf\ hJl8J4JnlNiATkio\ NccfEGTAbzBoNmEt\ T7oUdP8r4rh5N98M\ IkENb2MYez6zaJvH\ PW ojdrJPeOsofdG\ MBp+QkO6Xh9KtqUT\ eb+OYKciriELN05M\ 8+XxkJefXEXhexi9\ U3p1YkbMSrOnIUz \ ZyFKEu5cYtJ4JnBD\ +OhjM61jrE84KHMW\ 9T3Jv5vb5m7MwpDO\ 3u4cRdfjUMVt/f10\ gnSDr/H0K5YP ugR\ W4i3Vyfzy8RpvPuV\ I0vbdF7Lnwgv5yPv\ /kd94/gv4hwOP8IX\ b/oljk1PYtYTUCA0\ NyA/u+i7H p04wd+\ oksqaw8/Kr8bM9fO\ Kjt/GJ2z7A1JLWHM\ Ceiy7jH97/Xq684m\ pe+5o/aAm3Qzvgq4\ cX+FHN QdNlBrtS/\ MQPkASBy40cctFDW\ aghl71WedQZzrWep\ NYmND+fuWrqjIs2W\ SWW2yfQLD/gyEyNG\ 2SN p+0qrCgWFhsi\ vthNpq+CokcsN1pO\ jYlCKSUj6hqpQlIV\ cIPkO4ysAHfeRVzS\ sw7sEG/BRe1KUquV\ Pg2F5AkjsiKIYuI\ 4JnIjQitAzS0+YYU\ VH28h0QMFCx7etEs\ U2giaiLHEOqG5L0p\ WxZ9xO1Z1hADc 6U\ VNktKnIepiS0S9lp\ YoKPnEbkQQJNskaC\ LpbXmCuo99ooqUly\ GI8RvLNStagibizj\ gI5cVk7tiN WlN9s\ RsR+GFbVUsbNJK2Y\ J+OfdLGGDConHC4x\ 3b4XujQmzZa7VNnJ\ PtzK3iOFYEgpyTn4\ PZECye6 EVItwtmc\ bvPOOo8zQ5BTyPeZ\ fP9YiaNzic5xqZ2I\ WgrxNYFPjc2ywdSZ\ s1yGPY3Vau2RJq6p\ WVrt urgtq3GovLr\ X1dUb1m+ca0cRF2Q\ NdnfneWi2xL58O6E\ +1SNxKjBZ6FL5Txu\ y3H5gjs0T1eSBdEh\ H nXFJHSpij+Tw+j\ R0RWZ7NkXVj+hToX\ awhChJmMPZdXsMVe\ ou93sOl6W6UCZtgp\ za8ZhEmog9nMQT a\ VN2K3pKHMky0p/F8\ QM+eKTMm7fIrQdMM\ SUiFoVGtTq5HkRWQ\ BzEZ0Q23BD+5tCpV\ nC6NmmjTVbb HtTt\ YZOgoKKPVVDm6jjD\ WQp5tWXRsLTF9vB8\ eUWCBGBsMKk8WkTv\ OXvmz79QPklnCkUQ\ uGKgm8lj xzBzeRQ\ j+eEKoc3czDxX793\ DsfEJHj78KENbtmH\ mUnhexO7BDdx78BA\ bt27lyMFHkGsxw3s\ vQKn4 eP0pJo8dY+\ LYMa7ftxtVT2EqIm\ Yh+dHcddcPAHja06\ 5p6ZK+/tAs94gBO5\ cENColH/VkvRUk6/\ Wb +N3az3zK7Gyga\ fQHtI1kHy7VkvFbV\ ec5irKqyZ87ZSdEp\ UdvyznSzcVjaBVLR\ FaEkc3ww5/cy1UX \ XY5TsnEXakm1J6N2\ zEiyjlTXJCLOWL0t\ 7LB+vIbRq+NNu6gb\ 9XVdKDp9TnPUt9M6\ ggUPt+qtKuiO rIC\ wFhK4wTLdUeW+OQD\ UQnJzETQRpUdteSM\ 1PZf8eZfAClBzats\ FebXjYk/Uid2IihH\ xvpkKA+kk cFadcd\ FHK20RKOfx1IPgx2\ R+PMfDvoO+JUff5u\ S3nbt7hvuHddKxCF\ 5En6GiKMsrQ2cDSs\ nHzyso gsC+nML90\ 07r5rrZkBi3n5iLe\ tH1mKhY6IrcNmF3o\ ppkg714pIu+hpb0H\ Q+c4JePeli7Cq19V\ Uo+ qUNFnKEM7kaD\ E1WLtCxwIwqaA/qm\ 5YMlq8GbtPnL+XmG\ s2l6Hy7jbkyvq42d\ mAfbqNN1gpxKfXee\ w6Uav5rPsB+xFeO\ xXs+i1XC07vHxo7P\ s7c6hzrgYo+W2Y3I\ 6mss024NA6zs8XKq\ x11N47qWr23Ms fP\ ckaq+BvuHMjudKOK\ crSX4cc7hYodA3gA\ +MlRPx66aMSffAJh\ 6cLYGRYdflVwOQUi\ TqgssPpxfo 3pD0O\ ge37wLguO0yf2SW9\ IRAfs8Ag119ONkU/\ REIhoBTryKrBldfd\ RUAgR8QRQG1OZdvh\ w77u5PS ojrtYIxV\ WsTIHvnZj9+fLTSJ\ n1T2cUayrR/sScul\ NGfzzLTG/pSJKImo\ G9eeqJNScttJLqs6\ ge/z 4ptfyZ+8/Y/\ YdcEuAt1FMhT++9v\ fwR133I65wUDqElr\ u500s1YipOa3NnuH\ 0Zf1qQBQmwuoojJI\ 2 lSYmlSktaQNKur\ SmeZrYYfJCTMnEso\ s77SwjOXKXSlBe7h\ Lc2oeGCaSgiR0F1G\ E9QCnoHQmYmJJb n\ kvKkpZkE25jvR0/1\ wsRgmQd/+HaDOfSF\ DQFY7TW8j862wLsx\ 4tmW02qB0iWT5DVC\ NPKz22F61xB rAhY\ u/PsqAcdyfLrLtvA\ p4/NMbrgMZJ/kj3Z\ ih4PzltgaoSGhDrj\ Mn4WNHAFTaXQ2/6b\ n6rbpGWB V29frGw\ 8WHLIVGMirZ0M+nm\ l5fMnehGbhk3KZYc\ PnSjx6pE8q10Rm3E\ nf//oNF4YcuPmbvK\ Ojx3G ZOoxorv+wO\ BmZSlSRdQZC2Oszs\ 7hNLfPLHDBti6i0x\ 4QzxTN6tFztvTwmS\ MzDGVTKCV/TYIESX\ s8 yPW0Kl5BVsNtk\ LaUJJI3Vv4dR15I7\ WAJtWAQuWGSBfcES\ FJQ8vHm3XObJAHM2\ R5zttf22mOltU0e \ T3R6cdhEvXuG45KI\ 169zx+gkf7hrA/JJ\ n64+jaQ73Y5vjlfZ\ 2BASalM2+nh1zRPl\ Fw2iG2GMVpDL Hs7\ mDNb2XKt1cfepeW7\ Q0zzjgj7kLpX68Rq\ CIhKWAkKCFUXGSo/\ aaj81ISsK3/jm/8W\ zHT792c9w 6y1/ii\ jLBP4isRBFqa3atB\ SB7yOKEkq3jtSYem\ y27ZqIwgjJkJG2J5\ olURaRuqW2lqAzVk\ dIy6tO pwFIptyx5\ WYMmdgT9db/BQseg\ pykbC8VezeraU0Im\ rhqBSx0QwxTWbHKJ\ Whix5RrAEmXCBeCZ\ blF TZdvURZQ8wqj\ h4qM9GeRyz7KjE19\ X/fPDQGRrAjzoXli\ TSDMqI0Mthh9dP7n\ isidq2i1M09DOpG2\ 4EUkFaUnCYIXoc6\ 4DbKwuB1en7bk9bO\ DPk1ivOYyZ7m886L\ 2WJavjC5w6YzfcXK\ 4aYhsHihiHvQx gd\ RGk/fWamRn6hRqPr\ 29GX5tVw6pGlKxAr\ 5WtzhSdonimC26Sl\ rS+MIjs7ipZGJZHk\ sGcc4U7kaD WBHRJ\ mvoExLDfSZ/f6zIf\ 901gDC+XE+7FiqNo\ ZAmkfvkYydbhsWpQ\ 0XqOzME67jvNUmcU\ vLRxyrI FRd7JMum\ TIrvHC9xrZVZJtEI\ Sj7WaJkoiAhcD33w\ iVXAIi/Em3fRerVz\ nySdbTSNLIO8ynA2\ zQce m6HqBdxk57h\ UV5FEAalXRVIlPn3\ fNI/IAXtTuYaztfu\ kiKabAu2fZkVKdKN\ k4sQNMcYqybTckqr\ Y ZN2mYju8xsiyoy\ HQi6wALafhV73W1J\ nCCpNYqtRGGJrVni\ 988Yu85c1v4M/+7F\ 14to2sasTWYhld V\ lS+9vVv8KEP/S8kV\ eamm17A97/zXd73v\ vegajL/8rFPcMfXv\ wp+wEte8nv85nOew\ 8LMLO99/98x 1N/P\ p2//Mrf+yR8nFcG+\ zvuuD5vUj9eQldVb\ blJawp13O+6jnJIJ\ KwHhWEAsN3RKM05r\ xN9tiCal lLwqEWs\ irCREUTJX/klr/Tr\ OuNXZC6RLJXRCwlK\ A6zpo/Uk1yj5poxo\ KUl5OhONOciEMcgp\ hXkUf r1Lftdx5/G\ eJ6qXtPkdBTiJ1sH\ S+JfgzgNdvUq3afG\ 60wugphws3ZHliLj\ srY2l0ybLtaBCl1Z\ Y5 E8xVfMZth5t39\ LVFkNy9YCOXk4mtl\ R6EI02kvqeAeaCY5\ ATmDa6cENBOVog0i\ YePzDE7W6W6OcWM \ 7TKcM9l9mgbqwt7F\ utMTsXLx+jQiOcI8\ XKFfy2EU0vz/B05y\ 844+Ns13rmq7Ifxg\ IRmntxr2LBlV 4c4\ TC+QUuS0KpkmQ7JE\ cQdeZkVQ/rxDuKWC\ MVjAPFHGGs2S6VG4\ /WuT5Fy1W7iIvxDl\ RT/yO+gyy l3QTOx\ FByVu3ae/pcCZs1G\ 4NKas8dUhSVpXpTx\ mkRBEriii6LmXHb5\ uAUASBftPAkBtBg0\ HIvO1g L7lZ+3kFr\ 9/EPLBAYTjLVUMDx\ KrEiWqd+w2dPaZIx\ o2ZnbH40UKNHbKGO\ VNCdAKCvPGkEKTM/\ XON H96TG1AruhHK\ vItcdtu0VKcTP8sP\ qPshb8kX2vQ13rRL\ KMYYA4lJmXWkuqK4\ OVhIRvSbJ7msapw8\ eYrx8XGe9rRruOq\ aK7jz69/kxt/6TcK\ GsZgmwcLMLO9617v\ 4+Ic+ztadm/jLP/8\ fPDp6FIB77rmX O7\ /1DT78nn8k0OGFL/\ pd9l+2H1FS+PKXvs\ orX/wyvvrZLyJllL\ bqVCcYAwbOuLX6AZ\ OFlh3A6fsW VgKkr\ IyUkVuVm2bVxpmyE\ SURfdjEOlJdsfqzF\ JETIWkSgrry9y+qE\ qIkElb8ZeJQf95Fy\ SuJMDMQ ccatpC3a\ GKdtbmNKoBX8a23L\ Yh4qYYzWzurk2tKK\ kNdv4vXq6xJVNwOF\ BT+mO6PSK8YctAKC\ nEJ9 XzepRxeQLB9\ r+89XBM+5DHfQYN+\ oz+w9Jxns0pDs8Em\ 7Rq21Xq9PQyn5T/j\ ztUkbueIyWFD41sk\ y 2xqttrsXbB4r1e\ mZtvAvWN2QtEmUjN\ EK5sESohPi9Sfi6r\ 0HikSiRDWU2dSXdC\ GaOiK5Ecoe6RKR r\ hDL0rK23pki6DKwR\ 0SM0TLxrgL7evN89\ LEZspbAr2UldmV05\ nyfTx8rYoURXhiiS\ hIpSUQUBQRB 5KTn\ cU1foWVoKTU8m+SS\ gzP0+C0/Ik2kvjuP\ PuGQOlRk21CG+3yH\ X7cDDCOhL86xOvbJ\ GtkLCosx JKpEHIE\ /56JtPjOaE3khQhS\ 3rrnnPElSBIGtuTS\ 9KQ2rXmFqbIJcrpu\ dg4mF/sNzJSpeQI+\ hsrOQ XDzHx8bwHI\ ttOy5gczbFeMXiRG\ 3xhpiUAlX293WxMF\ 8iKNts0UQCa56HcU\ mhoW/s4VfQIGiM6z\ d8 jNZrx79eNC86X\ r9J5v65s97KO92gL\ Mip+F36qlqq0Uqdl\ 5uZNoIUNMZzl76mD\ xr4pcQoUZRE4sbZ \ KGtyS5gcLHj4JRtl\ g87/+cztXLBjJ/fe\ +wAbN23hi7ffwXOf\ cQNyavEH+KMHHuCS\ i/exdWdSAv+t G3+\ T7/34HgD+/TtfIZ9\ O87/v/FyyLUaK+35\ 8H5dfeRWyovKql78\ Cx3aI5yuEfrh6TEc\ Qd9QcLYWo SsQybS\ 0sf8YlrAcde/7NbL\ alTz/65hTudHJh7E\ SUglkPr5xUnQRNhD\ U8TOSCilf2ME4jSW\ ElIHIj 5HR75cqeq\ KNkFnUYO/vSfK9SY\ 2930lKt78qjT9RJ/\ 6SI362vm9CsBMGPS\ T26gLs5TWjKaCet5\ En5 gq4123rNzxX9\ mDnH567GoIAXRuzv\ K1Db2/2kkLrzWBmR\ JmKPZEmPZBOx8KFi\ osX8GYVp+3mlJfA+\ U4huhHkgMep1N6b\ ZOFrm2O7kPLp7weZ\ L4/PkizG7e0zq6yA\ FTQKwlACFpkyQ15F\ LDqlqROS5aJO1 lp\ +Q04gEEusBohchBG\ FrlP6JICExuVbc1+\ WxQWVQ4vPj88m2Rj\ E788sdy5sdBbEeIV\ eSCe1k3ySC vI4zn\ D0r9yNlLhGZqzMWr\ utQn3YxtiaRIl4pq\ SAtzWmD5HrpzbvLJ\ ARr4fRlz3mStKeQJ\ SULfPRv /oIf/ehe\ Ri7YRXVuFjcIef0f\ /wl7t25lolRlKJ/h\ vh98n4/93fvYsKEf\ xUgzdvQwz/3tF/Gs\ G5P0 +KVEiYKK36P\ x8Q/dxoEH7qO7e7H\ 81z80xM1v+iPqu0M\ emimxI69hqDLmwRL\ KvPiklPyb62ye5E/\ 0 xFwqMA/yRsd1Hi\ 5W8aIIL4zYnc9gqD\ K2F9BXh637Fp/WIy\ /Em3OW6WnElIzWIA\ NN351mlUkh0erE c\ YycS/bt9q98iT179\ vDJT34SgImxUSZOT\ jOya2uyPlHGd10ka\ VFvlJIXt6Nac+nr6\ 2J4y1Z81+WV L7+Z\ K/ZeRhD65LPJckpG\ JlBCsISWaWMURi3b\ gNbxnndRVonTaE6h\ xW6EdbiKlFOI3Qgp\ Ja8pilxK zFrkquq\ BHyP3qtQeLiE2cpW\ klExqewbrSBU5pa5\ qFgmJQaZ2mmi+abL\ Wqa2XCLYXycl1hsr\ DvtKq JsWKgDNkol\ Ud5BkPbbzWJto/U5\ iHSgQ5vXU+B7kc+r\ iFMucQbl57rDfWBA\ Q/BES8MORN6Tyzjs\ eH Z4rsKmRQ+lMoC\ 6uPhp/H2UWnUW/42\ ZAkgDhKcujOFMqcS\ 6RL1Bt+WsYo+OWAS\ cfnKwfn+KViRKRL \ rams9aKpwVFnZLTJ\ WotcyEUPbc7pPLX2\ JGhavT6NWC2gj1UQ\ 3RAlp5Lu14jMxanr\ xI8peeBtkjdI Hp7\ DtI7fbazZ0lRnXKR\ 6QFBYuSW5FPJCovW\ t785z7HiZ36inECc\ qWGFMZAf4ZY/u6wY\ 6vlcfMnCP W09oSu\ +cJkk9hoqpK/zjX7\ wLgPd/8jMIcrLL9/\ 3g+9z6xtfz1x/5BB\ f193Dvgw/yT3/9V9\ zy3n9g 49atAFj1C\ n/5lreiiAq/8rznt\ bfeih6KkjzB/9pzn\ 8+vPv+3saKIlCiSj\ mGzqjCiKCwEi6zUG\ zDR x8pnnSRFuozR\ iBnx+s0nTJCMsTpy\ yV5VP1V0fPoFkZfv\ 6OUeJ+b/HDuFKolI\ 8wGvvnqwbVlv0kHt\ WX2aTUzJmFvS2BN\ JxUqUFg0bVd3k7h/\ +kA0bN/Ke9/w1AGH\ V533/64N8/su389Z\ db0iOQxSwZ8de /u\ 79728Jsh85/FDrM/\ Zdchnf/Po3eMZVT0\ fKJCJpCZmpmSkApI\ xCaCeu0qIqtVVu3C\ kb70i1NVkW uxHyU\ Ofj7M+4BG7SZ1NzG\ uKgSOREeK5LaAVYR\ 6ooWXVF0frpMIbMJ\ Mdt2iGcCpFNpSPRC\ iwPyVVW 1HlBQ6h+\ 2pOSN+mgdHcmfLEM\ sRNB4z2SLvGKXJ6/\ PDzdmnKLFQGny4Cu\ xIdFWXAeF0kS/Bix\ HmBv a9c4xbKAZK3\ e/mzCHsmhj9ewt+V\ QJYlviBHPGcrw3Kr\ KN4tVCoFEvM5U9PM\ 4+wgNCdENz3pF/Uw\ g iPIZfX7R9Zi1Pf\ JhxPCS171+E61q88\ k7R3maqLRG+x8vms\ anTSTX8Z8umfTzCv\ 6l3SglH6kaYhyv I\ 7pVoobwSnRDIk3C6\ 0vhDGcJDWldx/F02\ 4Egq6GPVfDXGOcHU\ MoR9pYURdcjl1e4t\ E9HjAVqoyUA zC0r\ m2+KqoS4ysDKSpBS\ Mt6Mi9p3jgu3C5rG\ 7NQpHvrRD/ngZ7+I\ FcQcnl+g29DZf80v\ 8bRffRbf /ty/8ro\ 3vJHPfOTDvPj3/6B\ FkABSZpb/+s5b+eP\ /71X8yvOeR7eht6p\ J+lgZb2cvppKcIAf\ +45s8 9vCj/MmfvB\ UAp15F6dMoHQlbOW\ x+XiHlRo+73LsWzo\ YoXJ12UKfry9Y1bb\ lM1iwMJ7nBxFHEmy\ 4Z IHZjLvcjLshkq\ Aoi3YMaaaPde6fp4\ LwehGWf1M5M66QXx\ STK43Of+yI3Pe+3k\ nUWS8S+xO++6AW8 \ 5L+8jLe+OSFJbggj\ u7Zy/TVP5wUv/B22\ LomNif2I5z7jBr7/\ ne9y08tezNCmQSZO\ TPGBD/xPREkh Fle\ /cTarLO6UjXW4itK\ lLSvjhhU/MWvUxGU\ eRGJq0b07soJWm3G\ 9ZElUJYwhc8VRfSW\ rYh2roHfw WGtuZ2\ QFHVuEURitaGCnmA\ r+vNf6fzEtkSoF/N\ 7WXg6MlTno1tm9eV\ FUGpoyyvz6KjXNqJ\ rmeRYr EmFeRS65h\ KnkeMtlv3FhXV8Ic\ 5BT8Lt1zIfmuWhzm\ qOSzbvHykQhbC+kw\ fKJxZ/Nzfk8kqpJk\ FOR y/5ZE1GfKfy8\ gjrjEqviuq7DExWL\ m3f08bn7poHF60RQ\ UNlUcujb0kW159zw\ uGvCzyv4eQVnSG+r\ Hp3pd6bOuCjzNnL\ ZW6ZflSsuxlh91da\ rUkp+//ZwHwVgpuh\ h7kkqdWq/jjftEAn\ xqi01ZYOOe7zz wM\ pKkHtV/FMOcI6TJF\ OReejwIXbsuhBBlh\ krlbDDiBM1ix5DY9\ /+/Xz1C58H4Mijhw\ C45/vfX7ae aqXC7\ NQpjHyBHkNFdCJET\ UaQZep+xOFvfhtVk\ yhVq/zxLbfy7ltva\ fnwbDN1JusOg2Zyk\ ff6TeSi d9ZIUnIy\ n504BaXkY4xV2k7k\ ouMzUalzjajyot5u\ sl0qx6OIYV2l2Z4O\ Kz5GTSE3oBEuJDd/\ QROJ 3QiloC7z5Om\ EyAtxxq02grQUt/z\ pO8llMwS+n/gUpWQ\ GNm7g85//LAB33HE\ 7uWyGKAr4b294E3N\ 2 BdGOmCvNc+tf/D\ mBlVT9/ubWd1OLHY\ qnygwOdaObyXs+86\ +fXNcx0gYNtEEDf8\ bFGbcSx+0hs0WQ 1\ jKphPY249JIkvX2z\ eW0vOzJSMo32paNS\ mfT/FGUElNN23aIo\ hi58UQYzvkEXhJVo\ q4ydSJ3qXgL 7uK2\ qxJ+4LEzgD3bu/jX\ EyUeGSsyONisKkmI\ 9fXlFqqzCSGPZQkh\ CBHcmMiUiWURyYow\ jpYRghB/ i5lUqtY\ Jd9AgyGukHl1g17x\ EfVeeWBESl20nJEy\ ftwL4WcIeyZK5PzE\ +dYYyuKrAQcshimM\ uzuoI orzuCsXjhd\ enIbrRmmTJ8QN0Re\ be2QpmSgF38dxuVl\ 3OdUSaeEaV4eS4em\ iTybSeuzHdalGeqF\ os VDysMGL3YIrNB\ yu4gysPNMlFr2Vvc\ LhU4+nm4nZIWQUjq\ +CO13EmbCRFWKZLg\ sVqkjdpt4wy19wH \ VWoF+Z7TJCkOI1RN\ oVJNynLqkqdoQ4ip\ lUvoZiK8S6dMnv7M\ ZzK4Zeuy9fz4ru9j\ 5lIM5k1KnoZg +/B\ LJqnGU8UV11xJNqV\ x6Mgov/fbL2x773O\ G8/zVI6daJMkdNMj\ cP3dWhYvalI1cdol\ 0haCgPq4L THNU09\ pVaL13opJUzd6eyb\ Xd/HcueV/ohbgzDt\ pGI/EX2iijklRcaG\ hZ7Il6x1R6oNVG3w\ Gq9wAA IABJREFUE\ oKkxNmcGNMHjcQAM\ QrwbBvTSIwkA89pe\ Sh5Xcnrnpv8GYURs\ RVy+7e/ymW7LwXgt\ o9/ hCuuvgYpo+DU\ k2m6dE8Oczj5Ppx6\ 4pllGnrLIX1dx6tP\ AykRPFtHqkROSHrv\ mZNVpU9LstEmHeSC\ iqgK0GgHrUSapGy\ SqbaUJImqhJxViJw\ Q60g10VANqUReMtY\ PtCwLgpKPmBIQBZE\ gjNY0xRQ0se07 DK\ 2g9f383p5eTto+X3\ twjhN5nyG94fbtx2\ sKuNXpepsj+1KYh8\ pEhoS9Jf+4hOBhKv\ Gj0cctMj+e IzJlx\ HqAu3l9rsTn8eQh0\ kTKV/dhjNWZq7vci\ 4+hSVxaSDGLSEFTm\ DlVY9bx6dUVNhRST\ wphat78 m2SpU5Xk\ SKXOS7f1ctvhaa5U\ dUTHXWFt5zaaAu2l\ ELxG3JHfyApt/LvZ\ UluqYy26HmPlOs8a\ yLMl k+fjR2fRUjJ\ ev4kxWmmRqNMhl5y\ WWL1a8bj24vapwcg\ LidwIfUsK59jK3k5\ SViXyoo6TvSuhGeR\ 7 TpOkec/n0iuu4h\ //8t1MHjvGzq1bKW\ gupiIjyBLf+NKdPP\ sFLwJg/y9fy+jRUa\ 694dlt6/jR17/C 9\ t27GSx0Ua0Uedvr/\ 5DAdnjju/6Cy3cnb\ twberq4/LL9jGwdY\ c+e3W3v17Iyv5pN8\ bX5Mnu7c61y s3mw\ dFbctpv6IXcwjWSF\ 6GNlgnyjNbQKQ18K\ 0Y0SL4slkwhTdYds\ FPOqC/sJKz618Srp\ zcurJO64 1SJIbfs\ 9aLQIkKwlxouiLLa\ 1ltypRJAXRTFGv94\ SLEdeiDfptLLRREl\ ElEWiYNGKIQojoig\ g8hZJ TVgH3dCZn5\ vj7//p7wlDnwv37e\ Pl/+XFrQqLlJepHp\ 9HzrWH3S5dz2qIvL\ AVvKs1g3QFYU2isR\ ri IEbdqBM7EX7Jb\ /OHAlqeRc39dsbqq\ P2dvJdUIi9oI2uiK\ iH2SS2dUrDgERQ95\ JxCYAUo5toXjGZG \ Xljx8ecTa4Y4WCxx\ 91Qj9vWk+DfXbpsw\ 6xSG2oRkRQhuTLjC\ 9GCQVZEs/wnnqTmb\ U/g9OlLNxy+o 5/P\ Zfo4gOj5FKeY3N3X\ xL6Mz7Bju5fbjc0x\ KNnlT4c0Xb+K9Byb\ ZVPafVGLbJEvygt0\ xL06XBC4t GJTmQz\ T98YWk/qKiaRQMID\ qLJClachyak9uQtC\ CX3nea5OjSgsHbL9\ rE92Yq3HZ4muGcSa\ Yer+nx FOkSghdRd\ D2GVLXjtLEgJ9FTS\ re2YrVIzicVp9AXi\ fyozXplxX3XEruUc\ 5sk2Q6bsyle99//m\ He9 5Y289HV/yL4r\ 9jN3YopPf+iDFHr6\ uPr665mq29z0ij/g\ T3//Zj4GPPt5N6EY\ Ovd8++t88VOf4h1/\ +14AfnT/Q1ywczu\ bNm7n3ru+x+W7d2E\ qIrVaFU3X2LZjhKO\ jo2iyyqbNm1pViqt\ 35IgPhny9QZTs xj\ hsM5XZG2gXWzfNIZ\ vMXXBDpIZhYpiSkK\ yw9adcsk/zRzJbIr\ nM/XMt742VyFIy1r\ qAszmDtyTq ojxZ5\ +VXDuJNJkRGEiTs0\ TpxFBE5IWpBI3Qj1\ B59GUFqrbuho4m8k\ GDaIQojwrEAyZSJg\ mTc3J/3 MDYabSes\ qEotYXLkhUS1kLDx\ A20GsoqSiDNWbyMU\ UkomLui8+hU3t21H\ 4Pt4Tr21brmgJkTh\ cRAb +6SNrCR+Q37\ JR07L634y6YSmJUD\ gBm1i9cgKCO3kKck\ Zt5J9a8SjaEOdS8a\ iLuEXV9cDyV0qYlp\ q +SD5dR8xLa16wY\ jCCNGL8N0AAVrWDG\ 6j6idoIhu6NLwTic\ Hc0gmzFbej5BLm20\ mLIiR/9+M4Gf8f r\ 8H2VXdnXQhTImHqf\ PXo5w2iE1LvkrimJ\ 80FOYNtpsqluSGsM\ CQlSZxwPE5YHlJGZ\ u8MxKpIHAVU Q4Ew\ DJEkCS2McCWRjJT4\ e61XM9NJFxp0Gcte\ z6sKj5YcduXT/Nvh\ U/SmnjpmpM3uwpla\ Njh+QNHy ma3b9KQ\ 03n7RJjRB4DPH53i\ s5p6RC7ffbaDM2xT\ 68twn1jl+tMKWJZm\ foioRNx6elW6N+pE\ KKsu/ o8gLicPE4D\ eyQ7yK03qfIIuIpo\ ycbydOgiQSlLxzO+\ AWaPkfjY+Nccc/f4\ Tjo2MUCnmefsOvc+\ 0N z6bu+BwoVri8N\ 5mo+fL//gQ/vPtu/\ MDngp3bed4rX0u+k\ Kfu+KRkgb995zvw7\ RqvveVdbCwU+MYX \ P82/f+c/2j5zYOMg\ 7771lmXtm0/fN81o\ HLJtQ8PromHOqI9X\ cTZnUKfrLYIEjSRs\ vVFd0ZMff5SS kYs\ eopMI6ZrVqIdmStT\ DkGsGFnvkSycKTid\ Lzc8xDywQ5I22H0E\ 8XecxNeIdezuPVTb\ Zuj1aR07L 657SWl\ qFUXSFOI7X/d4mml\ Ed+qABsrDyVEPDoX\ ul9tl6Qm5PR1Dy8a\ veiq3DM8VqnklL4Y\ zVieXE P2q141V7u\ ERgeeSvXMEqfAmaL\ bnQSWwKVtqGZlVP3\ ajjz3mIskjgBsgpu\ U1rdvCxMp/3bHbm0\ 6gz Luq01dICdYJc\ 9kkdLOENmvg9epsH\ UjMguXnOnse5idzd\ M9w9oPK2qza1uVYv\ hRvCn//kBLoi44Uh\ URSzOa2RkwW8COw\ oxoqg5odsNnVSkdg\ SGUfy4rVUEOUW+Wm\ 21iQ7RPCiNmK1NL5\ ksyFx10yVtCxw dN\ Zm93Gb9JUD55RAey\ U0g2btkRxen4bjBz\ wwXyGtSHTpycOlIU\ sYooiuyDh+wJzjMW\ O79Bkau7Ia 1/SkK\ agSdy/Y3H58jg2mz\ qBptLlwr1UhbJolV\ y/twRIjjk5WuW5bn\ mdsWBJ0frRGalsim\ /FmXMKy RywKSIqA\ IImEVkAsCqjdGnJe\ SYaBZIUo8BvdiJCw\ GhDVA+KQFnkKwxAl\ pZz7JAkSt+2RXIbU\ aTES S00il5pOLkX\ d8TlcrhJEMRf25Mm\ VA/wejTgImK95XL1\ p5UiGZiVpKb56tMQ\ Px8ts3ZrDUJf44TR\ 6 vqHRaKuc9kMsOj\ 66KLS9p4mJisVIzm\ S0XKdHV5ct0yRLou\ O3zL5a27g507oRFR\ 2fU+MVpF6VV2zr Y\ cBYzvDDeozX8K1QT\ JmoUe1aryAOkpaPt\ +CeMUlpoinybo7jn\ 4lRGCQGjK7ltRlbr\ gdnKrBeC/ZE fRnZ\ WOlz13OsKg/OI5vq\ msvaE3VESWy1RL1J\ BzmtIPcur6z5My5R\ EK0ZjbKUJEGiKQJW\ jSyRyz7q rI085xK\ ZMl7Dw0gqeU/Ia+k\ 8fjGQu3uG+4d13rZ\ /cNXlHiw52FHMUEq\ mR1E6EqpPjM5hRzE\ zDd+e mucjC0LL/N\ DxAy5TTAQvap1XzR\ v7iC2hzDda/w0X6y\ 4puS3Ox7AQBGxY8A\ jy+s/MBPOngaXGwe\ 7G LGFm0cnb8QOEK\ OBp/VkmLI8ojJm0X\ Ga9CCuM6NMkduYM9\ hdMskssNiYdn384e\ Ir9fY2A9wb5OhMv \ P/NgqRV06/gBlXmH\ 1122ofX/S0nSUoQV\ n8iP2q6voiijGkbL\ IqbTPXrp+91T9rnd\ bmui4gU8MFvE kER\ MVcYLI2w/bIsk8eO\ Yx0pVjpVrGA0y5Yd\ RWyTJgYdP0jXvYF3\ SwyNzFf6zouEUxGU\ p8rByBeOG bXkuHj\ T50N1TqFmFrrxBoV\ klapqueQETxTphNa\ SkhGwykxvUbBhCHY\ ZMg6wVM4fHZMllY1\ 7jhlDg mKLxqWrih\ ty2LQ2zMmOsTgAts\ 7OlROyhmRIXWyLPu\ XqwIzmC5GYtiCLqJ\ h1pCVGwR+vr9qHw5\ 138 ooe+DmPAlSCq\ EqntGZyxeps+aL0Z\ PV7ZxXycBG09BCko\ +cRe1Mo7WwlCAJKx\ +voiK+g48t9x2yQJ\ 61iiH1iNKMVuhLY\ 9udg3W5vWkSoowrL\ vUEpLhNPt53LkhRD\ E+CUfpUdFVCW26jL\ eEmGntS1L+uF5 9H\ ELZ4XvuhmIKmxJrA\ DUaYvIkKhe1nNeO3\ SOo1nJtuQYN2TFSh\ LAxfm17R9eMtIu6J\ 10/BahmnR8 PnBom\ tCQmDdiJmZLdOkqV\ hhRrXjsno8J8jqhK\ SP4EaIXUmyc8iLQg\ 0iQ18/pqmbm/sRZO\ 8jrK1rJ zAcx20yV\ bWbzYWrla4wbwl89\ coIQgT2FZLmml9+Z\ mh27/RrGcQt3o4Gu\ yFS8CG/SRu5Nrj3C\ CikD Ulbh9NNKlBW\ sYol/eeO/8uqP/UF\ rCr0TBFlAVKSnBkl\ qwg4jbNtbdRk/jvF\ XEPEqCw4L3TqeF1A\ r eYxc3AWsTIhWwo\ Ch8PZf3sJDx8ocdF\ xGp2s4cYwgimgx5B\ WJZw8a7BlJc+qkxU\ EirlOT8Nyjtsf3 L\ IdH4ogh0+D3R7pap\ CZv+ww+bPHQTIl9f\ Yvi3WnLJStLGNDKX\ GsdEy/gYKnKTZkse\ 3oUmPOx8ZE1 CTEv\ I6lSa7y9k0AbwBgx\ k9bbGid+sODhF73H\ XUE6HfpwMnofR+BM\ 2Wh9+pr6IHuijpI9\ cy1S05V6 LbhTNpI\ uEQUR4WSiw1ppf6M\ wWpPY+SUfNbe+7Y3\ CEH2DiXuyfsbHuEk\ 6g2IizJZ0CTEtEXk\ xckFt Tbc1q3ixIi\ CKQquiJ0oiw6ZG0f\ VbBpO1vd3JZJkurV\ oVihVhmZHeeZzbaA\ 6wDNdEbnlogrSa/G\ 7D MCCjqjxzQ5a0I\ tKrLf6es2dgArpxi\ Zj4sapLEMc8UKmwO\ a3xml39PLhg8fS+L\ O+9ZxLR9dY95HIu \ QnQjRDekfPVim77o\ ekxUrFab0wsjnjWw\ /undchgQIrQe2Jv5\ dI/Hyy8yNUS32jIA\ PWUkBNuZaOhl z3B\ 9sq4R1e01l/PnXAT\ pHJ9u64SsKpNVVSq\ eR+U0MtQMuHXCgLn\ TyFRiqOVhj2QpOj7\ 7siZG+rR4 hzMgS4\ oMl23PcVnj3yUvxA\ 6jZVWcAV1hoyEhpC\ UkVWI3Brvp3MIYMB\ Qu3t5DeqrCgWMLrd\ evSOtM eB73+R6m5\ +KfSqoNrhOwQVV44\ 3AvPaelx8d2hHfCI\ Y4i1JyWEAtplYuUI\ uBN2oiG1FEI7M+4+\ BUP rW99poDrRZMU\ eXPOugXUS6fkzhT2\ RB3FVJaJvpvhtKIo\ gEOrwmJP1DuG+EZe\ uGb2GyTj9mu1utrX\ G6AU1nA3l8SO6dh\ N0hnUAsS0RFgKCOu\ LlSzrSFKabo7/N/c\ jLAWMyzFHp502ch4\ rAtbuPKmDJcJ0 95\ rZa+fx1II9kmXDgS\ KDbgj4RJpEpEtYes\ Q3Ts4mFXBiwrSAF0\ aMZHRetLXnjMgSwP\ 6CyeGyzUuH e1sVq\ 42DyTVUD+Pkc5+iB\ Ama+Z/JgTlcqrHZ1\ JmoWLzzokQr5oZww\ vGWVJBWRlDyCYoe6\ ShGlSQc P2joxLzH\ bXacdFkkJDtkMvTZ\ L2nIvSqqKiUVpYJC\ sLD+QRxZ1Qj8cMm/\ k+urKIqtAZ/IC5FS\ CsjC U4skZVWZvT3\ Ni3iqFW7bxOW9uVZ\ siS61h9pqUzZev0m\ kidQqDq/dtRnFUJY\ JhFfrca6GvCqRX1Y\ c BNGQ8OsBxjpPgG\ sKCtcUuvGDbupRiC\ lKKHLDz2jcoqxpzA\ HCcJ4LsjrKSmeAse\ gQ3SQ4qRWe9EM7 I\ HZDxJyGXw8QmsLJR\ quySQYETcSdcVCD+\ AmNzJ8Of8ZFWmerT\ evWGplsZ4Zmi8+ds\ vEW3JbBotan E7sx\ QS2pvp1OaERJRNTF\ lrYHEuIjpeQ122jr\ rV41IZuJ63bhypV1\ QND4HuZdjA7HTMoq\ CLqIfdJG y2nI6qJ\ beidiFTsRoi7y4/k\ qQ7kOUSk5BWcki/n\ QPPV954nSeSwi0kS\ ql3a3TfMKXoTqR+x\ 2ArBi Il1BHk/yy2\ a9mL9+eBJRFPjPm7\ q4ep0Go1lZ4NXbl1\ vRP1hyiOywZZnyVI\ XgJZlzh0s1LixkGK\ vU uWlrT4tQahLrI\ kgA1vEKQcVDzqq8Y\ WOBd03MsKeQWaUxd\ 2aoej6Xpdp1oWJKx\ p+rr/ueIkoiYYMk \ iZ4MXswPP/tdrnrp\ tS1RN0EMeYjU4KlG\ kpKD+JoXPI8PfO6L\ jYpSQm4MSUSQZT76\ N3/BxU+/jl2X X91\ Gkpb6OTRLwze98CV\ 85Lb/yeEjo3zhjtt\ 59623nPVtFtISlNa\ XW7UUikwb6ZIaN3n\ f8tgSxJhp BWmd37\ 7Sp+FXVm5TenNeKw\ A2sZJcGf6MS+iEZ/\ XE8yvrb+GJKZkotM\ 84GboJpUclHA9an+\ dO2URh hLGKoNNbI\ paXNRmpR08qX+sgd\ uupNjURVFwkTVq1o\ hZZAVEYIa/y2aIqY\ W5JLxOMd2oNemWPE\ 10K 95XqLXHmsmX6\ NETHJPXoArW93ef1\ RufRhmZ1IdLEJDOs\ HhDpCqEpJ5Nnqogx\ WmZDv0lhMIslRjy0\ UOtIktwQ7i/bLDj\ Jb+6ElfxpiAKP1ZI\ Hm7yqkJYFxmsuV2b\ TBJmnlvfR6Wge74w\ q48cxb9q19nTs Sp\ iasegdziA6MHm0xL\ O25HmgZNP/BLex6c\ vkhac9ODZiwZQebV\ 3VpCjwaVYGgrKP6z\ iY/RmOfP8w W6/YQ\ f/WDSDDfV+7h+4N3\ Wy7dtdTiyQ14XrLK\ wnBEvGX57aTEqXkE\ 2mJdf205XKRuXhDt\ BvLWgsV /IpPh2LQ\ E4KkSsTR428PnY70\ rjzVB+apPjBP5qKu\ FT2Ozgh+nJC59Sxa\ eWKi7WXrm3fXLWxu\ Qh80 cMatxzWpZh2\ uktq5SBzWaoV1+v/\ IC1u6n9XImqhKy4w\ lV4I7ZRMFEcamlcl\ iZAU4UzZqj76mfux\ M qnOfPrbArsLqJN\ XZnEIIIiQr6OiwfR\ 7nAUkMBUCkikj1AK\ keYA+b+D0axmgF84\ DDqQGNICPxz8dK L\ Hg+KRFm3JAwDPAjS\ EciaRcMJyLbl8IzR\ aJSwDUngmRCLS3iZ\ uGqmoJcquMMnfvRI\ qtBdHz8boOC IjFV\ t4Ezm/ptohLEfFjw\ 6Rot4ZgS6SmLedVj\ TyHTapc9kbZm3OjW\ KOkOHQ1ZILLDhmFk\ 3CbmFjWx FTGiGQZ\ iX+O6lhIwc8l1a/M\ lWymfmqd/6wbcBZu\ NF2zm7k98hx3X731\ qkSQnbMQzSMlNqcf\ QMOTk 73bQMG5MZf\ CcOoYQc3FXjpQsUK\ mWOdJvYkgiYRxzYR\ ShZBVUTcJzLAxDxY\ nXr0dqta9WqX6Edo\ B3 cpHM2aN1JE1E6\ lXbJsvOFJIqkbmoi\ +pPFqjcO0f6gsK6v\ IqE1cZPGutdL87WC\ D3wuITgYkpGSsm4 \ 086yINqV0BQsG5vN\ s7L9sRuBCe60c1Z8\ l2I3Iqj4qJd01iMF\ sx5e2W3TE62G9VTn\ wopPYEg4cwGp Rnb\ cSctl3naWTVgCyGU\ Hfx05fufx1EVoymi\ TNaqXdtNX9XEfKbZ\ E1fXdedQZlx2jZcY\ zIr4is1GR SZdctr\ hL3KAb2iYA+VAJey\ SHMVppZYBlTtTJNZ\ avXtqzfCOeYgiyGs\ q8jd6XZ65UY9Lx24\ Tv68W9 czW6u3QuH\ XOobu8ic8qnmssh1\ c9MNrASxEBEVSXmS\ xaDzcQBP0qmicMI0\ ZQRVaGVi9lxHaKMb\ Cik silOPjTBlit2\ EPsxru2iGTpiWkJL\ GWzsz7DwV0XgKSjc\ BpAkGateIWVm8WpV\ 6uUSm7duJa/KZFUF\ p16nkNKxiwv88O7\ 7uHb3lfj9Bj35FDt\ zGTY02m2apmE5Dpq\ u4TqJ03Ew63X2m5l\ 3Cf5fe2ceJVld Z/\ nP29+LLSMys3Ktyq\ rMWoECChsQKUBFQe\ 32qI2CMt3qHD0gIh\ 4Ul3GcXpyeg9A4Qz\ d269hqq9NK e6Y5L\ aJM67iMCw2IQlFAQ\ a1UUZmVteQWkRHx9\ iXmjxcRmVmVS+RSC\ FTcc/JkRkbGL168e\ Bnvvu/3 fu+1Qipu\ iJJRUdt1rAMltL4E\ FSui4kVU/IjAjsmW\ oEkzRu2Dgo8/4a1I\ oUoyZNLb2ijvKVB4\ apTU +hzGwPwn6oo\ 794FeiSJCL2yIKKm\ t2rxZbotBWPQXXUW\ qQUrIYAU4eRe5PLc\ 4OrIC3HE3NlxskGA\ s hJq+KbIChMn5s+\ 1ESWyoNeiMmuhdpx\ K4Grmrte3Ccrjga2\ jUdsDJu9xTLte1SL\ vGJ7HHPC7qb+GY 5\ dI9zXOsFkPSrCI1M\ R+8Dg3j4CTpJ8dxq\ 5850ysQXodG0NJOx\ 1h8AVlRRJxcfJzNl\ llZ8/6Z7hot ulP/\ 62eyYLsGv11DH4qn\ xzZlU9w3WOBjm07V\ cM2FpwoOPxyO81E3\ dWaIjvp1MXj6yTEi\ TcJvT65I qPumbIp\ fDRY5l6nWflj0Zg2\ 2nQ017fDrbriSH//\ 3B2ntzTExnGfDJRt\ Zf8WWeOJYFBk7PEZ\ LZ3yh d0aSJFXXyI\ 9O8Lef+xz5kRG8MG\ Dj2Vv5/O23o6oatj\ ulIfnq3Xdx+TfuZ0\ NHkh//5GdIns3517\ wN gFTCoFQy6VzVR\ hS5SEmJyngF+6A5g\ 3SERR8/76FkVJQ10\ 1pNfgV30KpXaZS0Q\ mIOU0YhIVIZiyBc \ Ge9PSZVIbWzBFiXc\ MXNBkiSIc3+YaB06\ 3gkXY83CbbRaqvxS\ NUHT4Y97qG1LE4DL\ WQU5Gyea1aa2 Zqx\ ddcOGuFyr9DTuw9Q\ oxISM3i/P+vw1RGG\ 04H6yDpTiyJJWCet\ ACVESqchVgeK0MNq\ acaR32EfP aadU0E\ RRRlY10CEy86dub/\ V+URKJwoj9HSKrwn\ jkHyARCFy4KsVvC9\ YpIm5lzCFob1aRml\ gYpQva 5zXWjTQRt\ 0HzWj+rnHJybhKjm\ Yg0Ea8ziXbUJupPM\ lE0+fbBMS7tzLA+q\ cbWIKaP2mEgZ2V2e\ RWO FE3KlVjsDdCX\ 1EmbFfQnx4n02IQy\ PDtXX3/Z26grKOM2\ khlQsjzMwTKCH4fQ\ hm6IOO4uaMpbg2fb\ bLzyHDa/8fz4dt5\ GTEkEfoCq6VilPD+\ 64/u89gNXAmcQScq\ oMqtT8Qe3Ksn8149\ /lBs+fDMXXf0W AG\ 6+7hos30dNJSlPxO\ Pzq5ItdLZ3cdTLs8\ 7T6Vm7li/++X/h+m\ veFqvgtbi1oeoJfD\ 8+KWldScSC HRsva\ hKKLuNNurN6DMmr1\ FmrTiejNpk2l0/Rk\ lEd6ReWGdooZRQY8\ wjtoKHtU9t1vGFnw\ TiOuVCL JlEyKt6k\ h7GM7LQappM260Ap\ rvZ1rjwxmg2LEWef\ jGDCw3qhiJxR6mSo\ Fp8i6TOn7WrGke5R\ G3/c O4UkyarG5P4\ RSiWT3i19+Din3G+\ Pmxx9bggv8NnX1cl\ rOnPsKZRZZ0jsEEK\ eFsUZNgAQO2sr4xb\ 2 wPxTd000AbWR7y\ aReTHh9hhx1UcVOa\ 89zTgB/+v5USQqrH\ 3O5Firxh8fKzERuN\ yviGzoSYEusymb Q\ in46Ltih323N1X3O\ 1up9zAOcXcIsno9j\ mtob542BIzuFFEYU\ npugsy57Q0ZGkdRg\ GOWkFUDVdP5 3l9+\ l61vOY/80ASp1jQP\ f+fXvO5Db6Dv4gGi\ 6AyZbjMksT76XwkC\ yqbJZz97B+su2grA\ b375SzRd x5Bkcuk\ 0Tz2+g4SiUJttUwy\ dFyyHs/oHsDyHRx5\ 5lMsuu5xiPk86nUQ\ TBCxrypxKyigkMgr\ 2kIU3 6SIb8rLITT\ jqobZoK0uQWJyOCJ\ iXBMktMt4xF7klXJ\ DRy1kFv+QRFv1Fhc\ MGBb8+FZbYkI49eo\ YX Z+Q5GwRNJCwEi\ B1T+2OxmXLLwVzi7\ IUsACIvZPyZMZJdS\ URdqhO6WpVsLmg9R\ uxWPu6iraoGCUdx \ wG4UVQiDCCEhYe83\ Sa5tqd8PEJku1oTJ\ QV/n7C0JajWwF+xw\ xnSb4Mcu2tpwCcGt\ 4PUkm622Jpp4 iSL\ SRKwtOdRjJvpQCa0\ zSVtPrElMKx6rRJn\ 7o4DJLo2LTYXM7jL\ OmjRysVD1D1w4h20\ pUAo+ouNj np0j0k\ TUERfJdhhTVLZctI\ qg4FPeF1e9rcNFMt\ nGRfiBZyMrMtf97f\ uAuFJeODLCOW/Yht\ yi4Nk2 sqqdGSQpW\ c0y+/zHbmH//v04j\ sNf//WfE1aF3Ju2n\ stn77wbOww4Z/t2f\ vCDB3jT665AkCSue\ ee1 ZHNZxgoWbWkf\ WZS46667+cu/up1z\ zt3Kli1bmMznaWmZ\ pfzrV5ANeVG5ZrMh\ sIM523DLRRiFCEED\ LbwFxraVNg0xIeG\ NeQTW/JqjYMKLE+h\ nqWbMhlqbCJgxkba\ Y6a95tz2t4o05KB1\ awyaPLwbcEw5q +9\ zGkNa+EpohE1gemU\ 1zfzjE3h9VP68gQJ\ RlUpt1BAcIQEor9f\ 14/OgIq7f2UbFCMr\ 1tSNPMTY8d KTGWN\ jDXd5MZPYGSNRibm\ Dzl+fRBC/WoSZSU8\ dcmcdN6c+y/iSZe4\ ohbk9l61mf6ybGqN\ 6CEPZBh I2CJEZUO\ GSunoR8q4nUkMM9q\ 3Il7sVCPmQQZrV6V\ elywOatFY1tFwd5f\ QslpyAkVEnHbzDlk\ LqpD 4ZilutehKCu\ kOrNEUVT3O/Sc4Mw\ IuDUkkQs6W+u3K0G\ AFVRIyELdPNLyQ46\ UTTamE+QScVVJNR0\ m 9fh+zS5z5913s6\ anm5s/fHN9rcD3Zp\ xUazvXHorrUI3odO\ ZDbcptIc3QUmEdKO\ FN2KS3tc1ZWVrM a\ 7EOlJASMmFV/CsnZ\ CRDwi/4RGEUa2ckE\ UETUbJKbGo4D6Gqj\ a0rOXXWCtVKhc7aQ\ 2b9ZyWtNla2 rYqi\ p6Om16n9XJHjjLYa\ BE2cOVofVeYM+50v\ 2La8q0BgeYiadEqo\ razqREFQr/7oyTRW\ PhZWJnJZ ojBicv8\ I6fVt7Pj+b9EklfO\ vuQiAX9zzI7S0wfb\ 3X0lFivg//+17DO8\ e5g03XcX4ll4MUSQ\ 4kud3 d93PlV+9iX\ 0Tk4w5U5YZ6oiL6I\ T47XrTOLKJJl7GEN\ 0IZczFb9d+L+1P0Y\ 1IPzlWd+reMZLn6u\ 4s l4UyXsmNL/A0K\ daMdulYB0t4ozbZV\ 3es6AT1GfEpZocRT\ 56YYF++yGDRYsjyG\ Pd8hiyPwaLFrrEC \ O0fzjNkej44U2F8w\ KR8vcf2HPsDkpM3O\ h3fy3vd/gJZsKzd9\ 6EaiKMBzHRyzhOeY\ eLaNZ9sz3LYr brh\ sggTgDtuoq1c2ymM\ 6aqLxijV7RcYespB\ EYcZrCRdoA2k9Bok\ NaWRNJnIj3PEpK4P\ EhjR6fxKl XcWvmm\ S6R2fP0fFHXJyjNn\ pfYs4WXm2Uf7nQ2j\ SUdKwPa4QgwZSVQW\ JDuv6l9ydekfOZAA\ AVYUlE QVTrP6u9O\ lqnjtpb/erUkBJy3\ Gq0AvySh2/G+yAsz\ vTmqt22DpTwx90Zr\ TfnkIlz3ERtNUisS\ SNV RdkAqp5EFCVU\ w0BWp46bnffvZOf9\ OwEYPzLOT7/yE2RF\ QZNUJobGgLjtt/r8\ teSHJxAUkWd/9hSS\ InH2LX/Ez7/yU1o\ TOh1pg/SGTuxi/J4\ l5ZmaOqlcfT1NgtR\ EEy9r1ATyvy99mDz\ pE7SoRJrIrvFJ 3h\ roXGIKiEmZ1JYscl\ IhDEOkjIp/3CExEF\ 8oOi+YC6y8yO1Y0d\ VewpgKt50/4Bag8N\ wJnHWdfOKe /0nCU\ Olf28Jdd93Bpk0bC\ PyAwJt5Up8ts03Qp\ EVrbn4fkDUJx43wJ\ 7xTyIE9ZIFfIYhCg\ gOleMJN EZA1CdKV\ BTVS8+l6RDUWFdeq\ MTW31GBiijjA/Gn2\ EBMy60BphvC65kOl\ tmgNCeOham1fsGdU\ fRqB lJDx55isOOV\ qRgUxcSoJ80dc3BE\ HYdLDWJOc4aMVeSF\ hKcCrhuUClIZLJLu\ SdRsB3/QhqCDqMqI\ k 8uM7H+CcN51H73\ lrgZj8rLlgLQ/efj\ /nv/UP2P/zZ4F4ym\ NiaIz9jx3g4pESqb\ YWrAkTzYhfy7Gd R\ 7ByKTZv7GKH55NWJ\ FKygnPCxMjM3v6VJ\ 52mQLuJJppYNrThM\ vba+OK8wxR4VYdBY\ v2U0WVg+kia hDfu\ oq3S4sGUziTOCZPE\ psyKbccZQ5IahTDm\ 8Ltff4+fPThId08v\ u/u28L63vzUOv7Pt\ eUNsQy+k Ug4RZAH\ 8CujLZ+BKRm14vH4\ pEFSRwAkIrZiY1Ih\ RJYpQW7V6sC7Erb/\ ICqk4Ee7w4kjIXBB\ VCb0v gTNoETohSr\ uKXIk7wI2OdNYer/\ cYcWuu6kMV5D3EpN\ jwhFpN0DyX19Vcj7\ EOlBre1tmgdGgoHR\ rB qIdzKL4KqpFDU\ ZUQ2ySUNo2w6FPak\ 8dIq6S2xjoAMSGje\ JVqxU1ANQwGnx7ki\ g+9liiaqj7prSk8 \ J+Dej32Ltp5WWle3\ 8a0Pfp3ezT28/sY3\ cO/HvkX3xi4CN+Dq\ j/wRFT8icdX5HPnK\ T/jBD5/ALdv8 y3v\ +hoFX9TN6tMD5N14\ FwJg9dcEg+BUEt0L\ 4IkwENtFEE69ciG6\ E6IYErQZHTZsLZYW\ g7FJ8ykU2 FKTqRL\ bUoqJOuxiXkwqhE2\ I9X67/Ts2py8oKbX\ 6aTYNxyGT3Y/eTSI\ V8/NbPA/AP//glvv\ OdEd5z 3fXzPtaqV\ lokTSSsWqIvxxm7B\ jErw5HlT3DNBUGLB\ bWiHnvszBdZIU2b0\ pPsAG/MQ/CkGYaXC\ zlz z4YaUXJPOISl\ AEEQFnVQi6pUJ5PT\ K08VL5ozyHUu6P1J\ rAMlQj9cMHKk/vwN\ Gj4uBHmVitgizbmO\ eahIxY1IbZsp0q6\ 9X5ViRCj7JLMJjj1\ znA3bz0aIoGKF7P/\ 5s5x31blc8YE3Iic\ 0Asvljemp93nz le\ fVfw58j4oUke7Ncd\ kX3suur/6UyHR502\ ffhSAKlDyPkh8yXL\ QxpwnnJSs+Tpsi7S\ aaaGI5qAXK A0RRB\ RBIbWzBH3Pxiz6CI\ CAa8gyC5I24TD43j\ rEmNaPiZO+PZTBLJ\ UpNkkTMWpPPTRDpM\ keGd/E/ 7vp77rz7\ bgA+c9ttfOLTtyxI\ koDTIq6OSgFy6vS9\ TTXS41seLec1Pj4Z\ P86jMhkSpip4x1wk\ TUTW 5s8jmwuiKqG\ 1aThH7UXHjEC1GoN\ 2yu/CQ4snmLXK1Gy\ p97OhEcPHRjHXOv6\ 4izfq0HJB+6x/I2c\ V gqrG67UfehP3f+\ 5/0/uDHWS6Wpg4Mo\ 5dtLj+S+9HMhRc28\ Q+XsKQ4/0cRUF9Ai\ 4K4v2lGgZ7v/lL j\ j2yh9yW1Vz8n97KM\ dthuGiT91xsP8Svz\ Jz5kMzgtBhGKoJwy\ nMt9Htg1vuaaKKJl\ z6mB8rXEDkR Wl8S\ uehjD5ozMjSDMY/J\ p0bROgxSW2ZO2xkb\ 01jPl6lUKkuq+J/R\ JKk26ig6Pl5nErfH\ gH9b2lqC KDYczbE\ YLCWbbCloyAbgJBh\ rEpR3FRAnJbS+BIQ\ VolKIta9UbwctBmJ\ CRuvQV2xiDaAis2h\ tmDNo ISXkxgiSFb\ wolgH24RJ6V3LOf/\ LJAAYrIaP5STat7+\ Rt99zI8YPDlAOT86\ 7expbzeoGp6cvQCm\ a0 jqMoIPKqDuPVk\ djNrzuXgXdcRKY7h\ +0H7Do2viDxWMpxN\ Bcyqlz3N7Mdjycni\ gC06wqbWmPd04Tl \ sKcwVVpfm0rSW9VL\ DRdtDpdXVsTZRBNN\ nF4o1Yu9mlP6iO2y\ zkjHF4p5j8gPUHOx\ Biko+DjHTSI3 jAn\ Sxtn1kIn1KZxDJpW\ QGdWnRnBGkqQaOVJ\ PmHGmz0CGSBOxvYC\ OgfP5h3/8Ep+57TY\ gbrddesn2 BddUV+\ t4R5zTNqpfgzdsE9\ hBQ0nujcLoTtVPkI\ vFyWRIMmRCM1hy+0\ nKKOiygDNoIWgiWt\ vyXK+1 Th1n0CKxC\ JKktmp4E25DGXPeC\ Re19/RNH9YQBRFyZ\ u79+WjeoVh9DytPD\ zHQ107vhetRFIlVM\ gS+ T+BNTQGKkkhQ\ 8Gc9hqIoIPB9ztrW\ zQN7x5HGCvW1azhS\ srDCiIQk1r+vzepo\ g2UEv7IiLbeehM7o\ 8RH+/ef/lz/+k/e\ SlETMMKJd1zjxwgs\ 8tXMHV7/jGpIlq97\ 2680YPPGrX5Dr6KB\ 7w2YOlxd4kiaa aO\ IlBakU1lttO0byvD\ XQ6dmcQkzIeMM2Tt\ nFseKoFEEQUNMajm\ shStK85wq9P4lzyM\ QbjhblXXhG zemKb\ oRxyCT9ZDzyXLqgH\ bs/iSlEPD1SwB6ze\ e9b3k17rpVPfPoWP\ vHpW2jPtXLtO65bc\ G1JlahE yzc2nA57\ yELJTfVRQ7MSG0tu\ SOOXfKwDJewha8GR\ /IUQWPHE33LXqaEi\ A8uoKIhVR20hgNAO\ Z3gY LXqtml5qYuG\ pxhrk1th3SJRErAO\ lehtrNiym1RaMevP\ mtM0H156fxL55lc6\ 7cjp/mA94/cYc/Tm\ B dsGhJTDxHHMGQQ\ KQcypBfu59EngOge\ ewpUXi0b2jWP7M5y\ 94Ph8caOO2LR382T\ ldtOoqh0OHiibU t\ UkrgcixeOKhXwEgV\ St2hihi2iZP/+axW\ R9zZN8+Duzdi6Gck\ deATTTxsoXoRmjDx\ birA6yOFLal lTr5\ ccYsUmdlSW3NgSQi\ yCLOCZOg6DVU8tH7\ k1TCCG94dtuZ2XBG\ fIqcXDmqmVMB7MuX\ kNwKN2Qz rF6TxB2\ 0eM911zekQToZgiY\ 1nF/WCCpuWA/EDb0\ Q95hVb73Vpt2Cgl8\ PyV32BJwTwUqIzSW\ Rygq0 XfT+JObhMq\ qhLEsYndiQjqfWJn\ 3UXr3hdWrCbeeQiT\ fmLKsF6BwyqcixZU\ DN7mAx0AyZwJyb1P\ jj Ln7ea7jNKWcVg\ vzC0TDrW3U+2N/GN\ wcnWNudIlElHidcD\ 2XYwqpeZxlFFyFVD\ co8ZhG0rJwNQFit \ YuVUjZyqYejxvnN8\ d9a/jxIJTDMm1oog\ YCgSYRjNEJk30UQT\ Lz1M90Y6UrK4OJJI\ 9MUibHfQRNQk gkJ\ AUHAxD8ftd63DILW\ 5teE2mtaXxBu2cQd\ NtL6FOz+vaJI0Hzn\ KOz7Hjpe4KpvikrM\ zdWKjZXXs IWtJhK\ PihitGkOyDZr2KVA\ +47Tt1m+IcNB8luf\ TnFWWRiiwQ+REroa\ gSZZGKuzLalOTaFO\ 5Rm2jM a3jabDbo/\ cm4fz1oobZqiyIpe\ n9yRjTKyURrIQLnH\ rWRMjJKm1b3hVo0S\ epO4rxQqhOs/aZH3\ g0Z diKEqpmm16HB\ 8Kn9paQksr1VI3vS\ Nqq9jbUi+3oT3FyB\ b5fLPD0+iSqKXCkl\ +MzoOJd1t3J4ssTR\ MOANyVUEQtRwyy1\ TjQsqegFJSUSSRHK\ qVtcU2X5AqCdwAo+\ 0IrGlLcVIySatSCS\ NJIEXk8Y16QSG Im\ NPq3aJ1fsu6p4aRr\ D9gF1jk01BdxNNvE\ Qx3RtpwvE4TzXqVS\ Q37yCnYiJkHi6idR\ g88NiD/O5H jwOw/\ TXbufbt1zZ0Iav2G\ njDNt6wvWDr7RVJk\ mrkSC7YBFljBjkaK\ lp4VsCAIPGOzR10n\ pSNJbUr cLDxRPvT\ hUoUISYkQi/E3lfC\ 2JSeVRReayMtxwei\ Iscns4qzMlfaURDV\ fSxWAqIs4tk+y52b\ krMK YkKMzSsXWVU\ SVSkmS1ZQjyJJbEg\ jaCKRNX/LTZSnutp\ LrURpnTrm3gLOUYt\ Uq8rGpEqkhAxMlNm\ d ljg2x7HaritcOY\ fYW1Slec0wp2PV6g\ QfOSpgq0mkjEQyo7\ DnCZ9nD+Zpy2rcsm\ EV974wyqs6cvWW 2\ /RA25Mn0bZkU7Qm4\ v892w9mtMZ2PvIQ3\ T1rWLtuHWR0PGeqV\ fjx69/J1//lu4h6g\ sCPyZOe0PnN Iw+x\ 7dLL0YFkMsnxUgnb\ KnLfP32HfTt30LOu\ n5s++SnWtyRnCL2b\ aKKJlwaUgl/3RnL8\ gC5bRKvq Pa3ny8i\ GQmJ9isgL0dp0Hnj\ sQSajMl/4wt8B8LW\ vfYn7HriPd1/7noa\ eT+018EZc7P0ljI1\ zD0e9 ojRJohuR3F\ 2oa47Ms1vrmqN9+R\ JPjxS4JJL5VH8773\ 5V5ykEqQa1XcVdRM\ /ydEDJxdswH0EK7Q\ Bv YvlGk5IYry0oK\ 3M4VNwIcQWMNGuQs\ jJStDLeO6IqkdiQR\ krKeMMO/sjsLZs5H\ 1/TS2ki9pCJEIBf \ ml/vJKgikbs8Aiqq\ EnpXsi6wD0Y9nEGL\ 1p4kl2/Icl1vatav\ uQhSDVqPgZ/3ZsSe\ zAb3qE3Fjcis 1km\ 36xSBo7KPllP4D51\ ZzpYkNmcM8m48Kaq\ OTv3/rE0luai7jUs\ 6MmRUGUUQaE3o3H/\ vt9n5yEMY iszo8R\ H+6StfBuDQoRd4bs\ 9zKIqEpuqEvo/vx9\ u3aeu57H9iJ52aih\ 9ObfOD//qv7HzkIX\ KGjqLr DO7fx19++\ GZaNI2PfubPAPjht\ 79dJ2ZNNNHESwvqM\ RO3N3bKPlA0uWagD\ b/oU95TgDBC7ajKH\ 14w cccdHt/9ODfc\ 8BHuuecu7rnnLm64\ 4SM8/OjDi3vODg21\ U8faV5zzb14xlSTj\ kDnVVqtOq+Udn6GR\ IslI5J0Jg4G+NFp\ m4ZcsZRQ0RcA+aM4\ 6rRbaAeGEH5MKCQR\ JRNAEBE3CH3HnjeN\ oFEqbtuDVvWTI RE\ 64bOsBUZeIigEr0m\ sjFjMjr5yhoKhK9U\ iOlYLSoSF5ce6bf8\ BbdAsunPSRWpQ4qF\ ed/5gSEyJB fmr7l\ ZzaUPXmZOirkxQeH\ 4mNSzVxxawhtI647\ TaX5qpGkKana2dVi\ U+e3cvGZLzPauJ6T\ RQIshra YBlDLBOs\ T9ObMfjFj/+Nrdsu\ pCeTqVdykskkj/z6\ 12y79HJ27XycciFf\ X//Is0+Sfuc7ASgU\ CiiK RFpVWd+3lqJ\ ZRkzJeK5LyQ/Rge1\ XXc3/+9GP+MOrria\ XSbPnmWf4q3u+yMB\ Z5wDQ29nFpLs4Qtx\ E E028OBDdCHnSwx\ 7IkHc9OkyBzKiNaM\ hoqzQEXcQZsnGOm9\ hDZZIDWSordIqpTV\ SX9xRIDKRP+Qx8 R\ ZCkWmut1lazvYDdI\ 5NsVTVuyGRY3ZNYf\ OtMmv0dCL2QcMKv9\ zFDL4SwQqUcxVEkG\ itGlBqBsSld 1yst\ hyhFQbSsaI2TsZIp\ zACCFk+aSQkZpV1d\ kfVFVaqP+DuHTLwJ\ t2FxtqjHjw2LPu6I\ A4X5Q3aV zBQBU9q\ 0JUWZyFkFSZOInJD\ UCnpnSRkFYdLDG3b\ qRCgs+vjjHlEYISX\ kGQSphhpBAjDWJNn\ 0rMsv cNiUTVH6g3\ bUUYeuZwtI2Qw/+O\ fvsO2SS6k13GzHY8\ PmzXzjnr8By2Lv/n\ 2IisKX77ydvbueId\ PS widv+zjFQoHOr\ i5u/o/vo6O1lcHBQ\ e5619cwRJnIn5o6z\ GXS/PbfH+ITt9zMk\ WPH6F3bx48f+D7O \ P9/L8cFBuvr6+PB/\ /gwT1vLDkJtooomV\ hTLm1gXbw+M2N6aT\ iKqIrEvYgyZ6VwJJ\ ETAPljG6Y0ft 7a/\ Zzte+9iVuvfXTQNx\ u2/6ahe16ZoOYkEk\ MpLEOlkj0pWZYCbz\ sSZJS8NEHS5QuaMc\ UIsaKDqUJ hw93ZZ\ dGjqqolEOYJjwNiz\ 7epE/FDZENecYIoa\ CI+EUPrS9BVAoIJu\ OWyItBlCRVQus1lk\ 2U5MTy MthON2pkx\ h93Z2iCVgrThd0Lr\ Tu9NSVllEV5MC0Xi\ fUt2EdKuEftZQnZT\ 4axJvYQqVkUiJKI0\ qYu yoRz67oUe/ZM\ sGMkz5ZcmkqPQdCV\ RigG2KUSLVaEm5TZ\ kk1h6Cr5kREuvuxy\ Ln3zm7n25lsBGD64\ l+tv+gjd2SwP/+o\ XrMmlOf/Vl7Fz9x6\ OHD7E6y57DehJfD/\ k1r/4HN2GTt52+P5\ 3v8sdd9zBhDtF nC\ RFJpNrpXvtGoxEBt\ sPeH5scsX2WRNNNL\ EyUEcsnP6pUNosIA\ gCgROi5jSc4xb2sT\ Jam45Ujb66 9u3Xc\ t8D9/GpT30UmBJuL\ xWiKpHaksXeX0LJa\ cjt8TlR+Pozz79sR\ z1ENyL95Bh2f4YTL\ RKjtsPr BY0L+zNo\ ywzZ9IbtegYbgJKO\ p8jUTq0hImIPxSfy\ 0xVMezJqFY2lEAf7\ oEn5+Tytl3WtiFjd\ OlA6 rS7hziETKSm\ fFhIaebFjeGLTqWX\ XGvxxF8LlkeDluIq\ XdxVwjpvoXcklOZv\ PBXvIRNbm3q81cjj\ X Nk8GcPMj+7G9kN\ akSpeuciEGl3S38o\ 37v8nQ7r386fUfpL\ W9k+dH9vHNv/sit/\ 7F5+otMaA+oWYo M\ mlFqmuRcobOvd/6O\ ue8+jI6163DdjwGc\ hke3vEE3/z7L7Lx3\ PO58aabyVVJU7426\ RZGTHghZuAx 5szt\ d9VEE038fqAUfPRD\ RUoXtOH4AeFRmz/d\ 3Ip9pIya0bGOxHoh\ vTOJV3BQs3psptyq\ ElkBQd6n EkZUQqg\ EceW7dnsxwznT4Rw\ yEZNxNtzLmiQldxe\ IdAW7P8mOkTyfamu\ hrS+z8AMbgHWghNo\ anyx8 MwC/gtqtLY\ pEBKMevhO8KETJHr\ LAryzJ8Tu0A0rPTC\ An1BU56Z5OkhRMeI\ RO4+GzS0FtTH+u12\ AP mct2Al/O6wir2\ UV+Pm4dpc9tWzH39\ dnImz/iEpoBgiaeo\ k06GW4IXt7hscCjX\ 1X51dNjbFydon99 \ Fz/5/vd45Oc/wyoW\ 6eju5dp3/AlrLzmP\ fROT8xIYRRC4qLuN\ R594hrUDq9E1gzHH\ ZVNrC1++83Yu veI\ Ktl16+SkRJU2sHCQ\ rQhmb2aqsyAJhUqa\ iSISJV9QMUBMvIvQ\ hB224SNCi8nQUcE2\ LQV9rAjdv E7khck\ YldVaWYNRj8rlxUu\ taELV4GEaQRURVRE\ zKsfZzNB6iqd12Xj\ DRuoxFVcRr8IZtIi\ /i/wPR +JUyfGESx\ AAAAABJRU5ErkJgg\ g== \x22\x0a sty\ le=\x22image-render\ ing:optimizeSpee\ d\x22\x0a preser\ veAspectRatio=\x22n\ one\x22\x0a heig\ ht=\x2248.675205\x22\x0a \ width=\x2259.\ 821423\x22\x0a c\ lip-path=\x22url(#c\ lipPath825)\x22 />\x0a\ <g\x0a id\ =\x22layer1-3\x22\x0a \ inkscape:labe\ l=\x22Capa 1\x22\x0a \ transform=\x22tra\ nslate(-58.46428\ 6,-14.928558)\x22>\x0a\ <rect\x0a \ ry=\x2210.1867\ 51\x22\x0a y=\x22\ 1021.2194\x22\x0a \ x=\x2260.392994\ \x22\x0a heigh\ t=\x2244.142586\x22\x0a \ width=\x2244\ .142586\x22\x0a \ id=\x22rect4136\x22\x0a\ style=\x22\ fill:none;fill-o\ pacity:0.8495145\ 3;stroke:#006680\ ;stroke-width:1;\ stroke-linejoin:\ round;stroke-mit\ erlimit:4;stroke\ -dasharray:none\x22\ />\x0a </g>\x0a <\ /g>\x0a</svg>\x0a\ \x00\x00\x0d\x01\ <\ ?xml version=\x221.\ 0\x22 encoding=\x22UTF\ -8\x22 standalone=\x22\ no\x22?>\x0a<svg\x0a xm\ lns:dc=\x22http://p\ url.org/dc/eleme\ nts/1.1/\x22\x0a xml\ ns:cc=\x22http://cr\ eativecommons.or\ g/ns#\x22\x0a xmlns:\ rdf=\x22http://www.\ w3.org/1999/02/2\ 2-rdf-syntax-ns#\ \x22\x0a xmlns:svg=\x22\ http://www.w3.or\ g/2000/svg\x22\x0a x\ mlns=\x22http://www\ .w3.org/2000/svg\ \x22\x0a xmlns:sodip\ odi=\x22http://sodi\ podi.sourceforge\ .net/DTD/sodipod\ i-0.dtd\x22\x0a xmln\ s:inkscape=\x22http\ ://www.inkscape.\ org/namespaces/i\ nkscape\x22\x0a widt\ h=\x2248\x22\x0a height\ =\x2248\x22\x0a viewBox\ =\x220 0 48 48\x22\x0a \ version=\x221.1\x22\x0a \ id=\x22svg6\x22\x0a so\ dipodi:docname=\x22\ zoom_in.svg\x22\x0a \ inkscape:version\ =\x220.92.4 (unknow\ n)\x22>\x0a <metadata\ \x0a id=\x22metada\ ta12\x22>\x0a <rdf:\ RDF>\x0a <cc:W\ ork\x0a rdf\ :about=\x22\x22>\x0a \ <dc:format>im\ age/svg+xml</dc:\ format>\x0a \ <dc:type\x0a \ rdf:resource\ =\x22http://purl.or\ g/dc/dcmitype/St\ illImage\x22 />\x0a \ <dc:title /\ >\x0a </cc:Wor\ k>\x0a </rdf:RDF\ >\x0a </metadata>\x0a\ <defs\x0a id=\ \x22defs10\x22 />\x0a <s\ odipodi:namedvie\ w\x0a pagecolor\ =\x22#ffffff\x22\x0a \ bordercolor=\x22#66\ 6666\x22\x0a borde\ ropacity=\x221\x22\x0a \ objecttoleranc\ e=\x2210\x22\x0a grid\ tolerance=\x2210\x22\x0a \ guidetoleran\ ce=\x2210\x22\x0a ink\ scape:pageopacit\ y=\x220\x22\x0a inksc\ ape:pageshadow=\x22\ 2\x22\x0a inkscape\ :window-width=\x221\ 339\x22\x0a inksca\ pe:window-height\ =\x22532\x22\x0a id=\x22\ namedview8\x22\x0a \ showgrid=\x22false\ \x22\x0a inkscape:\ zoom=\x220.77929688\ \x22\x0a inkscape:\ cx=\x22175.60373\x22\x0a \ inkscape:cy=\ \x22124.56147\x22\x0a \ inkscape:window\ -x=\x22340\x22\x0a in\ kscape:window-y=\ \x22401\x22\x0a inksc\ ape:window-maxim\ ized=\x220\x22\x0a in\ kscape:current-l\ ayer=\x22svg6\x22 />\x0a \ <path\x0a d=\x22M\ 0 0h48v48h-48z\x22\x0a\ id=\x22path2\x22\x0a\ fill=\x22none\x22\ />\x0a <circle\x0a \ style=\x22opacit\ y:1;fill:#999999\ ;fill-opacity:1;\ stroke:none;stro\ ke-width:17.2242\ 9085;stroke-line\ cap:round;stroke\ -linejoin:bevel;\ stroke-miterlimi\ t:4;stroke-dasha\ rray:none;stroke\ -dashoffset:0;st\ roke-opacity:1;p\ aint-order:norma\ l\x22\x0a id=\x22path\ 1093\x22\x0a cx=\x221\ 8.237631\x22\x0a c\ y=\x2217.875154\x22\x0a \ r=\x2214.588048\x22\ />\x0a <path\x0a \ style=\x22fill:#b3\ b3b3;fill-rule:e\ venodd;stroke:#9\ 99999;stroke-wid\ th:7;stroke-line\ cap:round;stroke\ -linejoin:miter;\ stroke-miterlimi\ t:4;stroke-dasha\ rray:none;stroke\ -opacity:1\x22\x0a \ d=\x22M 23.461607,\ 23.808476 40.458\ 238,41.43075\x22\x0a \ id=\x22path1095\x22\ \x0a inkscape:c\ onnector-curvatu\ re=\x220\x22\x0a sodi\ podi:nodetypes=\x22\ cc\x22 />\x0a <circle\ \x0a style=\x22opa\ city:1;fill:#e6e\ 6e6;fill-opacity\ :1;stroke:none;s\ troke-width:15.3\ 1822777;stroke-l\ inecap:round;str\ oke-linejoin:bev\ el;stroke-miterl\ imit:4;stroke-da\ sharray:none;str\ oke-dashoffset:0\ ;stroke-opacity:\ 1;paint-order:no\ rmal\x22\x0a id=\x22p\ ath1093-3\x22\x0a \ cx=\x2218.156338\x22\x0a \ cy=\x2217.84371\ 2\x22\x0a r=\x2212.97\ 3715\x22 />\x0a <g\x0a \ style=\x22stroke\ :#37c8ab;stroke-\ linecap:round;st\ roke-opacity:1\x22\x0a\ id=\x22g831\x22\x0a \ transform=\x22m\ atrix(0.19150521\ ,0,0,0.19150521,\ -0.1999896,-0.45\ 681928)\x22>\x0a <p\ ath\x0a style\ =\x22fill:none;fill\ -rule:evenodd;st\ roke:#37c8ab;str\ oke-width:16;str\ oke-linecap:roun\ d;stroke-linejoi\ n:miter;stroke-m\ iterlimit:4;stro\ ke-dasharray:non\ e;stroke-opacity\ :1\x22\x0a d=\x22m \ 95.091973,56.172\ 243 0.09447,79.7\ 95097\x22\x0a id\ =\x22path812\x22\x0a \ inkscape:conne\ ctor-curvature=\x22\ 0\x22\x0a sodipo\ di:nodetypes=\x22cc\ \x22 />\x0a <path\x0a \ style=\x22fil\ l:none;fill-rule\ :evenodd;stroke:\ #37c8ab;stroke-w\ idth:16;stroke-l\ inecap:round;str\ oke-linejoin:mit\ er;stroke-miterl\ imit:4;stroke-da\ sharray:none;str\ oke-opacity:1\x22\x0a \ d=\x22m 134.9\ 6147,95.594487 -\ 79.795108,0.0945\ \x22\x0a id=\x22pat\ h812-3\x22\x0a i\ nkscape:connecto\ r-curvature=\x220\x22\x0a\ sodipodi:\ nodetypes=\x22cc\x22 /\ >\x0a </g>\x0a</svg>\x0a\ \ " qt_resource_name = b"\ \x00\x05\ \x00o\xa6S\ \x00i\ \x00c\x00o\x00n\x00s\ \x00\x10\ \x0e\xa2zG\ \x00z\ \x00o\x00o\x00m\x00_\x00d\x00e\x00f\x00a\x00u\x00l\x00t\x00.\x00s\x00v\x00g\ \x00\x09\ \x0c\xb6\xa9\xc7\ \x00s\ \x00a\x00v\x00e\x00c\x00.\x00s\x00v\x00g\ \x00\x0f\ \x0b7\x0bg\ \x00m\ \x00a\x00p\x00 \x00(\x00n\x00i\x00g\x00h\x00t\x00)\x00.\x00s\x00v\x00g\ \x00\x0c\ \x06\xeb\x9c'\ \x00z\ \x00o\x00o\x00m\x00_\x00o\x00u\x00t\x00.\x00s\x00v\x00g\ \x00\x07\ \x03\x83Z'\ \x00m\ \x00a\x00p\x00.\x00s\x00v\x00g\ \x00\x0b\ \x05\x03\x96\xa7\ \x00z\ \x00o\x00o\x00m\x00_\x00i\x00n\x00.\x00s\x00v\x00g\ " qt_resource_struct = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x06\x00\x00\x00\x03\ \x00\x00\x00\x90\x00\x00\x00\x00\x00\x01\x00\x02\xd8\xa5\ \x00\x00\x00\xa4\x00\x00\x00\x00\x00\x01\x00\x07\xbd\x15\ \x00\x00\x00r\x00\x00\x00\x00\x00\x01\x00\x02\xcd\x02\ \x00\x00\x00N\x00\x00\x00\x00\x00\x01\x00\x00\x18y\ \x00\x00\x006\x00\x00\x00\x00\x00\x01\x00\x00\x10\xd1\ \x00\x00\x00\x10\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ " def qInitResources(): QtCore.qRegisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
the-stack_0_964
#!/usr/bin/env python3 # # Synthesis-based resolution of features/enforcers interactions in CPS # Copyright 2020 Carnegie Mellon University. # NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING # INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON # UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, # AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR # PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF # THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY # KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT # INFRINGEMENT. # Released under a BSD (SEI)-style license, please see license.txt or contact # [email protected] for full terms. # [DISTRIBUTION STATEMENT A] This material has been approved for public # release and unlimited distribution. Please see Copyright notice for # non-US Government use and distribution. # This Software includes and/or makes use of the following Third-Party Software # subject to its own license: # 1. JsonCpp # (https://github.com/open-source-parsers/jsoncpp/blob/master/LICENSE) # Copyright 2010 Baptiste Lepilleur and The JsonCpp Authors. # DM20-0762 # import sys import os import numpy as np import pathlib import itertools import random import json # Assume ego starts 0,0 always # Just relative to ego at varying distances enemy_start_positions = [ '5,5', '5,0', '0,5', '-5,5', '5,-5', '-5,-5', '-5,0', '0,-5', '1,1', '1,0', '0,1', '-1,1', '1,-1', '-1,-1', '-1,0', '0,-1', '10,10', '10,0', '0,10', '-10,10', '10,-10', '-10,-10', '-10,0', '0,-10', ] # Config values that will be changed config_vals = { 'ENEMY_DRONE_SPEED' : [x for x in np.arange(1.2, 2.1, 0.1)], 'WAYPOINT_SEED' : [x for x in range(0, 999)], # Kinda dumb way to do this space-wise but it's fine 'BOUNDARY_SIZE' : [x for x in np.arange(10, 30, 1)], # 'SUGGEST_ACTION_RANGE' : [0,1] } # FLIGHT_WEIGHT stays constant weight_vals = [ # Equal weights {'BOUNDARY_WEIGHT' : 1,'RUNAWAY_WEIGHT' : 1, 'MISSILE_WEIGHT' : 1}, # 1 : 1.5 : 2 {'BOUNDARY_WEIGHT' : 1,'RUNAWAY_WEIGHT' : 1.5,'MISSILE_WEIGHT' : 2}, {'BOUNDARY_WEIGHT' : 1,'MISSILE_WEIGHT' : 1.5,'RUNAWAY_WEIGHT' : 2}, {'RUNAWAY_WEIGHT' : 1,'BOUNDARY_WEIGHT' : 1.5,'MISSILE_WEIGHT' : 2}, {'RUNAWAY_WEIGHT' : 1,'MISSILE_WEIGHT' : 1.5,'BOUNDARY_WEIGHT' : 2}, {'MISSILE_WEIGHT' : 1,'RUNAWAY_WEIGHT' : 1.5,'BOUNDARY_WEIGHT' : 2}, {'MISSILE_WEIGHT' : 1,'BOUNDARY_WEIGHT' : 1.5,'RUNAWAY_WEIGHT' : 2}, # 1 : 2 : 3 {'BOUNDARY_WEIGHT' : 1,'RUNAWAY_WEIGHT' : 2,'MISSILE_WEIGHT' : 3}, {'BOUNDARY_WEIGHT' : 1,'MISSILE_WEIGHT' : 2,'RUNAWAY_WEIGHT' : 3}, {'RUNAWAY_WEIGHT' : 1,'BOUNDARY_WEIGHT' : 2,'MISSILE_WEIGHT' : 3}, {'RUNAWAY_WEIGHT' : 1,'MISSILE_WEIGHT' : 2,'BOUNDARY_WEIGHT' : 3}, {'MISSILE_WEIGHT' : 1,'RUNAWAY_WEIGHT' : 2,'BOUNDARY_WEIGHT' : 3}, {'MISSILE_WEIGHT' : 1,'BOUNDARY_WEIGHT' : 2,'RUNAWAY_WEIGHT' : 3}, ] def make_config_file(base_config_file, outfile, vals): # Open input and output file with open(base_config_file, 'r') as base, open(outfile, 'w') as out: # Convert to list by space delim for line in base: line_lst = line.split(' ') # If this var is one we change, then write what's stored in vars if(line_lst[0] in vals): # Handle the case that it's a float differently bc annoying precision if isinstance(line_lst[0], np.float64): out.write(line_lst[0] + ' ' + '{:.2f}'.format(vals[line_lst[0]]) + '\n') else: out.write(line_lst[0] + ' ' + str(vals[line_lst[0]]) + '\n') # If this var is not one we change, write it as is else: out.write(line) def default(o): if isinstance(o, np.int64): return int(o) raise TypeError def make_files(config, rootdir, enemy_start_positions, num_configurations): newdir = '' # They're all the same at this point -- just get the vals for any coordinator vals = config["RobustnessCoordinator"] # Get all the combinations of variable-values we have combinations = [dict((zip(vals.keys(), t))) for t in itertools.product(*vals.values())] sample_size = num_configurations # Get a random sample of the combinations comb_sample = random.sample(combinations, sample_size) # Randomly assign weights to each case for entry in comb_sample: weights = random.choice(weight_vals) entry.update(weights) for coordinator in config: try: newdir = rootdir+'/'+coordinator os.makedirs(newdir, exist_ok=True) except OSError: print("Failed to create directory: %s" % newdir) i=0 # Create a directory and a corresponding config file for each test case for entry in comb_sample: # Everything else is random so this is fine enemy_start_pos_str = enemy_start_positions[i%len(enemy_start_positions)] i = i+1 # Need to add this manually bc it's not in config file params controlled_vars = entry.copy(); controlled_vars["enemy_strt_pos"] = enemy_start_pos_str; dirname = '' for name in entry: if isinstance(entry[name], np.float64): dirname+=name+'{:.2f}'.format(entry[name])+'-' else: dirname+=name+str(entry[name])+'-' # trim the hyphen off the end dirname = dirname[0:-1] try: os.makedirs(rootdir+'/'+coordinator+'/'+dirname, exist_ok=True) except OSError: print("Failed to create directory: %s" % rootdir+'/'+coordinator+'/'+dirname) # Write config file make_config_file('./drone.cfg', rootdir+coordinator+'/'+dirname+'/'+'drone.cfg', entry) with open(rootdir+coordinator+'/'+dirname+'/'+'controlled_vars.json', 'w') as controlled_varsfile: json.dump(controlled_vars, controlled_varsfile, default=default) # Write positions with open(rootdir+coordinator+'/'+dirname+'/'+'enemy_start_pos', 'wb') as posfile: posfile.write(enemy_start_pos_str.encode('utf-8')) def main(): if(len(sys.argv) != 3): print("Usage: generate_tests.py <test_dir> <num_configurations>") exit() cwd = os.getcwd() os.makedirs(sys.argv[1], exist_ok=True) num_configurations = int(sys.argv[2]) rootdir = cwd+'/'+sys.argv[1]+'/' if((cwd.split('/'))[-1] != 'missionapp'): print("Must be in missionapp directory to use this script. Given %s\n" % cwd) print(cwd.split('/')) exit() base_config_file = 'drone.cfg' coordinators = ['PriorityCoordinator', 'RobustnessCoordinator', 'SynthRobustnessCoordinator'] config = { coord : config_vals.copy() for coord in coordinators } make_files(config, rootdir, enemy_start_positions, num_configurations) if __name__ == "__main__": main()
the-stack_0_968
from chainer import cuda from chainer import function from chainer import variable class _DummyFunction(function.Function): def __init__(self, grads): self.grads = grads def forward(self, inputs): xp = cuda.get_array_module(*inputs) return xp.array(0), def backward(self, inputs, outputs): return self.grads class Forget(function.Function): def __init__(self, func): if not callable(func): raise TypeError('func must be callable') self.func = func def _call_func(self, xs): outs = self.func(*xs) if isinstance(outs, tuple): for i, out in enumerate(outs): if isinstance(out, variable.Variable): continue n = i + 1 suffix = {1: 'st', 2: 'nd', 3: 'rd'}.get( n if n < 20 else n % 10, 'th') msg = ('{}{} element of a returned tuple is not Variable, ' 'but is {}').format(n, suffix, type(out)) raise RuntimeError(msg) elif isinstance(outs, variable.Variable): outs = (outs,) else: msg = ('A tuple of Variables or a Variable are expected, but {} ' 'is returned.'.format(type(outs))) raise RuntimeError(msg) return outs def forward(self, inputs): xs = [variable.Variable(x, volatile=True) for x in inputs] outs = self._call_func(xs) return tuple(out.data for out in outs) def backward(self, inputs, grads): xs = [variable.Variable(x, volatile=False) for x in inputs] outs = self._call_func(xs) _DummyFunction(grads)(*outs).backward() return tuple(x.grad for x in xs) def forget(func, *xs): """Call a function without storing internal results. On a forward propagation Chainer stores all internal results of :class:`Function` on a computational graph as they are required on backward-propagation. These results consume too much memory when the internal results are too large. This method **forgets** such internal results on forward propagation, and still supports back-propagation with recalculation. In a forward propagation, this method calls a given function with given variables without creating a computational graph. That means, no internal results are stored. In a backward propagation this method calls the given function again to create a computational graph to execute back-propagation. This method reduces internal memory usage. Instead it requires more calculation time as it calls the function twice. .. admonition:: Example Let ``f`` be a function defined as: >>> def f(a, b): ... return a + b + a and, ``x`` and ``y`` be :class:`~chainer.Variable`: >>> x = chainer.Variable(np.random.uniform(-1, 1, 5).astype('f')) >>> y = chainer.Variable(np.random.uniform(-1, 1, 5).astype('f')) When ``z`` is calculated as ``z = f(x, y)``, its internal result ``x + y`` is stored in memory. Instead if you call ``f`` with :meth:`forget`: >>> z = F.forget(f, x, y) internal ``x + y`` is forgotten. .. note:: The method does not support functions behaving randomly, such as :meth:`~chainer.functions.dropout` and :meth:`~chainer.functions.negative_sampling`. It is because first results of these function differ from the second one. Args: func (callable): A function to call. It needs to be called with :class:`~chainer.Variable` object(s) and to return a :class:`~chainer.Variable` object or a tuple of :class:`~chainer.Variable` objects. xs (~chainer.Variable): Argument variables of the function. Returns: ~chainer.Variable: A variable ``func`` returns. If it returns a tuple, the method returns a tuple too. """ return Forget(func)(*xs)
the-stack_0_969
""" tpm.py Wrapper classes for swtpm """ # pylint: disable=R0902,R0913,R0914,C0302,W0703 # # swtpm_setup.py # # Authors: Stefan Berger <[email protected]> # # (c) Copyright IBM Corporation 2020 # import os import socket import struct import subprocess import time # TPM1.2 imports from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes, hmac from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.primitives.asymmetric.rsa import RSAPublicNumbers from py_swtpm_setup.swtpm_utils import logit, logerr, sha1 CMD_INIT = 0x2 CMD_SHUTDOWN = 0x3 CMD_GET_INFO = 0x12 TPMLIB_INFO_TPMSPECIFICATION = 1 TPMLIB_INFO_TPMATTRIBUTES = 2 # # swtpm base class for TPM 1.2 and TPM 2.0 # class Swtpm: """ Swtpm is the base class for usage of swtpm as TPM 1.2 or TPM 2 """ def __init__(self, swtpm_exec_l, state_path, keyopt, logfile, fds_to_pass, is_tpm2=False): """ Class constructor swtpm_exec_l is a list like ["swtpm", "socket"] """ self.swtpm_exec_l = swtpm_exec_l self.state_path = state_path self.keyopt = keyopt self.logfile = logfile self.fds_to_pass = fds_to_pass self.is_tpm2 = is_tpm2 self.pidfile = None self.swtpm_proc = None self.data_client_socket = None self.data_swtpm_socket = None self.ctrl_client_socket = None self.ctrl_swtpm_socket = None # Probe the socket domain; Linux only has socket.AF_UNIX, Cygwin AF_INET self.socket_domain = socket.AF_UNIX try: s1, s2 = socket.socketpair(self.socket_domain) s1.close() s2.close() except ValueError: # Cygwin gives a ValueError self.socket_domain = socket.AF_INET def start(self): """ The start method starts the TPM 2 """ self.pidfile = os.path.join(self.state_path, ".swtpm_setup.pidfile") cmdline = self.swtpm_exec_l.copy() if self.is_tpm2: cmdline.extend(["--tpm2"]) if self.keyopt: cmdline.extend(["--key", self.keyopt]) cmdline.extend(["--flags", "not-need-init", "--tpmstate", "dir=%s" % self.state_path, "--pid", "file=%s" % self.pidfile]) # cmdline.extend(["--log", "file=/tmp/log,level=20"]) ctr = 0 while ctr < 100: self.data_client_socket, self.data_swtpm_socket = socket.socketpair(self.socket_domain, socket.SOCK_STREAM) os.set_inheritable(self.data_swtpm_socket.fileno(), True) self.ctrl_client_socket, self.ctrl_swtpm_socket = socket.socketpair(self.socket_domain, socket.SOCK_STREAM) os.set_inheritable(self.ctrl_swtpm_socket.fileno(), True) r_cmdline = cmdline.copy() r_cmdline.extend(["--server", "type=tcp,fd=%d" % self.data_swtpm_socket.fileno(), "--ctrl", "type=unixio,clientfd=%d" % self.ctrl_swtpm_socket.fileno()]) self.remove_pidfile() # print("starting swtpm: %s\n" % r_cmdline) try: pass_fds = [self.data_swtpm_socket.fileno(), self.ctrl_swtpm_socket.fileno()] pass_fds.extend(self.fds_to_pass) self.swtpm_proc = subprocess.Popen(r_cmdline, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, pass_fds=pass_fds) except Exception as err: logerr(self.logfile, "Failed to start swtpm %s: %s\n" % (" ".join(self.swtpm_exec_l), str(err))) ctr += 1 ctr2 = 0 while True: # Is it still running? if self.swtpm_proc.poll(): stderr = self.swtpm_proc.communicate()[0] print("TPM died? %s\n" % stderr) self.stop() break if os.path.exists(self.pidfile): print("TPM is listening on Unix socket.") return 0 ctr2 += 1 time.sleep(0.05) if ctr2 == 40: self.stop() break return 1 def remove_pidfile(self): """ Remove the pidfile if it exists """ if self.pidfile: try: os.remove(self.pidfile) except Exception: pass def stop(self): """ Stop the running swtpm instance """ if self.swtpm_proc: if not self.swtpm_proc.poll(): self.ctrl_shutdown() try: self.swtpm_proc.wait(timeout=0.5) except subprocess.TimeoutExpired: self.swtpm_proc.kill() self.swtpm_proc.wait() self.swtpm_proc = None self.remove_pidfile() for sock in [self.data_client_socket, self.data_swtpm_socket, self.ctrl_client_socket, self.ctrl_swtpm_socket]: if sock: sock.close() self.data_client_socket = None self.data_swtpm_socket = None self.ctrl_client_socket = None self.ctrl_swtpm_socket = None def destroy(self): """ Destroy the running swtpm instance """ self.stop() def transfer(self, req, cmdname, use_ctrl=False): """ Send a command to swtpm and receive a response """ if use_ctrl: sock = self.ctrl_client_socket offset = 0 else: sock = self.data_client_socket offset = 6 try: sock.sendall(req) rsp = sock.recv(4096) except Exception as err: logerr(self.logfile, "transfer error: %s\n" % str(err)) return None, 1 if not use_ctrl: if len(rsp) < 10: logerr(self.logfile, "Response for %s has only %d bytes.\n" % (cmdname, len(rsp))) return None, 1 returncode = struct.unpack(">I", rsp[offset:offset+4])[0] if returncode != 0: logerr(self.logfile, "%s failed: 0x%x\n" % (cmdname, returncode)) return None, 1 return rsp, 0 def ctrl_init(self): """ Send an Init over the control channel """ req = struct.pack(">I I", CMD_INIT, 0) _, ret = self.transfer(req, "CMD_INIT", use_ctrl=True) return ret def ctrl_shutdown(self): """ Send an Init over the control channel """ req = struct.pack(">I", CMD_SHUTDOWN) _, ret = self.transfer(req, "CMD_SHUTDOWN", use_ctrl=True) return ret def ctrl_get_tpm_specs_and_attrs(self): """ Get the TPM specification parameters over the control channel """ req = struct.pack(">I QII", CMD_GET_INFO, TPMLIB_INFO_TPMSPECIFICATION | TPMLIB_INFO_TPMATTRIBUTES, 0, 0) rsp, ret = self.transfer(req, "CMD_GET_INFO", use_ctrl=True) if ret != 0: return "", 1 length = struct.unpack(">I", rsp[8:12])[0] # compensate for null-terminated string length -= 1 data = struct.unpack("%ds" % length, rsp[12:12+length])[0] return data.decode(), 0 # # TPM 2 support # TPM2_ST_NO_SESSIONS = 0x8001 TPM2_ST_SESSIONS = 0x8002 TPM2_CC_EVICTCONTROL = 0x00000120 TPM2_CC_NV_DEFINESPACE = 0x0000012a TPM2_CC_PCR_ALLOCATE = 0x0000012b TPM2_CC_CREATEPRIMARY = 0x00000131 TPM2_CC_NV_WRITE = 0x00000137 TPM2_CC_NV_WRITELOCK = 0x00000138 TPM2_CC_STARTUP = 0x00000144 TPM2_CC_SHUTDOWN = 0x00000145 TPM2_CC_GETCAPABILITY = 0x0000017a TPM2_SU_CLEAR = 0x0000 TPM2_RH_OWNER = 0x40000001 TPM2_RS_PW = 0x40000009 TPM2_RH_ENDORSEMENT = 0x4000000b TPM2_RH_PLATFORM = 0x4000000c TPM2_ALG_RSA = 0x0001 TPM2_ALG_SHA1 = 0x0004 TPM2_ALG_AES = 0x0006 TPM2_ALG_SHA256 = 0x000b TPM2_ALG_SHA384 = 0x000c TPM2_ALG_SHA512 = 0x000d TPM2_ALG_SHA3_256 = 0x0027 TPM2_ALG_SHA3_384 = 0x0028 TPM2_ALG_SHA3_512 = 0x0028 TPM2_ALG_NULL = 0x0010 TPM2_ALG_SM3 = 0x0012 TPM2_ALG_ECC = 0x0023 TPM2_ALG_CFB = 0x0043 TPM2_CAP_PCRS = 0x00000005 TPM2_ECC_NIST_P384 = 0x0004 TPMA_NV_PLATFORMCREATE = 0x40000000 TPMA_NV_AUTHREAD = 0x40000 TPMA_NV_NO_DA = 0x2000000 TPMA_NV_PPWRITE = 0x1 TPMA_NV_PPREAD = 0x10000 TPMA_NV_OWNERREAD = 0x20000 TPMA_NV_WRITEDEFINE = 0x2000 # Use standard EK Cert NVRAM, EK and SRK handles per IWG spec. # "TCG TPM v2.0 Provisioning Guide"; Version 1.0, Rev 1.0, March 15, 2017 # Table 2 TPM2_NV_INDEX_RSA2048_EKCERT = 0x01c00002 TPM2_NV_INDEX_RSA2048_EKTEMPLATE = 0x01c00004 TPM2_NV_INDEX_RSA3072_HI_EKCERT = 0x01c0001c TPM2_NV_INDEX_RSA3072_HI_EKTEMPLATE = 0x01c0001d # For ECC follow "TCG EK Credential Profile For TPM Family 2.0; Level 0" # Specification Version 2.1; Revision 13; 10 December 2018 TPM2_NV_INDEX_PLATFORMCERT = 0x01c08000 TPM2_NV_INDEX_ECC_SECP384R1_HI_EKCERT = 0x01c00016 TPM2_NV_INDEX_ECC_SECP384R1_HI_EKTEMPLATE = 0x01c00017 TPM2_EK_RSA_HANDLE = 0x81010001 TPM2_EK_RSA3072_HANDLE = 0x8101001c TPM2_EK_ECC_SECP384R1_HANDLE = 0x81010016 TPM2_SPK_HANDLE = 0x81000001 NONCE_EMPTY = struct.pack('>H', 0) NONCE_RSA2048 = struct.pack('>H256s', 0x100, ('\0' * 0x100).encode()) NONCE_RSA3072 = struct.pack('>H384s', 0x180, ('\0' * 0x180).encode()) NONCE_ECC_384 = struct.pack('>H48s', 0x30, ('\0' * 0x30).encode()) PCR_BANKS_TO_NAMES = { TPM2_ALG_SHA1: "sha1", TPM2_ALG_SHA256: "sha256", TPM2_ALG_SHA384: "sha384", TPM2_ALG_SHA512: "sha512", TPM2_ALG_SM3: "sm3-256", TPM2_ALG_SHA3_256: "sha3-256", TPM2_ALG_SHA3_384: "sha3-384", TPM2_ALG_SHA3_512: "sha3-512", } BANK_NAMES_TO_ALGID = { "sha1": TPM2_ALG_SHA1, "sha256": TPM2_ALG_SHA256, "sha384": TPM2_ALG_SHA384, "sha512": TPM2_ALG_SHA512, "sm3-256": TPM2_ALG_SM3, "sha3-256": TPM2_ALG_SHA3_256, "sha3-384": TPM2_ALG_SHA3_384, "sha3-512": TPM2_ALG_SHA3_512, } class Swtpm2(Swtpm): """ Class for manufacturing a swtpm TPM 2 """ def __init__(self, swtpm_exec_l, state_path, keyopt, logfile, fds_to_pass): """ Class constructor swtpm_exec_l is a list like ["swtpm", "socket"] """ super(Swtpm2, self).__init__(swtpm_exec_l, state_path, keyopt, logfile, fds_to_pass, is_tpm2=True) def shutdown(self): """ Shut down the TPM 2 """ fmt = ">HII H" req = struct.pack(fmt, TPM2_ST_NO_SESSIONS, struct.calcsize(fmt), TPM2_CC_SHUTDOWN, TPM2_SU_CLEAR) _, ret = self.transfer(req, "TPM2_Shutdown") return ret def run_swtpm_bios(self): """ Startup the TPM 2 """ fmt = '>HII H' req = struct.pack(fmt, TPM2_ST_NO_SESSIONS, struct.calcsize(fmt), TPM2_CC_STARTUP, TPM2_SU_CLEAR) _, ret = self.transfer(req, "TPM2_Startup") return ret def get_all_pcr_banks(self): """ Get all available PCR banks """ fmt = '>HII III' req = struct.pack(fmt, TPM2_ST_NO_SESSIONS, struct.calcsize(fmt), TPM2_CC_GETCAPABILITY, TPM2_CAP_PCRS, 0, 64) rsp, ret = self.transfer(req, "TPM2_GetCapability") if ret != 0: return [], 1 count = struct.unpack('>H', rsp[17:19])[0] offset = 19 res = [] for _ in range(count): bank, length = struct.unpack('>HB', rsp[offset:offset+3]) name = PCR_BANKS_TO_NAMES[bank] if name: res.append(name) else: res.append('%02x' % bank) offset += 2 + 1 + length return res, 0 def set_active_pcr_banks(self, pcr_banks, all_pcr_banks): """ Set the list of active PCR banks to the one the user wants """ pcrselects = "".encode() count = 0 active = [] # enable the ones the user wants for pcr_bank in pcr_banks: if pcr_bank not in all_pcr_banks: # Skip if not even available continue try: hashalg = BANK_NAMES_TO_ALGID[pcr_bank] except KeyError: continue active.insert(0, pcr_bank) pcrselects += struct.pack('>H BBBB', hashalg, 3, 0xff, 0xff, 0xff) #print("activate hashalg = %d\n" % hashalg) count += 1 if len(active) == 0: logerr(self.logfile, "No PCR banks could be allocated. None of the selected algorithms are " "supported.\n") return [], 1 # disable the rest for pcr_bank in all_pcr_banks: if pcr_bank in pcr_banks: # Skip if to activate continue try: hashalg = BANK_NAMES_TO_ALGID[pcr_bank] except KeyError: continue #print("deactivate hashalg = %d\n" % hashalg) pcrselects += struct.pack('>H BBBB', hashalg, 3, 0, 0, 0) count += 1 authblock = struct.pack('>I HBH', TPM2_RS_PW, 0, 0, 0) fmt = '>HII I I%ds I %ds' % (len(authblock), len(pcrselects)) req = struct.pack(fmt, TPM2_ST_SESSIONS, struct.calcsize(fmt), TPM2_CC_PCR_ALLOCATE, TPM2_RH_PLATFORM, len(authblock), authblock, count, pcrselects) _, ret = self.transfer(req, "TPM2_PCR_Allocate") return active, ret def evictcontrol(self, curr_handle, perm_handle): """ Make object at the curr_handler permanent with the perm_handle """ authblock = struct.pack('>IHBH', TPM2_RS_PW, 0, 0, 0) fmt = '>HII II I%ds I' % len(authblock) req = struct.pack(fmt, TPM2_ST_SESSIONS, struct.calcsize(fmt), TPM2_CC_EVICTCONTROL, TPM2_RH_OWNER, curr_handle, len(authblock), authblock, perm_handle) _, ret = self.transfer(req, "TPM2_EvictControl") return ret def createprimary_ek_rsa(self, rsa_keysize, allowsigning, decryption): """ Create an RSA Ek """ if rsa_keysize == 2048: authpolicy = b'\x83\x71\x97\x67\x44\x84\xb3\xf8\x1a\x90\xcc\x8d' \ b'\x46\xa5\xd7\x24\xfd\x52\xd7\x6e\x06\x52\x0b\x64' \ b'\xf2\xa1\xda\x1b\x33\x14\x69\xaa' keyflags = 0 symkeylen = 128 havenonce = True addlen = 0 elif rsa_keysize == 3072: authpolicy = b'\xB2\x6E\x7D\x28\xD1\x1A\x50\xBC\x53\xD8\x82\xBC' \ b'\xF5\xFD\x3A\x1A\x07\x41\x48\xBB\x35\xD3\xB4\xE4' \ b'\xCB\x1C\x0A\xD9\xBD\xE4\x19\xCA\xCB\x47\xBA\x09' \ b'\x69\x96\x46\x15\x0F\x9F\xC0\x00\xF3\xF8\x0E\x12' keyflags = 0x40 symkeylen = 256 havenonce = False addlen = 16 if allowsigning and decryption: # keyflags: fixedTPM, fixedParent, sensitiveDatOrigin, # adminWithPolicy, sign, decrypt keyflags = keyflags | 0x000600b2 # symmetric: TPM_ALG_NULL symkeydata = struct.pack(">H", TPM2_ALG_NULL) off = 72 + addlen elif allowsigning: # keyflags: fixedTPM, fixedParent, sensitiveDatOrigin, # adminWithPolicy, sign keyflags = keyflags | 0x000400b2 # symmetric: TPM_ALG_NULL symkeydata = struct.pack(">H", TPM2_ALG_NULL) off = 72 + addlen else: # keyflags: fixedTPM, fixedParent, sensitiveDatOrigin, # adminWithPolicy, restricted, decrypt keyflags = keyflags | 0x000300b2 # symmetric: TPM_ALG_AES, 128bit or 256bit, TPM_ALG_CFB symkeydata = struct.pack(">HHH", TPM2_ALG_AES, symkeylen, TPM2_ALG_CFB) off = 76 + addlen return self._createprimary_rsa(TPM2_RH_ENDORSEMENT, keyflags, symkeydata, authpolicy, rsa_keysize, havenonce, off) def _createprimary_rsa(self, primaryhandle, keyflags, symkeydata, authpolicy, rsa_keysize, havenonce, off): """ Create an RSA key with the given parameters """ if rsa_keysize == 2048: nonce = NONCE_RSA2048 hashalg = TPM2_ALG_SHA256 elif rsa_keysize == 3072: if not havenonce: nonce = NONCE_EMPTY else: nonce = NONCE_RSA3072 hashalg = TPM2_ALG_SHA384 else: logerr(self.logfile, "Unsupported keysize %d\n" % rsa_keysize) return b'', "", 0, 1 authblock = struct.pack('>IHBH', TPM2_RS_PW, 0, 0, 0) fmt = '>HHI H%ds %ds HH I %ds' % \ (len(authpolicy), len(symkeydata), len(nonce)) public = struct.pack(fmt, TPM2_ALG_RSA, hashalg, keyflags, len(authpolicy), authpolicy, symkeydata, TPM2_ALG_NULL, rsa_keysize, 0, nonce) ek_template = public fmt = ">HII I I%ds HI H%ds IH" % (len(authblock), len(public)) req = struct.pack(fmt, TPM2_ST_SESSIONS, struct.calcsize(fmt), TPM2_CC_CREATEPRIMARY, primaryhandle, len(authblock), authblock, 4, 0, len(public), public, 0, 0) rsp, ret = self.transfer(req, "TPM2_CreatePrimary") if ret != 0: return b'', "", 0, 1 handle = struct.unpack(">I", rsp[10:14])[0] modlen = struct.unpack(">H", rsp[off:off+2])[0] if modlen != rsa_keysize >> 3: logerr(self.logfile, "RSA key: Getting modulus from wrong offset %d\n" % off) return b'', "", 0, 1 off += 2 ekparam = struct.unpack(">%ds" % modlen, rsp[off:off+modlen])[0].hex() return ek_template, ekparam, handle, 0 def _createprimary_ecc(self, primaryhandle, keyflags, symkeydata, authpolicy, curveid, hashalg, nonce, off): """ Create an ECC key with the given parameters """ authblock = struct.pack('>IHBH', TPM2_RS_PW, 0, 0, 0) fmt = '>HHI H%ds %ds HH H %ds%ds' % \ (len(authpolicy), len(symkeydata), len(nonce), len(nonce)) public = struct.pack(fmt, TPM2_ALG_ECC, hashalg, keyflags, len(authpolicy), authpolicy, symkeydata, TPM2_ALG_NULL, curveid, TPM2_ALG_NULL, nonce, nonce) ek_template = public fmt = '>HII I I%ds HI H%ds IH' % (len(authblock), len(public)) req = struct.pack(fmt, TPM2_ST_SESSIONS, struct.calcsize(fmt), TPM2_CC_CREATEPRIMARY, primaryhandle, len(authblock), authblock, 4, 0, len(public), public, 0, 0) rsp, ret = self.transfer(req, "TPM2_CreatePrimary") if ret != 0: return b'', "", 0, 1 handle = struct.unpack('>I', rsp[10:14])[0] if curveid == TPM2_ECC_NIST_P384: exp_ksize = 48 cid = "secp384r1" else: logerr(self.logfile, "Unknown curveid 0x%x\n" % curveid) return b'', "", 0, 1 ksize1 = struct.unpack('>H', rsp[off:off+2])[0] off2 = off + 2 + ksize1 ksize2 = struct.unpack('>H', rsp[off2:off2+2])[0] if ksize1 != exp_ksize or ksize2 != exp_ksize: logerr(self.logfile, "ECC: Getting key parameters from wrong offset\n") return b'', "", 0, 1 off += 2 xparam = struct.unpack(">%ds" % ksize1, rsp[off:off+ksize1])[0] off2 += 2 yparam = struct.unpack(">%ds" % ksize2, rsp[off2:off2+ksize2])[0] ekparam = "x=%s,y=%s,id=%s" % (xparam.hex(), yparam.hex(), cid) return ek_template, ekparam, handle, 0 def createprimary_spk_ecc_nist_p384(self): """ Create a NIST p384 ECC SPK """ keyflags = 0x00030472 symkeydata = struct.pack('>HHH', TPM2_ALG_AES, 256, TPM2_ALG_CFB) authpolicy = b'' off = 42 return self._createprimary_ecc(TPM2_RH_OWNER, keyflags, symkeydata, authpolicy, TPM2_ECC_NIST_P384, TPM2_ALG_SHA384, NONCE_ECC_384, off) def createprimary_spk_rsa(self, rsa_keysize): """ Create a primary RSA key with the given keysize """ keyflags = 0x00030472 authpolicy = ''.encode() if rsa_keysize == 2048: symkeylen = 128 elif rsa_keysize == 3072: symkeylen = 256 symkeydata = struct.pack('>HHH', TPM2_ALG_AES, symkeylen, TPM2_ALG_CFB) off = 44 return self._createprimary_rsa(TPM2_RH_OWNER, keyflags, symkeydata, authpolicy, rsa_keysize, True, off) def create_spk(self, isecc, rsa_keysize): """ Create either an ECC or RSA storage primary key """ if isecc: _, _, handle, ret = self.createprimary_spk_ecc_nist_p384() else: _, _, handle, ret = self.createprimary_spk_rsa(rsa_keysize) if ret != 0: return 1 ret = self.evictcontrol(handle, TPM2_SPK_HANDLE) if ret == 0: logit(self.logfile, "Successfully created storage primary key with handle 0x%x.\n" % TPM2_SPK_HANDLE) return ret def createprimary_ek_ecc_nist_p384(self, allowsigning, decryption): """ Create en ECC EK key that may be allowed to sign and/or decrypt """ if allowsigning and decryption: # keyflags: fixedTPM, fixedParent, sensitiveDatOrigin, # userWithAuth, adminWithPolicy, sign, decrypt keyflags = 0x000600f2 # symmetric: TPM_ALG_NULL symkeydata = struct.pack(">H", TPM2_ALG_NULL) off = 86 elif allowsigning: # keyflags: fixedTPM, fixedParent, sensitiveDatOrigin, # userWithAuth, adminWithPolicy, sign keyflags = 0x000400f2 # symmetric: TPM_ALG_NULL symkeydata = struct.pack(">H", TPM2_ALG_NULL) off = 86 else: # keyflags: fixedTPM, fixedParent, sensitiveDatOrigin, # userWithAuth, adminWithPolicy, restricted, decrypt keyflags = 0x000300f2 # symmetric: TPM_ALG_AES, 256bit, TPM_ALG_CFB symkeydata = struct.pack(">HHH", TPM2_ALG_AES, 256, TPM2_ALG_CFB) off = 90 # authPolicy from Ek Credential Profile; Spec v 2.1; rev12; p. 43 authpolicy = b'\xB2\x6E\x7D\x28\xD1\x1A\x50\xBC\x53\xD8\x82\xBC' \ b'\xF5\xFD\x3A\x1A\x07\x41\x48\xBB\x35\xD3\xB4\xE4' \ b'\xCB\x1C\x0A\xD9\xBD\xE4\x19\xCA\xCB\x47\xBA\x09' \ b'\x69\x96\x46\x15\x0F\x9F\xC0\x00\xF3\xF8\x0E\x12' ek_template, ekparam, handle, ret = \ self._createprimary_ecc(TPM2_RH_ENDORSEMENT, keyflags, symkeydata, authpolicy, TPM2_ECC_NIST_P384, TPM2_ALG_SHA384, NONCE_EMPTY, off) if ret != 0: logerr(self.logfile, "create_spk_ecc failed\n") return ek_template, ekparam, handle, ret def create_ek(self, isecc, rsa_keysize, allowsigning, decryption, lock_nvram): """ Create an ECC or RSA EK """ if isecc: tpm2_ek_handle = TPM2_EK_ECC_SECP384R1_HANDLE keytype = "ECC" nvindex = TPM2_NV_INDEX_ECC_SECP384R1_HI_EKTEMPLATE else: if rsa_keysize == 2048: tpm2_ek_handle = TPM2_EK_RSA_HANDLE nvindex = TPM2_NV_INDEX_RSA2048_EKTEMPLATE elif rsa_keysize == 3072: tpm2_ek_handle = TPM2_EK_RSA3072_HANDLE nvindex = TPM2_NV_INDEX_RSA3072_HI_EKTEMPLATE keytype = "RSA %d" % rsa_keysize if isecc: ek_template, ekparam, handle, ret = \ self.createprimary_ek_ecc_nist_p384(allowsigning, decryption) else: ek_template, ekparam, handle, ret = \ self.createprimary_ek_rsa(rsa_keysize, allowsigning, decryption) if ret == 0: ret = self.evictcontrol(handle, tpm2_ek_handle) if ret != 0: logerr(self.logfile, "create_ek failed\n") return "", 1 logit(self.logfile, "Successfully created %s EK with handle 0x%x.\n" % (keytype, tpm2_ek_handle)) if allowsigning: nvindexattrs = TPMA_NV_PLATFORMCREATE | \ TPMA_NV_AUTHREAD | \ TPMA_NV_OWNERREAD | \ TPMA_NV_PPREAD | \ TPMA_NV_PPWRITE | \ TPMA_NV_NO_DA | \ TPMA_NV_WRITEDEFINE ret = self.write_nvram(nvindex, nvindexattrs, ek_template, lock_nvram, "EK template") if ret == 0: logit(self.logfile, "Successfully created NVRAM area 0x%x for %s EK template.\n" % (nvindex, keytype)) return ekparam, ret def nv_definespace(self, nvindex, nvindexattrs, size): """ Define an NVIndex with attributes and given size """ authblock = struct.pack(">IHBH", TPM2_RS_PW, 0, 0, 0) nvpublic = struct.pack('>IHI H H', nvindex, TPM2_ALG_SHA256, nvindexattrs, 0, size) fmt = ">HII I I%ds H H%ds" % (len(authblock), len(nvpublic)) req = struct.pack(fmt, TPM2_ST_SESSIONS, struct.calcsize(fmt), TPM2_CC_NV_DEFINESPACE, TPM2_RH_PLATFORM, len(authblock), authblock, 0, len(nvpublic), nvpublic) _, ret = self.transfer(req, "TPM2_NV_DefineSpace") return ret def nv_write(self, nvindex, data): """ Write the data into the given NVIndex """ authblock = struct.pack(">IHBH", TPM2_RS_PW, 0, 0, 0) offset = 0 stepsize = 1024 while offset < len(data): if offset + stepsize < len(data): buf = data[offset : offset + stepsize] else: buf = data[offset : len(data)] fmt = ">HII II I%ds H%dsH" % (len(authblock), len(buf)) req = struct.pack(fmt, TPM2_ST_SESSIONS, struct.calcsize(fmt), TPM2_CC_NV_WRITE, TPM2_RH_PLATFORM, nvindex, len(authblock), authblock, len(buf), buf, offset) _, ret = self.transfer(req, "TPM2_NV_Write") if ret != 0: return 1 offset += stepsize return 0 def nv_writelock(self, nvindex): """ Lock the given index """ authblock = struct.pack(">IHBH", TPM2_RS_PW, 0, 0, 0) fmt = ">HII II I%ds" % (len(authblock)) req = struct.pack(fmt, TPM2_ST_SESSIONS, struct.calcsize(fmt), TPM2_CC_NV_WRITELOCK, TPM2_RH_PLATFORM, nvindex, len(authblock), authblock) _, ret = self.transfer(req, "TPM2_NV_WriteLock") return ret def write_nvram(self, nvindex, nvindexattrs, data, lock_nvram, purpose): """ Define NVRAM space, write data to it and lock it if wanted """ ret = self.nv_definespace(nvindex, nvindexattrs, len(data)) if ret != 0: logerr(self.logfile, "Could not create NVRAM area 0x%x for %s.\n" % (nvindex, purpose)) return 1 ret = self.nv_write(nvindex, data) if ret != 0: logerr(self.logfile, "Could not write %s into NVRAM area 0x%x.\n" % (purpose, nvindex)) return 1 if lock_nvram: ret = self.nv_writelock(nvindex) if ret != 0: logerr(self.logfile, "Could not lock EK template NVRAM area 0x%x.\n" % nvindex) return 1 return ret def write_ek_cert_nvram(self, isecc, rsa_keysize, lock_nvram, ekcert): """ Write the given ekcert into an NVRAM area appropriate for the key type and size """ if not isecc: if rsa_keysize == 2048: nvindex = TPM2_NV_INDEX_RSA2048_EKCERT elif rsa_keysize == 3072: nvindex = TPM2_NV_INDEX_RSA3072_HI_EKCERT keytype = "RSA %d" % rsa_keysize else: nvindex = TPM2_NV_INDEX_ECC_SECP384R1_HI_EKCERT keytype = "ECC" nvindexattrs = TPMA_NV_PLATFORMCREATE | \ TPMA_NV_AUTHREAD | \ TPMA_NV_OWNERREAD | \ TPMA_NV_PPREAD | \ TPMA_NV_PPWRITE | \ TPMA_NV_NO_DA | \ TPMA_NV_WRITEDEFINE ret = self.write_nvram(nvindex, nvindexattrs, ekcert, lock_nvram, "EK Certificate") if ret == 0: logit(self.logfile, "Successfully created NVRAM area 0x%x for %s EK certificate.\n" % (nvindex, keytype)) else: logerr(self.logfile, "Could not create NVRAM area 0x%x for %s EK certificate.\n" % (nvindex, keytype)) return ret def write_platform_cert_nvram(self, lock_nvram, platformcert): """ Write the platform certificate into an NVRAM area """ nvindex = TPM2_NV_INDEX_PLATFORMCERT nvindexattrs = TPMA_NV_PLATFORMCREATE | \ TPMA_NV_AUTHREAD | \ TPMA_NV_OWNERREAD | \ TPMA_NV_PPREAD | \ TPMA_NV_PPWRITE | \ TPMA_NV_NO_DA | \ TPMA_NV_WRITEDEFINE ret = self.write_nvram(nvindex, nvindexattrs, platformcert, lock_nvram, "Platform Certificate") if ret == 0: logit(self.logfile, "Successfully created NVRAM area 0x%x for platform certificate.\n" % nvindex) else: logerr(self.logfile, "Could not create NVRAM area 0x%x for platform certificate.\n" % nvindex) return ret # # TPM 1.2 support # TPM_TAG_RQU_COMMAND = 0x00c1 TPM_TAG_RQU_AUTH1_COMMAND = 0x00c2 TPM_ORD_OIAP = 0x0000000A TPM_ORD_OSAP = 0x0000000B TPM_ORD_TAKE_OWNERSHIP = 0x0000000D TPM_ORD_OWNER_CLEAR = 0x0000005B TPM_ORD_PHYSICAL_ENABLE = 0x0000006F TPM_ORD_PHYSICAL_SET_DEACTIVATED = 0x00000072 TPM_ORD_STARTUP = 0x00000099 TPM_ORD_NV_DEFINE_SPACE = 0x000000CC TPM_ORD_NV_WRITE_VALUE = 0x000000CD TSC_ORD_PHYSICAL_PRESENCE = 0x4000000A TPM_ST_CLEAR = 0x0001 TPM_PHYSICAL_PRESENCE_CMD_ENABLE = 0x0020 TPM_PHYSICAL_PRESENCE_PRESENT = 0x0008 TPM_ALG_RSA = 0x00000001 TPM_KEY_STORAGE = 0x0011 TPM_AUTH_ALWAYS = 0x01 TPM_PID_OWNER = 0x0005 TPM_ES_RSAESOAEP_SHA1_MGF1 = 0x0003 TPM_SS_NONE = 0x0001 TPM_TAG_PCR_INFO_LONG = 0x0006 TPM_TAG_NV_ATTRIBUTES = 0x0017 TPM_TAG_NV_DATA_PUBLIC = 0x0018 TPM_TAG_KEY12 = 0x0028 TPM_LOC_ZERO = 0x01 TPM_LOC_ALL = 0x1f TPM_NV_INDEX_D_BIT = 0x10000000 TPM_NV_INDEX_EKCERT = 0xF000 TPM_NV_INDEX_PLATFORMCERT = 0xF002 TPM_NV_INDEX_LOCK = 0xFFFFFFFF TPM_NV_PER_OWNERREAD = 0x00020000 TPM_NV_PER_OWNERWRITE = 0x00000002 TPM_ET_OWNER = 0x02 TPM_ET_NV = 0x0b TPM_KH_EK = 0x40000006 class Swtpm12(Swtpm): """ Class for manufacturing a swtpm TPM 1.2 """ def __init__(self, swtpm_exec_l, state_path, keyopt, logfile, fds_to_pass): """ Class constructor swtpm_exec_l is a list like ["swtpm", "socket"] """ super(Swtpm12, self).__init__(swtpm_exec_l, state_path, keyopt, logfile, fds_to_pass) def startup(self, startup_type): """ Run TPM_Startup() """ fmt = ">HII H" req = struct.pack(fmt, TPM_TAG_RQU_COMMAND, struct.calcsize(fmt), TPM_ORD_STARTUP, startup_type) _, ret = self.transfer(req, "TPM_Startup") return ret def tsc_physicalpresence(self, physicalpresence): """ Run TSC_PhysicalPresence """ fmt = ">HII H" req = struct.pack(fmt, TPM_TAG_RQU_COMMAND, struct.calcsize(fmt), TSC_ORD_PHYSICAL_PRESENCE, physicalpresence) _, ret = self.transfer(req, "TSC_PhysicalPresence") return ret def physical_enable(self): """ Run TPM_PhysicalEnable """ fmt = ">HII" req = struct.pack(fmt, TPM_TAG_RQU_COMMAND, struct.calcsize(fmt), TPM_ORD_PHYSICAL_ENABLE) _, ret = self.transfer(req, "TSC_PhysicalEnable") return ret def physical_set_deactivated(self, state): """ Run TPM_PhysicalSetDeactivated """ fmt = ">HI I B" req = struct.pack(fmt, TPM_TAG_RQU_COMMAND, struct.calcsize(fmt), TPM_ORD_PHYSICAL_SET_DEACTIVATED, state) _, ret = self.transfer(req, "TPM_PhysiclaSetDaectivated") return ret def run_swtpm_bios(self): """ Initialize the swtpm """ if self.startup(TPM_ST_CLEAR) or \ self.tsc_physicalpresence(TPM_PHYSICAL_PRESENCE_CMD_ENABLE) or \ self.tsc_physicalpresence(TPM_PHYSICAL_PRESENCE_PRESENT) or \ self.physical_enable() or \ self.physical_set_deactivated(0): return 1 return 0 def create_endorsement_key_pair(self): """ Create an endorsement key for the TPM 1.2 """ req = b'\x00\xc1\x00\x00\x00\x36\x00\x00\x00\x78\x38\xf0\x30\x81\x07\x2b' \ b'\x0c\xa9\x10\x98\x08\xc0\x4B\x05\x11\xc9\x50\x23\x52\xc4\x00\x00' \ b'\x00\x01\x00\x03\x00\x02\x00\x00\x00\x0c\x00\x00\x08\x00\x00\x00' \ b'\x00\x02\x00\x00\x00\x00' rsp, ret = self.transfer(req, "TPM_CreateEndorsementKeyPair") if ret != 0: return b'', 1 length = struct.unpack(">I", rsp[34:38])[0] if length != 256: logerr(self.logfile, "Offset to EK Public key is wrong.\n") return b'', 1 pubek = struct.unpack("256s", rsp[38:38+256])[0] return pubek, 0 def oiap(self): """ Create an OIAP session """ fmt = ">HII" req = struct.pack(fmt, TPM_TAG_RQU_COMMAND, struct.calcsize(fmt), TPM_ORD_OIAP) rsp, ret = self.transfer(req, "TPM_OIAP") if ret != 0: return b'', 0, 1 authhandle = struct.unpack(">I", rsp[10:14])[0] nonce_even = struct.unpack("20s", rsp[14:34])[0] return nonce_even, authhandle, 0 def take_ownership(self, ownerpass_digest, srkpass_digest, pubek): """ Run TPM_TakeOwernship """ exponent = int('10001', 16) modulus = int(pubek.hex(), 16) pubekkey = RSAPublicNumbers(exponent, modulus).public_key(backend=default_backend()) oaep = padding.OAEP( mgf=padding.MGF1(algorithm=hashes.SHA1()), algorithm=hashes.SHA1(), label="TCPA".encode() ) enc_owner_auth = pubekkey.encrypt(ownerpass_digest, oaep) enc_srk_auth = pubekkey.encrypt(srkpass_digest, oaep) nonce_even, auth_handle, ret = self.oiap() if ret != 0: return 1 tpm_rsa_key_parms = struct.pack(">III", 2048, # keyLength 2, # numPrimes 0) # exponentSize tpm_key_parms = struct.pack(">I HH I%ds" % (len(tpm_rsa_key_parms)), TPM_ALG_RSA, # algorithmId TPM_ES_RSAESOAEP_SHA1_MGF1, # encScheme TPM_SS_NONE, # sigScheme len(tpm_rsa_key_parms), tpm_rsa_key_parms) tpm_key12 = struct.pack(">HH HIB %ds I I I" % (len(tpm_key_parms)), TPM_TAG_KEY12, 0, TPM_KEY_STORAGE, # keyUsage 0, # keyFlags TPM_AUTH_ALWAYS, # authDataUsage tpm_key_parms, 0, 0, 0) fmt_auth = ">I20sB20s" fmt = ">HII H I256s I256s %ds" % len(tpm_key12) nonce_odd = os.urandom(20) req = struct.pack(fmt, TPM_TAG_RQU_AUTH1_COMMAND, struct.calcsize(fmt) + struct.calcsize(fmt_auth), TPM_ORD_TAKE_OWNERSHIP, TPM_PID_OWNER, len(enc_owner_auth), enc_owner_auth, len(enc_srk_auth), enc_srk_auth, tpm_key12) # req needs authhandle, nonceodd & ownerAuth appended shainput = struct.unpack("%ds" % (len(req) - 6), req[6:len(req)])[0] in_param_digest = sha1(shainput) continue_auth_session = 0 in_auth_setup_params = struct.pack(">20s20sB", nonce_even, nonce_odd, continue_auth_session) macinput = struct.pack(">20s %ds" % len(in_auth_setup_params), in_param_digest, in_auth_setup_params) myhmac = hmac.HMAC(ownerpass_digest, hashes.SHA1(), backend=default_backend()) myhmac.update(macinput) owner_auth = myhmac.finalize() req += struct.pack(fmt_auth, auth_handle, nonce_odd, continue_auth_session, owner_auth) _, ret = self.transfer(req, "TPM_TakeOwnership") return ret def ownerclear(self, ownerpass_digest): """ clear TPM ownership """ nonce_even, auth_handle, ret = self.oiap() if ret != 0: return 1 nonce_odd = os.urandom(20) fmt_auth = ">I20sB20s" fmt = ">H II" req = struct.pack(fmt, TPM_TAG_RQU_AUTH1_COMMAND, struct.calcsize(fmt) + struct.calcsize(fmt_auth), TPM_ORD_OWNER_CLEAR) shainput = struct.unpack("%ds" % (len(req) - 6), req[6:len(req)])[0] in_param_digest = sha1(shainput) continue_auth_session = 0 in_auth_setup_params = struct.pack(">20s20sB", nonce_even, nonce_odd, continue_auth_session) macinput = struct.pack(">20s %ds" % len(in_auth_setup_params), in_param_digest, in_auth_setup_params) myhmac = hmac.HMAC(ownerpass_digest, hashes.SHA1(), backend=default_backend()) myhmac.update(macinput) owner_auth = myhmac.finalize() req += struct.pack(fmt_auth, auth_handle, nonce_odd, continue_auth_session, owner_auth) _, ret = self.transfer(req, "TPM_ClearOwner") return ret def nv_define_space(self, nvindex, nvindexattrs, size): """ Define an nvindex with the given permissions and size """ pcr_info_short = struct.pack(">HBBB B 20s", 3, 0, 0, 0, TPM_LOC_ALL, ('\x00' * 20).encode()) fmt = ">HI %ds%ds HI BBBI" % (len(pcr_info_short), len(pcr_info_short)) nv_data_public = struct.pack(fmt, TPM_TAG_NV_DATA_PUBLIC, nvindex, pcr_info_short, pcr_info_short, TPM_TAG_NV_ATTRIBUTES, nvindexattrs, 0, 0, 0, size) fmt = ">HII %ds 20s" % len(nv_data_public) req = struct.pack(fmt, TPM_TAG_RQU_COMMAND, struct.calcsize(fmt), TPM_ORD_NV_DEFINE_SPACE, nv_data_public, ('\x00' * 20).encode()) _, ret = self.transfer(req, "TPM_NV_DefineSpace") return ret def nv_write_value(self, nvindex, data): """ Write data to an index """ fmt = ">HII III%ds" % len(data) req = struct.pack(fmt, TPM_TAG_RQU_COMMAND, struct.calcsize(fmt), TPM_ORD_NV_WRITE_VALUE, nvindex, 0, len(data), data) _, ret = self.transfer(req, "TPM_NV_WriteValue") return ret def write_ek_cert_nvram(self, data): """ Write the EK Certificate into NVRAM """ nvindex = TPM_NV_INDEX_EKCERT|TPM_NV_INDEX_D_BIT ret = self.nv_define_space(nvindex, TPM_NV_PER_OWNERREAD|TPM_NV_PER_OWNERWRITE, len(data)) if ret != 0: return 1 ret = self.nv_write_value(nvindex, data) if ret != 0: return 1 return 0 def write_platform_cert_nvram(self, data): """ Write the Platform Certificate into NVRAM """ nvindex = TPM_NV_INDEX_PLATFORMCERT|TPM_NV_INDEX_D_BIT ret = self.nv_define_space(nvindex, TPM_NV_PER_OWNERREAD|TPM_NV_PER_OWNERWRITE, len(data)) if ret != 0: return 1 return self.nv_write_value(nvindex, data) def nv_lock(self): """ Lock the NVRAM """ return self.nv_define_space(TPM_NV_INDEX_LOCK, 0, 0)
the-stack_0_973
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.ads.googleads.v8.resources.types import payments_account __protobuf__ = proto.module( package="google.ads.googleads.v8.services", marshal="google.ads.googleads.v8", manifest={"ListPaymentsAccountsRequest", "ListPaymentsAccountsResponse",}, ) class ListPaymentsAccountsRequest(proto.Message): r"""Request message for fetching all accessible payments accounts. Attributes: customer_id (str): Required. The ID of the customer to apply the PaymentsAccount list operation to. """ customer_id = proto.Field(proto.STRING, number=1,) class ListPaymentsAccountsResponse(proto.Message): r"""Response message for [PaymentsAccountService.ListPaymentsAccounts][google.ads.googleads.v8.services.PaymentsAccountService.ListPaymentsAccounts]. Attributes: payments_accounts (Sequence[google.ads.googleads.v8.resources.types.PaymentsAccount]): The list of accessible payments accounts. """ payments_accounts = proto.RepeatedField( proto.MESSAGE, number=1, message=payments_account.PaymentsAccount, ) __all__ = tuple(sorted(__protobuf__.manifest))
the-stack_0_974
"""This is used to patch the QApplication style sheet. It reads the current stylesheet, appends our modifications and sets the new stylesheet. """ from PyQt5 import QtWidgets def patch_qt_stylesheet(use_dark_theme: bool) -> None: if not use_dark_theme: return app = QtWidgets.QApplication.instance() style_sheet = app.styleSheet() style_sheet = style_sheet + ''' /* PayToEdit text was being clipped */ QAbstractScrollArea { padding: 0px; } /* In History tab, labels while edited were being clipped (Windows) */ QAbstractItemView QLineEdit { padding: 0px; } ''' app.setStyleSheet(style_sheet)
the-stack_0_978
import json import os import re import urllib.request import warnings from typing import Optional, Union, Tuple, Dict import ee import pkg_resources from ee_extra.STAC.utils import _get_platform_STAC from ee_extra.utils import _load_JSON def _get_expression_map(img: ee.Image, platformDict: dict) -> dict: """Gets the dictionary required for the map parameter i n ee.Image.expression() method. Args: img : Image to get the dictionary from. platformDict : Dictionary retrieved from the _get_STAC_platform() method. Returns: Map dictionary for the ee.Image.expression() method. """ def lookupS2(img): return { "A": img.select("B1"), "B": img.select("B2"), "G": img.select("B3"), "R": img.select("B4"), "RE1": img.select("B5"), "RE2": img.select("B6"), "RE3": img.select("B7"), "N": img.select("B8"), "N2": img.select("B8A"), "WV": img.select("B9"), "S1": img.select("B11"), "S2": img.select("B12"), "lambdaG": 559.8, "lambdaR": 664.6, "lambdaN": 832.8, } def lookupL8(img): return { "A": img.select("B1"), "B": img.select("B2"), "G": img.select("B3"), "R": img.select("B4"), "N": img.select("B5"), "S1": img.select("B6"), "S2": img.select("B7"), "T1": img.select("B10"), "T2": img.select("B11"), "lambdaG": 560.0, "lambdaR": 655.0, "lambdaN": 865.0, } def lookupL8C2(img): return { "A": img.select("SR_B1"), "B": img.select("SR_B2"), "G": img.select("SR_B3"), "R": img.select("SR_B4"), "N": img.select("SR_B5"), "S1": img.select("SR_B6"), "S2": img.select("SR_B7"), "T1": img.select("ST_B10"), "lambdaG": 560.0, "lambdaR": 655.0, "lambdaN": 865.0, } def lookupL45(img): return { "B": img.select("B1"), "G": img.select("B2"), "R": img.select("B3"), "N": img.select("B4"), "S1": img.select("B5"), "T1": img.select("B6"), "S2": img.select("B7"), "lambdaG": 560.0, "lambdaR": 660.0, "lambdaN": 830.0, } def lookupL45C2(img): return { "B": img.select("SR_B1"), "G": img.select("SR_B2"), "R": img.select("SR_B3"), "N": img.select("SR_B4"), "S1": img.select("SR_B5"), "T1": img.select("ST_B6"), "S2": img.select("SR_B7"), "lambdaG": 560.0, "lambdaR": 660.0, "lambdaN": 830.0, } def lookupL7(img): return { "B": img.select("B1"), "G": img.select("B2"), "R": img.select("B3"), "N": img.select("B4"), "S1": img.select("B5"), "T1": img.select("B6"), "S2": img.select("B7"), "lambdaG": 560.0, "lambdaR": 660.0, "lambdaN": 835.0, } def lookupL7C2(img): return { "B": img.select("SR_B1"), "G": img.select("SR_B2"), "R": img.select("SR_B3"), "N": img.select("SR_B4"), "S1": img.select("SR_B5"), "T1": img.select("ST_B6"), "S2": img.select("SR_B7"), "lambdaG": 560.0, "lambdaR": 660.0, "lambdaN": 835.0, } def lookupMOD09GQ(img): return { "R": img.select("sur_refl_b01"), "N": img.select("sur_refl_b02"), "lambdaR": 645.0, "lambdaN": 858.5, } def lookupMOD09GA(img): return { "B": img.select("sur_refl_b03"), "G": img.select("sur_refl_b04"), "R": img.select("sur_refl_b01"), "N": img.select("sur_refl_b02"), "S1": img.select("sur_refl_b06"), "S2": img.select("sur_refl_b07"), "lambdaG": 555.0, "lambdaR": 645.0, "lambdaN": 858.5, } def lookupMCD43A4(img): return { "B": img.select("Nadir_Reflectance_Band3"), "G": img.select("Nadir_Reflectance_Band4"), "R": img.select("Nadir_Reflectance_Band1"), "N": img.select("Nadir_Reflectance_Band2"), "S1": img.select("Nadir_Reflectance_Band6"), "S2": img.select("Nadir_Reflectance_Band7"), "lambdaG": 555.0, "lambdaR": 645.0, "lambdaN": 858.5, } lookupPlatform = { "COPERNICUS/S2": lookupS2, "COPERNICUS/S2_SR": lookupS2, "LANDSAT/LC08/C01/T1_SR": lookupL8, "LANDSAT/LC08/C01/T2_SR": lookupL8, "LANDSAT/LC08/C02/T1_L2": lookupL8C2, "LANDSAT/LC08/C02/T2_L2": lookupL8C2, "LANDSAT/LC09/C02/T1_L2": lookupL8C2, "LANDSAT/LC09/C02/T2_L2": lookupL8C2, "LANDSAT/LE07/C01/T1_SR": lookupL7, "LANDSAT/LE07/C01/T2_SR": lookupL7, "LANDSAT/LE07/C02/T1_L2": lookupL7C2, "LANDSAT/LE07/C02/T2_L2": lookupL7C2, "LANDSAT/LT05/C01/T1_SR": lookupL45, "LANDSAT/LT05/C01/T2_SR": lookupL45, "LANDSAT/LT05/C02/T1_L2": lookupL45C2, "LANDSAT/LT05/C02/T2_L2": lookupL45C2, "LANDSAT/LT04/C01/T1_SR": lookupL45, "LANDSAT/LT04/C01/T2_SR": lookupL45, "LANDSAT/LT04/C02/T1_L2": lookupL45C2, "LANDSAT/LT04/C02/T2_L2": lookupL45C2, "MODIS/006/MOD09GQ": lookupMOD09GQ, "MODIS/006/MYD09GQ": lookupMOD09GQ, "MODIS/006/MOD09GA": lookupMOD09GA, "MODIS/006/MYD09GA": lookupMOD09GA, "MODIS/006/MOD09Q1": lookupMOD09GQ, "MODIS/006/MYD09Q1": lookupMOD09GQ, "MODIS/006/MOD09A1": lookupMOD09GA, "MODIS/006/MYD09A1": lookupMOD09GA, "MODIS/006/MCD43A4": lookupMCD43A4, } if platformDict["platform"] not in list(lookupPlatform.keys()): raise Exception( "Sorry, satellite platform not supported for index computation!" ) return lookupPlatform[platformDict["platform"]](img) def _get_indices(online: bool) -> dict: """Retrieves the dictionary of indices used for the index() method in ee.Image and ee.ImageCollection classes. Args: online : Wheter to retrieve the most recent list of indices directly from the GitHub repository and not from the local copy. Returns: Indices. """ if online: with urllib.request.urlopen( "https://raw.githubusercontent.com/davemlz/awesome-ee-spectral-indices/main/output/spectral-indices-dict.json" ) as url: indices = json.loads(url.read().decode()) else: indices = _load_JSON("spectral-indices-dict.json") return indices["SpectralIndices"] def _get_kernel_image( img: ee.Image, lookup: dict, kernel: str, sigma: Union[str, float], a: str, b: str ) -> ee.Image: """Creates an ee.Image representing a kernel computed on bands [a] and [b]. Args: img : Image to compute the kernel on. lookup : Dictionary retrieved from _get_expression_map(). kernel : Kernel to use. sigma : Length-scale parameter. Used for kernel = 'RBF'. a : Key of the first band to use. b : Key of the second band to use. Returns: Kernel image. """ if a not in list(lookup.keys()) or b not in list(lookup.keys()): return None else: lookupab = {"a": lookup[a], "b": lookup[b]} if isinstance(sigma, str): lookup = {**lookup, **lookupab, "sigma": img.expression(sigma, lookupab)} else: lookup = {**lookup, **lookupab, "sigma": sigma} kernels = { "linear": "a * b", "RBF": "exp((-1.0 * (a - b) ** 2.0)/(2.0 * sigma ** 2.0))", "poly": "((a * b) + c) ** p", } return img.expression(kernels[kernel], lookup) def _remove_none_dict(dictionary: dict) -> dict: """Removes elements from a dictionary with None values. Args: dictionary : Dictionary to remove None values. Returns: Curated dictionary. """ newDictionary = dict(dictionary) for key in dictionary.keys(): if dictionary[key] is None: del newDictionary[key] return newDictionary def _get_kernel_parameters( img: ee.Image, lookup: dict, kernel: str, sigma: Union[str, float] ) -> dict: """Gets the additional kernel parameters to compute kernel indices. Args: img : Image to compute the kernel parameters on. lookup : Dictionary retrieved from _get_expression_map(). kernel : Kernel to use. sigma : Length-scale parameter. Used for kernel = 'RBF'. Returns: Kernel parameters. """ kernelParameters = { "kNN": _get_kernel_image(img, lookup, kernel, sigma, "N", "N"), "kNR": _get_kernel_image(img, lookup, kernel, sigma, "N", "R"), "kNB": _get_kernel_image(img, lookup, kernel, sigma, "N", "B"), "kNL": _get_kernel_image(img, lookup, kernel, sigma, "N", "L"), "kGG": _get_kernel_image(img, lookup, kernel, sigma, "G", "G"), "kGR": _get_kernel_image(img, lookup, kernel, sigma, "G", "R"), "kGB": _get_kernel_image(img, lookup, kernel, sigma, "G", "B"), "kBB": _get_kernel_image(img, lookup, kernel, sigma, "B", "B"), "kBR": _get_kernel_image(img, lookup, kernel, sigma, "B", "R"), "kBL": _get_kernel_image(img, lookup, kernel, sigma, "B", "L"), "kRR": _get_kernel_image(img, lookup, kernel, sigma, "R", "R"), "kRB": _get_kernel_image(img, lookup, kernel, sigma, "R", "B"), "kRL": _get_kernel_image(img, lookup, kernel, sigma, "R", "L"), "kLL": _get_kernel_image(img, lookup, kernel, sigma, "L", "L"), } return kernelParameters def _get_tc_coefficients(platform: str) -> dict: """Gets the platform-specific coefficient dictionary required for tasseled cap transformation. Platform matching is strict, meaning that data must be at the processing level specified by the reference literature that coefficients were sourced from, e.g. Landsat 8 SR cannot be transformed with Landsat 8 TOA coefficients. Args: platform : Platform name retrieved from the STAC. Returns: Map dictionary with band names and corresponding coefficients for brightness greenness, and wetness. Raises: Exception : If the platform has no supported coefficients. """ SENTINEL2_1C = { "bands": ( "B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B10", "B11", "B12", ), "TCB": ( 0.2381, 0.2569, 0.2934, 0.3020, 0.3099, 0.3740, 0.4180, 0.3580, 0.3834, 0.0103, 0.0020, 0.0896, 0.0780, ), "TCG": ( -0.2266, -0.2818, -0.3020, -0.4283, -0.2959, 0.1602, 0.3127, 0.3138, 0.4261, 0.1454, -0.0017, -0.1341, -0.2538, ), "TCW": ( 0.1825, 0.1763, 0.1615, 0.0486, 0.0170, 0.0223, 0.0219, -0.0755, -0.0910, -0.1369, 0.0003, -0.7701, -0.5293, ), } # Zhai et al. 2022 also provide coefficients with the blue band, but # recommend omitting it due to difficulties in atmospheric correction. LANDSAT8_SR = { "bands": ("SR_B3", "SR_B4", "SR_B5", "SR_B6", "SR_B7"), "TCB": (0.4596, 0.5046, 0.5458, 0.4114, 0.2589), "TCG": (-0.3374, -0.4901, 0.7909, 0.0177, -0.1416), "TCW": (0.2254, 0.3681, 0.2250, -0.6053, -0.6298) } # Zhai et al. 2022 coefficients were included for L8 TOA over the Baig # et al. 2014 coefficients for consistency with the L8 SR coefficients, # which were not calculated by Baig et al. LANDSAT8_TOA = { "bands": ("B3", "B4", "B5", "B6", "B7"), "TCB": (0.4321, 0.4971, 0.5695, 0.4192, 0.2569), "TCG": (-0.3318, -0.4844, 0.7856, -0.0331, -0.1923), "TCW": (0.2633, 0.3945, 0.1801, -0.6121, -0.6066) } # Coefficients for Landsat 8 OLI are usable for Landsat 9 OLI-2, per # Zhai et al. 2022 LANDSAT9_SR = LANDSAT8_SR LANDSAT9_TOA = LANDSAT8_TOA LANDSAT7_TOA = { "bands": ("B1", "B2", "B3", "B4", "B5", "B7"), "TCB": (0.3561, 0.3972, 0.3904, 0.6966, 0.2286, 0.1596), "TCG": (-0.3344, -0.3544, -0.4556, 0.6966, -0.0242, -0.2630), "TCW": (0.2626, 0.2141, 0.0926, 0.0656, -0.7629, -0.5388), } LANDSAT4_DN = { "bands": ("B1", "B2", "B3", "B4", "B5", "B7"), "TCB": (0.3037, 0.2793, 0.4743, 0.5585, 0.5082, 0.1863), "TCG": (-0.2848, -0.2435, -0.5435, 0.7243, 0.0840, -0.1800), "TCW": (0.1509, 0.1973, 0.3279, 0.3406, -0.7112, -0.4572), } LANDSAT4_SR = { "bands": ("SR_B1", "SR_B2", "SR_B3", "SR_B4", "SR_B5", "SR_B7"), "TCB": (0.2043, 0.4158, 0.5524, 0.5741, 0.3124, 0.2303), "TCG": (-0.1603, -0.2819, -0.4934, 0.7940, -0.0002, -0.1446), "TCW": (0.0315, 0.2021, 0.3102, 0.1594, -0.6806, -0.6109), } LANDSAT5_DN = { "bands": ("B1", "B2", "B3", "B4", "B5", "B7"), "TCB": (0.2909, 0.2493, 0.4806, 0.5568, 0.4438, 0.1706), "TCG": (-0.2728, -0.2174, -0.5508, 0.7221, 0.0733, -0.1648), "TCW": (0.1446, 0.1761, 0.3322, 0.3396, -0.6210, -0.4186), } MODIS_NBAR = { "bands": ( "Nadir_Reflectance_Band1", "Nadir_Reflectance_Band2", "Nadir_Reflectance_Band3", "Nadir_Reflectance_Band4", "Nadir_Reflectance_Band5", "Nadir_Reflectance_Band6", "Nadir_Reflectance_Band7", ), "TCB": (0.4395, 0.5945, 0.2460, 0.3918, 0.3506, 0.2136, 0.2678), "TCG": (-0.4064, 0.5129, -0.2744, -0.2893, 0.4882, -0.0036, -0.4169), "TCW": (0.1147, 0.2489, 0.2408, 0.3132, -0.3122, -0.6416, -0.5087), } platformCoeffs = { "COPERNICUS/S2": SENTINEL2_1C, "MODIS/006/MCD43A4": MODIS_NBAR, "LANDSAT/LC09/C02/T1_L2": LANDSAT9_SR, "LANDSAT/LC09/C02/T1_TOA": LANDSAT9_TOA, "LANDSAT/LC08/C02/T1_L2": LANDSAT8_SR, "LANDSAT/LC08/C02/T2_L2": LANDSAT8_SR, "LANDSAT/LC08/C01/T1_TOA": LANDSAT8_TOA, "LANDSAT/LC08/C01/T1_RT_TOA": LANDSAT8_TOA, "LANDSAT/LC08/C01/T2_TOA": LANDSAT8_TOA, "LANDSAT/LE07/C01/T1_TOA": LANDSAT7_TOA, "LANDSAT/LE07/C01/T1_RT_TOA": LANDSAT7_TOA, "LANDSAT/LE07/C01/T2_TOA": LANDSAT7_TOA, "LANDSAT/LT05/C01/T1": LANDSAT5_DN, "LANDSAT/LT05/C01/T2": LANDSAT5_DN, "LANDSAT/LT04/C02/T1_L2": LANDSAT4_SR, "LANDSAT/LT04/C02/T2_L2": LANDSAT4_SR, "LANDSAT/LT04/C01/T1": LANDSAT4_DN, "LANDSAT/LT04/C01/T2": LANDSAT4_DN, } if platform not in list(platformCoeffs.keys()): raise Exception( "Sorry, satellite platform not supported for tasseled cap transformation! Use one of " + str(list(platformCoeffs.keys())) ) return platformCoeffs[platform] def _match_histogram( source: ee.Image, target: ee.Image, bands: Optional[Dict[str, str]], geometry: Optional[ee.Geometry], maxBuckets: int, ) -> ee.Image: """Adjust the histogram of an image to match a target image. Args: source : Image to adjust. target : Image to use as the histogram reference. bands : An optional dictionary of band names to match, with source bands as keys and target bands as values. If none is provided, bands will be matched by name. Any bands not included here will be dropped. geometry : The optional region to match histograms in that overlaps both images. If none is provided, the geometry of the source image will be used. If the source image is unbounded and no geometry is provided, histogram matching will fail. maxBuckets : The maximum number of buckets to use when building histograms. More buckets will require more memory and time but will generate more accurate results. The number of buckets will be rounded to the nearest power of 2. Returns: The adjusted image containing the matched source bands. """ def histogram_lookup( source_hist: ee.Array, target_hist: ee.Array ) -> Tuple[ee.List, ee.List]: """Build a list of target values with corresponding counts to source values from a source and target histogram. Args: source_hist : A histogram for a source image returned by ee.Reducer.autoHistogram target_hist : A histogram for a target image returned by ee.Reducer.autoHistogram Returns: Source histogram values and target histogram values with corresponding counts. """ source_vals = source_hist.slice(1, 0, 1).project([0]) source_counts = source_hist.slice(1, 1, 2).project([0]) source_counts = source_counts.divide(source_counts.get([-1])) target_vals = target_hist.slice(1, 0, 1).project([0]) target_counts = target_hist.slice(1, 1, 2).project([0]) target_counts = target_counts.divide(target_counts.get([-1])) def lookup_value(n): """Find the first target value with at least n counts.""" index = target_counts.gte(n).argmax() return target_vals.get(index) target_lookup_vals = source_counts.toList().map(lookup_value) return (source_vals.toList(), target_lookup_vals) geometry = ee.Element.geometry(source) if geometry is None else geometry source_bands = source.bandNames() if bands is None else list(bands.keys()) target_bands = source.bandNames() if bands is None else list(bands.values()) bands = ee.Dictionary.fromLists(source_bands, target_bands) source = source.select(source_bands) target = target.select(target_bands) source_histogram = source.reduceRegion( reducer=ee.Reducer.autoHistogram(maxBuckets=maxBuckets, cumulative=True), geometry=geometry, scale=30, maxPixels=1e13, bestEffort=True, ) target_histogram = target.updateMask(source.mask()).reduceRegion( reducer=ee.Reducer.autoHistogram(maxBuckets=maxBuckets, cumulative=True), geometry=geometry, scale=30, maxPixels=1e13, bestEffort=True, ) def match_bands(source_band: ee.String, target_band: ee.String) -> ee.Image: """Match the histogram of one source band to a target band. Args: source_band : The name of a band in the source image to adjust. target_band : The name of a corresponding band in the target image to match to. Returns: The source band image histogram-matched to the target band. """ x, y = histogram_lookup( source_histogram.getArray(source_band), target_histogram.getArray(target_band), ) matched = source.select([source_band]).interpolate(x, y) return matched matched = ( ee.ImageCollection(bands.map(match_bands).values()) .toBands() .rename(bands.keys()) ) # Preserve the metadata, band types, and band order of the source image. matched = ee.Image(matched.copyProperties(source, source.propertyNames())) matched = matched.cast(source.bandTypes(), source.bandNames()) matched = matched.set("ee_extra:HISTOGRAM_TARGET", target) # If the source image was bounded, clip the matched output to its bounds. If the source # image doesn't have a `geometry` this will fail, but that seems exceptionally rare. matched = ee.Algorithms.If( source.geometry().isUnbounded(), matched, matched.clip(source.geometry().bounds()), ) return ee.Image(matched)
the-stack_0_980
#!/usr/bin/env python3 import argparse import json import sys import traceback import re from sonic_py_common import device_info, logger from swsscommon.swsscommon import SonicV2Connector, ConfigDBConnector, SonicDBConfig INIT_CFG_FILE = '/etc/sonic/init_cfg.json' SYSLOG_IDENTIFIER = 'db_migrator' # Global logger instance log = logger.Logger(SYSLOG_IDENTIFIER) class DBMigrator(): def __init__(self, namespace, socket=None): """ Version string format: version_<major>_<minor>_<build> major: starting from 1, sequentially incrementing in master branch. minor: in github branches, minor version stays in 0. This minor version creates space for private branches derived from github public branches. These private branches shall use none-zero values. build: sequentially increase within a minor version domain. """ self.CURRENT_VERSION = 'version_2_0_0' self.TABLE_NAME = 'VERSIONS' self.TABLE_KEY = 'DATABASE' self.TABLE_FIELD = 'VERSION' db_kwargs = {} if socket: db_kwargs['unix_socket_path'] = socket if namespace is None: self.configDB = ConfigDBConnector(**db_kwargs) else: self.configDB = ConfigDBConnector(use_unix_socket_path=True, namespace=namespace, **db_kwargs) self.configDB.db_connect('CONFIG_DB') self.appDB = SonicV2Connector(host='127.0.0.1') if self.appDB is not None: self.appDB.connect(self.appDB.APPL_DB) self.stateDB = SonicV2Connector(host='127.0.0.1') if self.stateDB is not None: self.stateDB.connect(self.stateDB.STATE_DB) version_info = device_info.get_sonic_version_info() asic_type = version_info.get('asic_type') self.asic_type = asic_type if asic_type == "mellanox": from mellanox_buffer_migrator import MellanoxBufferMigrator self.mellanox_buffer_migrator = MellanoxBufferMigrator(self.configDB) def migrate_pfc_wd_table(self): ''' Migrate all data entries from table PFC_WD_TABLE to PFC_WD ''' data = self.configDB.get_table('PFC_WD_TABLE') for key in data: self.configDB.set_entry('PFC_WD', key, data[key]) self.configDB.delete_table('PFC_WD_TABLE') def is_ip_prefix_in_key(self, key): ''' Function to check if IP address is present in the key. If it is present, then the key would be a tuple or else, it shall be be string ''' return (isinstance(key, tuple)) def migrate_interface_table(self): ''' Migrate all data from existing INTERFACE table with IP Prefix to have an additional ONE entry without IP Prefix. For. e.g, for an entry "Vlan1000|192.168.0.1/21": {}", this function shall add an entry without IP prefix as ""Vlan1000": {}". This is for VRF compatibility. ''' if_db = [] if_tables = { 'INTERFACE', 'PORTCHANNEL_INTERFACE', 'VLAN_INTERFACE', 'LOOPBACK_INTERFACE' } for table in if_tables: data = self.configDB.get_table(table) for key in data: if not self.is_ip_prefix_in_key(key): if_db.append(key) continue for table in if_tables: data = self.configDB.get_table(table) for key in data: if not self.is_ip_prefix_in_key(key) or key[0] in if_db: continue log.log_info('Migrating interface table for ' + key[0]) self.configDB.set_entry(table, key[0], data[key]) if_db.append(key[0]) def migrate_intf_table(self): ''' Migrate all data from existing INTF table in APP DB during warmboot with IP Prefix to have an additional ONE entry without IP Prefix. For. e.g, for an entry "Vlan1000:192.168.0.1/21": {}", this function shall add an entry without IP prefix as ""Vlan1000": {}". This also migrates 'lo' to 'Loopback0' interface ''' if self.appDB is None: return data = self.appDB.keys(self.appDB.APPL_DB, "INTF_TABLE:*") if data is None: return if_db = [] for key in data: if_name = key.split(":")[1] if if_name == "lo": self.appDB.delete(self.appDB.APPL_DB, key) key = key.replace(if_name, "Loopback0") log.log_info('Migrating lo entry to ' + key) self.appDB.set(self.appDB.APPL_DB, key, 'NULL', 'NULL') if '/' not in key: if_db.append(key.split(":")[1]) continue data = self.appDB.keys(self.appDB.APPL_DB, "INTF_TABLE:*") for key in data: if_name = key.split(":")[1] if if_name in if_db: continue log.log_info('Migrating intf table for ' + if_name) table = "INTF_TABLE:" + if_name self.appDB.set(self.appDB.APPL_DB, table, 'NULL', 'NULL') if_db.append(if_name) def migrate_copp_table(self): ''' Delete the existing COPP table ''' if self.appDB is None: return keys = self.appDB.keys(self.appDB.APPL_DB, "COPP_TABLE:*") if keys is None: return for copp_key in keys: self.appDB.delete(self.appDB.APPL_DB, copp_key) def migrate_config_db_buffer_tables_for_dynamic_calculation(self, speed_list, cable_len_list, default_dynamic_th, default_lossless_profiles, abandon_method, append_item_method): ''' Migrate buffer tables to dynamic calculation mode parameters @speed_list - list of speed supported @cable_len_list - list of cable length supported @default_dynamic_th - default dynamic th @default_lossless_profiles - default lossless profiles from the previous image @abandon_method - a function which is called to abandon the migration and keep the current configuration if the current one doesn't match the default one @append_item_method - a function which is called to append an item to the list of pending commit items any update to buffer configuration will be pended and won't be applied until all configuration is checked and aligns with the default one 1. Buffer profiles for lossless PGs in BUFFER_PROFILE table will be removed if their names have the convention of pg_lossless_<speed>_<cable_length>_profile where the speed and cable_length belongs speed_list and cable_len_list respectively and the dynamic_th is equal to default_dynamic_th 2. Insert tables required for dynamic buffer calculation - DEFAULT_LOSSLESS_BUFFER_PARAMETER|AZURE: {'default_dynamic_th': default_dynamic_th} - LOSSLESS_TRAFFIC_PATTERN|AZURE: {'mtu': '1500', 'small_packet_percentage': '100'} 3. For lossless dynamic PGs, remove the explicit referencing buffer profiles Before: BUFFER_PG|<port>|3-4: {'profile': 'BUFFER_PROFILE|pg_lossless_<speed>_<cable_length>_profile'} After: BUFFER_PG|<port>|3-4: {'profile': 'NULL'} ''' # Migrate BUFFER_PROFILEs, removing dynamically generated profiles dynamic_profile = self.configDB.get_table('BUFFER_PROFILE') profile_pattern = 'pg_lossless_([1-9][0-9]*000)_([1-9][0-9]*m)_profile' for name, info in dynamic_profile.items(): m = re.search(profile_pattern, name) if not m: continue speed = m.group(1) cable_length = m.group(2) if speed in speed_list and cable_length in cable_len_list: log.log_info("current profile {} {}".format(name, info)) log.log_info("default profile {} {}".format(name, default_lossless_profiles.get(name))) default_profile = default_lossless_profiles.get(name); if info.get("xon") == default_profile.get("xon") and info.get("size") == default_profile.get("size") and info.get('dynamic_th') == default_dynamic_th: append_item_method(('BUFFER_PROFILE', name, None)) log.log_info("Lossless profile {} has been removed".format(name)) else: log.log_notice("Lossless profile {} doesn't match the default configuration, keep using traditional buffer calculation mode") abandon_method() return True # Migrate BUFFER_PGs, removing the explicit designated profiles buffer_pgs = self.configDB.get_table('BUFFER_PG') ports = self.configDB.get_table('PORT') all_cable_lengths = self.configDB.get_table('CABLE_LENGTH') if not buffer_pgs or not ports or not all_cable_lengths: log.log_notice("At lease one of tables BUFFER_PG, PORT and CABLE_LENGTH hasn't been defined, skip following migration") abandon_method() return True cable_lengths = all_cable_lengths[list(all_cable_lengths.keys())[0]] for name, profile in buffer_pgs.items(): # do the db migration port, pg = name if pg != '3-4': continue try: profile_name = profile['profile'][1:-1].split('|')[1] m = re.search(profile_pattern, profile_name) except Exception: continue if not m: continue speed = m.group(1) cable_length = m.group(2) try: if speed == ports[port]['speed'] and cable_length == cable_lengths[port]: append_item_method(('BUFFER_PG', name, {'profile': 'NULL'})) else: log.log_notice("Lossless PG profile {} for port {} doesn't match its speed {} or cable length {}, keep using traditional buffer calculation mode".format( profile_name, port, speed, cable_length)) abandon_method() return True except Exception: continue # Insert other tables required for dynamic buffer calculation metadata = self.configDB.get_entry('DEVICE_METADATA', 'localhost') metadata['buffer_model'] = 'dynamic' append_item_method(('DEVICE_METADATA', 'localhost', metadata)) append_item_method(('DEFAULT_LOSSLESS_BUFFER_PARAMETER', 'AZURE', {'default_dynamic_th': default_dynamic_th})) append_item_method(('LOSSLESS_TRAFFIC_PATTERN', 'AZURE', {'mtu': '1500', 'small_packet_percentage': '100'})) return True def prepare_dynamic_buffer_for_warm_reboot(self, buffer_pools = None, buffer_profiles = None, buffer_pgs = None): ''' This is the very first warm reboot of buffermgrd (dynamic) if the system reboot from old image by warm-reboot In this case steps need to be taken to get buffermgrd prepared (for warm reboot) During warm reboot, buffer tables should be installed in the first place. However, it isn't able to achieve that when system is warm-rebooted from an old image without dynamic buffer supported, because the buffer info wasn't in the APPL_DB in the old image. The solution is to copy that info from CONFIG_DB into APPL_DB in db_migrator. During warm-reboot, db_migrator adjusts buffer info in CONFIG_DB by removing some fields according to requirement from dynamic buffer calculation. The buffer info before that adjustment needs to be copied to APPL_DB. 1. set WARM_RESTART_TABLE|buffermgrd as {restore_count: 0} 2. Copy the following tables from CONFIG_DB into APPL_DB in case of warm reboot The separator in fields that reference objects in other table needs to be updated from '|' to ':' - BUFFER_POOL - BUFFER_PROFILE, separator updated for field 'pool' - BUFFER_PG, separator updated for field 'profile' - BUFFER_QUEUE, separator updated for field 'profile - BUFFER_PORT_INGRESS_PROFILE_LIST, separator updated for field 'profile_list' - BUFFER_PORT_EGRESS_PROFILE_LIST, separator updated for field 'profile_list' ''' warmreboot_state = self.stateDB.get(self.stateDB.STATE_DB, 'WARM_RESTART_ENABLE_TABLE|system', 'enable') mmu_size = self.stateDB.get(self.stateDB.STATE_DB, 'BUFFER_MAX_PARAM_TABLE|global', 'mmu_size') if warmreboot_state == 'true' and not mmu_size: log.log_notice("This is the very first run of buffermgrd (dynamic), prepare info required from warm reboot") else: return True buffer_table_list = [ ('BUFFER_POOL', buffer_pools, None), ('BUFFER_PROFILE', buffer_profiles, 'pool'), ('BUFFER_PG', buffer_pgs, 'profile'), ('BUFFER_QUEUE', None, 'profile'), ('BUFFER_PORT_INGRESS_PROFILE_LIST', None, 'profile_list'), ('BUFFER_PORT_EGRESS_PROFILE_LIST', None, 'profile_list') ] for pair in buffer_table_list: keys_copied = [] keys_ignored = [] table_name, entries, reference_field_name = pair app_table_name = table_name + "_TABLE" if not entries: entries = self.configDB.get_table(table_name) for key, items in entries.items(): # copy items to appl db if reference_field_name: confdb_ref = items.get(reference_field_name) if not confdb_ref or confdb_ref == "NULL": keys_ignored.append(key) continue items_referenced = confdb_ref.split(',') appdb_ref = "" first_item = True for item in items_referenced: if first_item: first_item = False else: appdb_ref += ',' subitems = item.split('|') first_key = True for subitem in subitems: if first_key: appdb_ref += subitem + '_TABLE' first_key = False else: appdb_ref += ':' + subitem items[reference_field_name] = appdb_ref keys_copied.append(key) if type(key) is tuple: appl_db_key = app_table_name + ':' + ':'.join(key) else: appl_db_key = app_table_name + ':' + key for field, data in items.items(): self.appDB.set(self.appDB.APPL_DB, appl_db_key, field, data) if keys_copied: log.log_info("The following items in table {} in CONFIG_DB have been copied to APPL_DB: {}".format(table_name, keys_copied)) if keys_ignored: log.log_info("The following items in table {} in CONFIG_DB have been ignored: {}".format(table_name, keys_copied)) return True def version_unknown(self): """ version_unknown tracks all SONiC versions that doesn't have a version string defined in config_DB. Nothing can be assumped when migrating from this version to the next version. Any migration operation needs to test if the DB is in expected format before migrating date to the next version. """ log.log_info('Handling version_unknown') # NOTE: Uncomment next 3 lines of code when the migration code is in # place. Note that returning specific string is intentional, # here we only intended to migrade to DB version 1.0.1. # If new DB version is added in the future, the incremental # upgrade will take care of the subsequent migrations. self.migrate_pfc_wd_table() self.migrate_interface_table() self.migrate_intf_table() self.set_version('version_1_0_2') return 'version_1_0_2' def version_1_0_1(self): """ Version 1_0_1. """ log.log_info('Handling version_1_0_1') self.migrate_interface_table() self.migrate_intf_table() self.set_version('version_1_0_2') return 'version_1_0_2' def version_1_0_2(self): """ Version 1_0_2. """ log.log_info('Handling version_1_0_2') # Check ASIC type, if Mellanox platform then need DB migration if self.asic_type == "mellanox": if self.mellanox_buffer_migrator.mlnx_migrate_buffer_pool_size('version_1_0_2', 'version_1_0_3') \ and self.mellanox_buffer_migrator.mlnx_flush_new_buffer_configuration(): self.set_version('version_1_0_3') else: self.set_version('version_1_0_3') return 'version_1_0_3' def version_1_0_3(self): """ Version 1_0_3. """ log.log_info('Handling version_1_0_3') # Check ASIC type, if Mellanox platform then need DB migration if self.asic_type == "mellanox": if self.mellanox_buffer_migrator.mlnx_migrate_buffer_pool_size('version_1_0_3', 'version_1_0_4') \ and self.mellanox_buffer_migrator.mlnx_migrate_buffer_profile('version_1_0_3', 'version_1_0_4') \ and self.mellanox_buffer_migrator.mlnx_flush_new_buffer_configuration(): self.set_version('version_1_0_4') else: self.set_version('version_1_0_4') return 'version_1_0_4' def version_1_0_4(self): """ Current latest version. Nothing to do here. """ log.log_info('Handling version_1_0_4') # Check ASIC type, if Mellanox platform then need DB migration if self.asic_type == "mellanox": speed_list = self.mellanox_buffer_migrator.default_speed_list cable_len_list = self.mellanox_buffer_migrator.default_cable_len_list buffer_pools = self.configDB.get_table('BUFFER_POOL') buffer_profiles = self.configDB.get_table('BUFFER_PROFILE') buffer_pgs = self.configDB.get_table('BUFFER_PG') default_lossless_profiles = self.mellanox_buffer_migrator.mlnx_get_default_lossless_profile('version_1_0_4') abandon_method = self.mellanox_buffer_migrator.mlnx_abandon_pending_buffer_configuration append_method = self.mellanox_buffer_migrator.mlnx_append_item_on_pending_configuration_list if self.mellanox_buffer_migrator.mlnx_migrate_buffer_pool_size('version_1_0_4', 'version_2_0_0') \ and self.mellanox_buffer_migrator.mlnx_migrate_buffer_profile('version_1_0_4', 'version_2_0_0') \ and self.migrate_config_db_buffer_tables_for_dynamic_calculation(speed_list, cable_len_list, '0', default_lossless_profiles, abandon_method, append_method) \ and self.mellanox_buffer_migrator.mlnx_flush_new_buffer_configuration() \ and self.prepare_dynamic_buffer_for_warm_reboot(buffer_pools, buffer_profiles, buffer_pgs): metadata = self.configDB.get_entry('DEVICE_METADATA', 'localhost') if not metadata.get('buffer_model'): metadata['buffer_model'] = 'traditional' self.configDB.set_entry('DEVICE_METADATA', 'localhost', metadata) log.log_notice('Setting buffer_model to traditional') else: log.log_notice('Got buffer_model {}'.format(metadata.get('buffer_model'))) self.set_version('version_2_0_0') else: self.prepare_dynamic_buffer_for_warm_reboot() metadata = self.configDB.get_entry('DEVICE_METADATA', 'localhost') metadata['buffer_model'] = 'traditional' self.configDB.set_entry('DEVICE_METADATA', 'localhost', metadata) log.log_notice('Setting buffer_model to traditional') self.set_version('version_2_0_0') return 'version_2_0_0' def version_2_0_0(self): """ Current latest version. Nothing to do here. """ log.log_info('Handling version_2_0_0') return None def get_version(self): version = self.configDB.get_entry(self.TABLE_NAME, self.TABLE_KEY) if version and version[self.TABLE_FIELD]: return version[self.TABLE_FIELD] return 'version_unknown' def set_version(self, version=None): if not version: version = self.CURRENT_VERSION log.log_info('Setting version to ' + version) entry = { self.TABLE_FIELD : version } self.configDB.set_entry(self.TABLE_NAME, self.TABLE_KEY, entry) def common_migration_ops(self): try: with open(INIT_CFG_FILE) as f: init_db = json.load(f) except Exception as e: raise Exception(str(e)) for init_cfg_table, table_val in init_db.items(): data = self.configDB.get_table(init_cfg_table) if data: # Ignore overriding the values that pre-exist in configDB continue log.log_info("Migrating table {} from INIT_CFG to config_db".format(init_cfg_table)) # Update all tables that do not exist in configDB but are present in INIT_CFG for init_table_key, init_table_val in table_val.items(): self.configDB.set_entry(init_cfg_table, init_table_key, init_table_val) self.migrate_copp_table() def migrate(self): version = self.get_version() log.log_info('Upgrading from version ' + version) while version: next_version = getattr(self, version)() if next_version == version: raise Exception('Version migrate from %s stuck in same version' % version) version = next_version # Perform common migration ops self.common_migration_ops() def main(): try: parser = argparse.ArgumentParser() parser.add_argument('-o', dest='operation', metavar='operation (migrate, set_version, get_version)', type = str, required = False, choices=['migrate', 'set_version', 'get_version'], help = 'operation to perform [default: get_version]', default='get_version') parser.add_argument('-s', dest='socket', metavar='unix socket', type = str, required = False, help = 'the unix socket that the desired database listens on', default = None ) parser.add_argument('-n', dest='namespace', metavar='asic namespace', type = str, required = False, help = 'The asic namespace whose DB instance we need to connect', default = None ) args = parser.parse_args() operation = args.operation socket_path = args.socket namespace = args.namespace if args.namespace is not None: SonicDBConfig.load_sonic_global_db_config(namespace=args.namespace) if socket_path: dbmgtr = DBMigrator(namespace, socket=socket_path) else: dbmgtr = DBMigrator(namespace) result = getattr(dbmgtr, operation)() if result: print(str(result)) except Exception as e: log.log_error('Caught exception: ' + str(e)) traceback.print_exc() print(str(e)) parser.print_help() sys.exit(1) if __name__ == "__main__": main()
the-stack_0_981
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Downloads and prepares TriviaQA dataset.""" from unittest import mock from absl import app from absl import flags from absl import logging import apache_beam as beam import tensorflow_datasets as tfds from official.projects.triviaqa import dataset # pylint: disable=unused-import flags.DEFINE_integer('sequence_length', 4096, 'Max number of tokens.') flags.DEFINE_integer( 'global_sequence_length', None, 'Max number of question tokens plus sentences. If not set, defaults to ' 'sequence_length // 16 + 64.') flags.DEFINE_integer( 'stride', 3072, 'For documents longer than `sequence_length`, where to split them.') flags.DEFINE_string( 'sentencepiece_model_path', None, 'SentencePiece model to use for tokenization.') flags.DEFINE_string('data_dir', None, 'Data directory for TFDS.') flags.DEFINE_string('runner', 'DirectRunner', 'Beam runner to use.') FLAGS = flags.FLAGS def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') builder = tfds.builder( 'bigbird_trivia_qa/rc_wiki.preprocessed', data_dir=FLAGS.data_dir, sentencepiece_model_path=FLAGS.sentencepiece_model_path, sequence_length=FLAGS.sequence_length, global_sequence_length=FLAGS.global_sequence_length, stride=FLAGS.stride) download_config = tfds.download.DownloadConfig( beam_options=beam.options.pipeline_options.PipelineOptions(flags=[ f'--runner={FLAGS.runner}', '--direct_num_workers=8', '--direct_running_mode=multi_processing', ])) with mock.patch('tensorflow_datasets.core.download.extractor._normpath', new=lambda x: x): builder.download_and_prepare(download_config=download_config) logging.info(builder.info.splits) if __name__ == '__main__': flags.mark_flag_as_required('sentencepiece_model_path') app.run(main)
the-stack_0_982
import os import click import shutil import subprocess import pkg_resources import sys import errno import traceback from monitor.logs import init_logging, logger class ValidationExceptionBinaryNotFound(Exception): pass class NotRunningRoot(Exception): pass @click.group() def cli(): click.echo("FileWave Monitor v13 configuration.") delay_30m = 60 * 30 def run_root_command(cmd_array, **kwargs): try: os.rename('/etc/foo', '/etc/bar') except IOError as e: if (e == errno.EPERM): return False proc = subprocess.Popen(cmd_array, stdout=subprocess.PIPE, **kwargs) return proc.communicate()[0].decode('utf-8') def run_root_commands(commands): for c in commands: run_root_command(c, shell=True) def running_on_a_fwxserver_host(exist_func=os.path.exists): ''' Check directories exist to see if we are running on a FileWave server host installation This should return True if we are, regardless of being Mac/Linux/Docker etc. ''' dirs_that_must_exist = ["bin", "certs", "django", "log"] main_filewave_dir = os.path.join("/usr/local", "filewave") if not exist_func(main_filewave_dir): return False for f in [os.path.join(main_filewave_dir, d) for d in dirs_that_must_exist]: if not exist_func(f): return False return True @cli.command('integrate', help="Integrates the module assuming you are running this on the FileWave Server") def install_into_environment(): init_logging() if running_on_a_fwxserver_host(): if run_root_command(["ls", "-l"]) is False: logger.info( "provisioning is requested - but I've detected you are not running as root - aborting") raise NotRunningRoot( "provisioning is requested - but I've detected you are not running as root - aborting") try: provision_postgres_wal_interval() provision_apache_mod_status() provision_prometheus_binary() provision_mtail_binary() provision_exporters() provision_supervisord_conf() validate_provisioning() logger.info("Looks like everything is configured, please restart the server now, then validate installation.") except Exception as e: logger.error("Error during provisioning, are you using sudo?") logger.error(e) traceback.print_exc(file=sys.stdout) return else: logger.info("Didn't detect a FileWave Server host - configuration aborted") def provision_postgres_wal_interval(): # /usr/local/filewave/fwxserver/DB/pg_data/postgresql.conf # log_min_duration_statement = 200 # cmds = [ "sed -i 's/log_min_duration_statement = 10000/log_min_duration_statement = 200/g' /usr/local/filewave/fwxserver/DB/pg_data/postgresql.conf" ] return run_root_commands(cmds) def provision_prometheus_binary(): cmds = [ "wget https://github.com/prometheus/prometheus/releases/download/v2.19.2/prometheus-2.19.2.linux-amd64.tar.gz", "tar xzf prometheus-2.19.2.linux-amd64.tar.gz", "mkdir -p /usr/local/etc/filewave/prometheus", "mkdir -p /usr/local/etc/filewave/prometheus/conf.d/rules", "mkdir -p /usr/local/etc/filewave/prometheus/conf.d/alerts", "mkdir -p /usr/local/filewave/prometheus/", "mv prometheus-2.19.2.linux-amd64/prometheus /usr/local/sbin/", "mv prometheus-2.19.2.linux-amd64/promtool /usr/local/sbin/", "mv prometheus-2.19.2.linux-amd64/tsdb /usr/local/sbin/", "mv prometheus-2.19.2.linux-amd64/console_libraries /usr/local/filewave/prometheus/", "mv prometheus-2.19.2.linux-amd64/consoles /usr/local/filewave/prometheus/", "mkdir -p /usr/local/etc/filewave/prometheus/conf.d/jobs/http", "chown -R root:root /usr/local/filewave/prometheus/", "rm -rf prometheus-2.19.2.linux-amd64" ] run_root_commands(cmds) prom_file = "prometheus.yml" data = pkg_resources.resource_string("monitor.config", prom_file).decode('utf-8') provisioning_file = os.path.join("/usr/local/etc/filewave/prometheus", prom_file) with open(provisioning_file, 'w') as f: f.write(data) shutil.chown(provisioning_file, user="root", group="root") shutil.chown("/usr/local/filewave/prometheus", user="root", group="root") def provision_apache_mod_status(): ''' #LoadModule status_module modules/mod_status.so # Uncomment following lines to enable mod status = and connect to https://localhost:20443/server-status?refresh=5 to see server status # Used by the prometheus apache_exporter. Works only on localhost (intentional to reduce security exposure). <IfModule status_module> <Location /server-status> SetHandler server-status Order Deny,Allow Deny from all Allow from 127.0.0.1 ::1 </Location> ExtendedStatus On </IfModule> ''' cmds = [ "sed -i 's/#LoadModule status_module modules\/mod_status\.so/LoadModule status_module modules\/mod_status\.so/g' /usr/local/filewave/apache/conf/httpd.conf" ] run_root_commands(cmds) def provision_mtail_binary(): logger.info("downloading mtail...") # mtail binary: 15th Jul 2020 # https://github.com/google/mtail/releases/download/v3.0.0-rc36/mtail_v3.0.0-rc36_linux_amd64 cmds = [ "mkdir -p /usr/local/etc/filewave/mtail/progs", "chown -R root:root /usr/local/etc/filewave/mtail", "wget https://github.com/google/mtail/releases/download/v3.0.0-rc36/mtail_v3.0.0-rc36_linux_amd64", "cp mtail_v3.0.0-rc36_linux_amd64 /usr/local/sbin/mtail", "chmod +x /usr/local/sbin/mtail", "firewall-cmd --zone=public --add-port=21090/tcp --permanent", "firewall-cmd --reload" ] run_root_commands(cmds) # write .mtail programs into /usr/local/etc/filewave/mtail/progs for mtail_file in pkg_resources.resource_listdir("monitor", "config"): if mtail_file.endswith(".mtail"): logger.info(f"writing with: {mtail_file}") data = pkg_resources.resource_string("monitor.config", mtail_file).decode('utf-8') provisioning_file = os.path.join("/usr/local/etc/filewave/mtail/progs", mtail_file) with open(provisioning_file, 'w') as f: f.write(data) shutil.chown(provisioning_file, user="root", group="root") def provision_exporters(): logger.info("downloading postgres exporter...") # from https://github.com/wrouesnel/postgres_exporter/releases/download/v0.8.0/postgres_exporter_v0.8.0_linux-amd64.tar.gz cmds = [ "wget https://github.com/wrouesnel/postgres_exporter/releases/download/v0.8.0/postgres_exporter_v0.8.0_linux-amd64.tar.gz", "tar xzf postgres_exporter_v0.8.0_linux-amd64.tar.gz", "mv -f postgres_exporter_v0.8.0_linux-amd64/postgres_exporter /usr/local/sbin/ && rm -rf postgres_exporter_v0.8.0_linux-amd64" ] run_root_commands(cmds) logger.info("downloading apache exporter...") cmds = [ "wget https://github.com/Lusitaniae/apache_exporter/releases/download/v0.8.0/apache_exporter-0.8.0.linux-amd64.tar.gz", "tar xzf apache_exporter-0.8.0.linux-amd64.tar.gz", "mv -f apache_exporter-0.8.0.linux-amd64/apache_exporter /usr/local/sbin/ && rm -rf apache_exporter-0.8.0.linux-amd64" ] run_root_commands(cmds) logger.info("downloading node_exporter") cmds = [ "wget https://github.com/prometheus/node_exporter/releases/download/v1.0.1/node_exporter-1.0.1.linux-amd64.tar.gz", "tar xzf node_exporter-1.0.1.linux-amd64.tar.gz", "mv -f node_exporter-1.0.1.linux-amd64/node_exporter /usr/local/sbin/ && rm -rf node_exporter-1.0.1.linux-amd64" ] run_root_commands(cmds) def provision_supervisord_conf(): cmds = [ "sed -i 's/\; port\=\*\:9001/port=127\.0\.0\.1\:9001/g' /usr/local/etc/filewave/supervisor/supervisord-server.conf", "sed -i 's/\; \[inet_http_server\]/\[inet_http_server\]/g' /usr/local/etc/filewave/supervisor/supervisord-server.conf", "sed -i 's/\;\[include\]/\[include\]/g' /usr/local/etc/filewave/supervisor/supervisord-server.conf", "sed -i 's/\;files = relative\/directory\/\*\.ini/files=extras\/\*\.conf/g' /usr/local/etc/filewave/supervisor/supervisord-server.conf", ] supervisord_dir = os.path.join("/usr/local/etc/filewave/supervisor/", "extras") if not os.path.exists(supervisord_dir): os.makedirs(supervisord_dir) data = pkg_resources.resource_string("monitor.config", "monitor-v13.conf").decode('utf-8') provisioning_file = os.path.join(supervisord_dir, "monitor-v13.conf") with open(provisioning_file, "w") as f: f.write(data) run_root_commands(cmds) def validate_provisioning(): binaries = [ "node_exporter", "apache_exporter", "mtail", "postgres_exporter", "prometheus", "promtool", "tsdb" ] for b in binaries: f = os.path.join("/usr/local/sbin", b) if not os.path.exists(f): raise ValidationExceptionBinaryNotFound(f"failed to find required binary: {f}") else: logger.info(f"OK: {f}") shutil.chown(f, user="root", group="root")
the-stack_0_984
import sys import csv import get_info def main(argv): skip = int(argv[1]) with open('final_movie_upload_data.csv', mode='r') as csv_file: csv_reader = csv.DictReader(csv_file) for i in range(0, skip): next(csv_reader) count = 0 new_data = [] for row in csv_reader: idx = row["idx"] title = row["title"] #if line_count == 0: # print(f'Column names are {", ".join(row)}') # line_count += 1 # continue print(f'\t{idx} {title}') data = get_info.search(title) if "title" in data and "description" in data: data["idx"] = idx data["title"] = f"{data['title']}({title})" new_data.append(data) count += 1 if count == 3 : break; print(f'Processed {count} lines.') append(new_data) def append(data): field_names = ['idx','title','description'] with open('movie_info.csv', 'a+', newline='') as write_obj: dict_writer = csv.DictWriter(write_obj, fieldnames=field_names) for row in data: dict_writer.writerow(row) if __name__ == "__main__": main(sys.argv)
the-stack_0_985
from tensorflow.keras.models import model_from_json import numpy as np import cv2 import math import tensorflow as tf from tensorflow.keras.preprocessing import image facec = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') from matplotlib import pyplot as plt import os import shutil from skimage.measure import compare_ssim with open("model.json", "r") as json_file: #Loading the saved model loaded_model_json = json_file.read() loaded_model = model_from_json(loaded_model_json) loaded_model.load_weights("model_weights.h5") loaded_model._make_predict_function() label_to_text = {0:'angry', 1:'disgust', 2:'fear', 3:'happy', 4: 'sad'} def pred(img_path): label_to_text = {0:'angry', 1:'disgust', 2:'fear', 3:'happy', 4: 'sad'} img=cv2.imread(img_path) #read Image gray_fr = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #covert image to grayscale faces_rects = facec.detectMultiScale(gray_fr, scaleFactor = 1.2, minNeighbors = 5) #opencv's cascade classifier will be used for detecting the face if len(faces_rects)!=0: for (x, y, w, h) in faces_rects: fc = gray_fr[y:y+h, x:x+w] #extracting only the face part roi = cv2.resize(fc, (48, 48)) #resizing it according to the image that are acceptable by our model img = image.img_to_array(roi) img = img/255 img = np.expand_dims(img, axis=0) return label_to_text[np.argmax(loaded_model.predict(img))],img #model.predict is used for predicting the emotion else: return 0,0 #return 0 if the face is not found def removeout(): shutil.rmtree('output/') #remove output folder def vidframe(vidname): if vidname==0: cap = cv2.VideoCapture(0) # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('output.mp4',fourcc, 20.0, (640,480)) while(cap.isOpened()): ret, frame = cap.read() if ret==True: out.write(frame) cv2.imshow('frame',frame) if cv2.waitKey(1) & 0xFF == ord('q'): break else: break # Release everything if job is finished cap.release() out.release() cv2.destroyAllWindows() vidname="output.mp4" if os.path.exists('output'): #if output folder is present then delete it removeout() #create Output folder for storing frame os.mkdir('output') cap = cv2.VideoCapture(vidname) #capture video frameRate=cap.get(5) count = 0 while(cap.isOpened()): #store the frames in output folder frameId = cap.get(1) ret, frame = cap.read() if (ret != True): break if (frameId % math.floor(frameRate) == 0): filename ="output/frame%d.jpg" % count;count+=1 cv2.imwrite(filename, frame) cap.release() result=[] # used for storing emotion face=[] #used for storing face images for filename in os.listdir("output"): #loop through each frame a,b = pred("output/"+filename) #run pred function to get emotion and face images result.append(a) face.append(b) removeout() result=[x for x in result if x!=0] #removing null prediction face=[x for x in face if len(str(x))>1] return result, face def ssimscore1(im1,im2): im1=im1.reshape(48, 48, 1).astype('float32') #reshaping the flattened image array im2=im2.reshape(48, 48, 1).astype('float32') (score, diff) = compare_ssim(im1, im2, full=True,multichannel=True) #comparing the image for finding difference using compare_ssim function return score
the-stack_0_987
# -------------------------------------------------------- # Tensorflow Faster R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths import os import sys import numpy as np import argparse import pprint import pdb import time import cv2 import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim import xml.etree.ElementTree as ET import torchvision.transforms as transforms import torchvision.datasets as dset from scipy.misc import imread from roi_data_layer.roidb import combined_roidb from roi_data_layer.roibatchLoader import roibatchLoader from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir from model.rpn.bbox_transform import clip_boxes from model.nms.nms_wrapper import nms from model.rpn.bbox_transform import bbox_transform_inv from model.utils.net_utils import save_net, load_net, vis_detections from model.utils.blob import im_list_to_blob from model.faster_rcnn.vgg16 import vgg16 from model.faster_rcnn.resnet import resnet from model.faster_rcnn.prefood_res50 import PreResNet50 from datasets.food_category import get_categories from datasets.id2name import id2eng, id2chn try: xrange # Python 2 except NameError: xrange = range # Python 3 beehoonid2name = {'1': 'bee hoon', '2': 'fried noodles', '3': 'kway teow', '4': 'kway teow, yellow noodles mix', '5': 'rice', '51': 'fried rice', '7': 'hokkien mee', '8': 'maggie noodle', '9': 'Glutinous rice', '10': 'beehoon and noodle mix', '110': 'stir fry mee tai mak', '11': 'fried egg', '12': 'scrambled egg', '13': 'cabbage', '131': 'hairy gourd with egg', '14': 'french bean/long bean', '141': 'broccoli', '142': 'celery', '143': 'beansprout', '15': 'deep fried beancurd skin', '16': 'fried beancurd/taukwa', '17': 'taupok', '171': 'braised taupok', '18': 'Acar', '181': 'Stir fried eggplant', '19': 'cucumber', '21': 'luncheon meat', '22': 'hashbrown', '23': 'ngoh hiang', '24': 'begedil', '25': 'spring roll', '31': 'otah', '32': 'fish ball/sotong ball', '33': 'white, yellow fish fillet', '331': 'orange, red fish fillet', '34': 'fish cake', '341': 'ngoh hiang fish cake', '35': 'kuning fish (fried small fish)', '351': 'fried fish steak', '36': 'siew mai', '41': 'hotdog/taiwan sausage', '42': 'seaweed chicken', '43': 'chicken nugget', '44': 'fried chicken / chicken wings', '441': 'fried chicken chopped up', '45': 'fried chicken cutlet (not ground meat)', '55': 'curry mixed veg', '551': 'curry chicken and potato', '61': 'ikan bilis', '62': 'chilli paste', '63': 'green chilli', '64': 'peanut', '65': 'Sweet Sauce', '66': 'red chilli chopped', '71': 'deep fried fish', '91': 'Butter cereal chicken', '92': 'fried wanton/ dumpling', '93': 'Vegetarian meat', '94': 'Fried onions', '95': 'Crabstick'} #id2chn = beehoonid2name def parse_rec(filename): """ Parse a PASCAL VOC xml file """ tree = ET.parse(filename) objects = [] for obj in tree.findall('object'): obj_struct = {} obj_struct['name'] = obj.find('name').text obj_struct['pose'] = obj.find('pose').text obj_struct['truncated'] = int(obj.find('truncated').text) obj_struct['difficult'] = int(obj.find('difficult').text) bbox = obj.find('bndbox') obj_struct['bbox'] = [int(bbox.find('xmin').text), int(bbox.find('ymin').text), int(bbox.find('xmax').text), int(bbox.find('ymax').text)] objects.append(obj_struct) return objects def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train a Fast R-CNN network') parser.add_argument('--dataset', dest='dataset', help='training dataset', default='pascal_voc', type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default='cfgs/vgg16.yml', type=str) parser.add_argument('--net', dest='net', help='vgg16, res50, res101, res152', default='res101', type=str) parser.add_argument('--set', dest='set_cfgs', help='set config keys', default=None, nargs=argparse.REMAINDER) parser.add_argument('--load_dir', dest='load_dir', help='directory to load models', default="/srv/share/jyang375/models") parser.add_argument('--image_dir', dest='image_dir', help='directory to load images for demo', default="images") parser.add_argument('--cuda', dest='cuda', help='whether use CUDA', action='store_true') parser.add_argument('--mGPUs', dest='mGPUs', help='whether use multiple GPUs', action='store_true') parser.add_argument('--cag', dest='class_agnostic', help='whether perform class_agnostic bbox regression', action='store_true') parser.add_argument('--parallel_type', dest='parallel_type', help='which part of model to parallel, 0: all, 1: model before roi pooling', default=0, type=int) parser.add_argument('--checksession', dest='checksession', help='checksession to load model', default=1, type=int) parser.add_argument('--checkepoch', dest='checkepoch', help='checkepoch to load network', default=1, type=int) parser.add_argument('--checkpoint', dest='checkpoint', help='checkpoint to load network', default=10021, type=int) parser.add_argument('--bs', dest='batch_size', help='batch_size', default=1, type=int) parser.add_argument('--vis', dest='vis', help='visualization mode', action='store_true') parser.add_argument('--webcam_num', dest='webcam_num', help='webcam ID number', default=-1, type=int) args = parser.parse_args() return args lr = cfg.TRAIN.LEARNING_RATE momentum = cfg.TRAIN.MOMENTUM weight_decay = cfg.TRAIN.WEIGHT_DECAY def _get_image_blob(im): """Converts an image into a network input. Arguments: im (ndarray): a color image in BGR order Returns: blob (ndarray): a data blob holding an image pyramid im_scale_factors (list): list of image scales (relative to im) used in the image pyramid """ im_orig = im.astype(np.float32, copy=True) im_orig -= cfg.PIXEL_MEANS im_shape = im_orig.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) processed_ims = [] im_scale_factors = [] for target_size in cfg.TEST.SCALES: im_scale = float(target_size) / float(im_size_min) # Prevent the biggest axis from being more than MAX_SIZE if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE: im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max) im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) im_scale_factors.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, np.array(im_scale_factors) if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) cfg.USE_GPU_NMS = args.cuda print('Using config:') pprint.pprint(cfg) np.random.seed(cfg.RNG_SEED) # train set # -- Note: Use validation set and disable the flipped to enable faster loading. input_dir = args.load_dir + "/" + args.net + "/" + args.dataset if not os.path.exists(input_dir): raise Exception( 'There is no input directory for loading network from ' + input_dir) load_name = os.path.join(input_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint)) #pascal_classes = np.asarray(get_categories("EconomicBeeHoon_train")) pascal_classes = get_categories('All_train_mt10') # initilize the network here. if args.net == 'vgg16': fasterRCNN = vgg16(pascal_classes, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res101': fasterRCNN = resnet(pascal_classes, 101, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res50': fasterRCNN = resnet(pascal_classes, 50, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res152': fasterRCNN = resnet(pascal_classes, 152, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'foodres50': fasterRCNN = PreResNet50(pascal_classes, pretrained=False, class_agnostic=args.class_agnostic) else: print("network is not defined") pdb.set_trace() fasterRCNN.create_architecture() print("load checkpoint %s" % (load_name)) if args.cuda > 0: checkpoint = torch.load(load_name) else: checkpoint = torch.load( load_name, map_location=(lambda storage, loc: storage)) fasterRCNN.load_state_dict(checkpoint['model']) if 'pooling_mode' in checkpoint.keys(): cfg.POOLING_MODE = checkpoint['pooling_mode'] print('load model successfully!') # pdb.set_trace() print("load checkpoint %s" % (load_name)) # initilize the tensor holder here. im_data = torch.FloatTensor(1) im_info = torch.FloatTensor(1) num_boxes = torch.LongTensor(1) gt_boxes = torch.FloatTensor(1) # ship to cuda if args.cuda > 0: im_data = im_data.cuda() im_info = im_info.cuda() num_boxes = num_boxes.cuda() gt_boxes = gt_boxes.cuda() # make variable im_data = Variable(im_data, volatile=True) im_info = Variable(im_info, volatile=True) num_boxes = Variable(num_boxes, volatile=True) gt_boxes = Variable(gt_boxes, volatile=True) if args.cuda > 0: cfg.CUDA = True if args.cuda > 0: fasterRCNN.cuda() fasterRCNN.eval() start = time.time() max_per_image = 100 thresh = 0.05 vis = True webcam_num = args.webcam_num # Set up webcam or get image directories if webcam_num >= 0: cap = cv2.VideoCapture(webcam_num) num_images = 0 else: imglist = os.listdir(args.image_dir) num_images = len(imglist) print('Loaded Photo: {} images.'.format(num_images)) while (num_images >= 0): total_tic = time.time() if webcam_num < 0: num_images -= 1 # Get image from the webcam if webcam_num >= 0: if not cap.isOpened(): raise RuntimeError( "Webcam could not open. Please check connection.") ret, frame = cap.read() im_in = np.array(frame) # Load the demo image else: im_file = os.path.join(args.image_dir, imglist[num_images]) # im = cv2.imread(im_file) im_in = np.array(imread(im_file)) if len(im_in.shape) == 2: im_in = im_in[:, :, np.newaxis] im_in = np.concatenate((im_in, im_in, im_in), axis=2) # rgb -> bgr im = im_in[:, :, ::-1] blobs, im_scales = _get_image_blob(im) assert len(im_scales) == 1, "Only single-image batch implemented" im_blob = blobs im_info_np = np.array( [[im_blob.shape[1], im_blob.shape[2], im_scales[0]]], dtype=np.float32) im_data_pt = torch.from_numpy(im_blob) im_data_pt = im_data_pt.permute(0, 3, 1, 2) im_info_pt = torch.from_numpy(im_info_np) im_data.data.resize_(im_data_pt.size()).copy_(im_data_pt) im_info.data.resize_(im_info_pt.size()).copy_(im_info_pt) gt_boxes.data.resize_(1, 1, 5).zero_() num_boxes.data.resize_(1).zero_() # pdb.set_trace() det_tic = time.time() rois, cls_prob, bbox_pred, \ rpn_loss_cls, rpn_loss_box, \ RCNN_loss_cls, RCNN_loss_bbox, \ rois_label = fasterRCNN(im_data, im_info, gt_boxes, num_boxes) scores = cls_prob.data boxes = rois.data[:, :, 1:5] if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = bbox_pred.data if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # Optionally normalize targets by a precomputed mean and stdev if args.class_agnostic: if args.cuda > 0: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() else: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS) \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS) box_deltas = box_deltas.view(1, -1, 4) else: if args.cuda > 0: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() else: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS) \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS) box_deltas = box_deltas.view( 1, -1, 4 * len(pascal_classes)) pred_boxes = bbox_transform_inv(boxes, box_deltas, 1) pred_boxes = clip_boxes(pred_boxes, im_info.data, 1) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) pred_boxes /= im_scales[0] scores = scores.squeeze() pred_boxes = pred_boxes.squeeze() det_toc = time.time() detect_time = det_toc - det_tic misc_tic = time.time() # get gt # 1. read xml if vis: im2show = np.copy(im) for j in xrange(1, len(pascal_classes)): inds = torch.nonzero(scores[:, j] > thresh).view(-1) # if there is det if inds.numel() > 0: cls_scores = scores[:, j][inds] _, order = torch.sort(cls_scores, 0, True) if args.class_agnostic: cls_boxes = pred_boxes[inds, :] else: cls_boxes = pred_boxes[inds][:, j * 4:(j + 1) * 4] cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1)), 1) # cls_dets = torch.cat((cls_boxes, cls_scores), 1) cls_dets = cls_dets[order] keep = nms(cls_dets, cfg.TEST.NMS, force_cpu=not cfg.USE_GPU_NMS) cls_dets = cls_dets[keep.view(-1).long()] if vis: im2show = vis_detections( im2show, id2eng[pascal_classes[j]], cls_dets.cpu().numpy(), 0.5) misc_toc = time.time() nms_time = misc_toc - misc_tic if webcam_num == -1: sys.stdout.write('im_detect: {:d}/{:d} {:.3f}s {:.3f}s \r' .format(num_images + 1, len(imglist), detect_time, nms_time)) sys.stdout.flush() if vis and webcam_num == -1: # cv2.imshow('test', im2show) # cv2.waitKey(0) result_path = os.path.join( args.image_dir, imglist[num_images][:-4] + "_det.jpg") cv2.imwrite(result_path, im2show) else: #im2showRGB = cv2.cvtColor(im2show, cv2.COLOR_BGR2RGB) im2showRGB = im2show cv2.namedWindow("frame", 0) cv2.resizeWindow("frame", 800, 800) cv2.imshow("frame", im2showRGB) total_toc = time.time() total_time = total_toc - total_tic frame_rate = 1 / total_time print('Frame rate:', frame_rate) if cv2.waitKey(5000) & 0xFF == ord('q'): break if webcam_num >= 0: cap.release() cv2.destroyAllWindows()
the-stack_0_990
"""Test of Ray-tune without RLLib""" from ray import tune def objective(step, alpha, beta): return (0.1 + alpha * step / 100)**(-1) + beta * 0.1 def train(config): alpha, beta = config["alpha"], config["beta"] for step in range(10): score = objective(step, alpha, beta) tune.report(mean_loss=score) analysis = tune.run( train, config={ "alpha": tune.grid_search([0.001, 0.01]), "beta": tune.choice([1, 2]) }) print("Best config: ", analysis.get_best_config(metric="mean_loss", mode="min"))
the-stack_0_992
# Copyright 2012 New Dream Network, LLC (DreamHost) # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import mock import testtools import webob from neutron.agent.linux import utils as agent_utils from neutron.agent.metadata import agent from neutron.agent import metadata_agent from neutron.common import constants from neutron.common import utils from neutron.tests import base class FakeConf(object): admin_user = 'neutron' admin_password = 'password' admin_tenant_name = 'tenant' auth_url = 'http://127.0.0.1' auth_strategy = 'keystone' auth_region = 'region' auth_insecure = False auth_ca_cert = None endpoint_type = 'adminURL' nova_metadata_ip = '9.9.9.9' nova_metadata_port = 8775 metadata_proxy_shared_secret = 'secret' nova_metadata_protocol = 'http' nova_metadata_insecure = True nova_client_cert = 'nova_cert' nova_client_priv_key = 'nova_priv_key' cache_url = '' class FakeConfCache(FakeConf): cache_url = 'memory://?default_ttl=5' class TestMetadataProxyHandlerBase(base.BaseTestCase): fake_conf = FakeConf def setUp(self): super(TestMetadataProxyHandlerBase, self).setUp() self.log_p = mock.patch.object(agent, 'LOG') self.log = self.log_p.start() self.handler = agent.MetadataProxyHandler(self.fake_conf) self.handler.plugin_rpc = mock.Mock() self.handler.context = mock.Mock() class TestMetadataProxyHandlerRpc(TestMetadataProxyHandlerBase): def test_get_port_filters(self): router_id = 'test_router_id' ip = '1.2.3.4' networks = ('net_id1', 'net_id2') expected = {'device_id': [router_id], 'device_owner': constants.ROUTER_INTERFACE_OWNERS, 'network_id': networks, 'fixed_ips': {'ip_address': [ip]}} actual = self.handler._get_port_filters(router_id, ip, networks) self.assertEqual(expected, actual) def test_get_router_networks(self): router_id = 'router-id' expected = ('network_id1', 'network_id2') ports = [{'network_id': 'network_id1', 'something': 42}, {'network_id': 'network_id2', 'something_else': 32}] self.handler.plugin_rpc.get_ports.return_value = ports networks = self.handler._get_router_networks(router_id) self.assertEqual(expected, networks) def test_get_ports_for_remote_address(self): ip = '1.1.1.1' networks = ('network_id1', 'network_id2') expected = [{'port_id': 'port_id1'}, {'port_id': 'port_id2'}] self.handler.plugin_rpc.get_ports.return_value = expected ports = self.handler._get_ports_for_remote_address(ip, networks) self.assertEqual(expected, ports) def test_get_ports_using_rpc_fallback_to_client(self): ip = '1.1.1.1' networks = ('network_id1', 'network_id2') self.handler.plugin_rpc.get_ports.side_effect = AttributeError with mock.patch('neutronclient.v2_0.client.Client') as neutron_client: mock_list_ports = neutron_client.return_value.list_ports expected_ports = {'ports': ['expected_port']} mock_list_ports.return_value = expected_ports ports = self.handler._get_ports_from_server(ip_address=ip, networks=networks) self.assertEqual(expected_ports['ports'], ports) class TestMetadataProxyHandlerCache(TestMetadataProxyHandlerBase): fake_conf = FakeConfCache def setUp(self): super(TestMetadataProxyHandlerCache, self).setUp() self.qclient_p = mock.patch('neutronclient.v2_0.client.Client') self.qclient = self.qclient_p.start() self.handler.use_rpc = False def test_call(self): req = mock.Mock() with mock.patch.object(self.handler, '_get_instance_and_tenant_id') as get_ids: get_ids.return_value = ('instance_id', 'tenant_id') with mock.patch.object(self.handler, '_proxy_request') as proxy: proxy.return_value = 'value' retval = self.handler(req) self.assertEqual(retval, 'value') def test_call_no_instance_match(self): req = mock.Mock() with mock.patch.object(self.handler, '_get_instance_and_tenant_id') as get_ids: get_ids.return_value = None, None retval = self.handler(req) self.assertIsInstance(retval, webob.exc.HTTPNotFound) def test_call_internal_server_error(self): req = mock.Mock() with mock.patch.object(self.handler, '_get_instance_and_tenant_id') as get_ids: get_ids.side_effect = Exception retval = self.handler(req) self.assertIsInstance(retval, webob.exc.HTTPInternalServerError) self.assertEqual(len(self.log.mock_calls), 2) def test_get_router_networks(self): router_id = 'router-id' expected = ('network_id1', 'network_id2') ports = {'ports': [{'network_id': 'network_id1', 'something': 42}, {'network_id': 'network_id2', 'something_else': 32}], 'not_used': [1, 2, 3]} mock_list_ports = self.qclient.return_value.list_ports mock_list_ports.return_value = ports networks = self.handler._get_router_networks(router_id) mock_list_ports.assert_called_once_with( device_id=router_id, device_owner=constants.ROUTER_INTERFACE_OWNERS) self.assertEqual(expected, networks) def _test_get_router_networks_twice_helper(self): router_id = 'router-id' ports = {'ports': [{'network_id': 'network_id1', 'something': 42}], 'not_used': [1, 2, 3]} expected_networks = ('network_id1',) with mock.patch( 'oslo_utils.timeutils.utcnow_ts', return_value=0): mock_list_ports = self.qclient.return_value.list_ports mock_list_ports.return_value = ports networks = self.handler._get_router_networks(router_id) mock_list_ports.assert_called_once_with( device_id=router_id, device_owner=constants.ROUTER_INTERFACE_OWNERS) self.assertEqual(expected_networks, networks) networks = self.handler._get_router_networks(router_id) def test_get_router_networks_twice(self): self._test_get_router_networks_twice_helper() self.assertEqual( 1, self.qclient.return_value.list_ports.call_count) def _get_ports_for_remote_address_cache_hit_helper(self): remote_address = 'remote_address' networks = ('net1', 'net2') fixed_ips = ["ip_address=%s" % remote_address] mock_list_ports = self.qclient.return_value.list_ports mock_list_ports.return_value = {'ports': [{'network_id': 'net1', 'something': 42}]} self.handler._get_ports_for_remote_address(remote_address, networks) mock_list_ports.assert_called_once_with( network_id=networks, fixed_ips=fixed_ips) self.assertEqual(1, mock_list_ports.call_count) self.handler._get_ports_for_remote_address(remote_address, networks) def test_get_ports_for_remote_address_cache_hit(self): self._get_ports_for_remote_address_cache_hit_helper() self.assertEqual( 1, self.qclient.return_value.list_ports.call_count) def test_get_ports_network_id(self): network_id = 'network-id' router_id = 'router-id' remote_address = 'remote-address' expected = ['port1'] networks = (network_id,) with contextlib.nested( mock.patch.object(self.handler, '_get_ports_for_remote_address'), mock.patch.object(self.handler, '_get_router_networks') ) as (mock_get_ip_addr, mock_get_router_networks): mock_get_ip_addr.return_value = expected ports = self.handler._get_ports(remote_address, network_id, router_id) mock_get_ip_addr.assert_called_once_with(remote_address, networks) self.assertFalse(mock_get_router_networks.called) self.assertEqual(expected, ports) def test_get_ports_router_id(self): router_id = 'router-id' remote_address = 'remote-address' expected = ['port1'] networks = ('network1', 'network2') with contextlib.nested( mock.patch.object(self.handler, '_get_ports_for_remote_address', return_value=expected), mock.patch.object(self.handler, '_get_router_networks', return_value=networks) ) as (mock_get_ip_addr, mock_get_router_networks): ports = self.handler._get_ports(remote_address, router_id=router_id) mock_get_router_networks.called_once_with(router_id) mock_get_ip_addr.assert_called_once_with(remote_address, networks) self.assertEqual(expected, ports) def test_get_ports_no_id(self): self.assertRaises(TypeError, self.handler._get_ports, 'remote_address') def _get_instance_and_tenant_id_helper(self, headers, list_ports_retval, networks=None, router_id=None): remote_address = '192.168.1.1' headers['X-Forwarded-For'] = remote_address req = mock.Mock(headers=headers) def mock_list_ports(*args, **kwargs): return {'ports': list_ports_retval.pop(0)} self.qclient.return_value.list_ports.side_effect = mock_list_ports self.qclient.return_value.get_auth_info.return_value = { 'auth_token': None, 'endpoint_url': None} instance_id, tenant_id = self.handler._get_instance_and_tenant_id(req) new_qclient_call = mock.call( username=FakeConf.admin_user, tenant_name=FakeConf.admin_tenant_name, region_name=FakeConf.auth_region, auth_url=FakeConf.auth_url, password=FakeConf.admin_password, auth_strategy=FakeConf.auth_strategy, token=None, insecure=FakeConf.auth_insecure, ca_cert=FakeConf.auth_ca_cert, endpoint_url=None, endpoint_type=FakeConf.endpoint_type) expected = [] if router_id: expected.extend([ new_qclient_call, mock.call().list_ports( device_id=router_id, device_owner=constants.ROUTER_INTERFACE_OWNERS ), mock.call().get_auth_info() ]) expected.extend([ new_qclient_call, mock.call().list_ports( network_id=networks, fixed_ips=['ip_address=192.168.1.1']), mock.call().get_auth_info() ]) self.qclient.assert_has_calls(expected) return (instance_id, tenant_id) def test_get_instance_id_router_id(self): router_id = 'the_id' headers = { 'X-Neutron-Router-ID': router_id } networks = ('net1', 'net2') ports = [ [{'network_id': 'net1'}, {'network_id': 'net2'}], [{'device_id': 'device_id', 'tenant_id': 'tenant_id', 'network_id': 'net1'}] ] self.assertEqual( self._get_instance_and_tenant_id_helper(headers, ports, networks=networks, router_id=router_id), ('device_id', 'tenant_id') ) def test_get_instance_id_router_id_no_match(self): router_id = 'the_id' headers = { 'X-Neutron-Router-ID': router_id } networks = ('net1', 'net2') ports = [ [{'network_id': 'net1'}, {'network_id': 'net2'}], [] ] self.assertEqual( self._get_instance_and_tenant_id_helper(headers, ports, networks=networks, router_id=router_id), (None, None) ) def test_get_instance_id_network_id(self): network_id = 'the_id' headers = { 'X-Neutron-Network-ID': network_id } ports = [ [{'device_id': 'device_id', 'tenant_id': 'tenant_id', 'network_id': 'the_id'}] ] self.assertEqual( self._get_instance_and_tenant_id_helper(headers, ports, networks=('the_id',)), ('device_id', 'tenant_id') ) def test_get_instance_id_network_id_no_match(self): network_id = 'the_id' headers = { 'X-Neutron-Network-ID': network_id } ports = [[]] self.assertEqual( self._get_instance_and_tenant_id_helper(headers, ports, networks=('the_id',)), (None, None) ) def test_auth_info_cache(self): router_id = 'the_id' list_ports = [ [{'network_id': 'net1'}], [{'device_id': 'did', 'tenant_id': 'tid', 'network_id': 'net1'}]] def update_get_auth_info(*args, **kwargs): self.qclient.return_value.get_auth_info.return_value = { 'auth_token': 'token', 'endpoint_url': 'uri'} return {'ports': list_ports.pop(0)} self.qclient.return_value.list_ports.side_effect = update_get_auth_info new_qclient_call = mock.call( username=FakeConf.admin_user, tenant_name=FakeConf.admin_tenant_name, region_name=FakeConf.auth_region, auth_url=FakeConf.auth_url, password=FakeConf.admin_password, auth_strategy=FakeConf.auth_strategy, token=None, insecure=FakeConf.auth_insecure, ca_cert=FakeConf.auth_ca_cert, endpoint_url=None, endpoint_type=FakeConf.endpoint_type) cached_qclient_call = mock.call( username=FakeConf.admin_user, tenant_name=FakeConf.admin_tenant_name, region_name=FakeConf.auth_region, auth_url=FakeConf.auth_url, password=FakeConf.admin_password, auth_strategy=FakeConf.auth_strategy, token='token', insecure=FakeConf.auth_insecure, ca_cert=FakeConf.auth_ca_cert, endpoint_url='uri', endpoint_type=FakeConf.endpoint_type) headers = {'X-Forwarded-For': '192.168.1.10', 'X-Neutron-Router-ID': router_id} req = mock.Mock(headers=headers) self.handler._get_instance_and_tenant_id(req) expected = [ new_qclient_call, mock.call().list_ports( device_id=router_id, device_owner=constants.ROUTER_INTERFACE_OWNERS ), mock.call().get_auth_info(), cached_qclient_call, mock.call().list_ports(network_id=('net1',), fixed_ips=['ip_address=192.168.1.10']), mock.call().get_auth_info(), ] self.qclient.assert_has_calls(expected) def _proxy_request_test_helper(self, response_code=200, method='GET'): hdrs = {'X-Forwarded-For': '8.8.8.8'} body = 'body' req = mock.Mock(path_info='/the_path', query_string='', headers=hdrs, method=method, body=body) resp = mock.MagicMock(status=response_code) req.response = resp with mock.patch.object(self.handler, '_sign_instance_id') as sign: sign.return_value = 'signed' with mock.patch('httplib2.Http') as mock_http: resp.__getitem__.return_value = "text/plain" mock_http.return_value.request.return_value = (resp, 'content') retval = self.handler._proxy_request('the_id', 'tenant_id', req) mock_http.assert_called_once_with( ca_certs=None, disable_ssl_certificate_validation=True) mock_http.assert_has_calls([ mock.call().add_certificate( FakeConf.nova_client_priv_key, FakeConf.nova_client_cert, "%s:%s" % (FakeConf.nova_metadata_ip, FakeConf.nova_metadata_port) ), mock.call().request( 'http://9.9.9.9:8775/the_path', method=method, headers={ 'X-Forwarded-For': '8.8.8.8', 'X-Instance-ID-Signature': 'signed', 'X-Instance-ID': 'the_id', 'X-Tenant-ID': 'tenant_id' }, body=body )] ) return retval def test_proxy_request_post(self): response = self._proxy_request_test_helper(method='POST') self.assertEqual(response.content_type, "text/plain") self.assertEqual(response.body, 'content') def test_proxy_request_200(self): response = self._proxy_request_test_helper(200) self.assertEqual(response.content_type, "text/plain") self.assertEqual(response.body, 'content') def test_proxy_request_400(self): self.assertIsInstance(self._proxy_request_test_helper(400), webob.exc.HTTPBadRequest) def test_proxy_request_403(self): self.assertIsInstance(self._proxy_request_test_helper(403), webob.exc.HTTPForbidden) def test_proxy_request_404(self): self.assertIsInstance(self._proxy_request_test_helper(404), webob.exc.HTTPNotFound) def test_proxy_request_409(self): self.assertIsInstance(self._proxy_request_test_helper(409), webob.exc.HTTPConflict) def test_proxy_request_500(self): self.assertIsInstance(self._proxy_request_test_helper(500), webob.exc.HTTPInternalServerError) def test_proxy_request_other_code(self): with testtools.ExpectedException(Exception): self._proxy_request_test_helper(302) def test_sign_instance_id(self): self.assertEqual( self.handler._sign_instance_id('foo'), '773ba44693c7553d6ee20f61ea5d2757a9a4f4a44d2841ae4e95b52e4cd62db4' ) class TestMetadataProxyHandlerNoCache(TestMetadataProxyHandlerCache): fake_conf = FakeConf def test_get_router_networks_twice(self): self._test_get_router_networks_twice_helper() self.assertEqual( 2, self.qclient.return_value.list_ports.call_count) def test_get_ports_for_remote_address_cache_hit(self): self._get_ports_for_remote_address_cache_hit_helper() self.assertEqual( 2, self.qclient.return_value.list_ports.call_count) class TestUnixDomainMetadataProxy(base.BaseTestCase): def setUp(self): super(TestUnixDomainMetadataProxy, self).setUp() self.cfg_p = mock.patch.object(agent, 'cfg') self.cfg = self.cfg_p.start() looping_call_p = mock.patch( 'neutron.openstack.common.loopingcall.FixedIntervalLoopingCall') self.looping_mock = looping_call_p.start() self.cfg.CONF.metadata_proxy_socket = '/the/path' self.cfg.CONF.metadata_workers = 0 self.cfg.CONF.metadata_backlog = 128 @mock.patch.object(agent_utils, 'ensure_dir') def test_init_doesnot_exists(self, ensure_dir): agent.UnixDomainMetadataProxy(mock.Mock()) ensure_dir.assert_called_once_with('/the') def test_init_exists(self): with mock.patch('os.path.isdir') as isdir: with mock.patch('os.unlink') as unlink: isdir.return_value = True agent.UnixDomainMetadataProxy(mock.Mock()) unlink.assert_called_once_with('/the/path') def test_init_exists_unlink_no_file(self): with mock.patch('os.path.isdir') as isdir: with mock.patch('os.unlink') as unlink: with mock.patch('os.path.exists') as exists: isdir.return_value = True exists.return_value = False unlink.side_effect = OSError agent.UnixDomainMetadataProxy(mock.Mock()) unlink.assert_called_once_with('/the/path') def test_init_exists_unlink_fails_file_still_exists(self): with mock.patch('os.path.isdir') as isdir: with mock.patch('os.unlink') as unlink: with mock.patch('os.path.exists') as exists: isdir.return_value = True exists.return_value = True unlink.side_effect = OSError with testtools.ExpectedException(OSError): agent.UnixDomainMetadataProxy(mock.Mock()) unlink.assert_called_once_with('/the/path') @mock.patch.object(agent, 'MetadataProxyHandler') @mock.patch.object(agent_utils, 'UnixDomainWSGIServer') @mock.patch.object(agent_utils, 'ensure_dir') def test_run(self, ensure_dir, server, handler): p = agent.UnixDomainMetadataProxy(self.cfg.CONF) p.run() ensure_dir.assert_called_once_with('/the') server.assert_has_calls([ mock.call('neutron-metadata-agent'), mock.call().start(handler.return_value, '/the/path', workers=0, backlog=128), mock.call().wait()] ) def test_main(self): with mock.patch.object(agent, 'UnixDomainMetadataProxy') as proxy: with mock.patch.object(metadata_agent, 'config') as config: with mock.patch.object(metadata_agent, 'cfg') as cfg: with mock.patch.object(utils, 'cfg'): metadata_agent.main() self.assertTrue(config.setup_logging.called) proxy.assert_has_calls([ mock.call(cfg.CONF), mock.call().run()] ) def test_init_state_reporting(self): with mock.patch('os.makedirs'): proxy = agent.UnixDomainMetadataProxy(mock.Mock()) self.looping_mock.assert_called_once_with(proxy._report_state) self.looping_mock.return_value.start.assert_called_once_with( interval=mock.ANY) def test_report_state(self): with mock.patch('neutron.agent.rpc.PluginReportStateAPI') as state_api: with mock.patch('os.makedirs'): proxy = agent.UnixDomainMetadataProxy(mock.Mock()) self.assertTrue(proxy.agent_state['start_flag']) proxy._report_state() self.assertNotIn('start_flag', proxy.agent_state) state_api_inst = state_api.return_value state_api_inst.report_state.assert_called_once_with( proxy.context, proxy.agent_state, use_call=True)
the-stack_0_995
import tensorflow as tf import os import shutil from tensorflow.python.saved_model import tag_constants from tensorflow.python import ops def get_graph_def_from_file(graph_filepath): tf.compat.v1.reset_default_graph() with ops.Graph().as_default(): with tf.compat.v1.gfile.GFile(graph_filepath, 'rb') as f: graph_def = tf.compat.v1.GraphDef() graph_def.ParseFromString(f.read()) return graph_def def convert_graph_def_to_saved_model(export_dir, graph_filepath, input_name, outputs): graph_def = get_graph_def_from_file(graph_filepath) with tf.compat.v1.Session(graph=tf.Graph()) as session: tf.import_graph_def(graph_def, name='') tf.compat.v1.saved_model.simple_save( session, export_dir,# change input_image to node.name if you know the name inputs={input_name: session.graph.get_tensor_by_name('{}:0'.format(node.name)) for node in graph_def.node if node.op=='Placeholder'}, outputs={t.rstrip(":0"):session.graph.get_tensor_by_name(t) for t in outputs} ) print('Optimized graph converted to SavedModel!') tf.compat.v1.enable_eager_execution() # convert this to a TF Serving compatible mode shutil.rmtree('./saved_model', ignore_errors=True) convert_graph_def_to_saved_model('./saved_model', './v3-large_224_1.0_float.pb', 'input', ['MobilenetV3/Predictions/Softmax:0'])
the-stack_0_997
# -*- coding: utf-8 -*- from matplotlib.patches import Patch from matplotlib.pyplot import axis, legend from ....Functions.init_fig import init_fig from ....definitions import config_dict MAGNET_COLOR = config_dict["PLOT"]["COLOR_DICT"]["MAGNET_COLOR"] def plot(self, fig=None, display_magnet=True): """Plot the Hole in a matplotlib fig Parameters ---------- self : Hole A Hole object fig : if None, open a new fig and plot, else add to the current one (Default value = None) display_magnet : bool if True, plot the magnet inside the hole, if there is any (Default value = True) Returns ------- None """ display = fig is None if display: color = "k" else: color = "w" surf_hole = self.build_geometry() patches = list() for surf in surf_hole: if "Magnet" in surf.label and display_magnet: patches.extend(surf.get_patches(color=MAGNET_COLOR)) else: patches.extend(surf.get_patches(color=color)) # Display the result (fig, axes, patch_leg, label_leg) = init_fig(fig) axes.set_xlabel("(m)") axes.set_ylabel("(m)") axes.set_title("Hole") # Add all the hole (and magnet) to fig for patch in patches: axes.add_patch(patch) # Axis Setup axis("equal") Lim = self.get_Rbo() * 1.2 axes.set_xlim(-Lim, Lim) axes.set_ylim(-Lim, Lim) if display_magnet and "Magnet" in [surf.label for surf in surf_hole]: patch_leg.append(Patch(color=MAGNET_COLOR)) label_leg.append("Magnet") legend(patch_leg, label_leg) fig.show()
the-stack_0_998
from jesse.helpers import get_candle_source, slice_candles, np_shift, same_length import numpy as np from numba import njit,jit import talib from typing import Union from jesse.helpers import get_config from collections import namedtuple import tulipy as ti import math """ https://www.tradingview.com/script/sxZRzQzQ-Divergence-Indicator-any-oscillator/#chart-view-comment-form Possibly Accurate, needs more testing """ #jesse backtest '2021-01-03' '2021-03-02' DIVERGENCES = namedtuple('Divergences',['bearCond', 'bullCond', 'hiddenBullCond','hiddenBearCond']) def divergence(candles: np.ndarray, lbR:int=2, lbL:int=2, rangeUpper:int=200, rangeLower:int=0,source_type: str = "close", sequential: bool = False) -> DIVERGENCES: candles = slice_candles(candles, sequential) source1 = get_candle_source(candles, source_type=source_type) bearCond, bullCond, hiddenBullCond, hiddenBearCond = fast_div(source,source,candles,lbR,lbL,rangeUpper,rangeLower) if sequential: return DIVERGENCES(bearCond,bullCond,hiddenBearCond,hiddenBullCond) else: return DIVERGENCES(bearCond[-1],bullCond[-1],hiddenBearCond[-1],hiddenBullCond[-1]) def fast_div(source1,source,candles,r,l,rangeUpper,rangeLower): highmiddlesource = np.full_like(source1,0) lowmiddlesource = np.full_like(source1,0) pivothigh = np.full_like(source1,0) pivotlow = np.full_like(source1,0) lastpivothighprice = np.full_like(source1,0) lastpivotlowprice = np.full_like(source1,0) priceslowest = np.full_like(source1,np.nan) priceshighest = np.full_like(source1,np.nan) priceshigh = np.full_like(source1,np.nan) priceslow = np.full_like(source1,np.nan) highindices = np.full_like(source1,np.nan) lowindices = np.full_like(source1,np.nan) ivar = np.full_like(source1,0) for i in range(source1.shape[0]): highmiddlesource[i] = source[i-r] lowmiddlesource[i] = source[i-l] if (np.all(highmiddlesource[i] >= source[i-(l+r):i-(r)]) and np.all(highmiddlesource[i] > source[i-(r-1):i+1])): pivothigh[i] = 1 lastpivothighprice[i] = highmiddlesource[i] else: pivothigh[i] = 0 lastpivothighprice[i] = lastpivothighprice[i-1] if (np.all(lowmiddlesource[i] <= source[i-(l+r):i-(r)]) and np.all(lowmiddlesource[i] < source[i-(r-1):i+1])): pivotlow[i] = 1 lastpivotlowprice[i] = lowmiddlesource[i] else: pivotlow[i] = 0 lastpivotlowprice[i] = lastpivotlowprice[i-1] if pivothigh[i] == 1: priceshigh[i] = source[i-r] priceshighest[i] = candles[:,3][i-r] highindices[i] = (i-r) if pivotlow[i] == 1: priceslow[i] = source[i-l] priceslowest[i] = candles[:,4][i-l] lowindices[i] = (i-l) ivar[i] = i ivar1 = int(ivar[-1]) priceshigh = priceshigh[~np.isnan(priceshigh)] priceshigh = np.concatenate((np.full((source.shape[0] - priceshigh.shape[0]), np.nan), priceshigh)) priceshighest = priceshighest[~np.isnan(priceshighest)] priceshighest = np.concatenate((np.full((source.shape[0] - priceshighest.shape[0]), np.nan), priceshighest)) priceslow = priceslow[~np.isnan(priceslow)] priceslow = np.concatenate((np.full((source.shape[0] - priceslow.shape[0]), np.nan), priceslow)) priceslowest = priceslowest[~np.isnan(priceslowest)] priceslowest = np.concatenate((np.full((source.shape[0] - priceslowest.shape[0]), np.nan), priceslowest)) highindices = highindices[~np.isnan(highindices)] highindices = np.concatenate((np.full((source.shape[0] - highindices.shape[0]), np.nan), highindices)) lowindices = lowindices[~np.isnan(lowindices)] lowindices = np.concatenate((np.full((source.shape[0] - lowindices.shape[0]), np.nan), lowindices)) oscHL = 1 if source[-(r+1)] > priceslow[-2] and (np.abs(lowindices[-2]-ivar1) >= rangeLower and np.abs(lowindices[-2]-ivar1) <= rangeUpper) else 0 priceLL = 1 if candles[:,4][-(r+1)] < priceslowest[-2] else 0 bullCond = 1 if priceLL == 1 and oscHL == 1 and pivotlow[-1] == 1 else 0 oscLL = 1 if (source[-(r+1)] < priceslow[-2] and np.abs(lowindices[-2]-ivar1) >= rangeLower and np.abs(lowindices[-2]-ivar1) <= rangeUpper) else 0 priceHL = 1 if candles[:,4][-(r+1)] > priceslowest[-2] else 0 hiddenBullCond = 1 if priceHL == 1 and oscLL == 1 and pivotlow[-1] == 1 else 0 oscLH = 1 if source[-(r+1)] < priceshigh[-2] and (np.abs(highindices[-2]-ivar1) >= rangeLower and np.abs(highindices[-2]-ivar1) <= rangeUpper) else 0 priceHH = 1 if candles[:,3][-(r+1)] > priceshighest[-2] else 0 bearCond = 1 if priceHH == 1 and oscLH == 1 and pivothigh[-1] == 1 else 0 oscHH = 1 if source[-(r+1)] > priceshigh[-2] and (np.abs(highindices[-2]-ivar1) >= rangeLower and np.abs(highindices[-2]-ivar1) <= rangeUpper) else 0 priceLH = 1 if candles[:,3][-(r+1)] < priceshighest[-2] else 0 hiddenBearCond = 1 if priceLH == 1 and oscHH == 1 and pivothigh[-1] == 1 else 0 return bearCond, bullCond, hiddenBullCond, hiddenBearCond
the-stack_0_999
from enum import Enum from itertools import takewhile from grid import Grid, Point import grid_utils class DiscState(Enum): empty = 0 red = 1 black = 2 class Game(object): def __init__(self, initial_grid=None): self.restart(initial_grid) def restart(self, initial_grid=None): if initial_grid is None: self.grid = Grid(6, # Rows 7, # Cols initial_value=DiscState.empty) else: self.grid = initial_grid self.current_player = DiscState.red self.winner = None self.is_end = False def try_turn(self, color, col_index): added_point = self.try_move(color, col_index) if added_point is not None: winner = self.get_winner(added_point, self.current_player) if winner: self.winner = winner self.is_end = True return True else: if not self.is_board_full(): self.switch_player() else: # Tie game self.is_end = True return True return False def try_move(self, color, col_index): if self.current_player is not color: return None if not self.can_add_disc(col_index): return None return self.add_disc(col_index, self.current_player) def switch_player(self): if self.current_player is DiscState.red: self.current_player = DiscState.black else: self.current_player = DiscState.red def is_board_full(self): for col_index in range(self.grid.width): if self.can_add_disc(col_index): return False return True def can_add_disc(self, col_index): if col_index >= self.grid.width: return False return self.grid[-1][col_index] is DiscState.empty def add_disc(self, col_index, color): for row_index in range(self.grid.height): if self.grid[row_index][col_index] is DiscState.empty: self.grid[row_index][col_index] = color return Point(row_index, col_index) break else: raise ValueError("column %i is full" % col_index) def get_winner(self, last_move, current_player, row_size=4): assert self.grid.at(last_move) is not DiscState.empty if grid_utils.is_in_row_run(self.grid, last_move, row_size) or \ grid_utils.is_in_col_run(self.grid, last_move, row_size) or \ grid_utils.is_in_diag_down_run(self.grid, last_move, row_size) or \ grid_utils.is_in_diag_up_run(self.grid, last_move, row_size): return current_player return None def render_board(self): str_repr = ["Current board state:\n"] str_repr += [" %i " % col_index for col_index in range(self.grid.width)] + ["\n"] for row in reversed(self.grid): row_repr = [] for disc_value in row: if disc_value is DiscState.empty: row_repr.append("| |") elif disc_value is DiscState.red: row_repr.append("|O|") else: # disc_value is black row_repr.append("|X|") row_repr.append("\n") str_repr += row_repr print("".join(str_repr))
the-stack_0_1001
from typing import Optional from django.db import models, DatabaseError, transaction from .message import ChatMediaTypes from ..users import UserUpdater from ..base import BaseModel from .entity_types import EntityTypes from .entity_types import EntitySourceTypes from core.globals import logger from pyrogram import types from telegram import models as tg_models class EntityQuerySet(models.QuerySet): def filter_by_id(self, *, id: str) -> "EntityQuerySet": return self.filter(id=id) def get_by_id(self, *, id: str) -> Optional["Entity"]: try: return self.get(id=id) except Entity.DoesNotExist as e: pass except DatabaseError as e: logger.exception(e) except Exception as e: logger.exception(e) return None def update_or_create_entity(self, *, defaults: dict, **kwargs) -> Optional["Entity"]: try: return self.update_or_create( defaults=defaults, **kwargs )[0] except DatabaseError as e: logger.exception(e) except Exception as e: logger.exception(e) return None class EntityManager(models.Manager): def get_queryset(self) -> EntityQuerySet: return EntityQuerySet(self.model, using=self._db) def update_or_create_from_raw( self, *, raw_entity: types.MessageEntity, db_message: "tg_models.Message", ) -> Optional["Entity"]: if raw_entity is None or db_message is None: return None parsed_entity = self._parse( raw_entity=raw_entity, message__has_media=bool(db_message.media_type != ChatMediaTypes.undefined) ) if parsed_entity: with transaction.atomic(): db_entity = self.get_queryset().update_or_create_entity( id=f'{db_message.id}:{raw_entity.offset}', defaults={ 'message': db_message, **parsed_entity, }, ) if db_entity: db_entity.update_or_create_user_from_raw( model=db_entity, field_name='user', raw_user=raw_entity.user ) return db_entity return None @staticmethod def _parse(*, raw_entity: types.MessageEntity, message__has_media: bool) -> dict: if raw_entity is None: return {} return { 'type': EntityTypes.get_type(raw_entity.type), 'source': EntitySourceTypes.caption if message__has_media else EntitySourceTypes.text, 'offset': raw_entity.offset, 'length': raw_entity.length, } class Entity(BaseModel, UserUpdater): id = models.CharField(max_length=256, primary_key=True) # `message__id:offset` type = models.CharField( EntityTypes.choices, max_length=20, null=False, ) source = models.CharField( EntitySourceTypes.choices, max_length=20, null=False, ) offset = models.IntegerField() length = models.IntegerField() # entities, both from `text` and `caption` message = models.ForeignKey( 'telegram.Message', on_delete=models.CASCADE, null=False, related_name='entities', ) # For `text_mention` only, the mentioned user. user = models.ForeignKey( 'telegram.User', related_name='mentioned_entities', null=True, blank=True, on_delete=models.CASCADE, ) objects = EntityManager() class Meta: verbose_name_plural = 'Entities' ordering = ('message',) def __str__(self): return f"{self.type} of type {self.source} in {self.message}"
the-stack_0_1002
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('esg_leipzig_homepage_2015', '0005_linktoflatpage'), ] operations = [ migrations.CreateModel( name='News', fields=[ ('id', models.AutoField(auto_created=True, verbose_name='ID', primary_key=True, serialize=False)), ('title', models.CharField(verbose_name='Titel', max_length=255, help_text="Beispiel: 'Schrank abzugeben'. Änderungen sind immer in den Sprachfeldern vorzunehmen.")), ('title_de', models.CharField(null=True, verbose_name='Titel', max_length=255, help_text="Beispiel: 'Schrank abzugeben'. Änderungen sind immer in den Sprachfeldern vorzunehmen.")), ('title_en', models.CharField(null=True, verbose_name='Titel', max_length=255, help_text="Beispiel: 'Schrank abzugeben'. Änderungen sind immer in den Sprachfeldern vorzunehmen.")), ('content', models.TextField(blank=True, verbose_name='Inhalt (HTML)', help_text='Es können alle HTML-Tags verwendet werden. Änderungen sind immer in den Sprachfeldern vorzunehmen.')), ('content_de', models.TextField(blank=True, null=True, verbose_name='Inhalt (HTML)', help_text='Es können alle HTML-Tags verwendet werden. Änderungen sind immer in den Sprachfeldern vorzunehmen.')), ('content_en', models.TextField(blank=True, null=True, verbose_name='Inhalt (HTML)', help_text='Es können alle HTML-Tags verwendet werden. Änderungen sind immer in den Sprachfeldern vorzunehmen.')), ('author', models.CharField(verbose_name='Autor', max_length=255, help_text="Beispiel: 'Frank Martin'.")), ('weight', models.IntegerField(verbose_name='Platzierung', help_text='Eine höhere Zahl bedeutet, dass der Eintrag auf der Startseite weiter unten steht.', default=100)), ], options={ 'verbose_name_plural': 'Aktuelle Informationen', 'verbose_name': 'Aktuelle Information', 'ordering': ('weight', 'title'), }, bases=(models.Model,), ), ]
the-stack_0_1003
from typing import List from webdnn.backend.code_generator.allocator import MemoryLayout from webdnn.backend.code_generator.injectors.buffer_injector import BufferInjector from webdnn.backend.code_generator.injectors.kernel_name_injector import KernelNameInjector from webdnn.backend.webassembly.generator import WebassemblyDescriptorGenerator from webdnn.backend.webassembly.kernel import Kernel from webdnn.graph.axis import Axis from webdnn.graph.operators.space2depth import Space2Depth from webdnn.graph.order import OrderNHWC template = """ void %%FUNC_NAME%%(const int * %%META_BUFFER%%) { const float *x = %%LOAD_BUFFER(space2depth_x)%%; float *y = %%LOAD_BUFFER(space2depth_y)%%; const int r = %%LOAD_BUFFER(space2depth_r)%%; const int N = %%LOAD_BUFFER(space2depth_N)%%; const int C1 = %%LOAD_BUFFER(space2depth_C1)%%; const int C2 = %%LOAD_BUFFER(space2depth_C2)%%; const int H1 = %%LOAD_BUFFER(space2depth_H1)%%; const int H2 = %%LOAD_BUFFER(space2depth_H2)%%; const int W1 = %%LOAD_BUFFER(space2depth_W1)%%; const int W2 = %%LOAD_BUFFER(space2depth_W2)%%; for (int gid = 0; gid < N*H1*W1*C1; gid += 1) { const int c1 = gid % C1; const int w1 = gid / C1 % W1; const int h1 = gid / C1 / W1 % H1; const int n = gid / C1 / W1 / H1; const int w2 = w1 / r; const int h2 = h1 / r; const int c2 = c1 + (w1 % r) * C1 + (h1 % r) * C1 * r; y[((n*H2+h2)*W2+w2)*C2+c2] = x[gid]; } } """ @WebassemblyDescriptorGenerator.register_handler(Space2Depth) def space2depth(op: Space2Depth, memory_layout: MemoryLayout) -> List[Kernel]: x = op.inputs["x"] y = op.outputs["y"] r = op.parameters['r'] assert x.order == OrderNHWC assert y.order == OrderNHWC buffer_injector = BufferInjector() buffer_injector.register({ "space2depth_x": memory_layout[x], "space2depth_y": memory_layout[y], 'space2depth_r': r, "space2depth_N": x.shape_dict[Axis.N], "space2depth_C1": x.shape_dict[Axis.C], "space2depth_C2": y.shape_dict[Axis.C], "space2depth_H1": x.shape_dict[Axis.H], "space2depth_H2": y.shape_dict[Axis.H], "space2depth_W1": x.shape_dict[Axis.W], "space2depth_W2": y.shape_dict[Axis.W], }) name_injector = KernelNameInjector(op) source = template source = buffer_injector.inject(source) source = name_injector.inject(source) kernel = Kernel( {name_injector.name: source}, name_injector.name, buffer_injector.buffer, buffer_injector.unresolved_value_list ) return [kernel]
the-stack_0_1004
import configparser import json from pathlib import Path from transformers import AutoTokenizer, Wav2Vec2ForCTC import sounddevice as sd import soundfile as sf import torch def record_from_mic(config): """Record audio from a microphone. Args: config (ConfigParser): Config params. Returns: audio (ndarray): Recorded audio. """ sample_rate = config.getint('config', 'sample_rate') duration_secs = config.getint('microphone', 'duration_secs') channels = config.getint('microphone', 'channels') print("Start recording . . . ") audio = sd.rec(int(duration_secs*sample_rate), sample_rate, channels) sd.wait() # Wait until recording is finished print("Finish recording") return audio def wav2vec2_inference(audio, tokenizer, model): """Transcript audio with the Wav2Vec2 model. Args: audio (ndarray): Audio of interest. tokenizer (Wav2Vec2Tokenizer): Wav2Vec2 associated tokenizer. model (Wav2Vec2ForCTC): Wav2Vec2 to perform the transcription. Returns: transcriptions (str): Audio transcript. """ input_values = tokenizer(audio.ravel(), return_tensors='pt').input_values logits = model(input_values).logits # Store predicted id's predicted_ids = torch.argmax(logits, dim =-1) # Decode the audio to generate text transcriptions = tokenizer.decode(predicted_ids[0]) return transcriptions def main(): config = configparser.ConfigParser() config.read('config.ini') # Initialize tokenizer and model from HuggingFace tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") if config.getboolean('config', 'from_microphone'): # Record from microphone and transcript audio = record_from_mic(config) transcriptions = wav2vec2_inference(audio, tokenizer, model) print(f"Transcribed audio: {transcriptions}") if config.getboolean('config', 'save_transcriptions'): with open('mic_transcription.txt', 'w') as file: file.write(transcriptions) print(f"Transcribed audio stored in mic_transcription.txt") else: # Transcript files in configuration file audio_files = json.loads(config.get('config', 'audio_files')) for audio_file in audio_files: audio, _ = sf.read(audio_file, dtype='float32') transcriptions = wav2vec2_inference(audio, tokenizer, model) print(f"Transcribed audio: {transcriptions}") if config.getboolean('config', 'save_transcriptions'): with open(f'{Path(audio_file).stem}.txt', 'w') as file: file.write(transcriptions) print(f"Transcribed audio stored in {Path(audio_file).stem}.txt") if __name__ == '__main__': main()
the-stack_0_1005
import argparse import pandas as pd label_map = { 'agree': 'agree', 'disagree': 'refute', 'discuss': 'nostance' } if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('snopes', help='/path/to/snopes/file') parser.add_argument('pred', help='/path/to/prediction/file') parser.add_argument('out', help='/path/to/output/file') args = parser.parse_args() snopes = pd.read_csv(args.snopes) pred = pd.read_csv(args.pred) pred = pred.rename(index=str, columns={'Stance': 'Predicted Stance', 'Body ID': 'ID', 'Headline': 'Claim'}) # assignment = { # 'Snippets': lambda x: snopes.loc[snopes['ID'] == x.ID].Snippets, # 'Gold Stance': lambda x: snopes.loc[snopes['ID'] == x.ID].Stance, # } # pred = pred.assign(**assignment) joined = pred.set_index('ID').join(snopes.set_index('ID'), rsuffix='_right') joined = joined.rename(index=str, columns={'Stance': 'Gold Stance'}) joined['Predicted Stance'] = joined.apply(lambda row: label_map[row['Predicted Stance']], axis=1) # pred['Snippets'] = pred.apply(lambda x: snopes.loc[snopes['ID'] == x.ID].Snippets, axis=1) # pred['Gold Stance'] = pred.apply(lambda x: snopes.loc[snopes['ID'] == x.ID].Stance, axis=1) joined.to_csv(args.out, columns=['Claim', 'Snippets', 'Gold Stance', 'Predicted Stance'])
the-stack_0_1006
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Prints Graph def print_dict(dictionary): for k, v in {k: v for k, v in dictionary.items() if v[0] != 'out'}.items(): print(k, ':', *v, sep='\t', end='\n') # Parsing def parse(lines, gates): data = list() graph = dict() for i in range(len(lines)): line = lines[i].replace('\n', '').split('\t') if len(line) > 3: if line[2] in gates: data.append(line + lines[i+1].replace('\n', '').split("\t")) elif (line[0][:1] != '\t'): data.append(line) out_count = 1 for i in range(len(data)): if data[i][2] == 'inpt': graph[data[i][0]] = [data[i][2], [], [], ['sa0', 'sa1']] elif data[i][2] in gates: for j in data[i][-1*int(data[i][4]):]: if data[int(j) - 1][1][-3:] == 'fan': graph[data[int(j) - 1][0]] = ['wire', [data[int(j) - 1][3][:-3]], [data[i][1][:-3]], ['sa0', 'sa1']] for k in graph[data[int(j) - 1][0]][1]: if k not in graph.keys(): graph[k] = [data[int(k) - 1][2], data[int(k) - 1][-1*int(data[int(k) - 1][4]):], [j], ['sa0', 'sa1']] elif j not in graph[k][2]: graph[k][2].append(j) else: graph[data[int(j) - 1][0]] = [data[int(j) - 1][2], data[int(j) - 1][-1*int(data[int(j) - 1][4]):], [data[i][1][:-3]], ['sa0', 'sa1']] if data[i][3] == '0': graph[data[i][0]] = [data[i][2], data[i][-1*int(data[i][4]):], [str(len(data) + out_count)], ['sa0', 'sa1']] graph[str(len(data) + out_count)] = ['out', [data[i][0]], [], []] out_count += 1 return graph
the-stack_0_1007
# -*- coding: utf-8 -*- import os import os.path import re import sys import string from django.apps.registry import apps from django.core.management.base import BaseCommand, CommandError from python_translate.extractors import base as extractors from python_translate import operations from python_translate.translations import MessageCatalogue from django_translate.utils import bcolors from django_translate import services from django_translate import settings class AnyFormatSpec: def __format__(self, fmt): return '' class Formatter(string.Formatter): def __init__(self): self.used = set() def get_value(self, key, args, kwargs): self.used.add(key) return AnyFormatSpec() class Command(BaseCommand): help = """Extract translation strings from templates from a given location. It can display them or merge the new ones into the translation files. When new translation strings are found it can automatically add a prefix to the translation message. Example running against app folder ./manage.py tranzdump -l en --path ./ --output-path ./tranz ./manage.py tranzdump -l fr --force --prefix="new_" --app website --exclude ./website/static """ def __init__(self, stdout=None, stderr=None, no_color=False): self.excluded_paths = None self.locale = None self.verbosity = None super(Command, self).__init__(stdout, stderr, no_color) def add_arguments(self, parser): parser.add_argument('--locale', '-l', default='en', dest='locale', action='store', help='Locale to process') parser.add_argument('--app', '-a', dest='app', action='store', help='App to scan.') parser.add_argument('--path', '-p', dest='path', action='store', help='Path to scan') parser.add_argument('--output-dir', dest='output_dir', default=None, action='store', help='Override the default output dir') parser.add_argument('--exclude-dir', '-x', default=[], dest='excluded_paths', action='append', help='Paths to exclude. Default is none. Can be used multiple times. ' 'Works only with ChainExtractor.') parser.add_argument('--prefix', dest='prefix', default="__", action='store', help='Override the default prefix') parser.add_argument('--format', dest='format', default="yml", action='store', help='Override the default output format') parser.add_argument('--dump-messages', dest='dump_messages', action='store_true', help='Should the messages be dumped in the console') parser.add_argument('--force', dest='force', action='store_true', help='Should the update be done') parser.add_argument('--no-backup', dest='no_backup', action='store_true', help='Should backup be disabled') parser.add_argument('--clean', dest='clean', default=False, action='store_true', help='Should clean not found messages',) def handle(self, *args, **options): if options.get('force') != True and options.get('dump_messages') != True: print((bcolors.WARNING + 'You must choose at least one of --force or --dump-messages' + bcolors.ENDC)) return if not (bool(options.get('app')) ^ bool(options.get('path'))): print((bcolors.WARNING + 'You must choose only one of --app or --path' + bcolors.ENDC)) return if not options.get('output_dir') and (not options.get('app') or not settings.TRANZ_SEARCH_LOCALE_IN_APPS): print((bcolors.WARNING + 'You must provide an --output-dir when in --path mode, or when TRANZ_SEARCH_LOCALE_IN_APPS ' \ 'settings variable is False.' + bcolors.ENDC)) return self.excluded_paths = [os.path.abspath(path) for path in options['excluded_paths']] self.excluded_paths += [os.path.abspath(django_translate.__path__[0])] self.excluded_paths += settings.TRANZ_EXCLUDED_DIRS # Find directories to scan if options.get('app'): for app in list(apps.app_configs.values()): if app.name == options.get('app'): current_name = app.name root_path = app.path break else: raise ValueError("App {0} not found".format(options.get('app'))) else: root_path = os.path.abspath(options['path']) current_name = root_path.split("/")[-1] output_dir = options.get('output_dir') or os.path.join(root_path, 'tranz') writer = services.writer print(('Generating "{0}" translation files for "{1}"'.format(options.get('locale'), current_name))) print("Loading existing messages") current_catalogue = MessageCatalogue(options['locale']) loader = services.loader loader.load_messages(output_dir, current_catalogue) if len(current_catalogue.messages) == 0: print(("No messages were loaded, make sure there actually are " \ "translation file in format {{catalog}}.{{locale}}.{{format}} in {0}".format(output_dir))) return print("Extracting messages") extracted_catalogue = MessageCatalogue(options['locale']) extractor = services.extractor extractor.set_prefix(options['prefix']) self.extract_messages(extractor, root_path, extracted_catalogue) print("Processing catalogues") operation_class = operations.DiffOperation if options['clean'] else operations.MergeOperation operation = operation_class(current_catalogue, extracted_catalogue) if not len(operation.get_domains()): print("No translations found") return if options["dump_messages"]: for domain in operation.get_domains(): print(("Displaying messages for domain {0}".format(domain))) new_keys = list(operation.get_new_messages(domain).keys()) all_keys = list(operation.get_messages(domain).keys()) for id in set(all_keys).difference(new_keys): print(id) for id in new_keys: print((bcolors.OKGREEN + id + bcolors.ENDC)) for id in list(operation.get_obsolete_messages(domain).keys()): print((bcolors.FAIL + id + bcolors.ENDC)) if options["no_backup"]: writer.disable_backup() if options["force"]: print(("Writing files to {0}".format(output_dir))) writer.write_translations(operation.get_result(), options['format'], { "path": output_dir, "default_locale": options['locale'] }) def extract_messages(self, extractor, root_path, extracted_catalogue): if isinstance(extractor, extractors.ChainExtractor): subextractors = list(extractor._extractors.values()) else: subextractors = [extractor] for subextractor in subextractors: if not isinstance(subextractor, extractors.BaseExtractor): subextractor.extract(root_path, extracted_catalogue) continue paths = subextractor.extract_files(root_path) paths = self.filter_exluded_paths(paths) for path in paths: try: subextractor.extract([path], extracted_catalogue) except Exception as e: exc_type, exc_value, exc_traceback = sys.exc_info() msg = 'There was an exception in extractor {0} when processing ' \ 'resource "{1}"'.format(type(subextractor).__name__, path) msg = msg + "\nOriginal message: {0} {1}".format(exc_type.__name__, exc_value) raise ValueError(msg).with_traceback(exc_traceback) def filter_exluded_paths(self, paths): valid = [] for path in paths: for excluded in self.excluded_paths: if path.startswith(excluded): break else: valid.append(path) return valid
the-stack_0_1008
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 18 16:55:14 2017 @author: ajaver """ import os import tables import numpy as np import warnings from .getFoodContourNN import get_food_contour_nn from .getFoodContourMorph import get_food_contour_morph from tierpsy.helper.misc import TimeCounter, print_flush, get_base_name def calculate_food_cnt(mask_file, use_nn_food_cnt, model_path, _is_debug=False, solidity_th=0.98): if use_nn_food_cnt: if not os.path.exists(model_path): warnings.warn('The model to obtain the food contour was not found. Nothing to do here...\n If you dont have a valid model. You could try to set `food_method=MORPH` to use a different algorithm.') return food_cnt, food_prob,cnt_solidity = get_food_contour_nn(mask_file, model_path, _is_debug=_is_debug) if cnt_solidity < solidity_th: food_cnt = np.zeros(0) else: food_cnt = get_food_contour_morph(mask_file, _is_debug=_is_debug) return food_cnt def getFoodContour(mask_file, skeletons_file, use_nn_food_cnt, model_path, solidity_th=0.98, _is_debug = False ): base_name = get_base_name(mask_file) progress_timer = TimeCounter('') print_flush("{} Calculating food contour {}".format(base_name, progress_timer.get_time_str())) food_cnt = calculate_food_cnt(mask_file, use_nn_food_cnt = use_nn_food_cnt, model_path = model_path, solidity_th= solidity_th, _is_debug = _is_debug) #store contour coordinates into the skeletons file and mask_file the contour file for fname in [skeletons_file, mask_file]: with tables.File(fname, 'r+') as fid: if '/food_cnt_coord' in fid: fid.remove_node('/food_cnt_coord') #if it is a valid contour save it if food_cnt is not None and \ food_cnt.size >= 2 and \ food_cnt.ndim == 2 and \ food_cnt.shape[1] == 2: tab = fid.create_array('/', 'food_cnt_coord', obj=food_cnt) tab._v_attrs['use_nn_food_cnt'] = int(use_nn_food_cnt)
the-stack_0_1009
""" Based on https://github.com/asanakoy/kaggle_carvana_segmentation """ import torch import torch.utils.data as data from torch.autograd import Variable as V from PIL import Image import cv2 import numpy as np import os import scipy.misc as misc import Constants def randomHueSaturationValue(image, hue_shift_limit=(-180, 180), sat_shift_limit=(-255, 255), val_shift_limit=(-255, 255), u=0.5): if np.random.random() < u: image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(image) hue_shift = np.random.randint(hue_shift_limit[0], hue_shift_limit[1]+1) hue_shift = np.uint8(hue_shift) h += hue_shift sat_shift = np.random.uniform(sat_shift_limit[0], sat_shift_limit[1]) s = cv2.add(s, sat_shift) val_shift = np.random.uniform(val_shift_limit[0], val_shift_limit[1]) v = cv2.add(v, val_shift) image = cv2.merge((h, s, v)) #image = cv2.merge((s, v)) image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) return image def randomShiftScaleRotate(image, mask, shift_limit=(-0.0, 0.0), scale_limit=(-0.0, 0.0), rotate_limit=(-0.0, 0.0), aspect_limit=(-0.0, 0.0), borderMode=cv2.BORDER_CONSTANT, u=0.5): if np.random.random() < u: height, width, channel = image.shape angle = np.random.uniform(rotate_limit[0], rotate_limit[1]) scale = np.random.uniform(1 + scale_limit[0], 1 + scale_limit[1]) aspect = np.random.uniform(1 + aspect_limit[0], 1 + aspect_limit[1]) sx = scale * aspect / (aspect ** 0.5) sy = scale / (aspect ** 0.5) dx = round(np.random.uniform(shift_limit[0], shift_limit[1]) * width) dy = round(np.random.uniform(shift_limit[0], shift_limit[1]) * height) cc = np.math.cos(angle / 180 * np.math.pi) * sx ss = np.math.sin(angle / 180 * np.math.pi) * sy rotate_matrix = np.array([[cc, -ss], [ss, cc]]) box0 = np.array([[0, 0], [width, 0], [width, height], [0, height], ]) box1 = box0 - np.array([width / 2, height / 2]) box1 = np.dot(box1, rotate_matrix.T) + np.array([width / 2 + dx, height / 2 + dy]) box0 = box0.astype(np.float32) box1 = box1.astype(np.float32) mat = cv2.getPerspectiveTransform(box0, box1) image = cv2.warpPerspective(image, mat, (width, height), flags=cv2.INTER_LINEAR, borderMode=borderMode, borderValue=( 0, 0, 0,)) mask = cv2.warpPerspective(mask, mat, (width, height), flags=cv2.INTER_LINEAR, borderMode=borderMode, borderValue=( 0, 0, 0,)) return image, mask def randomHorizontalFlip(image, mask, u=0.5): if np.random.random() < u: image = cv2.flip(image, 1) mask = cv2.flip(mask, 1) return image, mask def randomVerticleFlip(image, mask, u=0.5): if np.random.random() < u: image = cv2.flip(image, 0) mask = cv2.flip(mask, 0) return image, mask def randomRotate90(image, mask, u=0.5): if np.random.random() < u: image=np.rot90(image) mask=np.rot90(mask) return image, mask def argument_Drive_loader(img_path, mask_path): img = cv2.imread(img_path) img = cv2.resize(img, Constants.Image_size) mask = np.array(Image.open(mask_path)) mask = cv2.resize(mask, Constants.Image_size) mask = np.expand_dims(mask, axis=2) img = np.array(img, np.float32).transpose(2, 0, 1) / 255.0 * 3.2 - 1.6 mask = np.array(mask, np.float32).transpose(2, 0, 1) / 255.0 mask[mask >= 0.5] = 1 mask[mask <= 0.5] = 0 return img, mask def argument_CHASEDB_loader(img_path, mask_path): img = cv2.imread(img_path) img = cv2.resize(img, Constants.Image_size) mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) mask = cv2.resize(mask, Constants.Image_size) mask = np.expand_dims(mask, axis=2) img = np.array(img, np.float32).transpose(2, 0, 1) / 255.0 * 3.2 - 1.6 mask = np.array(mask, np.float32).transpose(2, 0, 1) / 255.0 mask[mask >= 0.5] = 1 mask[mask <= 0.5] = 0 return img, mask def default_DRIVE_loader(img_path, mask_path): img = cv2.imread(img_path) img = cv2.resize(img, Constants.Image_size) # mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) mask = np.array(Image.open(mask_path)) mask = cv2.resize(mask, Constants.Image_size) img = randomHueSaturationValue(img, hue_shift_limit=(-30, 30), sat_shift_limit=(-5, 5), val_shift_limit=(-15, 15)) img, mask = randomShiftScaleRotate(img, mask, shift_limit=(-0.1, 0.1), scale_limit=(-0.1, 0.1), aspect_limit=(-0.1, 0.1), rotate_limit=(-0, 0)) img, mask = randomHorizontalFlip(img, mask) img, mask = randomVerticleFlip(img, mask) img, mask = randomRotate90(img, mask) mask = np.expand_dims(mask, axis=2) img = np.array(img, np.float32).transpose(2, 0, 1) / 255.0 * 3.2 - 1.6 mask = np.array(mask, np.float32).transpose(2, 0, 1) / 255.0 mask[mask >= 0.5] = 1 mask[mask <= 0.5] = 0 # mask = abs(mask-1) return img, mask def default_CHASEDB_loader(img_path, mask_path): img = cv2.imread(img_path) img = cv2.resize(img, Constants.Image_size) mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) # mask = np.array(Image.open(mask_path)) mask = cv2.resize(mask, Constants.Image_size) img = randomHueSaturationValue(img, hue_shift_limit=(-30, 30), sat_shift_limit=(-5, 5), val_shift_limit=(-15, 15)) img, mask = randomShiftScaleRotate(img, mask, shift_limit=(-0.1, 0.1), scale_limit=(-0.1, 0.1), aspect_limit=(-0.1, 0.1), rotate_limit=(-0, 0)) img, mask = randomHorizontalFlip(img, mask) img, mask = randomVerticleFlip(img, mask) img, mask = randomRotate90(img, mask) mask = np.expand_dims(mask, axis=2) img = np.array(img, np.float32).transpose(2, 0, 1) / 255.0 * 3.2 - 1.6 mask = np.array(mask, np.float32).transpose(2, 0, 1) / 255.0 mask[mask >= 0.5] = 1 mask[mask <= 0.5] = 0 # mask = abs(mask-1) return img, mask def read_DRIVE_datasets(root_path, mode='train'): images = [] masks = [] if mode=='Hard': image_root = os.path.join(root_path, 'argtraining/images') gt_root = os.path.join(root_path, 'argtraining/1st_manual') else: image_root = os.path.join(root_path, 'training/images') gt_root = os.path.join(root_path, 'training/1st_manual') for image_name in os.listdir(image_root): image_path = os.path.join(image_root, image_name.split('.')[0] + '.tif') if int(image_name.split('_')[0])>20: label_path = os.path.join(gt_root, image_name.split('_')[0] + '_manual1.gif') else: label_path = os.path.join(gt_root, image_name.split('_')[0] + '_manual1.tif') images.append(image_path) masks.append(label_path) # print(images, masks) return images, masks def read_CHASEDB_datasets(root_path, mode='train'): images = [] masks = [] if mode == 'Hard': image_root = os.path.join(root_path, 'argtraining/images') gt_root = os.path.join(root_path, 'argtraining/1st_manual') else: image_root = os.path.join(root_path, 'training/images') gt_root = os.path.join(root_path, 'training/1st_manual') for image_name in os.listdir(image_root): image_path = os.path.join(image_root, image_name.split('.')[0] + '.jpg') label_path = os.path.join(gt_root, image_name.split('.')[0] + '_1stHO.png') images.append(image_path) masks.append(label_path) # print(images, masks) return images, masks class ImageFolder(data.Dataset): def __init__(self,root_path, datasets='Messidor', mode='train'): self.root = root_path self.mode = mode self.dataset = datasets assert self.dataset in ['CHASEDB','DRIVE'], \ "the dataset should be in 'CHASEDB', 'DRIVE'." if self.dataset == 'DRIVE': self.images, self.labels = read_DRIVE_datasets(self.root, self.mode) if self.mode == 'Argument': self.loader = argument_Drive_loader else: self.loader = default_DRIVE_loader else: self.images, self.labels = read_CHASEDB_datasets(self.root, self.mode) if self.mode=='Argument': self.loader=argument_CHASEDB_loader else: self.loader = default_CHASEDB_loader def __getitem__(self, index): img, mask = self.loader(self.images[index], self.labels[index]) img = torch.Tensor(img) mask = torch.Tensor(mask) if self.mode=='Argument': return img, mask,self.images[index], self.labels[index] else: return img, mask def __len__(self): assert len(self.images) == len(self.labels), 'The number of images must be equal to labels' return len(self.images)
the-stack_0_1011
class ScoreCalc: def __init__(self, slices): self.score = 0 self.slices = slices self.calculatescore() def calculatescore(self): for slice in self.slices: r1 = slice[0] c1 = slice[1] r2 = slice[2] c2 = slice[3] self.score += abs(r2-r1+1)*abs(c2-c1+1)
the-stack_0_1012
# qubit number=3 # total number=10 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ import networkx as nx from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def make_circuit(n:int) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") prog = QuantumCircuit(input_qubit) prog.h(input_qubit[0]) # number=1 prog.z(input_qubit[3]) # number=7 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 for edge in E: k = edge[0] l = edge[1] prog.cp(-2 * gamma, input_qubit[k-1], input_qubit[l-1]) prog.p(gamma, k) prog.p(gamma, l) prog.rx(2 * beta, range(len(V))) prog.swap(input_qubit[3],input_qubit[0]) # number=5 prog.swap(input_qubit[3],input_qubit[0]) # number=6 prog.y(input_qubit[1]) # number=8 prog.y(input_qubit[1]) # number=9 # circuit end return prog if __name__ == '__main__': n = 4 V = np.arange(0, n, 1) E = [(0, 1, 1.0), (0, 2, 1.0), (1, 2, 1.0), (3, 2, 1.0), (3, 1, 1.0)] G = nx.Graph() G.add_nodes_from(V) G.add_weighted_edges_from(E) step_size = 0.1 a_gamma = np.arange(0, np.pi, step_size) a_beta = np.arange(0, np.pi, step_size) a_gamma, a_beta = np.meshgrid(a_gamma, a_beta) F1 = 3 - (np.sin(2 * a_beta) ** 2 * np.sin(2 * a_gamma) ** 2 - 0.5 * np.sin(4 * a_beta) * np.sin(4 * a_gamma)) * ( 1 + np.cos(4 * a_gamma) ** 2) result = np.where(F1 == np.amax(F1)) a = list(zip(result[0], result[1]))[0] gamma = a[0] * step_size beta = a[1] * step_size prog = make_circuit(4) sample_shot =5600 writefile = open("../data/startQiskit98.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) backend = BasicAer.get_backend('qasm_simulator') circuit1 = transpile(prog, FakeYorktown()) circuit1.measure_all() prog = circuit1 info = execute(prog,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
the-stack_0_1013
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np import pytest from common.onnx_layer_test_class import OnnxRuntimeLayerTest class TestLoop(OnnxRuntimeLayerTest): @staticmethod def create_const(name, tensor_type, value): from onnx import helper from onnx import TensorProto if tensor_type == TensorProto.INT64: np_type = np.int64 elif tensor_type == TensorProto.FLOAT: np_type = np.float elif tensor_type == TensorProto.BOOL: np_type = np.bool else: return None return helper.make_node('Constant', inputs=[], outputs=[name], value=helper.make_tensor(name='const_tensor', data_type=tensor_type, dims=value.shape, vals=value.flatten().astype(np_type))) @staticmethod def create_body_graph(input_nodes, output_nodes, input_names, output_names, input_shape, graph_name): # input_nodes - list of input nodes with structure {counter, condition, <other inputs>} # output_nodes - list of output nodes with structure {condition, <back edges>, <external outputs>}. # In this function I assume that every <other input> have <back edge> and <external output> # input_shape - shape of all inputs from <other inputs> from onnx import helper from onnx import TensorProto assert len(input_nodes) > 2 assert len(output_nodes) == (len(input_nodes) - 2) * 2 + 1 assert len(input_nodes) == len(input_names) assert len(output_nodes) == len(output_names) other_inputs_count = len(input_nodes) - 2 one_value = np.ones(input_shape, dtype=np.float) one = TestLoop.create_const('one_' + graph_name, TensorProto.FLOAT, one_value) one_int = TestLoop.create_const('one_int_' + graph_name, TensorProto.INT64, np.ones([1])) # add one to all inputs except counter and condition add_one_nodes = [] for i in range(2, len(input_names)): add_one_nodes.append( helper.make_node('Add', inputs=[input_names[i], 'one_' + graph_name], outputs=[output_names[other_inputs_count + i - 1]])) # add 1 to counter add_one_to_m_node = helper.make_node( 'Add', inputs=[input_names[0], 'one_int_' + graph_name], outputs=['counter_plus_1_' + graph_name] ) # map inputs to outputs - back edges identity_nodes = [] for i in range(1, len(input_nodes)): identity_nodes.append(helper.make_node('Identity', inputs=[input_names[i]], outputs=[output_names[i - 1]])) body_nodes = [one, one_int] body_nodes.extend(add_one_nodes) body_nodes.append(add_one_to_m_node) body_nodes.extend(identity_nodes) body_graph = helper.make_graph( body_nodes, graph_name, input_nodes, output_nodes ) return body_graph def create_loop(self): """ ONNX net Input->Loop->Output => Only accuracy check """ from onnx import helper from onnx import TensorProto # Create ONNX model # Input ---> Loop ---> Identity ---> Result input_shape = [1, 4, 64, 54] in_1 = helper.make_tensor_value_info('IN_1', TensorProto.FLOAT, input_shape) in_1_int = helper.make_tensor_value_info('in_1_int', TensorProto.FLOAT, input_shape) in_1_int_out = helper.make_tensor_value_info('in_1_int_out', TensorProto.FLOAT, input_shape) out_1 = helper.make_tensor_value_info('OUT_1', TensorProto.FLOAT, None) res = helper.make_tensor_value_info('res', TensorProto.FLOAT, None) m_1 = helper.make_tensor_value_info('m_1', TensorProto.INT64, [1]) cond_int_1 = helper.make_tensor_value_info('cond_int_1', TensorProto.BOOL, [1]) cond_out_1 = helper.make_tensor_value_info('cond_out_1', TensorProto.BOOL, [1]) m_1_value = np.array([10], dtype=np.int64) cond_value = np.array([True], np.bool) M_1 = self.create_const('M_1', TensorProto.INT64, m_1_value) cond = self.create_const('cond', TensorProto.BOOL, cond_value) body_graph_1 = self.create_body_graph([m_1, cond_int_1, in_1_int], [cond_out_1, in_1_int_out, out_1], ['m_1', 'cond_int_1', 'in_1_int'], ['cond_out_1', 'in_1_int_out', 'OUT_1'], input_shape, 'body_graph_1') node_loop_1 = helper.make_node( 'Loop', inputs=['M_1', 'cond', 'IN_1'], outputs=['cond_out_1', 'OUT_1'], body=body_graph_1 ) res_node = helper.make_node( 'Identity', inputs=['OUT_1'], outputs=['res'], ) graph_def = helper.make_graph( [M_1, cond, node_loop_1, res_node], 'graph', [in_1], [res] ) onnx_net = helper.make_model(graph_def, producer_name='test_loop_model') # We do not create reference graph, as it's too complicated to construct it # So we return None to skip IR comparision return onnx_net, None def create_loop_in_loop(self): """ ONNX net Input->Loop(Loop)->Output => Only accuracy check """ from onnx import helper from onnx import TensorProto # Create ONNX model input_shape = [1, 4, 64, 54] in_1 = helper.make_tensor_value_info('IN_1', TensorProto.FLOAT, input_shape) in_1_int = helper.make_tensor_value_info('in_1_int', TensorProto.FLOAT, input_shape) in_1_int_out = helper.make_tensor_value_info('in_1_int_out', TensorProto.FLOAT, input_shape) in_2 = helper.make_tensor_value_info('IN_2', TensorProto.FLOAT, input_shape) in_2_int = helper.make_tensor_value_info('in_2_int', TensorProto.FLOAT, input_shape) in_2_int_out = helper.make_tensor_value_info('in_2_int_out', TensorProto.FLOAT, input_shape) out_1 = helper.make_tensor_value_info('OUT_1', TensorProto.FLOAT, None) out_2 = helper.make_tensor_value_info('OUT_2', TensorProto.FLOAT, None) res = helper.make_tensor_value_info('res', TensorProto.FLOAT, None) m_1 = helper.make_tensor_value_info('m_1', TensorProto.INT64, [1]) m_2 = helper.make_tensor_value_info('m_2', TensorProto.INT64, [1]) cond_int_1 = helper.make_tensor_value_info('cond_int_1', TensorProto.BOOL, [1]) cond_out_1 = helper.make_tensor_value_info('cond_out_1', TensorProto.BOOL, [1]) cond_int_2 = helper.make_tensor_value_info('cond_int_2', TensorProto.BOOL, [1]) cond_out_2 = helper.make_tensor_value_info('cond_out_2', TensorProto.BOOL, [1]) m_1_value = np.array([10], dtype=np.int64) m_2_value = np.array([5], dtype=np.int64) cond_value = np.array([True], np.bool) one_value = np.ones(input_shape, dtype=np.float) M_1 = self.create_const('M_1', TensorProto.INT64, m_1_value) M_2 = self.create_const('M_2', TensorProto.INT64, m_2_value) cond = self.create_const('cond', TensorProto.BOOL, cond_value) one = self.create_const('one', TensorProto.FLOAT, one_value) one_int = self.create_const('one_int', TensorProto.INT64, one_value) # create body of external loop add_one_node = helper.make_node( 'Add', inputs=['in_1_int', 'one'], outputs=['in_1_loop_1'] ) add_one_to_m_node = helper.make_node( 'Add', inputs=['m_1', 'one_int'], outputs=['m_1_loop_1'] ) cond_2 = self.create_const('cond_2', TensorProto.BOOL, cond_value) # create body for internal loop body_graph_2 = self.create_body_graph([m_2, cond_int_2, in_2_int], [cond_out_2, in_2_int_out, out_2], ['m_2', 'cond_int_2', 'in_2_int'], ['cond_out_2', 'in_2_int_out', 'OUT_2'], input_shape, 'body_graph_2') node_loop_2 = helper.make_node( 'Loop', inputs=['M_2', 'cond_2', 'IN_2'], outputs=['cond_out_2', 'OUT_2'], body=body_graph_2 ) # internal loop created out_1_node = helper.make_node( 'Identity', inputs=['OUT_2'], outputs=['OUT_1'], ) cond_1_node = helper.make_node( 'Identity', inputs=['cond_int_1'], outputs=['cond_out_1'], ) in_1_int_node = helper.make_node( 'Identity', inputs=['in_1_int'], outputs=['in_1_int_out'], ) body_graph_1 = helper.make_graph( [one, add_one_node, one_int, add_one_to_m_node, M_2, cond_2, node_loop_2, out_1_node, cond_1_node, in_1_int_node], 'body_graph_1', [m_1, cond_int_1, in_1_int], [cond_out_1, in_1_int_out, out_1], ) node_loop_1 = helper.make_node( 'Loop', inputs=['M_1', 'cond', 'IN_1'], outputs=['cond_out_1', 'OUT_1'], body=body_graph_1 ) # external loop created res_node = helper.make_node( 'Identity', inputs=['OUT_1'], outputs=['res'], ) graph_def = helper.make_graph( [M_1, cond, node_loop_1, res_node], 'graph', [in_1, in_2], [res], ) onnx_net = helper.make_model(graph_def, producer_name='test_loop_in_loop_model') # We do not create reference graph, as it's too complicated to construct it # So we return None to skip IR comparision return onnx_net, None @pytest.mark.precommit @pytest.mark.timeout(250) def test_loop_simple_precommit(self, ie_device, precision, ir_version, temp_dir, api_2): if ie_device == 'GPU': pytest.skip('Loop not supported on GPU') self._test(*self.create_loop(), ie_device, precision, ir_version, temp_dir=temp_dir, infer_timeout=150, api_2=api_2) @pytest.mark.precommit @pytest.mark.timeout(250) def test_loop_in_loop_simple_precommit(self, ie_device, precision, ir_version, temp_dir, api_2): if ie_device == 'GPU': pytest.skip('Loop not supported on GPU') self._test(*self.create_loop_in_loop(), ie_device, precision, ir_version, temp_dir=temp_dir, infer_timeout=150, api_2=api_2)
the-stack_0_1015
""" @ProjectName: DXY-2019-nCov-Crawler @FileName: crawler.py @Author: Jiabao Lin @Date: 2020/1/21 """ from bs4 import BeautifulSoup from service.db import DB from service.nameMap import country_type_map, city_name_map, country_name_map, continent_name_map import re import json import time import logging import datetime import requests logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s') logger = logging.getLogger(__name__) headers = { 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36' } class Crawler: def __init__(self): self.session = requests.session() self.session.headers.update(headers) self.db = DB() self.crawl_timestamp = int() def run(self): while True: self.crawler() time.sleep(60) def crawler(self): while True: self.crawl_timestamp = int(datetime.datetime.timestamp(datetime.datetime.now()) * 1000) try: r = self.session.get(url='https://3g.dxy.cn/newh5/view/pneumonia') except requests.exceptions.ChunkedEncodingError: continue soup = BeautifulSoup(r.content, 'lxml') overall_information = re.search(r'\{("id".*?)\]\}', str(soup.find('script', attrs={'id': 'getStatisticsService'}))) province_information = re.search(r'\[(.*?)\]', str(soup.find('script', attrs={'id': 'getListByCountryTypeService1'}))) area_information = re.search(r'\[(.*)\]', str(soup.find('script', attrs={'id': 'getAreaStat'}))) abroad_information = re.search(r'\[(.*)\]', str(soup.find('script', attrs={'id': 'getListByCountryTypeService2'}))) news = re.search(r'\[(.*?)\]', str(soup.find('script', attrs={'id': 'getTimelineService'}))) if not overall_information or not province_information or not area_information or not news: continue self.overall_parser(overall_information=overall_information) self.province_parser(province_information=province_information) self.area_parser(area_information=area_information) self.abroad_parser(abroad_information=abroad_information) self.news_parser(news=news) break while True: self.crawl_timestamp = int(datetime.datetime.timestamp(datetime.datetime.now()) * 1000) try: r = self.session.get(url='https://file1.dxycdn.com/2020/0127/797/3393185293879908067-115.json') except requests.exceptions.ChunkedEncodingError: continue # Use try-except to ensure the .json() method will not raise exception. try: if r.status_code != 200: continue elif r.json().get('code') == 'success': self.rumor_parser(rumors=r.json().get('data')) break else: continue except json.decoder.JSONDecodeError: continue logger.info('Successfully crawled.') def overall_parser(self, overall_information): overall_information = json.loads(overall_information.group(0)) overall_information.pop('id') overall_information.pop('createTime') overall_information.pop('modifyTime') overall_information.pop('imgUrl') overall_information.pop('deleted') overall_information['countRemark'] = overall_information['countRemark'].replace(' 疑似', ',疑似').replace(' 治愈', ',治愈').replace(' 死亡', ',死亡').replace(' ', '') if not self.db.find_one(collection='DXYOverall', data=overall_information): overall_information['updateTime'] = self.crawl_timestamp self.db.insert(collection='DXYOverall', data=overall_information) def province_parser(self, province_information): provinces = json.loads(province_information.group(0)) for province in provinces: province.pop('id') province.pop('tags') province.pop('sort') province['comment'] = province['comment'].replace(' ', '') if self.db.find_one(collection='DXYProvince', data=province): continue province['provinceEnglishName'] = city_name_map[province['provinceShortName']]['engName'] province['crawlTime'] = self.crawl_timestamp province['country'] = country_type_map.get(province['countryType']) self.db.insert(collection='DXYProvince', data=province) def area_parser(self, area_information): area_information = json.loads(area_information.group(0)) for area in area_information: area['comment'] = area['comment'].replace(' ', '') # Because the cities are given other attributes, # this part should not be used when checking the identical document. cities_backup = area.pop('cities') if self.db.find_one(collection='DXYArea', data=area): continue # If this document is not in current database, insert this attribute back to the document. area['cities'] = cities_backup area['countryName'] = '中国' area['countryEnglishName'] = 'China' area['continentName'] = '亚洲' area['continentEnglishName'] = 'Asia' area['provinceEnglishName'] = city_name_map[area['provinceShortName']]['engName'] for city in area['cities']: if city['cityName'] != '待明确地区': try: city['cityEnglishName'] = city_name_map[area['provinceShortName']]['cities'][city['cityName']] except KeyError: print(area['provinceShortName'], city['cityName']) pass else: city['cityEnglishName'] = 'Area not defined' area['updateTime'] = self.crawl_timestamp self.db.insert(collection='DXYArea', data=area) def abroad_parser(self, abroad_information): countries = json.loads(abroad_information.group(0)) for country in countries: country.pop('id') country.pop('tags') country.pop('countryType') country.pop('provinceId') country.pop('cityName') country.pop('sort') # The original provinceShortName are blank string country.pop('provinceShortName') # Rename the key continents to continentName country['continentName'] = country.pop('continents') # Ding Xiang Yuan have a large number of duplicates, # values are all the same, but the modifyTime are different. # I suppose the modifyTime is modification time for all documents, other than for only this document. # So this field will be popped out. country.pop('modifyTime') # createTime is also different even if the values are same. # Originally, the createTime represent the first diagnosis of the virus in this area, # but it seems different for abroad information. country.pop('createTime') country['comment'] = country['comment'].replace(' ', '') if self.db.find_one(collection='DXYArea', data=country): continue country['countryName'] = country.get('provinceName') country['provinceShortName'] = country.get('provinceName') country['continentEnglishName'] = continent_name_map.get(country['continentName']) country['countryEnglishName'] = country_name_map.get(country['countryName']) country['provinceEnglishName'] = country_name_map.get(country['countryName']) country['updateTime'] = self.crawl_timestamp self.db.insert(collection='DXYArea', data=country) def news_parser(self, news): news = json.loads(news.group(0)) for _news in news: _news.pop('pubDateStr') if self.db.find_one(collection='DXYNews', data=_news): continue _news['crawlTime'] = self.crawl_timestamp self.db.insert(collection='DXYNews', data=_news) def rumor_parser(self, rumors): for rumor in rumors: rumor.pop('score') rumor['body'] = rumor['body'].replace(' ', '') if self.db.find_one(collection='DXYRumors', data=rumor): continue rumor['crawlTime'] = self.crawl_timestamp self.db.insert(collection='DXYRumors', data=rumor) if __name__ == '__main__': crawler = Crawler() crawler.run()
the-stack_0_1016
""" This is KAMINARIO-FLOCKER-DRIVER Module docstring """ from flocker import node from kaminario_flocker_driver.k2_blockdevice_api \ import instantiate_driver_instance from kaminario_flocker_driver.constants import DRIVER_NAME def api_factory(cluster_id, **kwargs): """Entry point for Flocker to load driver instance.""" kwargs['cluster_id'] = cluster_id return instantiate_driver_instance( **kwargs) FLOCKER_BACKEND = node.BackendDescription( name=DRIVER_NAME, needs_reactor=False, needs_cluster_id=True, api_factory=api_factory, deployer_type=node.DeployerType.block)
the-stack_0_1019
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : tests\test_model\test_resnet.py # @Time : 2022-05-03 12:15:10 # @Author : Bingjie Yan # @Email : [email protected] # @License : Apache License 2.0 import torch from torch import optim from torch.utils.data import DataLoader from fedhf.api import opts from fedhf.model import build_model, build_optimizer from fedhf.dataset import build_dataset class TestResnet(object): args = opts().parse([ '--model', 'resnet_mnist', '--num_classes', '10', '--model_pretrained', '--dataset', 'mnist', '--gpus', '-1', '--task', 'classification', '--resize', '--input_c', '1', '--image_size', '224' ]) def test_resnet(self): model = build_model(self.args.model)(self.args) print(model) assert model.__class__.__name__ == 'ResNetMNIST' assert model.net.__class__.__name__ == 'ResNet' assert model.num_classes == 10 assert model.net.fc.out_features == 10 dataset = build_dataset(self.args.dataset)(self.args) dataloader = DataLoader(dataset.trainset, batch_size=1, shuffle=False) model = model.to(self.args.device) model.train() for data, target in dataloader: output = model(data) assert output.shape == (1, 10) assert output.dtype == torch.float32 assert output.device == torch.device('cpu') break model.save()
the-stack_0_1020
import re from typing import List import numpy as np from pandas.util._decorators import Appender, deprecate_kwarg from pandas.core.dtypes.common import is_extension_array_dtype, is_list_like from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.missing import notna from pandas.core.arrays import Categorical import pandas.core.common as com from pandas.core.frame import DataFrame, _shared_docs from pandas.core.indexes.api import Index, MultiIndex from pandas.core.reshape.concat import concat from pandas.core.tools.numeric import to_numeric @Appender( _shared_docs["melt"] % dict(caller="pd.melt(df, ", versionadded="", other="DataFrame.melt") ) def melt( frame: DataFrame, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level=None, ) -> DataFrame: # TODO: what about the existing index? # If multiindex, gather names of columns on all level for checking presence # of `id_vars` and `value_vars` if isinstance(frame.columns, MultiIndex): cols = [x for c in frame.columns for x in c] else: cols = list(frame.columns) if id_vars is not None: if not is_list_like(id_vars): id_vars = [id_vars] elif isinstance(frame.columns, MultiIndex) and not isinstance(id_vars, list): raise ValueError( "id_vars must be a list of tuples when columns are a MultiIndex" ) else: # Check that `id_vars` are in frame id_vars = list(id_vars) missing = Index(com.flatten(id_vars)).difference(cols) if not missing.empty: raise KeyError( "The following 'id_vars' are not present " f"in the DataFrame: {list(missing)}" ) else: id_vars = [] if value_vars is not None: if not is_list_like(value_vars): value_vars = [value_vars] elif isinstance(frame.columns, MultiIndex) and not isinstance(value_vars, list): raise ValueError( "value_vars must be a list of tuples when columns are a MultiIndex" ) else: value_vars = list(value_vars) # Check that `value_vars` are in frame missing = Index(com.flatten(value_vars)).difference(cols) if not missing.empty: raise KeyError( "The following 'value_vars' are not present in " f"the DataFrame: {list(missing)}" ) frame = frame.loc[:, id_vars + value_vars] else: frame = frame.copy() if col_level is not None: # allow list or other? # frame is a copy frame.columns = frame.columns.get_level_values(col_level) if var_name is None: if isinstance(frame.columns, MultiIndex): if len(frame.columns.names) == len(set(frame.columns.names)): var_name = frame.columns.names else: var_name = [f"variable_{i}" for i in range(len(frame.columns.names))] else: var_name = [ frame.columns.name if frame.columns.name is not None else "variable" ] if isinstance(var_name, str): var_name = [var_name] N, K = frame.shape K -= len(id_vars) mdata = {} for col in id_vars: id_data = frame.pop(col) if is_extension_array_dtype(id_data): id_data = concat([id_data] * K, ignore_index=True) else: id_data = np.tile(id_data._values, K) mdata[col] = id_data mcolumns = id_vars + var_name + [value_name] mdata[value_name] = frame._values.ravel("F") for i, col in enumerate(var_name): # asanyarray will keep the columns as an Index mdata[col] = np.asanyarray(frame.columns._get_level_values(i)).repeat(N) return frame._constructor(mdata, columns=mcolumns) @deprecate_kwarg(old_arg_name="label", new_arg_name=None) def lreshape(data: DataFrame, groups, dropna: bool = True, label=None) -> DataFrame: """ Reshape long-format data to wide. Generalized inverse of DataFrame.pivot Parameters ---------- data : DataFrame groups : dict {new_name : list_of_columns} dropna : boolean, default True Examples -------- >>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526], ... 'team': ['Red Sox', 'Yankees'], ... 'year1': [2007, 2007], 'year2': [2008, 2008]}) >>> data hr1 hr2 team year1 year2 0 514 545 Red Sox 2007 2008 1 573 526 Yankees 2007 2008 >>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']}) team year hr 0 Red Sox 2007 514 1 Yankees 2007 573 2 Red Sox 2008 545 3 Yankees 2008 526 Returns ------- reshaped : DataFrame """ if isinstance(groups, dict): keys = list(groups.keys()) values = list(groups.values()) else: keys, values = zip(*groups) all_cols = list(set.union(*[set(x) for x in values])) id_cols = list(data.columns.difference(all_cols)) K = len(values[0]) for seq in values: if len(seq) != K: raise ValueError("All column lists must be same length") mdata = {} pivot_cols = [] for target, names in zip(keys, values): to_concat = [data[col]._values for col in names] mdata[target] = concat_compat(to_concat) pivot_cols.append(target) for col in id_cols: mdata[col] = np.tile(data[col]._values, K) if dropna: mask = np.ones(len(mdata[pivot_cols[0]]), dtype=bool) for c in pivot_cols: mask &= notna(mdata[c]) if not mask.all(): mdata = {k: v[mask] for k, v in mdata.items()} return data._constructor(mdata, columns=id_cols + pivot_cols) def wide_to_long( df: DataFrame, stubnames, i, j, sep: str = "", suffix: str = r"\d+" ) -> DataFrame: r""" Wide panel to long format. Less flexible but more user-friendly than melt. With stubnames ['A', 'B'], this function expects to find one or more group of columns with format A-suffix1, A-suffix2,..., B-suffix1, B-suffix2,... You specify what you want to call this suffix in the resulting long format with `j` (for example `j='year'`) Each row of these wide variables are assumed to be uniquely identified by `i` (can be a single column name or a list of column names) All remaining variables in the data frame are left intact. Parameters ---------- df : DataFrame The wide-format DataFrame. stubnames : str or list-like The stub name(s). The wide format variables are assumed to start with the stub names. i : str or list-like Column(s) to use as id variable(s). j : str The name of the sub-observation variable. What you wish to name your suffix in the long format. sep : str, default "" A character indicating the separation of the variable names in the wide format, to be stripped from the names in the long format. For example, if your column names are A-suffix1, A-suffix2, you can strip the hyphen by specifying `sep='-'`. suffix : str, default '\\d+' A regular expression capturing the wanted suffixes. '\\d+' captures numeric suffixes. Suffixes with no numbers could be specified with the negated character class '\\D+'. You can also further disambiguate suffixes, for example, if your wide variables are of the form A-one, B-two,.., and you have an unrelated column A-rating, you can ignore the last one by specifying `suffix='(!?one|two)'`. .. versionchanged:: 0.23.0 When all suffixes are numeric, they are cast to int64/float64. Returns ------- DataFrame A DataFrame that contains each stub name as a variable, with new index (i, j). Notes ----- All extra variables are left untouched. This simply uses `pandas.melt` under the hood, but is hard-coded to "do the right thing" in a typical case. Examples -------- >>> np.random.seed(123) >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ... "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ... "X" : dict(zip(range(3), np.random.randn(3))) ... }) >>> df["id"] = df.index >>> df A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year") ... # doctest: +NORMALIZE_WHITESPACE X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1 With multiple id columns >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age') >>> l ... # doctest: +NORMALIZE_WHITESPACE ht famid birth age 1 1 1 2.8 2 3.4 2 1 2.9 2 3.8 3 1 2.2 2 2.9 2 1 1 2.0 2 3.2 2 1 1.8 2 2.8 3 1 1.9 2 2.4 3 1 1 2.2 2 3.3 2 1 2.3 2 3.4 3 1 2.1 2 2.9 Going from long back to wide just takes some creative use of `unstack` >>> w = l.unstack() >>> w.columns = w.columns.map('{0[0]}{0[1]}'.format) >>> w.reset_index() famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 Less wieldy column names are also handled >>> np.random.seed(0) >>> df = pd.DataFrame({'A(weekly)-2010': np.random.rand(3), ... 'A(weekly)-2011': np.random.rand(3), ... 'B(weekly)-2010': np.random.rand(3), ... 'B(weekly)-2011': np.random.rand(3), ... 'X' : np.random.randint(3, size=3)}) >>> df['id'] = df.index >>> df # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS A(weekly)-2010 A(weekly)-2011 B(weekly)-2010 B(weekly)-2011 X id 0 0.548814 0.544883 0.437587 0.383442 0 0 1 0.715189 0.423655 0.891773 0.791725 1 1 2 0.602763 0.645894 0.963663 0.528895 1 2 >>> pd.wide_to_long(df, ['A(weekly)', 'B(weekly)'], i='id', ... j='year', sep='-') ... # doctest: +NORMALIZE_WHITESPACE X A(weekly) B(weekly) id year 0 2010 0 0.548814 0.437587 1 2010 1 0.715189 0.891773 2 2010 1 0.602763 0.963663 0 2011 0 0.544883 0.383442 1 2011 1 0.423655 0.791725 2 2011 1 0.645894 0.528895 If we have many columns, we could also use a regex to find our stubnames and pass that list on to wide_to_long >>> stubnames = sorted( ... set([match[0] for match in df.columns.str.findall( ... r'[A-B]\(.*\)').values if match != []]) ... ) >>> list(stubnames) ['A(weekly)', 'B(weekly)'] All of the above examples have integers as suffixes. It is possible to have non-integers as suffixes. >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht_one ht_two 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age', ... sep='_', suffix='\w+') >>> l ... # doctest: +NORMALIZE_WHITESPACE ht famid birth age 1 1 one 2.8 two 3.4 2 one 2.9 two 3.8 3 one 2.2 two 2.9 2 1 one 2.0 two 3.2 2 one 1.8 two 2.8 3 one 1.9 two 2.4 3 1 one 2.2 two 3.3 2 one 2.3 two 3.4 3 one 2.1 two 2.9 """ def get_var_names(df, stub: str, sep: str, suffix: str) -> List[str]: regex = fr"^{re.escape(stub)}{re.escape(sep)}{suffix}$" pattern = re.compile(regex) return [col for col in df.columns if pattern.match(col)] def melt_stub(df, stub: str, i, j, value_vars, sep: str): newdf = melt( df, id_vars=i, value_vars=value_vars, value_name=stub.rstrip(sep), var_name=j, ) newdf[j] = Categorical(newdf[j]) newdf[j] = newdf[j].str.replace(re.escape(stub + sep), "") # GH17627 Cast numerics suffixes to int/float newdf[j] = to_numeric(newdf[j], errors="ignore") return newdf.set_index(i + [j]) if not is_list_like(stubnames): stubnames = [stubnames] else: stubnames = list(stubnames) if any(col in stubnames for col in df.columns): raise ValueError("stubname can't be identical to a column name") if not is_list_like(i): i = [i] else: i = list(i) if df[i].duplicated().any(): raise ValueError("the id variables need to uniquely identify each row") value_vars = [get_var_names(df, stub, sep, suffix) for stub in stubnames] value_vars_flattened = [e for sublist in value_vars for e in sublist] id_vars = list(set(df.columns.tolist()).difference(value_vars_flattened)) _melted = [melt_stub(df, s, i, j, v, sep) for s, v in zip(stubnames, value_vars)] melted = _melted[0].join(_melted[1:], how="outer") if len(i) == 1: new = df[id_vars].set_index(i).join(melted) return new new = df[id_vars].merge(melted.reset_index(), on=i).set_index(i + [j]) return new
the-stack_0_1022
""" The main purpose of this module is to expose LinkCollector.collect_sources(). """ import cgi import collections import functools import itertools import logging import os import re import urllib.parse import urllib.request import xml.etree.ElementTree from html.parser import HTMLParser from optparse import Values from typing import ( TYPE_CHECKING, Callable, Dict, Iterable, List, MutableMapping, NamedTuple, Optional, Sequence, Tuple, Union, ) from pipenv.patched.notpip._vendor import html5lib, requests from pipenv.patched.notpip._vendor.requests import Response from pipenv.patched.notpip._vendor.requests.exceptions import RetryError, SSLError from pipenv.patched.notpip._internal.exceptions import NetworkConnectionError from pipenv.patched.notpip._internal.models.link import Link from pipenv.patched.notpip._internal.models.search_scope import SearchScope from pipenv.patched.notpip._internal.network.session import PipSession from pipenv.patched.notpip._internal.network.utils import raise_for_status from pipenv.patched.notpip._internal.utils.filetypes import is_archive_file from pipenv.patched.notpip._internal.utils.misc import pairwise, redact_auth_from_url from pipenv.patched.notpip._internal.vcs import vcs from .sources import CandidatesFromPage, LinkSource, build_source if TYPE_CHECKING: from typing import Protocol else: Protocol = object logger = logging.getLogger(__name__) HTMLElement = xml.etree.ElementTree.Element ResponseHeaders = MutableMapping[str, str] def _match_vcs_scheme(url: str) -> Optional[str]: """Look for VCS schemes in the URL. Returns the matched VCS scheme, or None if there's no match. """ for scheme in vcs.schemes: if url.lower().startswith(scheme) and url[len(scheme)] in "+:": return scheme return None class _NotHTML(Exception): def __init__(self, content_type: str, request_desc: str) -> None: super().__init__(content_type, request_desc) self.content_type = content_type self.request_desc = request_desc def _ensure_html_header(response: Response) -> None: """Check the Content-Type header to ensure the response contains HTML. Raises `_NotHTML` if the content type is not text/html. """ content_type = response.headers.get("Content-Type", "") if not content_type.lower().startswith("text/html"): raise _NotHTML(content_type, response.request.method) class _NotHTTP(Exception): pass def _ensure_html_response(url: str, session: PipSession) -> None: """Send a HEAD request to the URL, and ensure the response contains HTML. Raises `_NotHTTP` if the URL is not available for a HEAD request, or `_NotHTML` if the content type is not text/html. """ scheme, netloc, path, query, fragment = urllib.parse.urlsplit(url) if scheme not in {"http", "https"}: raise _NotHTTP() resp = session.head(url, allow_redirects=True) raise_for_status(resp) _ensure_html_header(resp) def _get_html_response(url: str, session: PipSession) -> Response: """Access an HTML page with GET, and return the response. This consists of three parts: 1. If the URL looks suspiciously like an archive, send a HEAD first to check the Content-Type is HTML, to avoid downloading a large file. Raise `_NotHTTP` if the content type cannot be determined, or `_NotHTML` if it is not HTML. 2. Actually perform the request. Raise HTTP exceptions on network failures. 3. Check the Content-Type header to make sure we got HTML, and raise `_NotHTML` otherwise. """ if is_archive_file(Link(url).filename): _ensure_html_response(url, session=session) logger.debug("Getting page %s", redact_auth_from_url(url)) resp = session.get( url, headers={ "Accept": "text/html", # We don't want to blindly returned cached data for # /simple/, because authors generally expecting that # twine upload && pip install will function, but if # they've done a pip install in the last ~10 minutes # it won't. Thus by setting this to zero we will not # blindly use any cached data, however the benefit of # using max-age=0 instead of no-cache, is that we will # still support conditional requests, so we will still # minimize traffic sent in cases where the page hasn't # changed at all, we will just always incur the round # trip for the conditional GET now instead of only # once per 10 minutes. # For more information, please see pypa/pip#5670. "Cache-Control": "max-age=0", }, ) raise_for_status(resp) # The check for archives above only works if the url ends with # something that looks like an archive. However that is not a # requirement of an url. Unless we issue a HEAD request on every # url we cannot know ahead of time for sure if something is HTML # or not. However we can check after we've downloaded it. _ensure_html_header(resp) return resp def _get_encoding_from_headers(headers: ResponseHeaders) -> Optional[str]: """Determine if we have any encoding information in our headers.""" if headers and "Content-Type" in headers: content_type, params = cgi.parse_header(headers["Content-Type"]) if "charset" in params: return params["charset"] return None def _determine_base_url(document: HTMLElement, page_url: str) -> str: """Determine the HTML document's base URL. This looks for a ``<base>`` tag in the HTML document. If present, its href attribute denotes the base URL of anchor tags in the document. If there is no such tag (or if it does not have a valid href attribute), the HTML file's URL is used as the base URL. :param document: An HTML document representation. The current implementation expects the result of ``html5lib.parse()``. :param page_url: The URL of the HTML document. TODO: Remove when `html5lib` is dropped. """ for base in document.findall(".//base"): href = base.get("href") if href is not None: return href return page_url def _clean_url_path_part(part: str) -> str: """ Clean a "part" of a URL path (i.e. after splitting on "@" characters). """ # We unquote prior to quoting to make sure nothing is double quoted. return urllib.parse.quote(urllib.parse.unquote(part)) def _clean_file_url_path(part: str) -> str: """ Clean the first part of a URL path that corresponds to a local filesystem path (i.e. the first part after splitting on "@" characters). """ # We unquote prior to quoting to make sure nothing is double quoted. # Also, on Windows the path part might contain a drive letter which # should not be quoted. On Linux where drive letters do not # exist, the colon should be quoted. We rely on urllib.request # to do the right thing here. return urllib.request.pathname2url(urllib.request.url2pathname(part)) # percent-encoded: / _reserved_chars_re = re.compile("(@|%2F)", re.IGNORECASE) def _clean_url_path(path: str, is_local_path: bool) -> str: """ Clean the path portion of a URL. """ if is_local_path: clean_func = _clean_file_url_path else: clean_func = _clean_url_path_part # Split on the reserved characters prior to cleaning so that # revision strings in VCS URLs are properly preserved. parts = _reserved_chars_re.split(path) cleaned_parts = [] for to_clean, reserved in pairwise(itertools.chain(parts, [""])): cleaned_parts.append(clean_func(to_clean)) # Normalize %xx escapes (e.g. %2f -> %2F) cleaned_parts.append(reserved.upper()) return "".join(cleaned_parts) def _clean_link(url: str) -> str: """ Make sure a link is fully quoted. For example, if ' ' occurs in the URL, it will be replaced with "%20", and without double-quoting other characters. """ # Split the URL into parts according to the general structure # `scheme://netloc/path;parameters?query#fragment`. result = urllib.parse.urlparse(url) # If the netloc is empty, then the URL refers to a local filesystem path. is_local_path = not result.netloc path = _clean_url_path(result.path, is_local_path=is_local_path) return urllib.parse.urlunparse(result._replace(path=path)) def _create_link_from_element( element_attribs: Dict[str, Optional[str]], page_url: str, base_url: str, ) -> Optional[Link]: """ Convert an anchor element's attributes in a simple repository page to a Link. """ href = element_attribs.get("href") if not href: return None url = _clean_link(urllib.parse.urljoin(base_url, href)) pyrequire = element_attribs.get("data-requires-python") yanked_reason = element_attribs.get("data-yanked") link = Link( url, comes_from=page_url, requires_python=pyrequire, yanked_reason=yanked_reason, ) return link class CacheablePageContent: def __init__(self, page: "HTMLPage") -> None: assert page.cache_link_parsing self.page = page def __eq__(self, other: object) -> bool: return isinstance(other, type(self)) and self.page.url == other.page.url def __hash__(self) -> int: return hash(self.page.url) class ParseLinks(Protocol): def __call__( self, page: "HTMLPage", use_deprecated_html5lib: bool ) -> Iterable[Link]: ... def with_cached_html_pages(fn: ParseLinks) -> ParseLinks: """ Given a function that parses an Iterable[Link] from an HTMLPage, cache the function's result (keyed by CacheablePageContent), unless the HTMLPage `page` has `page.cache_link_parsing == False`. """ @functools.lru_cache(maxsize=None) def wrapper( cacheable_page: CacheablePageContent, use_deprecated_html5lib: bool ) -> List[Link]: return list(fn(cacheable_page.page, use_deprecated_html5lib)) @functools.wraps(fn) def wrapper_wrapper(page: "HTMLPage", use_deprecated_html5lib: bool) -> List[Link]: if page.cache_link_parsing: return wrapper(CacheablePageContent(page), use_deprecated_html5lib) return list(fn(page, use_deprecated_html5lib)) return wrapper_wrapper def _parse_links_html5lib(page: "HTMLPage") -> Iterable[Link]: """ Parse an HTML document, and yield its anchor elements as Link objects. TODO: Remove when `html5lib` is dropped. """ document = html5lib.parse( page.content, transport_encoding=page.encoding, namespaceHTMLElements=False, ) url = page.url base_url = _determine_base_url(document, url) for anchor in document.findall(".//a"): link = _create_link_from_element( anchor.attrib, page_url=url, base_url=base_url, ) if link is None: continue yield link @with_cached_html_pages def parse_links(page: "HTMLPage", use_deprecated_html5lib: bool) -> Iterable[Link]: """ Parse an HTML document, and yield its anchor elements as Link objects. """ if use_deprecated_html5lib: yield from _parse_links_html5lib(page) return parser = HTMLLinkParser(page.url) encoding = page.encoding or "utf-8" parser.feed(page.content.decode(encoding)) url = page.url base_url = parser.base_url or url for anchor in parser.anchors: link = _create_link_from_element( anchor, page_url=url, base_url=base_url, ) if link is None: continue yield link class HTMLPage: """Represents one page, along with its URL""" def __init__( self, content: bytes, encoding: Optional[str], url: str, cache_link_parsing: bool = True, ) -> None: """ :param encoding: the encoding to decode the given content. :param url: the URL from which the HTML was downloaded. :param cache_link_parsing: whether links parsed from this page's url should be cached. PyPI index urls should have this set to False, for example. """ self.content = content self.encoding = encoding self.url = url self.cache_link_parsing = cache_link_parsing def __str__(self) -> str: return redact_auth_from_url(self.url) class HTMLLinkParser(HTMLParser): """ HTMLParser that keeps the first base HREF and a list of all anchor elements' attributes. """ def __init__(self, url: str) -> None: super().__init__(convert_charrefs=True) self.url: str = url self.base_url: Optional[str] = None self.anchors: List[Dict[str, Optional[str]]] = [] def handle_starttag(self, tag: str, attrs: List[Tuple[str, Optional[str]]]) -> None: if tag == "base" and self.base_url is None: href = self.get_href(attrs) if href is not None: self.base_url = href elif tag == "a": self.anchors.append(dict(attrs)) def get_href(self, attrs: List[Tuple[str, Optional[str]]]) -> Optional[str]: for name, value in attrs: if name == "href": return value return None def _handle_get_page_fail( link: Link, reason: Union[str, Exception], meth: Optional[Callable[..., None]] = None, ) -> None: if meth is None: meth = logger.debug meth("Could not fetch URL %s: %s - skipping", link, reason) def _make_html_page(response: Response, cache_link_parsing: bool = True) -> HTMLPage: encoding = _get_encoding_from_headers(response.headers) return HTMLPage( response.content, encoding=encoding, url=response.url, cache_link_parsing=cache_link_parsing, ) def _get_html_page( link: Link, session: Optional[PipSession] = None ) -> Optional["HTMLPage"]: if session is None: raise TypeError( "_get_html_page() missing 1 required keyword argument: 'session'" ) url = link.url.split("#", 1)[0] # Check for VCS schemes that do not support lookup as web pages. vcs_scheme = _match_vcs_scheme(url) if vcs_scheme: logger.warning( "Cannot look at %s URL %s because it does not support lookup as web pages.", vcs_scheme, link, ) return None # Tack index.html onto file:// URLs that point to directories scheme, _, path, _, _, _ = urllib.parse.urlparse(url) if scheme == "file" and os.path.isdir(urllib.request.url2pathname(path)): # add trailing slash if not present so urljoin doesn't trim # final segment if not url.endswith("/"): url += "/" url = urllib.parse.urljoin(url, "index.html") logger.debug(" file: URL is directory, getting %s", url) try: resp = _get_html_response(url, session=session) except _NotHTTP: logger.warning( "Skipping page %s because it looks like an archive, and cannot " "be checked by a HTTP HEAD request.", link, ) except _NotHTML as exc: logger.warning( "Skipping page %s because the %s request got Content-Type: %s." "The only supported Content-Type is text/html", link, exc.request_desc, exc.content_type, ) except NetworkConnectionError as exc: _handle_get_page_fail(link, exc) except RetryError as exc: _handle_get_page_fail(link, exc) except SSLError as exc: reason = "There was a problem confirming the ssl certificate: " reason += str(exc) _handle_get_page_fail(link, reason, meth=logger.info) except requests.ConnectionError as exc: _handle_get_page_fail(link, f"connection error: {exc}") except requests.Timeout: _handle_get_page_fail(link, "timed out") else: return _make_html_page(resp, cache_link_parsing=link.cache_link_parsing) return None class CollectedSources(NamedTuple): find_links: Sequence[Optional[LinkSource]] index_urls: Sequence[Optional[LinkSource]] class LinkCollector: """ Responsible for collecting Link objects from all configured locations, making network requests as needed. The class's main method is its collect_sources() method. """ def __init__( self, session: PipSession, search_scope: SearchScope, index_lookup: Optional[Dict[str, List[str]]] = None, ) -> None: self.search_scope = search_scope self.session = session self.index_lookup = index_lookup if index_lookup else {} @classmethod def create( cls, session: PipSession, options: Values, suppress_no_index: bool = False, index_lookup: Optional[Dict[str, List[str]]] = None, ) -> "LinkCollector": """ :param session: The Session to use to make requests. :param suppress_no_index: Whether to ignore the --no-index option when constructing the SearchScope object. """ index_urls = [options.index_url] + options.extra_index_urls if options.no_index and not suppress_no_index: logger.debug( "Ignoring indexes: %s", ",".join(redact_auth_from_url(url) for url in index_urls), ) index_urls = [] # Make sure find_links is a list before passing to create(). find_links = options.find_links or [] search_scope = SearchScope.create( find_links=find_links, index_urls=index_urls, index_lookup=index_lookup ) link_collector = LinkCollector( session=session, search_scope=search_scope, index_lookup=index_lookup ) return link_collector @property def find_links(self) -> List[str]: return self.search_scope.find_links def fetch_page(self, location: Link) -> Optional[HTMLPage]: """ Fetch an HTML page containing package links. """ return _get_html_page(location, session=self.session) def collect_sources( self, project_name: str, candidates_from_page: CandidatesFromPage, ) -> CollectedSources: # The OrderedDict calls deduplicate sources by URL. index_url_sources = collections.OrderedDict( build_source( loc, candidates_from_page=candidates_from_page, page_validator=self.session.is_secure_origin, expand_dir=False, cache_link_parsing=False, ) for loc in self.search_scope.get_index_urls_locations(project_name) ).values() find_links_sources = collections.OrderedDict( build_source( loc, candidates_from_page=candidates_from_page, page_validator=self.session.is_secure_origin, expand_dir=True, cache_link_parsing=True, ) for loc in self.find_links ).values() if logger.isEnabledFor(logging.DEBUG): lines = [ f"* {s.link}" for s in itertools.chain(find_links_sources, index_url_sources) if s is not None and s.link is not None ] lines = [ f"{len(lines)} location(s) to search " f"for versions of {project_name}:" ] + lines logger.debug("\n".join(lines)) return CollectedSources( find_links=list(find_links_sources), index_urls=list(index_url_sources), )
the-stack_0_1023
# coding: utf-8 # 2019/12/30 @ tongshiwei import pytest from CangJie.Features import Stroke, character_glyph, CDict from CangJie import token2stroke, token2radical, char_features def test_features(): cdict = CDict.from_file() char_features("一") assert len(cdict.get_stroke("一s")) == 1 assert len(cdict.get_radical(["一二", "三"])) == 2 cdict = CDict.from_file(allow_missing=False) with pytest.raises(KeyError): assert len(cdict.get_stroke("一s")) == 1 with pytest.raises(TypeError): print(cdict.get_stroke(123)) def test_stroke(): stroke = Stroke.from_file() assert len(stroke["一"]) == 1 assert len(stroke["一二"]) == 3 assert len(stroke[["一", "二"]]) == 2 with pytest.raises(TypeError): print(stroke[123]) assert stroke["s"] == "" stroke = Stroke.from_file(allow_missing=False) with pytest.raises(KeyError): assert stroke["s"] == "" assert len(token2stroke("一s")) == 1 def test_radical(): token2radical("一") @pytest.mark.skip(reason="require simsun, which are usually unavailable in most testing platform") def test_glyph(): character_glyph("一")
the-stack_0_1024
# -*- coding: utf-8 -*- # Copyright (c) 2013, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. """ This module contains manual annotations for the gl backends. Together with the header files, we can generatre the full ES 2.0 API. Every function-annotations consists of sections that apply to one or more backends. If no backends are specified in the first section, it applies to all backends. """ import ctypes ## bind / gen / delete stuff def deleteBuffer(buffer): # --- desktop angle n = 1 buffers = (ctypes.c_uint*n)(buffer) () # --- pyopengl GL.glDeleteBuffers(1, [buffer]) def deleteFramebuffer(framebuffer): # --- desktop angle n = 1 framebuffers = (ctypes.c_uint*n)(framebuffer) () # --- pyopengl FBO.glDeleteFramebuffers(1, [framebuffer]) def deleteRenderbuffer(renderbuffer): # --- desktop angle n = 1 renderbuffers = (ctypes.c_uint*n)(renderbuffer) () # --- pyopengl FBO.glDeleteRenderbuffers(1, [renderbuffer]) def deleteTexture(texture): # --- desktop angle n = 1 textures = (ctypes.c_uint*n)(texture) () # --- pyopengl GL.glDeleteTextures([texture]) def createBuffer(): # --- desktop angle n = 1 buffers = (ctypes.c_uint*n)() () return buffers[0] # --- pyopengl return GL.glGenBuffers(1) # --- mock return 1 def createFramebuffer(): # --- desktop angle n = 1 framebuffers = (ctypes.c_uint*n)() () return framebuffers[0] # --- pyopengl return FBO.glGenFramebuffers(1) # --- mock return 1 def createRenderbuffer(): # --- desktop angle n = 1 renderbuffers = (ctypes.c_uint*n)() () return renderbuffers[0] # --- pyopengl return FBO.glGenRenderbuffers(1) # --- mock return 1 def createTexture(): # --- desktop angle n = 1 textures = (ctypes.c_uint*n)() () return textures[0] # --- pyopengl return GL.glGenTextures(1) # --- mock return 1 ## Image stuff def texImage2D(target, level, internalformat, format, type, pixels): border = 0 # --- desktop angle if isinstance(pixels, (tuple, list)): height, width = pixels pixels = ctypes.c_void_p(0) pixels = None else: if not pixels.flags['C_CONTIGUOUS']: pixels = pixels.copy('C') pixels_ = pixels pixels = pixels_.ctypes.data height, width = pixels_.shape[:2] () # --- pyopengl if isinstance(pixels, (tuple, list)): height, width = pixels pixels = None else: height, width = pixels.shape[:2] GL.glTexImage2D(target, level, internalformat, width, height, border, format, type, pixels) def texSubImage2D(target, level, xoffset, yoffset, format, type, pixels): # --- desktop angle if not pixels.flags['C_CONTIGUOUS']: pixels = pixels.copy('C') pixels_ = pixels pixels = pixels_.ctypes.data height, width = pixels_.shape[:2] () # --- pyopengl height, width = pixels.shape[:2] GL.glTexSubImage2D(target, level, xoffset, yoffset, width, height, format, type, pixels) def readPixels(x, y, width, height, format, type): # --- desktop angle mock # GL_ALPHA, GL_RGB, GL_RGBA t = {6406:1, 6407:3, 6408:4}[format] # we kind of only support type GL_UNSIGNED_BYTE size = int(width*height*t) # --- desktop angle pixels = ctypes.create_string_buffer(size) () return pixels[:] # --- mock return size * b'\x00' def compressedTexImage2D(target, level, internalformat, width, height, border=0, data=None): # border = 0 # set in args # --- desktop angle if not data.flags['C_CONTIGUOUS']: data = data.copy('C') data_ = data size = data_.size data = data_.ctypes.data () # --- pyopengl size = data.size GL.glCompressedTexImage2D(target, level, internalformat, width, height, border, size, data) def compressedTexSubImage2D(target, level, xoffset, yoffset, width, height, format, data): # --- desktop angle if not data.flags['C_CONTIGUOUS']: data = data.copy('C') data_ = data size = data_.size data = data_.ctypes.data () # --- pyopengl size = data.size GL.glCompressedTexSubImage2D(target, level, xoffset, yoffset, width, height, format, size, data) ## Buffer data def bufferData(target, data, usage): """ Data can be numpy array or the size of data to allocate. """ # --- desktop angle if isinstance(data, int): size = data data = ctypes.c_voidp(0) else: if not data.flags['C_CONTIGUOUS'] or not data.flags['ALIGNED']: data = data.copy('C') data_ = data size = data_.nbytes data = data_.ctypes.data () # --- pyopengl if isinstance(data, int): size = data data = None else: size = data.nbytes GL.glBufferData(target, size, data, usage) def bufferSubData(target, offset, data): # --- desktop angle if not data.flags['C_CONTIGUOUS']: data = data.copy('C') data_ = data size = data_.nbytes data = data_.ctypes.data () # --- pyopengl size = data.nbytes GL.glBufferSubData(target, offset, size, data) def drawElements(mode, count, type, offset): # --- desktop angle if offset is None: offset = ctypes.c_void_p(0) elif isinstance(offset, ctypes.c_void_p): pass elif isinstance(offset, (int, ctypes.c_int)): offset = ctypes.c_void_p(int(offset)) else: if not offset.flags['C_CONTIGUOUS']: offset = offset.copy('C') offset_ = offset offset = offset.ctypes.data indices = offset () # --- pyopengl if offset is None: offset = ctypes.c_void_p(0) elif isinstance(offset, (int, ctypes.c_int)): offset = ctypes.c_void_p(int(offset)) () def vertexAttribPointer(indx, size, type, normalized, stride, offset): # --- desktop angle if offset is None: offset = ctypes.c_void_p(0) elif isinstance(offset, ctypes.c_void_p): pass elif isinstance(offset, (int, ctypes.c_int)): offset = ctypes.c_void_p(int(offset)) else: if not offset.flags['C_CONTIGUOUS']: offset = offset.copy('C') offset_ = offset offset = offset.ctypes.data # We need to ensure that the data exists at draw time :( # PyOpenGL does this too key = '_vert_attr_'+str(indx) setattr(glVertexAttribPointer, key, offset_) ptr = offset () # --- pyopengl if offset is None: offset = ctypes.c_void_p(0) elif isinstance(offset, (int, ctypes.c_int)): offset = ctypes.c_void_p(int(offset)) () def bindAttribLocation(program, index, name): # --- desktop angle name = ctypes.c_char_p(name.encode('utf-8')) () # --- pyopengl name = name.encode('utf-8') () ## Setters def shaderSource(shader, source): # Some implementation do not like getting a list of single chars if isinstance(source, (tuple, list)): strings = [s for s in source] else: strings = [source] # --- desktop angle count = len(strings) string = (ctypes.c_char_p*count)(*[s.encode('utf-8') for s in strings]) length = (ctypes.c_int*count)(*[len(s) for s in strings]) () # --- pyopengl GL.glShaderSource(shader, strings) ## Getters def _getBooleanv(pname): # --- desktop angle params = (ctypes.c_bool*1)() () return params[0] def _getIntegerv(pname): # --- desktop angle n = 16 d = -2**31 # smallest 32bit integer params = (ctypes.c_int*n)(*[d for i in range(n)]) () params = [p for p in params if p!=d] if len(params) == 1: return params[0] else: return tuple(params) def _getFloatv(pname): # --- desktop angle n = 16 d = float('Inf') params = (ctypes.c_float*n)(*[d for i in range(n)]) () params = [p for p in params if p!=d] if len(params) == 1: return params[0] else: return tuple(params) # def _getString(pname): # # --- desktop angle # () # return res.value # # --- mock # return '' def getParameter(pname): if pname in [33902, 33901, 32773, 3106, 2931, 2928, 2849, 32824, 10752, 32938]: # GL_ALIASED_LINE_WIDTH_RANGE GL_ALIASED_POINT_SIZE_RANGE # GL_BLEND_COLOR GL_COLOR_CLEAR_VALUE GL_DEPTH_CLEAR_VALUE # GL_DEPTH_RANGE GL_LINE_WIDTH GL_POLYGON_OFFSET_FACTOR # GL_POLYGON_OFFSET_UNITS GL_SAMPLE_COVERAGE_VALUE return _glGetFloatv(pname) elif pname in [7936, 7937, 7938, 35724, 7939]: # GL_VENDOR, GL_RENDERER, GL_VERSION, GL_SHADING_LANGUAGE_VERSION, # GL_EXTENSIONS are strings pass # string handled below else: return _glGetIntegerv(pname) name = pname # --- desktop angle () return res.decode('utf-8') if res else '' # --- pyopengl res = GL.glGetString(pname) return res.decode('utf-8') def getUniform(program, location): # --- desktop angle n = 16 d = float('Inf') params = (ctypes.c_float*n)(*[d for i in range(n)]) () params = [p for p in params if p!=d] if len(params) == 1: return params[0] else: return tuple(params) # --- pyopengl n = 16 d = float('Inf') params = (ctypes.c_float*n)(*[d for i in range(n)]) GL.glGetUniformfv(program, location, params) params = [p for p in params if p!=d] if len(params) == 1: return params[0] else: return tuple(params) def getVertexAttrib(index, pname): # --- desktop angle n = 4 d = float('Inf') params = (ctypes.c_float*n)(*[d for i in range(n)]) () params = [p for p in params if p!=d] if len(params) == 1: return params[0] else: return tuple(params) # --- pyopengl # From PyOpenGL v3.1.0 the glGetVertexAttribfv(index, pname) does # work, but it always returns 4 values, with zeros in the empty # spaces. We have no way to tell whether they are empty or genuine # zeros. Fortunately, pyopengl also supports the old syntax. n = 4 d = float('Inf') params = (ctypes.c_float*n)(*[d for i in range(n)]) GL.glGetVertexAttribfv(index, pname, params) params = [p for p in params if p!=d] if len(params) == 1: return params[0] else: return tuple(params) def getTexParameter(target, pname): # --- desktop angle d = float('Inf') params = (ctypes.c_float*1)(d) () return params[0] def getActiveAttrib(program, index): # --- desktop angle pyopengl bufsize = 256 length = (ctypes.c_int*1)() size = (ctypes.c_int*1)() type = (ctypes.c_uint*1)() name = ctypes.create_string_buffer(bufsize) # --- desktop angle () name = name[:length[0]].decode('utf-8') return name, size[0], type[0] # --- pyopengl # pyopengl has a bug, this is a patch GL.glGetActiveAttrib(program, index, bufsize, length, size, type, name) name = name[:length[0]].decode('utf-8') return name, size[0], type[0] # --- mock return 'mock_val', 1, 5126 def getVertexAttribOffset(index, pname): # --- desktop angle pointer = (ctypes.c_void_p*1)() () return pointer[0] or 0 # --- pyopengl try: # maybe the fixed it () except TypeError: pointer = (ctypes.c_void_p*1)() GL.glGetVertexAttribPointerv(index, pname, pointer) return pointer[0] or 0 # --- mock return 0 def getActiveUniform(program, index): # --- desktop angle bufsize = 256 length = (ctypes.c_int*1)() size = (ctypes.c_int*1)() type = (ctypes.c_uint*1)() name = ctypes.create_string_buffer(bufsize) () name = name[:length[0]].decode('utf-8') return name, size[0], type[0] # --- pyopengl name, size, type = GL.glGetActiveUniform(program, index) return name.decode('utf-8'), size, type def getAttachedShaders(program): # --- desktop angle maxcount = 256 count = (ctypes.c_int*1)() shaders = (ctypes.c_uint*maxcount)() () return tuple(shaders[:count[0]]) def getAttribLocation(program, name): # --- desktop angle name = ctypes.c_char_p(name.encode('utf-8')) () return res # --- pyopengl name = name.encode('utf-8') () def getUniformLocation(program, name): # --- desktop angle name = ctypes.c_char_p(name.encode('utf-8')) () return res # --- pyopengl name = name.encode('utf-8') () def getProgramInfoLog(program): # --- desktop angle bufsize = 1024 length = (ctypes.c_int*1)() infolog = ctypes.create_string_buffer(bufsize) () return infolog[:length[0]].decode('utf-8') # --- pyopengl res = GL.glGetProgramInfoLog(program) return res.decode('utf-8') def getShaderInfoLog(shader): # --- desktop angle bufsize = 1024 length = (ctypes.c_int*1)() infolog = ctypes.create_string_buffer(bufsize) () return infolog[:length[0]].decode('utf-8') # --- pyopengl res = GL.glGetShaderInfoLog(shader) return res.decode('utf-8') def getProgramParameter(program, pname): # --- desktop angle params = (ctypes.c_int*1)() () return params[0] def getShaderParameter(shader, pname): # --- desktop angle params = (ctypes.c_int*1)() () return params[0] def getShaderPrecisionFormat(shadertype, precisiontype): # --- desktop angle range = (ctypes.c_int*1)() precision = (ctypes.c_int*1)() () return range[0], precision[0] def getShaderSource(shader): # --- desktop angle bufsize = 1024*1024 length = (ctypes.c_int*1)() source = (ctypes.c_char*bufsize)() () return source.value[:length[0]].decode('utf-8') # --- pyopengl res = GL.glGetShaderSource(shader) return res.decode('utf-8') def getBufferParameter(target, pname): # --- desktop angle d = -2**31 # smallest 32bit integer params = (ctypes.c_int*1)(d) () return params[0] def getFramebufferAttachmentParameter(target, attachment, pname): # --- desktop angle d = -2**31 # smallest 32bit integer params = (ctypes.c_int*1)(d) () return params[0] # --- pyopengl d = -2**31 # smallest 32bit integer params = (ctypes.c_int*1)(d) FBO.glGetFramebufferAttachmentParameteriv(target, attachment, pname, params) return params[0] def getRenderbufferParameter(target, pname): # --- desktop angle d = -2**31 # smallest 32bit integer params = (ctypes.c_int*1)(d) () return params[0] # --- pyopengl d = -2**31 # smallest 32bit integer params = (ctypes.c_int*1)(d) FBO.glGetRenderbufferParameteriv(target, pname, params) return params[0] ## ============================================================================ class FunctionAnnotation: def __init__(self, name, args, output): self.name = name self.args = args self.output = output self.lines = [] # (line, comment) tuples def __repr__(self): return '<FunctionAnnotation for %s>' % self.name def get_lines(self, call, backend): """ Get the lines for this function based on the given backend. The given API call is inserted at the correct location. """ backend_selector = backend # first lines are for all backends lines = [] for line in self.lines: if line.lstrip().startswith('# ---'): backend_selector = line continue if backend in backend_selector: if line.strip() == '()': indent = line.split('(')[0][4:] line = indent + call lines.append(line) return lines def is_arg_set(self, name): """ Get whether a given variable name is set. This allows checking whether a variable that is an input to the C function is not an input for the Python function, and may be an output. """ needle = '%s =' % name for line, comment in self.lines: if line.startswith(needle): return True else: return False def parse_anotations(): """ Parse this annotations file and produce a dictionary of FunctionAnnotation objects. """ functions = {} function = None for line in open(__file__, 'rt').readlines(): # Stop? if '='*40 in line: break if line.startswith('def '): name = line.split(' ')[1].split('(')[0] args = line.split('(')[1].split(')')[0].split(', ') args = [arg for arg in args if arg] out = line.partition('->')[2].strip() function = FunctionAnnotation(name, args, out) functions[name] = function continue elif not function: continue # Add line line = line.rstrip() indent = len(line) - len(line.strip()) if line.strip() and indent >=4: function.lines.append(line) return functions if __name__ == '__main__': print(parse_anotations().keys())
the-stack_0_1025
import json import logging import ssl import requests import socket import websocket import websocket._exceptions logger = logging.getLogger(__name__) class MattermostAPI(object): def __init__(self, url, ssl_verify, token): self.url = url self.token = token self.initial = None self.default_team_id = None # the first team in API returned value self.teams_channels_ids = None # struct:{team_id:[channel_id,...],...} self.ssl_verify = ssl_verify if not ssl_verify: requests.packages.urllib3.disable_warnings( requests.packages.urllib3.exceptions.InsecureRequestWarning) def _get_headers(self): return {"Authorization": "Bearer " + self.token} def channel(self, channel_id): channel = {'channel': self.get('/channels/{}'.format(channel_id))} return channel def create_reaction(self, user_id, post_id, emoji_name): return self.post( '/reactions', { 'user_id': user_id, 'post_id': post_id, 'emoji_name': emoji_name, }) def create_post(self, user_id, channel_id, message, files=None, pid="", props={}): # create_at = int(time.time() * 1000) return self.post( '/posts', { 'channel_id': channel_id, 'message': message, 'file_ids': files or [], 'root_id': pid, 'props': props }) @staticmethod def create_user_dict(self, v4_dict): new_dict = {} new_dict[v4_dict['id']] = v4_dict return new_dict def get(self, request): return json.loads( requests.get( self.url + request, headers=self._get_headers(), verify=self.ssl_verify ).text) def get_channel_by_name(self, channel_name, team_id=None): return self.get('/teams/{}/channels/name/{}'.format( team_id, channel_name)) def get_channels(self, team_id=None): if team_id is None: team_id = self.default_team_id return self.get('/users/me/teams/{}/channels'.format(team_id)) def get_file_link(self, file_id): return self.get('/files/{}/link'.format(file_id)) def get_team_by_name(self, team_name): return self.get('/teams/name/{}'.format(team_name)) def get_team_id(self, channel_id): for team_id, channels in self.teams_channels_ids.items(): if channel_id in channels: return team_id return None def get_user_info(self, user_id): return self.get('/users/{}'.format(user_id)) def hooks_create(self, **kwargs): return self.post( '/hooks/incoming', kwargs) def hooks_get(self, webhook_id): return self.get( '/hooks/incoming/{}'.format(webhook_id)) def hooks_list(self): return self.get('/hooks/incoming') @staticmethod def in_webhook(url, channel, text, username=None, as_user=None, parse=None, link_names=None, attachments=None, unfurl_links=None, unfurl_media=None, icon_url=None, icon_emoji=None, ssl_verify=True, **kwargs): return requests.post( url, data={ 'payload': json.dumps({ 'channel': channel, 'text': text, 'username': username, 'as_user': as_user, 'parse': parse, 'link_names': link_names, 'attachments': attachments, 'unfurl_links': unfurl_links, 'unfurl_media': unfurl_media, 'icon_url': icon_url, 'icon_emoji': icon_emoji}) }, verify=ssl_verify) def login(self, team, account, password): props = {'login_id': account, 'password': password} response = self._login(props) if response.status_code in [301, 302, 307]: # reset self.url to the new URL self.url = response.headers['Location'].replace( '/users/login', '') # re-try login if redirected response = self._login(props) if response.status_code == 200: self.token = response.headers["Token"] self.load_initial_data() user = json.loads(response.text) return user else: response.raise_for_status() def _login(self, props): return requests.post( self.url + '/users/login', data=json.dumps(props), verify=self.ssl_verify, allow_redirects=False) def load_initial_data(self): self.teams = self.get('/users/me/teams') if len(self.teams) == 0: raise AssertionError( 'User account of this bot does not join any team yet.') self.default_team_id = self.teams[0]['id'] self.teams_channels_ids = {} for team in self.teams: self.teams_channels_ids[team['id']] = [] # get all channels belonging to each team for channel in self.get_channels(team['id']): self.teams_channels_ids[team['id']].append(channel['id']) def me(self): return self.get('/users/me') def post(self, request, data): return json.loads(requests.post( self.url + request, headers=self._get_headers(), data=json.dumps(data), verify=self.ssl_verify ).text) def update_post(self, message_id, user_id, channel_id, message, files=None, pid=""): return self.post( '/posts/%s' % message_id, { 'message': message, }) def user(self, user_id): return self.get_user_info(user_id) def upload_file(self, file, channel_id): files = { 'files': file, 'channel_id': (None, channel_id) } return json.loads(requests.post( self.url + '/files', headers=self._get_headers(), files=files, verify=self.ssl_verify ).text) class MattermostClient(object): def __init__(self, url, team, email, password, ssl_verify=True, token=None, ws_origin=None): self.users = {} self.channels = {} self.mentions = {} self.api = MattermostAPI(url, ssl_verify, token) self.user = None self.websocket = None self.email = None self.team = team self.email = email self.password = password self.ws_origin = ws_origin if token: self.user = self.api.me() else: self.login(team, email, password) def login(self, team, email, password): self.email = email self.user = self.api.login(team, email, password) return self.user def react_msg(self, post_id, emoji_name): return self.api.create_reaction(self.user["id"], post_id, emoji_name) def channel_msg(self, channel, message, files=None, pid="", props={}): c_id = self.channels.get(channel, {}).get("id") or channel return self.api.create_post(self.user["id"], c_id, "{}".format(message), files, pid, props=props) def update_msg(self, message_id, channel, message, pid=""): c_id = self.channels.get(channel, {}).get("id") or channel return self.api.update_post(message_id, self.user["id"], c_id, message, pid=pid) def connect_websocket(self): host = self.api.url.replace('http', 'ws').replace('https', 'wss') url = host + '/websocket' self._connect_websocket(url, cookie_name='MMAUTHTOKEN') return self.websocket.getstatus() == 101 def _connect_websocket(self, url, cookie_name): self.websocket = websocket.create_connection( url, header=["Cookie: %s=%s" % (cookie_name, self.api.token)], origin=self.ws_origin, sslopt={ "cert_reqs": ssl.CERT_REQUIRED if self.api.ssl_verify else ssl.CERT_NONE}) def messages(self, ignore_own_msg=False, filter_actions=None): filter_actions = filter_actions or [] if not self.connect_websocket(): return while True: try: data = self.websocket.recv() except websocket._exceptions.WebSocketException: if not self.connect_websocket(): raise continue if data: try: post = json.loads(data) event_action = post.get('event') if event_action not in filter_actions: continue if event_action == 'posted': if post.get('data', {}).get('post'): dp = json.loads(post['data']['post']) if ignore_own_msg is True and dp.get("user_id"): if self.user["id"] == dp["user_id"]: continue yield post elif event_action in ['added_to_team', 'leave_team', 'user_added', 'user_removed']: self.api.load_initial_data() # reload teams & channels except ValueError: pass def ping(self): try: self.websocket.ping() except socket.error: logger.error('\n'.join([ 'socket.error while pinging the mattermost server', 'possible causes: expired cookie or broken socket pipe' ])) if not self.connect_websocket(): # try to re-connect logger.info('reconnecting websocket ... failed') else: logger.info('reconnecting websocket ... succeeded')
the-stack_0_1026
''' This module is for DiffChecker class. ''' import sys import os import logging from importlib import reload import pickle import pandas as pd import numpy as np sys.path.append('../') from mlqa import checkers as ch class DiffChecker(): '''Integrated QA performer on pd.DataFrame with logging functionality. It only works in numerical columns. Args: qa_level (str): quick set for QA level, can be one of ['loose', 'mid', 'strict'] logger (str or logging.Logger): 'print' for print only, every other str creates a file for logging. using external logging.Logger object is highly recommended, i.e. logger=<mylogger>. qa_log_level (int): qa message logging level log_info (bool): `True` if method calls or arguments also need to be logged Notes: Although `DiffChecker <identifiers.html#identifiers.DiffChecker>`_ is able to create a `Logger <https://docs.python.org/3/library/logging.html#logging.Logger>`_ object by just passing a file name (i.e. `logger='mylog.log'`), creating the `Logger <https://docs.python.org/3/library/logging.html#logging.Logger>`_ object externally then passing accordingly (i.e. `logger=<mylogger>`) is highly recommended. Example: Basic usage: >>> dc = DiffChecker() >>> dc.fit(pd.DataFrame({'mean_col':[1, 2]*50, 'na_col':[None]*50+[1]*50})) >>> dc.check(pd.DataFrame({'mean_col':[.99, 2.1]*50, 'na_col':[None]*70+[1]*30})) True >>> dc.set_threshold(0.1) >>> dc.check(pd.DataFrame({'mean_col':[.99, 2.1]*50, 'na_col':[None]*70+[1]*30})) False Quick set for `qa_level`: >>> dc = DiffChecker() >>> dc.threshold 0.5 >>> dc = DiffChecker(qa_level='mid') >>> dc.threshold 0.2 >>> dc = DiffChecker(qa_level='strict') >>> dc.threshold 0.1 Logger can also be initiated: >>> dc = DiffChecker(logger='mylog.log') >>> dc.fit(pd.DataFrame({'mean_col':[1, 2]*50, 'na_col':[None]*50+[1]*50})) >>> dc.set_threshold(0.1) >>> dc.check(pd.DataFrame({'mean_col':[1, 1.5]*50, 'na_col':[None]*70+[1]*30})) False ''' stats = [] threshold = 0.0 threshold_df = pd.DataFrame() df_fit_stats = pd.DataFrame() def __init__( self, qa_level='loose', logger=None, qa_log_level=None, log_info=False ): # Class logger reloads logging module in each call not to create # conflict, this is okay as long as this is the only logger in the # environment. Having external logger is highly recommended in all # other cases. if logger == 'print': logging.shutdown() reload(logging) logging.basicConfig( format='%(asctime)-15s %(message)s', level='DEBUG') self.logger = logging.getLogger('DiffCheckerLogIdToPrint') elif isinstance(logger, str): logging.shutdown() reload(logging) handler = logging.FileHandler(logger, mode='w+') handler.setFormatter(logging.Formatter( fmt='%(levelname)s|%(asctime)s|%(message)s')) self.logger = logging.getLogger('DiffCheckerLogIdToDump') self.logger.setLevel(logging.DEBUG) self.logger.addHandler(handler) else: # if external logger provided self.logger = logger self.log_level = qa_log_level or 30 self.log_info = log_info qa_levels = { 'loose':{ 'stats':['mean', ch.na_rate], 'threshold':.5 }, 'mid':{ 'stats':['mean', 'std', ch.na_rate], 'threshold':.2 }, 'strict':{ 'stats':['mean', 'std', 'count', 'min', 'max', ch.na_rate], 'threshold':.1 } } if qa_level not in qa_levels.keys(): raise ValueError('`qa_level` not right, choose one of {}'\ .format(qa_levels.keys())) self.set_stats(qa_levels[qa_level]['stats']) self.set_threshold(qa_levels[qa_level]['threshold']) def set_stats(self, funcs): '''Sets statistic functions list to check by. Args: funcs (list): list of functions and/or function names, e.g. [np.sum, 'mean'] See Also: `add_stat <#identifiers.DiffChecker.add_stat>`_: just to add one ''' if not self.df_fit_stats.empty: raise ValueError('self.stats cannot be altered after `fit()` call') if not isinstance(funcs, list): raise TypeError('`funcs` must be a list') self._method_init_logger(locals()) self.stats = funcs def add_stat(self, func): '''Appends a statistic function into the existing list (i.e. `stats <#identifiers.DiffChecker.stats>`_). Args: func (func): function name (e.g. np.sum or 'mean') See Also: `set_stats <#identifiers.DiffChecker.set_stats>`_: to reset all ''' if not self.df_fit_stats.empty: raise ValueError('self.stats cannot be altered after `fit()` call') if not (isinstance(func, str) or callable(func)): raise TypeError('`func` must be str or callable') if func in self.stats: raise ValueError('`func` is already in `self.stats`') self._method_init_logger(locals()) self.stats.append(func) def set_threshold(self, threshold): '''Sets threshold for statistic-column pairs. Args: threshold (float or dict): can be used to set for all or column statistic pairs. Example: >>> dc = DiffChecker() >>> dc.set_stats(['mean', 'max']) >>> dc.set_threshold(0.1) # to reset all thresholds >>> print(dc.threshold) 0.1 >>> dc.fit(pd.DataFrame({'col1':[1, 2, 3, 4], 'col2':[0]*4})) >>> dc.set_threshold({'col1':0.2, 'col2':0.1}) # to set in column level >>> print(dc.threshold_df) col1 col2 mean 0.2 0.1 max 0.2 0.1 >>> dc.set_threshold({'col1':{'mean':0.3}}) # to set in column-stat level >>> print(dc.threshold_df) col1 col2 mean 0.3 0.1 max 0.2 0.1 ''' self._method_init_logger(locals()) if isinstance(threshold, dict): if self.df_fit_stats.empty: raise ValueError('call `fit()` first for column level threshold') for col, v1 in threshold.items(): if col not in self.df_fit_stats.columns: raise ValueError('{} not found in fitted DataFrame'\ .format(col)) if isinstance(v1, dict): for stat, v2 in v1.items(): if stat not in self.df_fit_stats.index: raise ValueError( "'{0}' not set as stat, available stats are {1}"\ .format(stat, self.df_fit_stats.index.tolist())) th = float(v2) assert th >= 0 self.threshold_df.loc[stat, col] = th else: th = float(v1) assert th >= 0 self.threshold_df.loc[:, col] = th else: th = float(threshold) assert th >= 0 self.threshold = th def fit(self, df): '''Fits given `df`. Based on given `df` and `stats <#identifiers.DiffChecker.stats>`_ attribute, this method constructs `df_fit_stats <#identifiers.DiffChecker.df_fit_stats>`_ attribute to store column statistics. This is later to be used by `check <#identifiers.DiffChecker.check>`_ method. Only works in numerical columns. Args: df (pd.DataFrame): data to be fit Example: >>> dc = DiffChecker() >>> dc.set_stats(['mean', 'max']) >>> dc.fit(pd.DataFrame({'col1':[1, 2, 3, 4], 'col2':[0]*4})) >>> print(dc.df_fit_stats) col1 col2 mean 2.5 0.0 max 4.0 0.0 ''' assert isinstance(self.stats, list) and len(self.stats) >= 1 if not isinstance(df, pd.DataFrame): raise TypeError('`df` must be a pd.DataFrame') self._method_init_logger(locals()) self.df_fit_stats = pd.DataFrame() for col in df.columns: if pd.api.types.is_numeric_dtype(df[col]): for stat in self.stats: if isinstance(stat, str): stat_name = stat else: stat_name = stat.__name__ self.df_fit_stats.loc[stat_name, col] = df[col].agg(stat) self.threshold_df = self.df_fit_stats.copy() self.threshold_df.loc[:, :] = np.NaN def check(self, df_to_check, columns=None, columns_to_exclude=None): '''Checks given `df_to_check` based on fitted `df` stats. For each column stat pairs, it checks if stat is in given threshold by utilizing `qa_array_statistics <checkers.html#checkers.qa_array_statistics>`_. If any stat qa fails, returns `False`, `True otherwise`. Args: df_to_check (pd.DataFrame): data to check columns (None or list): if given, only these columns will be considered for qa columns_to_exclude (None or list): columns to exclude from qa Returns: bool: is QA passed or not Example: >>> dc = DiffChecker() >>> dc.set_threshold(0.2) >>> dc.set_stats(['mean', 'max', np.sum]) >>> dc.fit(pd.DataFrame({'col1':[1, 2, 3, 4], 'col2':[1]*4})) >>> dc.check(pd.DataFrame({'col1':[1, 2, 3, 4], 'col2':[0]*4})) False >>> dc.check(pd.DataFrame({'col1':[1, 2.1, 3.2, 4.2], 'col2':[1.1]*4})) True ''' assert isinstance(self.stats, list) and len(self.stats) >= 1 if not isinstance(df_to_check, pd.DataFrame): raise TypeError('`df_to_check` must be a pd.DataFrame') if columns is not None and columns_to_exclude is not None: raise ValueError('only one must be given, ' '`columns` or `columns_to_exclude`') if columns is not None: if not isinstance(columns, list): raise TypeError('`columns` must be a list') if columns_to_exclude is not None: if not isinstance(columns_to_exclude, list): raise TypeError('`columns_to_exclude` must be a list') self._method_init_logger(locals()) cols_to_check = self.df_fit_stats.columns.tolist() if columns: cols_to_check = list(set(cols_to_check) & set(columns)) if columns_to_exclude: cols_to_check = [c for c in cols_to_check if c not \ in columns_to_exclude] qa_results = [] for col in cols_to_check: for stat in self.stats: if isinstance(stat, str): stat_name = stat else: stat_name = stat.__name__ th = self.threshold_df.loc[stat_name, col] th = self.threshold if pd.isna(th) else th val = self.df_fit_stats.loc[stat_name, col] tol = abs(val)*th ll, ul = val-tol, val+tol result = ch.qa_array_statistics( df_to_check[col], {stat:[ll, ul]}, logger=self.logger, log_level=self.log_level, name=col) qa_results.append(result) return all(qa_results) def to_pickle(self, path='DiffChecker.pkl'): '''Pickle (serialize) object to a file. Args: path (str): file path where the pickled object will be stored Example: To save a `*.pkl` file: >>> dc1 = DiffChecker() >>> dc1.fit(pd.DataFrame({'col1':[1, 2, 3, 4], 'col2':[0]*4})) >>> dc1.to_pickle(path='DiffChecker.pkl') To load the same object later: >>> import pickle >>> pkl_file = open('DiffChecker.pkl', 'rb') >>> dc2 = pickle.load(pkl_file) >>> pkl_file.close() >>> os.remove('DiffChecker.pkl') ''' self._method_init_logger(locals()) self.logger = None output = open(path, 'wb') pickle.dump(self, output, -1) output.close() def _method_init_logger(self, args, exclude=['self']): '''Logs method initiation with given arguments. Args: args (dict): local arguments, i.e. `locals()` exclude (list): arguments to exclude, e.g. `self` ''' if self.logger and self.log_info: method_name = sys._getframe(1).f_code.co_name self.logger.info("{} initiated.".format(method_name)) for k, v in args.items(): if k not in exclude: self.logger.info(method_name+' locals: '+k+'='+str(v)[:100]) if __name__ == "__main__": import doctest doctest.testmod()
the-stack_0_1027
from pymoo.algorithms.nsga2 import NSGA2 from pymoo.optimize import minimize from pymoo.problems.multi.srn import SRN from pymoo.visualization.scatter import Scatter problem = SRN() algorithm = NSGA2(pop_size=100) res = minimize(problem, algorithm, # ('n_gen', 1000), seed=1, verbose=True) plot = Scatter() plot.add(problem.pareto_set(), plot_type="line", color="black", alpha=0.7) plot.add(res.X, color="red") plot.show() plot = Scatter() plot.add(problem.pareto_front(), plot_type="line", color="black", alpha=0.7) plot.add(res.F, color="red") plot.show()
the-stack_0_1029
import binascii import hashlib import hmac import json import time from datetime import datetime, timedelta from itertools import chain import pytz from django.contrib.auth.models import User from django.db.models import Prefetch from django.forms import ChoiceField, Form, IntegerField, ModelForm, Select from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from django.utils.translation import ungettext_lazy from c3nav.control.models import UserPermissions, UserSpaceAccess from c3nav.mapdata.forms import I18nModelFormMixin from c3nav.mapdata.models import MapUpdate, Space from c3nav.mapdata.models.access import (AccessPermission, AccessPermissionToken, AccessPermissionTokenItem, AccessRestriction, AccessRestrictionGroup) from c3nav.site.models import Announcement class UserPermissionsForm(ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['review_group_reports'].label_from_instance = lambda obj: obj.title class Meta: model = UserPermissions exclude = ('user', 'max_changeset_changes', 'api_secret') class AccessPermissionForm(Form): def __init__(self, request=None, author=None, expire_date=None, *args, **kwargs): super().__init__(*args, **kwargs) # remember author if this form is saved self.author = author or request.user author_permissions = request.user_permissions if request else author.permissions self.expire_date = expire_date # determine which access permissions the author can grant self.author_access_permissions = AccessPermission.get_for_request_with_expire_date(request, can_grant=True) access_restrictions = AccessRestriction.objects.filter( pk__in=self.author_access_permissions.keys() ) self.access_restrictions = { access_restriction.pk: access_restriction for access_restriction in access_restrictions } access_restrictions_ids = set(self.access_restrictions.keys()) self.access_restriction_choices = { 'all': self.access_restrictions.values(), **{str(pk): (access_restriction, ) for pk, access_restriction in self.access_restrictions.items()} } # get access permission groups groups = AccessRestrictionGroup.qs_for_request(request).prefetch_related( Prefetch('accessrestrictions', AccessRestriction.objects.only('pk')) ) group_contents = { group.pk: set(r.pk for r in group.accessrestrictions.all()) for group in groups } group_contents = { pk: restrictions for pk, restrictions in group_contents.items() if not (restrictions - access_restrictions_ids) } self.access_restriction_choices.update({ ('g%d' % pk): tuple( self.access_restrictions[restriction] for restriction in restrictions ) for pk, restrictions in group_contents.items() }) # construct choice field for access permissions choices = [('', _('choose permissions…')), ('all', ungettext_lazy('everything possible (%d permission)', 'everything possible (%d permissions)', len(access_restrictions)) % len(access_restrictions))] choices.append((_('Access Permission Groups'), tuple( ('g%d' % group.pk, group.title) for group in groups ))) choices.append((_('Access Permissions'), tuple( (str(pk), access_restriction.title) for pk, access_restriction in self.access_restrictions.items() ))) self.fields['access_restrictions'] = ChoiceField(choices=choices, required=True) # construct choices for the expire field expire_choices = [ ('', _('never')), ] for minutes in range(15, 60, 15): expire_choices.append( (str(minutes), ungettext_lazy('in %d minute', 'in %d minutes', minutes) % minutes)) for hours in chain(range(1, 6), range(6, 24, 6)): expire_choices.append( (str(hours*60), ungettext_lazy('in %d hour', 'in %d hours', hours) % hours) ) expire_choices.insert( 5, (str(90), _('in 1½ hour')) ) for days in range(1, 14): expire_choices.append( (str(days*24*60), ungettext_lazy('in %d day', 'in %d days', days) % days) ) self.fields['expires'] = ChoiceField(required=False, initial='60', choices=expire_choices) # if applicable, add field to grant pass on permissions if author_permissions.grant_all_access: choices = [('0', '---')]*6 + [('1', _('can pass on'))] + [('0', '---')]*3 self.fields['can_grant'] = ChoiceField(required=False, initial='60', choices=choices) def clean_access_restrictions(self): data = self.cleaned_data['access_restrictions'] return self.access_restriction_choices[data] def clean_expires(self): data = self.cleaned_data['expires'] if data == '': return None return timezone.now()+timedelta(minutes=int(data)) def save(self, user): self._save_code(self._create_code(), user) def get_token(self, unique_key=None): # create an AccessPermissionToken from this form and return it restrictions = [] default_expire_date = self.expire_date or self.cleaned_data['expires'] for restriction in self.cleaned_data['access_restrictions']: expire_date = default_expire_date author_expire_date = self.author_access_permissions.get(restriction.pk) # make sure that each permission is not granted for a longer time than the author has it if author_expire_date is not None: expire_date = author_expire_date if expire_date is None else min(expire_date, author_expire_date) restrictions.append(AccessPermissionTokenItem(pk=restriction.pk, expire_date=expire_date, title=restriction.title)) return AccessPermissionToken(author=self.author, can_grant=self.cleaned_data.get('can_grant', '0') == '1', restrictions=tuple(restrictions), unique_key=unique_key) def get_signed_data(self, key=None): if not self.author.permissions.api_secret: raise ValueError('Author has no api secret.') data = { 'id': self.data['access_restrictions'], 'time': int(time.time()), 'valid_until': int(self.cleaned_data['expires'].strftime('%s')), 'author': self.author.pk, } if key is not None: data['key'] = key data = json.dumps(data, separators=(',', ':')) signature = hmac.new(self.author.permissions.api_secret.encode(), msg=data.encode(), digestmod=hashlib.sha256).digest() return '%s:%s' % (data, binascii.b2a_base64(signature).strip().decode()) @classmethod def load_signed_data(cls, signed_data: str): if ':' not in signed_data: raise SignedPermissionDataError('Invalid data.') raw_data, signature = signed_data.rsplit(':', 1) try: data = json.loads(raw_data) except json.JSONDecodeError: raise SignedPermissionDataError('Invalid JSON.') try: restrictions = data.pop('id') author_id = data.pop('author') issue_time = data.pop('time') valid_until = data.pop('valid_until') unique_key = data.pop('key', None) except KeyError as e: raise SignedPermissionDataError('Missing %s.' % str(e)) for unknown_key in data: raise SignedPermissionDataError('Unknown value: %s' % unknown_key) try: issue_time = int(issue_time) except ValueError: raise SignedPermissionDataError('Invalid time.') try: valid_until = int(valid_until) if valid_until is not None else None except ValueError: raise SignedPermissionDataError('Invalid valid_until.') else: valid_until = valid_until and datetime.utcfromtimestamp(valid_until).replace(tzinfo=pytz.utc) try: author_id = int(author_id) except ValueError: raise SignedPermissionDataError('Invalid author.') if unique_key is not None and not isinstance(unique_key, str): raise SignedPermissionDataError('key has to be null or a string.') if issue_time > time.time()+5: raise SignedPermissionDataError('time cannot be in the future.') if issue_time < time.time()-60: raise SignedPermissionDataError('token has expired.') if unique_key is not None and not (1 <= len(unique_key) <= 32): raise SignedPermissionDataError('key has to be 1-32 characters') try: author = User.objects.select_related('permissions').get(pk=author_id) except User.DoesNotExist: raise SignedPermissionDataError('Author does not exist.') try: api_secret = author.permissions.api_secret except AttributeError: raise SignedPermissionDataError('Author has no API secret.') verify_signature = binascii.b2a_base64(hmac.new(api_secret.encode(), msg=raw_data.encode(), digestmod=hashlib.sha256).digest()) print(verify_signature, signature) if signature != verify_signature.strip().decode(): raise SignedPermissionDataError('Invalid signature.') form = cls(author=author, expire_date=valid_until, data={ 'access_restrictions': str(restrictions), }) if not form.is_valid(): raise SignedPermissionDataError(' '.join(form.errors)) return form.get_token(unique_key=unique_key) class UserSpaceAccessForm(ModelForm): class Meta: model = UserSpaceAccess fields = ('space', 'can_edit') def __init__(self, *args, request=None, **kwargs): super().__init__(*args, **kwargs) self.fields['space'].label_from_instance = lambda obj: obj.title self.fields['space'].queryset = Space.qs_for_request(request).order_by('slug') choices = [('0', _('no'))] * 6 + [('1', _('yes'))] + [('0', _('no'))] * 3 self.fields['can_edit'].widget = Select(choices=choices) class SignedPermissionDataError(Exception): pass class AnnouncementForm(I18nModelFormMixin, ModelForm): class Meta: model = Announcement fields = ('text', 'active', 'active_until') def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['active_until'].initial = timezone.now() class MapUpdateFilterForm(Form): type = ChoiceField( choices=(('', _('any type')), ) + MapUpdate.TYPES, required=False ) geometries_changed = ChoiceField( choices=(('', _('any')), ('1', _('geometries changed')), ('0', _('no geometries changed'))), required=False ) processed = ChoiceField( choices=(('', _('any')), ('1', _('processed')), ('0', _('not processed'))), required=False ) user_id = IntegerField(min_value=1, required=False) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['user_id'].widget.attrs['placeholder'] = _('user id') class MapUpdateForm(ModelForm): class Meta: model = MapUpdate fields = ('geometries_changed', )
the-stack_0_1031
""" MIT License Copyright (c) 2020 Airbyte Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import operator from functools import partial, reduce from json.decoder import JSONDecodeError from typing import Mapping, Tuple import requests from base_python import BaseClient from requests.auth import HTTPBasicAuth from requests.exceptions import ConnectionError class Client(BaseClient): """ Jira API Reference: https://developer.atlassian.com/cloud/jira/platform/rest/v3/intro/ """ API_VERSION = 3 DEFAULT_ITEMS_PER_PAGE = 100 PARAMS = {"maxResults": DEFAULT_ITEMS_PER_PAGE, "startAt": 0} ENTITIES_MAP = { "projects": {"url": "/project/search", "func": lambda v: v["values"], "params": PARAMS}, "issues": {"url": "/search", "func": lambda v: v["issues"], "params": PARAMS}, "issue_comments": { "url": "/search", "func": lambda v: reduce(operator.iadd, [obj["fields"]["comment"]["comments"] for obj in v["issues"]], []), "params": {**PARAMS, **{"fields": ["comment"]}}, }, "users": {"url": "/users/search", "func": lambda v: v, "params": PARAMS}, "resolutions": {"url": "/resolution", "func": lambda v: v, "params": {}}, } def __init__(self, api_token, domain, email): self.auth = HTTPBasicAuth(email, api_token) self.base_api_url = f"https://{domain}/rest/api/{self.API_VERSION}" super().__init__() def lists(self, name, url, params, func, **kwargs): while True: response = requests.get(f"{self.base_api_url}{url}", params=params, auth=self.auth) data = func(response.json()) yield from data if name == "resolutions" or len(data) < self.DEFAULT_ITEMS_PER_PAGE: break params["startAt"] += self.DEFAULT_ITEMS_PER_PAGE def _enumerate_methods(self) -> Mapping[str, callable]: return {entity: partial(self.lists, name=entity, **value) for entity, value in self.ENTITIES_MAP.items()} def health_check(self) -> Tuple[bool, str]: alive = True error_msg = None try: next(self.lists(name="resolutions", **self.ENTITIES_MAP["resolutions"])) except ConnectionError as error: alive, error_msg = False, str(error) # If the input domain is incorrect or doesn't exist, then the response would be empty, resulting in a JSONDecodeError except JSONDecodeError: alive, error_msg = ( False, "Unable to connect to the Jira API with the provided credentials. Please make sure the input credentials and environment are correct.", ) return alive, error_msg