complexity
int64 1
56
| n_identifiers
int64 1
114
| code
stringlengths 19
12.7k
| path
stringlengths 8
134
| n_ast_nodes
int64 12
2.35k
| ast_errors
stringlengths 0
4.01k
| repo
stringlengths 3
28
| documentation
dict | n_words
int64 2
866
| language
stringclasses 1
value | vocab_size
int64 2
323
| commit_id
stringlengths 40
40
| file_name
stringlengths 5
79
| id
int64 243
338k
| nloc
int64 1
228
| token_counts
int64 5
1.4k
| fun_name
stringlengths 1
77
| url
stringlengths 31
60
| commit_message
stringlengths 3
15.3k
| n_whitespaces
int64 1
3.23k
| n_ast_errors
int64 0
20
| d_id
int64 74
121k
| ast_levels
int64 4
29
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 7 | def row_swap(self, i, j):
for k in range(0, self.cols):
self[i, k], self[j, k] = self[j, k], self[i, k]
| sympy/matrices/repmatrix.py | 69 | sympy | {
"docstring": "Swap the two given rows of the matrix in-place.\n\n Examples\n ========\n\n >>> from sympy import Matrix\n >>> M = Matrix([[0, 1], [1, 0]])\n >>> M\n Matrix([\n [0, 1],\n [1, 0]])\n >>> M.row_swap(0, 1)\n >>> M\n Matrix([\n [1, 0],\n [0, 1]])\n\n See Also\n ========\n\n row\n col_swap\n ",
"language": "en",
"n_whitespaces": 171,
"n_words": 45,
"vocab_size": 31
} | 18 | Python | 14 | 59d22b6bb7287613d598611027f640d068ca5748 | repmatrix.py | 196,394 | 3 | 49 | row_swap | https://github.com/sympy/sympy.git | Moved imports to higher level | 43 | 0 | 47,894 | 10 |
|
1 | 17 | def setup_method(self):
self.simple_graph = nx.complete_bipartite_graph(2, 3)
self.simple_solution = {0: 2, 1: 3, 2: 0, 3: 1}
edges = [(0, 7), (0, 8), (2, 6), (2, 9), (3, 8), (4, 8), (4, 9), (5, 11)]
self.top_nodes = set(range(6))
self.graph = nx.Graph()
self.graph.add_nodes_from(range(12))
self.graph.add_edges_from(edges)
# Example bipartite graph from issue 2127
G = nx.Graph()
G.add_nodes_from(
[
(1, "C"),
(1, "B"),
(0, "G"),
(1, "F"),
(1, "E"),
(0, "C"),
(1, "D"),
(1, "I"),
(0, "A"),
(0, "D"),
(0, "F"),
(0, "E"),
(0, "H"),
(1, "G"),
(1, "A"),
(0, "I"),
(0, "B"),
(1, "H"),
]
)
G.add_edge((1, "C"), (0, "A"))
G.add_edge((1, "B"), (0, "A"))
G.add_edge((0, "G"), (1, "I"))
G.add_edge((0, "G"), (1, "H"))
G.add_edge((1, "F"), (0, "A"))
G.add_edge((1, "F"), (0, "C"))
G.add_edge((1, "F"), (0, "E"))
G.add_edge((1, "E"), (0, "A"))
G.add_edge((1, "E"), (0, "C"))
G.add_edge((0, "C"), (1, "D"))
G.add_edge((0, "C"), (1, "I"))
G.add_edge((0, "C"), (1, "G"))
G.add_edge((0, "C"), (1, "H"))
G.add_edge((1, "D"), (0, "A"))
G.add_edge((1, "I"), (0, "A"))
G.add_edge((1, "I"), (0, "E"))
G.add_edge((0, "A"), (1, "G"))
G.add_edge((0, "A"), (1, "H"))
G.add_edge((0, "E"), (1, "G"))
G.add_edge((0, "E"), (1, "H"))
self.disconnected_graph = G
| networkx/algorithms/bipartite/tests/test_matching.py | 901 | networkx | {
"docstring": "Creates a bipartite graph for use in testing matching algorithms.\n\n The bipartite graph has a maximum cardinality matching that leaves\n vertex 1 and vertex 10 unmatched. The first six numbers are the left\n vertices and the next six numbers are the right vertices.\n\n ",
"language": "en",
"n_whitespaces": 71,
"n_words": 43,
"vocab_size": 31
} | 175 | Python | 65 | 6ef8b9986ad9a8bc79a4a6640a8f9ee285b67a7b | test_matching.py | 177,423 | 52 | 576 | setup_method | https://github.com/networkx/networkx.git | Update pytest (#6165) | 698 | 0 | 42,374 | 10 |
|
7 | 16 | def dispatch_call(self, frame, arg):
# XXX 'arg' is no longer used
if self.botframe is None:
# First call of dispatch since reset()
self.botframe = frame.f_back # (CT) Note that this may also be None!
return self.trace_dispatch
if not (self.stop_here(frame) or self.break_anywhere(frame)):
# No need to trace this function
return # None
# Ignore call events in generator except when stepping.
if self.stopframe and frame.f_code.co_flags & GENERATOR_AND_COROUTINE_FLAGS:
return self.trace_dispatch
self.user_call(frame, arg)
if self.quitting: raise BdbQuit
return self.trace_dispatch
| python3.10.4/Lib/bdb.py | 137 | XX-Net | {
"docstring": "Invoke user function and return trace function for call event.\n\n If the debugger stops on this function call, invoke\n self.user_call(). Raise BdbQuit if self.quitting is set.\n Return self.trace_dispatch to continue tracing in this scope.\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 34,
"vocab_size": 31
} | 76 | Python | 59 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | bdb.py | 221,115 | 11 | 83 | dispatch_call | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 205 | 0 | 56,216 | 10 |
|
2 | 22 | def subprocess_run_helper(func, *args, timeout, extra_env=None):
target = func.__name__
module = func.__module__
proc = subprocess.run(
[sys.executable,
"-c",
f"from {module} import {target}; {target}()",
*args],
env={**os.environ, "SOURCE_DATE_EPOCH": "0", **(extra_env or {})},
timeout=timeout, check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True)
return proc
| lib/matplotlib/testing/__init__.py | 151 | matplotlib | {
"docstring": "\n Run a function in a sub-process.\n\n Parameters\n ----------\n func : function\n The function to be run. It must be in a module that is importable.\n *args : str\n Any additional command line arguments to be passed in\n the first argument to ``subprocess.run``.\n extra_env : dict[str, str]\n Any additional environment variables to be set for the subprocess.\n ",
"language": "en",
"n_whitespaces": 107,
"n_words": 56,
"vocab_size": 39
} | 35 | Python | 32 | 031093e6f05496f55616a1fa2f39e573fea02828 | __init__.py | 108,485 | 14 | 92 | subprocess_run_helper | https://github.com/matplotlib/matplotlib.git | Tweak subprocess_run_helper.
On general grounds, an API like
`subprocess_run_helper(func, *args, timeout, **extra_env)`
is problematic because it prevents one from passing an environment
variable called "timeout".
Instead, pass the extra environment variables as a dict, without
unpacking.
(Technically this has been released in 3.5.2 as public API, but 1) I'm
not really sure it should have been a public API to start with (should
we deprecate it and make it private?), and 2) hopefully tweaking that in
3.5.3 with no deprecation is not going to disrupt anyone... I can still
put in a changelog entry if that's preferred.) | 116 | 0 | 23,212 | 14 |
|
4 | 9 | def getManhattanDistance(self):
ans = 0
for i in range(self.size):
for j in range(self.size):
if self.state[i][j] != 0:
ans = (
ans
+ abs((self.state[i][j] - 1) % self.size - j)
+ abs((self.state[i][j] - 1) // self.size - i)
)
return ans
| Eight_Puzzle_Solver/eight_puzzle.py | 146 | Python | {
"docstring": "\n Parameters: State\n Returns: Manhattan Distance between Current State and Goal State\n Restrictions: State must be a self.size x self.size Array\n ",
"language": "en",
"n_whitespaces": 49,
"n_words": 20,
"vocab_size": 16
} | 40 | Python | 26 | f0af0c43340763724f139fa68aa1e5a9ffe458b4 | eight_puzzle.py | 22,421 | 11 | 89 | getManhattanDistance | https://github.com/geekcomputers/Python.git | refactor: clean code
Signed-off-by: slowy07 <[email protected]> | 201 | 0 | 4,326 | 24 |
|
2 | 6 | def _on_source_file_changed(self) -> None:
if self._run_on_save:
self.request_rerun(self._client_state)
else:
self._enqueue_file_change_message()
| lib/streamlit/app_session.py | 50 | streamlit | {
"docstring": "One of our source files changed. Schedule a rerun if appropriate.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 9 | Python | 9 | ee09d5da0986357dccdae9d0fff50c3dab3b40cf | app_session.py | 118,779 | 6 | 28 | _on_source_file_changed | https://github.com/streamlit/streamlit.git | ScriptRunner + AppSession type annotations (#4376)
Adds missing type annotations in `script_runner.py` and `app_session.py`. No behavior changes. | 52 | 0 | 26,419 | 10 |
|
10 | 27 | def __new__(cls, partition, integer=None):
if integer is not None:
integer, partition = partition, integer
if isinstance(partition, (dict, Dict)):
_ = []
for k, v in sorted(list(partition.items()), reverse=True):
if not v:
continue
k, v = as_int(k), as_int(v)
_.extend([k]*v)
partition = tuple(_)
else:
partition = tuple(sorted(map(as_int, partition), reverse=True))
sum_ok = False
if integer is None:
integer = sum(partition)
sum_ok = True
else:
integer = as_int(integer)
if not sum_ok and sum(partition) != integer:
raise ValueError("Partition did not add to %s" % integer)
if any(i < 1 for i in partition):
raise ValueError("All integer summands must be greater than one")
obj = Basic.__new__(cls, Integer(integer), Tuple(*partition))
obj.partition = list(partition)
obj.integer = integer
return obj
| sympy/combinatorics/partitions.py | 337 | sympy | {
"docstring": "\n Generates a new IntegerPartition object from a list or dictionary.\n\n Explanation\n ===========\n\n The partition can be given as a list of positive integers or a\n dictionary of (integer, multiplicity) items. If the partition is\n preceded by an integer an error will be raised if the partition\n does not sum to that given integer.\n\n Examples\n ========\n\n >>> from sympy.combinatorics.partitions import IntegerPartition\n >>> a = IntegerPartition([5, 4, 3, 1, 1])\n >>> a\n IntegerPartition(14, (5, 4, 3, 1, 1))\n >>> print(a)\n [5, 4, 3, 1, 1]\n >>> IntegerPartition({1:3, 2:1})\n IntegerPartition(5, (2, 1, 1, 1))\n\n If the value that the partition should sum to is given first, a check\n will be made to see n error will be raised if there is a discrepancy:\n\n >>> IntegerPartition(10, [5, 4, 3, 1])\n Traceback (most recent call last):\n ...\n ValueError: The partition is not valid\n\n ",
"language": "en",
"n_whitespaces": 307,
"n_words": 138,
"vocab_size": 80
} | 109 | Python | 69 | 24f1e7730119fe958cc8e28411f790c9a5ec04eb | partitions.py | 200,380 | 27 | 210 | __new__ | https://github.com/sympy/sympy.git | Fix various typos
Found via `codespell -q 3 -L aboves,aline,ans,aother,arithmetics,assum,atleast,braket,clen,declar,declars,dorder,dum,enew,fo,fro,inout,iself,ist,ket,lamda,lightyear,lightyears,nd,numer,numers,orderd,ot,pring,rcall,rever,ro,ser,siz,splitted,sring,supercedes,te,tht,unequality,upto,vas,versin,whet` | 374 | 0 | 49,610 | 15 |
|
4 | 9 | def _deprecate_ci(errorbar, ci):
if ci != "deprecated":
if ci is None:
errorbar = None
elif ci == "sd":
errorbar = "sd"
else:
errorbar = ("ci", ci)
msg = (
"\n\nThe `ci` parameter is deprecated. "
f"Use `errorbar={repr(errorbar)}` for the same effect.\n"
)
warnings.warn(msg, FutureWarning, stacklevel=3)
return errorbar
| seaborn/utils.py | 117 | seaborn | {
"docstring": "\n Warn on usage of ci= and convert to appropriate errorbar= arg.\n\n ci was deprecated when errorbar was added in 0.12. It should not be removed\n completely for some time, but it can be moved out of function definitions\n (and extracted from kwargs) after one cycle.\n\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 45,
"vocab_size": 42
} | 47 | Python | 37 | 26bf4b3b645edc405ca52b533b8d68273aeba7d1 | utils.py | 41,875 | 14 | 59 | _deprecate_ci | https://github.com/mwaskom/seaborn.git | Housekeeping on relational plot parameters (#2855)
* Do some housekeeping on lineplot ci deprecation
* Remove some unused parameters from scatterplot
* Remove incorrect statement from relplot docstring
* Update lineplot ci= deprecation test | 153 | 0 | 7,451 | 14 |
|
3 | 18 | def start(self, tag, attrib={}, **extra):
self.__flush()
tag = _escape_cdata(tag)
self.__data = []
self.__tags.append(tag)
self.__write(self.__indentation[:len(self.__tags) - 1])
self.__write("<%s" % tag)
for k, v in {**attrib, **extra}.items():
if v:
k = _escape_cdata(k)
v = _quote_escape_attrib(v)
self.__write(' %s=%s' % (k, v))
self.__open = 1
return len(self.__tags) - 1
| lib/matplotlib/backends/backend_svg.py | 206 | matplotlib | {
"docstring": "\n Open a new element. Attributes can be given as keyword\n arguments, or as a string/string dictionary. The method returns\n an opaque identifier that can be passed to the :meth:`close`\n method, to close all open elements up to and including this one.\n\n Parameters\n ----------\n tag\n Element tag.\n attrib\n Attribute dictionary. Alternatively, attributes can be given as\n keyword arguments.\n\n Returns\n -------\n An element identifier.\n ",
"language": "en",
"n_whitespaces": 182,
"n_words": 62,
"vocab_size": 50
} | 45 | Python | 37 | ec410abbb3a721e31f3aaa61e9e4f941467e35e1 | backend_svg.py | 108,142 | 14 | 126 | start | https://github.com/matplotlib/matplotlib.git | Deprecate functions in backends | 171 | 0 | 23,076 | 13 |
|
2 | 14 | def parse_wheel(wheel_zip, name):
# type: (ZipFile, str) -> Tuple[str, Message]
try:
info_dir = wheel_dist_info_dir(wheel_zip, name)
metadata = wheel_metadata(wheel_zip, info_dir)
version = wheel_version(metadata)
except UnsupportedWheel as e:
raise UnsupportedWheel("{} has an invalid wheel, {}".format(name, str(e)))
check_compatibility(version, name)
return info_dir, metadata
| .venv/lib/python3.8/site-packages/pip/_internal/utils/wheel.py | 103 | transferlearning | {
"docstring": "Extract information from the provided wheel, ensuring it meets basic\n standards.\n\n Returns the name of the .dist-info directory and the parsed WHEEL metadata.\n ",
"language": "en",
"n_whitespaces": 32,
"n_words": 23,
"vocab_size": 20
} | 39 | Python | 35 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | wheel.py | 61,340 | 9 | 62 | parse_wheel | https://github.com/jindongwang/transferlearning.git | upd; format | 85 | 0 | 12,522 | 14 |
|
1 | 3 | def reduce(tensor, reduction="mean"):
| src/accelerate/utils.py | 20 | accelerate | {
"docstring": "\n Recursively reduce the tensors in a nested list/tuple/dictionary of lists of tensors across all processes by the\n mean of a given operation.\n\n Args:\n tensor (nested list/tuple/dictionary of `torch.Tensor`):\n The data to reduce.\n reduction (`str`, *optional*, defaults to `\"mean\"`):\n A reduction method. Can be of \"mean\", \"sum\", or \"none\"\n\n Returns:\n The same data structure as `data` with all the tensors reduced.\n ",
"language": "en",
"n_whitespaces": 119,
"n_words": 60,
"vocab_size": 45
} | 3 | Python | 3 | 5f433673e1bfc7588f8899b1ddf15c85bd630410 | utils.py | 337,446 | 3 | 27 | reduce | https://github.com/huggingface/accelerate.git | Introduce reduce operator (#326)
Co-authored-by: Sylvain Gugger <[email protected]> | 6 | 0 | 121,056 | 6 |
|
2 | 2 | def parameterize_with_task_runners(*values):
| tests/test_task_runners.py | 15 | prefect | {
"docstring": "\n Generates a `pytest.mark.parametrize` instance for the `task_runner` indirect\n fixture.\n\n Passes marks from the fixtures to the parameter so we can indicate required services\n on each task runner fixture.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 28,
"vocab_size": 25
} | 2 | Python | 2 | dc0f9feb764c72620a68ca139eb56e43f6e5f068 | test_task_runners.py | 53,897 | 8 | 37 | parameterize_with_task_runners | https://github.com/PrefectHQ/prefect.git | Add service marks to task runner tests | 5 | 0 | 10,949 | 6 |
|
2 | 14 | def test_login_required(self, view_url="/login_required/", login_url=None):
if login_url is None:
login_url = settings.LOGIN_URL
response = self.client.get(view_url)
self.assertEqual(response.status_code, 302)
self.assertIn(login_url, response.url)
self.login()
response = self.client.get(view_url)
self.assertEqual(response.status_code, 200)
| tests/auth_tests/test_decorators.py | 127 | django | {
"docstring": "\n login_required works on a simple view wrapped in a login_required\n decorator.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 11,
"vocab_size": 9
} | 24 | Python | 18 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | test_decorators.py | 201,206 | 9 | 79 | test_login_required | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 91 | 0 | 49,901 | 9 |
|
1 | 14 | def get_estimator(self) -> BaseEstimator:
with self.as_directory() as checkpoint_path:
estimator_path = os.path.join(checkpoint_path, MODEL_KEY)
with open(estimator_path, "rb") as f:
return cpickle.load(f)
| python/ray/train/sklearn/sklearn_checkpoint.py | 83 | ray | {
"docstring": "Retrieve the ``Estimator`` stored in this checkpoint.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | 19 | Python | 17 | ac1d21027da8a8c002cc7c28b8d1dc89c0d72fcf | sklearn_checkpoint.py | 125,333 | 6 | 46 | get_estimator | https://github.com/ray-project/ray.git | [AIR] Add framework-specific checkpoints (#26777) | 70 | 0 | 27,838 | 13 |
|
1 | 21 | def condition_score_with_grad(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, p_mean_var, **model_kwargs)
out = p_mean_var.copy()
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
out["mean"], _, _ = self.q_posterior_mean_variance(x_start=out["pred_xstart"], x_t=x, t=t)
return out
| modules/image/text_to_image/disco_diffusion_cnclip_vitb16/reverse_diffusion/model/gaussian_diffusion.py | 187 | PaddleHub | {
"docstring": "\n Compute what the p_mean_variance output would have been, should the\n model's score function be conditioned by cond_fn.\n\n See condition_mean() for details on cond_fn.\n\n Unlike condition_mean(), this instead uses the conditioning strategy\n from Song et al (2020).\n ",
"language": "en",
"n_whitespaces": 79,
"n_words": 36,
"vocab_size": 33
} | 46 | Python | 32 | f4d6e64cdc132ae868699a0ba442f4ab1d304a14 | gaussian_diffusion.py | 49,781 | 8 | 124 | condition_score_with_grad | https://github.com/PaddlePaddle/PaddleHub.git | add disco_diffusion_cnclip_vitb16 module | 102 | 0 | 9,905 | 12 |
|
2 | 8 | def is_strongly_connected(G):
if len(G) == 0:
raise nx.NetworkXPointlessConcept(
)
return len(list(strongly_connected_components(G))[0]) == len(G)
@not_implemented_for("undirected") | networkx/algorithms/components/strongly_connected.py | 80 | @not_implemented_for("undirected") | networkx | {
"docstring": "Test directed graph for strong connectivity.\n\n A directed graph is strongly connected if and only if every vertex in\n the graph is reachable from every other vertex.\n\n Parameters\n ----------\n G : NetworkX Graph\n A directed graph.\n\n Returns\n -------\n connected : bool\n True if the graph is strongly connected, False otherwise.\n\n Examples\n --------\n >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 0), (2, 4), (4, 2)])\n >>> nx.is_strongly_connected(G)\n True\n >>> G.remove_edge(2, 3)\n >>> nx.is_strongly_connected(G)\n False\n\n Raises\n ------\n NetworkXNotImplemented\n If G is undirected.\n\n See Also\n --------\n is_weakly_connected\n is_semiconnected\n is_connected\n is_biconnected\n strongly_connected_components\n\n Notes\n -----\n For directed graphs only.\n Connectivity is undefined for the null graph.",
"language": "en",
"n_whitespaces": 211,
"n_words": 104,
"vocab_size": 73
} | 14 | Python | 12 | 7cad29b3542ad867f1eb5b7b6a9087495f252749 | strongly_connected.py | 176,593 | 6 | 40 | is_strongly_connected | https://github.com/networkx/networkx.git | Added examples in connected and strongly connected functions (#5559)
* added examples
* Update networkx/algorithms/components/connected.py
Co-authored-by: Ross Barnowski <[email protected]>
Co-authored-by: Ross Barnowski <[email protected]> | 48 | 1 | 41,992 | 13 |
15 | 48 | def _resolve_project_threshold_config(self) -> SelectType:
org_id = self.builder.params.get("organization_id")
project_ids = self.builder.params.get("project_id")
project_threshold_configs = (
ProjectTransactionThreshold.objects.filter(
organization_id=org_id,
project_id__in=project_ids,
)
.order_by("project_id")
.values_list("project_id", "threshold", "metric")
)
transaction_threshold_configs = (
ProjectTransactionThresholdOverride.objects.filter(
organization_id=org_id,
project_id__in=project_ids,
)
.order_by("project_id")
.values_list("transaction", "project_id", "threshold", "metric")
)
num_project_thresholds = project_threshold_configs.count()
sentry_sdk.set_tag("project_threshold.count", num_project_thresholds)
sentry_sdk.set_tag(
"project_threshold.count.grouped",
format_grouped_length(num_project_thresholds, [10, 100, 250, 500]),
)
num_transaction_thresholds = transaction_threshold_configs.count()
sentry_sdk.set_tag("txn_threshold.count", num_transaction_thresholds)
sentry_sdk.set_tag(
"txn_threshold.count.grouped",
format_grouped_length(num_transaction_thresholds, [10, 100, 250, 500]),
)
if (
num_project_thresholds + num_transaction_thresholds
> constants.MAX_QUERYABLE_TRANSACTION_THRESHOLDS
):
raise InvalidSearchQuery(
f"Exceeded {constants.MAX_QUERYABLE_TRANSACTION_THRESHOLDS} configured transaction thresholds limit, try with fewer Projects."
)
# Arrays need to have toUint64 casting because clickhouse will define the type as the narrowest possible type
# that can store listed argument types, which means the comparison will fail because of mismatched types
project_thresholds = {}
project_threshold_config_keys = []
project_threshold_config_values = []
for project_id, threshold, metric in project_threshold_configs:
metric = TRANSACTION_METRICS[metric]
if (
threshold == constants.DEFAULT_PROJECT_THRESHOLD
and metric == constants.DEFAULT_PROJECT_THRESHOLD_METRIC
):
# small optimization, if the configuration is equal to the default,
# we can skip it in the final query
continue
project_thresholds[project_id] = (metric, threshold)
project_threshold_config_keys.append(Function("toUInt64", [project_id]))
project_threshold_config_values.append((metric, threshold))
project_threshold_override_config_keys = []
project_threshold_override_config_values = []
for transaction, project_id, threshold, metric in transaction_threshold_configs:
metric = TRANSACTION_METRICS[metric]
if (
project_id in project_thresholds
and threshold == project_thresholds[project_id][1]
and metric == project_thresholds[project_id][0]
):
# small optimization, if the configuration is equal to the project
# configs, we can skip it in the final query
continue
elif (
project_id not in project_thresholds
and threshold == constants.DEFAULT_PROJECT_THRESHOLD
and metric == constants.DEFAULT_PROJECT_THRESHOLD_METRIC
):
# small optimization, if the configuration is equal to the default
# and no project configs were set, we can skip it in the final query
continue
transaction_id = self.resolve_tag_value(transaction)
# Don't add to the config if we can't resolve it
if transaction_id is None:
continue
project_threshold_override_config_keys.append(
(Function("toUInt64", [project_id]), (Function("toUInt64", [transaction_id])))
)
project_threshold_override_config_values.append((metric, threshold))
project_threshold_config_index: SelectType = Function(
"indexOf",
[
project_threshold_config_keys,
self.builder.column("project_id"),
],
constants.PROJECT_THRESHOLD_CONFIG_INDEX_ALIAS,
)
project_threshold_override_config_index: SelectType = Function(
"indexOf",
[
project_threshold_override_config_keys,
(self.builder.column("project_id"), self.builder.column("transaction")),
],
constants.PROJECT_THRESHOLD_OVERRIDE_CONFIG_INDEX_ALIAS,
)
| src/sentry/search/events/datasets/metrics.py | 741 | sentry | {
"docstring": "This is mostly duplicated code from the discover dataset version\n TODO: try to make this more DRY with the discover version\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 21,
"vocab_size": 18
} | 318 | Python | 165 | e1b25d625b185588fc7c2834dff5ea5bb3a98ce0 | metrics.py | 93,967 | 117 | 513 | _resolve_project_threshold_config | https://github.com/getsentry/sentry.git | fix(mep): Use project thresholds for apdex calculation (#37256)
- Currently apdex is always based on the satisfaction tags in the
transaction.duration metrics. This updates the apdex function so we
read the threshold config, and use that to determine which metric we
should read the satisfaction tags from instead | 1,399 | 0 | 19,036 | 14 |
|
1 | 6 | def set_dpi(self, val):
self._parent.dpi = val
self.stale = True
| lib/matplotlib/figure.py | 34 | matplotlib | {
"docstring": "\n Set the resolution of parent figure in dots-per-inch.\n \n Parameters\n ----------\n val : float\n ",
"language": "en",
"n_whitespaces": 57,
"n_words": 13,
"vocab_size": 13
} | 9 | Python | 8 | e12db8dcf12d408cf8cc23e95ea16b99038a058a | figure.py | 108,688 | 3 | 20 | set_dpi | https://github.com/matplotlib/matplotlib.git | Add get/set methods for DPI in SubFigure
This fixes the following error:
matplotlib\lib\text.py line 1489, dop = self.figure.get_dpi()/72. AttributeError: 'SubFigure' object has no attribute 'get_dpi'.
Effect: in v3.5.2 it is not possible to save a figure with a subfigure to a PDF. | 30 | 0 | 23,305 | 8 |
|
2 | 13 | def try_cpp(self, body=None, headers=None, include_dirs=None, lang="c"):
from distutils.ccompiler import CompileError
self._check_compiler()
ok = True
try:
self._preprocess(body, headers, include_dirs, lang)
except CompileError:
ok = False
self._clean()
return ok
| python3.10.4/Lib/distutils/command/config.py | 100 | XX-Net | {
"docstring": "Construct a source file from 'body' (a string containing lines\n of C/C++ code) and 'headers' (a list of header files to include)\n and run it through the preprocessor. Return true if the\n preprocessor succeeded, false if there were any errors.\n ('body' probably isn't of much use, but what the heck.)\n ",
"language": "en",
"n_whitespaces": 86,
"n_words": 50,
"vocab_size": 43
} | 27 | Python | 24 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | config.py | 222,727 | 10 | 63 | try_cpp | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 105 | 0 | 56,711 | 9 |
|
1 | 5 | def test_weird_target_2(self):
b =
a =
self.check(b, a)
| python3.10.4/Lib/lib2to3/tests/test_fixers.py | 35 | XX-Net | {
"docstring": "\n try:\n pass\n except Exception, a.foo:\n pass\n try:\n pass\n except Exception as xxx_todo_changeme:\n a.foo = xxx_todo_changeme\n pass",
"language": "en",
"n_whitespaces": 135,
"n_words": 16,
"vocab_size": 11
} | 8 | Python | 7 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | test_fixers.py | 218,929 | 13 | 19 | test_weird_target_2 | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 30 | 0 | 55,554 | 7 |
|
1 | 28 | def test_summarization(self):
model = FlaxLongT5ForConditionalGeneration.from_pretrained(self.model_path)
tok = AutoTokenizer.from_pretrained(self.model_path)
ARTICLE =
dct = tok(
[ARTICLE],
max_length=1024,
padding="max_length",
truncation=True,
return_tensors="np",
)
hypotheses_batch = model.generate(
**dct,
num_beams=4,
length_penalty=2.0,
max_length=142,
min_length=56,
do_sample=False,
early_stopping=True,
).sequences
decoded = tok.batch_decode(hypotheses_batch, skip_special_tokens=True, clean_up_tokenization_spaces=False)
self.assertListEqual(
self.expected_summary(),
decoded,
)
| tests/models/longt5/test_modeling_flax_longt5.py | 250 | transformers | {
"docstring": "coronary artery disease ( cad ) is the emerging cause of morbidity and mortality in developing world . \\n it provides an excellent resolution for visualization of the coronary arteries for catheter - based or operating interventions . \\n\n although the association of this technique with major complications such as mortality is highly uncommon , it is frequently associated with various cardiac and noncardiac complications . computed tomography ( ct ) coronary angiography is\n a promising technique for the evaluation of cad noninvasively . \\n it assesses disease within the coronary artery and provides qualitative and quantitative information about nonobstructive atherosclerotic plaque burden within the vessel\n wall . \\n thus , ct angiography - based disease evaluation may provide clinically more significant information than conventional angiography . the introduction of multi - slice computed tomography ( msct ) technology such as 64-slice , 12\n 8-slice , 256-slice , and now 320-slice msct has produced a high diagnostic accuracy of ct coronary angiography . \\n it has consistently showed to have a very high negative predictive value ( well above 90% ) in ruling out patients with s\n ignificant cad defined as coronary luminal stenosis of > 50% . \\n the american college of cardiology / american heart association recommends that coronary angiography should be performed before valve surgery in men aged > 40 years , women\n aged > 35 years with coronary risk factors and in postmenopausal women . \\n the prevalence of cad in patients undergoing valve replacement is 2040% in developed countries . in the previous studies , \\n the incidence of angiographically p\n roven cad in acquired valvular diseases has been shown to vary widely from 9% to 41% . in aortic stenosis , \\n we aimed to report the diagnostic performance of 128-slice ct coronary angiography in 50 patients undergoing for major noncoron\n ary cardiac surgery referred for diagnostic invasive coronary angiography to assess the extent and severity of coronary stenosis . \\n during january 2013 to december 2014 , we enrolled fifty major noncoronary cardiac surgery patients sche\n duled for invasive coronary angiography who fulfilled the following inclusion criteria of age 40 years , having low or intermediate probability of cad , left ventricular ejection fraction ( lvef ) > 35% , and patient giving informed conse\n nt for undergoing msct and conventional coronary angiography . \\n those having any contraindication for contrast injection , lvef < 35% , high pretest probability of cad , and hemodynamic instability were excluded from the study . \\n pati\n ents with heart rates of > 70 bpm received ( unless they had known overt heart failure or electrocardiogram ( ecg ) atrioventricular conduction abnormalities ) a single oral dose of 100 mg metoprolol 45 min before the scan . \\n patients w\n ith heart rates of > 80 bpm received an additional oral dose of metoprolol if not contraindicated . \\n all patients were scanned with a 128-slice ct scanner ( siemens , somatom definition as ) equipped with a new feature in msct technolog\n y , so - called z - axis flying - focus technology . \\n the central 32 detector rows acquire 0.6-mm slices , and the flying - focus spot switches back and forth between 2 z positions between each reading . \\n two slices per detector row a\n re acquired , which results in a higher oversampling rate in the z - axis , thereby reducing artifacts related to the spiral acquisition and improving spatial resolution down to 0.4 mm . \\n a bolus of 6580 ml contrast material ( omnipaque\n ) was injected through an arm vein at a flow rate of 5 ml / s . \\n a bolus tracking technique was used to synchronize the arrival of contrast in the coronary arteries with the initiation of the scan . to monitor the arrival of contrast m\n aterial , \\n axial scans were obtained at the level of the ascending aorta with a delay of 10 s after the start of the contrast injection . \\n the scan was automatically started when a threshold of 150 hounsfield units was reached in a re\n gion of interest positioned in the ascending aorta . \\n images were reconstructed with ecg gating to obtain optimal , motion - free image quality . \\n all scans were performed within 2 weeks of the msct coronary diagnostic angiogram . a s\n ingle observer unaware of the multi - slice ct results identified coronary lesion as a single vessel , double vessel , or triple vessel disease . \\n all lesion , regardless of size , were included for comparison with ct coronary angiograp\n hy . \\n lesions were classified as having nonsignificant disease ( luminal irregularities or < 50% stenosis ) or as having significant stenosis . \\n stenosis was evaluated in two orthogonal views and classified as significant if the mean\n lumen diameter reduction was 50% using a validated quantitative coronary angiography ( qca ) . \\n all scans were analyzed independently by a radiologist and a cardiologist who were unaware of the results of conventional coronary angiograp\n hy . \\n total calcium scores of all patients were calculated with dedicated software and expressed as agatston scores . \\n the agatston score is a commonly used scoring method that calculates the total amount of calcium on the basis of th\n e number , areas , and peak hounsfield units of the detected calcified lesions . \\n all available coronary segments were visually scored for the presence of > 50% considered as significant stenosis . \\n maximum intensity projections were\n used to identify coronary lesions and ( curved ) multiplanar reconstructions to classify lesions as significant or nonsignificant . \\n data were analyzed using statistical system spss version 20 software ( chicago , il , usa ) . \\n the di\n agnostic performance of ct coronary angiography for the detection of significant lesions in coronary arteries with qca as the standard of reference is presented as sensitivity , specificity , positive and negative predictive values , and\n positive and negative likelihood ratios with the corresponding exact 95% of confidence interval ( cis ) . \\n comparison between ct and conventional coronary angiography was performed on the two level vessel by vessel ( no or any disease p\n er vessel ) , and patient by patient ( no or any disease per patient ) . \\n all scans were performed within 2 weeks of the msct coronary diagnostic angiogram . a single observer unaware of the multi - slice ct results identified coronary\n lesion as a single vessel , double vessel , or triple vessel disease . \\n all lesion , regardless of size , were included for comparison with ct coronary angiography . \\n lesions were classified as having nonsignificant disease ( luminal\n irregularities or < 50% stenosis ) or as having significant stenosis . \\n stenosis was evaluated in two orthogonal views and classified as significant if the mean lumen diameter reduction was 50% using a validated quantitative coronary an\n giography ( qca ) . \\n all scans were analyzed independently by a radiologist and a cardiologist who were unaware of the results of conventional coronary angiography . \\n total calcium scores of all patients were calculated with dedicated\n software and expressed as agatston scores . \\n the agatston score is a commonly used scoring method that calculates the total amount of calcium on the basis of the number , areas , and peak hounsfield units of the detected calcified lesi\n ons . \\n all available coronary segments were visually scored for the presence of > 50% considered as significant stenosis . \\n maximum intensity projections were used to identify coronary lesions and ( curved ) multiplanar reconstruction\n s to classify lesions as significant or nonsignificant . \\n data were analyzed using statistical system spss version 20 software ( chicago , il , usa ) . \\n the diagnostic performance of ct coronary angiography for the detection of signif\n icant lesions in coronary arteries with qca as the standard of reference is presented as sensitivity , specificity , positive and negative predictive values , and positive and negative likelihood ratios with the corresponding exact 95% of\n confidence interval ( cis ) . \\n comparison between ct and conventional coronary angiography was performed on the two level vessel by vessel ( no or any disease per vessel ) , and patient by patient ( no or any disease per patient ) . \\n\n in this study , 29 ( 58% ) subjects were female , and 21 ( 42% ) were male showing an average age of 50.36 8.39 years . \\n of fifty patients 24 ( 48% ) , 13 ( 26% ) , eight ( 16% ) , and five ( 10% ) underwent mitral valve replacement ,\n double valve replacement ( dvr ) , aortic valve replacement , and other surgeries , respectively . \\n high distribution of cad risk factors such as hypertension ( 24% ) , smoking ( 22% ) , and dyslipidemia ( 18% ) was observed in the stu\n dy group . \\n the mean creatinine level was 0.766 0.17 and average dye used in conventional angiography was 48.5 26.6 whereas for ct angiography it was 72.8 6.32 . \\n average radiation dose in conventional coronary angiography and msct\n coronary angiography was 5.2 msv and 9.2 msv , respectively . \\n the majority of the patients had sinus rhythm ( 68% ) , whereas atrial fibrillation was found in 32% of the subjects . \\n patients included in the study had low to intermed\n iate probability of cad . in this study , three patients had complications after conventional angiography . \\n complications were of local site hematoma , acute kidney injury managed conservatively , and acute heart failure . \\n a patient\n who developed hematoma was obese female patients with body mass index > 30 kg / m . \\n the patient suffered from pseudoaneurysm , had hospitalized for 9 days , which leads to increased morbidity and cost of hospital stay . \\n the diagnos\n tic accuracy of ct coronary angiography was evaluated regarding true positive , true negative values and is presented in table 1 . the overall sensitivity and \\n specificity of ct angiography technique was 100% ( 95% ci : 39.76%100% ) and\n 91.30% ( 95% ci : 79.21%97.58% ) , respectively [ table 2 ] . \\n the positive predictive value ( 50% ; 95% ci : 15.70%84.30% ) and negative predictive value ( 100% ; 95% ci : 91.59%100% ) of ct angiography were also fairly high in these\n patients . \\n recent reports from multiple studies demonstrated that recent - generation msct scanners showed promise for noninvasive detection of coronary stenosis however , until now no studies were found regarding the clinical efficacy\n or prognostic value of 128-slice ct coronary angiography versus conventional invasive coronary angiography in the diagnosis of patients planned for major noncoronary surgeries such as dvr , bentall , atrial septal defect closure , etc .\n in our study , we reported 8% cad prevalence in patients planned for major noncoronary cardiac surgery . \\n we performed conventional and msct coronary angiography in all patients and the results showed that ct coronary angiography with i\n nvasive coronary angiography as the reference standard had a considerably high sensitivity ( 100% ) and specificity ( 95.65% ) . \\n the health economic model using invasive coronary angiography as the reference standard showed that at a p\n retest probability of cad of 70% or lower , ct coronary angiography resulted in lower cost per patient with a true positive diagnosis . at a pretest probability of cad of 70% or higher , invasive coronary angiography was associated with a\n lower cost per patient with a true positive diagnosis . in our study population , \\n two patients developed local site complications in the form of hematoma and pseudoaneurysm after conventional angiography . \\n hence , msct coronary ang\n iography will be more favorable in female obese patients with intermediate likelihood of cad . \\n hence , msct coronary angiography will be cost - effective in patients of valvular heart diseases . \\n however , ct angiography suffers from\n a drawback that average amount of dye used in msct coronary angiography were 72.8 6.32 ml which is higher than average amount of dye required for conventional angiography ( 48.6 26.6 ml ) . \\n hence , the use of ct coronary angiography\n could not be used in patients with known renal dysfunction , where reduction of contrast dye load is highly advocated . \\n our results show that 128-slice ct coronary angiography is a reliable technique to detect coronary stenosis in pat\n ients planned for noncoronary cardiac surgery . \\n although there has been important technological progress in the development of ct coronary angiography , its clinical application remains limited . \\n a study wth large numbers of patient\n s is required for the recommendation of only ct coronary angiography for the coronary evaluation in major non - cardiac surgeries . \\n mehta institute of cardiology and research center ( affiliated to bj medical college , ahmedabad , guja\n rat , india ) . \\n u.n . mehta institute of cardiology and research center ( affiliated to bj medical college , ahmedabad , gujarat , india ) . \\n ",
"language": "en",
"n_whitespaces": 2837,
"n_words": 2237,
"vocab_size": 651
} | 39 | Python | 33 | a72f1c9f5b907f96cbb7de3bbb02a1d431d34071 | test_modeling_flax_longt5.py | 31,310 | 79 | 120 | test_summarization | https://github.com/huggingface/transformers.git | Add `LongT5` model (#16792)
* Initial commit
* Make some fixes
* Make PT model full forward pass
* Drop TF & Flax implementation, fix copies etc
* Add Flax model and update some corresponding stuff
* Drop some TF things
* Update config and flax local attn
* Add encoder_attention_type to config
* .
* Update docs
* Do some cleansing
* Fix some issues -> make style; add some docs
* Fix position_bias + mask addition + Update tests
* Fix repo consistency
* Fix model consistency by removing flax operation over attn_mask
* [WIP] Add PT TGlobal LongT5
* .
* [WIP] Add flax tglobal model
* [WIP] Update flax model to use the right attention type in the encoder
* Fix flax tglobal model forward pass
* Make the use of global_relative_attention_bias
* Add test suites for TGlobal model
* Fix minor bugs, clean code
* Fix pt-flax equivalence though not convinced with correctness
* Fix LocalAttn implementation to match the original impl. + update READMEs
* Few updates
* Update: [Flax] improve large model init and loading #16148
* Add ckpt conversion script accoring to #16853 + handle torch device placement
* Minor updates to conversion script.
* Typo: AutoModelForSeq2SeqLM -> FlaxAutoModelForSeq2SeqLM
* gpu support + dtype fix
* Apply some suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
Co-authored-by: Patrick von Platen <[email protected]>
* * Remove (de)parallelize stuff
* Edit shape comments
* Update README.md
* make fix-copies
* Remove caching logic for local & tglobal attention
* Apply another batch of suggestions from code review
* Add missing checkpoints
* Format converting scripts
* Drop (de)parallelize links from longT5 mdx
* Fix converting script + revert config file change
* Revert "Remove caching logic for local & tglobal attention"
This reverts commit 2a619828f6ddc3e65bd9bb1725a12b77fa883a46.
* Stash caching logic in Flax model
* Make side relative bias used always
* Drop caching logic in PT model
* Return side bias as it was
* Drop all remaining model parallel logic
* Remove clamp statements
* Move test files to the proper place
* Update docs with new version of hf-doc-builder
* Fix test imports
* Make some minor improvements
* Add missing checkpoints to docs
* Make TGlobal model compatible with torch.onnx.export
* Replace some np.ndarray with jnp.ndarray
* Fix TGlobal for ONNX conversion + update docs
* fix _make_global_fixed_block_ids and masked neg value
* update flax model
* style and quality
* fix imports
* remove load_tf_weights_in_longt5 from init and fix copies
* add slow test for TGlobal model
* typo fix
* Drop obsolete is_parallelizable and one warning
* Update __init__ files to fix repo-consistency
* fix pipeline test
* Fix some device placements
* [wip]: Update tests -- need to generate summaries to update expected_summary
* Fix quality
* Update LongT5 model card
* Update (slow) summarization tests
* make style
* rename checkpoitns
* finish
* fix flax tests
Co-authored-by: phungvanduy <[email protected]>
Co-authored-by: Sylvain Gugger <[email protected]>
Co-authored-by: Patrick von Platen <[email protected]>
Co-authored-by: patil-suraj <[email protected]> | 263 | 0 | 5,722 | 10 |
|
2 | 13 | def get_daily_sector_prices(start_date, end_date):
# sector ticker information
sp500_tickers = {
"S&P 500 Materials (Sector)": "^SP500-15",
"S&P 500 Industrials (Sector)": "^SP500-20",
"S&P 500 Consumer Discretionary (Sector)": "^SP500-25",
"S&P 500 Consumer Staples (Sector)": "^SP500-30",
"S&P 500 Health Care (Sector)": "^SP500-35",
"S&P 500 Financials (Sector)": "^SP500-40",
"S&P 500 Information Technology (Sector)": "^SP500-45",
"S&P 500 Telecommunication Services (Sector)": "^SP500-50",
"S&P 500 Utilities (Sector)": "^SP500-55",
"S&P 500 Real Estate (Sector)": "^SP500-60",
"S&P 500 Energy (Sector)": "^GSPE",
}
sp500_tickers_data = {} # to store data
for (
sector,
sector_ticker,
) in sp500_tickers.items(): # iterate thru the sectors
# load the data required from yfinance
sp500_tickers_data[
sector
] = { # builds a dictionary entry for the sector with adj close data
"sector_data": yf.download(
sector_ticker,
start=start_date,
end=end_date,
progress=False,
)["Adj Close"]
} # stores the data here
return sp500_tickers_data
| openbb_terminal/portfolio/attribution_model.py | 204 | OpenBBTerminal | {
"docstring": "\n fetches daily sector prices for S&P500 for a fixed time period\n\n Parameters\n ----------\n start_date : str ('yyyy-mm-dd') or datetime.date\n start date for fetching data\n end_date : str ('yyyy-mm-dd') or datetime.date\n end date for fetching data\n\n Returns\n -------\n sp500_tickers_data : Dictionary\n dictionary of dataframes with SPY daily sector prices\n ",
"language": "en",
"n_whitespaces": 97,
"n_words": 48,
"vocab_size": 33
} | 131 | Python | 80 | aed683f44015cb5aa6cae9c2ce719c956cda7b46 | attribution_model.py | 286,486 | 30 | 107 | get_daily_sector_prices | https://github.com/OpenBB-finance/OpenBBTerminal.git | Feature/attribution toolkit (#3156)
* add attribution toolkit
* add attrib to test script for portfolio
* removes yahooquery dependency and early rounding
* Update _index.md
* update feature to include raw and type flags, graph always shows, table output optional, one type of output at a time
* Linting
* Update index
* Update index 2
* Update tests
* changes argument descriptions
* Small fix
* Formatting Black
Co-authored-by: S3908818 <[email protected]>
Co-authored-by: Louise Platts (S3908818) <[email protected]>
Co-authored-by: Jeroen Bouma <[email protected]>
Co-authored-by: James Maslek <[email protected]>
Co-authored-by: Louise Amy <[email protected]>
Co-authored-by: Jeroen Bouma <[email protected]> | 371 | 0 | 85,828 | 14 |
|
1 | 21 | def test_equivalence_components_pca_spca(global_random_seed):
rng = np.random.RandomState(global_random_seed)
X = rng.randn(50, 4)
n_components = 2
pca = PCA(
n_components=n_components,
svd_solver="randomized",
random_state=0,
).fit(X)
spca = SparsePCA(
n_components=n_components,
method="lars",
ridge_alpha=0,
alpha=0,
random_state=0,
).fit(X)
assert_allclose(pca.components_, spca.components_)
| sklearn/decomposition/tests/test_sparse_pca.py | 142 | scikit-learn | {
"docstring": "Check the equivalence of the components found by PCA and SparsePCA.\n\n Non-regression test for:\n https://github.com/scikit-learn/scikit-learn/issues/23932\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 15,
"vocab_size": 14
} | 30 | Python | 23 | 4f315db68bb190f0ac03d594f5b45d8fb4213f6f | test_sparse_pca.py | 260,619 | 17 | 91 | test_equivalence_components_pca_spca | https://github.com/scikit-learn/scikit-learn.git | FIX make SparsePCA components_ deterministic (#23935) | 113 | 0 | 76,379 | 12 |
|
1 | 2 | def send_event_if_public_demo(func):
| haystack/telemetry.py | 13 | haystack | {
"docstring": "\n Can be used as a decorator to send an event only if HAYSTACK_EXECUTION_CONTEXT is \"public_demo\"\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 15,
"vocab_size": 15
} | 2 | Python | 2 | ac5617e757e9ace6f30b7291686d9dbbc339f433 | telemetry.py | 256,954 | 4 | 15 | send_event_if_public_demo | https://github.com/deepset-ai/haystack.git | Add basic telemetry features (#2314)
* add basic telemetry features
* change pipeline_config to _component_config
* Update Documentation & Code Style
* add super().__init__() calls to error classes
* make posthog mock work with python 3.7
* Update Documentation & Code Style
* update link to docs web page
* log exceptions, send event for raised HaystackErrors, refactor Path(CONFIG_PATH)
* add comment on send_event in BaseComponent.init() and fix mypy
* mock NonPrivateParameters and fix pylint undefined-variable
* Update Documentation & Code Style
* check model path contains multiple /
* add test for writing to file
* add test for en-/disable telemetry
* Update Documentation & Code Style
* merge file deletion methods and ignore pylint global statement
* Update Documentation & Code Style
* set env variable in demo to activate telemetry
* fix mock of HAYSTACK_TELEMETRY_ENABLED
* fix mypy and linter
* add CI as env variable to execution contexts
* remove threading, add test for custom error event
* Update Documentation & Code Style
* simplify config/log file deletion
* add test for final event being sent
* force writing config file in test
* make test compatible with python 3.7
* switch to posthog production server
* Update Documentation & Code Style
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> | 5 | 0 | 74,971 | 6 |
|
1 | 12 | def test_model_with_fixed_input_dim(self):
model = test_utils.get_small_mlp(10, 3, 5)
loss_object = keras.losses.MeanSquaredError()
optimizer = gradient_descent.SGD()
| keras/saving/saving_utils_test.py | 57 | keras | {
"docstring": "Ensure that the batch_dim is removed when saving.\n\n When serving or retraining, it is important to reset the batch dim.\n This can be an issue inside of tf.function. See b/132783590 for context.\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 32,
"vocab_size": 30
} | 13 | Python | 11 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | saving_utils_test.py | 276,277 | 14 | 118 | test_model_with_fixed_input_dim | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 41 | 0 | 81,611 | 9 |
|
1 | 20 | def test_installed_without_username(self):
# Remove username to simulate privacy mode
del self.user_data_from_bitbucket["principal"]["username"]
response = self.client.post(self.path, data=self.user_data_from_bitbucket)
assert response.status_code == 200
integration = Integration.objects.get(provider=self.provider, external_id=self.client_key)
assert integration.name == self.user_display_name
assert integration.metadata == self.user_metadata
| tests/sentry/integrations/bitbucket/test_installed.py | 122 | sentry | {
"docstring": "Test a user (not team) installation where the user has hidden their username from public view",
"language": "en",
"n_whitespaces": 15,
"n_words": 16,
"vocab_size": 15
} | 31 | Python | 26 | 2790a30b7f6a6cffa2cd1aa69c678327a41a0664 | test_installed.py | 96,012 | 7 | 76 | test_installed_without_username | https://github.com/getsentry/sentry.git | fix(bitbucket): Fix domain name (#31536)
* fix(bitbucket): Fix domain name | 87 | 0 | 19,263 | 10 |
|
1 | 4 | def call(cls, reduce_function, axis=None):
| modin/core/dataframe/algebra/reduce.py | 20 | modin | {
"docstring": "\n Build Reduce operator that will be performed across rows/columns.\n\n It's used if `func` reduces the dimension of partitions in contrast to `Fold`.\n\n Parameters\n ----------\n reduce_function : callable(pandas.DataFrame) -> pandas.Series\n Source function.\n axis : int, optional\n Axis to apply function along.\n\n Returns\n -------\n callable\n Function that takes query compiler and executes Reduce function.\n ",
"language": "en",
"n_whitespaces": 156,
"n_words": 52,
"vocab_size": 47
} | 4 | Python | 4 | 58bbcc37477866d19c8b092a0e1974a4f0baa586 | reduce.py | 153,043 | 3 | 16 | call | https://github.com/modin-project/modin.git | REFACTOR-#2656: Update modin to fit algebra (code only) (#3717)
Co-authored-by: Yaroslav Igoshev <[email protected]>
Co-authored-by: Vasily Litvinov <[email protected]>
Co-authored-by: Alexey Prutskov <[email protected]>
Co-authored-by: Devin Petersohn <[email protected]>
Signed-off-by: Rehan Durrani <[email protected]> | 11 | 0 | 35,227 | 6 |
|
2 | 9 | def test_resource_exhausted_info(self):
# generate some random data to be captured implicitly in training func.
from sklearn.datasets import fetch_olivetti_faces
a_large_array = []
for i in range(50):
a_large_array.append(fetch_olivetti_faces())
| python/ray/tune/tests/test_tune_restore.py | 56 | ray | {
"docstring": "This is to test if helpful information is displayed when\n the objects captured in trainable/training function are too\n large and RESOURCES_EXHAUSTED error of gRPC is triggered.",
"language": "en",
"n_whitespaces": 39,
"n_words": 26,
"vocab_size": 24
} | 26 | Python | 25 | 46ed3557ba6b4f4f72c15ef960aba5270ada2a9c | test_tune_restore.py | 126,557 | 11 | 51 | test_resource_exhausted_info | https://github.com/ray-project/ray.git | [tune] Fix test_resource_exhausted_info test (#27426)
#27213 broke this test
Signed-off-by: Kai Fricke <[email protected]> | 72 | 0 | 28,198 | 11 |
|
9 | 26 | def check_shape(_shape, **kwargs):
target_shape = _shape
for k, v in kwargs.items():
data_shape = v.shape
if len(target_shape) != len(data_shape) or any(
t not in [s, None]
for t, s in zip(target_shape, data_shape)
):
dim_labels = iter(itertools.chain(
'MNLIJKLH',
(f"D{i}" for i in itertools.count())))
text_shape = ", ".join((str(n)
if n is not None
else next(dim_labels)
for n in target_shape))
if len(target_shape) == 1:
text_shape += ","
raise ValueError(
f"{k!r} must be {len(target_shape)}D "
f"with shape ({text_shape}). "
f"Your input has shape {v.shape}."
)
| lib/matplotlib/_api/__init__.py | 244 | matplotlib | {
"docstring": "\n For each *key, value* pair in *kwargs*, check that *value* has the shape\n *_shape*, if not, raise an appropriate ValueError.\n\n *None* in the shape is treated as a \"free\" size that can have any length.\n e.g. (None, 2) -> (N, 2)\n\n The values checked must be numpy arrays.\n\n Examples\n --------\n To check for (N, 2) shaped arrays\n\n >>> _api.check_shape((None, 2), arg=arg, other_arg=other_arg)\n ",
"language": "en",
"n_whitespaces": 93,
"n_words": 62,
"vocab_size": 54
} | 80 | Python | 62 | df3d2ab53722d191bbbc667a5ac2f7cb7cdfee84 | __init__.py | 110,468 | 22 | 134 | check_shape | https://github.com/matplotlib/matplotlib.git | Improve argument checking for set_xticks(). | 390 | 0 | 24,175 | 18 |
|
4 | 17 | def get_unicode_from_response(r):
warnings.warn(
(
"In requests 3.0, get_unicode_from_response will be removed. For "
"more information, please see the discussion on issue #2266. (This"
" warning should only appear once.)"
),
DeprecationWarning,
)
tried_encodings = []
# Try charset from content-type
encoding = get_encoding_from_headers(r.headers)
if encoding:
try:
return str(r.content, encoding)
except UnicodeError:
tried_encodings.append(encoding)
# Fall back:
try:
return str(r.content, encoding, errors="replace")
except TypeError:
return r.content
# The unreserved URI characters (RFC 3986)
UNRESERVED_SET = frozenset(
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" + "0123456789-._~"
)
| pipenv/patched/pip/_vendor/requests/utils.py | 150 | pipenv | {
"docstring": "Returns the requested content back in unicode.\n\n :param r: Response object to get unicode content from.\n\n Tried:\n\n 1. charset from content-type\n 2. fall back and replace all unicode characters\n\n :rtype: str\n ",
"language": "en",
"n_whitespaces": 49,
"n_words": 31,
"vocab_size": 28
} | 78 | Python | 67 | cd5a9683be69c86c8f3adcd13385a9bc5db198ec | utils.py | 22,137 | 20 | 76 | get_unicode_from_response | https://github.com/pypa/pipenv.git | Rename notpip to pip. Vendor in pip-22.2.1 and latest requirementslib and vistir. | 212 | 0 | 4,209 | 12 |
|
6 | 26 | def render(self, filename="SystemStateGraph.gv", view=True):
# type: (str, bool) -> None
try:
from graphviz import Digraph
except ImportError:
log_automotive.info("Please install graphviz.")
return
ps = Digraph(name="SystemStateGraph",
node_attr={"fillcolor": "lightgrey",
"style": "filled",
"shape": "box"},
graph_attr={"concentrate": "true"})
for n in self.nodes:
ps.node(str(n))
for e, f in self.__transition_functions.items():
try:
desc = "" if f is None else f[1]["desc"]
except (AttributeError, KeyError):
desc = ""
ps.edge(str(e[0]), str(e[1]), label=desc)
ps.render(filename, view=view)
| scapy/contrib/automotive/scanner/graph.py | 260 | scapy | {
"docstring": "\n Renders this Graph as PDF, if `graphviz` is installed.\n\n :param filename: A filename for the rendered PDF.\n :param view: If True, rendered file will be opened.\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 26,
"vocab_size": 24
} | 63 | Python | 53 | 495b21f2867e48286767085c8cf2918e4092e9dc | graph.py | 209,588 | 20 | 152 | render | https://github.com/secdev/scapy.git | Add Automotive Logger for all debug outputs of the automotive layer | 328 | 0 | 52,742 | 13 |
|
26 | 53 | def preprocess_data(self, ds):
if not isinstance(ds, dict):
raise AnsibleAssertionError('ds (%s) should be a dict but was a %s' % (ds, type(ds)))
# the new, cleaned datastructure, which will have legacy
# items reduced to a standard structure suitable for the
# attributes of the task class
new_ds = AnsibleMapping()
if isinstance(ds, AnsibleBaseYAMLObject):
new_ds.ansible_pos = ds.ansible_pos
# since this affects the task action parsing, we have to resolve in preprocess instead of in typical validator
default_collection = AnsibleCollectionConfig.default_collection
collections_list = ds.get('collections')
if collections_list is None:
# use the parent value if our ds doesn't define it
collections_list = self.collections
else:
# Validate this untemplated field early on to guarantee we are dealing with a list.
# This is also done in CollectionSearch._load_collections() but this runs before that call.
collections_list = self.get_validated_value('collections', self.fattributes.get('collections'), collections_list, None)
if default_collection and not self._role: # FIXME: and not a collections role
if collections_list:
if default_collection not in collections_list:
collections_list.insert(0, default_collection)
else:
collections_list = [default_collection]
if collections_list and 'ansible.builtin' not in collections_list and 'ansible.legacy' not in collections_list:
collections_list.append('ansible.legacy')
if collections_list:
ds['collections'] = collections_list
# use the args parsing class to determine the action, args,
# and the delegate_to value from the various possible forms
# supported as legacy
args_parser = ModuleArgsParser(task_ds=ds, collection_list=collections_list)
try:
(action, args, delegate_to) = args_parser.parse()
except AnsibleParserError as e:
# if the raises exception was created with obj=ds args, then it includes the detail
# so we dont need to add it so we can just re raise.
if e.obj:
raise
# But if it wasn't, we can add the yaml object now to get more detail
raise AnsibleParserError(to_native(e), obj=ds, orig_exc=e)
else:
self.resolved_action = args_parser.resolved_action
# the command/shell/script modules used to support the `cmd` arg,
# which corresponds to what we now call _raw_params, so move that
# value over to _raw_params (assuming it is empty)
if action in C._ACTION_HAS_CMD:
if 'cmd' in args:
if args.get('_raw_params', '') != '':
raise AnsibleError("The 'cmd' argument cannot be used when other raw parameters are specified."
" Please put everything in one or the other place.", obj=ds)
args['_raw_params'] = args.pop('cmd')
new_ds['action'] = action
new_ds['args'] = args
new_ds['delegate_to'] = delegate_to
# we handle any 'vars' specified in the ds here, as we may
# be adding things to them below (special handling for includes).
# When that deprecated feature is removed, this can be too.
if 'vars' in ds:
# _load_vars is defined in Base, and is used to load a dictionary
# or list of dictionaries in a standard way
new_ds['vars'] = self._load_vars(None, ds.get('vars'))
else:
new_ds['vars'] = dict()
for (k, v) in ds.items():
if k in ('action', 'local_action', 'args', 'delegate_to') or k == action or k == 'shell':
# we don't want to re-assign these values, which were determined by the ModuleArgsParser() above
continue
elif k.startswith('with_') and k.replace("with_", "") in lookup_loader:
# transform into loop property
self._preprocess_with_loop(ds, new_ds, k, v)
elif C.INVALID_TASK_ATTRIBUTE_FAILED or k in self._valid_attrs:
new_ds[k] = v
else:
display.warning("Ignoring invalid attribute: %s" % k)
return super(Task, self).preprocess_data(new_ds)
| lib/ansible/playbook/task.py | 737 | ansible | {
"docstring": "\n tasks are especially complex arguments so need pre-processing.\n keep it short.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 11,
"vocab_size": 11
} | 491 | Python | 278 | 43153c58310d02223f2cb0964f4255ba1ac4ed53 | task.py | 267,587 | 54 | 421 | preprocess_data | https://github.com/ansible/ansible.git | `FieldAttribute`s as descriptors (#73908) | 1,282 | 0 | 78,966 | 15 |
|
1 | 13 | def test_custom_changelist(self):
# Insert some data
post_data = {"name": "First Gadget"}
response = self.client.post(reverse("admin:admin_views_gadget_add"), post_data)
self.assertEqual(response.status_code, 302) # redirect somewhere
# Hit the page once to get messages out of the queue message list
response = self.client.get(reverse("admin:admin_views_gadget_changelist"))
# Data is still not visible on the page
response = self.client.get(reverse("admin:admin_views_gadget_changelist"))
self.assertNotContains(response, "First Gadget")
@override_settings(ROOT_URLCONF="admin_views.urls") | tests/admin_views/tests.py | 146 | @override_settings(ROOT_URLCONF="admin_views.urls") | django | {
"docstring": "\n Validate that a custom ChangeList class can be used (#9749)\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 10,
"vocab_size": 10
} | 53 | Python | 40 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | tests.py | 207,588 | 7 | 72 | test_custom_changelist | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 123 | 1 | 52,011 | 11 |
3 | 7 | def fdiff(self, argindex=1):
if argindex == 1:
return Pow(self.args[0], self.args[1])*self.args[1]/self.args[0]
elif argindex == 2:
return log(self.args[0])*Pow(*self.args)
else:
raise ArgumentIndexError(self, argindex)
| sympy/codegen/scipy_nodes.py | 120 | sympy | {
"docstring": "\n Returns the first derivative of this function.\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 7,
"vocab_size": 7
} | 20 | Python | 17 | 27ff0c7bf7062f5b4b80ad12098e6422af5fcb44 | scipy_nodes.py | 200,522 | 7 | 78 | fdiff | https://github.com/sympy/sympy.git | more tests of cosm1, powm1 from scipy.special | 81 | 0 | 49,688 | 13 |
|
1 | 6 | def isocalendar(self):
return self._get_values().isocalendar().set_index(self._parent.index)
| pandas/core/indexes/accessors.py | 44 | pandas | {
"docstring": "\n Calculate year, week, and day according to the ISO 8601 standard.\n\n .. versionadded:: 1.1.0\n\n Returns\n -------\n DataFrame\n With columns year, week and day.\n\n See Also\n --------\n Timestamp.isocalendar : Function return a 3-tuple containing ISO year,\n week number, and weekday for the given Timestamp object.\n datetime.date.isocalendar : Return a named tuple object with\n three components: year, week and weekday.\n\n Examples\n --------\n >>> ser = pd.to_datetime(pd.Series([\"2010-01-01\", pd.NaT]))\n >>> ser.dt.isocalendar()\n year week day\n 0 2009 53 5\n 1 <NA> <NA> <NA>\n >>> ser.dt.isocalendar().week\n 0 53\n 1 <NA>\n Name: week, dtype: UInt32\n ",
"language": "en",
"n_whitespaces": 293,
"n_words": 88,
"vocab_size": 64
} | 4 | Python | 4 | 5531195f6f0d87817a704b288008809a3c98a304 | accessors.py | 165,949 | 2 | 25 | isocalendar | https://github.com/pandas-dev/pandas.git | fix-ci-isocalendar (#46690) | 18 | 0 | 39,746 | 11 |
|
2 | 10 | def is_solenoidal(field):
# Field is solenoidal irrespective of frame
# Take the first frame in the result of the separate method in Vector
if field == Vector(0):
return True
frame = list(field.separate())[0]
return divergence(field, frame).simplify() is S.Zero
| sympy/physics/vector/fieldfunctions.py | 75 | sympy | {
"docstring": "\n Checks if a field is solenoidal.\n\n Parameters\n ==========\n\n field : Vector\n The field to check for solenoidal property\n\n Examples\n ========\n\n >>> from sympy.physics.vector import ReferenceFrame\n >>> from sympy.physics.vector import is_solenoidal\n >>> R = ReferenceFrame('R')\n >>> is_solenoidal(R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z)\n True\n >>> is_solenoidal(R[1] * R.y)\n False\n\n ",
"language": "en",
"n_whitespaces": 96,
"n_words": 46,
"vocab_size": 36
} | 37 | Python | 28 | 9a3ffc6781bd44c47cf49e128ef154389c32876a | fieldfunctions.py | 197,436 | 5 | 44 | is_solenoidal | https://github.com/sympy/sympy.git | Some pep8 cleanup of sympy.physics.vector. | 62 | 0 | 48,544 | 11 |
|
2 | 5 | def _allow_scroll(self) -> bool:
return self.allow_horizontal_scroll and self.allow_vertical_scroll
| src/textual/widget.py | 28 | textual | {
"docstring": "Check if both axis may be scrolled.\n\n Returns:\n bool: True if horizontal and vertical scrolling is enabled.\n ",
"language": "en",
"n_whitespaces": 42,
"n_words": 17,
"vocab_size": 16
} | 8 | Python | 8 | b22436933acc0d7440ec300f971a249bd6105a5b | widget.py | 184,630 | 7 | 16 | _allow_scroll | https://github.com/Textualize/textual.git | lots of docstrings | 22 | 0 | 44,728 | 7 |
|
1 | 25 | def test_align_labels():
fig, (ax3, ax1, ax2) = plt.subplots(3, 1, layout="constrained",
figsize=(6.4, 8),
gridspec_kw={"height_ratios": (1, 1,
0.7)})
ax1.set_ylim(0, 1)
ax1.set_ylabel("Label")
ax2.set_ylim(-1.5, 1.5)
ax2.set_ylabel("Label")
ax3.set_ylim(0, 1)
ax3.set_ylabel("Label")
fig.align_ylabels(axs=(ax3, ax1, ax2))
fig.draw_without_rendering()
after_align = [ax1.yaxis.label.get_window_extent(),
ax2.yaxis.label.get_window_extent(),
ax3.yaxis.label.get_window_extent()]
# ensure labels are approximately aligned
np.testing.assert_allclose([after_align[0].x0, after_align[2].x0],
after_align[1].x0, rtol=0, atol=1e-05)
# ensure labels do not go off the edge
assert after_align[0].x0 >= 1
| lib/matplotlib/tests/test_constrainedlayout.py | 294 | matplotlib | {
"docstring": "\n Tests for a bug in which constrained layout and align_ylabels on\n three unevenly sized subplots, one of whose y tick labels include\n negative numbers, drives the non-negative subplots' y labels off\n the edge of the plot\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 36,
"vocab_size": 31
} | 58 | Python | 51 | ec4dfbc3c83866f487ff0bc9c87b0d43a1c02b22 | test_constrainedlayout.py | 107,162 | 19 | 200 | test_align_labels | https://github.com/matplotlib/matplotlib.git | ENH: implement and use base layout_engine for more flexible layout. | 317 | 0 | 22,617 | 12 |
|
1 | 5 | def tag(value, viewname=None):
return {
'tag': value,
'viewname': viewname,
}
@register.inclusion_tag('builtins/badge.html') | netbox/utilities/templatetags/builtins/tags.py | 51 | @register.inclusion_tag('builtins/badge.html') | netbox | {
"docstring": "\n Display a tag, optionally linked to a filtered list of objects.\n\n Args:\n value: A Tag instance\n viewname: If provided, the tag will be a hyperlink to the specified view's URL\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 30,
"vocab_size": 26
} | 11 | Python | 11 | 7c105019d8ae9205051c302e7499b33a455f9176 | tags.py | 264,451 | 5 | 21 | tag | https://github.com/netbox-community/netbox.git | Closes #8600: Document built-in template tags & filters | 33 | 1 | 77,737 | 8 |
2 | 32 | def forward(self, x, mask=None):
B_, N, C = x.shape
qkv = self.qkv(x).reshape(
[-1, N, 3, self.num_heads, C // self.num_heads]).transpose(
[2, 0, 3, 1, 4])
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = paddle.mm(q, k.transpose([0, 1, 3, 2]))
index = self.relative_position_index.flatten()
relative_position_bias = paddle.index_select(
self.relative_position_bias_table, index)
relative_position_bias = relative_position_bias.reshape([
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1], -1
]) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.transpose(
[2, 0, 1]) # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.reshape([-1, nW, self.num_heads, N, N
]) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.reshape([-1, self.num_heads, N, N])
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
# x = (attn @ v).transpose(1, 2).reshape([B_, N, C])
x = paddle.mm(attn, v).transpose([0, 2, 1, 3]).reshape([-1, N, C])
x = self.proj(x)
x = self.proj_drop(x)
return x
| ppdet/modeling/backbones/swin_transformer.py | 510 | PaddleDetection | {
"docstring": " Forward function.\n Args:\n x: input features with shape of (num_windows*B, N, C)\n mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None\n ",
"language": "en",
"n_whitespaces": 60,
"n_words": 23,
"vocab_size": 20
} | 139 | Python | 81 | e6d4d2bc7ba5eb4aa543e3439fa4e24cdd68d028 | swin_transformer.py | 211,049 | 31 | 337 | forward | https://github.com/PaddlePaddle/PaddleDetection.git | fix export_model for swin (#6399) | 438 | 0 | 53,015 | 13 |
|
5 | 12 | def handle_m2m_field(self, obj, field):
if field.remote_field.through._meta.auto_created:
self._start_relational_field(field)
if self.use_natural_foreign_keys and hasattr(
field.remote_field.model, "natural_key"
):
# If the objects in the m2m have a natural key, use it | django/core/serializers/xml_serializer.py | 71 | django | {
"docstring": "\n Handle a ManyToManyField. Related objects are only serialized as\n references to the object's PK (i.e. the related *data* is not dumped,\n just the relation).\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 24,
"vocab_size": 22
} | 27 | Python | 25 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | xml_serializer.py | 204,761 | 16 | 98 | handle_m2m_field | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 104 | 0 | 50,875 | 12 |
|
1 | 15 | def test_get_with_extra_component(self):
# Generate signature
signature = generate_signature(self.image.id, "fill-800x600")
# Get the image
response = self.client.get(
reverse(
"wagtailimages_serve", args=(signature, self.image.id, "fill-800x600")
)
+ "test.png"
)
# Check response
self.assertEqual(response.status_code, 200)
self.assertTrue(response.streaming)
self.assertEqual(response["Content-Type"], "image/png")
| wagtail/images/tests/tests.py | 132 | wagtail | {
"docstring": "\n Test that a filename can be optionally added to the end of the URL.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 14,
"vocab_size": 13
} | 33 | Python | 26 | d10f15e55806c6944827d801cd9c2d53f5da4186 | tests.py | 75,351 | 11 | 76 | test_get_with_extra_component | https://github.com/wagtail/wagtail.git | Reformat with black | 151 | 0 | 16,398 | 15 |
|
1 | 2 | def with_cleanup(func):
# type: (Any) -> Any
| .venv/lib/python3.8/site-packages/pip/_internal/cli/req_command.py | 14 | transferlearning | {
"docstring": "Decorator for common logic related to managing temporary\n directories.\n ",
"language": "en",
"n_whitespaces": 15,
"n_words": 9,
"vocab_size": 9
} | 7 | Python | 7 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | req_command.py | 60,556 | 4 | 12 | with_cleanup | https://github.com/jindongwang/transferlearning.git | upd; format | 13 | 0 | 12,207 | 6 |
|
7 | 11 | def convert_path(pathname):
if os.sep == '/':
return pathname
if not pathname:
return pathname
if pathname[0] == '/':
raise ValueError("path '%s' cannot be absolute" % pathname)
if pathname[-1] == '/':
raise ValueError("path '%s' cannot end with '/'" % pathname)
paths = pathname.split('/')
while os.curdir in paths:
paths.remove(os.curdir)
if not paths:
return os.curdir
return os.path.join(*paths)
| .venv/lib/python3.8/site-packages/pip/_vendor/distlib/util.py | 163 | transferlearning | {
"docstring": "Return 'pathname' as a name that will work on the native filesystem.\n\n The path is split on '/' and put back together again using the current\n directory separator. Needed because filenames in the setup script are\n always supplied in Unix style, and have to be converted to the local\n convention before we can actually use them in the filesystem. Raises\n ValueError on non-Unix-ish systems if 'pathname' either starts or\n ends with a slash.\n ",
"language": "en",
"n_whitespaces": 96,
"n_words": 73,
"vocab_size": 60
} | 53 | Python | 32 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | util.py | 62,143 | 15 | 93 | convert_path | https://github.com/jindongwang/transferlearning.git | upd; format | 122 | 0 | 12,879 | 11 |
|
3 | 13 | def _wrap_data_with_container(method, data_to_wrap, original_input, estimator):
output_config = _get_output_config(method, estimator)
if output_config["dense"] == "default" or not _auto_wrap_is_configured(estimator):
return data_to_wrap
# dense_config == "pandas"
return _wrap_in_pandas_container(
data_to_wrap=data_to_wrap,
index=getattr(original_input, "index", None),
columns=estimator.get_feature_names_out,
)
| sklearn/utils/_set_output.py | 97 | scikit-learn | {
"docstring": "Wrap output with container based on an estimator's or global config.\n\n Parameters\n ----------\n method : {\"transform\"}\n Estimator's method to get container output for.\n\n data_to_wrap : {ndarray, dataframe}\n Data to wrap with container.\n\n original_input : {ndarray, dataframe}\n Original input of function.\n\n estimator : estimator instance\n Estimator with to get the output configuration from.\n\n Returns\n -------\n output : {ndarray, dataframe}\n If the output config is \"default\" or the estimator is not configured\n for wrapping return `data_to_wrap` unchanged.\n If the output config is \"pandas\", return `data_to_wrap` as a pandas\n DataFrame.\n ",
"language": "en",
"n_whitespaces": 173,
"n_words": 87,
"vocab_size": 55
} | 30 | Python | 28 | 2a6703d9e8d1e54d22dd07f2bfff3c92adecd758 | _set_output.py | 261,326 | 9 | 61 | _wrap_data_with_container | https://github.com/scikit-learn/scikit-learn.git | ENH Introduces set_output API for pandas output (#23734)
* Introduces set_output API for all transformers
* TransformerMixin inherits from _SetOutputMixin
* Adds tests
* Adds whatsnew
* Adds example on using set_output API
* Adds developer docs for set_output | 76 | 0 | 76,754 | 11 |
|
1 | 3 | def is_origin(self) -> bool:
return self == (0, 0)
| src/textual/geometry.py | 27 | textual | {
"docstring": "Check if the point is at the origin (0, 0).\n\n Returns:\n bool: True if the offset is the origin.\n\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 19,
"vocab_size": 14
} | 9 | Python | 9 | c0a631ac492580c2d8a311cdd69385cbc95a7fc0 | geometry.py | 184,593 | 8 | 16 | is_origin | https://github.com/Textualize/textual.git | faster screenshots, docstrings | 23 | 0 | 44,695 | 7 |
|
4 | 15 | def get_text_heights(self, renderer):
bbox, bbox2 = self.get_ticklabel_extents(renderer)
# MGDTODO: Need a better way to get the pad
pad_pixels = self.majorTicks[0].get_pad_pixels()
above = 0.0
if bbox2.height:
above += bbox2.height + pad_pixels
below = 0.0
if bbox.height:
below += bbox.height + pad_pixels
if self.get_label_position() == 'top':
above += self.label.get_window_extent(renderer).height + pad_pixels
else:
below += self.label.get_window_extent(renderer).height + pad_pixels
return above, below
| lib/matplotlib/axis.py | 170 | matplotlib | {
"docstring": "\n Return how much space should be reserved for text above and below the\n Axes, as a pair of floats.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 19,
"vocab_size": 19
} | 58 | Python | 36 | f156db08eee54d285ab0fb4e031e48d078ba6aa3 | axis.py | 107,485 | 14 | 107 | get_text_heights | https://github.com/matplotlib/matplotlib.git | DOC: More cleanup axes -> Axes | 179 | 0 | 22,774 | 14 |
|
1 | 6 | def mask(self, row_indices, col_indices):
return (
self.force_materialization()
.list_of_block_partitions[0]
.mask(row_indices, col_indices)
)
| modin/core/execution/dask/implementations/pandas_on_dask/partitioning/virtual_partition.py | 47 | modin | {
"docstring": "\n Create (synchronously) a mask that extracts the indices provided.\n\n Parameters\n ----------\n row_indices : list-like, slice or label\n The row labels for the rows to extract.\n col_indices : list-like, slice or label\n The column labels for the columns to extract.\n\n Returns\n -------\n PandasOnDaskDataframeVirtualPartition\n A new ``PandasOnDaskDataframeVirtualPartition`` object,\n materialized.\n ",
"language": "en",
"n_whitespaces": 155,
"n_words": 47,
"vocab_size": 35
} | 11 | Python | 11 | 9bf8d57ca44e22fd69b0abc55793cf60c199ab4d | virtual_partition.py | 154,161 | 6 | 30 | mask | https://github.com/modin-project/modin.git | FIX-#4676: drain sub-virtual-partition call queues. (#4695)
Signed-off-by: mvashishtha <[email protected]>
Co-authored-by: Alexey Prutskov <[email protected]> | 65 | 0 | 35,821 | 12 |
|
1 | 5 | def site_config_path(self) -> Path:
return self._first_item_as_path_if_multipath(self.site_config_dir)
| pipenv/patched/notpip/_vendor/platformdirs/unix.py | 30 | pipenv | {
"docstring": ":return: config path shared by the users. Only return first item, even if ``multipath`` is set to ``True``",
"language": "en",
"n_whitespaces": 17,
"n_words": 18,
"vocab_size": 18
} | 6 | Python | 6 | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | unix.py | 20,231 | 3 | 17 | site_config_path | https://github.com/pypa/pipenv.git | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 20 | 0 | 3,283 | 8 |
|
4 | 23 | def send_sale_toggle_notifications():
manager = get_plugins_manager()
sales = get_sales_to_notify_about()
catalogue_infos = fetch_catalogue_infos(sales)
if not sales:
return
for sale in sales:
catalogues = catalogue_infos.get(sale.id)
manager.sale_toggle(sale, catalogues)
sale_ids = ", ".join([str(sale.id) for sale in sales])
sales.update(notification_sent_datetime=datetime.now(pytz.UTC))
task_logger.info("The sale_toggle webhook sent for sales with ids: %s", sale_ids)
| saleor/discount/tasks.py | 153 | saleor | {
"docstring": "Send the notification about starting or ending sales.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 43 | Python | 33 | 67492396aa41d068cac82e8fa328f218b5951d13 | tasks.py | 27,919 | 12 | 91 | send_sale_toggle_notifications | https://github.com/saleor/saleor.git | New event for starting and ending sales (#10110)
* Add sale started and sale ended webhooks
* Add started_notification_sent and ended_notification_sent flags to Sale model
* Add sale_webhook_schedule
* Add send_sale_started_and_sale_ended_notifications discount task
* Add tests for discount tasks
* Move sale task celery beat schedule to settings
* Add tests for sale_webhook_schedule
* Add sale_started and sale_ended methods to PluginSample
* Update send_sale_started_and_sale_ended_notifications logging
* Update SaleUpdate mutation - ensure the notification is sent and the flag is changed if needed
* Update SaleCreate mutation - send sale_creatd and sale_ended notifications
* Optimize fetch_catalogue_info
* Clean up
* Apply code review suggestions
* Add SALE_TOGGLE webhook
* Use sale_toggle webhook instead of sale_started and sale_ended
* Delete sale_started and sale_eded wbhooks
* Drop notification flags from Sale model
* Add missing docstrings and comments
* Fix failing tests
* Update changelog
* Add description for SaleToggle event type
* Update discount task and webhook schedule
* Set notification_sent_datetime to current date by default
* Fix typo in comment | 91 | 0 | 5,140 | 12 |
|
1 | 4 | def isasyncgenfunction(obj):
return _has_code_flag(obj, CO_ASYNC_GENERATOR)
| python3.10.4/Lib/inspect.py | 23 | XX-Net | {
"docstring": "Return true if the object is an asynchronous generator function.\n\n Asynchronous generator functions are defined with \"async def\"\n syntax and have \"yield\" expressions in their body.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 26,
"vocab_size": 25
} | 5 | Python | 5 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | inspect.py | 218,469 | 2 | 13 | isasyncgenfunction | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 11 | 0 | 55,329 | 7 |
|
9 | 17 | def parse_known_args(self, args=None, namespace=None, nohelp=False):
if args is None:
# args default to the system args
args = _sys.argv[1:]
args = fix_underscores(args)
# handle the single dash stuff. See _handle_single_dash_addarg for info
actions = set()
for action in self._actions:
actions.update(action.option_strings)
args = self._handle_single_dash_parsearg(args, actions)
if nohelp:
# ignore help
args = [
a
for a in args
if a != '-h' and a != '--help' and a != '--helpall' and a != '--h'
]
return super().parse_known_args(args, namespace)
| parlai/core/params.py | 177 | ParlAI | {
"docstring": "\n Parse known args to ignore help flag.\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 7,
"vocab_size": 7
} | 77 | Python | 48 | 4291c8a63a3ae9e7107dda0f90fff8da3b31d29b | params.py | 195,034 | 15 | 107 | parse_known_args | https://github.com/facebookresearch/ParlAI.git | python 3.8 parser fix on args_that_override (#4507)
* single dash
* handle args during parsing | 251 | 0 | 47,160 | 15 |
|
2 | 4 | def on_kill(self) -> None:
if self.hook:
self.hook.cancel_job()
| airflow/providers/google/cloud/operators/vertex_ai/custom_job.py | 36 | airflow | {
"docstring": "\n Callback called when the operator is killed.\n Cancel any running job.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 11,
"vocab_size": 11
} | 7 | Python | 7 | 640c0b67631c5f2c8ee866b0726fa7a8a452cd3c | custom_job.py | 44,285 | 7 | 20 | on_kill | https://github.com/apache/airflow.git | Create CustomJob and Datasets operators for Vertex AI service (#20077) | 32 | 0 | 8,232 | 10 |
|
2 | 10 | def debug_print(self, msg):
from distutils.debug import DEBUG
if DEBUG:
print(msg)
sys.stdout.flush()
# -- Option validation methods -------------------------------------
# (these are very handy in writing the 'finalize_options()' method)
#
# NB. the general philosophy here is to ensure that a particular option
# value meets certain type and value constraints. If not, we try to
# force it into conformance (eg. if we expect a list but have a string,
# split the string on comma and/or whitespace). If we can't force the
# option into conformance, raise DistutilsOptionError. Thus, command
# classes need do nothing more than (eg.)
# self.ensure_string_list('foo')
# and they can be guaranteed that thereafter, self.foo will be
# a list of strings.
| python3.10.4/Lib/distutils/cmd.py | 60 | XX-Net | {
"docstring": "Print 'msg' to stdout if the global DEBUG (taken from the\n DISTUTILS_DEBUG environment variable) flag is true.\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 17,
"vocab_size": 16
} | 116 | Python | 86 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | cmd.py | 222,616 | 5 | 28 | debug_print | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 200 | 0 | 56,677 | 10 |
|
1 | 4 | def test_large_params(ray_start_4_cpus):
array_size = int(1e8)
| python/ray/train/tests/test_base_trainer.py | 23 | ray | {
"docstring": "Tests if large arguments are can be serialized by the Trainer.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 5 | Python | 5 | 2b62bba7c4014c8d943b197bf8396df7dd0f82e3 | test_base_trainer.py | 128,168 | 6 | 48 | test_large_params | https://github.com/ray-project/ray.git | [AIR] Support large checkpoints and other arguments (#28826)
Signed-off-by: Amog Kamsetty [email protected]
Previously the arguments passed to the Trainer would be captured in the Trainable context. For arguments that are very large in size, this would prevent the Trainable from being registered due to gRPC resource limits.
Instead, we now always use tune.with_parameters to save the Trainer arguments in the object store rather than capturing it in the context. | 11 | 0 | 28,617 | 8 |
|
1 | 2 | def lataxis(self):
return self["lataxis"]
| packages/python/plotly/plotly/graph_objs/layout/_geo.py | 22 | plotly.py | {
"docstring": "\n The 'lataxis' property is an instance of Lataxis\n that may be specified as:\n - An instance of :class:`plotly.graph_objs.layout.geo.Lataxis`\n - A dict of string/value properties that will be passed\n to the Lataxis constructor\n\n Supported dict properties:\n\n dtick\n Sets the graticule's longitude/latitude tick\n step.\n gridcolor\n Sets the graticule's stroke color.\n gridwidth\n Sets the graticule's stroke width (in px).\n range\n Sets the range of this axis (in degrees), sets\n the map's clipped coordinates.\n showgrid\n Sets whether or not graticule are shown on the\n map.\n tick0\n Sets the graticule's starting tick\n longitude/latitude.\n\n Returns\n -------\n plotly.graph_objs.layout.geo.Lataxis\n ",
"language": "en",
"n_whitespaces": 454,
"n_words": 91,
"vocab_size": 63
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _geo.py | 231,525 | 2 | 11 | lataxis | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 62,969 | 7 |
|
1 | 7 | def make_token(self, user):
return self._make_token_with_timestamp(
user,
self._num_seconds(self._now()),
self.secret,
)
| django/contrib/auth/tokens.py | 49 | django | {
"docstring": "\n Return a token that can be used once to do a password reset\n for the given user.\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 17,
"vocab_size": 16
} | 9 | Python | 9 | 0dcd549bbe36c060f536ec270d34d9e7d4b8e6c7 | tokens.py | 203,186 | 6 | 31 | make_token | https://github.com/django/django.git | Fixed #30360 -- Added support for secret key rotation.
Thanks Florian Apolloner for the implementation idea.
Co-authored-by: Andreas Pelme <[email protected]>
Co-authored-by: Carlton Gibson <[email protected]>
Co-authored-by: Vuyisile Ndlovu <[email protected]> | 63 | 0 | 50,245 | 11 |
|
12 | 49 | def get_process_curses_data(self, p, selected, args):
ret = [self.curse_new_line()]
# When a process is selected:
# * display a special character at the beginning of the line
# * underline the command name
ret.append(self.curse_add_line(unicode_message('PROCESS_SELECTOR') if (selected and not args.disable_cursor) else ' ', 'SELECTED'))
# CPU
ret.append(self._get_process_curses_cpu(p, selected, args))
# MEM
ret.append(self._get_process_curses_mem(p, selected, args))
ret.append(self._get_process_curses_vms(p, selected, args))
ret.append(self._get_process_curses_rss(p, selected, args))
# PID
if not self.args.programs:
# Display processes, so the PID should be displayed
msg = self.layout_stat['pid'].format(p['pid'], width=self.__max_pid_size())
else:
# Display programs, so the PID should not be displayed
# Instead displays the number of children
msg = self.layout_stat['pid'].format(
len(p['childrens']) if 'childrens' in p else '_', width=self.__max_pid_size()
)
ret.append(self.curse_add_line(msg))
# USER
ret.append(self._get_process_curses_username(p, selected, args))
# TIME+
ret.append(self._get_process_curses_time(p, selected, args))
# THREAD
ret.append(self._get_process_curses_thread(p, selected, args))
# NICE
ret.append(self._get_process_curses_nice(p, selected, args))
# STATUS
ret.append(self._get_process_curses_status(p, selected, args))
# IO read/write
ret.append(self._get_process_curses_io_read(p, selected, args))
ret.append(self._get_process_curses_io_write(p, selected, args))
# Command line
# If no command line for the process is available, fallback to the bare process name instead
bare_process_name = p['name']
cmdline = p.get('cmdline', '?')
try:
process_decoration = 'PROCESS_SELECTED' if (selected and not args.disable_cursor) else 'PROCESS'
if cmdline:
path, cmd, arguments = split_cmdline(bare_process_name, cmdline)
# Manage end of line in arguments (see #1692)
arguments.replace('\r\n', ' ')
arguments.replace('\n', ' ')
if os.path.isdir(path) and not args.process_short_name:
msg = self.layout_stat['command'].format(path) + os.sep
ret.append(self.curse_add_line(msg, splittable=True))
ret.append(self.curse_add_line(cmd, decoration=process_decoration, splittable=True))
else:
msg = self.layout_stat['command'].format(cmd)
ret.append(self.curse_add_line(msg, decoration=process_decoration, splittable=True))
if arguments:
msg = ' ' + self.layout_stat['command'].format(arguments)
ret.append(self.curse_add_line(msg, splittable=True))
else:
msg = self.layout_stat['name'].format(bare_process_name)
ret.append(self.curse_add_line(msg, decoration=process_decoration, splittable=True))
except (TypeError, UnicodeEncodeError) as e:
# Avoid crash after running fine for several hours #1335
logger.debug("Can not decode command line '{}' ({})".format(cmdline, e))
ret.append(self.curse_add_line('', splittable=True))
return ret
| glances/plugins/glances_processlist.py | 920 | glances | {
"docstring": "Get curses data to display for a process.\n\n - p is the process to display\n - selected is a tag=True if p is the selected process\n ",
"language": "en",
"n_whitespaces": 47,
"n_words": 26,
"vocab_size": 16
} | 268 | Python | 147 | 9614e2bb19c6bdd512fea5dafbed1250da0049d9 | glances_processlist.py | 70,279 | 46 | 560 | get_process_curses_data | https://github.com/nicolargo/glances.git | First version but UI should be improved and when user is in program mode, it did not work... | 935 | 0 | 15,483 | 17 |
|
1 | 14 | async def test_available_template_with_entities(hass):
await setup.async_setup_component(
hass,
"switch",
{
"switch": {
"platform": "template",
"switches": {
"test_template_switch": {
**OPTIMISTIC_SWITCH_CONFIG,
"value_template": "{{ 1 == 1 }}",
"availability_template": "{{ is_state('availability_state.state', 'on') }}",
}
},
}
},
)
await hass.async_block_till_done()
await hass.async_start()
await hass.async_block_till_done()
hass.states.async_set("availability_state.state", STATE_ON)
await hass.async_block_till_done()
assert hass.states.get("switch.test_template_switch").state != STATE_UNAVAILABLE
hass.states.async_set("availability_state.state", STATE_OFF)
await hass.async_block_till_done()
assert hass.states.get("switch.test_template_switch").state == STATE_UNAVAILABLE
| tests/components/template/test_switch.py | 224 | core | {
"docstring": "Test availability templates with values from other entities.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 55 | Python | 34 | 11cc1feb853bcfd9633ebfc44eae142c10a7f983 | test_switch.py | 300,441 | 26 | 123 | test_available_template_with_entities | https://github.com/home-assistant/core.git | Tweak template switch tests (#71738) | 293 | 0 | 99,301 | 17 |
|
1 | 18 | def test_delete_button_with_next_url(self):
# page_listing_more_button generator yields only `Delete button` with this permission set
page_perms = DeleteOnlyPagePerms()
page = self.root_page
base_url = reverse("wagtailadmin_pages:delete", args=[page.id])
next_url = "a/random/url/"
full_url = base_url + "?" + urlencode({"next": next_url})
delete_button = next(
page_listing_more_buttons(page, page_perms, next_url=next_url)
)
self.assertEqual(delete_button.url, full_url)
| wagtail/admin/tests/test_buttons_hooks.py | 124 | wagtail | {
"docstring": "\n Ensure that the built in delete button supports a next_url provided.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 11,
"vocab_size": 11
} | 43 | Python | 36 | bf65fa94ea5aa17f3c42e5cb5401fb7d34a60b5e | test_buttons_hooks.py | 79,300 | 10 | 72 | test_delete_button_with_next_url | https://github.com/wagtail/wagtail.git | fix issue with edit page header delete button showing an invalid next_url
- fixes #9195
- header button on edit page & page listing - unpublish now correctly includes the next url (was missing on page listing previously)
- header button on edit page - delete button does not include next url (as this would be the edit page for what was deleted)
- adds more robust unit tests for the page listing & page header more hooks, including separating the tests out to separate classes | 124 | 0 | 16,914 | 12 |
|
6 | 29 | async def get_cluster_status(self, req):
(legacy_status, formatted_status_string, error) = await asyncio.gather(
*[
self._gcs_aio_client.internal_kv_get(
key.encode(), namespace=None, timeout=GCS_RPC_TIMEOUT_SECONDS
)
for key in [
DEBUG_AUTOSCALING_STATUS_LEGACY,
DEBUG_AUTOSCALING_STATUS,
DEBUG_AUTOSCALING_ERROR,
]
]
)
formatted_status = (
json.loads(formatted_status_string.decode())
if formatted_status_string
else {}
)
return dashboard_optional_utils.rest_response(
success=True,
message="Got cluster status.",
autoscaling_status=legacy_status.decode() if legacy_status else None,
autoscaling_error=error.decode() if error else None,
cluster_status=formatted_status if formatted_status else None,
)
| dashboard/modules/reporter/reporter_head.py | 180 | ray | {
"docstring": "Returns status information about the cluster.\n\n Currently contains two fields:\n autoscaling_status (str)-- a status message from the autoscaler.\n autoscaling_error (str)-- an error message from the autoscaler if\n anything has gone wrong during autoscaling.\n\n These fields are both read from the GCS, it's expected that the\n autoscaler writes them there.\n ",
"language": "en",
"n_whitespaces": 114,
"n_words": 49,
"vocab_size": 39
} | 57 | Python | 43 | dac7bf17d9214dd3b79238caf0c8ec76f40328c6 | reporter_head.py | 126,860 | 25 | 121 | get_cluster_status | https://github.com/ray-project/ray.git | [serve] Make serve agent not blocking when GCS is down. (#27526)
This PR fixed several issue which block serve agent when GCS is down. We need to make sure serve agent is always alive and can make sure the external requests can be sent to the agent and check the status.
- internal kv used in dashboard/agent blocks the agent. We use the async one instead
- serve controller use ray.nodes which is a blocking call and blocking forever. change to use gcs client with timeout
- agent use serve controller client which is a blocking call with max retries = -1. This blocks until controller is back.
To enable Serve HA, we also need to setup:
- RAY_gcs_server_request_timeout_seconds=5
- RAY_SERVE_KV_TIMEOUT_S=5
which we should set in KubeRay. | 352 | 0 | 28,284 | 15 |
|
7 | 23 | def piecewise_exclusive(expr, *, skip_nan=False):
if not expr.has(Piecewise):
return expr
if isinstance(expr, Piecewise):
cumcond = false
newargs = []
for arg in expr.args:
cancond = And(arg.cond, Not(cumcond)).simplify()
cumcond = Or(arg.cond, cumcond).simplify()
newargs.append(
ExprCondPair(piecewise_exclusive(arg.expr, skip_nan=skip_nan),
cancond))
if not skip_nan and cumcond is not true:
newargs.append(ExprCondPair(Undefined, Not(cumcond).simplify()))
return Piecewise(*newargs, evaluate=False)
return expr.func(*[piecewise_exclusive(arg, skip_nan=skip_nan)
for arg in expr.args],
evaluate=False)
| sympy/functions/elementary/piecewise.py | 249 | sympy | {
"docstring": "\n Return a :class:`Piecewise` with exclusive conditions, i.e., where exactly\n one condition is True.\n\n SymPy normally represents the condition in an \"if-elif\"-fashion, which\n leads to that more than one condition can be True. This is sometimes not\n wanted when representing the :class:`Piecewise` mathematically.\n\n Note that further manipulation of the resulting :class:`Piecewise`, e.g.\n simplifying it, will most likely make it non-exclusive. Hence, this is\n primarily a function to be used in conjunction with printing the Piecewise\n or if one would like to reorder the expression-condition pairs.\n\n ``piecewise_exclusive`` will also explicitly add a final\n :class:`~sympy.core.numbers.NaN` segment to the :class:`Piecewise`, unless\n all cases are covered. This can be avoided by passing ``skip_nan=True`` as\n a final argument. It can also be used in some situations where SymPy cannot\n determine that all cases are covered.\n\n Examples\n ========\n >>> from sympy import piecewise_exclusive, Symbol, Piecewise, S\n >>> x = Symbol('x', real=True)\n >>> p = Piecewise((0, x < 0), (S.Half, x <= 0), (1, True))\n >>> piecewise_exclusive(p)\n Piecewise((0, x < 0), (1/2, Eq(x, 0)), (1, x > 0))\n >>> piecewise_exclusive(Piecewise((2, x > 1)))\n Piecewise((2, x > 1), (nan, x <= 1))\n >>> piecewise_exclusive(Piecewise((2, x > 1)), skip_nan=True)\n Piecewise((2, x > 1))\n\n ",
"language": "en",
"n_whitespaces": 272,
"n_words": 193,
"vocab_size": 124
} | 55 | Python | 40 | a226912a87198dac24e5cc9db4b2077422b021f0 | piecewise.py | 199,141 | 18 | 160 | piecewise_exclusive | https://github.com/sympy/sympy.git | Add piecewise_canonical function | 238 | 0 | 49,161 | 17 |
|
4 | 10 | def temperature_unit(self) -> str:
if (
self._unit_value
and self._unit_value.metadata.unit
and "f" in self._unit_value.metadata.unit.lower()
):
return UnitOfTemperature.FAHRENHEIT
return UnitOfTemperature.CELSIUS
| homeassistant/components/zwave_js/climate.py | 75 | core | {
"docstring": "Return the unit of measurement used by the platform.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 8
} | 18 | Python | 16 | 9a747bafa398185eb3d4fe041c52acfbb8264372 | climate.py | 290,231 | 9 | 45 | temperature_unit | https://github.com/home-assistant/core.git | Use enums instead of deprecated constants (#81591) | 90 | 0 | 89,349 | 13 |
|
5 | 32 | def _bcoo_todense_batching_rule(batched_args, batch_dims, *, spinfo):
data, indices = batched_args
if any(b not in [0, None] for b in batch_dims):
raise NotImplementedError(f"batch_dims={batch_dims}. Only 0 and None are supported.")
if batch_dims[0] is None:
data = data[None, ...]
if batch_dims[1] is None:
indices = indices[None, ...]
new_spinfo = BCOOInfo(
shape=(max(data.shape[0], indices.shape[0]), *spinfo.shape))
return bcoo_todense(data, indices, spinfo=new_spinfo), 0
ad.defjvp(bcoo_todense_p, _bcoo_todense_jvp, None)
ad.primitive_transposes[bcoo_todense_p] = _bcoo_todense_transpose
batching.primitive_batchers[bcoo_todense_p] = _bcoo_todense_batching_rule
xla.register_translation(bcoo_todense_p, xla.lower_fun(
_bcoo_todense_impl, multiple_results=False, new_style=True))
#--------------------------------------------------------------------
# bcoo_fromdense
bcoo_fromdense_p = core.Primitive('bcoo_fromdense')
bcoo_fromdense_p.multiple_results = True
_TRACED_NSE_ERROR =
| jax/experimental/sparse/bcoo.py | 270 | jax | {
"docstring": "\nThe error arose for the nse argument of bcoo_fromdense. In order for BCOO.fromdense()\nto be used in traced/compiled code, you must pass a concrete value to the nse\n(number of specified elements) argument.\n",
"language": "en",
"n_whitespaces": 30,
"n_words": 33,
"vocab_size": 28
} | 79 | Python | 63 | 2c20d82776fea482aaf52e18ebad4f7fce5c3a81 | bcoo.py | 119,021 | 11 | 114 | _bcoo_todense_batching_rule | https://github.com/google/jax.git | [sparse] generalize metadata argument in BCOO primitives | 91 | 0 | 26,534 | 14 |
|
1 | 7 | def addslashes(value):
return value.replace("\\", "\\\\").replace('"', '\\"').replace("'", "\\'")
@register.filter(is_safe=True)
@stringfilter | django/template/defaultfilters.py | 81 | @register.filter(is_safe=True)
@stringfilter | django | {
"docstring": "\n Add slashes before quotes. Useful for escaping strings in CSV, for\n example. Less useful for escaping JavaScript; use the ``escapejs``\n filter instead.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 22,
"vocab_size": 19
} | 9 | Python | 9 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | defaultfilters.py | 206,236 | 2 | 29 | addslashes | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 13 | 1 | 51,427 | 12 |
1 | 8 | def get_provider_plugins() -> t.Dict[str, t.Type[CloudProvider]]:
return get_cloud_plugins()[0]
@cache | test/lib/ansible_test/_internal/commands/integration/cloud/__init__.py | 46 | @cache | ansible | {
"docstring": "Return a dictionary of the available cloud provider plugins.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 8 | Python | 8 | 3eb0485dd92c88cc92152d3656d94492db44b183 | __init__.py | 267,824 | 3 | 26 | get_provider_plugins | https://github.com/ansible/ansible.git | ansible-test - Use more native type hints. (#78435)
* ansible-test - Use more native type hints.
Simple search and replace to switch from comments to native type hints for return types of functions with no arguments.
* ansible-test - Use more native type hints.
Conversion of simple single-line function annotation type comments to native type hints.
* ansible-test - Use more native type hints.
Conversion of single-line function annotation type comments with default values to native type hints.
* ansible-test - Use more native type hints.
Manual conversion of type annotation comments for functions which have pylint directives. | 13 | 1 | 79,105 | 8 |
4 | 35 | def test_get_elb_config(self):
conn_ec2 = boto.ec2.connect_to_region(region, **boto_conn_parameters)
conn_elb = boto.ec2.elb.connect_to_region(region,
**boto_conn_parameters)
zones = [zone.name for zone in conn_ec2.get_all_zones()]
elb_name = 'TestGetELBConfig'
load_balancer = conn_elb.create_load_balancer(elb_name, zones,
[(80, 80, 'http')])
reservations = conn_ec2.run_instances('ami-08389d60', min_count=3)
all_instance_ids = [instance.id for instance in reservations.instances]
load_balancer.register_instances(all_instance_ids)
# DescribeTags does not appear to be included in moto
# so mock the _get_all_tags function. Ideally we wouldn't
# need to mock this.
with patch('salt.modules.boto_elb._get_all_tags',
MagicMock(return_value=None)):
ret = boto_elb.get_elb_config(elb_name, **conn_parameters)
_expected_keys = ['subnets',
'availability_zones',
'canonical_hosted_zone_name_id',
'tags',
'dns_name',
'listeners',
'backends',
'policies',
'vpc_id',
'scheme',
'canonical_hosted_zone_name',
'security_groups']
for key in _expected_keys:
self.assertIn(key, ret)
| tests/unit/modules/test_boto_elb.py | 281 | salt | {
"docstring": "\n tests that given an valid ids in the form of a list that the boto_elb\n deregister_instances all members of the given list\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 22,
"vocab_size": 16
} | 90 | Python | 72 | 07abfa2a7a70b0bfa23ae45172e090fc4b9c180c | test_boto_elb.py | 215,645 | 28 | 167 | test_get_elb_config | https://github.com/saltstack/salt.git | adding test_get_elb_config function | 666 | 0 | 54,068 | 12 |
|
3 | 7 | def offset_reached(self) -> bool:
if self._event and self._offset_value:
return is_offset_reached(
self._event.start_datetime_local, self._offset_value
)
return False
| homeassistant/components/google/calendar.py | 52 | core | {
"docstring": "Return whether or not the event offset was reached.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 15 | Python | 14 | 36bb947cdf24cb74c4d4288ca61825226e1de5ff | calendar.py | 296,298 | 7 | 32 | offset_reached | https://github.com/home-assistant/core.git | Fix bug in google calendar offset calculation (#70024)
Move the offset reached computation outside of the update method so that it is
computed when state updates occur rather than when data refreshes happen (which
are throttled and happen at most every 15 minutes).
Issue #69892 | 73 | 0 | 95,285 | 11 |
|
1 | 3 | def validate_can_orderby(self) -> None:
raise NotImplementedError
| src/sentry/snuba/metrics/fields/base.py | 19 | sentry | {
"docstring": "\n Validate that the expression can be used to order a query\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 11,
"vocab_size": 11
} | 6 | Python | 6 | 4acb1834c41648180bbb41cbe248b50d65e5977d | base.py | 86,711 | 5 | 10 | validate_can_orderby | https://github.com/getsentry/sentry.git | feat(metrics): Adds mqb query transform to MetricsQuery [TET-163] (#37652)
So far this PR has only test cases that shows expected output from MQB
(input to metrics abstraction layer) and the final output that would be
passed to metrics abstraction layer
I have printed out queries spit out by MQB and coalesced them into the
test cases in this PR, and so should cover all queries made by
performance to metrics:
- I have only listed a variation or two of the same functions for
example `p75(transaction.duration)` but I did not add
`p50(transaction.duration)` because the logic would be the same so need
to add this to these tests
- Only thing missing is the recent `countIf` functions added for
performance which I will add later on listed here ->
https://github.com/getsentry/sentry/blob/master/src/sentry/search/events/datasets/metrics.py#L179-L276
### Changes to MQB output:-
- Removed tags from select statement, as if they are listed in the
`groupBy`, they will be returned by metrics abstraction layer
- Having clauses are not supported
- Transform functions are not supported
- Removed ordering by `bucketed_time` as this behavior is handled post
query by metrics abstraction layer
- Replaced metric ids/names with MRI as this is the naming contract we
can guarantee
- Replaced tag values with their tag names because metrics abstraction
layer will handle the indexer resolving and reverse resolving
- Replaced SnQL function definition with their corresponding derived
metrics so for example failure_rate, apdex, user_misery,
team_key_transactions, count_web_vitals and histogram functions
### ToDo from me to get this test to pass
- [x] `snuba-sdk` needs to support MRI as a column name in `Column`
[TET-323]
- [x] `MetricField` needs to support `args` and `alias` [TET-320,
TET-322]
- [x] Add `MetricGroupByField` for `groupBy` columns that accept an
`alias` [TET-320]
- [x] Aliasing functionality needs to be supported [TET-320]
- [x] Add derived metric for `team_key_transaction` [TET-325]
- [x] Add derived metric for `count_web_vital_measurements` [TET-161]
- [x] Add derived metric for `rate` [TET-129]
- [x] `MetricsQuery` accepts MRI rather than public facing names
[TET-321]
- [x] Support for tuples conditions [TET-319]
- [x] Add derived metrics for the 3 `countIf` functions [TET-326]
- [x] Transform MQB `Query` object to `MetricsQuery` (This PR)
- [x] Figure out addition of Granularity processor [TET-327]
- [x] Add Invalid test cases (This PR)
- [ ] Discuss granularity differences/query bounds (Will be handled in
subsequent PR [TET-452])
[TET-323]:
https://getsentry.atlassian.net/browse/TET-323?atlOrigin=eyJpIjoiNWRkNTljNzYxNjVmNDY3MDlhMDU5Y2ZhYzA5YTRkZjUiLCJwIjoiZ2l0aHViLWNvbS1KU1cifQ | 20 | 0 | 18,156 | 6 |
|
1 | 16 | def set_globals(self):
logger.debug("Setting global config")
section = "global"
self.add_section(title=section, info="Options that apply to all extraction plugins")
self.add_item(
section=section,
title="allow_growth",
datatype=bool,
default=False,
group="settings",
info="[Nvidia Only]. Enable the Tensorflow GPU `allow_growth` configuration option. "
"This option prevents Tensorflow from allocating all of the GPU VRAM at launch "
"but can lead to higher VRAM fragmentation and slower performance. Should only "
"be enabled if you are having problems running extraction.")
self.add_item(
section=section,
title="aligner_min_scale",
datatype=float,
min_max=(0.0, 1.0),
rounding=2,
default=0.05,
group="filters",
info="Filters out faces below this size. This is a multiplier of the minimum "
"dimension of the frame (i.e. 1280x720 = 720). If the original face extract "
"box is smaller than the minimum dimension times this multiplier, it is "
"considered a false positive and discarded. Faces which are found to be "
"unusually smaller than the frame tend to be misaligned images, except in "
"extreme long-shots. These can be usually be safely discarded.")
self.add_item(
section=section,
title="aligner_max_scale",
datatype=float,
min_max=(0.0, 10.0),
rounding=2,
default=2.00,
group="filters",
info="Filters out faces above this size. This is a multiplier of the minimum "
"dimension of the frame (i.e. 1280x720 = 720). If the original face extract "
"box is larger than the minimum dimension times this multiplier, it is "
"considered a false positive and discarded. Faces which are found to be "
"unusually larger than the frame tend to be misaligned images except in extreme "
"close-ups. These can be usually be safely discarded.")
self.add_item(
section=section,
title="aligner_distance",
datatype=float,
min_max=(0.0, 25.0),
rounding=1,
default=16,
group="filters",
info="Filters out faces who's landmarks are above this distance from an 'average' "
"face. Values above 16 tend to be fairly safe. Values above 10 will remove more "
"false positives, but may also filter out some faces at extreme angles.")
| plugins/extract/_config.py | 322 | faceswap | {
"docstring": "\n Set the global options for extract\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 6,
"vocab_size": 6
} | 288 | Python | 148 | a8f22cc019d56cec18ccd8223587d97dc4b37d04 | _config.py | 101,643 | 53 | 206 | set_globals | https://github.com/deepfakes/faceswap.git | Extract updates:
- Default CPU detector to MTCNN
- add basic Aligner false positive filters
- Typing: align + plugins
- Use specific AlignerBatch class for alignment
- | 914 | 0 | 21,051 | 10 |
|
2 | 8 | def load(cls):
urls = cls.get_urls()
# Remove songs without id
# and create Song objects
tracks = [Song.from_url(url) for url in urls]
return cls(tracks)
| spotdl/types/saved.py | 56 | spotify-downloader | {
"docstring": "\n Loads saved tracks from Spotify.\n Will throw an exception if users is not logged in.\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 15,
"vocab_size": 15
} | 24 | Python | 22 | fa2ad657482aca9dc628e6d7062b8badf2706bb6 | saved.py | 30,105 | 4 | 32 | load | https://github.com/spotDL/spotify-downloader.git | v4 init | 66 | 0 | 5,314 | 9 |
|
1 | 4 | def print_help(self):
help_text =
print(help_text)
| gamestonk_terminal/cryptocurrency/overview/overview_controller.py | 27 | OpenBBTerminal | {
"docstring": "Print help\nOverview Menu:\n\nCoinGecko:\n cgglobal global crypto market info\n cgnews last news available on CoinGecko\n cgdefi global DeFi market info\n cgstables stablecoins\n cgnft non fungible token market status\n cgnftday non fungible token of the day\n cgexchanges top crypto exchanges\n cgexrates coin exchange rates\n cgplatforms crypto financial platforms\n cgproducts crypto financial products\n cgindexes crypto indexes\n cgderivatives crypto derivatives\n cgcategories crypto categories\n cghold ethereum, bitcoin holdings overview statistics\nCoinPaprika:\n cpglobal global crypto market info\n cpinfo basic info about all coins available on CoinPaprika\n cpmarkets market related info about all coins available on CoinPaprika\n cpexchanges list all exchanges\n cpexmarkets all available markets on given exchange\n cpplatforms list blockchain platforms eg. ethereum, solana, kusama, terra\n cpcontracts all smart contracts for given platform\nCoinbase:\n cbpairs info about available trading pairs on Coinbase\nCryptoPanic:\n news recent crypto news from CryptoPanic aggregator\nWithdrawalFees:\n wf overall withdrawal fees\n ewf overall exchange withdrawal fees\n wfpe crypto withdrawal fees per exchange\nBlockchainCenter:\n altindex displays altcoin season index (if 75% of top 50 coins perform better than btc)\n",
"language": "en",
"n_whitespaces": 482,
"n_words": 168,
"vocab_size": 110
} | 5 | Python | 5 | 18c3a4e5f69de5909fd3f516e54855b938bda51f | overview_controller.py | 281,209 | 39 | 13 | print_help | https://github.com/OpenBB-finance/OpenBBTerminal.git | Feature (crypto): Altcoin season index (#1155)
* adding blockchaincenter model
* added altindex feature
* fix tests name
* added autocompletion and fixed chart
* fixed help strings and chart issue
* refactor for subplot
* changed dates to more readable format | 27 | 0 | 83,615 | 7 |
|
13 | 40 | def get_data():
sales_order_entry = frappe.db.sql(
,
as_dict=1,
)
sales_orders = [row.name for row in sales_order_entry]
mr_records = frappe.get_all(
"Material Request Item",
{"sales_order": ("in", sales_orders), "docstatus": 1},
["parent", "qty", "sales_order", "item_code"],
)
bundled_item_map = get_packed_items(sales_orders)
item_with_product_bundle = get_items_with_product_bundle(
[row.item_code for row in sales_order_entry]
)
materials_request_dict = {}
for record in mr_records:
key = (record.sales_order, record.item_code)
if key not in materials_request_dict:
materials_request_dict.setdefault(key, {"qty": 0, "material_requests": [record.parent]})
details = materials_request_dict.get(key)
details["qty"] += record.qty
if record.parent not in details.get("material_requests"):
details["material_requests"].append(record.parent)
pending_so = []
for so in sales_order_entry:
if so.item_code not in item_with_product_bundle:
material_requests_against_so = materials_request_dict.get((so.name, so.item_code)) or {}
# check for pending sales order
if flt(so.total_qty) > flt(material_requests_against_so.get("qty")):
so_record = {
"item_code": so.item_code,
"item_name": so.item_name,
"description": so.description,
"sales_order_no": so.name,
"date": so.transaction_date,
"material_request": ",".join(material_requests_against_so.get("material_requests", [])),
"customer": so.customer,
"territory": so.territory,
"so_qty": so.total_qty,
"requested_qty": material_requests_against_so.get("qty"),
"pending_qty": so.total_qty - flt(material_requests_against_so.get("qty")),
"company": so.company,
}
pending_so.append(so_record)
else:
for item in bundled_item_map.get((so.name, so.item_code), []):
material_requests_against_so = materials_request_dict.get((so.name, item.item_code)) or {}
if flt(item.qty) > flt(material_requests_against_so.get("qty")):
so_record = {
"item_code": item.item_code,
"item_name": item.item_name,
"description": item.description,
"sales_order_no": so.name,
"date": so.transaction_date,
"material_request": ",".join(material_requests_against_so.get("material_requests", [])),
"customer": so.customer,
"territory": so.territory,
"so_qty": item.qty,
"requested_qty": material_requests_against_so.get("qty", 0),
"pending_qty": item.qty - flt(material_requests_against_so.get("qty", 0)),
"company": so.company,
}
pending_so.append(so_record)
return pending_so
| erpnext/selling/report/pending_so_items_for_purchase_request/pending_so_items_for_purchase_request.py | 832 | erpnext | {
"docstring": "\n\t\tSELECT\n\t\t\tso_item.item_code,\n\t\t\tso_item.item_name,\n\t\t\tso_item.description,\n\t\t\tso.name,\n\t\t\tso.transaction_date,\n\t\t\tso.customer,\n\t\t\tso.territory,\n\t\t\tsum(so_item.qty) as total_qty,\n\t\t\tso.company\n\t\tFROM `tabSales Order` so, `tabSales Order Item` so_item\n\t\tWHERE\n\t\t\tso.docstatus = 1\n\t\t\tand so.name = so_item.parent\n\t\t\tand so.status not in (\"Closed\",\"Completed\",\"Cancelled\")\n\t\tGROUP BY\n\t\t\tso.name,so_item.item_code\n\t\t",
"language": "en",
"n_whitespaces": 20,
"n_words": 36,
"vocab_size": 33
} | 189 | Python | 122 | 494bd9ef78313436f0424b918f200dab8fc7c20b | pending_so_items_for_purchase_request.py | 67,421 | 82 | 501 | get_data | https://github.com/frappe/erpnext.git | style: format code with black | 124 | 0 | 14,520 | 23 |
|
1 | 5 | def test_validate_subscription_query_valid_with_fragment():
result = validate_subscription_query(TEST_VALID_SUBSCRIPTION_QUERY_WITH_FRAGMENT)
assert result is True
TEST_INVALID_MULTIPLE_QUERY_AND_SUBSCRIPTION =
| saleor/plugins/webhook/tests/subscription_webhooks/test_create_deliveries_for_subscription.py | 31 | saleor | {
"docstring": "\nquery{\n products(first:100){\n edges{\n node{\n id\n }\n }\n }\n}\nsubscription{\n event{\n ...on ProductUpdated{\n product{\n id\n }\n }\n }\n}",
"language": "en",
"n_whitespaces": 65,
"n_words": 19,
"vocab_size": 11
} | 11 | Python | 9 | aca6418d6c36956bc1ab530e6ef7e146ec9df90c | test_create_deliveries_for_subscription.py | 26,494 | 3 | 14 | test_validate_subscription_query_valid_with_fragment | https://github.com/saleor/saleor.git | Add Webhook payload via graphql subscriptions (#9394)
* Add PoC of webhook subscriptions
* add async webhooks subscription payloads feature
* remove unneeded file
* add translations subscription handling, fixes after review
* remove todo
* add descriptions
* add descriptions, move subsrciption_payloads.py
* refactor
* fix imports, add changelog
* check_document_is_single_subscription refactor
Co-authored-by: Maciej Korycinski <[email protected]>
Co-authored-by: Marcin Gębala <[email protected]> | 16 | 0 | 5,023 | 8 |
|
1 | 8 | def sample_with_count(self) -> Tuple[SampleBatchType, int]:
batch = self.sample()
return batch, batch.count
| rllib/evaluation/rollout_worker.py | 43 | ray | {
"docstring": "Same as sample() but returns the count as a separate value.\n\n Returns:\n A columnar batch of experiences (e.g., tensors) and the\n size of the collected batch.\n\n Examples:\n >>> import gym\n >>> from ray.rllib.evaluation.rollout_worker import RolloutWorker\n >>> from ray.rllib.algorithms.pg.pg_tf_policy import PGTF1Policy\n >>> worker = RolloutWorker( # doctest: +SKIP\n ... env_creator=lambda _: gym.make(\"CartPole-v0\"), # doctest: +SKIP\n ... policy_spec=PGTFPolicy) # doctest: +SKIP\n >>> print(worker.sample_with_count()) # doctest: +SKIP\n (SampleBatch({\"obs\": [...], \"action\": [...], ...}), 3)\n ",
"language": "en",
"n_whitespaces": 209,
"n_words": 70,
"vocab_size": 48
} | 11 | Python | 11 | b383d987d161fee39fafe873c0822f4ea6ea02eb | rollout_worker.py | 124,753 | 19 | 26 | sample_with_count | https://github.com/ray-project/ray.git | [RLlib] Fix a bunch of issues related to connectors. (#26510) | 32 | 0 | 27,674 | 8 |
|
3 | 13 | def overrides(cls, **kwargs):
default_config = cls()
config_overrides = {}
for key, value in kwargs.items():
if not hasattr(default_config, key):
raise KeyError(
f"Invalid property name {key} for config class {cls.__name__}!"
)
# Allow things like "lambda" as well.
key = cls._translate_special_keys(key, warn_deprecated=True)
config_overrides[key] = value
return config_overrides
| rllib/algorithms/algorithm_config.py | 116 | ray | {
"docstring": "Generates and validates a set of config key/value pairs (passed via kwargs).\n\n Validation whether given config keys are valid is done immediately upon\n construction (by comparing against the properties of a default AlgorithmConfig\n object of this class).\n Allows combination with a full AlgorithmConfig object to yield a new\n AlgorithmConfig object.\n\n Used anywhere, we would like to enable the user to only define a few config\n settings that would change with respect to some main config, e.g. in multi-agent\n setups and evaluation configs.\n\n Examples:\n >>> from ray.rllib.algorithms.ppo import PPOConfig\n >>> from ray.rllib.policy.policy import PolicySpec\n >>> config = (\n ... PPOConfig()\n ... .multi_agent(\n ... policies={\n ... \"pol0\": PolicySpec(config=PPOConfig.overrides(lambda_=0.95))\n ... },\n ... )\n ... )\n\n >>> from ray.rllib.algorithms.algorithm_config import AlgorithmConfig\n >>> from ray.rllib.algorithms.pg import PGConfig\n >>> config = (\n ... PGConfig()\n ... .evaluation(\n ... evaluation_num_workers=1,\n ... evaluation_interval=1,\n ... evaluation_config=AlgorithmConfig.overrides(explore=False),\n ... )\n ... )\n\n Returns:\n A dict mapping valid config property-names to values.\n\n Raises:\n KeyError: In case a non-existing property name (kwargs key) is being\n passed in. Valid property names are taken from a default AlgorithmConfig\n object of `cls`.\n ",
"language": "en",
"n_whitespaces": 599,
"n_words": 175,
"vocab_size": 112
} | 45 | Python | 39 | 794cfd9725b4dc113aa50e60428367b15e921514 | algorithm_config.py | 137,274 | 11 | 64 | overrides | https://github.com/ray-project/ray.git | [RLlib] `AlgorithmConfig.overrides()` to replace `multiagent->policies->config` and `evaluation_config` dicts. (#30879) | 173 | 0 | 31,119 | 14 |
|
1 | 67 | def setup_axes3(fig, rect):
# rotate a bit for better orientation
tr_rotate = Affine2D().translate(-95, 0)
# scale degree to radians
tr_scale = Affine2D().scale(np.pi/180., 1.)
tr = tr_rotate + tr_scale + PolarAxes.PolarTransform()
grid_locator1 = angle_helper.LocatorHMS(4)
tick_formatter1 = angle_helper.FormatterHMS()
grid_locator2 = MaxNLocator(3)
# Specify theta limits in degrees
ra0, ra1 = 8.*15, 14.*15
# Specify radial limits
cz0, cz1 = 0, 14000
grid_helper = floating_axes.GridHelperCurveLinear(
tr, extremes=(ra0, ra1, cz0, cz1),
grid_locator1=grid_locator1,
grid_locator2=grid_locator2,
tick_formatter1=tick_formatter1,
tick_formatter2=None)
ax1 = fig.add_subplot(
rect, axes_class=floating_axes.FloatingAxes, grid_helper=grid_helper)
# adjust axis
ax1.axis["left"].set_axis_direction("bottom")
ax1.axis["right"].set_axis_direction("top")
ax1.axis["bottom"].set_visible(False)
ax1.axis["top"].set_axis_direction("bottom")
ax1.axis["top"].toggle(ticklabels=True, label=True)
ax1.axis["top"].major_ticklabels.set_axis_direction("top")
ax1.axis["top"].label.set_axis_direction("top")
ax1.axis["left"].label.set_text(r"cz [km$^{-1}$]")
ax1.axis["top"].label.set_text(r"$\alpha_{1950}$")
ax1.grid()
# create a parasite axes whose transData in RA, cz
aux_ax = ax1.get_aux_axes(tr)
aux_ax.patch = ax1.patch # for aux_ax to have a clip path as in ax
ax1.patch.zorder = 0.9 # but this has a side effect that the patch is
# drawn twice, and possibly over some other
# artists. So, we decrease the zorder a bit to
# prevent this.
return ax1, aux_ax
##########################################################
fig = plt.figure(figsize=(8, 4))
fig.subplots_adjust(wspace=0.3, left=0.05, right=0.95)
ax1, aux_ax1 = setup_axes1(fig, 131)
aux_ax1.bar([0, 1, 2, 3], [3, 2, 1, 3])
ax2, aux_ax2 = setup_axes2(fig, 132)
theta = np.random.rand(10)*.5*np.pi
radius = np.random.rand(10) + 1.
aux_ax2.scatter(theta, radius)
ax3, aux_ax3 = setup_axes3(fig, 133)
theta = (8 + np.random.rand(10)*(14 - 8))*15. # in degrees
radius = np.random.rand(10)*14000.
aux_ax3.scatter(theta, radius)
plt.show()
| examples/axisartist/demo_floating_axes.py | 732 | matplotlib | {
"docstring": "\n Sometimes, things like axis_direction need to be adjusted.\n ",
"language": "en",
"n_whitespaces": 15,
"n_words": 8,
"vocab_size": 8
} | 214 | Python | 152 | f34d0b9fb38b813eef3eb0de0d424860f9b3b102 | demo_floating_axes.py | 108,976 | 31 | 293 | setup_axes3 | https://github.com/matplotlib/matplotlib.git | Display grid in floating axes example.
This is the only full featured example with floating axes, so displaying
grids makes it easier to check that grids are indeed working. | 347 | 0 | 23,409 | 11 |
|
2 | 17 | def _setup_boto_session(self) -> None:
if self.use_aws_account:
self._boto_session = boto3session.Session(
aws_access_key_id=self._provider.get("aws_access_key_id"),
aws_secret_access_key=self._provider.get("aws_secret_access_key"),
)
self._boto_s3_resource = make_s3_resource(self._provider, session=self._boto_session)
else:
self._boto_session = boto3session.Session()
self._boto_s3_resource = make_s3_resource(self._provider, config=Config(signature_version=UNSIGNED), session=self._boto_session)
| airbyte-integrations/connectors/source-s3/source_s3/s3file.py | 155 | airbyte | {
"docstring": "\n Making a new Session at file level rather than stream level as boto3 sessions are NOT thread-safe.\n Currently grabbing last_modified across multiple files asynchronously and may implement more multi-threading in future.\n See https://boto3.amazonaws.com/v1/documentation/api/latest/guide/resources.html (anchor link broken, scroll to bottom)\n ",
"language": "en",
"n_whitespaces": 68,
"n_words": 39,
"vocab_size": 38
} | 25 | Python | 18 | 91eff1dffdb04be968b6ee4ef8d8bbfeb2e882d0 | s3file.py | 3,612 | 15 | 96 | _setup_boto_session | https://github.com/airbytehq/airbyte.git | 🐛 Source S3: Loading of files' metadata (#8252) | 131 | 0 | 497 | 15 |
|
1 | 11 | def transpose(x):
return tf.compat.v1.transpose(x)
@keras_export("keras.backend.gather")
@tf.__internal__.dispatch.add_dispatch_support
@doc_controls.do_not_generate_docs | keras/backend.py | 59 | @keras_export("keras.backend.gather")
@tf.__internal__.dispatch.add_dispatch_support
@doc_controls.do_not_generate_docs | keras | {
"docstring": "Transposes a tensor and returns it.\n\n Args:\n x: Tensor or variable.\n\n Returns:\n A tensor.\n\n Examples:\n\n >>> var = tf.keras.backend.variable([[1, 2, 3], [4, 5, 6]])\n >>> tf.keras.backend.eval(var)\n array([[1., 2., 3.],\n [4., 5., 6.]], dtype=float32)\n >>> var_transposed = tf.keras.backend.transpose(var)\n >>> tf.keras.backend.eval(var_transposed)\n array([[1., 4.],\n [2., 5.],\n [3., 6.]], dtype=float32)\n >>> input = tf.keras.backend.placeholder((2, 3))\n >>> input\n <KerasTensor: shape=(2, 3) dtype=float32 ...>\n >>> input_transposed = tf.keras.backend.transpose(input)\n >>> input_transposed\n <KerasTensor: shape=(3, 2) dtype=float32 ...>\n ",
"language": "en",
"n_whitespaces": 168,
"n_words": 69,
"vocab_size": 51
} | 7 | Python | 7 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | backend.py | 269,611 | 2 | 17 | transpose | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 10 | 1 | 80,230 | 9 |
2 | 9 | def test_csrf_cookie_bad_or_missing_token(self):
cases = [
(None, None, REASON_CSRF_TOKEN_MISSING),
(16 * "a", None, "CSRF token from POST has incorrect length."),
(64 * "*", None, "CSRF token from POST has invalid characters."),
(64 * "a", None, "CSRF token from POST incorrect."),
(
None,
16 * "a",
"CSRF token from the 'X-Csrftoken' HTTP header has incorrect length.",
),
(
None,
64 * "*",
"CSRF token from the 'X-Csrftoken' HTTP header has invalid characters.",
),
(
None,
64 * "a",
"CSRF token from the 'X-Csrftoken' HTTP header incorrect.",
),
]
for post_token, meta_token, expected in cases:
with self.subTest(post_token=post_token, meta_token=meta_token):
self._check_bad_or_missing_token(
expected,
post_token=post_token,
meta_token=meta_token,
)
| tests/csrf_tests/tests.py | 184 | django | {
"docstring": "\n If a CSRF cookie is present but the token is missing or invalid, the\n middleware rejects the incoming request.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 19,
"vocab_size": 16
} | 100 | Python | 49 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | tests.py | 202,390 | 29 | 119 | test_csrf_cookie_bad_or_missing_token | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 471 | 0 | 50,101 | 12 |
|
1 | 4 | def get(self) -> Any:
raise NotImplementedError()
| nni/common/serializer.py | 23 | nni | {
"docstring": "\n Get the original object. Usually used together with ``trace_copy``.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 9
} | 6 | Python | 6 | 2d8f925b5ac558c45589bd90324efc86a568539e | serializer.py | 112,291 | 5 | 12 | get | https://github.com/microsoft/nni.git | Bug fix of Retiarii hyperparameter mutation (#4751) | 20 | 0 | 24,626 | 7 |
|
2 | 8 | def find_all_matches(self, sources=None, finder=None):
# type: (Optional[List[Dict[S, Union[S, bool]]]], Optional[PackageFinder]) -> List[InstallationCandidate]
from .dependencies import find_all_matches, get_finder
if not finder:
_, finder = get_finder(sources=sources)
return find_all_matches(finder, self.as_ireq())
| pipenv/vendor/requirementslib/models/requirements.py | 77 | pipenv | {
"docstring": "Find all matching candidates for the current requirement.\n\n Consults a finder to find all matching candidates.\n\n :param sources: Pipfile-formatted sources, defaults to None\n :param sources: list[dict], optional\n :param PackageFinder finder: A **PackageFinder** instance from pip's repository implementation\n :return: A list of Installation Candidates\n :rtype: list[ :class:`~pipenv.patched.pip._internal.index.InstallationCandidate` ]\n ",
"language": "en",
"n_whitespaces": 96,
"n_words": 47,
"vocab_size": 40
} | 27 | Python | 27 | cd5a9683be69c86c8f3adcd13385a9bc5db198ec | requirements.py | 22,233 | 5 | 46 | find_all_matches | https://github.com/pypa/pipenv.git | Rename notpip to pip. Vendor in pip-22.2.1 and latest requirementslib and vistir. | 73 | 0 | 4,277 | 11 |
|
1 | 10 | def test_basic_add_GET(self):
response = self.client.get(reverse("admin:admin_views_section_add"))
self.assertIsInstance(response, TemplateResponse)
self.assertEqual(response.status_code, 200)
| tests/admin_views/tests.py | 63 | django | {
"docstring": "\n A smoke test to ensure GET on the add_view works.\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 10,
"vocab_size": 10
} | 9 | Python | 9 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | tests.py | 207,827 | 4 | 37 | test_basic_add_GET | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 37 | 0 | 52,119 | 11 |
|
1 | 2 | def test_create_only_default_callable_sets_context(self):
| tests/test_fields.py | 13 | django-rest-framework | {
"docstring": "\n CreateOnlyDefault instances with a callable default should set context\n on the callable if possible\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 14,
"vocab_size": 13
} | 2 | Python | 2 | 8b2ccccbe53f855fd9ee9a06e7b7997270e26dda | test_fields.py | 48,642 | 9 | 63 | test_create_only_default_callable_sets_context | https://github.com/encode/django-rest-framework.git | Stop calling `set_context`, planned for 3.13 drop (#8589)
Per the deprecation warnings (which have been raised since DRF 3.11),
`set_context()` was planned not to be supported in DRF 3.13. I think we
can safely delete it, in favor of `requires_context`.
From the 3.11 announcement:
> Previous our approach to this was that implementations could include a
> `set_context` method, which would be called prior to validation. However
> this approach had issues with potential race conditions. We have now
> move this approach into a pending deprecation state. It will continue to
> function, but will be escalated to a deprecated state in 3.12, and
> removed entirely in 3.13.
Why keep `RemovedInDRF313Warning` around?
=========================================
It's a bit odd that version 3.13 includes an exception class describing
things which are to be deleted in 3.13, but I've opted to keep the (now
unreferenced) class around, for fear of breaking others' setup.
(For example, if projects have a `filterwarnings` setup meant to
intercept `rest_framework.RemovedInDRF313Warning`, an error will be
thrown due to an unresolvable reference). | 9 | 0 | 9,552 | 6 |
|
2 | 29 | def test_barcode_splitter_legacy_fallback(self):
test_file = os.path.join(
self.BARCODE_SAMPLE_DIR,
"patch-code-t-middle.pdf",
)
tempdir = tempfile.mkdtemp(prefix="paperless-", dir=settings.SCRATCH_DIR)
pdf_file, separator_page_numbers = barcodes.scan_file_for_separating_barcodes(
test_file,
)
self.assertEqual(test_file, pdf_file)
self.assertTrue(len(separator_page_numbers) > 0)
document_list = barcodes.separate_pages(test_file, separator_page_numbers)
self.assertTrue(document_list)
for document in document_list:
barcodes.save_to_dir(document, target_dir=tempdir)
target_file1 = os.path.join(tempdir, "patch-code-t-middle_document_0.pdf")
target_file2 = os.path.join(tempdir, "patch-code-t-middle_document_1.pdf")
self.assertTrue(os.path.isfile(target_file1))
self.assertTrue(os.path.isfile(target_file2))
| src/documents/tests/test_barcodes.py | 239 | paperless-ngx | {
"docstring": "\n GIVEN:\n - File containing barcode\n - Legacy method of detection is enabled\n WHEN:\n - File is scanned for barcodes\n THEN:\n - Barcodes are properly detected\n ",
"language": "en",
"n_whitespaces": 98,
"n_words": 25,
"vocab_size": 20
} | 44 | Python | 37 | f8ce6285df44cc580319c370a9d76149012615b1 | test_barcodes.py | 320,165 | 19 | 148 | test_barcode_splitter_legacy_fallback | https://github.com/paperless-ngx/paperless-ngx.git | Allows using pdf2image instead of pikepdf if desired | 193 | 0 | 117,082 | 10 |
|
1 | 2 | def selected(self):
return self["selected"]
| packages/python/plotly/plotly/graph_objs/_bar.py | 22 | plotly.py | {
"docstring": "\n The 'selected' property is an instance of Selected\n that may be specified as:\n - An instance of :class:`plotly.graph_objs.bar.Selected`\n - A dict of string/value properties that will be passed\n to the Selected constructor\n\n Supported dict properties:\n\n marker\n :class:`plotly.graph_objects.bar.selected.Marke\n r` instance or dict with compatible properties\n textfont\n :class:`plotly.graph_objects.bar.selected.Textf\n ont` instance or dict with compatible\n properties\n\n Returns\n -------\n plotly.graph_objs.bar.Selected\n ",
"language": "en",
"n_whitespaces": 264,
"n_words": 56,
"vocab_size": 39
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _bar.py | 226,189 | 2 | 11 | selected | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 57,862 | 7 |
|
3 | 39 | def test_learning_curve_display_default_usage(pyplot, data):
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
train_sizes = [0.3, 0.6, 0.9]
display = LearningCurveDisplay.from_estimator(
estimator, X, y, train_sizes=train_sizes
)
import matplotlib as mpl
assert display.errorbar_ is None
assert isinstance(display.lines_, list)
for line in display.lines_:
assert isinstance(line, mpl.lines.Line2D)
assert isinstance(display.fill_between_, list)
for fill in display.fill_between_:
assert isinstance(fill, mpl.collections.PolyCollection)
assert fill.get_alpha() == 0.5
assert display.score_name == "Score"
assert display.ax_.get_xlabel() == "Number of samples in the training set"
assert display.ax_.get_ylabel() == "Score"
_, legend_labels = display.ax_.get_legend_handles_labels()
assert legend_labels == ["Testing metric"]
train_sizes_abs, train_scores, test_scores = learning_curve(
estimator, X, y, train_sizes=train_sizes
)
assert_array_equal(display.train_sizes, train_sizes_abs)
assert_allclose(display.train_scores, train_scores)
assert_allclose(display.test_scores, test_scores)
| sklearn/model_selection/tests/test_plot.py | 313 | scikit-learn | {
"docstring": "Check the default usage of the LearningCurveDisplay class.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 7
} | 98 | Python | 68 | 758fe0d9c72ba343097003e7992c9239e58bfc63 | test_plot.py | 261,652 | 27 | 211 | test_learning_curve_display_default_usage | https://github.com/scikit-learn/scikit-learn.git | FEA add LearningCurveDisplay to show plot learning curve (#24084)
Co-authored-by: jeremie du boisberranger <[email protected]>
Co-authored-by: Arturo Amor <[email protected]> | 199 | 0 | 76,917 | 11 |
|
7 | 14 | def _get_partition_size_along_axis(self, partition, axis=0):
if isinstance(partition, self._partition_mgr_cls._partition_class):
return [
partition.apply(
lambda df: len(df) if not axis else len(df.columns)
)._data
]
elif partition.axis == axis:
return [
ptn.apply(lambda df: len(df) if not axis else len(df.columns))._data
for ptn in partition.list_of_partitions_to_combine
]
return [
partition.list_of_partitions_to_combine[0]
.apply(lambda df: len(df) if not axis else (len(df.columns)))
._data
]
| modin/core/execution/dask/implementations/pandas_on_dask/dataframe/dataframe.py | 193 | modin | {
"docstring": "\n Compute the length along the specified axis of the specified partition.\n\n Parameters\n ----------\n partition : ``PandasOnDaskDataframeVirtualPartition`` or ``PandasOnDaskDataframePartition``\n The partition whose size to compute.\n axis : int, default: 0\n The axis along which to compute size.\n\n Returns\n -------\n list\n A list of lengths along the specified axis that sum to the overall length of the partition\n along the specified axis.\n\n Notes\n -----\n This utility function is used to ensure that computation occurs asynchronously across all partitions\n whether the partitions are virtual or physical partitions.\n ",
"language": "en",
"n_whitespaces": 220,
"n_words": 84,
"vocab_size": 54
} | 52 | Python | 33 | a7354c9ca76525a265da98f2afe882c53f378840 | dataframe.py | 153,953 | 17 | 125 | _get_partition_size_along_axis | https://github.com/modin-project/modin.git | FEAT-#4419: Extend virtual partitioning API to pandas on Dask (#4420)
Signed-off-by: Rehan Durrani <[email protected]>
Co-authored-by: Mahesh Vashishtha <[email protected]> | 243 | 0 | 35,721 | 17 |
|
3 | 17 | def _projections(self):
from sympy.vector.operators import _get_coord_systems
if isinstance(self, VectorZero):
return (S.Zero, S.Zero, S.Zero)
base_vec = next(iter(_get_coord_systems(self))).base_vectors()
return tuple([self.dot(i) for i in base_vec])
| sympy/vector/vector.py | 106 | sympy | {
"docstring": "\n Returns the components of this vector but the output includes\n also zero values components.\n\n Examples\n ========\n\n >>> from sympy.vector import CoordSys3D, Vector\n >>> C = CoordSys3D('C')\n >>> v1 = 3*C.i + 4*C.j + 5*C.k\n >>> v1._projections\n (3, 4, 5)\n >>> v2 = C.x*C.y*C.z*C.i\n >>> v2._projections\n (C.x*C.y*C.z, 0, 0)\n >>> v3 = Vector.zero\n >>> v3._projections\n (0, 0, 0)\n ",
"language": "en",
"n_whitespaces": 170,
"n_words": 57,
"vocab_size": 43
} | 22 | Python | 21 | 975df9b627556d176039ba3a0f3a2e3a3df9686c | vector.py | 196,456 | 6 | 68 | _projections | https://github.com/sympy/sympy.git | Fixed removals not fully performed earlier | 68 | 0 | 47,938 | 14 |
|
2 | 4 | def download_and_preprocess_ecosystem_docs():
import urllib.request
import requests
| doc/source/custom_directives.py | 22 | ray | {
"docstring": "\n This function downloads markdown readme files for various\n ecosystem libraries, saves them in specified locations and preprocesses\n them before sphinx build starts.\n\n If you have ecosystem libraries that live in a separate repo from Ray,\n adding them here will allow for their docs to be present in Ray docs\n without the need for duplicate files. For more details, see ``doc/README.md``.\n ",
"language": "en",
"n_whitespaces": 82,
"n_words": 60,
"vocab_size": 52
} | 6 | Python | 5 | 756d08cd31b71f3654b8ca732c961e8cd9afe71d | custom_directives.py | 147,565 | 8 | 33 | download_and_preprocess_ecosystem_docs | https://github.com/ray-project/ray.git | [docs] Add support for external markdown (#23505)
This PR fixes the issue of diverging documentation between Ray Docs and ecosystem library readmes which live in separate repos (eg. xgboost_ray). This is achieved by adding an extra step before the docs build process starts that downloads the readmes of specified ecosystem libraries from their GitHub repositories. The files are then preprocessed by a very simple parser to allow for differences between GitHub and Docs markdowns.
In summary, this makes the markdown files in ecosystem library repositories single sources of truth and removes the need to manually keep the doc pages up to date, all the while allowing for differences between what's rendered on GitHub and in the Docs.
See ray-project/xgboost_ray#204 & https://ray--23505.org.readthedocs.build/en/23505/ray-more-libs/xgboost-ray.html for an example.
Needs ray-project/xgboost_ray#204 and ray-project/lightgbm_ray#30 to be merged first. | 15 | 0 | 34,004 | 6 |
|
1 | 2 | def close(self):
# XXX: Should have a connect too?
# def connect(self):
#
| salt/transport/base.py | 18 | salt | {
"docstring": "\n Close the connection.\n \n # Connect to the server / broker.\n # ",
"language": "en",
"n_whitespaces": 39,
"n_words": 11,
"vocab_size": 9
} | 13 | Python | 10 | ab4803984bce4a4de7cc10910e7310c4babf557e | base.py | 215,394 | 1 | 6 | close | https://github.com/saltstack/salt.git | Start to add base class defs | 34 | 0 | 53,945 | 6 |
|
6 | 22 | def adjust_legend_subtitles(legend):
# Legend title not in rcParams until 3.0
font_size = plt.rcParams.get("legend.title_fontsize", None)
hpackers = legend.findobj(mpl.offsetbox.VPacker)[0].get_children()
for hpack in hpackers:
draw_area, text_area = hpack.get_children()
handles = draw_area.get_children()
if not all(artist.get_visible() for artist in handles):
draw_area.set_width(0)
for text in text_area.get_children():
if font_size is not None:
text.set_size(font_size)
| seaborn/utils.py | 165 | seaborn | {
"docstring": "\n Make invisible-handle \"subtitles\" entries look more like titles.\n\n Note: This function is not part of the public API and may be changed or removed.\n\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 24,
"vocab_size": 24
} | 46 | Python | 34 | 6460a21555ba6557e1f6f06f4d677d9c19148169 | utils.py | 42,077 | 11 | 100 | adjust_legend_subtitles | https://github.com/mwaskom/seaborn.git | Workaround for matplotlib rc_context issue (#2925)
* Workaround for matplotlib rc_context issue
Fixes #2914
* Add some additional comments about this workaround | 138 | 0 | 7,477 | 15 |
|
1 | 2 | def ohlc(self):
return self["ohlc"]
| packages/python/plotly/plotly/graph_objs/layout/template/_data.py | 22 | plotly.py | {
"docstring": "\n The 'ohlc' property is a tuple of instances of\n Ohlc that may be specified as:\n - A list or tuple of instances of plotly.graph_objs.layout.template.data.Ohlc\n - A list or tuple of dicts of string/value properties that\n will be passed to the Ohlc constructor\n\n Supported dict properties:\n\n Returns\n -------\n tuple[plotly.graph_objs.layout.template.data.Ohlc]\n ",
"language": "en",
"n_whitespaces": 131,
"n_words": 48,
"vocab_size": 33
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _data.py | 232,559 | 2 | 11 | ohlc | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 64,003 | 7 |
|
9 | 17 | def detailed_match_files(patterns, files, all_matches=None):
all_files = files if isinstance(files, Collection) else list(files)
return_files = {}
for pattern in patterns:
if pattern.include is not None:
result_files = pattern.match(all_files)
if pattern.include:
# Add files and record pattern.
for result_file in result_files:
if result_file in return_files:
if all_matches:
return_files[result_file].patterns.append(pattern)
else:
return_files[result_file].patterns[0] = pattern
else:
return_files[result_file] = MatchDetail([pattern])
else:
# Remove files.
for file in result_files:
del return_files[file]
return return_files
| python/ray/_private/thirdparty/pathspec/util.py | 190 | ray | {
"docstring": "\n Matches the files to the patterns, and returns which patterns matched\n the files.\n\n *patterns* (:class:`~collections.abc.Iterable` of :class:`~pathspec.pattern.Pattern`)\n contains the patterns to use.\n\n *files* (:class:`~collections.abc.Iterable` of :class:`str`) contains\n the normalized file paths to be matched against *patterns*.\n\n *all_matches* (:class:`boot` or :data:`None`) is whether to return all\n matches patterns (:data:`True`), or only the last matched pattern\n (:data:`False`). Default is :data:`None` for :data:`False`.\n\n Returns the matched files (:class:`dict`) which maps each matched file\n (:class:`str`) to the patterns that matched in order (:class:`.MatchDetail`).\n ",
"language": "en",
"n_whitespaces": 116,
"n_words": 79,
"vocab_size": 52
} | 66 | Python | 45 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | util.py | 130,277 | 19 | 121 | detailed_match_files | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 361 | 0 | 29,202 | 22 |
|
1 | 2 | def columnordersrc(self):
return self["columnordersrc"]
| packages/python/plotly/plotly/graph_objs/_table.py | 22 | plotly.py | {
"docstring": "\n Sets the source reference on Chart Studio Cloud for\n `columnorder`.\n\n The 'columnordersrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n ",
"language": "en",
"n_whitespaces": 84,
"n_words": 27,
"vocab_size": 25
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _table.py | 228,402 | 2 | 11 | columnordersrc | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 60,075 | 7 |
|
1 | 7 | def get_ugs() -> pd.DataFrame:
return get_df(
"https://finance.yahoo.com/screener/predefined/undervalued_growth_stocks"
)
@log_start_end(log=logger) | openbb_terminal/stocks/discovery/yahoofinance_model.py | 40 | @log_start_end(log=logger) | OpenBBTerminal | {
"docstring": "Get stocks with earnings growth rates better than 25% and relatively low PE and PEG ratios.\n [Source: Yahoo Finance]\n\n Returns\n -------\n pd.DataFrame\n Undervalued stocks\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 24,
"vocab_size": 22
} | 9 | Python | 9 | bd12c203a0585dab6ca3ff81c3b4500e088b41d6 | yahoofinance_model.py | 285,143 | 12 | 14 | get_ugs | https://github.com/OpenBB-finance/OpenBBTerminal.git | Fixed bad yfinance urls (#2282) | 24 | 1 | 85,185 | 8 |
2 | 9 | def ion():
stack = ExitStack()
stack.callback(ion if isinteractive() else ioff)
matplotlib.interactive(True)
install_repl_displayhook()
return stack
| lib/matplotlib/pyplot.py | 59 | matplotlib | {
"docstring": "\n Enable interactive mode.\n\n See `.pyplot.isinteractive` for more details.\n\n See Also\n --------\n ioff : Disable interactive mode.\n isinteractive : Whether interactive mode is enabled.\n show : Show all figures (and maybe block).\n pause : Show all figures, and block for a time.\n\n Notes\n -----\n For a temporary change, this can be used as a context manager::\n\n # if interactive mode is off\n # then figures will not be shown on creation\n plt.ioff()\n # This figure will not be shown immediately\n fig = plt.figure()\n\n with plt.ion():\n # interactive mode will be on\n # figures will automatically be shown\n fig2 = plt.figure()\n # ...\n\n To enable optional usage as a context manager, this function returns a\n `~contextlib.ExitStack` object, which is not intended to be stored or\n accessed by the user.\n ",
"language": "en",
"n_whitespaces": 259,
"n_words": 127,
"vocab_size": 82
} | 14 | Python | 13 | 2d918ba09155810194bb4ba136369082ad46c8c8 | pyplot.py | 109,119 | 6 | 33 | ion | https://github.com/matplotlib/matplotlib.git | Simplify impl. of functions optionally used as context managers.
We can actually just put the "exit" logic into an ExitStack callback.
If the return value is never `__enter__`'d via a "with" statement, it is
never `__exit__`'d either. | 32 | 0 | 23,442 | 10 |
|
3 | 9 | def format_coord(self, lon, lat):
lon, lat = np.rad2deg([lon, lat])
ns = 'N' if lat >= 0.0 else 'S'
ew = 'E' if lon >= 0.0 else 'W'
return ('%f\N{DEGREE SIGN}%s, %f\N{DEGREE SIGN}%s'
% (abs(lat), ns, abs(lon), ew))
| examples/misc/custom_projection.py | 102 | matplotlib | {
"docstring": "\n Override this method to change how the values are displayed in\n the status bar.\n\n In this case, we want them to be displayed in degrees N/S/E/W.\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 26,
"vocab_size": 21
} | 37 | Python | 29 | 075ff0952896f44d7d0b0b3318f0978ae53f84d7 | custom_projection.py | 108,004 | 6 | 66 | format_coord | https://github.com/matplotlib/matplotlib.git | Small style fixes. | 87 | 0 | 23,009 | 10 |
|
2 | 9 | def call_with_layout(fn, layout, *args, **kwargs):
if layout:
with dtensor.run_on(layout):
result = fn(*args, **kwargs)
return dtensor.relayout(result, layout)
return fn(*args, **kwargs)
| keras/dtensor/utils.py | 86 | keras | {
"docstring": "Invoke the function with inputs and relayout the result.\n\n Args:\n fn: the function to invoke.\n layout: if not None, the output of the fn will be relayout with this.\n *args: positional arguments to be called with fn.\n **kwargs: keyword arguments to be called with fn.\n\n Returns:\n The output of fn, with potential relayout with the layout specified.\n ",
"language": "en",
"n_whitespaces": 75,
"n_words": 57,
"vocab_size": 35
} | 19 | Python | 16 | d56b634f711802ae88c277926b6634465f346275 | utils.py | 269,092 | 6 | 53 | call_with_layout | https://github.com/keras-team/keras.git | Remove the @tf.function for the dtensor run_with_layout().
This was creating one tf.function per initializer, and causing function retracing. We only need this currently for Identity initializer, since tf.function will convert the tf.MatrixDiag to tf.constant.
PiperOrigin-RevId: 433516308 | 35 | 0 | 79,890 | 13 |
|
3 | 28 | def detection_evaluate(self, dataset, results, topk=20, eval_fn=None):
if eval_fn is None:
eval_fn = bbox_map_eval
else:
assert callable(eval_fn)
prog_bar = mmcv.ProgressBar(len(results))
_mAPs = {}
for i, (result, ) in enumerate(zip(results)):
# self.dataset[i] should not call directly
# because there is a risk of mismatch
data_info = dataset.prepare_train_img(i)
mAP = eval_fn(result, data_info['ann_info'])
_mAPs[i] = mAP
prog_bar.update()
# descending select topk image
_mAPs = list(sorted(_mAPs.items(), key=lambda kv: kv[1]))
good_mAPs = _mAPs[-topk:]
bad_mAPs = _mAPs[:topk]
return good_mAPs, bad_mAPs
| tools/analysis_tools/analyze_results.py | 219 | mmdetection | {
"docstring": "Evaluation for object detection.\n\n Args:\n dataset (Dataset): A PyTorch dataset.\n results (list): Object detection results from test\n results pkl file.\n topk (int): Number of the highest topk and\n lowest topk after evaluation index sorting. Default: 20.\n eval_fn (callable, optional): Eval function, Default: None.\n\n Returns:\n tuple: A tuple contains good samples and bad samples.\n good_mAPs (dict[int, float]): A dict contains good\n samples's indices in dataset and model's\n performance on them.\n bad_mAPs (dict[int, float]): A dict contains bad\n samples's indices in dataset and model's\n performance on them.\n ",
"language": "en",
"n_whitespaces": 297,
"n_words": 85,
"vocab_size": 58
} | 73 | Python | 58 | f3a451abab8fc89810b317ca0a88ee9fd12cb0c2 | analyze_results.py | 244,298 | 16 | 136 | detection_evaluate | https://github.com/open-mmlab/mmdetection.git | [Feature] Support panoptic segmentation result analysis (#7922)
* support analyze panoptic segmentation result
* fix lint
* update docstring
* update docstring
* set print_log=False by default
* update
* fix bug 8035 | 238 | 0 | 70,313 | 13 |