complexity
int64 1
56
| n_identifiers
int64 1
114
| code
stringlengths 19
12.7k
| path
stringlengths 8
134
| n_ast_nodes
int64 12
2.35k
| ast_errors
stringlengths 0
4.01k
| repo
stringlengths 3
28
| documentation
dict | n_words
int64 2
866
| language
stringclasses 1
value | vocab_size
int64 2
323
| commit_id
stringlengths 40
40
| file_name
stringlengths 5
79
| id
int64 243
338k
| nloc
int64 1
228
| token_counts
int64 5
1.4k
| fun_name
stringlengths 1
77
| url
stringlengths 31
60
| commit_message
stringlengths 3
15.3k
| n_whitespaces
int64 1
3.23k
| n_ast_errors
int64 0
20
| d_id
int64 74
121k
| ast_levels
int64 4
29
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 15 | def from_db(cls, db, field_names, values):
instance = super().from_db(db, field_names, values)
instance._orig_termination_a_type_id = instance.termination_a_type_id
instance._orig_termination_a_ids = instance.termination_a_ids
instance._orig_termination_b_type_id = instance.termination_b_type_id
instance._orig_termination_b_ids = instance.termination_b_ids
return instance
| netbox/dcim/models/cables.py | 87 | netbox | {
"docstring": "\n Cache the original A and B terminations of existing Cable instances for later reference inside clean().\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 16,
"vocab_size": 16
} | 24 | Python | 18 | 4bb9b6ee2639db683b70d6ddbee055497e0a3647 | cables.py | 264,750 | 7 | 56 | from_db | https://github.com/netbox-community/netbox.git | Extend Cable model to support multiple A/B terminations | 73 | 0 | 77,794 | 10 |
|
1 | 3 | def expand_dims(v, dims):
return v[(...,) + (None,) * (dims - 1)] | ldm/models/diffusion/dpm_solver/dpm_solver.py | 42 | stablediffusion | {
"docstring": "\n Expand the tensor `v` to the dim `dims`.\n Args:\n `v`: a PyTorch tensor with shape [N].\n `dim`: a `int`.\n Returns:\n a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.\n ",
"language": "en",
"n_whitespaces": 70,
"n_words": 36,
"vocab_size": 25
} | 11 | Python | 11 | ca86da3a30c4e080d4db8c25fca73de843663cb4 | dpm_solver.py | 157,367 | 2 | 27 | expand_dims | https://github.com/Stability-AI/stablediffusion.git | release more models | 17 | 0 | 36,907 | 10 |
|
8 | 26 | def test_combined_data_loader_with_max_size_cycle_and_ddp(replace_sampler_ddp, tmpdir):
trainer = Trainer(strategy="ddp", accelerator="auto", devices=2, replace_sampler_ddp=replace_sampler_ddp)
dataloader = CombinedLoader(
{"a": DataLoader(RandomDataset(32, 8), batch_size=1), "b": DataLoader(RandomDataset(32, 8), batch_size=1)},
)
dataloader = trainer._data_connector._prepare_dataloader(dataloader, shuffle=False)
assert len(dataloader) == 4 if replace_sampler_ddp else 8
for a_length in [6, 8, 10]:
dataloader = CombinedLoader(
{
"a": DataLoader(range(a_length), batch_size=1),
"b": DataLoader(range(8), batch_size=1),
},
mode="max_size_cycle",
)
length = max(a_length, 8)
assert len(dataloader) == length
dataloader = trainer._data_connector._prepare_dataloader(dataloader, shuffle=False)
assert len(dataloader) == length // 2 if replace_sampler_ddp else length
if replace_sampler_ddp:
last_batch = list(dataloader)[-1]
if a_length == 6:
assert last_batch == {"a": torch.tensor([0]), "b": torch.tensor([6])}
elif a_length == 8:
assert last_batch == {"a": torch.tensor([6]), "b": torch.tensor([6])}
elif a_length == 10:
assert last_batch == {"a": torch.tensor([8]), "b": torch.tensor([0])}
| tests/trainer/test_supporters.py | 459 | lightning | {
"docstring": "This test makes sure distributed sampler has been properly injected in dataloaders when using CombinedLoader\n with ddp and `max_size_cycle` mode.",
"language": "en",
"n_whitespaces": 22,
"n_words": 20,
"vocab_size": 20
} | 112 | Python | 57 | 5b59c951e28ddc8bb884f044b1f46fb54c23a8b8 | test_supporters.py | 241,651 | 41 | 399 | test_combined_data_loader_with_max_size_cycle_and_ddp | https://github.com/Lightning-AI/lightning.git | Deprecate `TrainerDataLoadingMixin` and move logic to `DataConnector` (#11282)
Co-authored-by: Rohit Gupta <[email protected]>
Co-authored-by: Aki Nitta <[email protected]>
Co-authored-by: Carlos Mocholí <[email protected]> | 341 | 0 | 69,641 | 18 |
|
2 | 21 | def set_pea_parser(parser=None):
if not parser:
from .base import set_base_parser
parser = set_base_parser()
from .peapods.base import mixin_base_ppr_parser
from .peapods.runtimes.worker import mixin_worker_runtime_parser
from .peapods.runtimes.container import mixin_container_runtime_parser
from .peapods.runtimes.remote import mixin_remote_runtime_parser
from .peapods.pea import mixin_pea_parser
from .peapods.runtimes.distributed import mixin_distributed_feature_parser
from .hubble.pull import mixin_hub_pull_options_parser
mixin_base_ppr_parser(parser)
mixin_worker_runtime_parser(parser)
mixin_container_runtime_parser(parser)
mixin_remote_runtime_parser(parser)
mixin_distributed_feature_parser(parser)
mixin_pea_parser(parser)
mixin_hub_pull_options_parser(parser)
mixin_head_parser(parser)
return parser
| jina/parsers/__init__.py | 193 | jina | {
"docstring": "Set the parser for the Pea\n\n :param parser: an optional existing parser to build upon\n :return: the parser\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 18,
"vocab_size": 14
} | 50 | Python | 35 | 933415bfa1f9eb89f935037014dfed816eb9815d | __init__.py | 9,830 | 20 | 113 | set_pea_parser | https://github.com/jina-ai/jina.git | feat: star routing (#3900)
* feat(proto): adjust proto for star routing (#3844)
* feat(proto): adjust proto for star routing
* feat(proto): generate proto files
* feat(grpc): refactor grpclet interface (#3846)
* feat: refactor connection pool for star routing (#3872)
* feat(k8s): add more labels to k8s deployments
* feat(network): refactor connection pool
* feat(network): refactor k8s pool
* feat: star routing graph gateway (#3877)
* feat: star routing - refactor grpc data runtime (#3887)
* feat(runtimes): refactor grpc dataruntime
* fix(tests): adapt worker runtime tests
* fix(import): fix import
* feat(proto): enable sending multiple lists (#3891)
* feat: star routing gateway (#3893)
* feat: star routing gateway all protocols (#3897)
* test: add streaming and prefetch tests (#3901)
* feat(head): new head runtime for star routing (#3899)
* feat(head): new head runtime
* feat(head): new head runtime
* style: fix overload and cli autocomplete
* feat(network): improve proto comments
Co-authored-by: Jina Dev Bot <[email protected]>
* feat(worker): merge docs in worker runtime (#3905)
* feat(worker): merge docs in worker runtime
* feat(tests): assert after clean up
* feat(tests): star routing runtime integration tests (#3908)
* fix(tests): fix integration tests
* test: test runtimes fast slow request (#3910)
* feat(zmq): purge zmq, zed, routing_table (#3915)
* feat(zmq): purge zmq, zed, routing_table
* style: fix overload and cli autocomplete
* feat(zmq): adapt comment in dependency list
* style: fix overload and cli autocomplete
* fix(tests): fix type tests
Co-authored-by: Jina Dev Bot <[email protected]>
* test: add test gateway to worker connection (#3921)
* feat(pea): adapt peas for star routing (#3918)
* feat(pea): adapt peas for star routing
* style: fix overload and cli autocomplete
* feat(pea): add tests
* feat(tests): add failing head pea test
Co-authored-by: Jina Dev Bot <[email protected]>
* feat(tests): integration tests for peas (#3923)
* feat(tests): integration tests for peas
* feat(pea): remove _inner_pea function
* feat: star routing container pea (#3922)
* test: rescue tests (#3942)
* fix: fix streaming tests (#3945)
* refactor: move docker run to run (#3948)
* feat: star routing pods (#3940)
* feat(pod): adapt pods for star routing
* feat(pods): adapt basepod to star routing
* feat(pod): merge pod and compound pod
* feat(tests): fix tests
* style: fix overload and cli autocomplete
* feat(test): add container pea int test
* feat(ci): remove more unnecessary tests
* fix(tests): remove jinad runtime
* feat(ci): remove latency tracking
* fix(ci): fix ci def
* fix(runtime): enable runtime to be exited
* fix(tests): wrap runtime test in process
* fix(runtimes): remove unused runtimes
* feat(runtimes): improve cancel wait
* fix(ci): build test pip again in ci
* fix(tests): fix a test
* fix(test): run async in its own process
* feat(pod): include shard in activate msg
* fix(pea): dont join
* feat(pod): more debug out
* feat(grpc): manage channels properly
* feat(pods): remove exitfifo
* feat(network): add simple send retry mechanism
* fix(network): await pool close
* fix(test): always close grpc server in worker
* fix(tests): remove container pea from tests
* fix(tests): reorder tests
* fix(ci): split tests
* fix(ci): allow alias setting
* fix(test): skip a test
* feat(pods): address comments
Co-authored-by: Jina Dev Bot <[email protected]>
* test: unblock skipped test (#3957)
* feat: jinad pea (#3949)
* feat: jinad pea
* feat: jinad pea
* test: remote peas
* test: toplogy tests with jinad
* ci: parallel jobs
* feat(tests): add pod integration tests (#3958)
* feat(tests): add pod integration tests
* fix(tests): make tests less flaky
* fix(test): fix test
* test(pea): remote pea topologies (#3961)
* test(pea): remote pea simple topology
* test: remote pea topologies
* refactor: refactor streamer result handling (#3960)
* feat(k8s): adapt K8s Pod for StarRouting (#3964)
* test: optimize k8s test
* test: increase timeout and use different namespace
* test: optimize k8s test
* test: build and load image when needed
* test: refactor k8s test
* test: fix image name error
* test: fix k8s image load
* test: fix typoe port expose
* test: update tests in connection pool and handling
* test: remove unused fixture
* test: parameterize docker images
* test: parameterize docker images
* test: parameterize docker images
* feat(k8s): adapt k8s pod for star routing
* fix(k8s): dont overwrite add/remove function in pool
* fix(k8s): some fixes
* fix(k8s): some more fixes
* fix(k8s): linting
* fix(tests): fix tests
* fix(tests): fix k8s unit tests
* feat(k8s): complete k8s integration test
* feat(k8s): finish k8s tests
* feat(k8s): fix test
* fix(tests): fix test with no name
* feat(k8s): unify create/replace interface
* feat(k8s): extract k8s port constants
* fix(tests): fix tests
* fix(tests): wait for runtime being ready in tests
* feat(k8s): address comments
Co-authored-by: bwanglzu <[email protected]>
* feat(flow): adapt Flow for StarRouting (#3986)
* feat(flow): add routes
* feat(flow): adapt flow to star routing
* style: fix overload and cli autocomplete
* feat(flow): handle empty topologies
* feat(k8s): allow k8s pool disabling
* style: fix overload and cli autocomplete
* fix(test): fix test with mock
* fix(tests): fix more tests
* feat(flow): clean up tests
* style: fix overload and cli autocomplete
* fix(tests): fix more tests
* feat: add plot function (#3994)
* fix(tests): avoid hanging tests
* feat(flow): add type hinting
* fix(test): fix duplicate exec name in test
* fix(tests): fix more tests
* fix(tests): enable jinad test again
* fix(tests): random port fixture
* fix(style): replace quotes
Co-authored-by: Jina Dev Bot <[email protected]>
Co-authored-by: Joan Fontanals <[email protected]>
* feat(ci): bring back ci (#3997)
* feat(ci): enable ci again
* style: fix overload and cli autocomplete
* feat(ci): add latency tracking
* feat(ci): bring back some tests
* fix(tests): remove invalid port test
* feat(ci): disable daemon and distributed tests
* fix(tests): fix entrypoint in hub test
* fix(tests): wait for gateway to be ready
* fix(test): fix more tests
* feat(flow): do rolling update and scale sequentially
* fix(tests): fix more tests
* style: fix overload and cli autocomplete
* feat: star routing hanging pods (#4011)
* fix: try to handle hanging pods better
* test: hanging pods test work
* fix: fix topology graph problem
* test: add unit test to graph
* fix(tests): fix k8s tests
* fix(test): fix k8s test
* fix(test): fix k8s pool test
* fix(test): fix k8s test
* fix(test): fix k8s connection pool setting
* fix(tests): make runtime test more reliable
* fix(test): fix routes test
* fix(tests): make rolling update test less flaky
* feat(network): gurantee unique ports
* feat(network): do round robin for shards
* fix(ci): increase pytest timeout to 10 min
Co-authored-by: Jina Dev Bot <[email protected]>
Co-authored-by: Joan Fontanals <[email protected]>
* fix(ci): fix ci file
* feat(daemon): jinad pod for star routing
* Revert "feat(daemon): jinad pod for star routing"
This reverts commit ed9b37ac862af2e2e8d52df1ee51c0c331d76f92.
* feat(daemon): remote jinad pod support (#4042)
* feat(daemon): add pod tests for star routing
* feat(daemon): add remote pod test
* test(daemon): add remote pod arguments test
* test(daemon): add async scale test
* test(daemon): add rolling update test
* test(daemon): fix host
* feat(proto): remove message proto (#4051)
* feat(proto): remove message proto
* fix(tests): fix tests
* fix(tests): fix some more tests
* fix(tests): fix more tests
* fix(tests): fix more tests
* fix(tests): fix more tests
* fix(tests): fix more tests
* feat(proto): put docs back in data
* fix(proto): clean up
* feat(proto): clean up
* fix(tests): skip latency tracking
* fix(test): fix hub test
* fix(tests): fix k8s test
* fix(test): some test clean up
* fix(style): clean up style issues
* feat(proto): adjust for rebase
* fix(tests): bring back latency tracking
* fix(tests): fix merge accident
* feat(proto): skip request serialization (#4074)
* feat: add reduce to star routing (#4070)
* feat: add reduce on shards to head runtime
* test: add reduce integration tests with fixed order
* feat: add reduce on needs
* chore: get_docs_matrix_from_request becomes public
* style: fix overload and cli autocomplete
* docs: remove undeterministic results warning
* fix: fix uses_after
* test: assert correct num docs after reducing in test_external_pod
* test: correct asserts after reduce in test_rolling_update
* fix: no reduce if uses_after_address is set
* fix: get_docs_from_request only if needed
* fix: fix tests after merge
* refactor: move reduce from data_request_handler to head
* style: fix overload and cli autocomplete
* chore: apply suggestions
* fix: fix asserts
* chore: minor test fix
* chore: apply suggestions
* test: remove flow tests with external executor (pea)
* fix: fix test_expected_messages_routing
* fix: fix test_func_joiner
* test: adapt k8s test
Co-authored-by: Jina Dev Bot <[email protected]>
* fix(k8s): fix static pool config
* fix: use custom protoc doc generator image (#4088)
* fix: use custom protoc doc generator image
* fix(docs): minor doc improvement
* fix(docs): use custom image
* fix(docs): copy docarray
* fix: doc building local only
* fix: timeout doc building
* fix: use updated args when building ContainerPea
* test: add container PeaFactory test
* fix: force pea close on windows (#4098)
* fix: dont reduce if uses exist (#4099)
* fix: dont use reduce if uses exist
* fix: adjust reduce tests
* fix: adjust more reduce tests
* fix: fix more tests
* fix: adjust more tests
* fix: ignore non jina resources (#4101)
* feat(executor): enable async executors (#4102)
* feat(daemon): daemon flow on star routing (#4096)
* test(daemon): add remote flow test
* feat(daemon): call scale in daemon
* feat(daemon): remove tail args and identity
* test(daemon): rename scalable executor
* test(daemon): add a small delay in async test
* feat(daemon): scale partial flow only
* feat(daemon): call scale directly in partial flow store
* test(daemon): use asyncio sleep
* feat(daemon): enable flow level distributed tests
* test(daemon): fix jinad env workspace config
* test(daemon): fix pod test use new port rolling update
* feat(daemon): enable distribuetd tests
* test(daemon): remove duplicate tests and zed runtime test
* test(daemon): fix stores unit test
* feat(daemon): enable part of distributed tests
* feat(daemon): enable part of distributed tests
* test: correct test paths
* test(daemon): add client test for remote flows
* test(daemon): send a request with jina client
* test(daemon): assert async generator
* test(daemon): small interval between tests
* test(daemon): add flow test for container runtime
* test(daemon): add flow test for container runtime
* test(daemon): fix executor name
* test(daemon): fix executor name
* test(daemon): use async client fetch result
* test(daemon): finish container flow test
* test(daemon): enable distributed in ci
* test(daemon): enable distributed in ci
* test(daemon): decare flows and pods
* test(daemon): debug ci if else
* test(daemon): debug ci if else
* test(daemon): decare flows and pods
* test(daemon): correct test paths
* test(daemon): add small delay for async tests
* fix: star routing fixes (#4100)
* docs: update docs
* fix: fix Request.__repr__
* docs: update flow remarks
* docs: fix typo
* test: add non_empty_fields test
* chore: remove non_empty_fields test
* feat: polling per endpoint (#4111)
* feat(polling): polling per endpoint configurable
* fix: adjust tests
* feat(polling): extend documentation
* style: fix overload and cli autocomplete
* fix: clean up
* fix: adjust more tests
* fix: remove repeat from flaky test
* fix: k8s test
* feat(polling): address pr feedback
* feat: improve docs
Co-authored-by: Jina Dev Bot <[email protected]>
* feat(grpc): support connect grpc server via ssl tunnel (#4092)
* feat(grpc): support ssl grpc connect if port is 443
* fix(grpc): use https option instead of detect port automatically
* chore: fix typo
* fix: update jina/peapods/networking.py
Co-authored-by: Joan Fontanals <[email protected]>
* fix: update jina/peapods/networking.py
Co-authored-by: Joan Fontanals <[email protected]>
* fix: update jina/peapods/networking.py
Co-authored-by: Joan Fontanals <[email protected]>
* test(networking): add test for peapods networking
* fix: address comments
Co-authored-by: Joan Fontanals <[email protected]>
* feat(polling): unify polling args (#4113)
* fix: several issues for jinad pods (#4119)
* fix: activate for jinad pods
* fix: dont expose worker pod in partial daemon
* fix: workspace setting
* fix: containerized flows
* fix: hub test
* feat(daemon): remote peas on star routing (#4112)
* test(daemon): fix request in peas
* test(daemon): fix request in peas
* test(daemon): fix sync async client test
* test(daemon): enable remote peas test
* test(daemon): replace send message to send request
* test(daemon): declare pea tests in ci
* test(daemon): use pea args fixture
* test(daemon): head pea use default host
* test(daemon): fix peas topologies
* test(daemon): fix pseudo naming
* test(daemon): use default host as host
* test(daemon): fix executor path
* test(daemon): add remote worker back
* test(daemon): skip local remote remote topology
* fix: jinad pea test setup
* fix: jinad pea tests
* fix: remove invalid assertion
Co-authored-by: jacobowitz <[email protected]>
* feat: enable daemon tests again (#4132)
* feat: enable daemon tests again
* fix: remove bogy empty script file
* fix: more jinad test fixes
* style: fix overload and cli autocomplete
* fix: scale and ru in jinad
* fix: fix more jinad tests
Co-authored-by: Jina Dev Bot <[email protected]>
* fix: fix flow test
* fix: improve pea tests reliability (#4136)
Co-authored-by: Joan Fontanals <[email protected]>
Co-authored-by: Jina Dev Bot <[email protected]>
Co-authored-by: Deepankar Mahapatro <[email protected]>
Co-authored-by: bwanglzu <[email protected]>
Co-authored-by: AlaeddineAbdessalem <[email protected]>
Co-authored-by: Zhaofeng Miao <[email protected]> | 118 | 0 | 1,716 | 10 |
|
2 | 26 | def _fd(f):
return f.fileno() if hasattr(f, "fileno") else f
if os.name == "nt":
import msvcrt
from ctypes import (
POINTER,
Structure,
Union,
byref,
c_int64,
c_ulong,
c_void_p,
sizeof,
windll,
)
from ctypes.wintypes import BOOL, DWORD, HANDLE
LOCK_SH = 0 # the default
LOCK_NB = 0x1 # LOCKFILE_FAIL_IMMEDIATELY
LOCK_EX = 0x2 # LOCKFILE_EXCLUSIVE_LOCK
# --- Adapted from the pyserial project ---
# detect size of ULONG_PTR
if sizeof(c_ulong) != sizeof(c_void_p):
ULONG_PTR = c_int64
else:
ULONG_PTR = c_ulong
PVOID = c_void_p
# --- Union inside Structure by stackoverflow:3480240 --- | django/core/files/locks.py | 161 | django | {
"docstring": "Get a filedescriptor from something which could be a file or an fd.",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 12
} | 86 | Python | 64 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | locks.py | 204,481 | 2 | 21 | _fd | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 210 | 0 | 50,743 | 9 |
|
1 | 13 | def set_scale_factor(self, scale_factor, unit_system="SI"):
sympy_deprecation_warning(
f,
deprecated_since_version="1.5",
active_deprecations_target="deprecated-quantity-methods",
)
from sympy.physics.units import UnitSystem
unit_system = UnitSystem.get_unit_system(unit_system)
unit_system.set_quantity_scale_factor(self, scale_factor)
| sympy/physics/units/quantities.py | 82 | sympy | {
"docstring": "\n Quantity.set_scale_factor() is deprecated. Use either\n unit_system.set_quantity_scale_factors() or\n {self}.set_global_relative_scale_factor() instead.\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 9,
"vocab_size": 9
} | 18 | Python | 18 | 905eb426131ca9542a6b258462d9ae984e5b2563 | quantities.py | 197,104 | 13 | 49 | set_scale_factor | https://github.com/sympy/sympy.git | Update the deprecation warnings in sympy.physics.units | 85 | 0 | 48,341 | 9 |
|
1 | 9 | def trace(self, offset=0, axis1=0, axis2=1, dtype=None):
from dask.array.reductions import trace
return trace(self, offset=offset, axis1=axis1, axis2=axis2, dtype=dtype)
| dask/array/core.py | 72 | dask | {
"docstring": "Return the sum along diagonals of the array.\n\n Refer to :func:`dask.array.trace` for full documentation.\n\n See Also\n --------\n dask.array.trace : equivalent function\n ",
"language": "en",
"n_whitespaces": 56,
"n_words": 21,
"vocab_size": 20
} | 16 | Python | 15 | 2820bae493a49cb1d0a6e376985c5473b8f04fa8 | core.py | 156,750 | 3 | 51 | trace | https://github.com/dask/dask.git | Don't include docs in ``Array`` methods, just refer to module docs (#9244)
Co-authored-by: James Bourbeau <[email protected]> | 37 | 0 | 36,760 | 8 |
|
1 | 11 | async def test_ensure_config_exists_creates_config(hass):
assert not os.path.isfile(YAML_PATH)
with patch("builtins.print") as mock_print:
await config_util.async_ensure_config_exists(hass)
assert os.path.isfile(YAML_PATH)
assert mock_print.called
| tests/test_config.py | 80 | core | {
"docstring": "Test that calling ensure_config_exists.\n\n If not creates a new config file.\n ",
"language": "en",
"n_whitespaces": 17,
"n_words": 11,
"vocab_size": 11
} | 16 | Python | 13 | 8b38fa58aa45d1809f6900729b4046d6c02c2230 | test_config.py | 312,785 | 6 | 44 | test_ensure_config_exists_creates_config | https://github.com/home-assistant/core.git | Bump pytest to 7.0.0 (#65981) | 38 | 0 | 111,422 | 11 |
|
1 | 3 | def is_even(self):
return not self.is_odd
| sympy/combinatorics/permutations.py | 21 | sympy | {
"docstring": "\n Checks if a permutation is even.\n\n Examples\n ========\n\n >>> from sympy.combinatorics import Permutation\n >>> p = Permutation([0, 1, 2, 3])\n >>> p.is_even\n True\n >>> p = Permutation([3, 2, 1, 0])\n >>> p.is_even\n True\n\n See Also\n ========\n\n is_odd\n ",
"language": "en",
"n_whitespaces": 136,
"n_words": 37,
"vocab_size": 26
} | 5 | Python | 5 | 498015021131af4dbb07eb110e5badaba8250c7b | permutations.py | 196,182 | 2 | 11 | is_even | https://github.com/sympy/sympy.git | Updated import locations | 19 | 0 | 47,682 | 7 |
|
15 | 44 | def warns(warningcls, *, match='', test_stacklevel=True):
# Absorbs all warnings in warnrec
with warnings.catch_warnings(record=True) as warnrec:
# Hide all warnings but make sure that our warning is emitted
warnings.simplefilter("ignore")
warnings.filterwarnings("always", match, warningcls)
# Now run the test
yield warnrec
# Raise if expected warning not found
if not any(issubclass(w.category, warningcls) for w in warnrec):
msg = ('Failed: DID NOT WARN.'
' No warnings of type %s was emitted.'
' The list of emitted warnings is: %s.'
) % (warningcls, [w.message for w in warnrec])
raise Failed(msg)
if test_stacklevel:
for f in inspect.stack():
thisfile = f.filename
file = os.path.split(thisfile)[1]
if file.startswith('test_'):
break
elif file == 'doctest.py':
# skip the stacklevel testing in the doctests of this
# function
return
else:
raise RuntimeError("Could not find the file for the given warning to test the stacklevel")
for w in warnrec:
if w.filename != thisfile:
msg = f.replace('\n', ' ')
raise Failed(msg)
if warningcls == SymPyDeprecationWarning:
this_file = pathlib.Path(__file__)
active_deprecations_file = (this_file.parent.parent.parent / 'doc' /
'src' / 'explanation' /
'active-deprecations.md')
if not active_deprecations_file.exists():
# We can only test that the active_deprecations_target works if we are
# in the git repo.
return
targets = []
for w in warnrec:
targets.append(w.message.active_deprecations_target)
with open(active_deprecations_file) as f:
text = f.read()
for target in targets:
if f'({target})=' not in text:
raise Failed(f"The active deprecations target {target!r} does not appear to be a valid target in the active-deprecations.md file ({active_deprecations_file}).")
| sympy/testing/pytest.py | 485 | sympy | {
"docstring": "\n Like raises but tests that warnings are emitted.\n\n >>> from sympy.testing.pytest import warns\n >>> import warnings\n\n >>> with warns(UserWarning):\n ... warnings.warn('deprecated', UserWarning, stacklevel=2)\n\n >>> with warns(UserWarning):\n ... pass\n Traceback (most recent call last):\n ...\n Failed: DID NOT WARN. No warnings of type UserWarning\\\n was emitted. The list of emitted warnings is: [].\n\n ``test_stacklevel`` makes it check that the ``stacklevel`` parameter to\n ``warn()`` is set so that the warning shows the user line of code (the\n code under the warns() context manager). Set this to False if this is\n ambiguous or if the context manager does not test the direct user code\n that emits the warning.\n\n If the warning is a ``SymPyDeprecationWarning``, this additionally tests that\n the ``active_deprecations_target`` is a real target in the\n ``active-deprecations.md`` file.\n\n \\\nFailed: Warning has the wrong stacklevel. The warning stacklevel needs to be\nset so that the line of code shown in the warning message is user code that\ncalls the deprecated code (the current stacklevel is showing code from\n{w.filename}, expected {thisfile})",
"language": "en",
"n_whitespaces": 232,
"n_words": 168,
"vocab_size": 101
} | 229 | Python | 139 | c5aa4e76c9642ebb2cf0fe105e46222b541966b2 | pytest.py | 196,844 | 44 | 263 | warns | https://github.com/sympy/sympy.git | Fix the formatting of an error message | 718 | 0 | 48,214 | 17 |
|
1 | 3 | def precmd(self, line):
return line
| python3.10.4/Lib/cmd.py | 18 | XX-Net | {
"docstring": "Hook method executed just before the command line is\n interpreted, but after the input prompt is generated and issued.\n\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 19,
"vocab_size": 17
} | 5 | Python | 5 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | cmd.py | 221,333 | 2 | 10 | precmd | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 19 | 0 | 56,352 | 6 |
|
2 | 20 | async def async_test_home_assistant(loop, load_registries=True):
hass = ha.HomeAssistant()
store = auth_store.AuthStore(hass)
hass.auth = auth.AuthManager(hass, store, {}, {})
ensure_auth_manager_loaded(hass.auth)
INSTANCES.append(hass)
orig_async_add_job = hass.async_add_job
orig_async_add_executor_job = hass.async_add_executor_job
orig_async_create_task = hass.async_create_task
| tests/common.py | 114 | core | {
"docstring": "Return a Home Assistant object pointing at test config dir.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 27 | Python | 22 | e1338adf1a27edbc0e3513fa67cd6690c7a8fbc0 | common.py | 291,337 | 54 | 320 | async_test_home_assistant | https://github.com/home-assistant/core.git | Allow configuring country and language in core config (#81734)
* Allow configuring country and language in core config
* Add script for updating list of countries
* Use black for formatting
* Fix quoting
* Move country codes to a separate file
* Address review comments
* Add generated/countries.py
* Get default language from owner account
* Remove unused variable
* Add script to generate list of supported languages
* Add tests
* Fix stale docsring
* Use format_python_namespace
* Correct async_user_store
* Improve typing
* Fix with_store decorator
* Initialize language in core store migration
* Fix startup
* Tweak
* Apply suggestions from code review
Co-authored-by: Franck Nijhof <[email protected]>
* Update storage.py
Co-authored-by: Franck Nijhof <[email protected]> | 54 | 0 | 90,446 | 9 |
|
1 | 2 | def shift(self):
return self["shift"]
| packages/python/plotly/plotly/graph_objs/layout/_yaxis.py | 22 | plotly.py | {
"docstring": "\n Moves the axis a given number of pixels from where it would\n have been otherwise. Accepts both positive and negative values,\n which will shift the axis either right or left, respectively.\n If `autoshift` is set to true, then this defaults to a padding\n of -3 if `side` is set to \"left\". and defaults to +3 if `side`\n is set to \"right\". Defaults to 0 if `autoshift` is set to\n false. Only has an effect if `anchor` is set to \"free\".\n\n The 'shift' property is a number and may be specified as:\n - An int or float\n\n Returns\n -------\n int|float\n ",
"language": "en",
"n_whitespaces": 193,
"n_words": 99,
"vocab_size": 68
} | 4 | Python | 4 | ab7ddd3e8beeb1e70ce46447d26a0715fc92a5b7 | _yaxis.py | 231,482 | 2 | 11 | shift | https://github.com/plotly/plotly.py.git | bump plotly.js to 2.17 | 18 | 0 | 62,935 | 7 |
|
2 | 9 | def frame(self, fn_fid_or_fname, ignorekeys=[]):
# get the frame info by name or id number
if isinstance(fn_fid_or_fname, str):
f = self.frame_by_name(fn_fid_or_fname, ignorekeys)
else:
f = self.frame_by_id(fn_fid_or_fname, ignorekeys)
return f
| nltk/corpus/reader/framenet.py | 72 | nltk | {
"docstring": "\n Get the details for the specified Frame using the frame's name\n or id number.\n\n Usage examples:\n\n >>> from nltk.corpus import framenet as fn\n >>> f = fn.frame(256)\n >>> f.name\n 'Medical_specialties'\n >>> f = fn.frame('Medical_specialties')\n >>> f.ID\n 256\n >>> # ensure non-ASCII character in definition doesn't trigger an encoding error:\n >>> fn.frame('Imposing_obligation') # doctest: +ELLIPSIS\n frame (1494): Imposing_obligation...\n\n\n The dict that is returned from this function will contain the\n following information about the Frame:\n\n - 'name' : the name of the Frame (e.g. 'Birth', 'Apply_heat', etc.)\n - 'definition' : textual definition of the Frame\n - 'ID' : the internal ID number of the Frame\n - 'semTypes' : a list of semantic types for this frame\n - Each item in the list is a dict containing the following keys:\n - 'name' : can be used with the semtype() function\n - 'ID' : can be used with the semtype() function\n\n - 'lexUnit' : a dict containing all of the LUs for this frame.\n The keys in this dict are the names of the LUs and\n the value for each key is itself a dict containing\n info about the LU (see the lu() function for more info.)\n\n - 'FE' : a dict containing the Frame Elements that are part of this frame\n The keys in this dict are the names of the FEs (e.g. 'Body_system')\n and the values are dicts containing the following keys\n\n - 'definition' : The definition of the FE\n - 'name' : The name of the FE e.g. 'Body_system'\n - 'ID' : The id number\n - '_type' : 'fe'\n - 'abbrev' : Abbreviation e.g. 'bod'\n - 'coreType' : one of \"Core\", \"Peripheral\", or \"Extra-Thematic\"\n - 'semType' : if not None, a dict with the following two keys:\n - 'name' : name of the semantic type. can be used with\n the semtype() function\n - 'ID' : id number of the semantic type. can be used with\n the semtype() function\n - 'requiresFE' : if not None, a dict with the following two keys:\n - 'name' : the name of another FE in this frame\n - 'ID' : the id of the other FE in this frame\n - 'excludesFE' : if not None, a dict with the following two keys:\n - 'name' : the name of another FE in this frame\n - 'ID' : the id of the other FE in this frame\n\n - 'frameRelation' : a list of objects describing frame relations\n - 'FEcoreSets' : a list of Frame Element core sets for this frame\n - Each item in the list is a list of FE objects\n\n :param fn_fid_or_fname: The Framenet name or id number of the frame\n :type fn_fid_or_fname: int or str\n :param ignorekeys: The keys to ignore. These keys will not be\n included in the output. (optional)\n :type ignorekeys: list(str)\n :return: Information about a frame\n :rtype: dict\n ",
"language": "en",
"n_whitespaces": 1166,
"n_words": 466,
"vocab_size": 160
} | 28 | Python | 24 | 8a4cf5d94eb94b6427c5d1d7907ba07b119932c5 | framenet.py | 42,535 | 6 | 45 | frame | https://github.com/nltk/nltk.git | Docstring tests (#3050)
* fixed pytests
* fixed more pytests
* fixed more pytest and changed multiline pytest issues fixes for snowball.py and causal.py
* fixed pytests (mainly multiline or rounding issues)
* fixed treebank pytests, removed test for return_string=True (deprecated)
* fixed destructive.py pytests, removed test for return_string=True (deprecated)
* fixed pytest (rounding issues)
* fixed pytest (initialised missing object)
* fixed pytest (formatting issues)
* fixed pytest (formatting issues)
* fixed pytest (formatting issues)
* added pytest +SKIP for deprecated module stanford
* updated AUTHORS.md
* changed docstring corrections by usage of ELLIPSIS and different roundings
* fixed AUTHORS.md to be consistent
* Fix framenet doctest formatting with pprint
* Change docstring on MultiListBox.__init__
I believe the original typo was misinterpreted and changed to something that was not originally intended.
Co-authored-by: Jan Lennartz <[email protected]>
Co-authored-by: Tom Aarsen <[email protected]>
Co-authored-by: Tom Aarsen <[email protected]> | 85 | 0 | 7,597 | 11 |
|
1 | 5 | def _get_cookies_set(self, req, resp):
raise NotImplementedError("This method must be implemented by a subclass.")
| tests/csrf_tests/tests.py | 27 | django | {
"docstring": "\n Return a list of the cookie values passed to set_cookie() over the\n course of the request-response.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 16,
"vocab_size": 13
} | 13 | Python | 13 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | tests.py | 202,418 | 2 | 15 | _get_cookies_set | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 27 | 0 | 50,120 | 8 |
|
4 | 11 | async def async_update(self) -> None:
await self.fido_data.async_update()
if (sensor_type := self.entity_description.key) == "balance":
if self.fido_data.data.get(sensor_type) is not None:
self._attr_native_value = round(self.fido_data.data[sensor_type], 2)
else:
if self.fido_data.data.get(self._number, {}).get(sensor_type) is not None:
self._attr_native_value = round(
self.fido_data.data[self._number][sensor_type], 2
)
| homeassistant/components/fido/sensor.py | 175 | core | {
"docstring": "Get the latest data from Fido and update the state.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | 35 | Python | 27 | 58b9785485af4b49097707edb7fbcc00c72a3df0 | sensor.py | 304,562 | 11 | 110 | async_update | https://github.com/home-assistant/core.git | Improve entity type hints [f] (#77143) | 149 | 0 | 103,369 | 17 |
|
21 | 38 | def _missing_(cls, value):
if not isinstance(value, int):
raise ValueError(
"%r is not a valid %s" % (value, cls.__qualname__)
)
# check boundaries
# - value must be in range (e.g. -16 <-> +15, i.e. ~15 <-> 15)
# - value must not include any skipped flags (e.g. if bit 2 is not
# defined, then 0d10 is invalid)
flag_mask = cls._flag_mask_
all_bits = cls._all_bits_
neg_value = None
if (
not ~all_bits <= value <= all_bits
or value & (all_bits ^ flag_mask)
):
if cls._boundary_ is STRICT:
max_bits = max(value.bit_length(), flag_mask.bit_length())
raise ValueError(
"%r invalid value %r\n given %s\n allowed %s" % (
cls, value, bin(value, max_bits), bin(flag_mask, max_bits),
))
elif cls._boundary_ is CONFORM:
value = value & flag_mask
elif cls._boundary_ is EJECT:
return value
elif cls._boundary_ is KEEP:
if value < 0:
value = (
max(all_bits+1, 2**(value.bit_length()))
+ value
)
else:
raise ValueError(
'%r unknown flag boundary %r' % (cls, cls._boundary_, )
)
if value < 0:
neg_value = value
value = all_bits + 1 + value
# get members and unknown
unknown = value & ~flag_mask
member_value = value & flag_mask
if unknown and cls._boundary_ is not KEEP:
raise ValueError(
'%s(%r) --> unknown values %r [%s]'
% (cls.__name__, value, unknown, bin(unknown))
)
# normal Flag?
__new__ = getattr(cls, '__new_member__', None)
if cls._member_type_ is object and not __new__:
# construct a singleton enum pseudo-member
pseudo_member = object.__new__(cls)
else:
pseudo_member = (__new__ or cls._member_type_.__new__)(cls, value)
if not hasattr(pseudo_member, '_value_'):
pseudo_member._value_ = value
if member_value:
pseudo_member._name_ = '|'.join([
m._name_ for m in cls._iter_member_(member_value)
])
if unknown:
pseudo_member._name_ += '|%s' % cls._numeric_repr_(unknown)
else:
pseudo_member._name_ = None
# use setdefault in case another thread already created a composite
# with this value, but only if all members are known
# note: zero is a special case -- add it
if not unknown:
pseudo_member = cls._value2member_map_.setdefault(value, pseudo_member)
if neg_value is not None:
cls._value2member_map_[neg_value] = pseudo_member
return pseudo_member
| Lib/enum.py | 611 | cpython | {
"docstring": "\n Create a composite member containing all canonical members present in `value`.\n\n If non-member values are present, result depends on `_boundary_` setting.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 21,
"vocab_size": 21
} | 312 | Python | 166 | acf7403f9baea3ae1119fc6b4a3298522188bf96 | enum.py | 175,319 | 62 | 378 | _missing_ | https://github.com/python/cpython.git | bpo-40066: [Enum] update str() and format() output (GH-30582)
Undo rejected PEP-663 changes:
- restore `repr()` to its 3.10 status
- restore `str()` to its 3.10 status
New changes:
- `IntEnum` and `IntFlag` now leave `__str__` as the original `int.__str__` so that str() and format() return the same result
- zero-valued flags without a name have a slightly changed repr(), e.g. `repr(Color(0)) == '<Color: 0>'`
- update `dir()` for mixed-in types to return all the methods and attributes of the mixed-in type
- added `_numeric_repr_` to `Flag` to control display of unnamed values
- enums without doc strings have a more comprehensive doc string added
- `ReprEnum` added -- inheriting from this makes it so only `__repr__` is replaced, not `__str__` nor `__format__`; `IntEnum`, `IntFlag`, and `StrEnum` all inherit from `ReprEnum` | 1,215 | 0 | 41,600 | 21 |
|
1 | 2 | def configuration(self):
return []
| homeassistant/components/alexa/capabilities.py | 18 | core | {
"docstring": "Return the configuration object.\n\n Applicable to the ThermostatController, SecurityControlPanel, ModeController, RangeController,\n and EventDetectionSensor.\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 13,
"vocab_size": 12
} | 4 | Python | 4 | 53245c65238e3009dd1f3412f7f9bef10385f64e | capabilities.py | 294,423 | 2 | 9 | configuration | https://github.com/home-assistant/core.git | Update pylint to 2.13.0 (#68656) | 18 | 0 | 93,460 | 6 |
|
3 | 11 | def test_get_documents_by_id(self, ds, documents):
ds.write_documents(documents)
ids = [doc.id for doc in documents]
result = {doc.id for doc in ds.get_documents_by_id(ids)}
assert set(ids) == result
| test/document_stores/test_memory.py | 78 | haystack | {
"docstring": "\n The base test uses the batch_size param that's not supported\n here, so we override the test case\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 17,
"vocab_size": 15
} | 23 | Python | 18 | a15af7f8c3ca504ceaa7c34e8487be2915cd6dc7 | test_memory.py | 258,280 | 5 | 50 | test_get_documents_by_id | https://github.com/deepset-ai/haystack.git | refactor: Move `InMemoryDocumentStore` tests to their own class (#3614)
* move tests to their own class
* move more tests
* add specific job
* fix test
* Update test/document_stores/test_memory.py
Co-authored-by: Sara Zan <[email protected]>
Co-authored-by: Sara Zan <[email protected]> | 58 | 0 | 75,213 | 10 |
|
2 | 6 | def add_checkpoint_hook(self, args):
if args.cpu:
original_n_cpus = args.distributed_world_size
| doc/source/ray-core/_examples/lm/ray_train.py | 31 | ray | {
"docstring": "Add a hook to the original save_checkpoint function.\n\n This checks if there are new computational resources available.\n If so, raise exception to restart the training process and\n make use of the new resources.\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 33,
"vocab_size": 29
} | 8 | Python | 8 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray_train.py | 130,071 | 8 | 36 | add_checkpoint_hook | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 33 | 0 | 29,088 | 9 |
|
5 | 21 | def addResourceToFile(target_filename, data, resource_kind, lang_id, res_name, logger):
max_attempts = 5
for attempt in range(1, max_attempts + 1):
update_handle = _openFileWindowsResources(target_filename)
_updateWindowsResource(update_handle, resource_kind, res_name, lang_id, data)
try:
_closeFileWindowsResources(update_handle)
except OSError as e:
if e.errno in (110, 13):
logger.warning(
% (target_filename, attempt)
)
else:
logger.warning(
% (target_filename, attempt, e.errno)
)
time.sleep(1)
continue
else:
if attempt != 1:
logger.warning(
"Succeeded with resource update in attempt %d." % attempt
)
break
else:
logger.sysexit("Failed to update resources, the result is unusable.")
| nuitka/utils/WindowsResources.py | 208 | Nuitka | {
"docstring": "\nFailed to add resources to file %r in attempt %d.\nDisable Anti-Virus, e.g. Windows Defender for build folders. Retrying after a second of delay.\nFailed to add resources to file %r in attempt %d with error code %d.\nDisable Anti-Virus, e.g. Windows Defender for build folders. Retrying after a second of delay.",
"language": "en",
"n_whitespaces": 48,
"n_words": 52,
"vocab_size": 27
} | 76 | Python | 55 | ed2208484bde4bf78da0712d54ab18c192df7e2e | WindowsResources.py | 178,816 | 32 | 131 | addResourceToFile | https://github.com/Nuitka/Nuitka.git | Onefile: Attempt opening the binary for adding payload up to five seconds
* This duplicates code from resource handling, where we needed to do
this already, but due to hotfix intention, we don't want to make it
as a reusable functionality yet. | 390 | 0 | 42,833 | 18 |
|
2 | 10 | def test_connection(self) -> Tuple[bool, str]:
try:
conn = self.get_conn()
conn.normalize('.')
return True, "Connection successfully tested"
except Exception as e:
return False, str(e)
| airflow/providers/sftp/hooks/sftp.py | 78 | airflow | {
"docstring": "Test the SFTP connection by calling path with directory",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 22 | Python | 21 | f3aacebe502c4ea5dc2b7d29373539296fa037eb | sftp.py | 43,251 | 8 | 44 | test_connection | https://github.com/apache/airflow.git | Convert sftp hook to use paramiko instead of pysftp (#24512) | 87 | 0 | 7,889 | 11 |
|
3 | 2 | def test_redirect_exception(self) -> None:
| tests/test_server.py | 16 | synapse | {
"docstring": "\n If the callback raises a RedirectException, it is turned into a 30x\n with the right location.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 16,
"vocab_size": 14
} | 4 | Python | 4 | f1145563f662653e451525032b043d1a58998b6d | test_server.py | 248,661 | 15 | 95 | test_redirect_exception | https://github.com/matrix-org/synapse.git | Extra type annotations in `test_server` (#13124) | 11 | 0 | 72,408 | 6 |
|
10 | 21 | def __format__(self, fmt):
# Support string formatting
if not fmt or fmt[-1] == 's':
return format(str(self), fmt)
# From here on down, support for 'bnXx'
global _address_fmt_re
if _address_fmt_re is None:
import re
_address_fmt_re = re.compile('(#?)(_?)([xbnX])')
m = _address_fmt_re.fullmatch(fmt)
if not m:
return super().__format__(fmt)
alternate, grouping, fmt_base = m.groups()
# Set some defaults
if fmt_base == 'n':
if self._version == 4:
fmt_base = 'b' # Binary is default for ipv4
else:
fmt_base = 'x' # Hex is default for ipv6
if fmt_base == 'b':
padlen = self._max_prefixlen
else:
padlen = self._max_prefixlen // 4
if grouping:
padlen += padlen // 4 - 1
if alternate:
padlen += 2 # 0b or 0x
return format(int(self), f'{alternate}0{padlen}{grouping}{fmt_base}')
@functools.total_ordering | python3.10.4/Lib/ipaddress.py | 277 | @functools.total_ordering | XX-Net | {
"docstring": "Returns an IP address as a formatted string.\n\n Supported presentation types are:\n 's': returns the IP address as a string (default)\n 'b': converts to binary and returns a zero-padded string\n 'X' or 'x': converts to upper- or lower-case hex and returns a zero-padded string\n 'n': the same as 'b' for IPv4 and 'x' for IPv6\n\n For binary and hex presentation types, the alternate form specifier\n '#' and the grouping option '_' are supported.\n ",
"language": "en",
"n_whitespaces": 129,
"n_words": 73,
"vocab_size": 47
} | 115 | Python | 70 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | ipaddress.py | 218,526 | 25 | 141 | __format__ | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 369 | 1 | 55,367 | 12 |
1 | 23 | def test_interactive_true_with_dependent_objects(self):
post = Post.objects.create(title="post", content_type=self.content_type)
# A related object is needed to show that a custom collector with
# can_fast_delete=False is needed.
ModelWithNullFKToSite.objects.create(post=post)
with mock.patch("builtins.input", return_value="yes"):
with captured_stdout() as stdout:
call_command("remove_stale_contenttypes", verbosity=2, stdout=stdout)
self.assertEqual(Post.objects.count(), 0)
output = stdout.getvalue()
self.assertIn("- Content type for contenttypes_tests.Fake", output)
self.assertIn("- 1 contenttypes_tests.Post object(s)", output)
self.assertIn("- 1 contenttypes_tests.ModelWithNullFKToSite", output)
self.assertIn("Deleting stale content type", output)
self.assertEqual(ContentType.objects.count(), self.before_count)
| tests/contenttypes_tests/test_management.py | 233 | django | {
"docstring": "\n interactive mode (the default) deletes stale content types and warns of\n dependent objects.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 13,
"vocab_size": 13
} | 61 | Python | 50 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | test_management.py | 202,322 | 13 | 134 | test_interactive_true_with_dependent_objects | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 178 | 0 | 50,068 | 12 |
|
3 | 17 | def test_activity_stream_related():
serializer_related = set(
ActivityStream._meta.get_field(field_name).related_model
for field_name, stuff in ActivityStreamSerializer()._local_summarizable_fk_fields(None)
if hasattr(ActivityStream, field_name)
)
models = set(activity_stream_registrar.models)
models.remove(Setting)
missing_models = models - serializer_related
assert not missing_models
| awx/main/tests/unit/api/serializers/test_activity_stream_serializer.py | 102 | awx | {
"docstring": "\n If this test failed with content in `missing_models`, that means that a\n model has been connected to the activity stream, but the model has not\n been added to the activity stream serializer.\n\n How to fix this:\n Ideally, all models should be in awx.api.serializers.SUMMARIZABLE_FK_FIELDS\n\n If, for whatever reason, the missing model should not generally be\n summarized from related resources, then a special case can be carved out in\n ActivityStreamSerializer._local_summarizable_fk_fields\n ",
"language": "en",
"n_whitespaces": 96,
"n_words": 68,
"vocab_size": 50
} | 27 | Python | 22 | 2d310dc4e50c6f7cd298f9fb8af69da258cd9ea6 | test_activity_stream_serializer.py | 81,351 | 10 | 62 | test_activity_stream_related | https://github.com/ansible/awx.git | Optimize object creation by getting fewer empty relationships (#12508)
This optimizes the ActivityStreamSerializer by only getting many-to-many
relationships that are speculatively non-empty
based on information we have in other fields
We run this every time we create an object as an on_commit action
so it is expected this will have a major impact on response times for launching jobs | 69 | 0 | 17,190 | 13 |
|
1 | 1 | def test_invalid_scheduler_missing_state_dict():
| tests/trainer/optimization/test_optimizers.py | 12 | lightning | {
"docstring": "Test that custom lr scheduler raises an error if it's missing the state dict.",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 14
} | 2 | Python | 2 | 82c8875f33addb0becd7761c95e9674ccc98c7ee | test_optimizers.py | 241,755 | 10 | 48 | test_invalid_scheduler_missing_state_dict | https://github.com/Lightning-AI/lightning.git | Add `LightningModule.lr_scheduler_step` (#10249)
Co-authored-by: Carlos Mocholi <[email protected]> | 5 | 0 | 69,685 | 6 |
|
6 | 15 | def register_for_checkpointing(self, *objects):
invalid_objects = []
for obj in objects:
if not hasattr(obj, "state_dict") or not hasattr(obj, "load_state_dict"):
invalid_objects.append(obj)
if len(invalid_objects) > 0:
err = "All `objects` must include a `state_dict` and `load_state_dict` function to be stored. The following inputs are invalid:"
for index, obj in enumerate(invalid_objects):
err += f"\n\t- Item at index {index}, `{get_pretty_name(obj)}`"
raise ValueError(err)
self._custom_objects.extend(objects)
| src/accelerate/accelerator.py | 149 | accelerate | {
"docstring": "\n Makes note of `objects` and will save or load them in during `save_state` or `load_state`.\n\n These should be utilized when the state is being loaded or saved in the same script. It is not designed to be\n used in different scripts\n\n Note: Every `object` must have a `load_state_dict` and `state_dict` function to be stored.\n ",
"language": "en",
"n_whitespaces": 90,
"n_words": 54,
"vocab_size": 44
} | 58 | Python | 50 | 6ffab178accebda485295bddf8eb6bf436ff698f | accelerator.py | 337,272 | 11 | 79 | register_for_checkpointing | https://github.com/huggingface/accelerate.git | Implementation of saving and loading custom states (#270) | 167 | 0 | 120,989 | 14 |
|
28 | 33 | def get_subsample(train_args, mode, arch):
if arch == 'transformer':
return np.array([1])
elif mode == 'mt' and arch == 'rnn':
# +1 means input (+1) and layers outputs (train_args.elayer)
subsample = np.ones(train_args.elayers + 1, dtype=np.int)
logging.warning('Subsampling is not performed for machine translation.')
logging.info('subsample: ' + ' '.join([str(x) for x in subsample]))
return subsample
elif (mode == 'asr' and arch in ('rnn', 'rnn-t')) or \
(mode == 'mt' and arch == 'rnn') or \
(mode == 'st' and arch == 'rnn'):
subsample = np.ones(train_args.elayers + 1, dtype=np.int)
if train_args.etype.endswith("p") and not train_args.etype.startswith("vgg"):
ss = train_args.subsample.split("_")
for j in range(min(train_args.elayers + 1, len(ss))):
subsample[j] = int(ss[j])
else:
logging.warning(
'Subsampling is not performed for vgg*. It is performed in max pooling layers at CNN.')
logging.info('subsample: ' + ' '.join([str(x) for x in subsample]))
return subsample
elif mode == 'asr' and arch == 'rnn_mix':
subsample = np.ones(train_args.elayers_sd + train_args.elayers + 1, dtype=np.int)
if train_args.etype.endswith("p") and not train_args.etype.startswith("vgg"):
ss = train_args.subsample.split("_")
for j in range(min(train_args.elayers_sd + train_args.elayers + 1, len(ss))):
subsample[j] = int(ss[j])
else:
logging.warning(
'Subsampling is not performed for vgg*. It is performed in max pooling layers at CNN.')
logging.info('subsample: ' + ' '.join([str(x) for x in subsample]))
return subsample
elif mode == 'asr' and arch == 'rnn_mulenc':
subsample_list = []
for idx in range(train_args.num_encs):
subsample = np.ones(train_args.elayers[idx] + 1, dtype=np.int)
if train_args.etype[idx].endswith("p") and not train_args.etype[idx].startswith("vgg"):
ss = train_args.subsample[idx].split("_")
for j in range(min(train_args.elayers[idx] + 1, len(ss))):
subsample[j] = int(ss[j])
else:
logging.warning(
'Encoder %d: Subsampling is not performed for vgg*. '
'It is performed in max pooling layers at CNN.', idx + 1)
logging.info('subsample: ' + ' '.join([str(x) for x in subsample]))
subsample_list.append(subsample)
return subsample_list
else:
raise ValueError('Invalid options: mode={}, arch={}'.format(mode, arch))
| ppg2mel/utils/nets_utils.py | 897 | MockingBird | {
"docstring": "Parse the subsampling factors from the training args for the specified `mode` and `arch`.\n\n Args:\n train_args: argument Namespace containing options.\n mode: one of ('asr', 'mt', 'st')\n arch: one of ('rnn', 'rnn-t', 'rnn_mix', 'rnn_mulenc', 'transformer')\n\n Returns:\n np.ndarray / List[np.ndarray]: subsampling factors.\n ",
"language": "en",
"n_whitespaces": 77,
"n_words": 40,
"vocab_size": 35
} | 275 | Python | 96 | b617a87ee40ab384767a27335313c2c65ee094ec | nets_utils.py | 161,058 | 49 | 534 | get_subsample | https://github.com/babysor/MockingBird.git | Init ppg extractor and ppg2mel (#375)
* Init ppg extractor and ppg2mel
* add preprocess and training
* FIx known issues
* Update __init__.py
Allow to gen audio
* Fix length issue
* Fix bug of preparing fid
* Fix sample issues
* Add UI usage of PPG-vc | 735 | 0 | 38,874 | 19 |
|
7 | 17 | def getTreeBuilder(treeType, implementation=None, **kwargs):
treeType = treeType.lower()
if treeType not in treeBuilderCache:
if treeType == "dom":
from . import dom
# Come up with a sane default (pref. from the stdlib)
if implementation is None:
from xml.dom import minidom
implementation = minidom
# NEVER cache here, caching is done in the dom submodule
return dom.getDomModule(implementation, **kwargs).TreeBuilder
elif treeType == "lxml":
from . import etree_lxml
treeBuilderCache[treeType] = etree_lxml.TreeBuilder
elif treeType == "etree":
from . import etree
if implementation is None:
implementation = default_etree
# NEVER cache here, caching is done in the etree submodule
return etree.getETreeModule(implementation, **kwargs).TreeBuilder
else:
raise ValueError( % treeType)
return treeBuilderCache.get(treeType)
| .venv/lib/python3.8/site-packages/pip/_vendor/html5lib/treebuilders/__init__.py | 211 | transferlearning | {
"docstring": "Get a TreeBuilder class for various types of trees with built-in support\n\n :arg treeType: the name of the tree type required (case-insensitive). Supported\n values are:\n\n * \"dom\" - A generic builder for DOM implementations, defaulting to a\n xml.dom.minidom based implementation.\n * \"etree\" - A generic builder for tree implementations exposing an\n ElementTree-like interface, defaulting to xml.etree.cElementTree if\n available and xml.etree.ElementTree if not.\n * \"lxml\" - A etree-based builder for lxml.etree, handling limitations\n of lxml's implementation.\n\n :arg implementation: (Currently applies to the \"etree\" and \"dom\" tree\n types). A module implementing the tree type e.g. xml.etree.ElementTree\n or xml.etree.cElementTree.\n\n :arg kwargs: Any additional options to pass to the TreeBuilder when\n creating it.\n\n Example:\n\n >>> from html5lib.treebuilders import getTreeBuilder\n >>> builder = getTreeBuilder('etree')\n\n Unrecognised treebuilder \"%s\" ",
"language": "en",
"n_whitespaces": 228,
"n_words": 122,
"vocab_size": 82
} | 103 | Python | 56 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | __init__.py | 62,572 | 20 | 123 | getTreeBuilder | https://github.com/jindongwang/transferlearning.git | upd; format | 320 | 0 | 12,996 | 14 |
|
3 | 7 | def getAllExportsAsDict(self, plugin_list=None):
if plugin_list is None:
# All enabled plugins should be exported
plugin_list = self.getPluginsList()
return {p: self._plugins[p].get_export() for p in plugin_list}
| glances/stats.py | 67 | glances | {
"docstring": "Return all the stats to be exported (list).\n\n Default behavior is to export all the stat\n if plugin_list is provided, only export stats of given plugin (list)\n ",
"language": "en",
"n_whitespaces": 48,
"n_words": 27,
"vocab_size": 21
} | 24 | Python | 23 | 5ce964bac3a618229f593ad587cb704f783a470f | stats.py | 70,057 | 4 | 41 | getAllExportsAsDict | https://github.com/nicolargo/glances.git | Remove the static exportable_plugins list from glances_export.py #1556"
Limiting data exported for economic storage #1443 | 67 | 0 | 15,289 | 11 |
|
1 | 13 | def mixin_client_protocol_parser(parser):
from jina.enums import GatewayProtocolType
parser.add_argument(
'--protocol',
type=GatewayProtocolType.from_string,
choices=list(GatewayProtocolType),
default=GatewayProtocolType.GRPC,
help='Communication protocol between server and client.',
)
| jina/parsers/client.py | 68 | jina | {
"docstring": "Add the arguments for the protocol to the client parser\n\n :param parser: the parser configure\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 15,
"vocab_size": 11
} | 18 | Python | 18 | de5942f19db46321d09d31ff62d60ac33e7e43d7 | client.py | 13,477 | 9 | 42 | mixin_client_protocol_parser | https://github.com/jina-ai/jina.git | feat: allow multiple port and protocols for gateway (#5378) | 65 | 0 | 2,665 | 10 |
|
1 | 10 | def test_span_maker_forward_with_empty():
nlp = English()
doc1 = nlp("a b c")
ent = doc1[0:1]
ent.label_ = "X"
doc1.ents = [ent]
# no entities
doc2 = nlp("x y z")
# just to get a model
span_maker = build_span_maker()
span_maker([doc1, doc2], False)
| spacy/tests/pipeline/test_entity_linker.py | 103 | spaCy | {
"docstring": "The forward pass of the span maker may have a doc with no entities.",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 14
} | 39 | Python | 32 | d61e742960ef230b423dfa157449b291a03bd119 | test_entity_linker.py | 111,575 | 9 | 57 | test_span_maker_forward_with_empty | https://github.com/explosion/spaCy.git | Handle Docs with no entities in EntityLinker (#11640)
* Handle docs with no entities
If a whole batch contains no entities it won't make it to the model, but
it's possible for individual Docs to have no entities. Before this
commit, those Docs would cause an error when attempting to concatenate
arrays because the dimensions didn't match.
It turns out the process of preparing the Ragged at the end of the span
maker forward was a little different from list2ragged, which just uses
the flatten function directly. Letting list2ragged do the conversion
avoids the dimension issue.
This did not come up before because in NEL demo projects it's typical
for data with no entities to be discarded before it reaches the NEL
component.
This includes a simple direct test that shows the issue and checks it's
resolved. It doesn't check if there are any downstream changes, so a
more complete test could be added. A full run was tested by adding an
example with no entities to the Emerson sample project.
* Add a blank instance to default training data in tests
Rather than adding a specific test, since not failing on instances with
no entities is basic functionality, it makes sense to add it to the
default set.
* Fix without modifying architecture
If the architecture is modified this would have to be a new version, but
this change isn't big enough to merit that. | 72 | 0 | 24,444 | 9 |
|
3 | 17 | def evaluate_accuracy_gpu(net, data_iter, device=None):
if not device: # Query the first device where the first parameter is on
device = list(net.collect_params().values())[0].list_ctx()[0]
# No. of correct predictions, no. of predictions
metric = d2l.Accumulator(2)
for X, y in data_iter:
X, y = X.as_in_ctx(device), y.as_in_ctx(device)
metric.add(d2l.accuracy(net(X), y), d2l.size(y))
return metric[0] / metric[1]
| d2l/mxnet.py | 167 | d2l-zh | {
"docstring": "Compute the accuracy for a model on a dataset using a GPU.\n\n Defined in :numref:`sec_lenet`",
"language": "en",
"n_whitespaces": 17,
"n_words": 15,
"vocab_size": 13
} | 49 | Python | 40 | b64b41d8c1ac23c43f7a4e3f9f6339d6f0012ab2 | mxnet.py | 158,175 | 8 | 105 | evaluate_accuracy_gpu | https://github.com/d2l-ai/d2l-zh.git | [PaddlePaddle] Merge master into Paddle branch (#1186)
* change 15.2 title in chinese version (#1109)
change title ’15.2. 情感分析:使用递归神经网络‘ to ’15.2. 情感分析:使用循环神经网络‘
* 修改部分语义表述 (#1105)
* Update r0.17.5 (#1120)
* Bump versions in installation
* 94行typo: (“bert.mall”)->(“bert.small”) (#1129)
* line 313: "bert.mall" -> "bert.small" (#1130)
* fix: update language as native reader (#1114)
* Fix the translation of "stride" (#1115)
* Update index.md (#1118)
修改部分语义表述
* Update self-attention-and-positional-encoding.md (#1133)
依照本书的翻译习惯,将pooling翻译成汇聚
* maybe a comment false (#1149)
* maybe a little false
* maybe a little false
* A minor bug in the rcnn section (Chinese edition) (#1148)
* Update bert.md (#1137)
一个笔误
# 假设batch_size=2,num_pred_positions=3
# 那么batch_idx应该是np.repeat( [0,1], 3 ) = [0,0,0,1,1,1]
* Update calculus.md (#1135)
* fix typo in git documentation (#1106)
* fix: Update the Chinese translation in lr-scheduler.md (#1136)
* Update lr-scheduler.md
* Update chapter_optimization/lr-scheduler.md
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* fix translation for kaggle-house-price.md (#1107)
* fix translation for kaggle-house-price.md
* fix translation for kaggle-house-price.md
Signed-off-by: sunhaizhou <[email protected]>
* Update weight-decay.md (#1150)
* Update weight-decay.md
关于“k多选d”这一部分,中文读者使用排列组合的方式可能更容易理解
关于“给定k个变量,阶数的个数为...”这句话是有歧义的,不是很像中国话,应该是说“阶数为d的项的个数为...”。
并增加了一句对“因此即使是阶数上的微小变化,比如从$2$到$3$,也会显著增加我们模型的复杂性。”的解释
解释为何会增加复杂性以及为何需要细粒度工具。
* Update chapter_multilayer-perceptrons/weight-decay.md
yep
Co-authored-by: goldmermaid <[email protected]>
* Update chapter_multilayer-perceptrons/weight-decay.md
yep
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* Fix a spelling error (#1161)
* Update gru.md (#1152)
The key distinction between vanilla RNNs and GRUs is that the latter support gating of the hidden state.
翻译错误
* Unify the function naming (#1113)
Unify naming of the function 'init_xavier()'.
* Update mlp-concise.md (#1166)
* Update mlp-concise.md
语句不通顺
* Update environment.md
语序异常
* Update config.ini
* fix the imprecise description (#1168)
Co-authored-by: yuande <yuande>
* fix typo in chapter_natural-language-processing-pretraining/glove.md (#1175)
* Fix some typos. (#1163)
* Update batch-norm.md (#1170)
fixing typos u->x in article
* Update linear-regression.md (#1090)
We invoke Stuart Russell and Peter Norvig who, in their classic AI text book Artificial Intelligence: A Modern Approach :cite:Russell.Norvig.2016, pointed out that
原译文把who也直接翻译出来了。
* Update mlp.md (#1117)
* Update mlp.md
修改部分语义表述
* Update chapter_multilayer-perceptrons/mlp.md
Co-authored-by: goldmermaid <[email protected]>
* Update chapter_multilayer-perceptrons/mlp.md
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* Correct a translation error. (#1091)
* Correct a translation error.
* Update chapter_computer-vision/image-augmentation.md
Co-authored-by: Aston Zhang <[email protected]>
* Update aws.md (#1121)
* Update aws.md
* Update chapter_appendix-tools-for-deep-learning/aws.md
Co-authored-by: Aston Zhang <[email protected]>
* Update image-augmentation.md (#1093)
* Update anchor.md (#1088)
fix a minor issue in code
* Update anchor.md
* Update image-augmentation.md
* fix typo and improve translation in chapter_linear-networks\softmax-regression.md (#1087)
* Avoid `torch.meshgrid` user warning (#1174)
Avoids the following user warning:
```python
~/anaconda3/envs/torch/lib/python3.10/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
```
* bump to 2.0.0-beta1
* Update sequence.md
* bump beta1 on readme
* Add latex code block background to config
* BLD: Bump python support version 3.9 (#1183)
* BLD: Bump python support version 3.9
* Remove clear and manually downgrade protobuf 4.21.4 to 3.19.4
* BLD: Bump torch and tensorflow
* Update Jenkinsfile
* Update chapter_installation/index.md
* Update chapter_installation/index.md
Co-authored-by: Aston Zhang <[email protected]>
* Update config.ini
* Update INFO.md
* Update INFO.md
* Drop mint to show code in pdf, use Inconsolata font, apply code cell color (#1187)
* resolve the conflicts
* revise from publisher (#1089)
* revise from publisher
* d2l api
* post_latex
* revise from publisher
* revise ch11
* Delete d2l-Copy1.bib
* clear cache
* rm d2lbook clear
* debug anchor
* keep original d2l doc
Co-authored-by: Ubuntu <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
* 重复语句 (#1188)
Co-authored-by: Aston Zhang <[email protected]>
* Improve expression for chapter_preliminaries/pandas.md (#1184)
* Update pandas.md
* Improve expression
* Improve expression
* Update chapter_preliminaries/pandas.md
Co-authored-by: Aston Zhang <[email protected]>
* Improce expression for chapter_preliminaries/linear-algebra.md (#1185)
* Improce expression
* Improve code comments
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
Co-authored-by: Aston Zhang <[email protected]>
* Fix multibox_detection bugs
* Update d2l to 0.17.5 version
* restore older version
* Upgrade pandas
* change to python3.8
* Test warning log
* relocate warning log
* test logs filtering
* Update gru.md
* Add DeprecationWarning filter
* Test warning log
* Update attention mechanisms & computational performance
* Update multilayer perceptron& linear & convolution networks & computer vision
* Update recurrent&optimition&nlp pretraining & nlp applications
* ignore warnings
* Update index.md
* Update linear networks
* Update multilayer perceptrons&deep learning computation
* Update preliminaries
* Check and Add warning filter
* Update kaggle-cifar10.md
* Update object-detection-dataset.md
* Update ssd.md fcn.md
* Update hybridize.md
* Update hybridize.md
Signed-off-by: sunhaizhou <[email protected]>
Co-authored-by: zhou201505013 <[email protected]>
Co-authored-by: Xinwei Liu <[email protected]>
Co-authored-by: Anirudh Dagar <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: hugo_han <[email protected]>
Co-authored-by: gyro永不抽风 <[email protected]>
Co-authored-by: CanChengZheng <[email protected]>
Co-authored-by: linlin <[email protected]>
Co-authored-by: iuk <[email protected]>
Co-authored-by: yoos <[email protected]>
Co-authored-by: Mr. Justice Lawrence John Wargrave <[email protected]>
Co-authored-by: Chiyuan Fu <[email protected]>
Co-authored-by: Sunhuashan <[email protected]>
Co-authored-by: Haiker Sun <[email protected]>
Co-authored-by: Ming Liu <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: silenceZheng66 <[email protected]>
Co-authored-by: Wenchao Yan <[email protected]>
Co-authored-by: Kiki2049 <[email protected]>
Co-authored-by: Krahets <[email protected]>
Co-authored-by: friedmainfunction <[email protected]>
Co-authored-by: Jameson <[email protected]>
Co-authored-by: P. Yao <[email protected]>
Co-authored-by: Yulv-git <[email protected]>
Co-authored-by: Liu,Xiao <[email protected]>
Co-authored-by: YIN, Gang <[email protected]>
Co-authored-by: Joe-HZ <[email protected]>
Co-authored-by: lybloveyou <[email protected]>
Co-authored-by: VigourJiang <[email protected]>
Co-authored-by: zxhd863943427 <[email protected]>
Co-authored-by: LYF <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: xiaotinghe <[email protected]>
Co-authored-by: Ubuntu <[email protected]>
Co-authored-by: Holly-Max <[email protected]>
Co-authored-by: HinGwenWoong <[email protected]>
Co-authored-by: Shuai Zhang <[email protected]> | 89 | 0 | 37,352 | 18 |
|
5 | 30 | def test_k8s_cpu():
# Some experimentally-obtained K8S CPU usage files for use in test_k8s_cpu.
PROCSTAT1 = # noqa
PROCSTAT2 = # noqa
CPUACCTUSAGE1 = "2268980984108"
CPUACCTUSAGE2 = "2270120061999"
CPUSHARES = "2048"
shares_file, cpu_file, proc_stat_file = [
tempfile.NamedTemporaryFile("w+") for _ in range(3)
]
shares_file.write(CPUSHARES)
cpu_file.write(CPUACCTUSAGE1)
proc_stat_file.write(PROCSTAT1)
for file in shares_file, cpu_file, proc_stat_file:
file.flush()
with mock.patch(
"ray._private.utils.os.environ", {"KUBERNETES_SERVICE_HOST"}
), mock.patch("ray.dashboard.k8s_utils.CPU_USAGE_PATH", cpu_file.name), mock.patch(
"ray.dashboard.k8s_utils.PROC_STAT_PATH", proc_stat_file.name
), mock.patch(
"ray._private.utils.get_k8s_cpus.__defaults__", (shares_file.name,)
):
# Test helpers
assert ray._private.utils.get_num_cpus() == 2
assert k8s_utils._cpu_usage() == 2268980984108
assert k8s_utils._system_usage() == 1551775030000000
assert k8s_utils._host_num_cpus() == 8
# No delta for first computation, return 0.
assert k8s_utils.cpu_percent() == 0.0
# Write new usage info obtained after 1 sec wait.
for file in cpu_file, proc_stat_file:
file.truncate(0)
file.seek(0)
cpu_file.write(CPUACCTUSAGE2)
proc_stat_file.write(PROCSTAT2)
for file in cpu_file, proc_stat_file:
file.flush()
# Files were extracted under 1 CPU of load on a 2 CPU pod
assert 50 < k8s_utils.cpu_percent() < 60
| python/ray/tests/test_advanced_3.py | 375 | ray | {
"docstring": "Test all the functions in dashboard/k8s_utils.py.\n Also test ray._private.utils.get_num_cpus when running in a K8s pod.\n Files were obtained from within a K8s pod with 2 CPU request, CPU limit\n unset, with 1 CPU of stress applied.\n cpu 2945022 98 3329420 148744854 39522 0 118587 0 0 0\n cpu0 370299 14 413841 18589778 5304 0 15288 0 0 0\n cpu1 378637 10 414414 18589275 5283 0 14731 0 0 0\n cpu2 367328 8 420914 18590974 4844 0 14416 0 0 0\n cpu3 368378 11 423720 18572899 4948 0 14394 0 0 0\n cpu4 369051 13 414615 18607285 4736 0 14383 0 0 0\n cpu5 362958 10 415984 18576655 4590 0 16614 0 0 0\n cpu6 362536 13 414430 18605197 4785 0 14353 0 0 0\n cpu7 365833 15 411499 18612787 5028 0 14405 0 0 0\n intr 1000694027 125 0 0 39 154 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1028 0 2160913 0 2779605 8 0 3981333 3665198 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n ctxt 1574979439\n btime 1615208601\n processes 857411\n procs_running 6\n procs_blocked 0\n softirq 524311775 0 230142964 27143 63542182 0 0 171 74042767 0 156556548\n cpu 2945152 98 3329436 148745483 39522 0 118587 0 0 0\n cpu0 370399 14 413841 18589778 5304 0 15288 0 0 0\n cpu1 378647 10 414415 18589362 5283 0 14731 0 0 0\n cpu2 367329 8 420916 18591067 4844 0 14416 0 0 0\n cpu3 368381 11 423724 18572989 4948 0 14395 0 0 0\n cpu4 369052 13 414618 18607374 4736 0 14383 0 0 0\n cpu5 362968 10 415986 18576741 4590 0 16614 0 0 0\n cpu6 362537 13 414432 18605290 4785 0 14353 0 0 0\n cpu7 365836 15 411502 18612878 5028 0 14405 0 0 0\n intr 1000700905 125 0 0 39 154 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1028 0 2160923 0 2779605 8 0 3981353 3665218 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n ctxt 1574988760\n btime 1615208601\n processes 857411\n procs_running 4\n procs_blocked 0\n softirq 524317451 0 230145523 27143 63542930 0 0 171 74043232 0 156558452\n ",
"language": "en",
"n_whitespaces": 1369,
"n_words": 1258,
"vocab_size": 156
} | 142 | Python | 93 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | test_advanced_3.py | 131,220 | 66 | 220 | test_k8s_cpu | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 363 | 0 | 29,486 | 12 |
|
1 | 6 | def __getstate__(self) -> Dict[str, Any]:
return {}
@ExperimentalAPI | rllib/agents/alpha_star/league_builder.py | 31 | @ExperimentalAPI | ray | {
"docstring": "Returns a state dict, mapping str keys to state variables.\n\n Returns:\n The current state dict of this LeagueBuilder.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 18,
"vocab_size": 16
} | 8 | Python | 8 | 0bb82f29b65dca348acf5aa516d21ef3f176a3e1 | league_builder.py | 147,590 | 7 | 16 | __getstate__ | https://github.com/ray-project/ray.git | [RLlib] AlphaStar polishing (fix logger.info bug). (#22281) | 21 | 1 | 34,015 | 6 |
3 | 18 | def from_euler(cls, angles, seq):
if len(angles) != 3:
raise ValueError("3 angles must be given.")
extrinsic = _check_sequence(seq)
i, j, k = seq.lower()
q1 = cls.from_axis_angle(_elementary_axis(i), angles[0])
q2 = cls.from_axis_angle(_elementary_axis(j), angles[1])
q3 = cls.from_axis_angle(_elementary_axis(k), angles[2])
if extrinsic:
return trigsimp(q3 * q2 * q1)
else:
return trigsimp(q1 * q2 * q3)
| sympy/algebras/quaternion.py | 176 | sympy | {
"docstring": "Returns quaternion equivalent to Euler angles represented same in\n the sequence defined by `seq`.\n\n Parameters\n ==========\n\n angles : list, tuple or Matrix of 3 numbers\n The Euler angles (in radians).\n seq : string of length 3\n Represents the sequence of rotations.\n For intrinsic rotations, seq but be all lowercase and its elements\n must be from the set `['x', 'y', 'z']`\n For extrinsic rotations, seq but be all uppercase and its elements\n must be from the set `['X', 'Y', 'Z']`\n\n Returns\n =======\n\n Quaternion\n The normalized rotation quaternion calculated from the Euler angles\n in the given sequence.\n\n Examples\n ========\n\n >>> from sympy import Quaternion\n >>> from sympy import pi\n >>> q = Quaternion.from_euler([pi/2, 0, 0], 'xyz')\n >>> q\n sqrt(2)/2 + sqrt(2)/2*i + 0*j + 0*k\n\n >>> q = Quaternion.from_euler([0, pi/2, pi] , 'zyz')\n >>> q\n 0 + (-sqrt(2)/2)*i + 0*j + sqrt(2)/2*k\n\n >>> q = Quaternion.from_euler([0, pi/2, pi] , 'ZYZ')\n >>> q\n 0 + sqrt(2)/2*i + 0*j + sqrt(2)/2*k\n\n ",
"language": "en",
"n_whitespaces": 399,
"n_words": 157,
"vocab_size": 86
} | 49 | Python | 38 | 1d8576449e7ab757f13f49a1d33faed602aa88fb | quaternion.py | 200,597 | 12 | 111 | from_euler | https://github.com/sympy/sympy.git | implemented to_euler and from_euler | 145 | 0 | 49,726 | 12 |
|
1 | 3 | def lookup_pattern(name):
return _registered_patterns[name]
| python/ray/_private/thirdparty/pathspec/util.py | 20 | ray | {
"docstring": "\n Lookups a registered pattern factory by name.\n\n *name* (:class:`str`) is the name of the pattern factory.\n\n Returns the registered pattern factory (:class:`~collections.abc.Callable`).\n If no pattern factory is registered, raises :exc:`KeyError`.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 30,
"vocab_size": 21
} | 4 | Python | 4 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | util.py | 130,285 | 2 | 11 | lookup_pattern | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 10 | 0 | 29,210 | 6 |
|
1 | 7 | def save_instance(self):
instance = self.form.save()
log(instance=instance, action="wagtail.create")
return instance
| wagtail/admin/views/generic/models.py | 48 | wagtail | {
"docstring": "\n Called after the form is successfully validated - saves the object to the db\n and returns the new object. Override this to implement custom save logic.\n ",
"language": "en",
"n_whitespaces": 48,
"n_words": 26,
"vocab_size": 22
} | 9 | Python | 8 | 96a0eb0fa0cc0e28bcf5616987d193f6b2fcea82 | models.py | 77,827 | 4 | 27 | save_instance | https://github.com/wagtail/wagtail.git | Move logging in generic CreateView and EditView to save_instance() method | 37 | 0 | 16,712 | 9 |
|
1 | 10 | async def poll_and_get_state(self) -> State:
await time_changed(self.hass, 60)
await time_changed(self.hass, DEBOUNCE_COOLDOWN)
state = self.hass.states.get(self.entity_id)
assert state is not None
return state
| tests/components/homekit_controller/common.py | 77 | core | {
"docstring": "Trigger a time based poll and return the current entity state.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 21 | Python | 17 | 1ded3ac51ebc1915a5026af1998eb119972f6117 | common.py | 290,620 | 7 | 47 | poll_and_get_state | https://github.com/home-assistant/core.git | Poll HomeKit Controller locks for state after lock operation (#82058) | 63 | 0 | 89,734 | 10 |
|
1 | 5 | async def help_test_setup_manual_entity_from_yaml(hass, config):
calls = MagicMock()
| tests/components/mqtt/test_common.py | 25 | core | {
"docstring": "Help to test setup from yaml through configuration entry.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 7 | Python | 7 | 4894e2e5a43e80a2f64d8f9486c7eb215fcdaa6b | test_common.py | 287,415 | 14 | 106 | help_test_setup_manual_entity_from_yaml | https://github.com/home-assistant/core.git | Refactor common MQTT tests to use modern schema (#77583)
* Common tests availability
* Common tests attributes
* Common tests unique id
* Common tests discovery
* Common tests encoding
* Common tests device info
* Common tests entity_id updated
* Common tests entity debug info
* Common test entity category
* Common tests setup reload unload+corrections
* Cleanup sweep
* Comments from curent change
* Cleanup
* Remove unused legacy config | 13 | 0 | 86,608 | 8 |
|
4 | 8 | def random_kernel_graph(n, kernel_integral, kernel_root=None, seed=None):
r
if kernel_root is None:
import scipy as sp
import scipy.optimize # call as sp.optimize
| networkx/generators/random_graphs.py | 47 | networkx | {
"docstring": "Returns an random graph based on the specified kernel.\n\n The algorithm chooses each of the $[n(n-1)]/2$ possible edges with\n probability specified by a kernel $\\kappa(x,y)$ [1]_. The kernel\n $\\kappa(x,y)$ must be a symmetric (in $x,y$), non-negative,\n bounded function.\n\n Parameters\n ----------\n n : int\n The number of nodes\n kernel_integral : function\n Function that returns the definite integral of the kernel $\\kappa(x,y)$,\n $F(y,a,b) := \\int_a^b \\kappa(x,y)dx$\n kernel_root: function (optional)\n Function that returns the root $b$ of the equation $F(y,a,b) = r$.\n If None, the root is found using :func:`scipy.optimize.brentq`\n (this requires SciPy).\n seed : integer, random_state, or None (default)\n Indicator of random number generation state.\n See :ref:`Randomness<randomness>`.\n\n Notes\n -----\n The kernel is specified through its definite integral which must be\n provided as one of the arguments. If the integral and root of the\n kernel integral can be found in $O(1)$ time then this algorithm runs in\n time $O(n+m)$ where m is the expected number of edges [2]_.\n\n The nodes are set to integers from $0$ to $n-1$.\n\n Examples\n --------\n Generate an Erdős–Rényi random graph $G(n,c/n)$, with kernel\n $\\kappa(x,y)=c$ where $c$ is the mean expected degree.\n\n >>> def integral(u, w, z):\n ... return c * (z - w)\n >>> def root(u, w, r):\n ... return r / c + w\n >>> c = 1\n >>> graph = nx.random_kernel_graph(1000, integral, root)\n\n See Also\n --------\n gnp_random_graph\n expected_degree_graph\n\n References\n ----------\n .. [1] Bollobás, Béla, Janson, S. and Riordan, O.\n \"The phase transition in inhomogeneous random graphs\",\n *Random Structures Algorithms*, 31, 3--122, 2007.\n\n .. [2] Hagberg A, Lemons N (2015),\n \"Fast Generation of Sparse Random Kernel Graphs\".\n PLoS ONE 10(9): e0135177, 2015. doi:10.1371/journal.pone.0135177\n ",
"language": "en",
"n_whitespaces": 464,
"n_words": 266,
"vocab_size": 179
} | 20 | Python | 18 | 2a05ccdb07cff88e56661dee8a9271859354027f | random_graphs.py | 176,736 | 74 | 143 | random_kernel_graph | https://github.com/networkx/networkx.git | Remove redundant py2 numeric conversions (#5661)
* Remove redundant float conversion
* Remove redundant int conversion
* Use integer division
Co-authored-by: Miroslav Šedivý <[email protected]> | 40 | 0 | 42,069 | 9 |
|
6 | 8 | def prompt_for_move(final_file, **move_params):
skip_static_hosts = move_params["skipstatichosts"]
if move_params["replace"] and not skip_static_hosts:
move_file = True
elif move_params["auto"] or skip_static_hosts:
move_file = False
else:
prompt = "Do you want to replace your existing hosts file with the newly generated file?"
move_file = query_yes_no(prompt)
if move_file:
move_file = move_hosts_file_into_place(final_file)
return move_file
# End Prompt the User
| updateHostsFile.py | 108 | hosts | {
"docstring": "\n Prompt the user to move the newly created hosts file to its designated\n location in the OS.\n\n Parameters\n ----------\n final_file : file\n The file object that contains the newly created hosts data.\n move_params : kwargs\n Dictionary providing additional parameters for moving the hosts file\n into place. Currently, those fields are:\n\n 1) auto\n 2) replace\n 3) skipstatichosts\n\n Returns\n -------\n move_file : bool\n Whether or not the final hosts file was moved.\n ",
"language": "en",
"n_whitespaces": 150,
"n_words": 70,
"vocab_size": 53
} | 53 | Python | 41 | 258b10edc90d53c31225962dde6dcc80b0fc9ba9 | updateHostsFile.py | 123,270 | 12 | 60 | prompt_for_move | https://github.com/StevenBlack/hosts.git | refactor: more containerization | 108 | 0 | 27,313 | 11 |
|
1 | 15 | def test_api_fields(self) -> None:
expected_fields = set(Stream.API_FIELDS) | {"stream_id"}
expected_fields -= {"id"}
stream_dict_fields = set(APIStreamDict.__annotations__.keys())
computed_fields = set(["is_announcement_only", "is_default"])
self.assertEqual(stream_dict_fields - computed_fields, expected_fields)
expected_fields = set(Subscription.API_FIELDS)
subscription_dict_fields = set(APISubscriptionDict.__annotations__.keys())
computed_fields = set(
["in_home_view", "email_address", "stream_weekly_traffic", "subscribers"]
)
# `APISubscriptionDict` is a subclass of `APIStreamDict`, therefore having all the
# fields in addition to the computed fields and `Subscription.API_FIELDS` that
# need to be excluded here.
self.assertEqual(
subscription_dict_fields - computed_fields - stream_dict_fields,
expected_fields,
)
| zerver/tests/test_subs.py | 183 | zulip | {
"docstring": "Verify that all the fields from `Stream.API_FIELDS` and `Subscription.API_FIELDS` present\n in `APIStreamDict` and `APISubscriptionDict`, respectively.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 15,
"vocab_size": 14
} | 73 | Python | 55 | 44ecd66eaec6533778bdff3fbb31ceb0acc0419a | test_subs.py | 83,879 | 18 | 104 | test_api_fields | https://github.com/zulip/zulip.git | types: Better types for API fields.
Signed-off-by: Zixuan James Li <[email protected]> | 211 | 0 | 17,743 | 11 |
|
1 | 5 | def log(self) -> Logger:
return self.app._logger
| src/textual/message_pump.py | 25 | textual | {
"docstring": "Get a logger for this object.\n\n Returns:\n Logger: A logger.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 10,
"vocab_size": 10
} | 6 | Python | 6 | ca9492ac569510ce0a7e5387f81e763a99c7359e | message_pump.py | 184,828 | 7 | 14 | log | https://github.com/Textualize/textual.git | layout docs | 20 | 0 | 44,823 | 7 |
|
3 | 15 | def fhash(value):
fpart = math.modf(value)
if fpart[0] == 0.0:
return hash(int(fpart[1]))
v, e = math.frexp(value)
# 2**31
v *= 2147483648.0
# Top 32 bits
hipart = int(v)
# Next 32 bits
v = (v - float(hipart)) * 2147483648.0
x = hipart + int(v) + (e << 15)
if x == -1:
x = -2
# Convert to C long type
return ctypes.c_long(x).value
| samtranslator/third_party/py27hash/hash.py | 162 | serverless-application-model | {
"docstring": "\n Returns a Python 2.7 hash for a float.\n\n Logic ported from the 2.7 Python branch: cpython/Objects/object.c\n Method: long _Py_HashDouble(double v)\n\n Args:\n value: input float\n\n Returns:\n Python 2.7 hash\n ",
"language": "en",
"n_whitespaces": 93,
"n_words": 28,
"vocab_size": 22
} | 62 | Python | 42 | a5db070f446b7cfebdaa6ad2e3dcf78f6105a272 | hash.py | 213,059 | 12 | 105 | fhash | https://github.com/aws/serverless-application-model.git | fix: Py27hash fix (#2182)
* Add third party py27hash code
* Add Py27UniStr and unit tests
* Add py27hash_fix utils and tests
* Add to_py27_compatible_template and tests
* Apply py27hash fix to wherever it is needed
* Apply py27hash fix, all tests pass except api_with_any_method_in_swagger
* apply py27hash fix in openapi + run black
* remove py27 testing
* remove other py27 references
* black fixes
* fixes/typos
* remove py27 from tox.ini
* refactoring
* third party notice
* black
* Fix py27hash fix to deal with null events
* Fix Py27UniStr repr for unicode literals
* black reformat
* Update _template_has_api_resource to check data type more defensively
* Apply py27Dict in _get_authorizers
* Apply Py27Dict to authorizers and gateway responses which will go into swagger
* Update to_py27_compatible_template to handle parameter_values; Add Py27LongInt class
* Rename _convert_to_py27_dict to _convert_to_py27_type
* Apply Py27UniStr to path param name
* Handle HttpApi resource under to_py27_compatible_template
* Fix InvalidDocumentException to not sort different exceptions
* black reformat
* Remove unnecessary test files
Co-authored-by: Wing Fung Lau <[email protected]> | 182 | 0 | 53,613 | 12 |
|
6 | 43 | def forward(self, x, l2_norm=False):
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=False):
x.squeeze_(1)
# if you torch spec compute it otherwise use the mel spec computed by the AP
if self.use_torch_spec:
x = self.torch_spec(x)
if self.log_input:
x = (x + 1e-6).log()
x = self.instancenorm(x).unsqueeze(1)
x = self.conv1(x)
x = self.relu(x)
x = self.bn1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.reshape(x.size()[0], -1, x.size()[-1])
w = self.attention(x)
if self.encoder_type == "SAP":
x = torch.sum(x * w, dim=2)
elif self.encoder_type == "ASP":
mu = torch.sum(x * w, dim=2)
sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-5))
x = torch.cat((mu, sg), 1)
x = x.view(x.size()[0], -1)
x = self.fc(x)
if l2_norm:
x = torch.nn.functional.normalize(x, p=2, dim=1)
return x
| TTS/speaker_encoder/models/resnet.py | 505 | TTS | {
"docstring": "Forward pass of the model.\n\n Args:\n x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True`\n to compute the spectrogram on-the-fly.\n l2_norm (bool): Whether to L2-normalize the outputs.\n\n Shapes:\n - x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})`\n ",
"language": "en",
"n_whitespaces": 114,
"n_words": 45,
"vocab_size": 38
} | 118 | Python | 68 | 127118c6378168e3d36a1e5d19ede777fd20684f | resnet.py | 261,852 | 29 | 320 | forward | https://github.com/coqui-ai/TTS.git | Update TTS.tts formatters (#1228)
* Return Dict from tts formatters
* Make style | 416 | 0 | 77,033 | 20 |
|
3 | 14 | def _faces_from_frames(self) -> None:
logger.debug("Extracting faces from frames: Number images: %s", len(self.source))
if self.update_source:
self._crop_source_faces()
self._crop_destination_faces()
logger.debug("Extracted faces from frames: %s",
{k: len(v) for k, v in self._faces.__dict__.items()})
| tools/preview/preview.py | 110 | faceswap | {
"docstring": " Extract the preview faces from the source frames and apply the requisite padding. ",
"language": "en",
"n_whitespaces": 14,
"n_words": 13,
"vocab_size": 11
} | 28 | Python | 24 | 1022651eb8a7741014f5d2ec7cbfe882120dfa5f | preview.py | 101,408 | 8 | 65 | _faces_from_frames | https://github.com/deepfakes/faceswap.git | Bugfix: convert - Gif Writer
- Fix non-launch error on Gif Writer
- convert plugins - linting
- convert/fs_media/preview/queue_manager - typing
- Change convert items from dict to Dataclass | 94 | 0 | 20,822 | 13 |
|
1 | 27 | def test_deleted_message(self) -> None:
user_profile = self.example_user("hamlet")
message = self.get_message(Recipient.PERSONAL, type_id=1)
UserMessage.objects.create(
user_profile=user_profile,
flags=UserMessage.flags.read,
message=message,
)
missed_message = {
"message_id": message.id,
"trigger": "private_message",
}
# Now, delete the message the normal way
do_delete_messages(user_profile.realm, [message])
# This mock.patch() should be assertNoLogs once that feature
# is added to Python.
with mock.patch(
"zerver.lib.push_notifications.uses_notification_bouncer"
) as mock_check, mock.patch("logging.error") as mock_logging_error, mock.patch(
"zerver.lib.push_notifications.push_notifications_enabled", return_value=True
) as mock_push_notifications:
handle_push_notification(user_profile.id, missed_message)
mock_push_notifications.assert_called_once()
# Check we didn't proceed through and didn't log anything.
mock_check.assert_not_called()
mock_logging_error.assert_not_called()
| zerver/tests/test_push_notifications.py | 229 | zulip | {
"docstring": "Simulates the race where message is deleted before handling push notifications",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 78 | Python | 65 | b0ce4f1bce8031881addecb1e86073483517f392 | test_push_notifications.py | 83,262 | 23 | 132 | test_deleted_message | https://github.com/zulip/zulip.git | docs: Fix many spelling mistakes.
Signed-off-by: Anders Kaseorg <[email protected]> | 308 | 0 | 17,643 | 11 |
|
5 | 25 | def get_abstract_dependencies(reqs, sources=None, parent=None):
deps = []
from .requirements import Requirement
for req in reqs:
if isinstance(req, shims.InstallRequirement):
requirement = Requirement.from_line("{0}{1}".format(req.name, req.specifier))
if req.link:
requirement.req.link = req.link
requirement.markers = req.markers
requirement.req.markers = req.markers
requirement.extras = req.extras
requirement.req.extras = req.extras
elif isinstance(req, Requirement):
requirement = copy.deepcopy(req)
else:
requirement = Requirement.from_line(req)
dep = AbstractDependency.from_requirement(requirement, parent=parent)
deps.append(dep)
return deps
| pipenv/vendor/requirementslib/models/dependencies.py | 238 | pipenv | {
"docstring": "Get all abstract dependencies for a given list of requirements.\n\n Given a set of requirements, convert each requirement to an Abstract Dependency.\n\n :param reqs: A list of Requirements\n :type reqs: list[:class:`~requirementslib.models.requirements.Requirement`]\n :param sources: Pipfile-formatted sources, defaults to None\n :param sources: list[dict], optional\n :param parent: The parent of this list of dependencies, defaults to None\n :param parent: :class:`~requirementslib.models.requirements.Requirement`, optional\n :return: A list of Abstract Dependencies\n :rtype: list[:class:`~requirementslib.models.dependency.AbstractDependency`]\n ",
"language": "en",
"n_whitespaces": 96,
"n_words": 66,
"vocab_size": 43
} | 56 | Python | 40 | cd5a9683be69c86c8f3adcd13385a9bc5db198ec | dependencies.py | 22,218 | 19 | 149 | get_abstract_dependencies | https://github.com/pypa/pipenv.git | Rename notpip to pip. Vendor in pip-22.2.1 and latest requirementslib and vistir. | 225 | 0 | 4,264 | 15 |
|
1 | 12 | def special_library_payload(parent_payload, special_type):
title = f"{special_type} ({parent_payload.title})"
special_library_id = f"{parent_payload.media_content_id}/{special_type}"
return BrowseMedia(
title=title,
media_class=parent_payload.media_class,
media_content_id=special_library_id,
media_content_type=parent_payload.media_content_type,
can_play=False,
can_expand=True,
children_media_class=parent_payload.children_media_class,
)
| homeassistant/components/plex/media_browser.py | 102 | core | {
"docstring": "Create response payload for special library folders.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | 20 | Python | 19 | 653305b998dd033365576db303b32dd5df3a6c54 | media_browser.py | 294,023 | 12 | 54 | special_library_payload | https://github.com/home-assistant/core.git | Support multiple Plex servers in media browser (#68321) | 84 | 0 | 93,067 | 9 |
|
8 | 15 | def acl_update(consul_url=None, token=None, **kwargs):
ret = {}
data = {}
if not consul_url:
consul_url = _get_config()
if not consul_url:
log.error("No Consul URL found.")
ret["message"] = "No Consul URL found."
ret["res"] = False
return ret
if "id" in kwargs:
data["ID"] = kwargs["id"]
else:
ret["message"] = 'Required parameter "id" is missing.'
ret["res"] = False
return ret
if "name" in kwargs:
data["Name"] = kwargs["name"]
else:
raise SaltInvocationError('Required argument "name" is missing.')
if "type" in kwargs:
data["Type"] = kwargs["type"]
if "rules" in kwargs:
data["Rules"] = kwargs["rules"]
function = "acl/update"
res = _query(
consul_url=consul_url, token=token, data=data, method="PUT", function=function
)
if res["res"]:
ret["res"] = True
ret["message"] = "ACL {} created.".format(kwargs["name"])
else:
ret["res"] = False
ret["message"] = "Updating ACL {} failed.".format(kwargs["name"])
return ret
| salt/modules/consul.py | 390 | salt | {
"docstring": "\n Update an ACL token.\n\n :param consul_url: The Consul server URL.\n :param name: Meaningful indicator of the ACL's purpose.\n :param id: Unique identifier for the ACL to update.\n :param type: Type is either client or management. A management\n token is comparable to a root user and has the\n ability to perform any action including creating,\n modifying, and deleting ACLs.\n :param rules: The Consul server URL.\n :return: Boolean & message of success or failure.\n\n CLI Example:\n\n .. code-block:: bash\n\n salt '*' consul.acl_update\n\n ",
"language": "en",
"n_whitespaces": 166,
"n_words": 80,
"vocab_size": 63
} | 116 | Python | 63 | fb825aa760fa0585a2c8fdafc6e62be8aec8cecf | consul.py | 215,759 | 35 | 212 | acl_update | https://github.com/saltstack/salt.git | [merge jam] Master port 49261 - consul modules (#58101)
* add consul states and acl function present/absent
* add consul to states doc index
* refact/fix consul states
* fix doc, fix states
* fix name parameter for acl_changes
* fixing pylint errors
* small changes after review by @rallytime
* fix header count
* Update consul.py
* fix acl_exists description, fix when both id and name are missing
* Adding some tests for consul module and consul state module. Some additional fixes in the consul module.
* Fixing tests.
* Fixing failing tests on Windows.
* Adding changelog.
* Adding some tests for consul module and consul state module. Some additional fixes in the consul module.
* moving tests to pytest.
* manual black changes.
* One more manual black change.
* fixing formatting. Adding versionadded for state module.
Co-authored-by: Rémi Jouannet <[email protected]>
Co-authored-by: Mike Place <[email protected]>
Co-authored-by: Daniel Wozniak <[email protected]>
Co-authored-by: Wayne Werner <[email protected]> | 313 | 0 | 54,153 | 13 |
|
1 | 13 | def _reset(self) -> None:
self._reset_slots()
self._paused = False
self.latest_action = {}
self.latest_message = UserUttered.empty()
self.latest_bot_utterance = BotUttered.empty()
self.followup_action = ACTION_LISTEN_NAME
self.active_loop = None
| rasa/shared/core/trackers.py | 89 | rasa | {
"docstring": "Reset tracker to initial state - doesn't delete events though!.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 23 | Python | 18 | e798bf049f036a5865c14d4343ed8a833864aabe | trackers.py | 159,567 | 9 | 52 | _reset | https://github.com/RasaHQ/rasa.git | convert TrackerActiveLoop to a dataclass | 79 | 0 | 38,339 | 8 |
|
42 | 63 | def resolve_type_hint(hint) -> Any:
origin, args = _get_type_hint_origin(hint)
excluded_fields = get_override(hint, "exclude_fields", [])
if origin is None and is_basic_type(hint, allow_none=False):
return build_basic_type(hint)
elif origin is None and inspect.isclass(hint) and issubclass(hint, tuple):
# a convoluted way to catch NamedTuple. suggestions welcome.
if get_type_hints(hint):
properties = {k: resolve_type_hint(v) for k, v in get_type_hints(hint).items()}
else:
properties = {k: build_basic_type(OpenApiTypes.ANY) for k in hint._fields}
return build_object_type(properties=properties, required=properties.keys())
elif origin is list or hint is list:
return build_array_type(
resolve_type_hint(args[0]) if args else build_basic_type(OpenApiTypes.ANY)
)
elif origin is tuple:
return build_array_type(
schema=build_basic_type(args[0]),
max_length=len(args),
min_length=len(args),
)
elif origin is dict or origin is defaultdict:
schema = build_basic_type(OpenApiTypes.OBJECT)
if args and args[1] is not typing.Any:
schema["additionalProperties"] = resolve_type_hint(args[1])
return schema
elif origin is set:
return build_array_type(resolve_type_hint(args[0]))
elif origin is frozenset:
return build_array_type(resolve_type_hint(args[0]))
elif origin is Literal:
# Literal only works for python >= 3.8 despite typing_extensions, because it
# behaves slightly different w.r.t. __origin__
schema = {"enum": list(args)}
if all(type(args[0]) is type(choice) for choice in args):
schema.update(build_basic_type(type(args[0])))
return schema
elif inspect.isclass(hint) and issubclass(hint, Enum):
schema = {"enum": [item.value for item in hint]}
mixin_base_types = [t for t in hint.__mro__ if is_basic_type(t)]
if mixin_base_types:
schema.update(build_basic_type(mixin_base_types[0]))
return schema
elif isinstance(hint, _TypedDictMeta):
return build_object_type(
properties={
k: resolve_type_hint(v)
for k, v in get_type_hints(hint).items()
if k not in excluded_fields
},
description=inspect.cleandoc(hint.__doc__ or ""),
required=[h for h in hint.__required_keys__ if h not in excluded_fields],
)
elif origin is Union:
type_args = [arg for arg in args if arg is not type(None)] # noqa: E721
if len(type_args) > 1:
schema = {"oneOf": [resolve_type_hint(arg) for arg in type_args]}
else:
schema = resolve_type_hint(type_args[0])
if type(None) in args:
schema["nullable"] = True
return schema
elif origin is collections.abc.Iterable:
return build_array_type(resolve_type_hint(args[0]))
elif isinstance(hint, typing._TypedDictMeta):
raise UnableToProceedError("Wrong TypedDict class, please use typing_extensions.TypedDict")
else:
raise UnableToProceedError(hint)
| src/sentry/apidocs/spectacular_ports.py | 895 | sentry | {
"docstring": "drf-spectacular library method modified as described above",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | 284 | Python | 148 | 286bf2ae7ecfdd6698d8fb1cd4753f107159d4d2 | spectacular_ports.py | 86,529 | 67 | 569 | resolve_type_hint | https://github.com/getsentry/sentry.git | ref: use dict instead of OrderedDict since sentry is >python3.6 (#39695)
partially automated (especially the fixtures) also via `\(([^]+),
(.*)\),$` -> `\1: \2,` | 788 | 0 | 18,119 | 17 |
|
1 | 21 | def test_mark_checked_unexpected_exception(self, mock_patch_already_checked, mock_delete_pod):
k = KubernetesPodOperator(
namespace="default",
image="ubuntu:16.04",
name="test",
task_id="task",
is_delete_operator_pod=False,
)
self.await_pod_mock.side_effect = AirflowException("oops")
context = create_context(k)
with pytest.raises(AirflowException):
k.execute(context=context)
mock_patch_already_checked.assert_called_once()
mock_delete_pod.assert_not_called()
| tests/providers/cncf/kubernetes/operators/test_kubernetes_pod.py | 133 | airflow | {
"docstring": "If we aren't deleting pods and have an exception, mark it so we don't reattach to it",
"language": "en",
"n_whitespaces": 16,
"n_words": 17,
"vocab_size": 15
} | 24 | Python | 22 | c3d883a971a8e4e65ccc774891928daaaa0f4442 | test_kubernetes_pod.py | 47,750 | 14 | 77 | test_mark_checked_unexpected_exception | https://github.com/apache/airflow.git | KubernetesPodOperator should patch "already checked" always (#22734)
When not configured to delete pods, at end of task execution the current behavior is to patch the pod as "already checked", but only if pod not successful. We should also patch when successful so it isn't "reattached" to after a task clear. | 146 | 0 | 9,243 | 10 |
|
5 | 29 | def batch_test(num_threads, delay):
with mock.patch(
"ray.autoscaler._private.aws.node_provider.make_ec2_client"
), mock.patch.object(AWSNodeProvider, "_create_tags", mock_create_tags):
provider = AWSNodeProvider(
provider_config={"region": "nowhere"}, cluster_name="default"
)
provider.batch_counter = 0
provider.tag_update_counter = 0
provider.tag_cache = {str(x): {} for x in range(num_threads)}
threads = []
for x in range(num_threads):
thread = threading.Thread(
target=provider.set_node_tags, args=(str(x), {"foo": "bar"})
)
threads.append(thread)
for thread in threads:
thread.start()
time.sleep(delay)
for thread in threads:
thread.join()
return provider.batch_counter, provider.tag_update_counter
| python/ray/tests/aws/test_aws_batch_tag_update.py | 256 | ray | {
"docstring": "Run AWSNodeProvider.set_node_tags in several threads, with a\n specified delay between thread launches.\n\n Return the number of batches of tag updates and the number of tags\n updated.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 26,
"vocab_size": 22
} | 61 | Python | 43 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | test_aws_batch_tag_update.py | 131,087 | 22 | 154 | batch_test | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 239 | 0 | 29,474 | 17 |
|
9 | 7 | def validate_config(self, config):
# Call (base) PPO's config validation function first.
# Note that this will not touch or check on the train_batch_size=-1
# setting.
super().validate_config(config)
# Error if run on Win.
if sys.platform in ["win32", "cygwin"]:
raise ValueError(
"DD-PPO not supported on Win yet! " "Due to usage of torch.distributed."
)
# Auto-train_batch_size: Calculate from rollout len and
# envs-per-worker.
if config["train_batch_size"] == -1:
config["train_batch_size"] = (
config["rollout_fragment_length"] * config["num_envs_per_worker"]
)
# Users should not define `train_batch_size` directly (always -1).
else:
raise ValueError(
"Set rollout_fragment_length instead of train_batch_size " "for DDPPO."
)
# Only supported for PyTorch so far.
if config["framework"] != "torch":
raise ValueError("Distributed data parallel is only supported for PyTorch")
if config["torch_distributed_backend"] not in ("gloo", "mpi", "nccl"):
raise ValueError(
"Only gloo, mpi, or nccl is supported for "
"the backend of PyTorch distributed."
)
# `num_gpus` must be 0/None, since all optimization happens on Workers.
if config["num_gpus"]:
raise ValueError(
"When using distributed data parallel, you should set "
"num_gpus=0 since all optimization "
"is happening on workers. Enable GPUs for workers by setting "
"num_gpus_per_worker=1."
)
# `batch_mode` must be "truncate_episodes".
if config["batch_mode"] != "truncate_episodes":
raise ValueError(
"Distributed data parallel requires truncate_episodes " "batch mode."
)
# DDPPO doesn't support KL penalties like PPO-1.
# In order to support KL penalties, DDPPO would need to become
# undecentralized, which defeats the purpose of the algorithm.
# Users can still tune the entropy coefficient to control the
# policy entropy (similar to controlling the KL penalty).
if config["kl_coeff"] != 0.0 or config["kl_target"] != 0.0:
raise ValueError("DDPPO doesn't support KL penalties like PPO-1")
| rllib/agents/ppo/ddppo.py | 306 | ray | {
"docstring": "Validates the Trainer's config dict.\n\n Args:\n config (TrainerConfigDict): The Trainer's config to check.\n\n Raises:\n ValueError: In case something is wrong with the config.\n ",
"language": "en",
"n_whitespaces": 66,
"n_words": 23,
"vocab_size": 19
} | 264 | Python | 168 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ddppo.py | 133,790 | 34 | 152 | validate_config | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 743 | 0 | 30,109 | 12 |
|
1 | 14 | def binary_accuracy(y_true, y_pred, threshold=0.5):
y_pred = tf.convert_to_tensor(y_pred)
threshold = tf.cast(threshold, y_pred.dtype)
y_pred = tf.cast(y_pred > threshold, y_pred.dtype)
return tf.cast(tf.equal(y_true, y_pred), tf.int8)
@keras_export('keras.metrics.categorical_accuracy')
@tf.__internal__.dispatch.add_dispatch_support | keras/metrics/metrics.py | 121 | @keras_export('keras.metrics.categorical_accuracy')
@tf.__internal__.dispatch.add_dispatch_support | keras | {
"docstring": "Calculates how often predictions match binary labels.\n\n Standalone usage:\n >>> y_true = [[1], [1], [0], [0]]\n >>> y_pred = [[1], [1], [0], [0]]\n >>> m = tf.keras.metrics.binary_accuracy(y_true, y_pred)\n >>> assert m.shape == (4,)\n >>> m.numpy()\n array([1., 1., 1., 1.], dtype=float32)\n\n Args:\n y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`.\n y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`.\n threshold: (Optional) Float representing the threshold for deciding whether\n prediction values are 1 or 0.\n\n Returns:\n Binary accuracy values. shape = `[batch_size, d0, .. dN]`\n ",
"language": "en",
"n_whitespaces": 113,
"n_words": 86,
"vocab_size": 61
} | 23 | Python | 19 | b96f9fdc2d5d0d375809ad9c16608830b01fc59a | metrics.py | 268,902 | 5 | 66 | binary_accuracy | https://github.com/keras-team/keras.git | fix sample_weight for BinAcc | 26 | 1 | 79,763 | 9 |
3 | 9 | def update(self) -> None:
self.data.update()
if (value := self.data.value) is None:
value = STATE_UNKNOWN
if self._value_template is not None:
value = self._value_template.render_with_possible_json_value(
str(value), STATE_UNKNOWN
)
self._state = value
| homeassistant/components/influxdb/sensor.py | 96 | core | {
"docstring": "Get the latest data from Influxdb and updates the states.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | 28 | Python | 19 | 23090cb8a268b3f268aefa8477f30af88bf46051 | sensor.py | 305,137 | 10 | 59 | update | https://github.com/home-assistant/core.git | Improve entity type hints [i] (#77529) | 111 | 0 | 103,929 | 12 |
|
7 | 16 | def get_stack(self, f, t):
stack = []
if t and t.tb_frame is f:
t = t.tb_next
while f is not None:
stack.append((f, f.f_lineno))
if f is self.botframe:
break
f = f.f_back
stack.reverse()
i = max(0, len(stack) - 1)
while t is not None:
stack.append((t.tb_frame, t.tb_lineno))
t = t.tb_next
if f is None:
i = max(0, len(stack) - 1)
return stack, i
| python3.10.4/Lib/bdb.py | 195 | XX-Net | {
"docstring": "Return a list of (frame, lineno) in a stack trace and a size.\n\n List starts with original calling frame, if there is one.\n Size may be number of frames above or below f.\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 33,
"vocab_size": 30
} | 61 | Python | 33 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | bdb.py | 221,146 | 17 | 124 | get_stack | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 216 | 0 | 56,241 | 13 |
|
8 | 22 | def _generate_graph6_bytes(G, nodes, header):
n = len(G)
if n >= 2**36:
raise ValueError(
"graph6 is only defined if number of nodes is less " "than 2 ** 36"
)
if header:
yield b">>graph6<<"
for d in n_to_data(n):
yield str.encode(chr(d + 63))
# This generates the same as `(v in G[u] for u, v in combinations(G, 2))`,
# but in "column-major" order instead of "row-major" order.
bits = (nodes[j] in G[nodes[i]] for j in range(1, n) for i in range(j))
chunk = list(islice(bits, 6))
while chunk:
d = sum(b << 5 - i for i, b in enumerate(chunk))
yield str.encode(chr(d + 63))
chunk = list(islice(bits, 6))
yield b"\n"
| networkx/readwrite/graph6.py | 237 | networkx | {
"docstring": "Yield bytes in the graph6 encoding of a graph.\n\n `G` is an undirected simple graph. `nodes` is the list of nodes for\n which the node-induced subgraph will be encoded; if `nodes` is the\n list of all nodes in the graph, the entire graph will be\n encoded. `header` is a Boolean that specifies whether to generate\n the header ``b'>>graph6<<'`` before the remaining data.\n\n This function generates `bytes` objects in the following order:\n\n 1. the header (if requested),\n 2. the encoding of the number of nodes,\n 3. each character, one-at-a-time, in the encoding of the requested\n node-induced subgraph,\n 4. a newline character.\n\n This function raises :exc:`ValueError` if the graph is too large for\n the graph6 format (that is, greater than ``2 ** 36`` nodes).\n\n ",
"language": "en",
"n_whitespaces": 167,
"n_words": 122,
"vocab_size": 77
} | 107 | Python | 75 | f6755ffa00211b523c6c0bec5398bc6c3c43c8b1 | graph6.py | 176,498 | 17 | 147 | _generate_graph6_bytes | https://github.com/networkx/networkx.git | Update black (#5438)
* CI: sync up black dev requirements version with precommit
* Run black
Co-authored-by: Jarrod Millman <[email protected]> | 200 | 0 | 41,937 | 13 |
|
4 | 13 | def set_constrained_layout(self, constrained):
if constrained is None:
constrained = mpl.rcParams['figure.constrained_layout.use']
_constrained = bool(constrained)
_parameters = constrained if isinstance(constrained, dict) else {}
if _constrained:
self.set_layout_engine(ConstrainedLayoutEngine(**_parameters))
self.stale = True
| lib/matplotlib/figure.py | 96 | matplotlib | {
"docstring": "\n Set whether ``constrained_layout`` is used upon drawing. If None,\n :rc:`figure.constrained_layout.use` value will be used.\n\n When providing a dict containing the keys ``w_pad``, ``h_pad``\n the default ``constrained_layout`` paddings will be\n overridden. These pads are in inches and default to 3.0/72.0.\n ``w_pad`` is the width padding and ``h_pad`` is the height padding.\n\n See :doc:`/tutorials/intermediate/constrainedlayout_guide`.\n\n Parameters\n ----------\n constrained : bool or dict or None\n ",
"language": "en",
"n_whitespaces": 140,
"n_words": 61,
"vocab_size": 48
} | 27 | Python | 20 | ec4dfbc3c83866f487ff0bc9c87b0d43a1c02b22 | figure.py | 107,135 | 8 | 58 | set_constrained_layout | https://github.com/matplotlib/matplotlib.git | ENH: implement and use base layout_engine for more flexible layout. | 91 | 0 | 22,600 | 12 |
|
4 | 13 | def decrypt_file(self, file, key):
# precondition
assert isinstance(file, str) and isinstance(key, int)
try:
with open(file, "r") as fin:
with open("decrypt.out", "w+") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(line, key))
except:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test enrcypt
# print crypt.encrypt("hallo welt",key)
# # test decrypt
# print crypt.decrypt(crypt.encrypt("hallo welt",key), key)
# # test encrypt_string
# print crypt.encrypt_string("hallo welt",key)
# # test decrypt_string
# print crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)
# if (crypt.encrypt_file("test.txt",key)):
# print "encrypt successful"
# else:
# print "encrypt unsuccessful"
# if (crypt.decrypt_file("encrypt.out",key)):
# print "decrypt successful"
# else:
# print "decrypt unsuccessful"
| XORcipher/XOR_cipher.py | 141 | Python | {
"docstring": "\n input: filename (str) and a key (int)\n output: returns true if decrypt process was\n successful otherwise false\n if key not passed the method uses the key by the constructor.\n otherwise key = 1\n ",
"language": "en",
"n_whitespaces": 76,
"n_words": 33,
"vocab_size": 26
} | 106 | Python | 60 | f0af0c43340763724f139fa68aa1e5a9ffe458b4 | XOR_cipher.py | 22,541 | 10 | 70 | decrypt_file | https://github.com/geekcomputers/Python.git | refactor: clean code
Signed-off-by: slowy07 <[email protected]> | 227 | 0 | 4,357 | 17 |
|
5 | 16 | def cast_if_floating_dtype_and_mismatch(targets, outputs):
if tf.is_tensor(targets):
# There is one target, so output[0] should be the only output.
return cast_single_tensor(targets, dtype=outputs[0].dtype)
new_targets = []
for target, out in zip(targets, outputs):
if isinstance(target, np.ndarray):
target = tf.convert_to_tensor(target)
if target.dtype != out.dtype:
new_targets.append(cast_single_tensor(target, dtype=out.dtype))
else:
new_targets.append(target)
return new_targets
| keras/engine/training_utils_v1.py | 155 | keras | {
"docstring": "Returns target data tensors using correct datatype.\n\n Checks that each target and output pair are the same datatype. If not, casts\n the target to the output's datatype.\n\n Args:\n targets: tensor or list of targets.\n outputs: tensor or list of outputs.\n\n Returns:\n Targets in appropriate datatype.\n ",
"language": "en",
"n_whitespaces": 75,
"n_words": 45,
"vocab_size": 34
} | 45 | Python | 38 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | training_utils_v1.py | 271,870 | 12 | 98 | cast_if_floating_dtype_and_mismatch | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 128 | 0 | 80,881 | 15 |
|
1 | 11 | def _get_font(self, prop):
filenames = _fontManager._find_fonts_by_props(prop)
font = get_font(filenames)
font.set_size(self.FONT_SCALE, self.DPI)
return font
| lib/matplotlib/textpath.py | 59 | matplotlib | {
"docstring": "\n Find the `FT2Font` matching font properties *prop*, with its size set.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 11,
"vocab_size": 11
} | 13 | Python | 11 | 140257e3ac710450c97587f95532a84a28cc526c | textpath.py | 109,212 | 5 | 36 | _get_font | https://github.com/matplotlib/matplotlib.git | ENH: add font fallback support to svg | 48 | 0 | 23,478 | 8 |
|
4 | 26 | def call_hm(self, other_args):
parser = argparse.ArgumentParser(
prog="hm",
add_help=False,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description=,
)
parser.add_argument(
"-l",
"--limit",
dest="limit",
type=int,
help="Display N items",
default=10,
)
parser.add_argument(
"-c",
"--category",
default="",
dest="category",
help="Category (e.g., stablecoins). Empty for no category",
)
if other_args and not other_args[0][0] == "-":
other_args.insert(0, "-c")
ns_parser = self.parse_known_args_and_warn(
parser, other_args, EXPORT_ONLY_FIGURES_ALLOWED
)
if ns_parser:
pycoingecko_view.display_crypto_heatmap(
category=ns_parser.category,
limit=ns_parser.limit,
export=ns_parser.export,
)
| openbb_terminal/cryptocurrency/overview/overview_controller.py | 225 | OpenBBTerminal | {
"docstring": "Process hm commandDisplay cryptocurrencies heatmap with daily percentage change [Source: https://coingecko.com]\n Accepts --category or -c to display only coins of a certain category\n (default no category to display all coins ranked by market cap).\n You can look on only top N number of records with --limit.\n ",
"language": "en",
"n_whitespaces": 90,
"n_words": 46,
"vocab_size": 39
} | 57 | Python | 50 | 5bc7bc070ed7c9051b1277d0db21299fd310d42b | overview_controller.py | 285,746 | 37 | 139 | call_hm | https://github.com/OpenBB-finance/OpenBBTerminal.git | Tests over API Best Practices (#2344)
* Started new tests
* Added special function
* Improved dict
* Finished new test
* Got bad functions to 75
* Got bad func to 73
* Bad func down to 60
* Bad func down to 50
* Bad func down to 35
* Got bad func to 30
* No more bad functions
* Added tests
* Added fix
* Fixed some tests
* Fixed some tests
* Fixed some tests
* Fixed some tests
* Added tests to CI
* Fixed CI tests
* Fixed CI tests
* Imrproved CI tests
* Fixed reports
* Fixed reports
* Added stuff
* Removed CI
* Fixed
* Fixed some typing'
Co-authored-by: minhhoang1023 <[email protected]> | 388 | 0 | 85,414 | 11 |
|
5 | 17 | def create_system_audit_entry(transaction_id=None, logger=None, **kwargs):
entry = AuditLogEntry(actor_label="Sentry", **kwargs)
if entry.event is not None:
entry.save_or_write_to_kafka()
extra = {
"organization_id": entry.organization_id,
"object_id": entry.target_object,
"entry_id": entry.id,
"actor_label": entry.actor_label,
}
if transaction_id is not None:
extra["transaction_id"] = transaction_id
if logger:
# Only use the api_name for the logger message when the entry
# is a real AuditLogEntry record
if entry.event is not None:
logger.info(audit_log.get(entry.event).api_name, extra=extra)
else:
logger.info(entry, extra=extra)
return entry
| src/sentry/utils/audit.py | 202 | sentry | {
"docstring": "\n Creates an audit log entry for events that are triggered by Sentry's\n systems and do not have an associated Sentry user as the \"actor\".\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 24,
"vocab_size": 23
} | 66 | Python | 46 | 941184cd24186324fd9f7f304b7f713041834726 | audit.py | 86,879 | 18 | 123 | create_system_audit_entry | https://github.com/getsentry/sentry.git | chore(hybrid-cloud): AuditLogEntry is a control silo model now (#39890)
In the control silo, creating an audit log entry writes to the db
directly, whilst in region silo mode creating an audit log entry will
instead push to a new kafka producer that consumes into the control silo
asynchronously. | 182 | 0 | 18,182 | 15 |
|
4 | 15 | def convert_to_svg(dvi_file, extension, page=1):
result = dvi_file.with_suffix(".svg")
if not result.exists():
commands = [
"dvisvgm",
"--pdf" if extension == ".pdf" else "",
"-p " + str(page),
f'"{dvi_file}"',
"-n",
"-v 0",
"-o " + f'"{result}"',
">",
os.devnull,
]
os.system(" ".join(commands))
# if the file does not exist now, this means conversion failed
if not result.exists():
raise ValueError(
f"Your installation does not support converting {dvi_file.suffix} files to SVG."
f" Consider updating dvisvgm to at least version 2.4."
f" If this does not solve the problem, please refer to our troubleshooting guide at:"
f" https://docs.manim.community/en/stable/installation/troubleshooting.html",
)
return result
| manim/utils/tex_file_writing.py | 192 | manim | {
"docstring": "Converts a .dvi, .xdv, or .pdf file into an svg using dvisvgm.\n\n Parameters\n ----------\n dvi_file : :class:`Path`\n File name of the input file to be converted.\n extension : :class:`str`\n String containing the file extension and thus indicating the file type, e.g. ``.dvi`` or ``.pdf``\n page : Optional[:class:`int`], optional\n Page to be converted if input file is multi-page.\n\n Returns\n -------\n :class:`Path`\n Path to generated SVG file.\n ",
"language": "en",
"n_whitespaces": 120,
"n_words": 65,
"vocab_size": 50
} | 94 | Python | 74 | 9d1f066d637cb15baea10e6907ab85efff8fb36f | tex_file_writing.py | 190,076 | 23 | 101 | convert_to_svg | https://github.com/ManimCommunity/manim.git | Migrate more `os.path` to `pathlib` (#2980)
* Migrate more `os.path` to `pathlib`
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix type errors with recent pathlib code
* pathlib fixes
* more pathlib fixes
* remove unused imports introduced by pathlib migration
* convert `open()` calls to pathlib
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Migrate tex_file_writing to pathlib
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* converted more old code to pathlib, and fixed a bug in module_ops
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix test failures
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix test failures
* Apply suggestions from code review
Co-authored-by: Benjamin Hackl <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Benjamin Hackl <[email protected]> | 290 | 0 | 46,312 | 13 |
|
1 | 2 | def group(self):
return self["group"]
| packages/python/plotly/plotly/graph_objs/_frame.py | 22 | plotly.py | {
"docstring": "\n An identifier that specifies the group to which the frame\n belongs, used by animate to select a subset of frames.\n\n The 'group' property is a string and must be specified as:\n - A string\n - A number that will be converted to a string\n\n Returns\n -------\n str\n ",
"language": "en",
"n_whitespaces": 115,
"n_words": 47,
"vocab_size": 36
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _frame.py | 226,746 | 2 | 11 | group | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 58,419 | 7 |
|
4 | 12 | def _match_long_opt(self, opt):
try:
return super()._match_long_opt(opt)
except optparse.AmbiguousOptionError as e:
if len(set(self._long_opt[p] for p in e.possibilities)) == 1:
return e.possibilities[0]
raise
| yt_dlp/options.py | 91 | yt-dlp | {
"docstring": "Improve ambigious argument resolution by comparing option objects instead of argument strings",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | 21 | Python | 20 | db2e129ca0c11de84d57b2298dffd5d87e852518 | options.py | 162,533 | 7 | 56 | _match_long_opt | https://github.com/yt-dlp/yt-dlp.git | [options] Better ambiguous option resolution
Eg: `--write-auto` no longer results in
> ambiguous option: --write-auto (--write-auto-subs, --write-automatic-subs?) | 90 | 0 | 39,211 | 15 |
|
3 | 7 | def global_policy():
if _global_policy is None:
if base_layer_utils.v2_dtype_behavior_enabled():
return Policy(backend.floatx())
else:
return Policy("_infer")
return _global_policy
| keras/mixed_precision/policy.py | 64 | keras | {
"docstring": "Returns the global dtype policy.\n\n The global policy is the default `tf.keras.mixed_precision.Policy` used for\n layers, if no policy is passed to the layer constructor. If no policy has been\n set with `keras.mixed_precision.set_global_policy`, this will return a policy\n constructed from `tf.keras.backend.floatx()` (floatx defaults to float32).\n\n >>> tf.keras.mixed_precision.global_policy()\n <Policy \"float32\">\n >>> tf.keras.layers.Dense(10).dtype_policy # Defaults to the global policy\n <Policy \"float32\">\n\n If TensorFlow 2 behavior has been disabled with\n `tf.compat.v1.disable_v2_behavior()`, this will instead return a special\n \"_infer\" policy which infers the dtype from the dtype of the first input the\n first time the layer is called. This behavior matches the behavior that\n existed in TensorFlow 1.\n\n See `tf.keras.mixed_precision.Policy` for more information on policies.\n\n Returns:\n The global Policy.\n ",
"language": "en",
"n_whitespaces": 168,
"n_words": 114,
"vocab_size": 70
} | 15 | Python | 11 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | policy.py | 275,142 | 7 | 35 | global_policy | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 60 | 0 | 81,317 | 13 |
|
4 | 10 | def __eq__(self, other):
ans = True
SIZE = self.size()
if SIZE == other.size():
for i in range(SIZE):
if self.__components[i] != other.component(i):
ans = False
break
else:
ans = False
return ans
| linear-algebra-python/src/lib.py | 101 | Python | {
"docstring": "\n returns true if the vectors are equal otherwise false.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 9
} | 31 | Python | 22 | f0af0c43340763724f139fa68aa1e5a9ffe458b4 | lib.py | 22,659 | 11 | 61 | __eq__ | https://github.com/geekcomputers/Python.git | refactor: clean code
Signed-off-by: slowy07 <[email protected]> | 148 | 0 | 4,388 | 12 |
|
4 | 31 | def fit(self, X, y=None):
# large sparse data is not supported for 32bit platforms because
# _document_frequency uses np.bincount which works on arrays of
# dtype NPY_INTP which is int32 for 32bit platforms. See #20923
X = self._validate_data(
X, accept_sparse=("csr", "csc"), accept_large_sparse=not _IS_32BIT
)
if not sp.issparse(X):
X = sp.csr_matrix(X)
dtype = X.dtype if X.dtype in FLOAT_DTYPES else np.float64
if self.use_idf:
n_samples, n_features = X.shape
df = _document_frequency(X)
df = df.astype(dtype, copy=False)
# perform idf smoothing if required
df += int(self.smooth_idf)
n_samples += int(self.smooth_idf)
# log+1 instead of log makes sure terms with zero idf don't get
# suppressed entirely.
idf = np.log(n_samples / df) + 1
self._idf_diag = sp.diags(
idf,
offsets=0,
shape=(n_features, n_features),
format="csr",
dtype=dtype,
)
return self
| sklearn/feature_extraction/text.py | 249 | scikit-learn | {
"docstring": "Learn the idf vector (global term weights).\n\n Parameters\n ----------\n X : sparse matrix of shape n_samples, n_features)\n A matrix of term/token counts.\n\n y : None\n This parameter is not needed to compute tf-idf.\n\n Returns\n -------\n self : object\n Fitted transformer.\n ",
"language": "en",
"n_whitespaces": 129,
"n_words": 40,
"vocab_size": 36
} | 119 | Python | 87 | f1d3417b086550be670cbfbb5b3c1760ac99203f | text.py | 259,040 | 22 | 156 | fit | https://github.com/scikit-learn/scikit-learn.git | MNT Drops Python 3.7 in CI, wheel building, and docs (#22617)
* MNT Drops Python 3.7
* MNT Bump NumPy and SciPy
* FIX Fix build
* FIX Bump versions improved
* DOC Fixes numpy version [pypy]
* BLD [pypy] [icc-build]
* Update docs
* MAINT use scipy.optimize.LinearConstraint in test
* MAINT scipy 1.1.0 related code clean-up
* scipy>=1.3.2 in pyproject.toml's build deps
* [cd build]
* DOC Adds comment about pypy
* MAINT remove _astype_copy_false
* FIX Update check for python version in setup.py
Co-authored-by: Olivier Grisel <[email protected]> | 407 | 0 | 75,536 | 12 |
|
2 | 7 | def get_penalty_details(against_loan):
penalty_details = frappe.db.sql(
,
(against_loan, against_loan),
)
if penalty_details:
return penalty_details[0][0], flt(penalty_details[0][1])
else:
return None, 0
| erpnext/loan_management/doctype/loan_repayment/loan_repayment.py | 77 | erpnext | {
"docstring": "\n\t\tSELECT posting_date, (penalty_amount - total_penalty_paid) as pending_penalty_amount\n\t\tFROM `tabLoan Repayment` where posting_date >= (SELECT MAX(posting_date) from `tabLoan Repayment`\n\t\twhere against_loan = %s) and docstatus = 1 and against_loan = %s\n\t",
"language": "en",
"n_whitespaces": 27,
"n_words": 30,
"vocab_size": 23
} | 18 | Python | 17 | 494bd9ef78313436f0424b918f200dab8fc7c20b | loan_repayment.py | 66,329 | 13 | 50 | get_penalty_details | https://github.com/frappe/erpnext.git | style: format code with black | 9 | 0 | 14,167 | 12 |
|
9 | 25 | def polarity_scores(self, text):
# convert emojis to their textual descriptions
text_no_emoji = ""
prev_space = True
for chr in text:
if chr in self.emojis:
# get the textual description
description = self.emojis[chr]
if not prev_space:
text_no_emoji += " "
text_no_emoji += description
prev_space = False
else:
text_no_emoji += chr
prev_space = chr == " "
text = text_no_emoji.strip()
sentitext = SentiText(text)
sentiments = []
words_and_emoticons = sentitext.words_and_emoticons
for i, item in enumerate(words_and_emoticons):
valence = 0
# check for vader_lexicon words that may be used as modifiers or negations
if item.lower() in BOOSTER_DICT:
sentiments.append(valence)
continue
if (
i < len(words_and_emoticons) - 1
and item.lower() == "kind"
and words_and_emoticons[i + 1].lower() == "of"
):
sentiments.append(valence)
continue
sentiments = self.sentiment_valence(valence, sentitext, item, i, sentiments)
sentiments = self._but_check(words_and_emoticons, sentiments)
valence_dict = self.score_valence(sentiments, text)
return valence_dict
| build/pyinstaller/vaderSentiment/vaderSentiment.py | 309 | OpenBBTerminal | {
"docstring": "\n Return a float for sentiment strength based on the input text.\n Positive values are positive valence, negative value are negative\n valence.\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 21,
"vocab_size": 19
} | 131 | Python | 82 | ab4de1dd70fba866930150e440a03e461a6ca6a8 | vaderSentiment.py | 283,210 | 33 | 186 | polarity_scores | https://github.com/OpenBB-finance/OpenBBTerminal.git | Create a packaged app bundle with Pyinstaller (#1525)
* Add dashboard widget assets
* Add ipywidgets and ipyflex to project
* Add currencies dashboard notebook
* Update docs and docstrings
* Add pyinstaller to project deps
* Add pyinstaller artifacts to gitignore
* Fix linter errors in terminal.py
* Update cspell hook and action with a pyinstaller specific word
* Add pyinstaller specfile and artifacts
* Add splashscreen image
* Add app icon
* adding splash screen support to terminal.spec and terminal.py
* Restore the conda env build files
* Sync deps
* Add border to the splashscreen image
* Clean up terminal launcher
* Add support for default feature flags in packages apps
* Fix types and linting
* Add splashscreen management to app bootup
* Check prediction feature flag when entering crypto/pred
* Update pyinstaller spec file
* fix .spec file to work for splash and icon - removed the ".."
* Allows to export when using installer (#1568)
* fix export for packaged apps
* fix filename
* Git : replace commit_hash when it is set in config_terminal
* Add update of the git commit hash in gtff default during build
* Add packaged app name and feature flag to logs
* Add platform specific icon assignment
* Add macOS build assets
* Add tensorflow to hidden imports
* Move LOGGING_COMMIT_HASH to gtff
* Adding files/folders needed to .spec and pyinstaller folder. This will make certain commands work again.
* Linting
* Workflow : ignore ./build/pyinstaller from codespell
* Workflow : exclude ./build/pyinstaller from flake8
* Poetry + Workflow : add types-six
* Pyinstaller : remove property_cached, user_agent and vaderSentiment
* Revert "Pyinstaller : remove property_cached, user_agent and vaderSentiment"
This reverts commit dbb3e2b81086f97819ebd21457148c7160a4d703.
* Clean up local paths in specfile
* Validate deps have correct Jinja version (they do)
* Fix logging commit hash to be set correctly for the logger to see it
Co-authored-by: Andrew <[email protected]>
Co-authored-by: didierlopes.eth <[email protected]>
Co-authored-by: Chavithra PARANA <[email protected]> | 539 | 0 | 84,470 | 14 |
|
2 | 10 | def list_of_ips(self):
# Defer draining call queue until we get the ip address
result = [None] * len(self.list_of_block_partitions)
for idx, partition in enumerate(self.list_of_block_partitions):
partition.drain_call_queue()
result[idx] = partition._ip_cache
return result
| modin/core/execution/dask/implementations/pandas_on_dask/partitioning/virtual_partition.py | 75 | modin | {
"docstring": "\n Get the IPs holding the physical objects composing this partition.\n\n Returns\n -------\n List\n A list of IPs as ``distributed.Future`` or str.\n ",
"language": "en",
"n_whitespaces": 68,
"n_words": 21,
"vocab_size": 19
} | 29 | Python | 27 | 9bf8d57ca44e22fd69b0abc55793cf60c199ab4d | virtual_partition.py | 154,155 | 6 | 45 | list_of_ips | https://github.com/modin-project/modin.git | FIX-#4676: drain sub-virtual-partition call queues. (#4695)
Signed-off-by: mvashishtha <[email protected]>
Co-authored-by: Alexey Prutskov <[email protected]> | 86 | 0 | 35,815 | 10 |
|
2 | 8 | def set_status(self, status):
self.status = status
if status in JobResultStatusChoices.TERMINAL_STATE_CHOICES:
self.completed = timezone.now()
| netbox/extras/models/models.py | 49 | netbox | {
"docstring": "\n Helper method to change the status of the job result. If the target status is terminal, the completion\n time is also set.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 22,
"vocab_size": 17
} | 13 | Python | 11 | 0bcc59a1e99065c1c0a143983fed4d0828d744f4 | models.py | 266,140 | 4 | 29 | set_status | https://github.com/netbox-community/netbox.git | #8366: Add started field to JobResult | 45 | 0 | 78,305 | 10 |
|
3 | 10 | def to_text(value, errors='strict'): # type: (t.AnyStr, str) -> str
if isinstance(value, bytes):
return value.decode(ENCODING, errors)
if isinstance(value, str):
return value
raise Exception('value is not bytes or text: %s' % type(value))
| test/lib/ansible_test/_internal/encoding.py | 79 | ansible | {
"docstring": "Return the given value as text decoded using UTF-8 if not already text.",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 13
} | 30 | Python | 27 | 86779cc90376ea70bafa7044b12ce5132409fd63 | encoding.py | 267,380 | 6 | 47 | to_text | https://github.com/ansible/ansible.git | ansible-test - Code cleanup.
This helps prepare for a future pylint upgrade. | 57 | 0 | 78,870 | 10 |
|
2 | 5 | def _is_lr_warming_up(self):
return (
self.warmup_scheduler is not None
and self._number_training_updates < self.warmup_updates
)
| parlai/nn/lr_scheduler.py | 38 | ParlAI | {
"docstring": "\n Check if we're warming up the learning rate.\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 8,
"vocab_size": 8
} | 13 | Python | 13 | 9d77adb86f707967b88d93964d8056a8bd5c84ec | lr_scheduler.py | 194,798 | 5 | 23 | _is_lr_warming_up | https://github.com/facebookresearch/ParlAI.git | Warmup updates bug for LR < 1 (#4384)
* revert bug
* relax restrictions
* even more relaxed :/ | 56 | 0 | 47,089 | 9 |
|
1 | 6 | def is_same_loop(self) -> bool:
return get_or_create_event_loop() == self.router._event_loop
| python/ray/serve/handle.py | 32 | ray | {
"docstring": "Whether the caller's asyncio loop is the same loop for handle.\n\n This is only useful for async handles.\n ",
"language": "en",
"n_whitespaces": 32,
"n_words": 18,
"vocab_size": 14
} | 8 | Python | 8 | 784e66b1f2265aeb9cb9a4e2404a8ac274abce3b | handle.py | 136,465 | 6 | 18 | is_same_loop | https://github.com/ray-project/ray.git | [all_tests][python] Remove calling of get_event_loop from python version >= 3.10 (#29285)
get_event_loop is deprecated in 3.10. This PR removes its invocation with python >= 3.10 by introducing a proxy function
get_or_create_event_loop in utils.py. More details please see the function comments.
In the long run - we should refactor the event based code by either:
using asyncio.run as much as possible after deprecating python 3.6
creating and managing the event loops explicitly across threads and different contexts.
This PR only serves as a mitigation for not calling the deprecated function.
Signed-off-by: rickyyx <[email protected]>
Co-authored-by: Chen Shen <[email protected]> | 22 | 0 | 30,926 | 8 |
|
1 | 20 | def test_computed_list_display_localization(self):
self.client.force_login(self.superuser)
event = Event.objects.create(date=datetime.date.today())
response = self.client.get(reverse("admin:admin_changelist_event_changelist"))
self.assertContains(response, formats.localize(event.date))
self.assertNotContains(response, str(event.date))
| tests/admin_changelist/tests.py | 124 | django | {
"docstring": "\n Regression test for #13196: output of functions should be localized\n in the changelist.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 13,
"vocab_size": 13
} | 13 | Python | 12 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | tests.py | 207,001 | 6 | 75 | test_computed_list_display_localization | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 55 | 0 | 51,830 | 12 |
|
5 | 14 | def apply_transparency(self):
if self.mode != "P" or "transparency" not in self.info:
return
from . import ImagePalette
palette = self.getpalette("RGBA")
transparency = self.info["transparency"]
if isinstance(transparency, bytes):
for i, alpha in enumerate(transparency):
palette[i * 4 + 3] = alpha
else:
palette[transparency * 4 + 3] = 0
self.palette = ImagePalette.ImagePalette("RGBA", bytes(palette))
self.palette.dirty = 1
del self.info["transparency"]
| src/PIL/Image.py | 186 | Pillow | {
"docstring": "\n If a P mode image has a \"transparency\" key in the info dictionary,\n remove the key and apply the transparency to the palette instead.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 24,
"vocab_size": 19
} | 54 | Python | 41 | 11be1631433f252b816802aef1a3cd109bd308c7 | Image.py | 243,004 | 14 | 110 | apply_transparency | https://github.com/python-pillow/Pillow.git | Added apply_transparency() | 172 | 0 | 69,952 | 13 |
|
6 | 26 | def mark_expected_failures_and_skips(self):
# Only load unittest if we're actually testing.
from unittest import expectedFailure, skip
for test_name in self.connection.features.django_test_expected_failures:
test_case_name, _, test_method_name = test_name.rpartition('.')
test_app = test_name.split('.')[0]
# Importing a test app that isn't installed raises RuntimeError.
if test_app in settings.INSTALLED_APPS:
test_case = import_string(test_case_name)
test_method = getattr(test_case, test_method_name)
setattr(test_case, test_method_name, expectedFailure(test_method))
for reason, tests in self.connection.features.django_test_skips.items():
for test_name in tests:
test_case_name, _, test_method_name = test_name.rpartition('.')
test_app = test_name.split('.')[0]
# Importing a test app that isn't installed raises RuntimeError.
if test_app in settings.INSTALLED_APPS:
test_case = import_string(test_case_name)
test_method = getattr(test_case, test_method_name)
setattr(test_case, test_method_name, skip(reason)(test_method))
| django/db/backends/base/creation.py | 256 | django | {
"docstring": "\n Mark tests in Django's test suite which are expected failures on this\n database and test which should be skipped on this database.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 22,
"vocab_size": 18
} | 92 | Python | 48 | 890bfa368c33d6ae19fe45cf1eed7e2e8d63160e | creation.py | 203,151 | 17 | 158 | mark_expected_failures_and_skips | https://github.com/django/django.git | Refs #20349 -- Avoided loading testing libraries when not needed. | 344 | 0 | 50,238 | 16 |
|
1 | 4 | def images_found(self) -> int:
return self._images_found
| scripts/fsmedia.py | 22 | faceswap | {
"docstring": "int: The number of frames that exist in the video file, or the folder of images. ",
"language": "en",
"n_whitespaces": 16,
"n_words": 16,
"vocab_size": 14
} | 6 | Python | 6 | 1022651eb8a7741014f5d2ec7cbfe882120dfa5f | fsmedia.py | 101,394 | 3 | 12 | images_found | https://github.com/deepfakes/faceswap.git | Bugfix: convert - Gif Writer
- Fix non-launch error on Gif Writer
- convert plugins - linting
- convert/fs_media/preview/queue_manager - typing
- Change convert items from dict to Dataclass | 20 | 0 | 20,809 | 6 |
|
4 | 7 | def constrain_encoding(self) -> None:
accept_encoding = self.headers.get("accept-encoding")
if accept_encoding:
self.headers["accept-encoding"] = ", ".join(
e
for e in {"gzip", "identity", "deflate", "br", "zstd"}
if e in accept_encoding
)
| mitmproxy/http.py | 95 | mitmproxy | {
"docstring": "\n Limits the permissible Accept-Encoding values, based on what we can decode appropriately.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 12
} | 27 | Python | 21 | b3587b52b25077f68116b9852b041d33e7fc6601 | http.py | 251,372 | 11 | 52 | constrain_encoding | https://github.com/mitmproxy/mitmproxy.git | make it black! | 115 | 0 | 73,701 | 13 |
|
2 | 15 | def __reduce__(self):
if not hasattr(self, "model"):
# Fields are sometimes used without attaching them to models (for
# example in aggregation). In this case give back a plain field
# instance. The code below will create a new empty instance of
# class self.__class__, then update its dict with self.__dict__
# values - so, this is very close to normal pickle.
state = self.__dict__.copy()
# The _get_default cached_property can't be pickled due to lambda
# usage.
state.pop("_get_default", None)
return _empty, (self.__class__,), state
return _load_field, (
self.model._meta.app_label,
self.model._meta.object_name,
self.name,
)
| django/db/models/fields/__init__.py | 115 | django | {
"docstring": "\n Pickling should return the model._meta.fields instance of the field,\n not a new copy of that field. So, use the app registry to load the\n model and then the field back.\n ",
"language": "en",
"n_whitespaces": 59,
"n_words": 30,
"vocab_size": 25
} | 89 | Python | 76 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | __init__.py | 205,534 | 10 | 68 | __reduce__ | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 260 | 0 | 51,144 | 11 |
|
1 | 2 | def meta(self):
return self["meta"]
| packages/python/plotly/plotly/graph_objs/_bar.py | 22 | plotly.py | {
"docstring": "\n Assigns extra meta information associated with this trace that\n can be used in various text attributes. Attributes such as\n trace `name`, graph, axis and colorbar `title.text`, annotation\n `text` `rangeselector`, `updatemenues` and `sliders` `label`\n text all support `meta`. To access the trace `meta` values in\n an attribute in the same trace, simply use `%{meta[i]}` where\n `i` is the index or key of the `meta` item in question. To\n access trace `meta` in layout attributes, use\n `%{data[n[.meta[i]}` where `i` is the index or key of the\n `meta` and `n` is the trace index.\n\n The 'meta' property accepts values of any type\n\n Returns\n -------\n Any|numpy.ndarray\n ",
"language": "en",
"n_whitespaces": 208,
"n_words": 102,
"vocab_size": 69
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _bar.py | 226,150 | 2 | 11 | meta | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 57,823 | 7 |
|
7 | 26 | def process(self, in_queue, out_queue):
logger.debug("Starting convert process. (in_queue: %s, out_queue: %s)",
in_queue, out_queue)
log_once = False
while True:
items = in_queue.get()
if items == "EOF":
logger.debug("EOF Received")
logger.debug("Patch queue finished")
# Signal EOF to other processes in pool
logger.debug("Putting EOF back to in_queue")
in_queue.put(items)
break
if isinstance(items, dict):
items = [items]
for item in items:
logger.trace("Patch queue got: '%s'", item["filename"])
try:
image = self._patch_image(item)
except Exception as err: # pylint: disable=broad-except
# Log error and output original frame
logger.error("Failed to convert image: '%s'. Reason: %s",
item["filename"], str(err))
image = item["image"]
loglevel = logger.trace if log_once else logger.warning
loglevel("Convert error traceback:", exc_info=True)
log_once = True
# UNCOMMENT THIS CODE BLOCK TO PRINT TRACEBACK ERRORS
import sys ; import traceback
exc_info = sys.exc_info() ; traceback.print_exception(*exc_info)
logger.trace("Out queue put: %s", item["filename"])
out_queue.put((item["filename"], image))
logger.debug("Completed convert process")
| lib/convert.py | 350 | faceswap | {
"docstring": " Main convert process.\n\n Takes items from the in queue, runs the relevant adjustments, patches faces to final frame\n and outputs patched frame to the out queue.\n\n Parameters\n ----------\n in_queue: :class:`queue.Queue`\n The output from :class:`scripts.convert.Predictor`. Contains detected faces from the\n Faceswap model as well as the frame to be patched.\n out_queue: :class:`queue.Queue`\n The queue to place patched frames into for writing by one of Faceswap's\n :mod:`plugins.convert.writer` plugins.\n ",
"language": "en",
"n_whitespaces": 160,
"n_words": 66,
"vocab_size": 50
} | 133 | Python | 102 | 3d8e674adc88b8f4cc206ebad6fb5b600e38fe14 | convert.py | 100,763 | 30 | 201 | process | https://github.com/deepfakes/faceswap.git | convert - Fix affine borders | 635 | 0 | 20,216 | 16 |
|
2 | 18 | def traceParseAction(f):
| .venv/lib/python3.8/site-packages/pip/_vendor/pyparsing.py | 49 |
"""Decorator for debugging parse actions.
When the parse action is called, this decorator will print
``">> entering method-name(line:<current_source_line>, <parse_location>, <matched_tokens>)"``.
When the parse action completes, the decorator will print
``"<<"`` followed by the returned value, or any exception that the parse action raised.
Example::followed by the returned valueor any exception that the parse action | transferlearning | {
"docstring": "Decorator for debugging parse actions.\n\n When the parse action is called, this decorator will print\n ``\">> entering method-name(line:<current_source_line>, <parse_location>, <matched_tokens>)\"``.\n When the parse action completes, the decorator will print\n ``\"<<\"`` followed by the returned value, or any exception that the parse action raised.\n\n Example::\n\n wd = Word(alphas)\n",
"language": "en",
"n_whitespaces": 68,
"n_words": 47,
"vocab_size": 34
} | 2 | Python | 2 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | pyparsing.py | 63,443 | 8 | 29 | traceParseAction | https://github.com/jindongwang/transferlearning.git | upd; format | 5 | 3 | 13,305 | 8 |
3 | 9 | def _pixels_and_segments_fit_in_music_mode(self) -> bool:
pixels_per_segment = self._device.pixels_per_segment
segments = self._device.segments
assert pixels_per_segment is not None
assert segments is not None
return bool(
pixels_per_segment <= MUSIC_PIXELS_PER_SEGMENT_MAX
and segments <= MUSIC_SEGMENTS_MAX
and pixels_per_segment * segments <= MUSIC_PIXELS_MAX
)
| homeassistant/components/flux_led/number.py | 78 | core | {
"docstring": "Check if the base pixel and segment settings will fit for music mode.\n\n If they fit, they do not need to be configured.\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 23,
"vocab_size": 22
} | 36 | Python | 22 | e222e1b6f05b630bef5aed73e307ca5072b6f286 | number.py | 308,880 | 14 | 49 | _pixels_and_segments_fit_in_music_mode | https://github.com/home-assistant/core.git | Add device configuration entities to flux_led (#62786)
Co-authored-by: Chris Talkington <[email protected]> | 118 | 0 | 107,608 | 10 |
|
2 | 10 | def _generate_sharding_spec(world_size):
placements = [f"rank:{idx}/cuda:{idx}" for idx in range(world_size)]
# Shard the first nn module's weight by dim 0.
# (nn.Linear transposes the weight internally so dim 0 actually means column)
colwise_spec = ChunkShardingSpec(
dim=0,
placements=placements,
)
# Shard the second nn module's weight by dim 1.
rowwise_spec = ChunkShardingSpec(
dim=1,
placements=placements,
)
# The result from the second nn.linear layer needs aggregation by dim 0.
output_spec = ChunkShardingSpec(
dim=0,
placements=placements,
)
return colwise_spec, rowwise_spec, output_spec
| distributed/sharded_tensor/tensor_parallel.py | 110 | examples | {
"docstring": "\n We first need to create a sharding spec for our sharding work.\n\n For now, we only support sharding on one dimension. So we use\n ``ChunkShardingSpec`` to chunk the size of the given sharding\n dim to equally split length. The behavior is similar to\n `torch.chunk`.\n\n We also need to create the output sharding spec for the second nn\n because we need to aggregate(reduce) the partial result after the\n second nn layer. So we have a new sharding spec to represent that\n how we store the aggregation result in a new sharded tensor.\n ",
"language": "en",
"n_whitespaces": 122,
"n_words": 91,
"vocab_size": 56
} | 76 | Python | 47 | 9ba53df5a19131e6926027b2e73aaa77cec17272 | tensor_parallel.py | 82,839 | 15 | 64 | _generate_sharding_spec | https://github.com/pytorch/examples.git | Gh/fduwjj/2/base (#1007)
* test ghstack
[ghstack-poisoned]
* Update base for Update on "[PT-D] Add an example for Megatron-LM style example"
[ghstack-poisoned]
* Update base for Update on "[PT-D] Add an example for Megatron-LM style example"
[ghstack-poisoned]
* Update base for Update on "[PT-D] Add an example for Megatron-LM style example"
[ghstack-poisoned]
* Update base for Update on "[PT-D] Add an example for Megatron-LM style example"
[ghstack-poisoned]
* [PT-D] Add an example for Megatron-LM style example (#1006)
* [PT-D] Add an example for Megatron-LM style example
[ghstack-poisoned]
* Update on "[PT-D] Add an example for Megatron-LM style example"
[ghstack-poisoned] | 157 | 0 | 17,549 | 10 |
|
4 | 23 | def execute():
frappe.reload_doc("buying", "doctype", "purchase_order")
frappe.reload_doc("buying", "doctype", "supplier_quotation")
frappe.reload_doc("selling", "doctype", "sales_order")
frappe.reload_doc("selling", "doctype", "quotation")
frappe.reload_doc("stock", "doctype", "delivery_note")
frappe.reload_doc("stock", "doctype", "purchase_receipt")
frappe.reload_doc("accounts", "doctype", "sales_invoice")
frappe.reload_doc("accounts", "doctype", "purchase_invoice")
doctypes = [
"Sales Order",
"Sales Invoice",
"Delivery Note",
"Purchase Order",
"Purchase Invoice",
"Purchase Receipt",
"Quotation",
"Supplier Quotation",
]
for doctype in doctypes:
total_qty = frappe.db.sql(
.format(
doctype
),
as_dict=True,
)
# Query to update total_qty might become too big, Update in batches
# batch_size is chosen arbitrarily, Don't try too hard to reason about it
batch_size = 100000
for i in range(0, len(total_qty), batch_size):
batch_transactions = total_qty[i : i + batch_size]
# UPDATE with CASE for some reason cannot use PRIMARY INDEX,
# causing all rows to be examined, leading to a very slow update
# UPDATE with WHERE clause uses PRIMARY INDEX, but will lead to too many queries
# INSERT with ON DUPLICATE KEY UPDATE uses PRIMARY INDEX
# and can perform multiple updates per query
# This is probably never used anywhere else as of now, but should be
values = []
for d in batch_transactions:
values.append("({0}, {1})".format(frappe.db.escape(d.parent), d.qty))
conditions = ",".join(values)
frappe.db.sql(
.format(
doctype, conditions
)
)
| erpnext/patches/v11_0/update_total_qty_field.py | 388 | erpnext | {
"docstring": "\n\t\t\tSELECT\n\t\t\t\tparent, SUM(qty) as qty\n\t\t\tFROM\n\t\t\t\t`tab{0} Item`\n\t\t\twhere parenttype = '{0}'\n\t\t\tGROUP BY parent\n\t\t\n\t\t\t\tINSERT INTO `tab{}` (name, total_qty) VALUES {}\n\t\t\t\tON DUPLICATE KEY UPDATE name = VALUES(name), total_qty = VALUES(total_qty)\n\t\t\t",
"language": "en",
"n_whitespaces": 24,
"n_words": 32,
"vocab_size": 30
} | 188 | Python | 126 | 494bd9ef78313436f0424b918f200dab8fc7c20b | update_total_qty_field.py | 66,581 | 48 | 213 | execute | https://github.com/frappe/erpnext.git | style: format code with black | 142 | 0 | 14,229 | 18 |
|
26 | 44 | def prim_mst_edges(G, minimum, weight="weight", keys=True, data=True, ignore_nan=False):
is_multigraph = G.is_multigraph()
push = heappush
pop = heappop
nodes = set(G)
c = count()
sign = 1 if minimum else -1
while nodes:
u = nodes.pop()
frontier = []
visited = {u}
if is_multigraph:
for v, keydict in G.adj[u].items():
for k, d in keydict.items():
wt = d.get(weight, 1) * sign
if isnan(wt):
if ignore_nan:
continue
msg = f"NaN found as an edge weight. Edge {(u, v, k, d)}"
raise ValueError(msg)
push(frontier, (wt, next(c), u, v, k, d))
else:
for v, d in G.adj[u].items():
wt = d.get(weight, 1) * sign
if isnan(wt):
if ignore_nan:
continue
msg = f"NaN found as an edge weight. Edge {(u, v, d)}"
raise ValueError(msg)
push(frontier, (wt, next(c), u, v, d))
while nodes and frontier:
if is_multigraph:
W, _, u, v, k, d = pop(frontier)
else:
W, _, u, v, d = pop(frontier)
if v in visited or v not in nodes:
continue
# Multigraphs need to handle edge keys in addition to edge data.
if is_multigraph and keys:
if data:
yield u, v, k, d
else:
yield u, v, k
else:
if data:
yield u, v, d
else:
yield u, v
# update frontier
visited.add(v)
nodes.discard(v)
if is_multigraph:
for w, keydict in G.adj[v].items():
if w in visited:
continue
for k2, d2 in keydict.items():
new_weight = d2.get(weight, 1) * sign
push(frontier, (new_weight, next(c), v, w, k2, d2))
else:
for w, d2 in G.adj[v].items():
if w in visited:
continue
new_weight = d2.get(weight, 1) * sign
push(frontier, (new_weight, next(c), v, w, d2))
ALGORITHMS = {
"boruvka": boruvka_mst_edges,
"borůvka": boruvka_mst_edges,
"kruskal": kruskal_mst_edges,
"prim": prim_mst_edges,
}
@not_implemented_for("directed") | networkx/algorithms/tree/mst.py | 762 | @not_implemented_for("directed") | networkx | {
"docstring": "Iterate over edges of Prim's algorithm min/max spanning tree.\n\n Parameters\n ----------\n G : NetworkX Graph\n The graph holding the tree of interest.\n\n minimum : bool (default: True)\n Find the minimum (True) or maximum (False) spanning tree.\n\n weight : string (default: 'weight')\n The name of the edge attribute holding the edge weights.\n\n keys : bool (default: True)\n If `G` is a multigraph, `keys` controls whether edge keys ar yielded.\n Otherwise `keys` is ignored.\n\n data : bool (default: True)\n Flag for whether to yield edge attribute dicts.\n If True, yield edges `(u, v, d)`, where `d` is the attribute dict.\n If False, yield edges `(u, v)`.\n\n ignore_nan : bool (default: False)\n If a NaN is found as an edge weight normally an exception is raised.\n If `ignore_nan is True` then that edge is ignored instead.\n\n ",
"language": "en",
"n_whitespaces": 230,
"n_words": 133,
"vocab_size": 80
} | 264 | Python | 110 | 83cc6cd2811dbc6d20cfb3de809f21153b30e14e | mst.py | 176,520 | 62 | 453 | prim_mst_edges | https://github.com/networkx/networkx.git | Optimize prim for mst (#5455)
Co-authored-by: Dylan <[email protected]> | 1,173 | 1 | 41,941 | 20 |
1 | 9 | def __add__(self, other):
rank = (self.rank() + other) % self.cardinality
rv = self.unrank_lex(self.size, rank)
rv._rank = rank
return rv
| sympy/combinatorics/permutations.py | 68 | sympy | {
"docstring": "Return permutation that is other higher in rank than self.\n\n The rank is the lexicographical rank, with the identity permutation\n having rank of 0.\n\n Examples\n ========\n\n >>> from sympy.combinatorics import Permutation\n >>> I = Permutation([0, 1, 2, 3])\n >>> a = Permutation([2, 1, 3, 0])\n >>> I + a.rank() == a\n True\n\n See Also\n ========\n\n __sub__, inversion_vector\n\n ",
"language": "en",
"n_whitespaces": 148,
"n_words": 57,
"vocab_size": 44
} | 19 | Python | 15 | 498015021131af4dbb07eb110e5badaba8250c7b | permutations.py | 196,160 | 5 | 42 | __add__ | https://github.com/sympy/sympy.git | Updated import locations | 54 | 0 | 47,660 | 11 |
|
1 | 6 | def to_integral_exact(self, a):
a = _convert_other(a, raiseit=True)
return a.to_integral_exact(context=self)
| python3.10.4/Lib/_pydecimal.py | 44 | XX-Net | {
"docstring": "Rounds to an integer.\n\n When the operand has a negative exponent, the result is the same\n as using the quantize() operation using the given operand as the\n left-hand-operand, 1E+0 as the right-hand-operand, and the precision\n of the operand as the precision setting; Inexact and Rounded flags\n are allowed in this operation. The rounding mode is taken from the\n context.\n\n >>> ExtendedContext.to_integral_exact(Decimal('2.1'))\n Decimal('2')\n >>> ExtendedContext.to_integral_exact(Decimal('100'))\n Decimal('100')\n >>> ExtendedContext.to_integral_exact(Decimal('100.0'))\n Decimal('100')\n >>> ExtendedContext.to_integral_exact(Decimal('101.5'))\n Decimal('102')\n >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))\n Decimal('-102')\n >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))\n Decimal('1.0E+6')\n >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))\n Decimal('7.89E+77')\n >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))\n Decimal('-Infinity')\n ",
"language": "en",
"n_whitespaces": 245,
"n_words": 83,
"vocab_size": 56
} | 9 | Python | 9 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | _pydecimal.py | 219,712 | 3 | 27 | to_integral_exact | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 30 | 0 | 55,735 | 9 |
|
1 | 9 | def test_invalid_parameters_in_stacking():
stacker = StackingClassifier(estimators=[])
html_output = estimator_html_repr(stacker)
assert html.escape(str(stacker)) in html_output
| sklearn/utils/tests/test_estimator_html_repr.py | 56 | scikit-learn | {
"docstring": "Invalidate stacking configuration uses default repr.\n\n Non-regression test for #24009.\n ",
"language": "en",
"n_whitespaces": 16,
"n_words": 10,
"vocab_size": 10
} | 12 | Python | 10 | 84c6421a9067de7d1b54b7a6d8e21ce38e1f0eca | test_estimator_html_repr.py | 260,606 | 4 | 32 | test_invalid_parameters_in_stacking | https://github.com/scikit-learn/scikit-learn.git | FIX Show a HTML repr for meta-estimatosr with invalid parameters (#24015)
Co-authored-by: Jérémie du Boisberranger <[email protected]> | 24 | 0 | 76,372 | 10 |
|
1 | 8 | def generate_new_id() -> str:
return base58.b58encode(uuid.uuid4().bytes).decode()
| lib/streamlit/session_data.py | 43 | streamlit | {
"docstring": "Randomly generate an ID representing this session's execution.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 6 | Python | 6 | 704eab3478cf69847825b23dabf15813a8ac9fa2 | session_data.py | 118,576 | 3 | 24 | generate_new_id | https://github.com/streamlit/streamlit.git | Rename and refactor `Report` machinery (#4141)
This refactor renames (almost) everything related to the outdated "report" concept with more precise concepts that we use throughout our code, primarily "script run", "session", and "app". | 12 | 0 | 26,302 | 12 |
|
1 | 5 | def test_event_match_body(self) -> None:
# if the key is `content.body`, the pattern matches substrings.
# non-wildcards should match
condition = {
"kind": "event_match",
"key": "content.body",
"pattern": "foobaz",
}
self._assert_matches(
condition,
{"body": "aaa FoobaZ zzz"},
"patterns should match and be case-insensitive",
)
self._assert_not_matches(
condition,
{"body": "aa xFoobaZ yy"},
"pattern should only match at word boundaries",
)
self._assert_not_matches(
condition,
{"body": "aa foobazx yy"},
"pattern should only match at word boundaries",
)
# wildcards should match
condition = {
"kind": "event_match",
"key": "content.body",
"pattern": "f?o*baz",
}
self._assert_matches(
condition,
{"body": "aaa FoobarbaZ zzz"},
"* should match string and pattern should be case-insensitive",
)
self._assert_matches(
condition, {"body": "aa foobaz yy"}, "* should match 0 characters"
)
self._assert_not_matches(
condition, {"body": "aa fobbaz yy"}, "? should not match 0 characters"
)
self._assert_not_matches(
condition, {"body": "aa fiiobaz yy"}, "? should not match 2 characters"
)
self._assert_not_matches(
condition,
{"body": "aa xfooxbaz yy"},
"pattern should only match at word boundaries",
)
self._assert_not_matches(
condition,
{"body": "aa fooxbazx yy"},
"pattern should only match at word boundaries",
)
# test backslashes
condition = {
"kind": "event_match",
"key": "content.body",
"pattern": r"f\oobaz",
}
self._assert_matches(
condition,
{"body": r"F\oobaz"},
"backslash should match itself",
)
condition = {
"kind": "event_match",
"key": "content.body",
"pattern": r"f\?obaz",
}
self._assert_matches(
condition,
{"body": r"F\oobaz"},
r"? after \ should match any character",
)
| tests/push/test_push_rule_evaluator.py | 450 | synapse | {
"docstring": "Check that event_match conditions on content.body work as expected",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 209 | Python | 74 | 9d21ecf7ceab55bc19c4457b8b07401b0b1623a7 | test_push_rule_evaluator.py | 247,781 | 71 | 239 | test_event_match_body | https://github.com/matrix-org/synapse.git | Add type hints to tests files. (#12256) | 883 | 0 | 71,916 | 10 |
|
1 | 4 | def layout(self) -> Layout:
return self.styles.layout
| src/textual/view.py | 25 | textual | {
"docstring": "Convenience property for accessing ``view.styles.layout``.\n\n Returns: The Layout associated with this view\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 12,
"vocab_size": 12
} | 6 | Python | 6 | 9c2a125c2412c5d011307a80f4552cf9824cc022 | view.py | 182,034 | 6 | 14 | layout | https://github.com/Textualize/textual.git | Ensuring we get and set Layout as set in view.styles everywhere | 20 | 0 | 43,737 | 7 |
|
1 | 4 | def _zeropad(s, padsize):
return s + b"\x00" * (-len(s) % padsize)
| scapy/libs/rfc3961.py | 40 | scapy | {
"docstring": "\n Return s padded with 0 bytes to a multiple of padsize.\n ",
"language": "en",
"n_whitespaces": 18,
"n_words": 11,
"vocab_size": 11
} | 11 | Python | 11 | b26f2283379d3bba48d575c1fffd1c3cdeaf64c2 | rfc3961.py | 209,457 | 2 | 23 | _zeropad | https://github.com/secdev/scapy.git | Kerberos update (#3688)
* Kerberos over TCP
* Kerberos: add FAST & PKCA
* Many user-friendly improvements
* RFC3961 crypto
* Summary, Sessions, Examples, Bugs
* More tests, _n_fold edge case
* Ignore potatoe (kerberos tests) from codespell | 17 | 0 | 52,681 | 12 |