id
int64 20
338k
| vocab_size
int64 2
671
| ast_levels
int64 4
32
| nloc
int64 1
451
| n_ast_nodes
int64 12
5.6k
| n_identifiers
int64 1
186
| n_ast_errors
int64 0
10
| n_words
int64 2
2.17k
| n_whitespaces
int64 2
13.8k
| fun_name
stringlengths 2
73
| commit_message
stringlengths 51
15.3k
| url
stringlengths 31
59
| code
stringlengths 51
31k
| ast_errors
stringlengths 0
1.46k
| token_counts
int64 6
3.32k
| file_name
stringlengths 5
56
| language
stringclasses 1
value | path
stringlengths 7
134
| commit_id
stringlengths 40
40
| repo
stringlengths 3
28
| complexity
int64 1
153
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
250,426 | 14 | 9 | 5 | 68 | 7 | 0 | 15 | 43 | test_no_order_last | Add missing type hints to tests.handlers. (#14680)
And do not allow untyped defs in tests.handlers. | https://github.com/matrix-org/synapse.git | def test_no_order_last(self) -> None:
ev1 = _create_event("!abc:test")
ev2 = _create_event("!xyz:test", "xyz")
self.assertEqual([ev2, ev1], _order(ev1, ev2))
| 39 | test_room_summary.py | Python | tests/handlers/test_room_summary.py | 652d1669c5a103b1c20478770c4aaf18849c09a3 | synapse | 1 |
|
183,499 | 26 | 8 | 3 | 31 | 5 | 0 | 27 | 55 | _get_time | [App] Finally, time mocking in tests seems to be working! 😅
I had to add a flag in the `_timer` module that allows us to completely disable the "skip" feature of Timers, though - but it shouldn't cause too much trouble 🤞 | https://github.com/Textualize/textual.git | def _get_time(self) -> float:
# N.B. We could remove this method and always call `self._timer.get_time()` internally,
# but it's handy to have in mocking situations
return self._timer.get_time()
| 16 | _animator.py | Python | src/textual/_animator.py | 15df75919744fbea824bbf029cfb56029a3d0dc8 | textual | 1 |
|
197,178 | 37 | 14 | 43 | 120 | 10 | 0 | 48 | 127 | variations | Reduce "yield from" overhead in iterables.variations()
Same treatment as was recently applied to iterables.subsets(). All
paths through iterables.variations() still return a generator object,
but variations() is no longer itself a generator function. This
avoids the overhead of one level of yield from. This change can save
as much as 30% of the time spent in this function. (Very sensitive to
Python version.) | https://github.com/sympy/sympy.git | def variations(seq, n, repetition=False):
r
if not repetition:
seq = tuple(seq)
if len(seq) < n:
return (val for val in []) # 0 length generator
return permutations(seq, n)
else:
if n == 0:
return (val for val in [()]) # yields 1 empty tuple
else:
return product(seq, repeat=n)
| 76 | iterables.py | Python | sympy/utilities/iterables.py | f8ee5f4f6410ea7130fdb3080680248ac0667d8f | sympy | 6 |
|
87,190 | 42 | 12 | 23 | 237 | 16 | 0 | 53 | 330 | test_get_dynamic_sampling_after_migrating_to_new_plan_manually_set_biases | feat(ds): Support new DS behaviour in project_details endpoint (#40387)
Supports new adaptive dynamic sampling behaviour alongside
the deprecated dynamic sampling behaviour and achieves that
through feature flag differentiation
This PR achieve that through the following:
- Introducing a new `DynamicSamplingBiasSerializer` which is composed of
id representing the bias name and a boolean flag indicating whether that
particular flag is active or not
- Modifies current existing behavior for both old sampling flag and new
sampling flag. Essentially the new setup entails that to be on the old
dynamic sampling, the following flags need to be enabled
"organizations:server-side-sampling" and
"organizations:server-side-sampling-ui", and to be on the new dynamic
sampling configurations, you need the following flags to be enabled
"organizations:dynamic-sampling-basic" and
"organizations:server-side-sampling"
P.S. 1: These flags will be replaced
"organizations:server-side-sampling-ui" ->
"organizations:dynamic-sampling-deprecated"
"organizations:server-side-sampling-basic" ->
"organizations:dynamic-sampling"
Hence, these feature flags need to be updated once this PR lands
https://github.com/getsentry/sentry/pull/40388
P.S. 2: If a project is on the new plan and the old plan, the new plan
takes precedence
- Introduces default biases that are enabled by default and can be
overwritten. The motivation to do this is to be able to add new biases
that are enabled by default, and both the GET and PUT request honor this
list
- `GET` and `POST` endpoint does a dictionary update of user's stored
biases on the default biases that are hardcoded, and returns them to the
UI/ relay. This means that the introduced project option
"sentry:dynamic_sampling_biases" might not have all the toggles
enabled/disabled through the UI but only the ones that a customer chose
to modify
Followup:
- This new feature flag behaviour needs to be reflected in ProjectConfig
computations | https://github.com/getsentry/sentry.git | def test_get_dynamic_sampling_after_migrating_to_new_plan_manually_set_biases(self):
self.project.update_option("sentry:dynamic_sampling", self.dynamic_sampling_data)
new_biases = [{"id": "boostEnvironments", "active": False}]
self.project.update_option("sentry:dynamic_sampling_biases", new_biases)
with Feature(
{
self.universal_ds_flag: True,
self.old_ds_flag: True,
self.new_ds_flag: True,
}
):
response = self.get_success_response(
self.organization.slug, self.project.slug, method="get"
)
assert response.data["dynamicSampling"] is None
assert response.data["dynamicSamplingBiases"] == [
{"id": "boostEnvironments", "active": False},
{
"id": "boostLatestRelease",
"active": True,
},
{"id": "ignoreHealthChecks", "active": True},
]
| 138 | test_project_details.py | Python | tests/sentry/api/endpoints/test_project_details.py | 5462ee11ad11ebb9a50323befcd286816d7898c8 | sentry | 1 |
|
171,566 | 9 | 9 | 64 | 31 | 4 | 0 | 9 | 24 | unique | STYLE: Enable Pylint useless-parent-delegation warning (#49773)
* Enable Pylint useless-parent-delegation warning and remove superfluous overriding methods
* Remove annotations that caused errors.
Remove @skip_nested annotations that cause test failures and replace them with statements that suppress the useless-parent-delegation warning.
* Remove tests that can fall back to the base class
* Move a comment to ensure that pre-commit passes | https://github.com/pandas-dev/pandas.git | def unique(self) -> ArrayLike: # pylint: disable=useless-parent-delegation
return super().unique()
| 16 | series.py | Python | pandas/core/series.py | 005486fa6c2f065e25df3c244a2bd53abe80ffb3 | pandas | 1 |
|
20,520 | 17 | 11 | 6 | 87 | 13 | 0 | 21 | 43 | doctype_matches | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | https://github.com/pypa/pipenv.git | def doctype_matches(text, regex):
m = doctype_lookup_re.search(text)
if m is None:
return False
doctype = m.group(1)
return re.compile(regex, re.I).match(doctype.strip()) is not None
| 54 | util.py | Python | pipenv/patched/notpip/_vendor/pygments/util.py | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | 2 |
|
249,499 | 20 | 10 | 13 | 99 | 12 | 0 | 22 | 126 | test_success_urlencoded | Add an admin API endpoint to find a user based on its external ID in an auth provider. (#13810) | https://github.com/matrix-org/synapse.git | def test_success_urlencoded(self) -> None:
url = "/_synapse/admin/v1/auth_providers/another-auth-provider/users/a%3Acomplex%40external%2Fid"
channel = self.make_request(
"GET",
url,
access_token=self.admin_user_tok,
)
self.assertEqual(200, channel.code, msg=channel.json_body)
self.assertEqual(
{"user_id": self.other_user},
channel.json_body,
)
| 61 | test_user.py | Python | tests/rest/admin/test_user.py | 74f60cec92c5aff87d6e74d177e95ec5f1a69f2b | synapse | 1 |
|
309,521 | 21 | 10 | 7 | 95 | 13 | 0 | 24 | 89 | turn_on | Cleanup ADS constants and add type hints (#63390)
Co-authored-by: epenet <[email protected]> | https://github.com/home-assistant/core.git | def turn_on(self, **kwargs):
brightness = kwargs.get(ATTR_BRIGHTNESS)
self._ads_hub.write_by_name(self._ads_var, True, pyads.PLCTYPE_BOOL)
if self._ads_var_brightness is not None and brightness is not None:
self._ads_hub.write_by_name(
self._ads_var_brightness, brightness, pyads.PLCTYPE_UINT
)
| 62 | light.py | Python | homeassistant/components/ads/light.py | 0042bb68d97fb3cdebb6ad82500a578b1c0b647f | core | 3 |
|
39,239 | 21 | 15 | 10 | 153 | 22 | 0 | 25 | 107 | compute_cooccurrence_matrix | Remove drop_duplicates() from SAR method fix #1464 (#1588)
* Remove drop_duplicates() from SAR method fix #1464
* flake is complaining
* Typos
* Define self.unity_user_affinity inside __init__()
* Remove drop_duplicates() from SAR method
* Remove duplicates in testing data
* Remove duplicates in test data for recommend_k_items
* Allow duplicates in score data
Co-authored-by: miguelgfierro <[email protected]>
Co-authored-by: Andreas Argyriou <[email protected]>
Co-authored-by: Simon Zhao <[email protected]> | https://github.com/microsoft/recommenders.git | def compute_cooccurrence_matrix(self, df):
user_item_hits = sparse.coo_matrix(
(np.repeat(1, df.shape[0]), (df[self.col_user_id], df[self.col_item_id])),
shape=(self.n_users, self.n_items),
).tocsr()
item_cooccurrence = user_item_hits.transpose().dot(user_item_hits)
item_cooccurrence = item_cooccurrence.multiply(
item_cooccurrence >= self.threshold
)
return item_cooccurrence.astype(df[self.col_rating].dtype)
| 101 | sar_singlenode.py | Python | recommenders/models/sar/sar_singlenode.py | 96b5053fa688bec79a729f9ea238e5f916bced01 | recommenders | 1 |
|
136,002 | 6 | 12 | 3 | 45 | 8 | 0 | 6 | 20 | _remote_workers | [RLlib] Refactor `WorkerSet` on top of `FaultTolerantActorManager`. (#29938)
Signed-off-by: Jun Gong <[email protected]> | https://github.com/ray-project/ray.git | def _remote_workers(self) -> List[ActorHandle]:
return list(self.__worker_manager.actors().values())
| 26 | worker_set.py | Python | rllib/evaluation/worker_set.py | e707ce4fb3717e3c05118c57f503dfbd03552ca9 | ray | 1 |
|
125,003 | 27 | 12 | 8 | 124 | 15 | 0 | 30 | 90 | test_dataset_reader_itr_batches | [RLlib] improved unittests for dataset_reader and fixed bugs (#26458) | https://github.com/ray-project/ray.git | def test_dataset_reader_itr_batches(self):
input_config = {"format": "json", "paths": self.dset_path}
dataset, _ = get_dataset_and_shards(
{"input": "dataset", "input_config": input_config}
)
ioctx = IOContext(config={"train_batch_size": 1200}, worker_index=0)
reader = DatasetReader(ioctx, dataset)
assert len(reader.next()) >= 1200
| 70 | test_dataset_reader.py | Python | rllib/offline/tests/test_dataset_reader.py | 569fe0109629048d08e1d9e023f7769f10bd2244 | ray | 1 |
|
19,220 | 20 | 11 | 9 | 88 | 10 | 0 | 21 | 60 | find_diff | add diff style check test (#617)
* add diff style check test
* add diff style check test
* add diff style check test
* add diff style check test
* add license
* add license | https://github.com/AtsushiSakai/PythonRobotics.git | def find_diff(sha):
files = ['*.py']
res = subprocess.run(
['git', 'diff', '--unified=0', sha, '--'] + files,
stdout=subprocess.PIPE,
encoding='utf-8'
)
res.check_returncode()
return res.stdout
| 50 | test_diff_codestyle.py | Python | tests/test_diff_codestyle.py | 0dfa274be3eaddb270b2bcee197f7d34acbc1363 | PythonRobotics | 1 |
|
199,311 | 27 | 11 | 15 | 103 | 11 | 0 | 32 | 59 | make_authors_file_lines | mailmap documents python2
I believe this to be useful for at least two reasons.
Current documentation either state to use `python bin/mailmap_check.py` or just
`bin/mailmap_check.py` which itself calles `python`. In both case, on ubuntu
this will run python2.
Worse, instead of printing "This script requires Python 3.8 or newer" it prints
an error message that python don't know what to do with the f-string. If the
f-string is removed, that it does not know pathlib. So, I ensure that the script
still work as before on 3.8 and prints a more useful message on python2. I
admit I'm not fan of removing a f-string, however, since there was a single
f-string, I assume it was relatively acceptable.
I suppose most sympy contributor are at ease with those subtilities of
python2/3. However, this will at least be useful for people, like me, who only
wanted to contribute to improving documentation and not have to deal with
complexity of system administration. | https://github.com/sympy/sympy.git | def make_authors_file_lines(git_people):
# define new lines for the file
header = filldedent().lstrip()
header_extra = "There are a total of %d authors." % len(git_people)
lines = header.splitlines()
lines.append('')
lines.append(header_extra)
lines.append('')
lines.extend(git_people)
return lines
| 56 | mailmap_check.py | Python | bin/mailmap_check.py | e8bf22b0eb76ecb6aec12dd45549649c490e1354 | sympy | 1 |
|
293,723 | 6 | 11 | 3 | 35 | 4 | 0 | 6 | 31 | dispose | Use a dedicated executor pool for database operations (#68105)
Co-authored-by: Erik Montnemery <[email protected]>
Co-authored-by: Franck Nijhof <[email protected]> | https://github.com/home-assistant/core.git | def dispose(self):
if self.recorder_or_dbworker:
return super().dispose()
| 19 | pool.py | Python | homeassistant/components/recorder/pool.py | bc862e97ed68cce8c437327651f85892787e755e | core | 2 |
|
208,110 | 41 | 13 | 17 | 309 | 26 | 0 | 61 | 188 | test_group_stamping_with_replaced_group | Canvas Header Stamping (#7384)
* Strip down the header-stamping PR to the basics.
* Serialize groups.
* Add groups to result backend meta data.
* Fix spelling mistake.
* Revert changes to canvas.py
* Revert changes to app/base.py
* Add stamping implementation to canvas.py
* Send task to AMQP with groups.
* Successfully pass single group to result.
* _freeze_gid dict merge fixed
* First draft of the visitor API.
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* OptionsVisitor created
* Fixed canvas.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Added test for simple test for chord and fixed chord implementation
* Changed _IMMUTABLE_OPTIONS
* Fixed chord interface
* Fixed chord interface
* Fixed chord interface
* Fixed chord interface
* Fixed list order
* Fixed tests (stamp test and chord test), fixed order in groups
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fixed lint and elements
* Changed implementation of stamp API and fix lint
* Added documentation to Stamping API. Added chord with groups test
* Implemented stamping inside replace and added test for an implementation
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Added test additonal tests for chord, improved coverage
* Added test additonal tests for chord, improved coverage
* Added test additonal tests for chord, improved coverage
* Splitted into subtests
* Group stamping rollback
* group.id is None fixed
* Added integration test
* Added integration test
* apply_async fixed
* Integration test and test_chord fixed
* Lint fixed
* chord freeze fixed
* Minor fixes.
* Chain apply_async fixed and tests fixed
* lint fixed
* Added integration test for chord
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* type -> isinstance
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Redo header stamping (#7341)
* _freeze_gid dict merge fixed
* OptionsVisitor created
* Fixed canvas.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Added test for simple test for chord and fixed chord implementation
* Changed _IMMUTABLE_OPTIONS
* Fixed chord interface
* Fixed chord interface
* Fixed chord interface
* Fixed chord interface
* Fixed list order
* Fixed tests (stamp test and chord test), fixed order in groups
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fixed lint and elements
* Changed implementation of stamp API and fix lint
* Added documentation to Stamping API. Added chord with groups test
* Implemented stamping inside replace and added test for an implementation
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Added test additonal tests for chord, improved coverage
* Added test additonal tests for chord, improved coverage
* Added test additonal tests for chord, improved coverage
* Splitted into subtests
* Group stamping rollback
* group.id is None fixed
* Added integration test
* Added integration test
* apply_async fixed
* Integration test and test_chord fixed
* Lint fixed
* chord freeze fixed
* Minor fixes.
* Chain apply_async fixed and tests fixed
* lint fixed
* Added integration test for chord
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* type -> isinstance
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Omer Katz <[email protected]>
* Added stamping mechanism
* Manual stamping improved
* flake8 fixed
* Added subtests
* Add comma.
* Moved groups to stamps
* Fixed chord and added test for that
* Strip down the header-stamping PR to the basics.
* Serialize groups.
* Add groups to result backend meta data.
* Fix spelling mistake.
* Revert changes to canvas.py
* Revert changes to app/base.py
* Add stamping implementation to canvas.py
* Send task to AMQP with groups.
* Successfully pass single group to result.
* _freeze_gid dict merge fixed
* First draft of the visitor API.
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* OptionsVisitor created
* Fixed canvas.py
* Added test for simple test for chord and fixed chord implementation
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Changed _IMMUTABLE_OPTIONS
* Fixed chord interface
* Fixed chord interface
* Fixed chord interface
* Fixed chord interface
* Fixed list order
* Fixed tests (stamp test and chord test), fixed order in groups
* Fixed lint and elements
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Changed implementation of stamp API and fix lint
* Added documentation to Stamping API. Added chord with groups test
* Implemented stamping inside replace and added test for an implementation
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Added test additonal tests for chord, improved coverage
* Added test additonal tests for chord, improved coverage
* Added test additonal tests for chord, improved coverage
* Splitted into subtests
* Group stamping rollback
* group.id is None fixed
* Added integration test
* Added integration test
* apply_async fixed
* Integration test and test_chord fixed
* Lint fixed
* chord freeze fixed
* Minor fixes.
* Chain apply_async fixed and tests fixed
* lint fixed
* Added integration test for chord
* type -> isinstance
* Added stamping mechanism
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Manual stamping improved
* fail_ci_if_error uncommented
* flake8 fixed
* Added subtests
* Changes
* Add comma.
* Fixed chord and added test for that
* canvas.py fixed
* Test chord.py fixed
* Fixed stamped_headers
* collections import fixed
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* collections import fixed
* Update celery/backends/base.py
Co-authored-by: Omer Katz <[email protected]>
* ampq.py fixed
* Refrain from using deprecated import path.
* Fix test_complex_chain regression.
Whenever we stamp a group we need to freeze it first if it wasn't already frozen.
Somewhere along the line, the group id changed because we were freezing twice.
This commit places the stamping operation after preparing the chain's steps which fixes the problem somehow.
We don't know why yet.
* Fixed integration tests
* Fixed integration tests
* Fixed integration tests
* Fixed integration tests
* Fixed issues with maybe_list. Add documentation
* Fixed potential issue with integration tests
* Fixed issues with _regen
* Fixed issues with _regen
* Fixed test_generator issues
* Fixed _regen stamping
* Fixed _regen stamping
* Fixed TimeOut issue
* Fixed TimeOut issue
* Fixed TimeOut issue
* Update docs/userguide/canvas.rst
Co-authored-by: Omer Katz <[email protected]>
* Fixed Couchbase
* Better stamping intro
* New GroupVisitor example
* Adjust documentation.
Co-authored-by: Naomi Elstein <[email protected]>
Co-authored-by: Omer Katz <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Asif Saif Uddin <[email protected]>
Co-authored-by: Omer Katz <[email protected]> | https://github.com/celery/celery.git | def test_group_stamping_with_replaced_group(self, subtests):
self.app.conf.task_always_eager = True
self.app.conf.task_store_eager_result = True
self.app.conf.result_extended = True
nested_g = self.replace_with_group.s(8)
nested_g_res = nested_g.freeze()
sig_1 = self.add.s(2, 2)
sig_2 = self.add.s(2, 2) | nested_g
sig_1_res = sig_1.freeze()
sig_2_res = sig_2.freeze()
g = group(sig_1, sig_2, app=self.app)
g_res = g.freeze()
g.apply()
with subtests.test("sig_1_res is stamped", groups=[g_res.id]):
assert sig_1_res._get_task_meta()['groups'] == [g_res.id]
with subtests.test("sig_2_res is stamped", groups=nested_g_res._get_task_meta()['groups']):
assert sig_2_res._get_task_meta()['groups'] == nested_g_res._get_task_meta()['groups']
| 186 | test_canvas.py | Python | t/unit/tasks/test_canvas.py | 1c4ff33bd22cf94e297bd6449a06b5a30c2c1fbc | celery | 1 |
|
195,033 | 4 | 6 | 2 | 16 | 2 | 0 | 4 | 18 | is_prebuilt | Add is_prebuilt method in base huggingface class (#4508) | https://github.com/facebookresearch/ParlAI.git | def is_prebuilt(self):
return True
| 8 | dict.py | Python | parlai/agents/hugging_face/dict.py | 137afdde991f2cda824d42c8f295eead5b43e773 | ParlAI | 1 |
|
60,255 | 8 | 8 | 3 | 39 | 6 | 0 | 8 | 29 | set_raw_scale | Balanced joint maximum mean discrepancy for deep transfer learning | https://github.com/jindongwang/transferlearning.git | def set_raw_scale(self, in_, scale):
self.__check_input(in_)
self.raw_scale[in_] = scale
| 24 | io.py | Python | code/deep/BJMMD/caffe/python/caffe/io.py | cc4d0564756ca067516f71718a3d135996525909 | transferlearning | 1 |
|
277,073 | 4 | 12 | 2 | 42 | 7 | 0 | 4 | 10 | isbuiltin | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def isbuiltin(obj):
return _inspect.isbuiltin(tf.__internal__.decorator.unwrap(obj)[1])
| 25 | tf_inspect.py | Python | keras/utils/tf_inspect.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 1 |
|
299,595 | 31 | 10 | 14 | 99 | 8 | 0 | 41 | 195 | _update_effect | Add entity id to template error logging (#71107)
* Add entity id to template error logging
* Increase coverage | https://github.com/home-assistant/core.git | def _update_effect(self, effect):
if effect in (None, "None", ""):
self._effect = None
return
if effect not in self._effect_list:
_LOGGER.error(
"Received invalid effect: %s for entity %s. Expected one of: %s",
effect,
self.entity_id,
self._effect_list,
)
self._effect = None
return
self._effect = effect
| 61 | light.py | Python | homeassistant/components/template/light.py | 75debb7dece50744713a2822fe8f508ce633c818 | core | 3 |
|
142,915 | 19 | 7 | 2 | 25 | 3 | 0 | 21 | 49 | set_location | [tune/structure] Introduce experiment package (#26033)
Experiment, Trial, and config parsing moves into an `experiment` package.
Notably, the new public facing APIs will be
```
from ray.tune.experiment import Experiment
from ray.tune.experiment import Trial
``` | https://github.com/ray-project/ray.git | def set_location(self, location):
self.location = location
# No need to invalidate state cache: location is not stored in json
# self.invalidate_json_state()
| 13 | trial.py | Python | python/ray/tune/experiment/trial.py | 8a2f6bda62378c07a66169ee49504cc3703f7d35 | ray | 1 |
|
297,520 | 108 | 17 | 41 | 674 | 42 | 0 | 190 | 519 | test_upload_image | Rename image integration to image_upload (#84063)
* Rename image integration to image_upload
* fix test | https://github.com/home-assistant/core.git | async def test_upload_image(hass, hass_client, hass_ws_client):
now = util_dt.utcnow()
with tempfile.TemporaryDirectory() as tempdir, patch.object(
hass.config, "path", return_value=tempdir
), patch("homeassistant.util.dt.utcnow", return_value=now):
assert await async_setup_component(hass, "image_upload", {})
ws_client: ClientWebSocketResponse = await hass_ws_client()
client: ClientSession = await hass_client()
with TEST_IMAGE.open("rb") as fp:
res = await client.post("/api/image/upload", data={"file": fp})
assert res.status == 200
item = await res.json()
assert item["content_type"] == "image/png"
assert item["filesize"] == 38847
assert item["name"] == "logo.png"
assert item["uploaded_at"] == now.isoformat()
tempdir = pathlib.Path(tempdir)
item_folder: pathlib.Path = tempdir / item["id"]
assert (item_folder / "original").read_bytes() == TEST_IMAGE.read_bytes()
# fetch non-existing image
res = await client.get("/api/image/serve/non-existing/256x256")
assert res.status == 404
# fetch invalid sizes
for inv_size in ("256", "256x25A", "100x100", "25Ax256"):
res = await client.get(f"/api/image/serve/{item['id']}/{inv_size}")
assert res.status == 400
# fetch resized version
res = await client.get(f"/api/image/serve/{item['id']}/256x256")
assert res.status == 200
assert (item_folder / "256x256").is_file()
# List item
await ws_client.send_json({"id": 6, "type": "image/list"})
msg = await ws_client.receive_json()
assert msg["id"] == 6
assert msg["type"] == ws_const.TYPE_RESULT
assert msg["success"]
assert msg["result"] == [item]
# Delete item
await ws_client.send_json(
{"id": 7, "type": "image/delete", "image_id": item["id"]}
)
msg = await ws_client.receive_json()
assert msg["id"] == 7
assert msg["type"] == ws_const.TYPE_RESULT
assert msg["success"]
# Ensure removed from disk
assert not item_folder.is_dir()
| 367 | test_init.py | Python | tests/components/image_upload/test_init.py | 80b357262795a57dc267a313064266fd2682ca74 | core | 2 |
|
301,380 | 97 | 16 | 44 | 560 | 43 | 0 | 166 | 667 | async_turn_on | Fix Hue SONOFF S31 Lite zb plug (#69589)
* Update light.py
Same issue as https://github.com/home-assistant/core/issues/46619 with SONOFF S13 Lite Zigbee plug.
* Update light.py | https://github.com/home-assistant/core.git | async def async_turn_on(self, **kwargs):
command = {"on": True}
if ATTR_TRANSITION in kwargs:
command["transitiontime"] = int(kwargs[ATTR_TRANSITION] * 10)
if ATTR_HS_COLOR in kwargs:
if self.is_osram:
command["hue"] = int(kwargs[ATTR_HS_COLOR][0] / 360 * 65535)
command["sat"] = int(kwargs[ATTR_HS_COLOR][1] / 100 * 255)
else:
# Philips hue bulb models respond differently to hue/sat
# requests, so we convert to XY first to ensure a consistent
# color.
xy_color = color.color_hs_to_xy(*kwargs[ATTR_HS_COLOR], self.gamut)
command["xy"] = xy_color
elif ATTR_COLOR_TEMP in kwargs:
temp = kwargs[ATTR_COLOR_TEMP]
command["ct"] = max(self.min_mireds, min(temp, self.max_mireds))
if ATTR_BRIGHTNESS in kwargs:
command["bri"] = hass_to_hue_brightness(kwargs[ATTR_BRIGHTNESS])
flash = kwargs.get(ATTR_FLASH)
if flash == FLASH_LONG:
command["alert"] = "lselect"
del command["on"]
elif flash == FLASH_SHORT:
command["alert"] = "select"
del command["on"]
elif (
not self.is_innr
and not self.is_ewelink
and not self.is_livarno
and not self.is_s31litezb
):
command["alert"] = "none"
if ATTR_EFFECT in kwargs:
effect = kwargs[ATTR_EFFECT]
if effect == EFFECT_COLORLOOP:
command["effect"] = "colorloop"
elif effect == EFFECT_RANDOM:
command["hue"] = random.randrange(0, 65535)
command["sat"] = random.randrange(150, 254)
else:
command["effect"] = "none"
if self.is_group:
await self.bridge.async_request_call(self.light.set_action, **command)
else:
await self.bridge.async_request_call(self.light.set_state, **command)
await self.coordinator.async_request_refresh()
| 332 | light.py | Python | homeassistant/components/hue/v1/light.py | 72cb320ed769275424b739bf00890d4d33451f5c | core | 16 |
|
153,630 | 12 | 7 | 3 | 32 | 4 | 0 | 12 | 34 | loc | DOCS-#3099: Fix `BasePandasDataSet` docstrings warnings (#4333)
Co-authored-by: Yaroslav Igoshev <[email protected]>
Signed-off-by: Alexander Myskov <[email protected]> | https://github.com/modin-project/modin.git | def loc(self): # noqa: RT01, D200
from .indexing import _LocIndexer
return _LocIndexer(self)
| 16 | base.py | Python | modin/pandas/base.py | 605efa618e7994681f57b11d04d417f353ef8d50 | modin | 1 |
|
216,179 | 18 | 11 | 7 | 90 | 10 | 0 | 23 | 52 | hash_file | fixes saltstack/salt#61562 cp functions derive saltenv from config | https://github.com/saltstack/salt.git | def hash_file(path, saltenv=None):
if not saltenv:
saltenv = __opts__["saltenv"] or "base"
path, senv = salt.utils.url.split_env(path)
if senv:
saltenv = senv
return _client().hash_file(path, saltenv)
| 53 | cp.py | Python | salt/modules/cp.py | 2bd6323ef5f87d871891a59917ee96f44ef55e75 | salt | 4 |
|
268,960 | 45 | 14 | 17 | 208 | 20 | 0 | 58 | 102 | map_structure_with_atomic | Improve the error message.
Because `repr(np.int64(3)) == repr(3)`, the error message is frustratingly confusing when numpy ints are passed as dimensions.
PiperOrigin-RevId: 428366474 | https://github.com/keras-team/keras.git | def map_structure_with_atomic(is_atomic_fn, map_fn, nested):
if is_atomic_fn(nested):
return map_fn(nested)
# Recursively convert.
if not tf.nest.is_nested(nested):
raise ValueError(
f'Received non-atomic and non-sequence element: {nested} '
f'of type {type(nested)}')
if tf.__internal__.nest.is_mapping(nested):
values = [nested[k] for k in sorted(nested.keys())]
elif tf.__internal__.nest.is_attrs(nested):
values = _astuple(nested)
else:
values = nested
mapped_values = [
map_structure_with_atomic(is_atomic_fn, map_fn, ele) for ele in values
]
return tf.__internal__.nest.sequence_like(nested, mapped_values)
| 123 | tf_utils.py | Python | keras/utils/tf_utils.py | cff8cc93305d1c4a54385fb623fe895dafa0845c | keras | 7 |
|
338,247 | 21 | 10 | 3 | 53 | 9 | 0 | 21 | 31 | parse_flag_from_env | Make rich toggleable and seperate out a new environment utility file (#779)
* Toggleable rich
* Refactor into environment utils | https://github.com/huggingface/accelerate.git | def parse_flag_from_env(key, default=False):
value = os.environ.get(key, str(default))
return strtobool(value) == 1 # As its name indicates `strtobool` actually returns an int...
| 32 | environment.py | Python | src/accelerate/utils/environment.py | 6f7fa4f48e05da0f1fc745f39e840b6304844202 | accelerate | 1 |
|
52,902 | 18 | 13 | 12 | 90 | 9 | 0 | 18 | 79 | __str__ | Update `State.__str__` to only include type if meaningful and drop "message=" | https://github.com/PrefectHQ/prefect.git | def __str__(self) -> str:
display_type = (
f", type={self.type}"
if self.type.value.lower() != self.name.lower()
else ""
)
return f"{self.name}({self.message!r}{display_type})"
| 37 | states.py | Python | src/prefect/orion/schemas/states.py | db6b16ef0f7d0adcd47d2ad96e8453ebd7590a22 | prefect | 2 |
|
244,309 | 12 | 10 | 6 | 98 | 13 | 0 | 13 | 55 | _log_data_table | [Feature] Dedicated WandbLogger for MMDetection (#7459)
* [Fix] Adjust the order of get_classes and FileClient. (#7276)
* delete -sv (#7277)
Co-authored-by: Wenwei Zhang <[email protected]>
* wandb-integration
* docstring
* lint
* log config+handle segmentation results
* remove val logging
* segmentation logging
* metadata logging improved + remove best metadata
* remove extra arg
* train.py conflict
* shuffle eval data+remove config
* wandb config file
* iter based logging + cleanup
* minor update
* minor update
* minor fix
* epoch and iter eval table
* save and log config
* Delete mask_rcnn_r50_fpn_1x_wandb_iter_coco.py
Co-authored-by: Wencheng Wu <[email protected]>
Co-authored-by: Yue Zhou <[email protected]>
Co-authored-by: Wenwei Zhang <[email protected]> | https://github.com/open-mmlab/mmdetection.git | def _log_data_table(self):
data_artifact = self.wandb.Artifact('val', type='dataset')
data_artifact.add(self.data_table, 'val_data')
self.wandb.run.use_artifact(data_artifact)
data_artifact.wait()
self.data_table_ref = data_artifact.get('val_data')
| 55 | wandblogger_hook.py | Python | mmdet/core/hook/wandblogger_hook.py | b637c99d4955e69ca2ff5d94a2c9bd9d962096ab | mmdetection | 1 |
|
266,668 | 63 | 12 | 16 | 245 | 30 | 0 | 84 | 154 | execute_command | ansible-test - Fix consistency of managed venvs. (#77028) | https://github.com/ansible/ansible.git | def execute_command(cmd, cwd=None, capture=False, env=None): # type: (t.List[str], t.Optional[str], bool, t.Optional[t.Dict[str, str]]) -> None
log('Execute command: %s' % ' '.join(cmd_quote(c) for c in cmd), verbosity=1)
cmd_bytes = [to_bytes(c) for c in cmd]
if capture:
stdout = subprocess.PIPE
stderr = subprocess.PIPE
else:
stdout = None
stderr = None
cwd_bytes = to_optional_bytes(cwd)
process = subprocess.Popen(cmd_bytes, cwd=cwd_bytes, stdin=devnull(), stdout=stdout, stderr=stderr, env=env) # pylint: disable=consider-using-with
stdout_bytes, stderr_bytes = process.communicate()
stdout_text = to_optional_text(stdout_bytes) or u''
stderr_text = to_optional_text(stderr_bytes) or u''
if process.returncode != 0:
raise SubprocessError(cmd, process.returncode, stdout_text, stderr_text)
| 156 | requirements.py | Python | test/lib/ansible_test/_util/target/setup/requirements.py | 68fb3bf90efa3a722ba5ab7d66b1b22adc73198c | ansible | 7 |
|
299,381 | 50 | 15 | 20 | 226 | 21 | 0 | 64 | 260 | save_language_translations | Skip translations when integration no longer exists (#71004)
* Skip translations when integration no longer exists
* Update script/translations/download.py
Co-authored-by: Martin Hjelmare <[email protected]>
Co-authored-by: Martin Hjelmare <[email protected]> | https://github.com/home-assistant/core.git | def save_language_translations(lang, translations):
components = translations.get("component", {})
for component, component_translations in components.items():
base_translations = get_component_translations(component_translations)
if base_translations:
if (path := get_component_path(lang, component)) is None:
print(
f"Skipping {lang} for {component}, as the integration doesn't seem to exist."
)
continue
os.makedirs(os.path.dirname(path), exist_ok=True)
save_json(path, base_translations)
if "platform" not in component_translations:
continue
for platform, platform_translations in component_translations[
"platform"
].items():
path = get_platform_path(lang, component, platform)
os.makedirs(os.path.dirname(path), exist_ok=True)
save_json(path, platform_translations)
| 136 | download.py | Python | script/translations/download.py | 7fbc3f63643c314d8c8097e6fd4bc9a1b2314dc2 | core | 6 |
|
38,770 | 33 | 13 | 4 | 83 | 13 | 0 | 36 | 71 | create_position_ids_from_input_ids | Add LayoutLMv3 (#17060)
* Make forward pass work
* More improvements
* Remove unused imports
* Remove timm dependency
* Improve loss calculation of token classifier
* Fix most tests
* Add docs
* Add model integration test
* Make all tests pass
* Add LayoutLMv3FeatureExtractor
* Improve integration test + make fixup
* Add example script
* Fix style
* Add LayoutLMv3Processor
* Fix style
* Add option to add visual labels
* Make more tokenizer tests pass
* Fix more tests
* Make more tests pass
* Fix bug and improve docs
* Fix import of processors
* Improve docstrings
* Fix toctree and improve docs
* Fix auto tokenizer
* Move tests to model folder
* Move tests to model folder
* change default behavior add_prefix_space
* add prefix space for fast
* add_prefix_spcae set to True for Fast
* no space before `unique_no_split` token
* add test to hightligh special treatment of added tokens
* fix `test_batch_encode_dynamic_overflowing` by building a long enough example
* fix `test_full_tokenizer` with add_prefix_token
* Fix tokenizer integration test
* Make the code more readable
* Add tests for LayoutLMv3Processor
* Fix style
* Add model to README and update init
* Apply suggestions from code review
* Replace asserts by value errors
* Add suggestion by @ducviet00
* Add model to doc tests
* Simplify script
* Improve README
* a step ahead to fix
* Update pair_input_test
* Make all tokenizer tests pass - phew
* Make style
* Add LayoutLMv3 to CI job
* Fix auto mapping
* Fix CI job name
* Make all processor tests pass
* Make tests of LayoutLMv2 and LayoutXLM consistent
* Add copied from statements to fast tokenizer
* Add copied from statements to slow tokenizer
* Remove add_visual_labels attribute
* Fix tests
* Add link to notebooks
* Improve docs of LayoutLMv3Processor
* Fix reference to section
Co-authored-by: SaulLu <[email protected]>
Co-authored-by: Niels Rogge <[email protected]> | https://github.com/huggingface/transformers.git | def create_position_ids_from_input_ids(self, input_ids, padding_idx):
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask
return incremental_indices.long() + padding_idx
| 51 | modeling_layoutlmv3.py | Python | src/transformers/models/layoutlmv3/modeling_layoutlmv3.py | 31ee80d55673f32c0f5d50936f371e661b74b21a | transformers | 1 |
|
319,804 | 14 | 10 | 11 | 50 | 6 | 0 | 16 | 35 | supported_file_type | Moves the barcode related functionality out of tasks and into its own location. Splits up the testing based on that | https://github.com/paperless-ngx/paperless-ngx.git | def supported_file_type(mime_type) -> bool:
supported_mime = ["application/pdf"]
if settings.CONSUMER_BARCODE_TIFF_SUPPORT:
supported_mime += ["image/tiff"]
return mime_type in supported_mime
| 27 | barcodes.py | Python | src/documents/barcodes.py | ec045e81f217e8b667614c32879f873c220ae035 | paperless-ngx | 2 |
|
195,808 | 81 | 12 | 9 | 119 | 17 | 0 | 122 | 234 | root_equality_test | Introduce `Poly.root_equality_test()`
This replaces the `Poly.root_comparison_tools()` method. | https://github.com/sympy/sympy.git | def root_equality_test(f):
delta_sq = f.root_separation_lower_bound_squared()
# We have delta_sq = delta**2, where delta is a lower bound on the
# minimum separation between any two roots of this polynomial.
# Let eps = delta/3, and define eps_sq = eps**2 = delta**2/9.
eps_sq = delta_sq / 9
r, _, _, _ = evalf(1/eps_sq, 1, {})
n = fastlog(r)
# Then 2^n > 1/eps**2.
m = math.ceil(n/2)
# Then 2^(-m) < eps.
ev = lambda x: quad_to_mpmath(evalf_with_bounded_error(x, m=m))
# Then for any complex numbers a, b we will have
# |a - ev(a)| < eps and |b - ev(b)| < eps.
# So if |ev(a) - ev(b)|**2 < eps**2, then
# |ev(a) - ev(b)| < eps, hence |a - b| < 3*eps = delta. | 73 | polytools.py | Python | sympy/polys/polytools.py | a4072458438847d3da259ad91828566dbf1e214b | sympy | 1 |
|
247,622 | 219 | 22 | 190 | 1,519 | 42 | 0 | 539 | 3,789 | test_upload_signatures | Add type hints to some tests/handlers files. (#12224) | https://github.com/matrix-org/synapse.git | def test_upload_signatures(self) -> None:
# set up a user with cross-signing keys and a device. This user will
# try uploading signatures
local_user = "@boris:" + self.hs.hostname
device_id = "xyz"
# private key: OMkooTr76ega06xNvXIGPbgvvxAOzmQncN8VObS7aBA
device_pubkey = "NnHhnqiMFQkq969szYkooLaBAXW244ZOxgukCvm2ZeY"
device_key = {
"user_id": local_user,
"device_id": device_id,
"algorithms": [
"m.olm.curve25519-aes-sha2",
RoomEncryptionAlgorithms.MEGOLM_V1_AES_SHA2,
],
"keys": {"curve25519:xyz": "curve25519+key", "ed25519:xyz": device_pubkey},
"signatures": {local_user: {"ed25519:xyz": "something"}},
}
device_signing_key = key.decode_signing_key_base64(
"ed25519", "xyz", "OMkooTr76ega06xNvXIGPbgvvxAOzmQncN8VObS7aBA"
)
self.get_success(
self.handler.upload_keys_for_user(
local_user, device_id, {"device_keys": device_key}
)
)
# private key: 2lonYOM6xYKdEsO+6KrC766xBcHnYnim1x/4LFGF8B0
master_pubkey = "nqOvzeuGWT/sRx3h7+MHoInYj3Uk2LD/unI9kDYcHwk"
master_key = {
"user_id": local_user,
"usage": ["master"],
"keys": {"ed25519:" + master_pubkey: master_pubkey},
}
master_signing_key = key.decode_signing_key_base64(
"ed25519", master_pubkey, "2lonYOM6xYKdEsO+6KrC766xBcHnYnim1x/4LFGF8B0"
)
usersigning_pubkey = "Hq6gL+utB4ET+UvD5ci0kgAwsX6qP/zvf8v6OInU5iw"
usersigning_key = {
# private key: 4TL4AjRYwDVwD3pqQzcor+ez/euOB1/q78aTJ+czDNs
"user_id": local_user,
"usage": ["user_signing"],
"keys": {"ed25519:" + usersigning_pubkey: usersigning_pubkey},
}
usersigning_signing_key = key.decode_signing_key_base64(
"ed25519", usersigning_pubkey, "4TL4AjRYwDVwD3pqQzcor+ez/euOB1/q78aTJ+czDNs"
)
sign.sign_json(usersigning_key, local_user, master_signing_key)
# private key: HvQBbU+hc2Zr+JP1sE0XwBe1pfZZEYtJNPJLZJtS+F8
selfsigning_pubkey = "EmkqvokUn8p+vQAGZitOk4PWjp7Ukp3txV2TbMPEiBQ"
selfsigning_key = {
"user_id": local_user,
"usage": ["self_signing"],
"keys": {"ed25519:" + selfsigning_pubkey: selfsigning_pubkey},
}
selfsigning_signing_key = key.decode_signing_key_base64(
"ed25519", selfsigning_pubkey, "HvQBbU+hc2Zr+JP1sE0XwBe1pfZZEYtJNPJLZJtS+F8"
)
sign.sign_json(selfsigning_key, local_user, master_signing_key)
cross_signing_keys = {
"master_key": master_key,
"user_signing_key": usersigning_key,
"self_signing_key": selfsigning_key,
}
self.get_success(
self.handler.upload_signing_keys_for_user(local_user, cross_signing_keys)
)
# set up another user with a master key. This user will be signed by
# the first user
other_user = "@otherboris:" + self.hs.hostname
other_master_pubkey = "fHZ3NPiKxoLQm5OoZbKa99SYxprOjNs4TwJUKP+twCM"
other_master_key = {
# private key: oyw2ZUx0O4GifbfFYM0nQvj9CL0b8B7cyN4FprtK8OI
"user_id": other_user,
"usage": ["master"],
"keys": {"ed25519:" + other_master_pubkey: other_master_pubkey},
}
self.get_success(
self.handler.upload_signing_keys_for_user(
other_user, {"master_key": other_master_key}
)
)
# test various signature failures (see below)
ret = self.get_success(
self.handler.upload_signatures_for_device_keys(
local_user,
{
local_user: {
# fails because the signature is invalid
# should fail with INVALID_SIGNATURE
device_id: {
"user_id": local_user,
"device_id": device_id,
"algorithms": [
"m.olm.curve25519-aes-sha2",
RoomEncryptionAlgorithms.MEGOLM_V1_AES_SHA2,
],
"keys": {
"curve25519:xyz": "curve25519+key",
# private key: OMkooTr76ega06xNvXIGPbgvvxAOzmQncN8VObS7aBA
"ed25519:xyz": device_pubkey,
},
"signatures": {
local_user: {
"ed25519:" + selfsigning_pubkey: "something"
}
},
},
# fails because device is unknown
# should fail with NOT_FOUND
"unknown": {
"user_id": local_user,
"device_id": "unknown",
"signatures": {
local_user: {
"ed25519:" + selfsigning_pubkey: "something"
}
},
},
# fails because the signature is invalid
# should fail with INVALID_SIGNATURE
master_pubkey: {
"user_id": local_user,
"usage": ["master"],
"keys": {"ed25519:" + master_pubkey: master_pubkey},
"signatures": {
local_user: {"ed25519:" + device_pubkey: "something"}
},
},
},
other_user: {
# fails because the device is not the user's master-signing key
# should fail with NOT_FOUND
"unknown": {
"user_id": other_user,
"device_id": "unknown",
"signatures": {
local_user: {
"ed25519:" + usersigning_pubkey: "something"
}
},
},
other_master_pubkey: {
# fails because the key doesn't match what the server has
# should fail with UNKNOWN
"user_id": other_user,
"usage": ["master"],
"keys": {
"ed25519:" + other_master_pubkey: other_master_pubkey
},
"something": "random",
"signatures": {
local_user: {
"ed25519:" + usersigning_pubkey: "something"
}
},
},
},
},
)
)
user_failures = ret["failures"][local_user]
self.assertEqual(user_failures[device_id]["errcode"], Codes.INVALID_SIGNATURE)
self.assertEqual(
user_failures[master_pubkey]["errcode"], Codes.INVALID_SIGNATURE
)
self.assertEqual(user_failures["unknown"]["errcode"], Codes.NOT_FOUND)
other_user_failures = ret["failures"][other_user]
self.assertEqual(other_user_failures["unknown"]["errcode"], Codes.NOT_FOUND)
self.assertEqual(
other_user_failures[other_master_pubkey]["errcode"], Codes.UNKNOWN
)
# test successful signatures
del device_key["signatures"]
sign.sign_json(device_key, local_user, selfsigning_signing_key)
sign.sign_json(master_key, local_user, device_signing_key)
sign.sign_json(other_master_key, local_user, usersigning_signing_key)
ret = self.get_success(
self.handler.upload_signatures_for_device_keys(
local_user,
{
local_user: {device_id: device_key, master_pubkey: master_key},
other_user: {other_master_pubkey: other_master_key},
},
)
)
self.assertEqual(ret["failures"], {})
# fetch the signed keys/devices and make sure that the signatures are there
ret = self.get_success(
self.handler.query_devices(
{"device_keys": {local_user: [], other_user: []}},
0,
local_user,
"device123",
)
)
self.assertEqual(
ret["device_keys"][local_user]["xyz"]["signatures"][local_user][
"ed25519:" + selfsigning_pubkey
],
device_key["signatures"][local_user]["ed25519:" + selfsigning_pubkey],
)
self.assertEqual(
ret["master_keys"][local_user]["signatures"][local_user][
"ed25519:" + device_id
],
master_key["signatures"][local_user]["ed25519:" + device_id],
)
self.assertEqual(
ret["master_keys"][other_user]["signatures"][local_user][
"ed25519:" + usersigning_pubkey
],
other_master_key["signatures"][local_user]["ed25519:" + usersigning_pubkey],
)
| 876 | test_e2e_keys.py | Python | tests/handlers/test_e2e_keys.py | 5dd949bee6158a8b651db9f2ae417a62c8184bfd | synapse | 1 |
|
19,685 | 33 | 13 | 8 | 101 | 13 | 0 | 36 | 107 | pip_version | Issue 4993 Add standard pre commit hooks and apply linting. (#4994)
* Add .pre-commit-config.yaml to the project and exclude tests (for now). This does not include the MyPy linting that pip does but does include everything else. | https://github.com/pypa/pipenv.git | def pip_version(self):
# type: () -> Version
from .vendor.packaging.version import parse as parse_version
pip = next(
iter(pkg for pkg in self.get_installed_packages() if pkg.key == "pip"), None
)
if pip is not None:
return parse_version(pip.version)
return parse_version("20.2")
| 60 | environment.py | Python | pipenv/environment.py | 9a3b3ce70621af6f9adaa9eeac9cf83fa149319c | pipenv | 4 |
|
119,833 | 64 | 15 | 17 | 286 | 31 | 1 | 85 | 111 | poly | lax_numpy: move poly functions into numpy.polynomial | https://github.com/google/jax.git | def poly(seq_of_zeros):
_check_arraylike('poly', seq_of_zeros)
seq_of_zeros, = _promote_dtypes_inexact(seq_of_zeros)
seq_of_zeros = atleast_1d(seq_of_zeros)
sh = seq_of_zeros.shape
if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0:
# import at runtime to avoid circular import
from jax._src.numpy import linalg
seq_of_zeros = linalg.eigvals(seq_of_zeros)
if seq_of_zeros.ndim != 1:
raise ValueError("input must be 1d or non-empty square 2d array.")
dt = seq_of_zeros.dtype
if len(seq_of_zeros) == 0:
return ones((), dtype=dt)
a = ones((1,), dtype=dt)
for k in range(len(seq_of_zeros)):
a = convolve(a, array([1, -seq_of_zeros[k]], dtype=dt), mode='full')
return a
@_wraps(np.polyval, lax_description=)
@partial(jit, static_argnames=['unroll']) | @_wraps(np.polyval, lax_description="""\
The ``unroll`` parameter is JAX specific. It does not effect correctness but can
have a major impact on performance for evaluating high-order polynomials. The
parameter controls the number of unrolled steps with ``lax.scan`` inside the
``polyval`` implementation. Consider setting ``unroll=128`` (or even higher) to
improve runtime performance on accelerators, at the cost of increased
compilation time.
""")
@partial(jit, static_argnames=['unroll']) | 158 | polynomial.py | Python | jax/_src/numpy/polynomial.py | 603bb3c5ca288674579211e64fa47c6b2b0fb7a6 | jax | 7 |
186,168 | 5 | 6 | 13 | 16 | 1 | 0 | 5 | 8 | test_overlapping_priority_bindings | Add tests for competing bindings an priority permutations
This is set to xfail at the moment because the tested result is what I think
should be the result, but what happens now isn't that. Need to check with
Will to see what he thinks the correct resolution is here. | https://github.com/Textualize/textual.git | async def test_overlapping_priority_bindings() -> None:
| 57 | test_binding_inheritance.py | Python | tests/test_binding_inheritance.py | 618db503b9179481a7374e61a1cfce7007934970 | textual | 1 |
|
299,284 | 32 | 14 | 14 | 115 | 12 | 0 | 42 | 200 | _media_status | Add state buffering to media_player and use it in cast (#70802) | https://github.com/home-assistant/core.git | def _media_status(self):
media_status = self.media_status
media_status_received = self.media_status_received
if (
media_status is None
or media_status.player_state == MEDIA_PLAYER_STATE_UNKNOWN
):
groups = self.mz_media_status
for k, val in groups.items():
if val and val.player_state != MEDIA_PLAYER_STATE_UNKNOWN:
media_status = val
media_status_received = self.mz_media_status_received[k]
break
return (media_status, media_status_received)
| 72 | media_player.py | Python | homeassistant/components/cast/media_player.py | 66551e6fcbd063e53c13adc8a6462b8e00ce1450 | core | 6 |
|
215,968 | 60 | 20 | 93 | 538 | 25 | 0 | 153 | 406 | list_repo_pkgs | Update to latest ``pyupgrade`` hook. Stop skipping it on CI.
Signed-off-by: Pedro Algarvio <[email protected]> | https://github.com/saltstack/salt.git | def list_repo_pkgs(*args, **kwargs):
byrepo = kwargs.pop("byrepo", False)
cacheonly = kwargs.pop("cacheonly", False)
fromrepo = kwargs.pop("fromrepo", "") or ""
disablerepo = kwargs.pop("disablerepo", "") or ""
enablerepo = kwargs.pop("enablerepo", "") or ""
repo_arg = _get_options(fromrepo=fromrepo, **kwargs)
if fromrepo and not isinstance(fromrepo, list):
try:
fromrepo = [x.strip() for x in fromrepo.split(",")]
except AttributeError:
fromrepo = [x.strip() for x in str(fromrepo).split(",")]
if disablerepo and not isinstance(disablerepo, list):
try:
disablerepo = [x.strip() for x in disablerepo.split(",") if x != "*"]
except AttributeError:
disablerepo = [x.strip() for x in str(disablerepo).split(",") if x != "*"]
if enablerepo and not isinstance(enablerepo, list):
try:
enablerepo = [x.strip() for x in enablerepo.split(",") if x != "*"]
except AttributeError:
enablerepo = [x.strip() for x in str(enablerepo).split(",") if x != "*"]
if fromrepo:
repos = fromrepo
else:
repos = [
repo_name
for repo_name, repo_info in list_repos().items()
if repo_name in enablerepo
or (
repo_name not in disablerepo
and str(repo_info.get("enabled", "1")) == "1"
)
]
ret = {}
| 713 | yumpkg.py | Python | salt/modules/yumpkg.py | f2a783643de61cac1ff3288b40241e5ce6e1ddc8 | salt | 53 |
|
19,706 | 9 | 8 | 2 | 43 | 5 | 0 | 9 | 23 | matches_minor | Issue 4993 Add standard pre commit hooks and apply linting. (#4994)
* Add .pre-commit-config.yaml to the project and exclude tests (for now). This does not include the MyPy linting that pip does but does include everything else. | https://github.com/pypa/pipenv.git | def matches_minor(self, other):
return (self.major, self.minor) == (other.major, other.minor)
| 28 | installers.py | Python | pipenv/installers.py | 9a3b3ce70621af6f9adaa9eeac9cf83fa149319c | pipenv | 1 |
|
312,987 | 6 | 9 | 3 | 38 | 6 | 0 | 6 | 20 | name | Add Moehlenhoff Alpha2 underfloor heating system integration (#42771)
* Add Moehlenhoff Alpha2 underfloor heating system integration
* isort changes
* flake8 changes
* Do not exclude config_flow.py
* pylint changes
* Add config_flow test
* correct requirements_test_all.txt
* more tests
* Update test description
* Test connection and catch TimeoutError in async_setup_entry
* Add version to manifest file
* Remove version from manifest file
* Replace tests.async_mock.patch by unittest.mock.patch
* Update moehlenhoff-alpha2 to version 1.0.1
* Update requirements for moehlenhoff-alpha2 1.0.1
* Update moehlenhoff-alpha2 to 1.0.2
* Use async_setup_platforms
* Use async_unload_platforms
* Separate connection and devices for each entry_id
* Use async_track_time_interval to schedule updates
* Check if input is valid before checking uniqueness
* Move Exception handling to validate_input
* Catch aiohttp.client_exceptions.ClientConnectorError
* Remove translation files
* Mock TimeoutError
* Fix data update
* Replace current callback implementation with ha dispatcher
* Return False in should_poll
* Remove unused argument
* Remove CONNECTION_CLASS
* Use _async_current_entries
* Call async_schedule_update_ha_state after data update
* Remove unneeded async_setup
Co-authored-by: Milan Meulemans <[email protected]>
* Remove unneeded async_setup_platform
Co-authored-by: Milan Meulemans <[email protected]>
* Set Schema attribute host required
Co-authored-by: Milan Meulemans <[email protected]>
* Remove unused Exception class
Co-authored-by: Milan Meulemans <[email protected]>
* Update manifest.json
Co-authored-by: Milan Meulemans <[email protected]>
* pylint constructor return type None
* Replace properties by class variables
* use pass instead of return
* Remove unused sync update method
* remove property hvac_action
* remove pass
* rework exception handling
* Update homeassistant/components/moehlenhoff_alpha2/config_flow.py
Co-authored-by: Milan Meulemans <[email protected]>
* Correct indentation
* catch Exception in validate_input
* Replace HomeAssistantType with HomeAssistant
* Update to moehlenhoff-alpha2 1.0.3
* Allow to switch between heating and cooling mode
* Update moehlenhoff-alpha2 to version 1.0.4
* Update heatarea data after setting target temperature
* Support hvac_action
* Fix heatarea update with multiple bases
* Update data after setting preset mode
* Use custom preset modes like defined by device
* Fix config flow test
* Fix test_duplicate_error
* Rename property to extra_state_attributes
Rename property device_state_attributes to extra_state_attributes and
return lowercase keys in dict.
* Refactor using DataUpdateCoordinator
* Remove _attr_should_poll
* Raise HomeAssistantError on communication error
Catch HTTPError instead of broad except and reraise as HomeAssistantError
* Change DataUpdateCoordinator name to alpha2_base
* Refresh coordinator before setting data
* Raise ValueError on invalid heat area mode
* Rename heatarea to heat_area
* Set type annotation in class attribute
* Move coordinator to top
* Move exception handling to the coordinator
* Use heat_area_id directly
* Sore get_cooling() result into local var
* Add explanation of status attributes
and remove BLOCK_HC
* Fix pylint warnings
* from __future__ import annotations
* Use Platform Enum
* Move data handling to coordinator
* Remove property extra_state_attributes
* Add missing annotations
* Update moehlenhoff-alpha2 to version 1.1.2
* Rework tests based on the scaffold template
* Set also heat/cool/day/night temp with target temp
* Remove unneeded code from tests
Co-authored-by: Milan Meulemans <[email protected]> | https://github.com/home-assistant/core.git | def name(self) -> str:
return self.coordinator.data[self.heat_area_id]["HEATAREA_NAME"]
| 22 | climate.py | Python | homeassistant/components/moehlenhoff_alpha2/climate.py | 243d003acc11d638feb3867410c3cbb1987520bc | core | 1 |
|
14,099 | 7 | 4 | 11 | 35 | 7 | 1 | 8 | 28 | test_class_var_forward_ref | guard against ClassVar in fields (#4064)
* guard against ClassVar in fields, fix #3679
* fix linting
* skipif for test_class_var_forward_ref | https://github.com/pydantic/pydantic.git | def test_class_var_forward_ref(create_module):
# see #3679
create_module(
# language=Python
| create_module(
# language=Python
""" | 9 | test_forward_ref.py | Python | tests/test_forward_ref.py | a45276d6b1c0dd7c10d46767bb19954401b3b04a | pydantic | 1 |
281,687 | 47 | 12 | 17 | 221 | 8 | 0 | 69 | 108 | excel_columns | DCF Refactoring and Improvements (#1198)
* Refactored excel letter generation
* Updated error handling
* Refactored df creation
* Refactored sisters
* Refactored ratios
* Refactored worksheets
* Finished refactoring attributes
* Massively refactored add _ratios
* Slight changes
* refactored add_ratios
* Made DCF much more customizable
* Added market cap filtering
* Removed print
* Updated documentation
* Updated pylint issues
* Added pylint fixes
* Small bug fixes
* Test fixes
* Fixed tests
* Updated audit warning | https://github.com/OpenBB-finance/OpenBBTerminal.git | def excel_columns() -> List[str]:
letters = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M"]
letters += ["N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"]
opts = (
[f"{x}" for x in letters]
+ [f"{x}{y}" for x in letters for y in letters]
+ [f"{x}{y}{z}" for x in letters for y in letters for z in letters]
)
return opts
| 112 | helper_funcs.py | Python | gamestonk_terminal/helper_funcs.py | a3d551105fd038ed00da277717b15df7c465b0a9 | OpenBBTerminal | 7 |
|
35,793 | 34 | 10 | 5 | 111 | 11 | 0 | 35 | 74 | remove_low_and_no_objects | Maskformer (#15682)
* maskformer
* conflicts
* conflicts
* minor fixes
* feature extractor test fix
refactor MaskFormerLoss following conversation
MaskFormer related types should not trigger a module time import error
missed one
removed all the types that are not used
update config mapping
minor updates in the doc
resolved conversation that doesn't need a discussion
minor changes
resolved conversations
fixed DetrDecoder
* minor changes
minor changes
fixed mdx file
test feature_extractor return types
functional losses -> classes
removed the return type test for the feature extractor
minor changes + style + quality
* conflicts?
* rebase master
* readme
* added missing files
* deleded poolformers test that where in the wrong palce
* CI
* minor changes
* Apply suggestions from code review
Co-authored-by: NielsRogge <[email protected]>
* resolved conversations
* minor changes
* conversations
[Unispeech] Fix slow tests (#15818)
* remove soundfile old way of loading audio
* Adapt slow test
[Barthez Tokenizer] Fix saving (#15815)
[TFXLNet] Correct tf xlnet generate (#15822)
* [TFXLNet] Correct tf xlnet
* adapt test comment
Fix the push run (#15807)
Fix semantic segmentation pipeline test (#15826)
Fix dummy_inputs() to dummy_inputs in symbolic_trace doc (#15776)
Add model specific output classes to PoolFormer model docs (#15746)
* Added model specific output classes to poolformer docs
* Fixed Segformer typo in Poolformer docs
Adding the option to return_timestamps on pure CTC ASR models. (#15792)
* Adding the option to return_timestamps on pure CTC ASR models.
* Remove `math.prod` which was introduced in Python 3.8
* int are not floats.
* Reworking the PR to support "char" vs "word" output.
* Fixup!
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <[email protected]>
* Quality.
Co-authored-by: Patrick von Platen <[email protected]>
HFTracer.trace should use/return self.graph to be compatible with torch.fx.Tracer (#15824)
Fix tf.concatenate + test past_key_values for TF models (#15774)
* fix wrong method name tf.concatenate
* add tests related to causal LM / decoder
* make style and quality
* clean-up
* Fix TFBertModel's extended_attention_mask when past_key_values is provided
* Fix tests
* fix copies
* More tf.int8 -> tf.int32 in TF test template
* clean-up
* Update TF test template
* revert the previous commit + update the TF test template
* Fix TF template extended_attention_mask when past_key_values is provided
* Fix some styles manually
* clean-up
* Fix ValueError: too many values to unpack in the test
* Fix more: too many values to unpack in the test
* Add a comment for extended_attention_mask when there is past_key_values
* Fix TFElectra extended_attention_mask when past_key_values is provided
* Add tests to other TF models
* Fix for TF Electra test: add prepare_config_and_inputs_for_decoder
* Fix not passing training arg to lm_head in TFRobertaForCausalLM
* Fix tests (with past) for TF Roberta
* add testing for pask_key_values for TFElectra model
Co-authored-by: ydshieh <[email protected]>
[examples/summarization and translation] fix readme (#15833)
Add ONNX Runtime quantization for text classification notebook (#15817)
Re-enable doctests for the quicktour (#15828)
* Re-enable doctests for the quicktour
* Re-enable doctests for task_summary (#15830)
* Remove &
Framework split model report (#15825)
Add TFConvNextModel (#15750)
* feat: initial implementation of convnext in tensorflow.
* fix: sample code for the classification model.
* chore: added checked for from the classification model.
* chore: set bias initializer in the classification head.
* chore: updated license terms.
* chore: removed ununsed imports
* feat: enabled argument during using drop_path.
* chore: replaced tf.identity with layers.Activation(linear).
* chore: edited default checkpoint.
* fix: minor bugs in the initializations.
* partial-fix: tf model errors for loading pretrained pt weights.
* partial-fix: call method updated
* partial-fix: cross loading of weights (4x3 variables to be matched)
* chore: removed unneeded comment.
* removed playground.py
* rebasing
* rebasing and removing playground.py.
* fix: renaming TFConvNextStage conv and layer norm layers
* chore: added initializers and other minor additions.
* chore: added initializers and other minor additions.
* add: tests for convnext.
* fix: integration tester class.
* fix: issues mentioned in pr feedback (round 1).
* fix: how output_hidden_states arg is propoagated inside the network.
* feat: handling of arg for pure cnn models.
* chore: added a note on equal contribution in model docs.
* rebasing
* rebasing and removing playground.py.
* feat: encapsulation for the convnext trunk.
* Fix variable naming; Test-related corrections; Run make fixup
* chore: added Joao as a contributor to convnext.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: corrected copyright year and added comment on NHWC.
* chore: fixed the black version and ran formatting.
* chore: ran make style.
* chore: removed from_pt argument from test, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* fix: tests in the convnext subclass, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: moved convnext test to the correct location
* fix: locations for the test file of convnext.
* fix: convnext tests.
* chore: applied sgugger's suggestion for dealing w/ output_attentions.
* chore: added comments.
* chore: applied updated quality enviornment style.
* chore: applied formatting with quality enviornment.
* chore: revert to the previous tests/test_modeling_common.py.
* chore: revert to the original test_modeling_common.py
* chore: revert to previous states for test_modeling_tf_common.py and modeling_tf_utils.py
* fix: tests for convnext.
* chore: removed output_attentions argument from convnext config.
* chore: revert to the earlier tf utils.
* fix: output shapes of the hidden states
* chore: removed unnecessary comment
* chore: reverting to the right test_modeling_tf_common.py.
* Styling nits
Co-authored-by: ariG23498 <[email protected]>
Co-authored-by: Joao Gante <[email protected]>
Co-authored-by: Sylvain Gugger <[email protected]>
* minor changes
* doc fix in feature extractor
* doc
* typose
* removed detr logic from config
* removed detr logic from config
* removed num_labels
* small fix in the config
* auxilary -> auxiliary
* make style
* some test is failing
* fix a weird char in config prevending doc-builder
* retry to fix the doc-builder issue
* make style
* new try to fix the doc builder
* CI
* change weights to facebook
Co-authored-by: NielsRogge <[email protected]>
Co-authored-by: ariG23498 <[email protected]>
Co-authored-by: Joao Gante <[email protected]>
Co-authored-by: Sylvain Gugger <[email protected]> | https://github.com/huggingface/transformers.git | def remove_low_and_no_objects(self, masks, scores, labels, object_mask_threshold, num_labels):
if not (masks.shape[0] == scores.shape[0] == labels.shape[0]):
raise ValueError("mask, scores and labels must have the same shape!")
to_keep = labels.ne(num_labels) & (scores > object_mask_threshold)
return masks[to_keep], scores[to_keep], labels[to_keep]
| 75 | feature_extraction_maskformer.py | Python | src/transformers/models/maskformer/feature_extraction_maskformer.py | d83d22f578276e9f201b0b3b0f8f9bd68e86c133 | transformers | 2 |
|
129,202 | 14 | 10 | 3 | 46 | 9 | 0 | 14 | 71 | update_context | [doc] Fix sklearn doc error, introduce MyST markdown parser (#21527) | https://github.com/ray-project/ray.git | def update_context(app, pagename, templatename, context, doctree):
context["feedback_form_url"] = feedback_form_url(app.config.project,
pagename)
# see also http://searchvoidstar.tumblr.com/post/125486358368/making-pdfs-from-markdown-on-readthedocsorg-using
| 29 | conf.py | Python | doc/source/conf.py | 703c1610348615dcb8c2d141a0c46675084660f5 | ray | 1 |
|
294,547 | 18 | 9 | 10 | 83 | 10 | 0 | 21 | 104 | _async_update_and_abort_for_matching_unique_id | Add support for setting up encrypted samsung tvs from config flow (#68717)
Co-authored-by: epenet <[email protected]> | https://github.com/home-assistant/core.git | def _async_update_and_abort_for_matching_unique_id(self) -> None:
updates = {CONF_HOST: self._host}
if self._mac:
updates[CONF_MAC] = self._mac
if self._ssdp_rendering_control_location:
updates[
CONF_SSDP_RENDERING_CONTROL_LOCATION
] = self._ssdp_rendering_control_location
self._abort_if_unique_id_configured(updates=updates)
| 51 | config_flow.py | Python | homeassistant/components/samsungtv/config_flow.py | cc75cebfc5b3e9316cdbaf82c5c72437521f819b | core | 3 |
|
245,867 | 162 | 11 | 74 | 862 | 54 | 0 | 338 | 1,252 | test_condinst_bboxhead_loss | [Feature]: Support Condinst (#9223)
* [Feature]: support condinst for instance segmentation
* update
* update
* update
* fix config name and add test unit
* fix squeeze error
* add README and chang mask to poly | https://github.com/open-mmlab/mmdetection.git | def test_condinst_bboxhead_loss(self):
s = 256
img_metas = [{
'img_shape': (s, s, 3),
'pad_shape': (s, s, 3),
'scale_factor': 1,
}]
condinst_bboxhead = CondInstBboxHead(
num_classes=4,
in_channels=1,
feat_channels=1,
stacked_convs=1,
norm_cfg=None)
# Fcos head expects a multiple levels of features per image
feats = (
torch.rand(1, 1, s // stride[1], s // stride[0])
for stride in condinst_bboxhead.prior_generator.strides)
cls_scores, bbox_preds, centernesses, param_preds =\
condinst_bboxhead.forward(feats)
# Test that empty ground truth encourages the network to
# predict background
gt_instances = InstanceData()
gt_instances.bboxes = torch.empty((0, 4))
gt_instances.labels = torch.LongTensor([])
gt_instances.masks = _rand_masks(0, gt_instances.bboxes.numpy(), s, s)
empty_gt_losses = condinst_bboxhead.loss_by_feat(
cls_scores, bbox_preds, centernesses, param_preds, [gt_instances],
img_metas)
# When there is no truth, the cls loss should be nonzero but
# box loss and centerness loss should be zero
empty_cls_loss = empty_gt_losses['loss_cls'].item()
empty_box_loss = empty_gt_losses['loss_bbox'].item()
empty_ctr_loss = empty_gt_losses['loss_centerness'].item()
self.assertGreater(empty_cls_loss, 0, 'cls loss should be non-zero')
self.assertEqual(
empty_box_loss, 0,
'there should be no box loss when there are no true boxes')
self.assertEqual(
empty_ctr_loss, 0,
'there should be no centerness loss when there are no true boxes')
# When truth is non-empty then all cls, box loss and centerness loss
# should be nonzero for random inputs
gt_instances = InstanceData()
gt_instances.bboxes = torch.Tensor(
[[23.6667, 23.8757, 238.6326, 151.8874]])
gt_instances.labels = torch.LongTensor([2])
gt_instances.masks = _rand_masks(1, gt_instances.bboxes.numpy(), s, s)
one_gt_losses = condinst_bboxhead.loss_by_feat(cls_scores, bbox_preds,
centernesses,
param_preds,
[gt_instances],
img_metas)
onegt_cls_loss = one_gt_losses['loss_cls'].item()
onegt_box_loss = one_gt_losses['loss_bbox'].item()
onegt_ctr_loss = one_gt_losses['loss_centerness'].item()
self.assertGreater(onegt_cls_loss, 0, 'cls loss should be non-zero')
self.assertGreater(onegt_box_loss, 0, 'box loss should be non-zero')
self.assertGreater(onegt_ctr_loss, 0,
'centerness loss should be non-zero')
# Test the `center_sampling` works fine.
condinst_bboxhead.center_sampling = True
ctrsamp_losses = condinst_bboxhead.loss_by_feat(
cls_scores, bbox_preds, centernesses, param_preds, [gt_instances],
img_metas)
ctrsamp_cls_loss = ctrsamp_losses['loss_cls'].item()
ctrsamp_box_loss = ctrsamp_losses['loss_bbox'].item()
ctrsamp_ctr_loss = ctrsamp_losses['loss_centerness'].item()
self.assertGreater(ctrsamp_cls_loss, 0, 'cls loss should be non-zero')
self.assertGreater(ctrsamp_box_loss, 0, 'box loss should be non-zero')
self.assertGreater(ctrsamp_ctr_loss, 0,
'centerness loss should be non-zero')
# Test the `norm_on_bbox` works fine.
condinst_bboxhead.norm_on_bbox = True
normbox_losses = condinst_bboxhead.loss_by_feat(
cls_scores, bbox_preds, centernesses, param_preds, [gt_instances],
img_metas)
normbox_cls_loss = normbox_losses['loss_cls'].item()
normbox_box_loss = normbox_losses['loss_bbox'].item()
normbox_ctr_loss = normbox_losses['loss_centerness'].item()
self.assertGreater(normbox_cls_loss, 0, 'cls loss should be non-zero')
self.assertGreater(normbox_box_loss, 0, 'box loss should be non-zero')
self.assertGreater(normbox_ctr_loss, 0,
'centerness loss should be non-zero')
| 545 | test_condinst_head.py | Python | tests/test_models/test_dense_heads/test_condinst_head.py | 79c8295801acedee0cbdbf128a01b9fe162646b0 | mmdetection | 2 |
|
57,784 | 5 | 6 | 13 | 18 | 4 | 0 | 5 | 12 | test_flow_timeouts_are_not_crashes | Add `Crashed` as canonical state type (PrefectHQ/orion#2353)
Co-authored-by: Jeremiah Lowin <[email protected]> | https://github.com/PrefectHQ/prefect.git | async def test_flow_timeouts_are_not_crashes(self, flow_run, orion_client):
| 80 | test_engine.py | Python | tests/test_engine.py | 907fc7c0a895b9f46484690be44a2a5660b320ee | prefect | 1 |
|
269,772 | 72 | 12 | 17 | 171 | 16 | 0 | 107 | 355 | _get_benchmark_name | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def _get_benchmark_name(self):
stack = tf_inspect.stack()
name = None
for frame in stack[::-1]:
f_locals = frame[0].f_locals
f_self = f_locals.get("self", None)
if isinstance(f_self, tf.test.Benchmark):
name = frame[3] # Get the method name
# This is a hack to get around the fact that some methods might have a
# disable_tfrt decorator around them. In that case a function called
# 'decorated' wraps the real called function underneath and so we
# peek one deeper into the stack to get the real name.
if name == "decorated":
continue
else:
break
if name is None:
raise ValueError("Unable to determine calling Benchmark function.")
if tf.__internal__.is_tfrt_enabled():
name = name + "_tfrt"
return name
| 97 | eager_microbenchmarks_test.py | Python | keras/benchmarks/eager_microbenchmarks_test.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 6 |
|
271,559 | 61 | 13 | 23 | 258 | 29 | 0 | 86 | 303 | _set_save_spec | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def _set_save_spec(self, inputs, args=None, kwargs=None):
if self._saved_model_inputs_spec is not None:
return # Already set.
args = args or []
kwargs = kwargs or {}
input_names = self.input_names
if not input_names:
input_names = compile_utils.create_pseudo_input_names(inputs)
flat_inputs = tf.nest.flatten(inputs)
inputs_spec = []
for name, tensor in zip(input_names, flat_inputs):
inputs_spec.append(
tf_utils.get_tensor_spec(tensor, dynamic_batch=False, name=name)
)
inputs_spec = tf.nest.pack_sequence_as(inputs, inputs_spec)
super()._set_save_spec(inputs_spec, args, kwargs)
# Store the input shapes
if (
self.__class__.__name__ == "Sequential"
and self._build_input_shape is None
):
self._build_input_shape = tf.nest.map_structure(
lambda x: None if x is None else x.shape, inputs_spec
)
| 165 | training.py | Python | keras/engine/training.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 9 |
|
138,198 | 7 | 6 | 7 | 27 | 5 | 0 | 7 | 21 | get_metrics | [data] New executor backend [1/n]--- Add basic interfaces (#31216)
This PR adds the basic interfaces and feature flags; split out from https://github.com/ray-project/ray/pull/30903/files
See REP ray-project/enhancements#18 for more details. | https://github.com/ray-project/ray.git | def get_metrics(self) -> Dict[str, int]:
return {}
| 16 | interfaces.py | Python | python/ray/data/_internal/execution/interfaces.py | 2cd4637521a0c75e0375266ff52d3dfca2084c2d | ray | 1 |
|
6,396 | 45 | 14 | 19 | 190 | 9 | 0 | 72 | 184 | _get_text_feature_max_length | Improve AutoML heuristics for text classification (#1815)
* Improve AutoML heuristics for text classification
Co-authored-by: Anne Holler <[email protected]> | https://github.com/ludwig-ai/ludwig.git | def _get_text_feature_max_length(config, training_set_metadata) -> int:
max_length = 0
for feature in config["input_features"]:
if feature["type"] == TEXT:
feature_max_len = training_set_metadata[feature["name"]]["word_max_sequence_length"]
if feature_max_len > max_length:
max_length = feature_max_len
if (
("preprocessing" in config)
and (TEXT in config["preprocessing"])
and ("word_sequence_length_limit" in config["preprocessing"][TEXT])
):
limit = config["preprocessing"][TEXT]["word_sequence_length_limit"]
else:
limit = 256 # Preprocessing default word_sequence_length_limit = 256
if max_length > limit + 2: # For start and stop symbols.
max_length = limit + 2
return max_length
| 110 | auto_tune_config.py | Python | ludwig/automl/auto_tune_config.py | d77aaf8da39f04a353a3a08fb699ae8a96ffea3a | ludwig | 8 |
|
260,274 | 17 | 11 | 5 | 64 | 11 | 0 | 18 | 37 | test_warning_new_default | API prepare change of default solver QuantileRegressor (#23637)
Co-authored-by: Olivier Grisel <[email protected]> | https://github.com/scikit-learn/scikit-learn.git | def test_warning_new_default(X_y_data):
X, y = X_y_data
model = QuantileRegressor()
with pytest.warns(FutureWarning, match="The default solver will change"):
model.fit(X, y)
| 36 | test_quantile.py | Python | sklearn/linear_model/tests/test_quantile.py | a7e27dab2ce76281425e66bfc8611a84a2bf6afa | scikit-learn | 1 |
|
94,771 | 19 | 9 | 6 | 75 | 6 | 0 | 25 | 47 | resolve_full_name | feat(devtools): Add support to dump the import graph (#37698) | https://github.com/getsentry/sentry.git | def resolve_full_name(base, name, level):
if level == 0:
return name
bits = base.rsplit(".", level - 1)
base = bits[0]
return f"{base}.{name}" if name else base
| 42 | _importchecker.py | Python | src/sentry/_importchecker.py | 36d17659021fab2e2a618a8c8a9c003bc0f359fe | sentry | 3 |
|
189,404 | 15 | 12 | 6 | 86 | 12 | 0 | 16 | 62 | add_axes | Fix `add_axes` in :class:`~.VectorScene`. (#2444)
* fix bug
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> | https://github.com/ManimCommunity/manim.git | def add_axes(self, animate=False, color=WHITE, **kwargs):
axes = Axes(color=color, axis_config={"unit_size": 1})
if animate:
self.play(Create(axes))
self.add(axes)
return axes
| 53 | vector_space_scene.py | Python | manim/scene/vector_space_scene.py | 5789be81609c8bf6d98d1d87d4061477d0cd37b9 | manim | 2 |
|
337,603 | 70 | 13 | 36 | 182 | 26 | 0 | 79 | 243 | debug_launcher | Refactor version checking into a utility (#395)
Co-authored-by: Sylvain Gugger <[email protected]> | https://github.com/huggingface/accelerate.git | def debug_launcher(function, args=(), num_processes=2):
if is_torch_version("<", "1.5.0"):
raise ImportError(
"Using `debug_launcher` for distributed training on GPUs require torch >= 1.5.0, got "
f"{torch.__version__}."
)
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=num_processes,
master_addr="127.0.01",
master_port="29500",
mixed_precision="no",
accelerate_debug_rdv_file=tmp_file.name,
use_cpu="yes",
):
launcher = PrepareForLaunch(function, debug=True)
start_processes(launcher, args=args, nprocs=num_processes, start_method="fork")
| 102 | launchers.py | Python | src/accelerate/launchers.py | f6ec2660f01e5bb37399407b3a01b72a43ceb328 | accelerate | 2 |
|
6,553 | 55 | 14 | 18 | 229 | 30 | 0 | 62 | 253 | extract_pytorch_structures | feat: Modify Trainer to use marshmallow_dataclass syntax for handling hyperparameters. Add basic scripting for docstring extraction to marshmallow schema. Fix some existing marshmallow issues. (#1606) | https://github.com/ludwig-ai/ludwig.git | def extract_pytorch_structures():
for opt in lmo.optimizer_registry:
# Get the torch class:
optimizer_class = lmo.optimizer_registry[opt][0]
# Parse and clean the class structure:
path = get_fully_qualified_class_name(optimizer_class)
opt_struct = get_pytkdocs_structure_for_path(path, "google")["objects"][0]
prune_pytorch_structures(opt_struct)
# Write it to a file:
parent_dir = str(Path(__file__).parent.parent)
filename = os.path.join(parent_dir, "ludwig/marshmallow/generated/torch/", optimizer_class.__name__) + ".json"
os.makedirs(os.path.dirname(filename), exist_ok=True)
with open(filename, "w") as outfile:
json.dump(
opt_struct,
outfile,
indent=4,
sort_keys=True,
separators=(",", ": "),
)
outfile.write("\n")
| 136 | extract_schema.py | Python | scripts/extract_schema.py | 23a33eef3bc7ea3ba33ec56dc9b56ba38462648a | ludwig | 2 |
|
154,614 | 50 | 16 | 24 | 387 | 19 | 0 | 86 | 394 | test_uint | FEAT-#4946: Replace OmniSci with HDK (#4947)
Co-authored-by: Iaroslav Igoshev <[email protected]>
Signed-off-by: Andrey Pavlenko <[email protected]> | https://github.com/modin-project/modin.git | def test_uint(self, md_df_constructor):
pd_df = pandas.DataFrame(
{
"uint8_in_int_bounds": np.array([1, 2, 3], dtype="uint8"),
"uint8_out-of_int_bounds": np.array(
[(2**8) - 1, (2**8) - 2, (2**8) - 3], dtype="uint8"
),
"uint16_in_int_bounds": np.array([1, 2, 3], dtype="uint16"),
"uint16_out-of_int_bounds": np.array(
[(2**16) - 1, (2**16) - 2, (2**16) - 3], dtype="uint16"
),
"uint32_in_int_bounds": np.array([1, 2, 3], dtype="uint32"),
"uint32_out-of_int_bounds": np.array(
[(2**32) - 1, (2**32) - 2, (2**32) - 3], dtype="uint32"
),
"uint64_in_int_bounds": np.array([1, 2, 3], dtype="uint64"),
}
)
md_df = md_df_constructor(pd_df)
with ForceHdkImport(md_df) as instance:
md_df_exported = instance.export_frames()[0]
result = md_df_exported.values
reference = pd_df.values
np.testing.assert_array_equal(result, reference)
| 248 | test_dataframe.py | Python | modin/experimental/core/execution/native/implementations/hdk_on_native/test/test_dataframe.py | e5b1888cd932909e49194d58035da34b210b91c4 | modin | 1 |
|
154,579 | 79 | 16 | 36 | 387 | 35 | 0 | 126 | 604 | astype | FEAT-#4946: Replace OmniSci with HDK (#4947)
Co-authored-by: Iaroslav Igoshev <[email protected]>
Signed-off-by: Andrey Pavlenko <[email protected]> | https://github.com/modin-project/modin.git | def astype(self, col_dtypes, **kwargs):
columns = col_dtypes.keys()
new_dtypes = self._dtypes.copy()
for column in columns:
dtype = col_dtypes[column]
if (
not isinstance(dtype, type(self._dtypes[column]))
or dtype != self._dtypes[column]
):
# Update the new dtype series to the proper pandas dtype
try:
new_dtype = np.dtype(dtype)
except TypeError:
new_dtype = dtype
if dtype != np.int32 and new_dtype == np.int32:
new_dtypes[column] = np.dtype("int64")
elif dtype != np.float32 and new_dtype == np.float32:
new_dtypes[column] = np.dtype("float64")
# We cannot infer without computing the dtype if
elif isinstance(new_dtype, str) and new_dtype == "category":
raise NotImplementedError("unsupported type conversion")
else:
new_dtypes[column] = new_dtype
exprs = self._index_exprs()
for col in self.columns:
col_expr = self.ref(col)
if col in columns:
exprs[col] = col_expr.cast(new_dtypes[col])
else:
exprs[col] = col_expr
new_op = TransformNode(self, exprs)
return self.__constructor__(
columns=self.columns,
dtypes=new_dtypes,
op=new_op,
index_cols=self._index_cols,
force_execution_mode=self._force_execution_mode,
)
| 244 | dataframe.py | Python | modin/experimental/core/execution/native/implementations/hdk_on_native/dataframe/dataframe.py | e5b1888cd932909e49194d58035da34b210b91c4 | modin | 13 |
|
100,326 | 20 | 12 | 6 | 84 | 10 | 0 | 21 | 87 | _clear_trace_variables | Update code to support Tensorflow versions up to 2.8 (#1213)
* Update maximum tf version in setup + requirements
* - bump max version of tf version in launcher
- standardise tf version check
* update keras get_custom_objects for tf>2.6
* bugfix: force black text in GUI file dialogs (linux)
* dssim loss - Move to stock tf.ssim function
* Update optimizer imports for compatibility
* fix logging for tf2.8
* Fix GUI graphing for TF2.8
* update tests
* bump requirements.txt versions
* Remove limit on nvidia-ml-py
* Graphing bugfixes
- Prevent live graph from displaying if data not yet available
* bugfix: Live graph. Collect loss labels correctly
* fix: live graph - swallow inconsistent loss errors
* Bugfix: Prevent live graph from clearing during training
* Fix graphing for AMD | https://github.com/deepfakes/faceswap.git | def _clear_trace_variables(self):
if self._trace_vars:
for name, (var, trace) in self._trace_vars.items():
logger.debug("Clearing trace from variable: %s", name)
var.trace_vdelete("w", trace)
self._trace_vars = {}
| 50 | display_command.py | Python | lib/gui/display_command.py | c1512fd41d86ef47a5d1ce618d6d755ef7cbacdf | faceswap | 3 |
|
86,527 | 33 | 15 | 10 | 116 | 18 | 0 | 33 | 126 | update_existing_attachments | ref(perf-issues): Modularize post_process_group (ISP-11) (#39594)
Fully modularizes `post_process_group` as final step before adding
multiple event types to it. | https://github.com/getsentry/sentry.git | def update_existing_attachments(job):
# Patch attachments that were ingested on the standalone path.
with sentry_sdk.start_span(op="tasks.post_process_group.update_existing_attachments"):
try:
from sentry.models import EventAttachment
event = job["event"]
EventAttachment.objects.filter(
project_id=event.project_id, event_id=event.event_id
).update(group_id=event.group_id)
except Exception:
logger.exception("Failed to update existing attachments")
| 66 | post_process.py | Python | src/sentry/tasks/post_process.py | bc59434031930199dcdc056943c2ba4a17bbd5c8 | sentry | 2 |
|
306,781 | 31 | 8 | 3 | 117 | 17 | 1 | 31 | 96 | test_convert_from_miles | Refactor distance, speed and volume utils (#77952)
* Refactor distance util
* Fix bmw connected drive tests
* Adjust here travel time tests
* Adjust waze travel time tests
* Adjust test_distance
* Adjust rounding values
* Adjust more tests
* Adjust volume conversions
* Add tests | https://github.com/home-assistant/core.git | def test_convert_from_miles(unit, expected):
miles = 5
assert distance_util.convert(miles, LENGTH_MILES, unit) == pytest.approx(expected)
@pytest.mark.parametrize(
"unit,expected",
[
(LENGTH_KILOMETERS, 0.0045720000000000005),
(LENGTH_METERS, 4.572),
(LENGTH_CENTIMETERS, 457.2),
(LENGTH_MILLIMETERS, 4572),
(LENGTH_MILES, 0.002840908212),
(LENGTH_FEET, 15.00000048),
(LENGTH_INCHES, 180.0000972),
],
) | @pytest.mark.parametrize(
"unit,expected",
[
(LENGTH_KILOMETERS, 0.0045720000000000005),
(LENGTH_METERS, 4.572),
(LENGTH_CENTIMETERS, 457.2),
(LENGTH_MILLIMETERS, 4572),
(LENGTH_MILES, 0.002840908212),
(LENGTH_FEET, 15.00000048),
(LENGTH_INCHES, 180.0000972),
],
) | 29 | test_distance.py | Python | tests/util/test_distance.py | 9490771a8737892a7a86afd866a3520b836779fd | core | 1 |
276,113 | 14 | 6 | 7 | 18 | 4 | 0 | 14 | 20 | layer_call_wrapper | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def layer_call_wrapper(call_collection, method, name):
# Create wrapper that deals with losses and call context. | 37 | save_impl.py | Python | keras/saving/saved_model/save_impl.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 1 |
|
85,584 | 77 | 16 | 35 | 386 | 37 | 0 | 90 | 526 | test_dynamic_smapling_rule_edition | ref(sampling): Create sampling audit logs - (#38501) | https://github.com/getsentry/sentry.git | def test_dynamic_smapling_rule_edition(self):
dynamic_sampling = _dyn_sampling_data()
project = self.project # force creation
# Update project adding three rules
project.update_option("sentry:dynamic_sampling", dynamic_sampling)
self.login_as(self.user)
token = ApiToken.objects.create(user=self.user, scope_list=["project:write"])
authorization = f"Bearer {token.token}"
url = reverse(
"sentry-api-0-project-details",
kwargs={
"organization_slug": self.project.organization.slug,
"project_slug": self.project.slug,
},
)
data = {
"dynamicSampling": {
"rules": [
{**dynamic_sampling["rules"][0], "sampleRate": 0.2},
dynamic_sampling["rules"][1],
dynamic_sampling["rules"][2],
]
}
}
with Feature({"organizations:server-side-sampling": True}):
self.client.put(url, format="json", HTTP_AUTHORIZATION=authorization, data=data)
assert AuditLogEntry.objects.filter(
organization=self.project.organization,
event=audit_log.get_event_id("SAMPLING_RULE_EDIT"),
).exists()
# Make sure that the early return logic worked, as only the above audit log was triggered
with pytest.raises(AuditLogEntry.DoesNotExist):
AuditLogEntry.objects.get(
organization=self.organization,
target_object=self.project.id,
event=audit_log.get_event_id("PROJECT_EDIT"),
)
| 230 | test_project_details.py | Python | tests/sentry/api/endpoints/test_project_details.py | 414347e903b490c69dbe5115bb5572c97aab4493 | sentry | 1 |
|
291,598 | 18 | 10 | 6 | 72 | 8 | 0 | 19 | 58 | async_update_movies | Add Twinkly effects (#82861)
* Add Twinkly effects
* Remove spurious comment | https://github.com/home-assistant/core.git | async def async_update_movies(self) -> None:
movies = await self._client.get_saved_movies()
_LOGGER.debug("Movies: %s", movies)
if "movies" in movies:
self._movies = movies["movies"]
| 39 | light.py | Python | homeassistant/components/twinkly/light.py | 33cd59d3c2e1f945c16b39d929349e3eeb4cfb9a | core | 2 |
|
266,660 | 26 | 10 | 9 | 93 | 11 | 0 | 29 | 65 | collect_bootstrap | ansible-test - Fix consistency of managed venvs. (#77028) | https://github.com/ansible/ansible.git | def collect_bootstrap(python): # type: (PythonConfig) -> t.List[PipCommand]
infrastructure_packages = get_venv_packages(python)
pip_version = infrastructure_packages['pip']
packages = [f'{name}=={version}' for name, version in infrastructure_packages.items()]
bootstrap = PipBootstrap(
pip_version=pip_version,
packages=packages,
)
return [bootstrap]
| 51 | python_requirements.py | Python | test/lib/ansible_test/_internal/python_requirements.py | 68fb3bf90efa3a722ba5ab7d66b1b22adc73198c | ansible | 2 |
|
3,815 | 20 | 10 | 9 | 125 | 17 | 0 | 27 | 98 | test_jobs_completed_immediately | 🎉 🎉 Source FB Marketing: performance and reliability fixes (#9805)
* Facebook Marketing performance improvement
* add comments and little refactoring
* fix integration tests with the new config
* improve job status handling, limit concurrency to 10
* fix campaign jobs, refactor manager
* big refactoring of async jobs, support random order of slices
* update source _read_incremental to hook new state logic
* fix issues with timeout
* remove debugging and clean up, improve retry logic
* merge changes from #8234
* fix call super _read_increment
* generalize batch execution, add use_batch flag
* improve coverage, do some refactoring of spec
* update test, remove overrides of source
* add split by AdSet
* add smaller insights
* fix end_date < start_date case
* add account_id to PK
* add notes
* fix new streams
* fix reversed incremental stream
* update spec.json for SAT
* upgrade CDK and bump version
Co-authored-by: Dmytro Rezchykov <[email protected]>
Co-authored-by: Eugene Kulak <[email protected]> | https://github.com/airbytehq/airbyte.git | def test_jobs_completed_immediately(self, api, mocker, time_mock):
jobs = [
mocker.Mock(spec=InsightAsyncJob, attempt_number=1, failed=False),
mocker.Mock(spec=InsightAsyncJob, attempt_number=1, failed=False),
]
manager = InsightAsyncJobManager(api=api, jobs=jobs)
completed_jobs = list(manager.completed_jobs())
assert jobs == completed_jobs
time_mock.sleep.assert_not_called()
| 83 | test_async_job_manager.py | Python | airbyte-integrations/connectors/source-facebook-marketing/unit_tests/test_async_job_manager.py | a3aae8017a0a40ff2006e2567f71dccb04c997a5 | airbyte | 1 |
|
191,668 | 15 | 11 | 5 | 68 | 7 | 0 | 17 | 29 | test__split_list_double_doc | Harrison/map reduce merge (#344)
Co-authored-by: John Nay <[email protected]> | https://github.com/hwchase17/langchain.git | def test__split_list_double_doc() -> None:
docs = [Document(page_content="foo"), Document(page_content="bar")]
doc_list = _split_list_of_docs(docs, _fake_docs_len_func, 100)
assert doc_list == [docs]
| 40 | test_combine_documents.py | Python | tests/unit_tests/chains/test_combine_documents.py | c1b50b7b13545b1549c051182f547cfc2f8ed0be | langchain | 1 |
|
266,482 | 30 | 14 | 7 | 151 | 18 | 0 | 36 | 98 | get_default_targets | ansible-test - Defer loading of completion entries. (#76852)
* ansible-test - Defer loading of completion entries.
This avoids a traceback when running ansible-test outside of a supported directory. | https://github.com/ansible/ansible.git | def get_default_targets(self, context): # type: (HostContext) -> t.List[ControllerConfig]
if self.name in filter_completion(docker_completion()):
defaults = self.get_defaults(context)
pythons = {version: defaults.get_python_path(version) for version in defaults.supported_pythons}
else:
pythons = {context.controller_config.python.version: context.controller_config.python.path}
return [ControllerConfig(python=NativePythonConfig(version=version, path=path)) for version, path in pythons.items()]
| 95 | host_configs.py | Python | test/lib/ansible_test/_internal/host_configs.py | e9ffcf3c85f2fa40a20ee03bd9c1ce7296574cd1 | ansible | 4 |
|
129,038 | 78 | 14 | 54 | 242 | 27 | 0 | 96 | 315 | step | [tune] Add test for heterogeneous resource request deadlocks (#21397)
This adds a test for potential resource deadlocks in experiments with heterogeneous PGFs. If the PGF of a later trial becomes ready before that of a previous trial, we could run into a deadlock. This is currently avoided, but untested, flagging the code path for removal in #21387. | https://github.com/ray-project/ray.git | def step(self):
self._updated_queue = False
if self.is_finished():
raise TuneError("Called step when all trials finished?")
with warn_if_slow("on_step_begin"):
self.trial_executor.on_step_begin(self.get_trials())
with warn_if_slow("callbacks.on_step_begin"):
self._callbacks.on_step_begin(
iteration=self._iteration, trials=self._trials)
# This will contain the next trial to start
next_trial = self._get_next_trial() # blocking
# Create pending trials. If the queue was updated before, only
# continue updating if this was successful (next_trial is not None)
if not self._updated_queue or (self._updated_queue and next_trial):
num_pending_trials = len(
[t for t in self._live_trials if t.status == Trial.PENDING])
while num_pending_trials < self._max_pending_trials:
if not self._update_trial_queue(blocking=False):
break
num_pending_trials += 1
# Update status of staged placement groups
self.trial_executor.stage_and_update_status(self._live_trials)
| 352 | trial_runner.py | Python | python/ray/tune/trial_runner.py | 976ece4bc43abdb628cf4cbffc8546abab723a6d | ray | 20 |
|
42,090 | 39 | 10 | 5 | 47 | 5 | 0 | 46 | 88 | show | Add rudimentary themeing support (#2929)
* WIP Plot.theme
* Add default values for theme to match set_theme()
* Depend on matplotib style defaults and update rcParams more selectively
* Fix lines test
* Improve test coverage | https://github.com/mwaskom/seaborn.git | def show(self, **kwargs) -> None:
# TODO make pyplot configurable at the class level, and when not using,
# import IPython.display and call on self to populate cell output?
# Keep an eye on whether matplotlib implements "attaching" an existing
# figure to pyplot: https://github.com/matplotlib/matplotlib/pull/14024
self.plot(pyplot=True).show(**kwargs)
| 25 | plot.py | Python | seaborn/_core/plot.py | 762db897b52d16ab2f164d5103df4cc26c1d0503 | seaborn | 1 |
|
96,483 | 77 | 12 | 34 | 329 | 23 | 0 | 162 | 333 | get_time_params | ADS v1. (#31533)
* ADS v1.
* Using QueryBuilder to automatically be aware of filters selected. Removed code to submit SnQL query.
* Incorporated PR feedback; using timeseries_query instead of QueryBuilder.
* Added ADS call.
* Failed attempt at writing an unit test :(
* Made get_anomalies() a helped function. Got unit tests working.
* Moved ADS connection params into server.py
* Made map_snuba_queries() a helper function, and added relevant unit tests.
* Removed hard-coded params in unit tests.
* Included start and end into ADS call. Updated unit tests accordingly. Added a unit test.
* Incorporated PR feedback.
* format tests
* Added feature check and a corresponding unit test.
* Serializing ADS response.
* Incorporated some more PR feedback.
* Incorporated some more PR feedback.
Co-authored-by: trillville <[email protected]> | https://github.com/getsentry/sentry.git | def get_time_params(start, end):
anomaly_detection_range = end - start
if anomaly_detection_range > timedelta(days=14):
snuba_range = timedelta(days=90)
granularity = 3600
elif anomaly_detection_range > timedelta(days=1):
granularity = 1200
snuba_range = timedelta(days=28)
else:
snuba_range = timedelta(days=14)
granularity = 600
additional_time_needed = snuba_range - anomaly_detection_range
now = datetime.utcnow().astimezone(timezone.utc)
start_limit = now - timedelta(days=90)
end_limit = now
start = max(start, start_limit)
end = min(end, end_limit)
# By default, expand windows equally in both directions
window_increase = additional_time_needed / 2
query_start, query_end = None, None
# If window will go back farther than 90 days, use today - 90 as start
if start - window_increase < start_limit:
query_start = now - timedelta(days=90)
additional_time_needed -= start - query_start
window_increase = additional_time_needed
# If window extends beyond today, use today as end
if end + window_increase > end_limit:
query_end = now
additional_time_needed -= query_end - end
window_increase = additional_time_needed
query_start = query_start or max(start - window_increase, start_limit)
query_end = query_end or min(end + window_increase, end_limit)
return MappedParams(
query_start,
query_end,
granularity,
)
| 205 | organization_transaction_anomaly_detection.py | Python | src/sentry/api/endpoints/organization_transaction_anomaly_detection.py | d1314a15f4e591c93c796f79696e779329cbf369 | sentry | 7 |
|
138,371 | 12 | 11 | 7 | 69 | 10 | 0 | 12 | 31 | test_status_invalid_runtime_env | [serve] Catch `RuntimeEnvSetupError` when checking status (#31282)
When the task `run_graph` is submitted, fetching the object ref result can raise `RayTaskError` if the task fails or `RuntimeEnvSetupError` if setting up the runtime env for the task fails. We want to deal with the latter case as well. | https://github.com/ray-project/ray.git | def test_status_invalid_runtime_env(ray_start_stop):
config_file_name = os.path.join(
os.path.dirname(__file__), "test_config_files", "bad_runtime_env.yaml"
)
subprocess.check_output(["serve", "deploy", config_file_name])
| 45 | test_cli.py | Python | python/ray/serve/tests/test_cli.py | fe7ef833783c7e2e24dc5acd78ecced61ea53b0b | ray | 1 |
|
264,447 | 8 | 8 | 2 | 43 | 7 | 1 | 8 | 13 | meta | Closes #8600: Document built-in template tags & filters | https://github.com/netbox-community/netbox.git | def meta(model, attr):
return getattr(model._meta, attr, '')
@register.filter() | @register.filter() | 19 | filters.py | Python | netbox/utilities/templatetags/builtins/filters.py | 7c105019d8ae9205051c302e7499b33a455f9176 | netbox | 1 |
46,403 | 20 | 14 | 9 | 93 | 16 | 0 | 21 | 72 | reflect_tables | Add map_index and run_id to TaskFail (#22260)
TaskFail entities always belong to a TaskInstance. The PK for TaskInstance has changed, so we need to update TaskFail to have the new columns. | https://github.com/apache/airflow.git | def reflect_tables(models, session):
import sqlalchemy.schema
metadata = sqlalchemy.schema.MetaData(session.bind)
for model in models:
try:
metadata.reflect(only=[model.__tablename__], extend_existing=True, resolve_fks=False)
except exc.InvalidRequestError:
continue
return metadata
| 59 | db.py | Python | airflow/utils/db.py | f06b3955b1d937138fb38021a6a373b94ae8f9e8 | airflow | 3 |
|
291,831 | 64 | 11 | 31 | 292 | 31 | 0 | 66 | 464 | _data_to_save | Add `translation_key` property to entites (#82701)
* Add translation_key attribute to entity state
* Update accuweather test
* Index entity translation keys by platform
* Store translation key in entity registry | https://github.com/home-assistant/core.git | def _data_to_save(self) -> dict[str, Any]:
data: dict[str, Any] = {}
data["entities"] = [
{
"area_id": entry.area_id,
"capabilities": entry.capabilities,
"config_entry_id": entry.config_entry_id,
"device_class": entry.device_class,
"device_id": entry.device_id,
"disabled_by": entry.disabled_by,
"entity_category": entry.entity_category,
"entity_id": entry.entity_id,
"hidden_by": entry.hidden_by,
"icon": entry.icon,
"id": entry.id,
"has_entity_name": entry.has_entity_name,
"name": entry.name,
"options": entry.options,
"original_device_class": entry.original_device_class,
"original_icon": entry.original_icon,
"original_name": entry.original_name,
"platform": entry.platform,
"supported_features": entry.supported_features,
"translation_key": entry.translation_key,
"unique_id": entry.unique_id,
"unit_of_measurement": entry.unit_of_measurement,
}
for entry in self.entities.values()
]
return data
| 177 | entity_registry.py | Python | homeassistant/helpers/entity_registry.py | 8e617bbc1d3ef07254a4151f2d014a86e6e8d05a | core | 2 |
|
118,984 | 12 | 9 | 7 | 85 | 11 | 0 | 12 | 61 | test_startup_shutdown | AppSession: handle script events on the main thread (#4467)
Refactors AppSession to handle all ScriptRunner events on the main thread.
- ScriptRunner no longer takes an `enqueue` callback param. Instead, it signals that it wants to enqueue a new ForwardMsg via the `ScriptRunnerEvent.ENQUEUE_FORWARD_MSG` event. (This means that there's now only one channel that ScriptRunner uses to communicate back to AppSession - the `on_event` signal.)
- `AppSession.enqueue` is now a private function called `AppSession._enqueue_forward_msg`, for clarity
- `AppSession._on_scriptrunner_event` performs all its logic in an ioloop callback, which means that all ScriptRunner events are handled on the main thread _only_. (Previously, _some_ scriptrunner events were handled in a callback, and others were handled in line.)
- `app_session_test.py` now has a test for the very convoluted `handle_backmsg_exception` function. (This function should be targeted for refactor down the line!)
- There's also a small amount of unrelated cleanups in `app_session_test.py`
This is one of the last big pieces that needs to be in place for the "faster-reruns" branch. With this change, AppSession will be able to safely identify and ignore ScriptRunner events that come from a "zombie" ScriptRunner that's still executing.
It also (hopefully) makes AppSession easier to reason about: with the exception of the two functions that explicitly enqueue ioloop callbacks to be performed on the main thread, AppSession now executes entirely on the main thread! | https://github.com/streamlit/streamlit.git | def test_startup_shutdown(self):
scriptrunner = TestScriptRunner("good_script.py")
scriptrunner.start()
scriptrunner.join()
self._assert_no_exceptions(scriptrunner)
self._assert_control_events(scriptrunner, [ScriptRunnerEvent.SHUTDOWN])
self._assert_text_deltas(scriptrunner, [])
| 49 | script_runner_test.py | Python | lib/tests/streamlit/scriptrunner/script_runner_test.py | 3326118e83ffe87623ea440d0ead245f21106a27 | streamlit | 1 |
|
94,333 | 47 | 20 | 38 | 265 | 29 | 0 | 66 | 615 | test_category_match_group | test(event_manager): Fix incorrect invocations of manager.save (#36615) | https://github.com/getsentry/sentry.git | def test_category_match_group(self):
from sentry.grouping.enhancer import Enhancements
enhancement = Enhancements.from_config_string(
,
)
event = make_event(
platform="native",
exception={
"values": [
{
"type": "Hello",
"stacktrace": {
"frames": [
{
"function": "foo",
},
{
"function": "bar",
},
]
},
}
]
},
)
manager = EventManager(event)
manager.normalize()
grouping_config = {
"enhancements": enhancement.dumps(),
"id": "mobile:2021-02-12",
}
manager.get_data()["grouping_config"] = grouping_config
event1 = manager.save(self.project.id)
event2 = Event(event1.project_id, event1.event_id, data=event1.data)
assert event1.get_hashes().hashes == event2.get_hashes(grouping_config).hashes
| 154 | test_event_manager.py | Python | tests/sentry/event_manager/test_event_manager.py | 39cfdcb446e74732c67ce07d7dd8d8d5ace471b1 | sentry | 1 |
|
181,847 | 29 | 15 | 13 | 108 | 11 | 0 | 31 | 178 | _update_val | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | https://github.com/EpistasisLab/tpot.git | def _update_val(self, val, result_score_list):
self._update_pbar()
if val == "Timeout":
self._update_pbar(
pbar_msg=(
"Skipped pipeline #{0} due to time out. "
"Continuing to the next pipeline.".format(self._pbar.n)
)
)
result_score_list.append(-float("inf"))
else:
result_score_list.append(val)
return result_score_list
| 60 | base.py | Python | tpot/base.py | 388616b6247ca4ea8de4e2f340d6206aee523541 | tpot | 2 |
|
277,072 | 18 | 12 | 6 | 73 | 12 | 0 | 19 | 49 | getfullargspec | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def getfullargspec(obj):
decorators, target = tf.__internal__.decorator.unwrap(obj)
for d in decorators:
if d.decorator_argspec is not None:
return _convert_maybe_argspec_to_fullargspec(d.decorator_argspec)
return _getfullargspec(target)
| 45 | tf_inspect.py | Python | keras/utils/tf_inspect.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 3 |
|
165,238 | 27 | 11 | 15 | 120 | 20 | 0 | 37 | 176 | _aggregate_with_numba | BUG/REF: Use lru_cache instead of NUMBA_FUNC_CACHE (#46086) | https://github.com/pandas-dev/pandas.git | def _aggregate_with_numba(self, data, func, *args, engine_kwargs=None, **kwargs):
starts, ends, sorted_index, sorted_data = self._numba_prep(data)
numba_.validate_udf(func)
numba_agg_func = numba_.generate_numba_agg_func(
func, **get_jit_arguments(engine_kwargs, kwargs)
)
result = numba_agg_func(
sorted_data,
sorted_index,
starts,
ends,
len(data.columns),
*args,
)
return result
# -----------------------------------------------------------------
# apply/agg/transform
| 81 | groupby.py | Python | pandas/core/groupby/groupby.py | 696a8e90e2112e263c84bfe87168649c3f5234e6 | pandas | 1 |
|
313,672 | 6 | 11 | 3 | 37 | 4 | 0 | 6 | 19 | cover_platform_only | Speed up mqtt tests (#73423)
Co-authored-by: jbouwh <[email protected]>
Co-authored-by: Jan Bouwhuis <[email protected]> | https://github.com/home-assistant/core.git | def cover_platform_only():
with patch("homeassistant.components.mqtt.PLATFORMS", [Platform.COVER]):
yield
| 18 | test_cover.py | Python | tests/components/mqtt/test_cover.py | 51b4d15c8cb83bb715222841aa48e83f77ef38ff | core | 1 |
|
267,890 | 8 | 7 | 3 | 48 | 7 | 0 | 8 | 14 | get_config_handler_type_map | ansible-test - Use more native type hints. (#78435)
* ansible-test - Use more native type hints.
Simple search and replace to switch from comments to native type hints for return types of functions with no arguments.
* ansible-test - Use more native type hints.
Conversion of simple single-line function annotation type comments to native type hints.
* ansible-test - Use more native type hints.
Conversion of single-line function annotation type comments with default values to native type hints.
* ansible-test - Use more native type hints.
Manual conversion of type annotation comments for functions which have pylint directives. | https://github.com/ansible/ansible.git | def get_config_handler_type_map() -> t.Dict[t.Type[HostConfig], t.Type[CoverageHandler]]:
return get_type_map(CoverageHandler, HostConfig)
| 31 | coverage.py | Python | test/lib/ansible_test/_internal/commands/integration/coverage.py | 3eb0485dd92c88cc92152d3656d94492db44b183 | ansible | 1 |
|
296,469 | 8 | 6 | 3 | 25 | 4 | 0 | 8 | 22 | code_format | Replace Alarm Control Panel FORMAT_ constants with CodeFormat enum (#69861) | https://github.com/home-assistant/core.git | def code_format(self) -> CodeFormat | None:
return self._attr_code_format
| 14 | __init__.py | Python | homeassistant/components/alarm_control_panel/__init__.py | 1e4aacaeb12b11090813cb19f1282b6c46705977 | core | 1 |
|
317,566 | 16 | 9 | 23 | 62 | 7 | 0 | 19 | 34 | test_saving_state_with_sqlalchemy_exception | Use recorder get_instance function to improve typing (#75567) | https://github.com/home-assistant/core.git | def test_saving_state_with_sqlalchemy_exception(hass, hass_recorder, caplog):
hass = hass_recorder()
entity_id = "test.recorder"
state = "restoring_from_db"
attributes = {"test_attr": 5, "test_attr_10": "nice"}
| 151 | test_init.py | Python | tests/components/recorder/test_init.py | 606d5441573f52de961010551b34d23aef3317dc | core | 1 |
|
286,355 | 11 | 9 | 5 | 35 | 4 | 0 | 12 | 35 | clean_fraction | [SDK] Allow silencing verbose output in commands that use stocks/load (#3180)
* remove verbose on load
* Revert implementation of the verbosity setting in stocks controller
* Edit docstrings to comply with pydocstyle linting rules
* Fix typos in variable names and help text
* Add verbosity setting to forex load helper as it uses the stocks helper
* Update docstrings to comply with pydocstyle linting rules
* Update tests
* Fix test relying on local sources settings
* Remove old test cassettes
* Add new test data
* WIP: Fix futures tests
* Clean up test file
* Fix futures tests having a time component
* Fix futures model tests
Co-authored-by: James Maslek <[email protected]>
Co-authored-by: Theodore Aptekarev <[email protected]> | https://github.com/OpenBB-finance/OpenBBTerminal.git | def clean_fraction(num, denom):
try:
return num / denom
except TypeError:
return "N/A"
| 19 | stocks_helper.py | Python | openbb_terminal/stocks/stocks_helper.py | 47549cbd9f52a436c06b040fda5b88a7d2bf700a | OpenBBTerminal | 2 |
|
287,770 | 9 | 9 | 2 | 31 | 4 | 0 | 9 | 15 | test_get_provider | Clean up Speech-to-text integration and add tests (#79012) | https://github.com/home-assistant/core.git | async def test_get_provider(hass, test_provider):
assert test_provider == async_get_provider(hass, "test")
| 17 | test_init.py | Python | tests/components/stt/test_init.py | 57746642349a3ca62959de4447a4eb5963a84ae1 | core | 1 |
|
35,696 | 51 | 11 | 6 | 108 | 11 | 1 | 70 | 145 | update_keys_to_ignore | Add Data2Vec (#15507)
* Add data2vec model cloned from roberta
* Add checkpoint conversion script
* Fix copies
* Update docs
* Add checkpoint conversion script
* Remove fairseq data2vec_text script and fix format
* Add comment on where to get data2vec_text.py
* Remove mock implementation cheat.py and fix style
* Fix copies
* Remove TF and Flax classes from init
* Add back copy from fairseq data2vec_text.py and fix style
* Update model name in docs/source/index.mdx to be CamelCase
* Revert model name in table to lower-case to get check_table test to pass
* Update src/transformers/models/data2vec/__init__.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update docs/source/model_doc/data2vec.mdx
Co-authored-by: Sylvain Gugger <[email protected]>
* Update docs/source/model_doc/data2vec.mdx
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/auto/configuration_auto.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update tests/test_modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update documentation
* Copy-paste Data2VecConfig from BertConfig
* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency
* Update config special tokens to match RoBERTa
* Split multiple assertions and add individual error messages
* Rename Data2VecModel to Data2VecForTextModel
* Add Data2Vec to _toctree.yml
* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings
* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).
* finish audio model
* finish audio file
* Update names and fix style, quality and repo consistency
* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.
* add inputs to logits to data2vec'
* correct autio models
* correct config auto
* correct tok auto
* Update utils/tests_fetcher.py
* delete unnecessary files
* delete unnecessary files
* further renaming
* make all tests pass
* finish
* remove useless test file
* Update tests/test_modeling_common.py
* Update utils/check_repo.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec_text.py
Co-authored-by: Patrick von Platen <[email protected]>
* Fix copies
* Update docs
* Remove fairseq data2vec_text script and fix format
* Add comment on where to get data2vec_text.py
* Remove mock implementation cheat.py and fix style
* Fix copies
* Remove TF and Flax classes from init
* Add back copy from fairseq data2vec_text.py and fix style
* Update model name in docs/source/index.mdx to be CamelCase
* Revert model name in table to lower-case to get check_table test to pass
* Update documentation
* Update src/transformers/models/data2vec/__init__.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/auto/configuration_auto.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update tests/test_modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Copy-paste Data2VecConfig from BertConfig
* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency
* Update config special tokens to match RoBERTa
* Split multiple assertions and add individual error messages
* Rename Data2VecModel to Data2VecForTextModel
* Add Data2Vec to _toctree.yml
* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings
* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).
* finish audio model
* finish audio file
* add inputs to logits to data2vec'
* Update names and fix style, quality and repo consistency
* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.
* correct autio models
* correct config auto
* correct tok auto
* delete unnecessary files
* delete unnecessary files
* Update utils/tests_fetcher.py
* further renaming
* make all tests pass
* finish
* remove useless test file
* Update tests/test_modeling_common.py
* Update utils/check_repo.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec_text.py
Co-authored-by: Patrick von Platen <[email protected]>
* Move data2vec tests to new structure
* Fix test imports for text tests
* Remove fairseq files
* Change paper link to arxiv
* Modify Data2Vec documentation to reflect that the encoder is not shared across the audio and text models in the current implementation.
* Update text model checkpoint to be facebook/data2vec-text-base
* Add 'Copy from' statements and update paper links and docs
* fix copy from statements
* improve copied from
* correct more copied from statements
* finish copied from stuff
* make style
* add model to README
* add to master
Co-authored-by: Eduardo Gonzalez Ponferrada <[email protected]>
Co-authored-by: Patrick von Platen <[email protected]>
Co-authored-by: Sylvain Gugger <[email protected]> | https://github.com/huggingface/transformers.git | def update_keys_to_ignore(self, config, del_keys_to_ignore):
if not config.tie_word_embeddings:
# must make a new list, or the class variable gets modified!
self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore]
self._keys_to_ignore_on_load_missing = [
k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore
]
DATA2VECTEXT_START_DOCSTRING = r
DATA2VECTEXT_INPUTS_DOCSTRING = r
@add_start_docstrings(
"The bare Data2VecText Model for text transformer outputting raw hidden-states without any specific head on top.",
DATA2VECTEXT_START_DOCSTRING,
) | @add_start_docstrings(
"The bare Data2VecText Model for text transformer outputting raw hidden-states without any specific head on top.",
DATA2VECTEXT_START_DOCSTRING,
) | 52 | modeling_data2vec_text.py | Python | src/transformers/models/data2vec/modeling_data2vec_text.py | df5a4094a6e3f98f2cb2058cdb688fcc3f453220 | transformers | 6 |
244,125 | 42 | 14 | 15 | 223 | 19 | 0 | 61 | 169 | _expand_onehot_labels | [Fix] Fix reduction=mean in CELoss. (#7449)
* [Fix] Fix ignore in CELoss.
* add ut
* fix and add comments
* add avg_non_ignore option
* bce avg
* fix lint | https://github.com/open-mmlab/mmdetection.git | def _expand_onehot_labels(labels, label_weights, label_channels, ignore_index):
bin_labels = labels.new_full((labels.size(0), label_channels), 0)
valid_mask = (labels >= 0) & (labels != ignore_index)
inds = torch.nonzero(
valid_mask & (labels < label_channels), as_tuple=False)
if inds.numel() > 0:
bin_labels[inds, labels[inds]] = 1
valid_mask = valid_mask.view(-1, 1).expand(labels.size(0),
label_channels).float()
if label_weights is None:
bin_label_weights = valid_mask
else:
bin_label_weights = label_weights.view(-1, 1).repeat(1, label_channels)
bin_label_weights *= valid_mask
return bin_labels, bin_label_weights, valid_mask
| 147 | cross_entropy_loss.py | Python | mmdet/models/losses/cross_entropy_loss.py | 3b2e9655631a2edd28bb94c640bd6a74c0bfad55 | mmdetection | 3 |
|
156,839 | 66 | 12 | 20 | 180 | 20 | 0 | 89 | 221 | solve | Update `da.linalg.solve` for SciPy 1.9.0 compatibility (#9350) | https://github.com/dask/dask.git | def solve(a, b, sym_pos=None, assume_a="gen"):
if sym_pos is not None:
warnings.warn(
"The sym_pos keyword is deprecated and should be replaced by using ``assume_a = 'pos'``."
"``sym_pos`` will be removed in a future version.",
category=FutureWarning,
)
if sym_pos:
assume_a = "pos"
if assume_a == "pos":
l, u = _cholesky(a)
elif assume_a == "gen":
p, l, u = lu(a)
b = p.T.dot(b)
else:
raise ValueError(
f"{assume_a = } is not a recognized matrix structure, valid structures in Dask are 'pos' and 'gen'."
)
uy = solve_triangular(l, b, lower=True)
return solve_triangular(u, uy)
| 105 | linalg.py | Python | dask/array/linalg.py | 386b4753f1aa5d96230c814391fde50758b8f533 | dask | 5 |
|
100,335 | 25 | 13 | 9 | 152 | 10 | 0 | 30 | 108 | set_info_text | Update code to support Tensorflow versions up to 2.8 (#1213)
* Update maximum tf version in setup + requirements
* - bump max version of tf version in launcher
- standardise tf version check
* update keras get_custom_objects for tf>2.6
* bugfix: force black text in GUI file dialogs (linux)
* dssim loss - Move to stock tf.ssim function
* Update optimizer imports for compatibility
* fix logging for tf2.8
* Fix GUI graphing for TF2.8
* update tests
* bump requirements.txt versions
* Remove limit on nvidia-ml-py
* Graphing bugfixes
- Prevent live graph from displaying if data not yet available
* bugfix: Live graph. Collect loss labels correctly
* fix: live graph - swallow inconsistent loss errors
* Bugfix: Prevent live graph from clearing during training
* Fix graphing for AMD | https://github.com/deepfakes/faceswap.git | def set_info_text(self):
if not self.vars["enabled"].get():
msg = f"{self.tabname.title()} disabled"
elif self.vars["enabled"].get() and not self.vars["ready"].get():
msg = f"Waiting for {self.tabname}..."
else:
msg = f"Displaying {self.tabname}"
logger.debug(msg)
self.set_info(msg)
# DISPLAY OPTIONS BAR | 69 | display_page.py | Python | lib/gui/display_page.py | c1512fd41d86ef47a5d1ce618d6d755ef7cbacdf | faceswap | 4 |
|
100,296 | 20 | 10 | 6 | 87 | 13 | 0 | 22 | 72 | stream | alignments tool - Don't re-analyze video if metadata in alignments | https://github.com/deepfakes/faceswap.git | def stream(self, skip_list=None):
loader = ImagesLoader(self.folder, queue_size=32, count=self._count)
if skip_list is not None:
loader.add_skip_list(skip_list)
for filename, image in loader.load():
yield filename, image
| 55 | media.py | Python | tools/alignments/media.py | 30872ef265c0fc29465f4c3a0778d0049f8c3897 | faceswap | 3 |
|
109,422 | 21 | 11 | 7 | 80 | 10 | 0 | 23 | 84 | set_boxstyle | Harmonize docstrings for boxstyle/connectionstyle/arrowstyle.
- Rely on `__init_subclass__` to avoid the need for the out-of-order
`interpd.update`/`dedent_interpd`.
- Use consistent wording for all setters, and add ACCEPTS list in all
cases.
- Move get_boxstyle right next to set_boxstyle (consistently with the
other setters/getters).
- Make the type check in the setters consistent in all cases (check for
str, not for forcing inheritance from the private _Base).
- Support `set_connectionstyle()` as equivalent to
`set_connectionstyle(None)`, consistently with the other two setters. | https://github.com/matplotlib/matplotlib.git | def set_boxstyle(self, boxstyle=None, **kwargs):
if boxstyle is None:
return BoxStyle.pprint_styles()
self._bbox_transmuter = (
BoxStyle(boxstyle, **kwargs)
if isinstance(boxstyle, str) else boxstyle)
self.stale = True
| 51 | patches.py | Python | lib/matplotlib/patches.py | 0dc472b4c7cdcc1e88228988fff17762c90f1cb9 | matplotlib | 3 |
|
176,967 | 55 | 15 | 14 | 138 | 15 | 1 | 92 | 227 | global_efficiency | added examples to efficiency_measures.py (#5643)
* added example on efficiency
* added example on global_efficiency
* added example on local_efficiency
* adjused round up | https://github.com/networkx/networkx.git | def global_efficiency(G):
n = len(G)
denom = n * (n - 1)
if denom != 0:
lengths = nx.all_pairs_shortest_path_length(G)
g_eff = 0
for source, targets in lengths:
for target, distance in targets.items():
if distance > 0:
g_eff += 1 / distance
g_eff /= denom
# g_eff = sum(1 / d for s, tgts in lengths
# for t, d in tgts.items() if d > 0) / denom
else:
g_eff = 0
# TODO This can be made more efficient by computing all pairs shortest
# path lengths in parallel.
return g_eff
@not_implemented_for("directed") | @not_implemented_for("directed") | 76 | efficiency_measures.py | Python | networkx/algorithms/efficiency_measures.py | 435b4622d106d14a3627e162ee163b113bac9854 | networkx | 5 |
276,721 | 35 | 10 | 11 | 121 | 6 | 0 | 54 | 103 | conv_input_length | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def conv_input_length(output_length, filter_size, padding, stride):
if output_length is None:
return None
assert padding in {"same", "valid", "full"}
if padding == "same":
pad = filter_size // 2
elif padding == "valid":
pad = 0
elif padding == "full":
pad = filter_size - 1
return (output_length - 1) * stride - 2 * pad + filter_size
| 70 | conv_utils.py | Python | keras/utils/conv_utils.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 5 |
|
38,141 | 54 | 13 | 20 | 155 | 13 | 0 | 68 | 184 | get_checkpoint_callback | Black preview (#17217)
* Black preview
* Fixup too!
* Fix check copies
* Use the same version as the CI
* Bump black | https://github.com/huggingface/transformers.git | def get_checkpoint_callback(output_dir, metric, save_top_k=1, lower_is_better=False):
if metric == "rouge2":
exp = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
exp = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "loss":
exp = "{val_avg_loss:.4f}-{step_count}"
else:
raise NotImplementedError(
f"seq2seq callbacks only support rouge2, bleu and loss, got {metric}, You can make your own by adding to"
" this function."
)
checkpoint_callback = ModelCheckpoint(
dirpath=output_dir,
filename=exp,
monitor=f"val_{metric}",
mode="min" if "loss" in metric else "max",
save_top_k=save_top_k,
)
return checkpoint_callback
| 83 | callbacks.py | Python | examples/research_projects/seq2seq-distillation/callbacks.py | afe5d42d8d1d80af911ed980c2936bfe887078f6 | transformers | 5 |
|
20,529 | 6 | 8 | 2 | 33 | 4 | 0 | 6 | 12 | remove_quotes | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | https://github.com/pypa/pipenv.git | def remove_quotes(s, l, t):
return t[0][1:-1]
| 21 | actions.py | Python | pipenv/patched/notpip/_vendor/pyparsing/actions.py | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | 1 |
|
292,450 | 7 | 8 | 3 | 28 | 3 | 0 | 7 | 21 | async_will_remove_from_hass | Add dlna_dms integration to support DLNA Digital Media Servers (#66437) | https://github.com/home-assistant/core.git | async def async_will_remove_from_hass(self) -> None:
await self.device_disconnect()
| 14 | dms.py | Python | homeassistant/components/dlna_dms/dms.py | b19bf9b147f4321e89d1f7f01e68337f2102f460 | core | 1 |
|
181,757 | 8 | 8 | 3 | 37 | 6 | 0 | 8 | 17 | test_read_config_file_2 | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | https://github.com/EpistasisLab/tpot.git | def test_read_config_file_2():
tpot_obj = TPOTRegressor()
assert_raises(ValueError, tpot_obj._read_config_file, "tests/test_config.py.bad")
| 20 | tpot_tests.py | Python | tests/tpot_tests.py | 388616b6247ca4ea8de4e2f340d6206aee523541 | tpot | 1 |
|
288,105 | 8 | 9 | 3 | 32 | 5 | 0 | 8 | 22 | available | Add light platform for switchbee integration (#78382)
* Added Light platform for switchbee integration
* added light to .coveragerc
* Applied code review feedback from other PR
* Fixes based on previous reviewes
* fixed small mistake
* added test coverage for light
* aligned code with other PR
* rebased
* fixes
* removed unecessary changes
* Update homeassistant/components/switchbee/light.py
Co-authored-by: epenet <[email protected]>
* Update homeassistant/components/switchbee/light.py
Co-authored-by: epenet <[email protected]>
* more fixes
* more fixes
* adjusting switch with the new change
* more fixes
* Update homeassistant/components/switchbee/light.py
Co-authored-by: epenet <[email protected]>
* Update homeassistant/components/switchbee/light.py
Co-authored-by: epenet <[email protected]>
* Update homeassistant/components/switchbee/light.py
Co-authored-by: epenet <[email protected]>
Co-authored-by: epenet <[email protected]> | https://github.com/home-assistant/core.git | def available(self) -> bool:
return self._is_online and super().available
| 18 | entity.py | Python | homeassistant/components/switchbee/entity.py | de3a1f444ce6f2ab4ae4094a86defeb4290d6f3f | core | 2 |