id
int64 20
338k
| vocab_size
int64 2
671
| ast_levels
int64 4
32
| nloc
int64 1
451
| n_ast_nodes
int64 12
5.6k
| n_identifiers
int64 1
186
| n_ast_errors
int64 0
10
| n_words
int64 2
2.17k
| n_whitespaces
int64 2
13.8k
| fun_name
stringlengths 2
73
| commit_message
stringlengths 51
15.3k
| url
stringlengths 31
59
| code
stringlengths 51
31k
| ast_errors
stringlengths 0
1.46k
| token_counts
int64 6
3.32k
| file_name
stringlengths 5
56
| language
stringclasses 1
value | path
stringlengths 7
134
| commit_id
stringlengths 40
40
| repo
stringlengths 3
28
| complexity
int64 1
153
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
309,437 | 11 | 9 | 5 | 38 | 6 | 0 | 11 | 43 | is_on | Add support for setting RGB and RGBW values for Twinkly lights (#62337)
* Change library to ttls
* Add rgbw support
* Add client session to config flow
* Fix config flow
* Adjust tests 1
* Fix more tests
* Fix last tests
* Add new tests
* Update test for coverage
* Update test for coverage 2
* Update test for coverage 3
* Change brightness to attribute
* Set RGBW mode only when available
* Add RGB support | https://github.com/home-assistant/core.git | async def is_on(self) -> bool:
if self.is_offline:
raise ClientConnectionError()
return self.state
| 21 | __init__.py | Python | tests/components/twinkly/__init__.py | 49a32c398c2b094975a0b8abe3ce356948c911bd | core | 2 |
|
130,358 | 16 | 10 | 7 | 84 | 12 | 0 | 18 | 71 | stop_instances | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | https://github.com/ray-project/ray.git | def stop_instances(self, instance_ids, stopped_mode="StopCharging"):
request = StopInstancesRequest()
request.set_InstanceIds(instance_ids)
request.set_StoppedMode(stopped_mode)
response = self._send_request(request)
if response is None:
logging.error("stop_instances failed")
| 48 | utils.py | Python | python/ray/autoscaler/_private/aliyun/utils.py | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | 2 |
|
105,945 | 8 | 9 | 2 | 36 | 5 | 0 | 8 | 14 | _version_tuple_to_str | Make `Version` hashable (#5238)
* Make Version hashable
* Remove Version.match (unused method) | https://github.com/huggingface/datasets.git | def _version_tuple_to_str(version_tuple):
return ".".join(str(v) for v in version_tuple)
| 20 | version.py | Python | src/datasets/utils/version.py | bde7504fbafa9a0cc9ae847ed55aafd4c0dbc9de | datasets | 2 |
|
249,805 | 28 | 10 | 19 | 178 | 13 | 0 | 48 | 205 | test_medium_does_not_exist | Add an Admin API endpoint for looking up users based on 3PID (#14405) | https://github.com/matrix-org/synapse.git | def test_medium_does_not_exist(self) -> None:
# test for unknown medium
url = "/_synapse/admin/v1/threepid/publickey/users/unknown-key"
channel = self.make_request(
"GET",
url,
access_token=self.admin_user_tok,
)
self.assertEqual(404, channel.code, msg=channel.json_body)
self.assertEqual(Codes.NOT_FOUND, channel.json_body["errcode"])
# test for unknown user with a known medium
url = "/_synapse/admin/v1/threepid/email/users/unknown"
channel = self.make_request(
"GET",
url,
access_token=self.admin_user_tok,
)
self.assertEqual(404, channel.code, msg=channel.json_body)
self.assertEqual(Codes.NOT_FOUND, channel.json_body["errcode"])
| 110 | test_user.py | Python | tests/rest/admin/test_user.py | a3623af74e0af0d2f6cbd37b47dc54a1acd314d5 | synapse | 1 |
|
188,426 | 78 | 13 | 21 | 220 | 24 | 0 | 112 | 323 | authenticate | Fix rbac (#7699)
* perf: 优化 suggesstion
* perf: 修改 migrations
* feat: 添加OIDC认证逻辑
* perf: 修改 backend
* perf: 优化认证backends
* perf: 优化认证backends
* perf: 优化CAS认证, 用户多域名进行访问时回调到各自域名
Co-authored-by: ibuler <[email protected]> | https://github.com/jumpserver/jumpserver.git | def authenticate(request=None, **credentials):
username = credentials.get('username')
for backend, backend_path in _get_backends(return_tuples=True):
# 预先检查,不浪费认证时间
if not backend.username_can_authenticate(username):
continue
# 原生
backend_signature = inspect.signature(backend.authenticate)
try:
backend_signature.bind(request, **credentials)
except TypeError:
# This backend doesn't accept these credentials as arguments. Try the next one.
continue
try:
user = backend.authenticate(request, **credentials)
except PermissionDenied:
# This backend says to stop in our tracks - this user should not be allowed in at all.
break
if user is None:
continue
# 再次检查遇检查中遗漏的用户
if not backend.user_can_authenticate(user):
continue
# Annotate the user object with the path of the backend.
user.backend = backend_path
return user
# The credentials supplied are invalid to all backends, fire signal
user_login_failed.send(sender=__name__, credentials=_clean_credentials(credentials), request=request)
auth.authenticate = authenticate
| 125 | mixins.py | Python | apps/authentication/mixins.py | edfca5eb2486c2f006257723ffeda6f56b170170 | jumpserver | 7 |
|
191,410 | 53 | 9 | 11 | 124 | 7 | 0 | 97 | 139 | test_document_lookup | Harrison/add react chain (#24)
from https://arxiv.org/abs/2210.03629
still need to think if docstore abstraction makes sense | https://github.com/hwchase17/langchain.git | def test_document_lookup() -> None:
page = Document(page_content=_PAGE_CONTENT)
# Start with lookup on "LangChain".
output = page.lookup("LangChain")
assert output == "(Result 1/2) This is a page about LangChain."
# Now switch to looking up "framework".
output = page.lookup("framework")
assert output == "(Result 1/1) It is a really cool framework."
# Now switch back to looking up "LangChain", should reset.
output = page.lookup("LangChain")
assert output == "(Result 1/2) This is a page about LangChain."
# Lookup "LangChain" again, should go to the next mention.
output = page.lookup("LangChain")
assert output == "(Result 2/2) What isn't there to love about langchain?"
| 63 | test_document.py | Python | tests/unit_tests/docstore/test_document.py | ce7b14b84381c766ae42a0f71953b2a56c024dbb | langchain | 1 |
|
259,900 | 93 | 12 | 10 | 434 | 23 | 1 | 147 | 564 | test_fetch_openml_inactive | ENH improve ARFF parser using pandas (#21938)
Co-authored-by: Thomas J. Fan <[email protected]>
Co-authored-by: Olivier Grisel <[email protected]>
Co-authored-by: Adrin Jalali <[email protected]> | https://github.com/scikit-learn/scikit-learn.git | def test_fetch_openml_inactive(monkeypatch, gzip_response, dataset_params):
data_id = 40675
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
msg = "Version 1 of dataset glass2 is inactive,"
with pytest.warns(UserWarning, match=msg):
glass2 = fetch_openml(
cache=False, as_frame=False, parser="liac-arff", **dataset_params
)
assert glass2.data.shape == (163, 9)
assert glass2.details["id"] == "40675"
@pytest.mark.parametrize("gzip_response", [True, False])
@pytest.mark.parametrize(
"data_id, params, err_type, err_msg",
[
(40675, {"name": "glass2"}, ValueError, "No active dataset glass2 found"),
(
61,
{"data_id": 61, "target_column": ["sepalwidth", "class"]},
ValueError,
"Can only handle homogeneous multi-target datasets",
),
(
40945,
{"data_id": 40945, "as_frame": False},
ValueError,
"STRING attributes are not supported for array representation. Try"
" as_frame=True",
),
(
2,
{"data_id": 2, "target_column": "family", "as_frame": True},
ValueError,
"Target column 'family'",
),
(
2,
{"data_id": 2, "target_column": "family", "as_frame": False},
ValueError,
"Target column 'family'",
),
(
61,
{"data_id": 61, "target_column": "undefined"},
KeyError,
"Could not find target_column='undefined'",
),
(
61,
{"data_id": 61, "target_column": ["undefined", "class"]},
KeyError,
"Could not find target_column='undefined'",
),
],
)
@pytest.mark.parametrize("parser", ["liac-arff", "pandas"]) | @pytest.mark.parametrize("gzip_response", [True, False])
@pytest.mark.parametrize(
"data_id, params, err_type, err_msg",
[
(40675, {"name": "glass2"}, ValueError, "No active dataset glass2 found"),
(
61,
{"data_id": 61, "target_column": ["sepalwidth", "class"]},
ValueError,
"Can only handle homogeneous multi-target datasets",
),
(
40945,
{"data_id": 40945, "as_frame": False},
ValueError,
"STRING attributes are not supported for array representation. Try"
" as_frame=True",
),
(
2,
{"data_id": 2, "target_column": "family", "as_frame": True},
ValueError,
"Target column 'family'",
),
(
2,
{"data_id": 2, "target_column": "family", "as_frame": False},
ValueError,
"Target column 'family'",
),
(
61,
{"data_id": 61, "target_column": "undefined"},
KeyError,
"Could not find target_column='undefined'",
),
(
61,
{"data_id": 61, "target_column": ["undefined", "class"]},
KeyError,
"Could not find target_column='undefined'",
),
],
)
@pytest.mark.parametrize("parser", ["liac-arff", "pandas"]) | 76 | test_openml.py | Python | sklearn/datasets/tests/test_openml.py | a47d569e670fd4102af37c3165c9b1ddf6fd3005 | scikit-learn | 1 |
211,327 | 40 | 14 | 13 | 223 | 20 | 0 | 67 | 126 | choose_best_pointorder_fit_another | Refactor rbox (#6704)
* refactor rbox
* modify the code of save results
* fix some problem
* add .gitignore in dataset/dota
* fix test anno path | https://github.com/PaddlePaddle/PaddleDetection.git | def choose_best_pointorder_fit_another(poly1, poly2):
x1, y1, x2, y2, x3, y3, x4, y4 = poly1
combinate = [
np.array([x1, y1, x2, y2, x3, y3, x4, y4]),
np.array([x2, y2, x3, y3, x4, y4, x1, y1]),
np.array([x3, y3, x4, y4, x1, y1, x2, y2]),
np.array([x4, y4, x1, y1, x2, y2, x3, y3])
]
dst_coordinate = np.array(poly2)
distances = np.array(
[np.sum((coord - dst_coordinate)**2) for coord in combinate])
sorted = distances.argsort()
return combinate[sorted[0]]
| 168 | slicebase.py | Python | configs/rotate/tools/slicebase.py | e55e41945d42db787a0f7c557d53d06a6b24536b | PaddleDetection | 2 |
|
158,396 | 44 | 12 | 15 | 197 | 22 | 0 | 54 | 114 | train_batch_ch13 | [PaddlePaddle] Merge master into Paddle branch (#1186)
* change 15.2 title in chinese version (#1109)
change title ’15.2. 情感分析:使用递归神经网络‘ to ’15.2. 情感分析:使用循环神经网络‘
* 修改部分语义表述 (#1105)
* Update r0.17.5 (#1120)
* Bump versions in installation
* 94行typo: (“bert.mall”)->(“bert.small”) (#1129)
* line 313: "bert.mall" -> "bert.small" (#1130)
* fix: update language as native reader (#1114)
* Fix the translation of "stride" (#1115)
* Update index.md (#1118)
修改部分语义表述
* Update self-attention-and-positional-encoding.md (#1133)
依照本书的翻译习惯,将pooling翻译成汇聚
* maybe a comment false (#1149)
* maybe a little false
* maybe a little false
* A minor bug in the rcnn section (Chinese edition) (#1148)
* Update bert.md (#1137)
一个笔误
# 假设batch_size=2,num_pred_positions=3
# 那么batch_idx应该是np.repeat( [0,1], 3 ) = [0,0,0,1,1,1]
* Update calculus.md (#1135)
* fix typo in git documentation (#1106)
* fix: Update the Chinese translation in lr-scheduler.md (#1136)
* Update lr-scheduler.md
* Update chapter_optimization/lr-scheduler.md
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* fix translation for kaggle-house-price.md (#1107)
* fix translation for kaggle-house-price.md
* fix translation for kaggle-house-price.md
Signed-off-by: sunhaizhou <[email protected]>
* Update weight-decay.md (#1150)
* Update weight-decay.md
关于“k多选d”这一部分,中文读者使用排列组合的方式可能更容易理解
关于“给定k个变量,阶数的个数为...”这句话是有歧义的,不是很像中国话,应该是说“阶数为d的项的个数为...”。
并增加了一句对“因此即使是阶数上的微小变化,比如从$2$到$3$,也会显著增加我们模型的复杂性。”的解释
解释为何会增加复杂性以及为何需要细粒度工具。
* Update chapter_multilayer-perceptrons/weight-decay.md
yep
Co-authored-by: goldmermaid <[email protected]>
* Update chapter_multilayer-perceptrons/weight-decay.md
yep
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* Fix a spelling error (#1161)
* Update gru.md (#1152)
The key distinction between vanilla RNNs and GRUs is that the latter support gating of the hidden state.
翻译错误
* Unify the function naming (#1113)
Unify naming of the function 'init_xavier()'.
* Update mlp-concise.md (#1166)
* Update mlp-concise.md
语句不通顺
* Update environment.md
语序异常
* Update config.ini
* fix the imprecise description (#1168)
Co-authored-by: yuande <yuande>
* fix typo in chapter_natural-language-processing-pretraining/glove.md (#1175)
* Fix some typos. (#1163)
* Update batch-norm.md (#1170)
fixing typos u->x in article
* Update linear-regression.md (#1090)
We invoke Stuart Russell and Peter Norvig who, in their classic AI text book Artificial Intelligence: A Modern Approach :cite:Russell.Norvig.2016, pointed out that
原译文把who也直接翻译出来了。
* Update mlp.md (#1117)
* Update mlp.md
修改部分语义表述
* Update chapter_multilayer-perceptrons/mlp.md
Co-authored-by: goldmermaid <[email protected]>
* Update chapter_multilayer-perceptrons/mlp.md
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* Correct a translation error. (#1091)
* Correct a translation error.
* Update chapter_computer-vision/image-augmentation.md
Co-authored-by: Aston Zhang <[email protected]>
* Update aws.md (#1121)
* Update aws.md
* Update chapter_appendix-tools-for-deep-learning/aws.md
Co-authored-by: Aston Zhang <[email protected]>
* Update image-augmentation.md (#1093)
* Update anchor.md (#1088)
fix a minor issue in code
* Update anchor.md
* Update image-augmentation.md
* fix typo and improve translation in chapter_linear-networks\softmax-regression.md (#1087)
* Avoid `torch.meshgrid` user warning (#1174)
Avoids the following user warning:
```python
~/anaconda3/envs/torch/lib/python3.10/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
```
* bump to 2.0.0-beta1
* Update sequence.md
* bump beta1 on readme
* Add latex code block background to config
* BLD: Bump python support version 3.9 (#1183)
* BLD: Bump python support version 3.9
* Remove clear and manually downgrade protobuf 4.21.4 to 3.19.4
* BLD: Bump torch and tensorflow
* Update Jenkinsfile
* Update chapter_installation/index.md
* Update chapter_installation/index.md
Co-authored-by: Aston Zhang <[email protected]>
* Update config.ini
* Update INFO.md
* Update INFO.md
* Drop mint to show code in pdf, use Inconsolata font, apply code cell color (#1187)
* resolve the conflicts
* revise from publisher (#1089)
* revise from publisher
* d2l api
* post_latex
* revise from publisher
* revise ch11
* Delete d2l-Copy1.bib
* clear cache
* rm d2lbook clear
* debug anchor
* keep original d2l doc
Co-authored-by: Ubuntu <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
* 重复语句 (#1188)
Co-authored-by: Aston Zhang <[email protected]>
* Improve expression for chapter_preliminaries/pandas.md (#1184)
* Update pandas.md
* Improve expression
* Improve expression
* Update chapter_preliminaries/pandas.md
Co-authored-by: Aston Zhang <[email protected]>
* Improce expression for chapter_preliminaries/linear-algebra.md (#1185)
* Improce expression
* Improve code comments
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
Co-authored-by: Aston Zhang <[email protected]>
* Fix multibox_detection bugs
* Update d2l to 0.17.5 version
* restore older version
* Upgrade pandas
* change to python3.8
* Test warning log
* relocate warning log
* test logs filtering
* Update gru.md
* Add DeprecationWarning filter
* Test warning log
* Update attention mechanisms & computational performance
* Update multilayer perceptron& linear & convolution networks & computer vision
* Update recurrent&optimition&nlp pretraining & nlp applications
* ignore warnings
* Update index.md
* Update linear networks
* Update multilayer perceptrons&deep learning computation
* Update preliminaries
* Check and Add warning filter
* Update kaggle-cifar10.md
* Update object-detection-dataset.md
* Update ssd.md fcn.md
* Update hybridize.md
* Update hybridize.md
Signed-off-by: sunhaizhou <[email protected]>
Co-authored-by: zhou201505013 <[email protected]>
Co-authored-by: Xinwei Liu <[email protected]>
Co-authored-by: Anirudh Dagar <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: hugo_han <[email protected]>
Co-authored-by: gyro永不抽风 <[email protected]>
Co-authored-by: CanChengZheng <[email protected]>
Co-authored-by: linlin <[email protected]>
Co-authored-by: iuk <[email protected]>
Co-authored-by: yoos <[email protected]>
Co-authored-by: Mr. Justice Lawrence John Wargrave <[email protected]>
Co-authored-by: Chiyuan Fu <[email protected]>
Co-authored-by: Sunhuashan <[email protected]>
Co-authored-by: Haiker Sun <[email protected]>
Co-authored-by: Ming Liu <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: silenceZheng66 <[email protected]>
Co-authored-by: Wenchao Yan <[email protected]>
Co-authored-by: Kiki2049 <[email protected]>
Co-authored-by: Krahets <[email protected]>
Co-authored-by: friedmainfunction <[email protected]>
Co-authored-by: Jameson <[email protected]>
Co-authored-by: P. Yao <[email protected]>
Co-authored-by: Yulv-git <[email protected]>
Co-authored-by: Liu,Xiao <[email protected]>
Co-authored-by: YIN, Gang <[email protected]>
Co-authored-by: Joe-HZ <[email protected]>
Co-authored-by: lybloveyou <[email protected]>
Co-authored-by: VigourJiang <[email protected]>
Co-authored-by: zxhd863943427 <[email protected]>
Co-authored-by: LYF <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: xiaotinghe <[email protected]>
Co-authored-by: Ubuntu <[email protected]>
Co-authored-by: Holly-Max <[email protected]>
Co-authored-by: HinGwenWoong <[email protected]>
Co-authored-by: Shuai Zhang <[email protected]> | https://github.com/d2l-ai/d2l-zh.git | def train_batch_ch13(net, X, y, loss, trainer, devices):
if isinstance(X, list):
# Required for BERT fine-tuning (to be covered later)
X = [x.to(devices[0]) for x in X]
else:
X = X.to(devices[0])
y = y.to(devices[0])
net.train()
trainer.zero_grad()
pred = net(X)
l = loss(pred, y)
l.sum().backward()
trainer.step()
train_loss_sum = l.sum()
train_acc_sum = d2l.accuracy(pred, y)
return train_loss_sum, train_acc_sum
| 124 | torch.py | Python | d2l/torch.py | b64b41d8c1ac23c43f7a4e3f9f6339d6f0012ab2 | d2l-zh | 3 |
|
86,689 | 78 | 19 | 52 | 436 | 53 | 0 | 92 | 672 | __fetch_randomly_sampled_transactions | feat(dynamic-sampling): Improve empty transaction breakdown message [TET-338] (#39539)
This PR add new attribute parentProjectBreakdown to
/api/0/projects/<organization_slug>/<project_slug>/dynamic-sampling/distribution/
api:
```
{
"projectBreakdown": null,
"sampleSize": 0,
"startTimestamp": null,
"endTimestamp": null,
"parentProjectBreakdown": [
{
"projectId": 1,
"percentage": 0.9,
"project": "sentry"
},
{
"projectId": 2,
"percentage": 0.1,
"project": "javascript"
}
]
}
```
TODO:
- [x] Update src/sentry/snuba/referrer.py
https://github.com/getsentry/sentry/blob/0fbbf1626f86399b1ca4a2781d66ef96aac69de7/src/sentry/snuba/referrer.py#L208-L210
- [x] Add missing tests
Co-authored-by: Andrii Soldatenko <[email protected]>
Co-authored-by: ahmedetefy <[email protected]> | https://github.com/getsentry/sentry.git | def __fetch_randomly_sampled_transactions(self, project, query, sample_size, query_time_range):
sampling_factor = self.__generate_transactions_sampling_factor(
project=project,
query=query,
sample_size=sample_size,
query_time_range=query_time_range,
)
builder = QueryBuilder(
Dataset.Discover,
params={
"start": query_time_range.start_time,
"end": query_time_range.end_time,
"project_id": [project.id],
"organization_id": project.organization.id,
},
query=f"{query} event.type:transaction",
selected_columns=[
"id",
"trace",
"random_number() as rand_num",
f"modulo(rand_num, {sampling_factor}) as modulo_num",
],
equations=[],
orderby=None,
auto_fields=True,
auto_aggregations=True,
use_aggregate_conditions=True,
functions_acl=["random_number", "modulo"],
limit=sample_size,
offset=0,
equation_config={"auto_add": False},
)
builder.add_conditions([Condition(lhs=Column("modulo_num"), op=Op.EQ, rhs=0)])
snuba_query = builder.get_snql_query().query
snuba_query = snuba_query.set_select(
snuba_query.select
+ [
Function(
"not",
[Function("has", [Column("contexts.key"), TRACE_PARENT_SPAN_CONTEXT])],
alias="is_root",
)
]
)
snuba_query = snuba_query.set_groupby(
snuba_query.groupby + [Column("modulo_num"), Column("contexts.key")]
)
data = raw_snql_query(
SnubaRequest(dataset=Dataset.Discover.value, app_id="default", query=snuba_query),
referrer=Referrer.DYNAMIC_SAMPLING_DISTRIBUTION_FETCH_TRANSACTIONS.value,
)["data"]
return data
| 275 | project_dynamic_sampling.py | Python | src/sentry/api/endpoints/project_dynamic_sampling.py | ceee9dfd8d6fed70d34546e7b46ebb7bf1d49745 | sentry | 1 |
|
247,315 | 43 | 15 | 42 | 412 | 15 | 0 | 69 | 500 | test_search_filter_not_labels | Add type hints to `tests/rest/client` (#12108)
* Add type hints to `tests/rest/client`
* newsfile
* fix imports
* add `test_account.py`
* Remove one type hint in `test_report_event.py`
* change `on_create_room` to `async`
* update new functions in `test_third_party_rules.py`
* Add `test_filter.py`
* add `test_rooms.py`
* change to `assertEquals` to `assertEqual`
* lint | https://github.com/matrix-org/synapse.git | def test_search_filter_not_labels(self) -> None:
request_data = json.dumps(
{
"search_categories": {
"room_events": {
"search_term": "label",
"filter": self.FILTER_NOT_LABELS,
}
}
}
)
self._send_labelled_messages_in_room()
channel = self.make_request(
"POST", "/search?access_token=%s" % self.tok, request_data
)
results = channel.json_body["search_categories"]["room_events"]["results"]
self.assertEqual(
len(results),
4,
[result["result"]["content"] for result in results],
)
self.assertEqual(
results[0]["result"]["content"]["body"],
"without label",
results[0]["result"]["content"]["body"],
)
self.assertEqual(
results[1]["result"]["content"]["body"],
"without label",
results[1]["result"]["content"]["body"],
)
self.assertEqual(
results[2]["result"]["content"]["body"],
"with wrong label",
results[2]["result"]["content"]["body"],
)
self.assertEqual(
results[3]["result"]["content"]["body"],
"with two wrong labels",
results[3]["result"]["content"]["body"],
)
| 236 | test_rooms.py | Python | tests/rest/client/test_rooms.py | 2ffaf30803f93273a4d8a65c9e6c3110c8433488 | synapse | 2 |
|
271,596 | 71 | 13 | 14 | 89 | 9 | 0 | 87 | 274 | _assert_weights_created | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def _assert_weights_created(self):
if self.dynamic:
return
if (
"build" in self.__class__.__dict__
and self.__class__ != Model
and not self.built
):
# For any model that has customized build() method but hasn't
# been invoked yet, this will cover both sequential and subclass model.
# Also make sure to exclude Model class itself which has build() defined.
raise ValueError(
f"Weights for model {self.name} have not yet been "
"created. "
"Weights are created when the Model is first called on "
"inputs or `build()` is called with an `input_shape`."
)
| 43 | training.py | Python | keras/engine/training.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 5 |
|
47,758 | 10 | 6 | 28 | 44 | 10 | 0 | 12 | 33 | _iter_all_mapped_downstreams | Ensure TaskMap only checks "relevant" dependencies (#23053)
When looking for "mapped dependants" of a task, we only want a task if
it not only is a direct downstream of the task, but also it actually
"uses" the task's pushed XCom for task mapping. So we need to peek into
the mapped downstream task's expansion kwargs, and only count it as a
mapped dependant if the upstream is referenced there. | https://github.com/apache/airflow.git | def _iter_all_mapped_downstreams(self) -> Iterator["MappedOperator"]:
from airflow.models.mappedoperator import MappedOperator
from airflow.utils.task_group import TaskGroup
| 82 | taskmixin.py | Python | airflow/models/taskmixin.py | 197cff3194e855b9207c3c0da8ae093a0d5dda55 | airflow | 6 |
|
245,836 | 12 | 11 | 3 | 41 | 7 | 0 | 12 | 37 | _forward | [Feature] Support training detection models in detectron2 (#8672)
* [Feature]Support using mmengine to train detectron2
* update
* del unnecessary comments
* minor fix
* minor fix
* Support mask rcnn and retinanet
* minor fix
* minor fix
* minor fix
* minor fix
* minor fix
* minor fix
* chinese doc
* update
* minor fix
* minor fix
* update docs | https://github.com/open-mmlab/mmdetection.git | def _forward(self, *args, **kwargs):
raise NotImplementedError(
f'`_forward` is not implemented in {self.__class__.__name__}')
| 18 | d2_wrapper.py | Python | mmdet/models/detectors/d2_wrapper.py | 9c1b26726eebe4a196d213249dc22e8017761fab | mmdetection | 1 |
|
188,886 | 242 | 17 | 100 | 940 | 48 | 0 | 464 | 2,148 | get_bookmark_data | Automated upgrade of code to python 3.7+
Done by https://github.com/asottile/pyupgrade
Consists mainly of moving string formatting to f-strings and removing
encoding declarations | https://github.com/kovidgoyal/calibre.git | def get_bookmark_data(self):
user_notes = {}
self.timestamp = os.path.getmtime(self.path)
cursor = self.db_connection.cursor()
book_query_values = (self.contentId,)
kepub_chapter_query = (
'SELECT c.ContentID, c.BookTitle, c.Title, c.VolumeIndex, c.___NumPages, c.MimeType '
'FROM content c '
'WHERE ContentType = 899 '
'AND c.BookID = ? '
'ORDER BY c.VolumeIndex'
)
bookmark_query = (
'SELECT bm.BookmarkID, bm.ContentID, bm.Text, bm.Annotation, '
'bm.ChapterProgress, bm.StartContainerChildIndex, bm.StartOffset, '
'c.BookTitle, c.Title, c.volumeIndex, c.MimeType '
'FROM Bookmark bm LEFT OUTER JOIN Content c ON c.ContentID = bm.ContentID '
'WHERE bm.Hidden = "false" AND bm.volumeid = ? '
'ORDER BY bm.ContentID, bm.chapterprogress'
)
debug_print(f"Kobo::Bookmark::get_bookmark_data - getting kepub chapters: contentId={self.contentId}")
cursor.execute(kepub_chapter_query, book_query_values)
kepub_chapters = {}
if self.kepub:
try:
for chapter_row in cursor:
chapter_contentID = chapter_row['ContentID']
chapter_contentID = chapter_contentID[:chapter_contentID.rfind('-')]
kepub_chapters[chapter_contentID] = {
'chapter_title': chapter_row['Title'],
'chapter_index': chapter_row['VolumeIndex']
}
debug_print(f"Kobo::Bookmark::get_bookmark_data - getting kepub chapter: kepub chapters={kepub_chapters}")
except:
debug_print("Kobo::Bookmark::get_bookmark_data - No chapters found")
cursor.execute(bookmark_query, book_query_values)
previous_chapter = 0
bm_count = 0
for row in cursor:
current_chapter = row['VolumeIndex'] if row['VolumeIndex'] is not None else 0
chapter_title = row['Title']
# For kepubs on newer firmware, the title needs to come from an 899 row.
if self.kepub:
chapter_contentID = row['ContentID']
debug_print(f"Kobo::Bookmark::get_bookmark_data - getting kepub: chapter chapter_contentID='{chapter_contentID}'")
filename_index = chapter_contentID.find('!')
book_contentID_part = chapter_contentID[:filename_index]
debug_print(f"Kobo::Bookmark::get_bookmark_data - getting kepub: chapter book_contentID_part='{book_contentID_part}'")
file_contentID_part = chapter_contentID[filename_index + 1:]
filename_index = file_contentID_part.find('!')
opf_reference = file_contentID_part[:filename_index]
debug_print(f"Kobo::Bookmark::get_bookmark_data - getting kepub: chapter opf_reference='{opf_reference}'")
file_contentID_part = file_contentID_part[filename_index + 1:]
debug_print(f"Kobo::Bookmark::get_bookmark_data - getting kepub: chapter file_contentID_part='{file_contentID_part}'")
# from urllib import quote
# file_contentID_part = quote(file_contentID_part)
chapter_contentID = book_contentID_part + "!" + opf_reference + "!" + file_contentID_part
debug_print(f"Kobo::Bookmark::get_bookmark_data - getting kepub chapter chapter_contentID='{chapter_contentID}'")
kepub_chapter = kepub_chapters.get(chapter_contentID, None)
if kepub_chapter is not None:
chapter_title = kepub_chapter['chapter_title']
current_chapter = kepub_chapter['chapter_index']
else:
chapter_title = ''
current_chapter = 0
if previous_chapter == current_chapter:
bm_count = bm_count + 1
else:
bm_count = 0
text = row['Text']
annotation = row['Annotation']
# A dog ear (bent upper right corner) is a bookmark
if row['StartContainerChildIndex'] == row['StartOffset'] == 0: # StartContainerChildIndex = StartOffset = 0
e_type = 'Bookmark'
text = row['Title']
# highlight is text with no annotation
elif text is not None and (annotation is None or annotation == ""):
e_type = 'Highlight'
elif text and annotation:
e_type = 'Annotation'
else:
e_type = 'Unknown annotation type'
note_id = current_chapter * 1000 + bm_count
# book_title = row[8]
chapter_progress = min(round(float(100*row['ChapterProgress']),2),100)
user_notes[note_id] = dict(id=self.id,
displayed_location=note_id,
type=e_type,
text=text,
annotation=annotation,
chapter=current_chapter,
chapter_title=chapter_title,
chapter_progress=chapter_progress)
previous_chapter = current_chapter
# debug_print("e_type:" , e_type, '\t', 'loc: ', note_id, 'text: ', text,
# 'annotation: ', annotation, 'chapter_title: ', chapter_title,
# 'chapter_progress: ', chapter_progress, 'date: ')
cursor.execute('SELECT DateLastRead, ___PercentRead, ReadStatus '
'FROM content '
'WHERE bookid IS NULL '
'AND ReadStatus > 0 '
'AND ContentID = ? '
'ORDER BY DateLastRead, ReadStatus',
book_query_values)
for row in cursor:
self.last_read = row['DateLastRead']
self.percent_read = 100 if (row['ReadStatus'] == 2) else row['___PercentRead']
# print row[1]
cursor.close()
# self.last_read_location = self.last_read - self.pdf_page_offset
self.user_notes = user_notes
| 518 | bookmark.py | Python | src/calibre/devices/kobo/bookmark.py | eb78a761a99ac20a6364f85e12059fec6517d890 | calibre | 17 |
|
177,015 | 40 | 13 | 12 | 183 | 22 | 0 | 57 | 177 | assert_lca_dicts_same | Naive lowest common ancestor implementation (#5736)
* Add naive lca methods
* Naive algorithm implementation for LCA
* Modify naive lca functions
* Correct parameters of nx.ancestors
* Update lowest_common_ancestors.py
* Parametrize tests
* Apply suggestions from code review
Co-authored-by: Dan Schult <[email protected]>
* Yield instead of append
* Tests for naive lca
* Correct test cases for naive lca algorithms
* Apply suggestions from code review
Co-authored-by: Mridul Seth <[email protected]>
* Fix function name -when calling
* Make requested changes
* Inlining _get_a_lowest_common_ancestor
Co-authored-by: dtuncturk <[email protected]>
Co-authored-by: Dan Schult <[email protected]>
Co-authored-by: Mridul Seth <[email protected]> | https://github.com/networkx/networkx.git | def assert_lca_dicts_same(self, d1, d2, G=None):
if G is None:
G = self.DG
root_distance = self.root_distance
else:
roots = [n for n, deg in G.in_degree if deg == 0]
assert len(roots) == 1
root_distance = nx.shortest_path_length(G, source=roots[0])
for a, b in ((min(pair), max(pair)) for pair in chain(d1, d2)):
assert (
root_distance[get_pair(d1, a, b)] == root_distance[get_pair(d2, a, b)]
)
| 124 | test_lowest_common_ancestors.py | Python | networkx/algorithms/tests/test_lowest_common_ancestors.py | b2f91c34a23058dd70b41784af0d87890216026a | networkx | 6 |
|
14,007 | 9 | 6 | 12 | 38 | 7 | 0 | 9 | 16 | stream | refactor: make server link to gateway so that custom gateway can inherit (#5526) | https://github.com/jina-ai/jina.git | async def stream(self, request_iterator, context=None, *args, **kwargs) -> AsyncIterator['Request']:
| 50 | gateway.py | Python | jina/serve/runtimes/gateway/grpc/gateway.py | f854d5ddc10f6d4392a7da8722482463af56be9b | jina | 2 |
|
68,196 | 47 | 14 | 21 | 225 | 19 | 0 | 72 | 51 | get_actual_start_end_datetime_of_shift | refactor: consider timeslots in `get_employee_shift` | https://github.com/frappe/erpnext.git | def get_actual_start_end_datetime_of_shift(employee, for_datetime, consider_default_shift=False):
actual_shift_start = actual_shift_end = shift_details = None
shift_timings_as_per_timestamp = get_employee_shift_timings(employee, for_datetime, consider_default_shift)
timestamp_list = []
for shift in shift_timings_as_per_timestamp:
if shift:
timestamp_list.extend([shift.actual_start, shift.actual_end])
else:
timestamp_list.extend([None, None])
timestamp_index = None
for index, timestamp in enumerate(timestamp_list):
if timestamp and for_datetime <= timestamp:
timestamp_index = index
break
if timestamp_index and timestamp_index%2 == 1:
shift_details = shift_timings_as_per_timestamp[int((timestamp_index-1)/2)]
actual_shift_start = shift_details.actual_start
actual_shift_end = shift_details.actual_end
elif timestamp_index:
shift_details = shift_timings_as_per_timestamp[int(timestamp_index/2)]
return actual_shift_start, actual_shift_end, shift_details
| 145 | shift_assignment.py | Python | erpnext/hr/doctype/shift_assignment/shift_assignment.py | 625a9f69f592be8c50c9b1bd1a16e0b7b9157988 | erpnext | 9 |
|
286,290 | 25 | 14 | 7 | 130 | 12 | 0 | 41 | 76 | get_last_time_market_was_open | [SDK] Allow silencing verbose output in commands that use stocks/load (#3180)
* remove verbose on load
* Revert implementation of the verbosity setting in stocks controller
* Edit docstrings to comply with pydocstyle linting rules
* Fix typos in variable names and help text
* Add verbosity setting to forex load helper as it uses the stocks helper
* Update docstrings to comply with pydocstyle linting rules
* Update tests
* Fix test relying on local sources settings
* Remove old test cassettes
* Add new test data
* WIP: Fix futures tests
* Clean up test file
* Fix futures tests having a time component
* Fix futures model tests
Co-authored-by: James Maslek <[email protected]>
Co-authored-by: Theodore Aptekarev <[email protected]> | https://github.com/OpenBB-finance/OpenBBTerminal.git | def get_last_time_market_was_open(dt):
# Check if it is a weekend
if dt.date().weekday() > 4:
dt = get_last_time_market_was_open(dt - timedelta(hours=24))
# Check if it is a holiday
if dt.strftime("%Y-%m-%d") in us_holidays():
dt = get_last_time_market_was_open(dt - timedelta(hours=24))
dt = dt.replace(hour=21, minute=0, second=0)
return dt
| 77 | helper_funcs.py | Python | openbb_terminal/helper_funcs.py | 47549cbd9f52a436c06b040fda5b88a7d2bf700a | OpenBBTerminal | 3 |
|
32,820 | 7 | 8 | 5 | 48 | 5 | 0 | 12 | 27 | _patch_hf_hub_tqdm | Use new huggingface_hub tools for download models (#18438)
* Draft new cached_file
* Initial draft for config and model
* Small fixes
* Fix first batch of tests
* Look in cache when internet is down
* Fix last tests
* Bad black, not fixing all quality errors
* Make diff less
* Implement change for TF and Flax models
* Add tokenizer and feature extractor
* For compatibility with main
* Add utils to move the cache and auto-do it at first use.
* Quality
* Deal with empty commit shas
* Deal with empty etag
* Address review comments | https://github.com/huggingface/transformers.git | def _patch_hf_hub_tqdm():
old_tqdm = huggingface_hub.file_download.tqdm
huggingface_hub.file_download.tqdm = tqdm
yield
huggingface_hub.file_download.tqdm = old_tqdm
| 27 | hub.py | Python | src/transformers/utils/hub.py | 5cd40323684c183c30b34758aea1e877996a7ac9 | transformers | 1 |
|
85,460 | 39 | 11 | 9 | 158 | 16 | 1 | 54 | 95 | test_spanner_indexer_implementation_bulk_insert_twice_gives_same_result | feat(indexer-spanner): Implementation of core api's (#37802)
Implementation of all the api's of `RawCloudSpannerIndexer`. The
`bulk_record` implementation uses DML instead of mutations. Did not
implement the `bulk_record` implementation using mutations since this PR
is already big.
The test cases run when setup correctly with our cloud instance. | https://github.com/getsentry/sentry.git | def test_spanner_indexer_implementation_bulk_insert_twice_gives_same_result(testing_indexer):
record = {"org_id": 55555, "string": get_random_string(10)}
record1_int = testing_indexer.record(
use_case_id=UseCaseKey.PERFORMANCE, org_id=record["org_id"], string=record["string"]
)
# Insert the record again to validate that the returned id is the one we
# got from the first insert.
record2_int = testing_indexer.record(
use_case_id=UseCaseKey.PERFORMANCE, org_id=record["org_id"], string=record["string"]
)
assert record1_int == record2_int
@patch(
"sentry.sentry_metrics.indexer.cloudspanner.cloudspanner.RawCloudSpannerIndexer._insert_collisions_handled"
)
@pytest.mark.skip(reason="TODO: Implement it correctly") | @patch(
"sentry.sentry_metrics.indexer.cloudspanner.cloudspanner.RawCloudSpannerIndexer._insert_collisions_handled"
)
@pytest.mark.skip(reason="TODO: Implement it correctly") | 76 | test_cloudspanner.py | Python | tests/sentry/sentry_metrics/test_cloudspanner.py | 21bf2ff99d3352c7cc8b7901fb3b4c264a71a8e8 | sentry | 1 |
176,383 | 22 | 11 | 6 | 122 | 15 | 0 | 24 | 42 | test_to_numpy_array_structured_dtype_attrs_from_fields | Add structured dtypes to `to_numpy_array` (#5324)
* Add basic test for supporting multi-attr adjacency.
* WIP: sloppy implementation of multiattr adjacency in to_numpy_array.
Conditionals could be improved.
* Reorg conditionals.
* Test to_numpy_array raises with structured dtype for multigraphs.
* Fix default value handling for structured types.
* Add tests for dtypes with single field.
* Parametrize field tests for directed/undirected inputs.
* Handle ambiguous case: structured dtype + specified weight.
* Add test for multiple fields that may/not have corresponding edge attrs.
* Updated docstring.
* Add tests with nonedge values + structured dtypes. | https://github.com/networkx/networkx.git | def test_to_numpy_array_structured_dtype_attrs_from_fields(G, expected):
G.add_edge(0, 1, weight=10, cost=5.0)
dtype = np.dtype([("weight", int), ("cost", int)])
A = nx.to_numpy_array(G, dtype=dtype, weight=None)
expected = np.asarray(expected, dtype=dtype)
npt.assert_array_equal(A, expected)
| 82 | test_convert_numpy.py | Python | networkx/tests/test_convert_numpy.py | d2278b4c3402c735a31e266adde75ecc2eeb98eb | networkx | 1 |
|
123,994 | 25 | 11 | 14 | 78 | 9 | 0 | 26 | 91 | _garbage_collect | [workflow] Major refactoring - new async workflow executor (#25618)
* major workflow refactoring | https://github.com/ray-project/ray.git | def _garbage_collect(self) -> None:
state = self._state
while state.free_outputs:
# garbage collect all free outputs immediately
gc_task_id = state.free_outputs.pop()
assert state.get_input(gc_task_id) is not None
state.output_map.pop(gc_task_id, None)
| 47 | workflow_executor.py | Python | python/ray/workflow/workflow_executor.py | ddd63aba77b0e4da699e358beba37cd907f7cb37 | ray | 2 |
|
91,381 | 26 | 12 | 14 | 198 | 30 | 0 | 32 | 142 | test_upgrade_org_config_no_dsn | ref: replace self.assertRaises with pytest.raises (#35685)
* add flake8 plugin to detect assertRaises
* ref: replace self.assertRaises with pytest.raises
* non-sed fixes | https://github.com/getsentry/sentry.git | def test_upgrade_org_config_no_dsn(self):
with self.tasks():
self.assert_setup_flow()
project_id = self.project.id
org = self.organization
data = {
"project_mappings": [[project_id, "Qme9NXBpguaRxcXssZ1NWHVaM98MAL6PHDXUs1jPrgiM8H"]]
}
integration = Integration.objects.get(provider=self.provider.key)
installation = integration.get_installation(org.id)
dsn = ProjectKey.get_default(project=Project.objects.get(id=project_id))
dsn.update(id=dsn.id, status=ProjectKeyStatus.INACTIVE)
with pytest.raises(ValidationError):
installation.update_organization_config(data)
| 118 | test_integration.py | Python | tests/sentry/integrations/vercel/test_integration.py | 284e980df0018f8baee659999268bdd4c7d08255 | sentry | 1 |
|
259,862 | 25 | 13 | 10 | 131 | 20 | 0 | 27 | 69 | test_partial_fit_validate_feature_names | FIX partial_fit from SelectFromModel doesn't validate the parameters (#23299)
Co-authored-by: Thomas J. Fan <[email protected]>
Co-authored-by: Guillaume Lemaitre <[email protected]> | https://github.com/scikit-learn/scikit-learn.git | def test_partial_fit_validate_feature_names(as_frame):
pytest.importorskip("pandas")
X, y = datasets.load_iris(as_frame=as_frame, return_X_y=True)
selector = SelectFromModel(estimator=SGDClassifier(), max_features=4).partial_fit(
X, y, classes=[0, 1, 2]
)
if as_frame:
assert_array_equal(selector.feature_names_in_, X.columns)
else:
assert not hasattr(selector, "feature_names_in_")
| 82 | test_from_model.py | Python | sklearn/feature_selection/tests/test_from_model.py | eace47aea7431b4b6ea08e4fb33bd73805d1f1b0 | scikit-learn | 2 |
|
125,200 | 7 | 12 | 2 | 47 | 8 | 0 | 7 | 13 | _multiline_width | [State Observability] Use a table format by default (#26159)
NOTE: tabulate is copied/pasted to the codebase for table formatting.
This PR changes the default layout to be the table format for both summary and list APIs. | https://github.com/ray-project/ray.git | def _multiline_width(multiline_s, line_width_fn=len):
return max(map(line_width_fn, re.split("[\r\n]", multiline_s)))
| 27 | tabulate.py | Python | python/ray/_private/thirdparty/tabulate/tabulate.py | adf24bfa9723b0621183bb27f0c889b813c06e8a | ray | 1 |
|
260,243 | 94 | 25 | 29 | 315 | 20 | 0 | 145 | 504 | validate_parameter_constraints | MNT Param validation: Allow to skip validation of a parameter (#23602) | https://github.com/scikit-learn/scikit-learn.git | def validate_parameter_constraints(parameter_constraints, params, caller_name):
if params.keys() != parameter_constraints.keys():
raise ValueError(
f"The parameter constraints {list(parameter_constraints.keys())} do not "
f"match the parameters to validate {list(params.keys())}."
)
for param_name, param_val in params.items():
constraints = parameter_constraints[param_name]
if constraints == "no_validation":
continue
constraints = [make_constraint(constraint) for constraint in constraints]
for constraint in constraints:
if constraint.is_satisfied_by(param_val):
# this constraint is satisfied, no need to check further.
break
else:
# No constraint is satisfied, raise with an informative message.
# Ignore constraints that we don't want to expose in the error message,
# i.e. options that are for internal purpose or not officially supported.
constraints = [
constraint for constraint in constraints if not constraint.hidden
]
if len(constraints) == 1:
constraints_str = f"{constraints[0]}"
else:
constraints_str = (
f"{', '.join([str(c) for c in constraints[:-1]])} or"
f" {constraints[-1]}"
)
raise ValueError(
f"The {param_name!r} parameter of {caller_name} must be"
f" {constraints_str}. Got {param_val!r} instead."
)
| 126 | _param_validation.py | Python | sklearn/utils/_param_validation.py | d7c38282839d09676c49ac60fdd67af89d61e79c | scikit-learn | 10 |
|
311,432 | 75 | 11 | 10 | 160 | 25 | 0 | 113 | 247 | _entry_from_accessory | Remove deprecated helper functions from homekit_controller pairing flow (#65270) | https://github.com/home-assistant/core.git | async def _entry_from_accessory(self, pairing):
# The bulk of the pairing record is stored on the config entry.
# A specific exception is the 'accessories' key. This is more
# volatile. We do cache it, but not against the config entry.
# So copy the pairing data and mutate the copy.
pairing_data = pairing.pairing_data.copy()
# Use the accessories data from the pairing operation if it is
# available. Otherwise request a fresh copy from the API.
# This removes the 'accessories' key from pairing_data at
# the same time.
if not (accessories := pairing_data.pop("accessories", None)):
accessories = await pairing.list_accessories_and_characteristics()
parsed = Accessories.from_list(accessories)
accessory_info = parsed.aid(1).services.first(
service_type=ServicesTypes.ACCESSORY_INFORMATION
)
name = accessory_info.value(CharacteristicsTypes.NAME, "")
return self.async_create_entry(title=name, data=pairing_data)
| 92 | config_flow.py | Python | homeassistant/components/homekit_controller/config_flow.py | cc94af2872945667d80f8f76512260ae6205d739 | core | 2 |
|
269,753 | 19 | 15 | 10 | 118 | 6 | 0 | 33 | 95 | generate_benchmark_params_cpu_gpu | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def generate_benchmark_params_cpu_gpu(*params_list):
benchmark_params = []
for params in params_list:
benchmark_params.extend(
[((param[0] + "_CPU",) + param[1:]) for param in params]
)
benchmark_params.extend(
[((param[0] + "_GPU",) + param[1:]) for param in params]
)
return benchmark_params
| 74 | benchmark_util.py | Python | keras/benchmarks/benchmark_util.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 4 |
|
190,115 | 30 | 10 | 24 | 217 | 21 | 0 | 48 | 272 | add_bases | Replaced renderer strings with :class:`.RendererType` enum entries (#3017)
* remove unused constants
* remove deprecated --use_opengl_renderer flag
* remove unnecessary workaround with class initialization
* add OpenGLMobject.name to get rid of one renderer check
* add VMobject.n_points_per_curve property to get rid of more renderer checks
* replace renderer string checks with enum check
* added mobject.utils module with renderer-dependent class getters
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* ensure that capitalization of passed renderer type is irrelevant
* remove unused entries from mobject.utils.__all__
* fixed isort ignore in manim.__init__
* fixed lower-case casting of passed renderer
* fixed doctests
* more documentation + doctests for mobject.utils
* removed incorrect paragraph about ConverToOpenGL metaclass
* added docstring for RendererType enum
* renderer compatibility section in plugin dev documentation
* added mobject.utils to reference manual
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Remove actual doctest (it ran the compatibility code)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Naveen M K <[email protected]> | https://github.com/ManimCommunity/manim.git | def add_bases(self):
if config.renderer == RendererType.OPENGL:
color = self.color
opacity = self.opacity
elif config.renderer == RendererType.CAIRO:
color = self.fill_color
opacity = self.fill_opacity
self.base_top = Circle(
radius=self.radius,
color=color,
fill_opacity=opacity,
shade_in_3d=True,
stroke_width=0,
)
self.base_top.shift(self.u_range[1] * IN)
self.base_bottom = Circle(
radius=self.radius,
color=color,
fill_opacity=opacity,
shade_in_3d=True,
stroke_width=0,
)
self.base_bottom.shift(self.u_range[0] * IN)
self.add(self.base_top, self.base_bottom)
| 144 | three_dimensions.py | Python | manim/mobject/three_d/three_dimensions.py | bd844f46d804c8cad50d06ad20ab5bebaee9987b | manim | 3 |
|
290,428 | 25 | 10 | 12 | 97 | 15 | 0 | 25 | 133 | async_return_to_base | Use `_attr_` for MQTT vacuum (#81534)
* Use `_attr_` for MQTT vacuum
* Remove unneeded properties
* Follow-up comment
* Remove default value | https://github.com/home-assistant/core.git | async def async_return_to_base(self, **kwargs):
if self.supported_features & VacuumEntityFeature.RETURN_HOME == 0:
return None
await self.async_publish(
self._command_topic,
self._payloads[CONF_PAYLOAD_RETURN_TO_BASE],
self._qos,
self._retain,
self._encoding,
)
self._attr_status = "Returning home..."
self.async_write_ha_state()
| 61 | schema_legacy.py | Python | homeassistant/components/mqtt/vacuum/schema_legacy.py | b364ef98a073214aad8deff4ff9b91e9ff041557 | core | 2 |
|
131,041 | 12 | 11 | 27 | 77 | 12 | 2 | 12 | 25 | test_working_dir_basic | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | https://github.com/ray-project/ray.git | def test_working_dir_basic(ray_start, tmp_dir, use_ray_client):
with open("hello", "w") as f:
f.write("world")
driver = | driver = """
import ray
from ray import serve
job_config = ray.job_config.JobConfig(runtime_env={{"working_dir": "."}})
if {use_ray_client}:
ray.util.connect("{client_addr}", job_config=job_config)
else:
ray.init(address="auto", job_config=job_config)@serve.deployment | 43 | test_runtime_env.py | Python | python/ray/serve/tests/test_runtime_env.py | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | 1 |
259,452 | 110 | 12 | 27 | 604 | 42 | 1 | 168 | 315 | test_glm_sample_weight_consistency | ENH migrate GLMs / TweedieRegressor to linear loss (#22548)
Co-authored-by: Olivier Grisel <[email protected]>
Co-authored-by: Thomas J. Fan <[email protected]> | https://github.com/scikit-learn/scikit-learn.git | def test_glm_sample_weight_consistency(fit_intercept, alpha, GLMEstimator):
rng = np.random.RandomState(0)
n_samples, n_features = 10, 5
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
glm_params = dict(alpha=alpha, fit_intercept=fit_intercept)
glm = GLMEstimator(**glm_params).fit(X, y)
coef = glm.coef_.copy()
# sample_weight=np.ones(..) should be equivalent to sample_weight=None
sample_weight = np.ones(y.shape)
glm.fit(X, y, sample_weight=sample_weight)
assert_allclose(glm.coef_, coef, rtol=1e-12)
# sample_weight are normalized to 1 so, scaling them has no effect
sample_weight = 2 * np.ones(y.shape)
glm.fit(X, y, sample_weight=sample_weight)
assert_allclose(glm.coef_, coef, rtol=1e-12)
# setting one element of sample_weight to 0 is equivalent to removing
# the corresponding sample
sample_weight = np.ones(y.shape)
sample_weight[-1] = 0
glm.fit(X, y, sample_weight=sample_weight)
coef1 = glm.coef_.copy()
glm.fit(X[:-1], y[:-1])
assert_allclose(glm.coef_, coef1, rtol=1e-12)
# check that multiplying sample_weight by 2 is equivalent
# to repeating corresponding samples twice
X2 = np.concatenate([X, X[: n_samples // 2]], axis=0)
y2 = np.concatenate([y, y[: n_samples // 2]])
sample_weight_1 = np.ones(len(y))
sample_weight_1[: n_samples // 2] = 2
glm1 = GLMEstimator(**glm_params).fit(X, y, sample_weight=sample_weight_1)
glm2 = GLMEstimator(**glm_params).fit(X2, y2, sample_weight=None)
assert_allclose(glm1.coef_, glm2.coef_)
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize(
"estimator",
[
PoissonRegressor(),
GammaRegressor(),
TweedieRegressor(power=3.0),
TweedieRegressor(power=0, link="log"),
TweedieRegressor(power=1.5),
TweedieRegressor(power=4.5),
],
) | @pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize(
"estimator",
[
PoissonRegressor(),
GammaRegressor(),
TweedieRegressor(power=3.0),
TweedieRegressor(power=0, link="log"),
TweedieRegressor(power=1.5),
TweedieRegressor(power=4.5),
],
) | 314 | test_glm.py | Python | sklearn/linear_model/_glm/tests/test_glm.py | 75a94f518f7bd7d0bf581ffb67d9f961e3c4efbc | scikit-learn | 1 |
200,594 | 182 | 22 | 107 | 1,238 | 59 | 0 | 550 | 2,634 | contract_metric | TensMul.contract_metric: correctly handle case where expr.canon_bp() == 0
Earlier, contract_metric would complain that S.Zero has no attribute
contract_metric.
https://github.com/sympy/sympy/issues/24354 | https://github.com/sympy/sympy.git | def contract_metric(self, g):
expr = self.expand()
if self != expr:
expr = expr.canon_bp()
if expr == S.Zero:
return expr
else:
return expr.contract_metric(g)
pos_map = self._get_indices_to_args_pos()
args = list(self.args)
#antisym = g.index_types[0].metric_antisym
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
antisym = 1
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
antisym = 0
elif g.symmetry == TensorSymmetry.no_symmetry(2):
antisym = None
else:
raise NotImplementedError
# list of positions of the metric ``g`` inside ``args``
gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g]
if not gpos:
return self
# Sign is either 1 or -1, to correct the sign after metric contraction
# (for spinor indices).
sign = 1
dum = self.dum[:]
free = self.free[:]
elim = set()
for gposx in gpos:
if gposx in elim:
continue
free1 = [x for x in free if pos_map[x[1]] == gposx]
dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx]
if not dum1:
continue
elim.add(gposx)
# subs with the multiplication neutral element, that is, remove it:
args[gposx] = 1
if len(dum1) == 2:
if not antisym:
dum10, dum11 = dum1
if pos_map[dum10[1]] == gposx:
# the index with pos p0 contravariant
p0 = dum10[0]
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
else:
dum10, dum11 = dum1
# change the sign to bring the indices of the metric to contravariant
# form; change the sign if dum10 has the metric index in position 0
if pos_map[dum10[1]] == gposx:
# the index with pos p0 is contravariant
p0 = dum10[0]
if dum10[1] == 1:
sign = -sign
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if dum10[0] == 0:
sign = -sign
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
sign = -sign
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
elif len(dum1) == 1:
if not antisym:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
else:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
if dp0 == 0:
sign = -sign
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
dum = [x for x in dum if x not in dum1]
free = [x for x in free if x not in free1]
# shift positions:
shift = 0
shifts = [0]*len(args)
for i in range(len(args)):
if i in elim:
shift += 2
continue
shifts[i] = shift
free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim]
dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim]
res = sign*TensMul(*args).doit()
if not isinstance(res, TensExpr):
return res
im = _IndexStructure.from_components_free_dum(res.components, free, dum)
return res._set_new_index_structure(im)
| 788 | tensor.py | Python | sympy/tensor/tensor.py | 6f23dae79adad542f4b47f47c2e2f4d6f5bfef1c | sympy | 46 |
|
32,875 | 22 | 14 | 17 | 118 | 12 | 0 | 31 | 80 | get_memory_footprint | `bitsandbytes` - `Linear8bitLt` integration into `transformers` models (#17901)
* first commit
* correct replace function
* add final changes
- works like charm!
- cannot implement tests yet
- tested
* clean up a bit
* add bitsandbytes dependencies
* working version
- added import function
- added bitsandbytes utils file
* small fix
* small fix
- fix import issue
* fix import issues
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* refactor a bit
- move bitsandbytes utils to utils
- change comments on functions
* reformat docstring
- reformat docstring on init_empty_weights_8bit
* Update src/transformers/__init__.py
Co-authored-by: Sylvain Gugger <[email protected]>
* revert bad formatting
* change to bitsandbytes
* refactor a bit
- remove init8bit since it is useless
* more refactoring
- fixed init empty weights issue
- added threshold param
* small hack to make it work
* Update src/transformers/modeling_utils.py
* Update src/transformers/modeling_utils.py
* revmoe the small hack
* modify utils file
* make style + refactor a bit
* create correctly device map
* add correct dtype for device map creation
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* apply suggestions
- remove with torch.grad
- do not rely on Python bool magic!
* add docstring
- add docstring for new kwargs
* add docstring
- comment `replace_8bit_linear` function
- fix weird formatting
* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add
* few modifs
- typo doc
- force cast into float16 when load_in_8bit is enabled
* added colab link
* add test architecture + docstring a bit
* refactor a bit testing class
* make style + refactor a bit
* enhance checks
- add more checks
- start writing saving test
* clean up a bit
* male style
* add more details on doc
* add more tests
- still needs to fix 2 tests
* replace by "or"
- could not fix it from GitHub GUI
Co-authored-by: Sylvain Gugger <[email protected]>
* refactor a bit testing code + add readme
* make style
* fix import issue
* Update src/transformers/modeling_utils.py
Co-authored-by: Michael Benayoun <[email protected]>
* add few comments
* add more doctring + make style
* more docstring
* raise error when loaded in 8bit
* make style
* add warning if loaded on CPU
* add small sanity check
* fix small comment
* add bitsandbytes on dockerfile
* Improve documentation
- improve documentation from comments
* add few comments
* slow tests pass on the VM but not on the CI VM
* Fix merge conflict
* make style
* another test should pass on a multi gpu setup
* fix bad import in testing file
* Fix slow tests
- remove dummy batches
- no more CUDA illegal memory errors
* odify dockerfile
* Update docs/source/en/main_classes/model.mdx
* Update Dockerfile
* Update model.mdx
* Update Dockerfile
* Apply suggestions from code review
* few modifications
- lm head can stay on disk/cpu
- change model name so that test pass
* change test value
- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging
* modify installation guidelines
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* replace `n`by `name`
* merge `load_in_8bit` and `low_cpu_mem_usage`
* first try - keep the lm head in full precision
* better check
- check the attribute `base_model_prefix` instead of computing the number of parameters
* added more tests
* Update src/transformers/utils/bitsandbytes.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit
* improve documentation
- fix typos for installation
- change title in the documentation
Co-authored-by: Sylvain Gugger <[email protected]>
Co-authored-by: Michael Benayoun <[email protected]> | https://github.com/huggingface/transformers.git | def get_memory_footprint(self, return_buffers=True):
r
mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
if return_buffers:
mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
mem = mem + mem_bufs
return mem
| 73 | modeling_utils.py | Python | src/transformers/modeling_utils.py | 4a51075a96d2049f368b5f3dd6c0e9f08f599b62 | transformers | 4 |
|
286,761 | 10 | 9 | 10 | 59 | 9 | 1 | 13 | 24 | sdk_dt_format | Fixing Forecast SDK with data from other menus (#3554)
* minor check incase using sdk
* fixes combine
* datetime formating
* Update forecast.md
* fix testing | https://github.com/OpenBB-finance/OpenBBTerminal.git | def sdk_dt_format(x) -> str:
x = pd.to_datetime(x)
x = x.strftime("%Y-%m-%d")
return x
@log_start_end(log=logger) | @log_start_end(log=logger) | 26 | forecast_model.py | Python | openbb_terminal/forecast/forecast_model.py | 7c57fb71c5bc1032dfd4ef4f3edfc74afa8c0a2e | OpenBBTerminal | 1 |
304,033 | 6 | 6 | 3 | 21 | 4 | 0 | 6 | 12 | _get_manager | Rework bluetooth to support scans from multiple sources (#76900) | https://github.com/home-assistant/core.git | def _get_manager() -> BluetoothManager:
return models.MANAGER
| 11 | __init__.py | Python | tests/components/bluetooth/__init__.py | 3bcc274dfa90d7d3c01ace83137c46a0898c107f | core | 1 |
|
320,776 | 78 | 18 | 41 | 494 | 38 | 0 | 114 | 608 | completion_item_focus | mypy: Upgrade to PyQt5-stubs 5.15.6.0
For some unknown reason, those new stubs cause a *lot* of things now to be
checked by mypy which formerly probably got skipped due to Any being implied
somewhere.
The stubs themselves mainly improved, with a couple of regressions too.
In total, there were some 337 (!) new mypy errors. This commit fixes almost all
of them, and the next commit improves a fix to get things down to 0 errors
again.
Overview of the changes:
==== qutebrowser/app.py
- Drop type ignore due to improved stubs.
==== qutebrowser/browser/browsertab.py
- Specify the type of _widget members more closely than just QWidget.
This is debatable: I suppose the abstract stuff shouldn't need to know
anything about the concrete backends at all. But it seems like we cut some
corners when initially implementing things, and put some code in browsertab.py
just because the APIs of both backends happened to be compatible. Perhaps
something to reconsider once we drop QtWebKit and hopefully implement a dummy
backend.
- Add an additional assertion in AbstractAction.run_string. This is already
covered by the isinstance(member, self.action_base) above it, but that's too
dynamic for mypy to understand.
- Fix the return type of AbstractScroller.pos_px, which is a QPoint (with x
and y components), not a single int.
- Fix the return type of AbstractScroller.pos_perc, which is a Tuple (with x
and y components), not a single int.
- Fix the argument types of AbstractScroller.to_perc, as it's possible to pass
fractional percentages too.
- Specify the type for AbstractHistoryPrivate._history. See above (_widget) re
this being debatable.
- Fix the return type of AbstractTabPrivate.event_target(), which can be None
(see #3888).
- Fix the return type of AbstractTabPrivate.run_js_sync, which is Any (the JS
return value), not None.
- Fix the argument type for AbstractTabPrivate.toggle_inspector: position can
be None to use the last used position.
- Declare the type of sub-objects of AbstractTab.
- Fix the return value of AbstractTab.icon(), which is the QIcon, not None.
==== qutebrowser/browser/commands.py
- Make sure the active window is a MainWindow (with a .win_id attribute).
==== qutebrowser/browser/downloadview.py
- Add _model() which makes sure that self.model() is a DownloadModel, not None
or any other model. This is needed because other methods access a variety of
custom attributes on it, e.g. last_index().
==== qutebrowser/browser/greasemonkey.py
- Add an ignore for AbstractDownload.requested_url which we patch onto the
downloads. Probably would be nicer to add it as a proper attribute which always
gets set by the DownloadManager.
==== qutebrowser/browser/hints.py
- Remove type ignores for QUrl.toString().
- Add a new type ignore for combining different URL flags (which works, but is
not exactly type safe... still probably a regression in the stubs).
- Make sure the things we get back from self._get_keyparser are what we actually
expect. Probably should introduce a TypedDict (and/or overloads for
_get_keyparser with typing.Literal) to teach mypy about the exact return value.
See #7098.
This is needed because we access Hint/NormalKeyParser-specific attributes such
as .set_inhibited_timout() or .update_bindings().
==== qutebrowser/browser/inspector.py
- Similar changes than in browsertab.py to make some types where we share API
(e.g. .setPage()) more concrete. Didn't work out unfortunately, see next
commit.
==== qutebrowser/browser/network/pac.py
- Remove now unneeded type ignore for signal.
==== qutebrowser/browser/qtnetworkdownloads.py
- Make sure that downloads is a qtnetworkdownloads.DownloadItem (rather than an
AbstractDownload), so that we can call ._uses_nam() on it.
==== qutebrowser/browser/qutescheme.py
- Remove now unneeded type ignore for QUrl flags.
==== qutebrowser/browser/urlmarks.py
- Specify the type of UrlMarkManager._lineparser, as those only get initialized
in _init_lineparser of subclasses, so mypy doesn't know it's supposed to exist.
==== qutebrowser/browser/webelem.py
- New casts to turn single KeyboardModifier (enum) entries into
KeyboardModifiers (flags). Might not be needed anymore with Qt 6.
- With that, casting the final value is now unneeded.
==== qutebrowser/browser/webengine/notification.py
- Remove now unneeded type ignore for signal.
- Make sure the self.sender() we get in HerbeNotificationAdapter._on_finished()
is a QProcess, not just any QObject.
==== qutebrowser/browser/webengine/webenginedownloads.py
- Remove now unneeded type ignores for signals.
==== qutebrowser/browser/webengine/webengineelem.py
- Specify the type of WebEngineElement._tab.
- Remove now unneeded type ignore for mixed flags.
==== qutebrowser/browser/webengine/webengineinspector.py
- See changes to inspector.py and next commit.
- Remove now unneeded type ignore for signal.
==== qutebrowser/browser/webengine/webenginequtescheme.py
- Remove now unneeded type ignore for mixed flags.
==== qutebrowser/browser/webengine/webenginesettings.py
- Ignore access of .setter attribute which we patch onto QWebEngineProfile.
Would be nice to have a subclass or wrapper-class instead.
==== qutebrowser/browser/webengine/webenginetab.py
- Specified the type of _widget members more closely than just QWidget.
See browsertab.py changes for details.
- Remove some now-unneeded type ignores for creating FindFlags.
- Specify more concrete types for WebEngineTab members where we actually need to
access WebEngine-specific attributes.
- Make sure the page we get is our custom WebEnginePage subclass, not just any
QWebEnginePage. This is needed because we access custom attributes on it.
==== qutebrowser/browser/webengine/webview.py
- Make sure the page we get is our custom WebEnginePage subclass, not just any
QWebEnginePage. This is needed because we access custom attributes on it.
==== qutebrowser/browser/webkit/network/networkreply.py
- Remove now unneeded type ignores for signals.
==== qutebrowser/browser/webkit/webkitinspector.py
- See changes to inspector.py and next commit.
==== qutebrowser/browser/webkit/webkittab.py
- Specify the type of _widget members more closely than just QWidget.
See browsertab.py changes for details.
- Add a type ignore for WebKitAction because our workaround needs to
treat them as ints (which is allowed by PyQt, even if not type-safe).
- Add new ignores for findText calls: The text is a QString and can be None; the
flags are valid despite mypy thinking they aren't (stubs regression?).
- Specify the type for WebKitHistoryPrivate._history, because we access
WebKit-specific attributes. See above (_widget) re this being debatable.
- Make mypy aware that .currentFrame() and .frameAt() can return None (stubs
regression?).
- Make sure the .page() and .page().networkAccessManager() are our subclasses
rather than the more generic QtWebKit objects, as we use custom attributes.
- Add new type ignores for signals (stubs regression!)
==== qutebrowser/browser/webkit/webpage.py
- Make sure the .networkAccessManager() is our subclass rather than the more
generic QtWebKit object, as we use custom attributes.
- Replace a cast by a type ignore. The cast didn't work anymore.
==== qutebrowser/browser/webkit/webview.py
- Make sure the .page() is our subclass rather than the more generic QtWebKit
object, as we use custom attributes.
==== qutebrowser/commands/userscripts.py
- Remove now unneeded type ignore for signal.
==== qutebrowser/completion/completer.py
- Add a new _completion() getter (which ensures it actually gets the completion
view) rather than accessing the .parent() directly (which could be any QObject).
==== qutebrowser/completion/completiondelegate.py
- Make sure self.parent() is a CompletionView (no helper method as there is only
one instance).
- Remove a now-unneeded type ignore for adding QSizes.
==== qutebrowser/completion/completionwidget.py
- Add a ._model() getter which ensures that we get a CompletionModel (with
custom attributes) rather than Qt's .model() which can be any QAbstractItemModel
(or None).
- Removed a now-unneeded type ignore for OR-ing flags.
==== qutebrowser/completion/models/completionmodel.py
- Remove now unneeded type ignores for signals.
- Ignore a complaint about .set_pattern() not being defined. Completion
categories don't share any common parent class, so it would be good to introduce
a typing.Protocol for this. See #7098.
==== qutebrowser/components/misccommands.py
- Removed a now-unneeded type ignore for OR-ing flags.
==== qutebrowser/components/readlinecommands.py
- Make sure QApplication.instance() is a QApplication (and not just a
QCoreApplication). This includes the former "not None" check.
==== qutebrowser/components/scrollcommands.py
- Add basic annotation for "funcs" dict. Could have a callable protocol to
specify it needs a count kwarg, see #7098.
==== qutebrowser/config/stylesheet.py
- Correctly specify that stylesheet apply to QWidgets, not any QObject.
- Ignore an attr-defined for obj.STYLESHEET. Perhaps could somehow teach mypy
about this with overloads and protocols (stylesheet for set_register being None
=> STYLESHEET needs to be defined, otherwise anything goes), but perhaps not
worth the troble. See #7098.
==== qutebrowser/keyinput/keyutils.py
- Remove some now-unneeded type ignores and add a cast for using a single enum
value as flags. Might need to look at this again with Qt 6 support.
==== qutebrowser/keyinput/modeman.py
- Add a FIXME for using a TypedDict, see comments for hints.py above.
==== qutebrowser/mainwindow/mainwindow.py
- Remove now-unneeded type ignores for calling with OR-ed flags.
- Improve where we cast from WindowType to WindowFlags, no int needed
- Use new .tab_bar() getter, see below.
==== qutebrowser/mainwindow/prompt.py
- Remove now-unneeded type ignores for calling with OR-ed flags.
==== qutebrowser/mainwindow/statusbar/bar.py
- Adjust type ignores around @pyqtProperty. The fact one is still needed seems
like a stub regression.
==== qutebrowser/mainwindow/statusbar/command.py
- Fix type for setText() override (from QLineEdit): text can be None
(QString in C++).
==== qutebrowser/mainwindow/statusbar/url.py
- Adjust type ignores around @pyqtProperty. The fact one is still needed seems
like a stub regression.
==== qutebrowser/mainwindow/tabbedbrowser.py
- Specify that TabDeque manages browser tabs, not any QWidgets. It accesses
AbstractTab-specific attributes.
- Make sure that the .tabBar() we get is a tabwidget.TabBar, as we access
.maybe_hide.
- Fix the annotations for stored marks: Scroll positions are a QPoint, not int.
- Add _current_tab() and _tab_by_idx() wrappers for .currentWidget() and
.widget(), which ensures that the return values are valid AbstractTabs (or None
for _tab_by_idx). This is needed because we access AbstractTab-specific
attributes.
- For some places, where the tab can be None, continue using .currentTab() but
add asserts.
- Remove some now-unneeded [unreachable] ignores, as mypy knows about the None
possibility now.
==== qutebrowser/mainwindow/tabwidget.py
- Add new tab_bar() and _tab_by_idx() helpers which check that the .tabBar() and
.widget() are of type TabBar and AbstractTab, respectively.
- Add additional assertions where we expect ._tab_by_idx() to never be None.
- Remove dead code in get_tab_fields for handling a None y scroll position. I
was unable to find any place in the code where this could be set to None.
- Remove some now-unneeded type ignores and casts, as mypy now knows that
_type_by_idx() could be None.
- Work around a strange instance where mypy complains about not being able to
find the type of TabBar.drag_in_progress from TabWidget._toggle_visibility,
despite it clearly being shown as a bool *inside* that class without any
annotation.
- Add a ._tab_widget() getter in TabBar which ensures that the .parent() is in
fact a TabWidget.
==== qutebrowser/misc/crashsignal.py
- Remove now unneeded type ignores for signals.
==== qutebrowser/misc/editor.py
- Remove now unneeded type ignores for signals.
==== qutebrowser/misc/ipc.py
- Remove now unneeded type ignores for signals.
- Add new type ignores for .error() which is both a signal and a getter
(stub regression?). Won't be relevant for Qt 6 anymore, as the signal was
renamed to errorOccurred in 5.15.
==== qutebrowser/misc/objects.py
- Make sure mypy knows that objects.app is our custom Application (with custom
attributes) rather than any QApplication.
==== qutebrowser/utils/objreg.py
- Ignore attr-defined for .win_id attributes. Maybe could add a typing.Protocol,
but ideally, the whole objreg stuff should die one day anyways.
==== tests/unit/completion/test_completer.py
- Make CompletionWidgetStub inherit from CompletionView so that it passes the
new isinstance() asserts in completer.py (see above). | https://github.com/qutebrowser/qutebrowser.git | def completion_item_focus(self, which, history=False):
if history:
if (self._cmd.text() == ':' or self._cmd.history.is_browsing() or
not self._active):
if which == 'next':
self._cmd.command_history_next()
return
elif which == 'prev':
self._cmd.command_history_prev()
return
else:
raise cmdutils.CommandError("Can't combine --history with "
"{}!".format(which))
if not self._active:
return
selmodel = self.selectionModel()
indices = {
'next': lambda: self._next_idx(upwards=False),
'prev': lambda: self._next_idx(upwards=True),
'next-category': lambda: self._next_category_idx(upwards=False),
'prev-category': lambda: self._next_category_idx(upwards=True),
'next-page': lambda: self._next_page(upwards=False),
'prev-page': lambda: self._next_page(upwards=True),
}
idx = indices[which]()
if not idx.isValid():
return
selmodel.setCurrentIndex(
idx,
QItemSelectionModel.ClearAndSelect |
QItemSelectionModel.Rows)
# if the last item is focused, try to fetch more
next_idx = self.indexBelow(idx)
if not self.visualRect(next_idx).isValid():
self.expandAll()
count = self._model().count()
if count == 0:
self.hide()
elif count == 1 and config.val.completion.quick:
self.hide()
elif config.val.completion.show == 'auto':
self.show()
| 292 | completionwidget.py | Python | qutebrowser/completion/completionwidget.py | a20bb67a878b2e68abf8268c1b0a27f018d01352 | qutebrowser | 14 |
|
291,932 | 102 | 18 | 51 | 564 | 53 | 0 | 170 | 866 | async_send_message | Replace discord.py with nextcord (#66540)
* Replace discord.py with nextcord
* Typing tweak
* Another pip check decrease :) | https://github.com/home-assistant/core.git | async def async_send_message(self, message, **kwargs):
nextcord.VoiceClient.warn_nacl = False
discord_bot = nextcord.Client()
images = None
embedding = None
if ATTR_TARGET not in kwargs:
_LOGGER.error("No target specified")
return None
data = kwargs.get(ATTR_DATA) or {}
embeds: list[nextcord.Embed] = []
if ATTR_EMBED in data:
embedding = data[ATTR_EMBED]
fields = embedding.get(ATTR_EMBED_FIELDS) or []
if embedding:
embed = nextcord.Embed(**embedding)
for field in fields:
embed.add_field(**field)
if ATTR_EMBED_FOOTER in embedding:
embed.set_footer(**embedding[ATTR_EMBED_FOOTER])
if ATTR_EMBED_AUTHOR in embedding:
embed.set_author(**embedding[ATTR_EMBED_AUTHOR])
if ATTR_EMBED_THUMBNAIL in embedding:
embed.set_thumbnail(**embedding[ATTR_EMBED_THUMBNAIL])
embeds.append(embed)
if ATTR_IMAGES in data:
images = []
for image in data.get(ATTR_IMAGES, []):
image_exists = await self.hass.async_add_executor_job(
self.file_exists, image
)
if image_exists:
images.append(image)
else:
_LOGGER.warning("Image not found: %s", image)
await discord_bot.login(self.token)
try:
for channelid in kwargs[ATTR_TARGET]:
channelid = int(channelid)
try:
channel = await discord_bot.fetch_channel(channelid)
except nextcord.NotFound:
try:
channel = await discord_bot.fetch_user(channelid)
except nextcord.NotFound:
_LOGGER.warning("Channel not found for ID: %s", channelid)
continue
# Must create new instances of File for each channel.
files = [nextcord.File(image) for image in images] if images else []
await channel.send(message, files=files, embeds=embeds)
except (nextcord.HTTPException, nextcord.NotFound) as error:
_LOGGER.warning("Communication error: %s", error)
await discord_bot.close()
| 347 | notify.py | Python | homeassistant/components/discord/notify.py | cb03db8df4bf8b50945b36a4b0debcaaed1190a8 | core | 19 |
|
260,724 | 52 | 13 | 26 | 251 | 32 | 0 | 71 | 310 | fit | MAINT Parameter Validation for Lars, LarsCV, LassoLars, LassoLarsCV and LassoLarsIC (#24033)
Co-authored-by: jeremie du boisberranger <[email protected]> | https://github.com/scikit-learn/scikit-learn.git | def fit(self, X, y, Xy=None):
self._validate_params()
X, y = self._validate_data(X, y, y_numeric=True, multi_output=True)
_normalize = _deprecate_normalize(
self.normalize, default=True, estimator_name=self.__class__.__name__
)
alpha = getattr(self, "alpha", 0.0)
if hasattr(self, "n_nonzero_coefs"):
alpha = 0.0 # n_nonzero_coefs parametrization takes priority
max_iter = self.n_nonzero_coefs
else:
max_iter = self.max_iter
if self.jitter is not None:
rng = check_random_state(self.random_state)
noise = rng.uniform(high=self.jitter, size=len(y))
y = y + noise
self._fit(
X,
y,
max_iter=max_iter,
alpha=alpha,
fit_path=self.fit_path,
normalize=_normalize,
Xy=Xy,
)
return self
| 169 | _least_angle.py | Python | sklearn/linear_model/_least_angle.py | 6c0e0b2e4723d11e29057635c7061a36bc1a8512 | scikit-learn | 3 |
|
290,687 | 8 | 6 | 137 | 23 | 5 | 0 | 8 | 14 | test_statistic_during_period_hole | Fix statistic_during_period for data with holes (#81847) | https://github.com/home-assistant/core.git | async def test_statistic_during_period_hole(recorder_mock, hass, hass_ws_client):
id = 1
| 900 | test_websocket_api.py | Python | tests/components/recorder/test_websocket_api.py | 9b8f94363c0b4ecd1434ac1ac3bb82febd3889d0 | core | 17 |
|
111,333 | 61 | 17 | 19 | 260 | 27 | 0 | 100 | 356 | set_annotations | Add SpanRuler component (#9880)
* Add SpanRuler component
Add a `SpanRuler` component similar to `EntityRuler` that saves a list
of matched spans to `Doc.spans[spans_key]`. The matches from the token
and phrase matchers are deduplicated and sorted before assignment but
are not otherwise filtered.
* Update spacy/pipeline/span_ruler.py
Co-authored-by: Sofie Van Landeghem <[email protected]>
* Fix cast
* Add self.key property
* Use number of patterns as length
* Remove patterns kwarg from init
* Update spacy/tests/pipeline/test_span_ruler.py
Co-authored-by: Sofie Van Landeghem <[email protected]>
* Add options for spans filter and setting to ents
* Add `spans_filter` option as a registered function'
* Make `spans_key` optional and if `None`, set to `doc.ents` instead of
`doc.spans[spans_key]`.
* Update and generalize tests
* Add test for setting doc.ents, fix key property type
* Fix typing
* Allow independent doc.spans and doc.ents
* If `spans_key` is set, set `doc.spans` with `spans_filter`.
* If `annotate_ents` is set, set `doc.ents` with `ents_fitler`.
* Use `util.filter_spans` by default as `ents_filter`.
* Use a custom warning if the filter does not work for `doc.ents`.
* Enable use of SpanC.id in Span
* Support id in SpanRuler as Span.id
* Update types
* `id` can only be provided as string (already by `PatternType`
definition)
* Update all uses of Span.id/ent_id in Doc
* Rename Span id kwarg to span_id
* Update types and docs
* Add ents filter to mimic EntityRuler overwrite_ents
* Refactor `ents_filter` to take `entities, spans` args for more
filtering options
* Give registered filters more descriptive names
* Allow registered `filter_spans` filter
(`spacy.first_longest_spans_filter.v1`) to take any number of
`Iterable[Span]` objects as args so it can be used for spans filter
or ents filter
* Implement future entity ruler as span ruler
Implement a compatible `entity_ruler` as `future_entity_ruler` using
`SpanRuler` as the underlying component:
* Add `sort_key` and `sort_reverse` to allow the sorting behavior to be
customized. (Necessary for the same sorting/filtering as in
`EntityRuler`.)
* Implement `overwrite_overlapping_ents_filter` and
`preserve_existing_ents_filter` to support
`EntityRuler.overwrite_ents` settings.
* Add `remove_by_id` to support `EntityRuler.remove` functionality.
* Refactor `entity_ruler` tests to parametrize all tests to test both
`entity_ruler` and `future_entity_ruler`
* Implement `SpanRuler.token_patterns` and `SpanRuler.phrase_patterns`
properties.
Additional changes:
* Move all config settings to top-level attributes to avoid duplicating
settings in the config vs. `span_ruler/cfg`. (Also avoids a lot of
casting.)
* Format
* Fix filter make method name
* Refactor to use same error for removing by label or ID
* Also provide existing spans to spans filter
* Support ids property
* Remove token_patterns and phrase_patterns
* Update docstrings
* Add span ruler docs
* Fix types
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <[email protected]>
* Move sorting into filters
* Check for all tokens in seen tokens in entity ruler filters
* Remove registered sort key
* Set Token.ent_id in a backwards-compatible way in Doc.set_ents
* Remove sort options from API docs
* Update docstrings
* Rename entity ruler filters
* Fix and parameterize scoring
* Add id to Span API docs
* Fix typo in API docs
* Include explicit labeled=True for scorer
Co-authored-by: Sofie Van Landeghem <[email protected]> | https://github.com/explosion/spaCy.git | def set_annotations(self, doc, matches):
entities = list(doc.ents)
new_entities = []
seen_tokens = set()
for match_id, start, end in matches:
if any(t.ent_type for t in doc[start:end]) and not self.overwrite:
continue
# check for end - 1 here because boundaries are inclusive
if start not in seen_tokens and end - 1 not in seen_tokens:
if match_id in self._ent_ids:
label, ent_id = self._ent_ids[match_id]
span = Span(doc, start, end, label=label, span_id=ent_id)
else:
span = Span(doc, start, end, label=match_id)
new_entities.append(span)
entities = [
e for e in entities if not (e.start < end and e.end > start)
]
seen_tokens.update(range(start, end))
doc.ents = entities + new_entities
| 171 | entityruler.py | Python | spacy/pipeline/entityruler.py | a322d6d5f2f85c2da6cded4fcd6143d41b5a9e96 | spaCy | 11 |
|
166,951 | 8 | 9 | 2 | 61 | 9 | 1 | 8 | 13 | data_missing | DOC: Added docstrings to fixtures defined in array module (#47211) | https://github.com/pandas-dev/pandas.git | def data_missing(dtype):
return pd.array([np.nan, 1], dtype=dtype)
@pytest.fixture(params=["data", "data_missing"]) | @pytest.fixture(params=["data", "data_missing"]) | 23 | conftest.py | Python | pandas/tests/arrays/integer/conftest.py | 89be1f053b695c4ce1c0569f737caf3f03c12128 | pandas | 1 |
124,040 | 51 | 12 | 24 | 174 | 18 | 0 | 64 | 268 | save | [RLlib] Save serialized PolicySpec. Extract `num_gpus` related logics into a util function. (#25954) | https://github.com/ray-project/ray.git | def save(self) -> bytes:
filters = self.get_filters(flush_after=True)
state = {}
policy_specs = {}
connector_enabled = self.policy_config.get("enable_connectors", False)
for pid in self.policy_map:
state[pid] = self.policy_map[pid].get_state()
policy_spec = self.policy_map.policy_specs[pid]
# If connectors are enabled, try serializing the policy spec
# instead of picking the spec object.
policy_specs[pid] = (
policy_spec.serialize() if connector_enabled else policy_spec
)
return pickle.dumps(
{
"filters": filters,
"state": state,
"policy_specs": policy_specs,
}
)
| 106 | rollout_worker.py | Python | rllib/evaluation/rollout_worker.py | d83bbda2816b1781eb61342b4539578149eeb686 | ray | 3 |
|
276,780 | 40 | 13 | 15 | 176 | 27 | 0 | 48 | 181 | test_get_file_with_failed_integrity_check | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def test_get_file_with_failed_integrity_check(self):
orig_dir = self.get_temp_dir()
file_path = os.path.join(orig_dir, "test.txt")
with open(file_path, "w") as text_file:
text_file.write("Float like a butterfly, sting like a bee.")
hashval = "0" * 64
origin = urllib.parse.urljoin(
"file://", urllib.request.pathname2url(os.path.abspath(file_path))
)
with self.assertRaisesRegex(
ValueError, "Incomplete or corrupted file.*"
):
_ = keras.utils.data_utils.get_file(
"test.txt", origin, file_hash=hashval
)
| 100 | data_utils_test.py | Python | keras/utils/data_utils_test.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 1 |
|
266,327 | 65 | 14 | 14 | 215 | 17 | 0 | 88 | 231 | _get_user_property | user: Update logic to check if user exists in macOS (#76592)
'dscl -list' returns 0 even if the user does not exists. This
leads to errorenous condition in user module.
Using 'dscl -read UniqueID' can return if user exists or not.
Signed-off-by: Abhijeet Kasurde <[email protected]> | https://github.com/ansible/ansible.git | def _get_user_property(self, property):
cmd = self._get_dscl()
cmd += ['-read', '/Users/%s' % self.name, property]
(rc, out, err) = self.execute_command(cmd, obey_checkmode=False)
if rc != 0:
return None
# from dscl(1)
# if property contains embedded spaces, the list will instead be
# displayed one entry per line, starting on the line after the key.
lines = out.splitlines()
# sys.stderr.write('*** |%s| %s -> %s\n' % (property, out, lines))
if len(lines) == 1:
return lines[0].split(': ')[1]
if len(lines) > 2:
return '\n'.join([lines[1].strip()] + lines[2:])
if len(lines) == 2:
return lines[1].strip()
return None
| 130 | user.py | Python | lib/ansible/modules/user.py | 66e392d4e219bf93d690c1fb3d3c854069efa27f | ansible | 5 |
|
256,951 | 12 | 9 | 6 | 50 | 8 | 0 | 12 | 21 | is_telemetry_enabled | Add basic telemetry features (#2314)
* add basic telemetry features
* change pipeline_config to _component_config
* Update Documentation & Code Style
* add super().__init__() calls to error classes
* make posthog mock work with python 3.7
* Update Documentation & Code Style
* update link to docs web page
* log exceptions, send event for raised HaystackErrors, refactor Path(CONFIG_PATH)
* add comment on send_event in BaseComponent.init() and fix mypy
* mock NonPrivateParameters and fix pylint undefined-variable
* Update Documentation & Code Style
* check model path contains multiple /
* add test for writing to file
* add test for en-/disable telemetry
* Update Documentation & Code Style
* merge file deletion methods and ignore pylint global statement
* Update Documentation & Code Style
* set env variable in demo to activate telemetry
* fix mock of HAYSTACK_TELEMETRY_ENABLED
* fix mypy and linter
* add CI as env variable to execution contexts
* remove threading, add test for custom error event
* Update Documentation & Code Style
* simplify config/log file deletion
* add test for final event being sent
* force writing config file in test
* make test compatible with python 3.7
* switch to posthog production server
* Update Documentation & Code Style
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> | https://github.com/deepset-ai/haystack.git | def is_telemetry_enabled() -> bool:
telemetry_environ = os.environ.get(HAYSTACK_TELEMETRY_ENABLED, "True")
return telemetry_environ.lower() != "false"
| 27 | telemetry.py | Python | haystack/telemetry.py | ac5617e757e9ace6f30b7291686d9dbbc339f433 | haystack | 1 |
|
150,410 | 14 | 10 | 7 | 100 | 8 | 0 | 17 | 66 | start_leader_mode | initial concept for replicate, basic leader and follower logic | https://github.com/freqtrade/freqtrade.git | def start_leader_mode(self):
logger.info("Running rpc.replicate in Leader mode")
logger.info("-" * 15)
logger.info(f"API_KEY: {self.secret_api_key}")
logger.info("-" * 15)
self.register_leader_endpoint()
self.submit_coroutine(self.leader_loop())
| 50 | __init__.py | Python | freqtrade/rpc/replicate/__init__.py | 9f6bba40af1a407f190a89f5c0c8b4e3f528ba46 | freqtrade | 1 |
|
297,518 | 58 | 15 | 23 | 216 | 39 | 0 | 71 | 288 | async_get_measures | Refactor withings constant (#84095)
Split withings constant | https://github.com/home-assistant/core.git | async def async_get_measures(self) -> dict[Measurement, Any]:
_LOGGER.debug("Updating withings measures")
now = dt.utcnow()
startdate = now - datetime.timedelta(days=7)
response = await self._hass.async_add_executor_job(
self._api.measure_get_meas, None, None, startdate, now, None, startdate
)
# Sort from oldest to newest.
groups = sorted(
query_measure_groups(
response, MeasureTypes.ANY, MeasureGroupAttribs.UNAMBIGUOUS
),
key=lambda group: group.created.datetime,
reverse=False,
)
return {
WITHINGS_MEASURE_TYPE_MAP[measure.type]: round(
float(measure.value * pow(10, measure.unit)), 2
)
for group in groups
for measure in group.measures
if measure.type in WITHINGS_MEASURE_TYPE_MAP
}
| 144 | common.py | Python | homeassistant/components/withings/common.py | c51c8f7e8f4b9ede57a0fbbec0d74023d87d553e | core | 4 |
|
36,057 | 14 | 11 | 5 | 67 | 9 | 0 | 19 | 42 | softmax_backward_data | DeBERTa/DeBERTa-v2/SEW Support for torch 1.11 (#16043)
* Support for torch 1.11
* Address Sylvain's comment | https://github.com/huggingface/transformers.git | def softmax_backward_data(parent, grad_output, output, dim, self):
if is_torch_less_than_1_11:
return _softmax_backward_data(grad_output, output, parent.dim, self)
else:
return _softmax_backward_data(grad_output, output, parent.dim, self.dtype)
| 47 | pytorch_utils.py | Python | src/transformers/pytorch_utils.py | e66743e6c9601a4b12ffc2335a9f60a41d1ca60c | transformers | 2 |
|
133,852 | 48 | 20 | 30 | 293 | 27 | 0 | 74 | 452 | build_q_model | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | https://github.com/ray-project/ray.git | def build_q_model(self, obs_space, action_space, num_outputs, q_model_config, name):
self.concat_obs_and_actions = False
if self.discrete:
input_space = obs_space
else:
orig_space = getattr(obs_space, "original_space", obs_space)
if isinstance(orig_space, Box) and len(orig_space.shape) == 1:
input_space = Box(
float("-inf"),
float("inf"),
shape=(orig_space.shape[0] + action_space.shape[0],),
)
self.concat_obs_and_actions = True
else:
if isinstance(orig_space, gym.spaces.Tuple):
spaces = list(orig_space.spaces)
elif isinstance(orig_space, gym.spaces.Dict):
spaces = list(orig_space.spaces.values())
else:
spaces = [obs_space]
input_space = gym.spaces.Tuple(spaces + [action_space])
model = ModelCatalog.get_model_v2(
input_space,
action_space,
num_outputs,
q_model_config,
framework="torch",
name=name,
)
return model
| 189 | sac_torch_model.py | Python | rllib/agents/sac/sac_torch_model.py | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | 6 |
|
20,609 | 96 | 26 | 53 | 627 | 48 | 0 | 164 | 615 | _makeTags | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | https://github.com/pypa/pipenv.git | def _makeTags(tagStr, xml, suppress_LT=Suppress("<"), suppress_GT=Suppress(">")):
if isinstance(tagStr, str_type):
resname = tagStr
tagStr = Keyword(tagStr, caseless=not xml)
else:
resname = tagStr.name
tagAttrName = Word(alphas, alphanums + "_-:")
if xml:
tagAttrValue = dbl_quoted_string.copy().set_parse_action(remove_quotes)
openTag = (
suppress_LT
+ tagStr("tag")
+ Dict(ZeroOrMore(Group(tagAttrName + Suppress("=") + tagAttrValue)))
+ Opt("/", default=[False])("empty").set_parse_action(
lambda s, l, t: t[0] == "/"
)
+ suppress_GT
)
else:
tagAttrValue = quoted_string.copy().set_parse_action(remove_quotes) | Word(
printables, exclude_chars=">"
)
openTag = (
suppress_LT
+ tagStr("tag")
+ Dict(
ZeroOrMore(
Group(
tagAttrName.set_parse_action(lambda t: t[0].lower())
+ Opt(Suppress("=") + tagAttrValue)
)
)
)
+ Opt("/", default=[False])("empty").set_parse_action(
lambda s, l, t: t[0] == "/"
)
+ suppress_GT
)
closeTag = Combine(Literal("</") + tagStr + ">", adjacent=False)
openTag.set_name("<%s>" % resname)
# add start<tagname> results name in parse action now that ungrouped names are not reported at two levels
openTag.add_parse_action(
lambda t: t.__setitem__(
"start" + "".join(resname.replace(":", " ").title().split()), t.copy()
)
)
closeTag = closeTag(
"end" + "".join(resname.replace(":", " ").title().split())
).set_name("</%s>" % resname)
openTag.tag = resname
closeTag.tag = resname
openTag.tag_body = SkipTo(closeTag())
return openTag, closeTag
| 365 | helpers.py | Python | pipenv/patched/notpip/_vendor/pyparsing/helpers.py | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | 3 |
|
309,622 | 35 | 13 | 13 | 168 | 18 | 0 | 42 | 169 | async_send_message | Add LG webOS Smart TV config flow support (#64117)
* Add webOS Smart TV config flow support (#53256)
* Add Webostv config flow
* Fix tests mocks and apply review comments
* Apply review comments
* Change config flow to use ssdp UDN as unique_id
* Fix device info
* More review comments
* Fix _async_check_configured_entry
* Remove turn on script
* Add webOS Smart TV device triggers (#53752)
* Add webOS Smart TV config flow support (#53256)
* Add Webostv config flow
* Fix tests mocks and apply review comments
* Apply review comments
* Change config flow to use ssdp UDN as unique_id
* Fix device info
* More review comments
* Fix _async_check_configured_entry
* Remove turn on script
* Add webOS Smart TV device triggers (#53752)
* Fix webOS Smart TV mypy and pylint errors (#62620)
* Change webOS Smart TV PyPi aiopylgtv package to bscpylgtv (#62633)
* Change webOS Smart TV PyPi aiopylgtv package to bscpylgtv
* Update bscpylgtv to 0.2.8 (revised websockets requirment)
* Change webOS Smart TV PyPi package to aiowebostv (#63759)
* Change webOS Smart TV PyPi package to aiowebostv
* Apply suggestions from code review
Co-authored-by: Martin Hjelmare <[email protected]>
Co-authored-by: Martin Hjelmare <[email protected]>
* webOS TV check UUID for user added device (#63817)
* webOS TV check uuid when for user added device
* Apply suggestions from code review
Co-authored-by: Martin Hjelmare <[email protected]>
* Add test for form abort and host update
Co-authored-by: Martin Hjelmare <[email protected]>
* Rework webOS Smart TV device trigger to custom trigger platform (#63950)
* Rework webOS Smart TV device trigger to custom trigger platform
* Review comments and add tests
* Fix webOS TV import from YAML (#63996)
* Fix webOS TV import from YAML
* Fix requirements
* Migrate YAML entities unique id to UUID
* Add backoff to migration task delay
* Assert result data and unique_id
* Apply suggestions from code review
Co-authored-by: Martin Hjelmare <[email protected]>
* Add codeowner
Co-authored-by: Martin Hjelmare <[email protected]> | https://github.com/home-assistant/core.git | async def async_send_message(self, message="", **kwargs):
try:
if not self._client.is_connected():
await self._client.connect()
data = kwargs.get(ATTR_DATA)
icon_path = data.get(CONF_ICON, "") if data else None
await self._client.send_message(message, icon_path=icon_path)
except WebOsTvPairError:
_LOGGER.error("Pairing with TV failed")
except FileNotFoundError:
_LOGGER.error("Icon %s not found", icon_path)
except WEBOSTV_EXCEPTIONS:
_LOGGER.error("TV unreachable")
| 97 | notify.py | Python | homeassistant/components/webostv/notify.py | dee843bf6e5ca84a94f336a239f6a6138c4c28e6 | core | 6 |
|
133,550 | 3 | 6 | 20 | 15 | 3 | 0 | 3 | 6 | run_task_workload | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | https://github.com/ray-project/ray.git | def run_task_workload(total_num_cpus, smoke):
| 131 | test_chaos_basic.py | Python | release/nightly_tests/chaos_test/test_chaos_basic.py | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | 3 |
|
248,367 | 81 | 13 | 27 | 256 | 25 | 0 | 106 | 442 | test_do_not_prune_gap_if_state_different | Pull out less state when handling gaps mk2 (#12852) | https://github.com/matrix-org/synapse.git | def test_do_not_prune_gap_if_state_different(self):
# Fudge a second event which points to an event we don't have.
remote_event_2 = event_from_pdu_json(
{
"type": EventTypes.Message,
"state_key": "@user:other",
"content": {},
"room_id": self.room_id,
"sender": "@user:other",
"depth": 10,
"prev_events": ["$some_unknown_message"],
"auth_events": [],
"origin_server_ts": self.clock.time_msec(),
},
RoomVersions.V6,
)
# Now we persist it with state with a dropped history visibility
# setting. The state resolution across the old and new event will then
# include it, and so the resolved state won't match the new state.
state_before_gap = dict(
self.get_success(self.state.get_current_state_ids(self.room_id))
)
state_before_gap.pop(("m.room.history_visibility", ""))
context = self.get_success(
self.state.compute_event_context(
remote_event_2,
state_ids_before_event=state_before_gap,
)
)
self.get_success(self.persistence.persist_event(remote_event_2, context))
# Check that we haven't dropped the old extremity.
self.assert_extremities([self.remote_event_1.event_id, remote_event_2.event_id])
| 149 | test_events.py | Python | tests/storage/test_events.py | b83bc5fab57b37f75a79d02213d6032c586fd36e | synapse | 1 |
|
190,708 | 17 | 11 | 4 | 63 | 7 | 0 | 18 | 43 | test_allow_ordered_sequences_only | Disallow unordered sequences in pytest.approx (#9709)
Fix #9692 | https://github.com/pytest-dev/pytest.git | def test_allow_ordered_sequences_only(self) -> None:
with pytest.raises(TypeError, match="only supports ordered sequences"):
assert {1, 2, 3} == approx({1, 2, 3})
| 39 | approx.py | Python | testing/python/approx.py | 5f3d94c47eb0f4487ef52ac520b3c48170220fc6 | pytest | 1 |
|
128,593 | 62 | 11 | 29 | 337 | 33 | 0 | 92 | 206 | test_remove_node_before_result | [tune] Store sync config/checkpoint config in experiment, trial (#29019)
This is some clean-up required for future changes to the syncing/checkpointing behavior. At the moment we pass single attributes of these configs to the Experiment class, and then subsequently to the Trial class, from which it is passed on to the trainable. If we extend the configurability in the future (e.g. provide fallback mechanisms in the checkpoint config, or make retry wait times configurable in the sync config), we would have to add more and more attributes to these intermediate classes. Instead, we should just pass and store the full config.
As a next follow-up, we can pass these configs to the Trainable.
Signed-off-by: Kai Fricke <[email protected]> | https://github.com/ray-project/ray.git | def test_remove_node_before_result(start_connected_emptyhead_cluster):
cluster = start_connected_emptyhead_cluster
node = cluster.add_node(num_cpus=1)
cluster.wait_for_nodes()
runner = TrialRunner(BasicVariantGenerator())
kwargs = {
"stopping_criterion": {"training_iteration": 3},
"checkpoint_config": CheckpointConfig(checkpoint_frequency=2),
"max_failures": 2,
}
trial = Trial("__fake", **kwargs)
runner.add_trial(trial)
runner.step() # Start trial, call _train once
running_trials = _get_running_trials(runner)
assert len(running_trials) == 1
assert _check_trial_running(running_trials[0])
assert not trial.has_reported_at_least_once
assert trial.status == Trial.RUNNING
cluster.remove_node(node)
cluster.add_node(num_cpus=1)
cluster.wait_for_nodes()
assert ray.cluster_resources()["CPU"] == 1
# Process result: fetch data, invoke _train again
runner.step()
assert trial.last_result.get("training_iteration") == 1
# Process result: discover failure, recover, _train (from scratch)
while trial.status != Trial.TERMINATED:
runner.step()
assert trial.last_result.get("training_iteration") > 1
with pytest.raises(TuneError):
runner.step()
| 195 | test_cluster.py | Python | python/ray/tune/tests/test_cluster.py | e142be077f0c727ab11ba51ecaba9a98b7bfe474 | ray | 2 |
|
181,624 | 11 | 9 | 10 | 58 | 10 | 0 | 13 | 26 | test_generate_import_code | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | https://github.com/EpistasisLab/tpot.git | def test_generate_import_code():
pipeline = creator.Individual.from_string('GaussianNB(RobustScaler(input_matrix))', tpot_obj._pset)
expected_code =
assert expected_code == generate_import_code(pipeline, tpot_obj.operators)
| 33 | export_tests.py | Python | tests/export_tests.py | 388616b6247ca4ea8de4e2f340d6206aee523541 | tpot | 1 |
|
83,384 | 45 | 13 | 30 | 275 | 32 | 0 | 59 | 270 | test_subscriptions_add_notification_default_none | stream_settings: Show stream privacy & description in stream events.
Provide stream privacy and description in stream notification events
when stream is created.
In function "send_messages_for_new_subscribers" for when stream is
created, put policy name and description of the stream.
Fixes #21004 | https://github.com/zulip/zulip.git | def test_subscriptions_add_notification_default_none(self) -> None:
user_profile = self.example_user("iago")
invitee_user_id = user_profile.id
invitee_realm = user_profile.realm
user_profile.enable_stream_desktop_notifications = True
user_profile.enable_stream_push_notifications = True
user_profile.enable_stream_audible_notifications = True
user_profile.enable_stream_email_notifications = True
user_profile.save()
current_stream = self.get_streams(user_profile)[0]
invite_streams = self.make_random_stream_names([current_stream])
self.assert_adding_subscriptions_for_principal(
invitee_user_id, invitee_realm, invite_streams, policy_name="Public"
)
subscription = self.get_subscription(user_profile, invite_streams[0])
with mock.patch("zerver.models.Recipient.__str__", return_value="recip"):
self.assertEqual(
str(subscription),
"<Subscription: "
f"<UserProfile: {user_profile.email} {user_profile.realm}> -> recip>",
)
self.assertIsNone(subscription.desktop_notifications)
self.assertIsNone(subscription.push_notifications)
self.assertIsNone(subscription.audible_notifications)
self.assertIsNone(subscription.email_notifications)
| 157 | test_subs.py | Python | zerver/tests/test_subs.py | 4b9770e270823b7ed2bbbeda0e4450f0ba6a288b | zulip | 1 |
|
154,378 | 63 | 14 | 20 | 176 | 21 | 1 | 82 | 282 | eval_to_file | TEST-#4879: Use pandas `ensure_clean()` in place of `io_tests_data` (#4881)
Signed-off-by: Karthik Velayutham <[email protected]> | https://github.com/modin-project/modin.git | def eval_to_file(modin_obj, pandas_obj, fn, extension, **fn_kwargs):
with ensure_clean_dir() as dirname:
unique_filename_modin = get_unique_filename(
extension=extension, data_dir=dirname
)
unique_filename_pandas = get_unique_filename(
extension=extension, data_dir=dirname
)
# parameter `max_retries=0` is set for `to_csv` function on Ray engine,
# in order to increase the stability of tests, we repeat the call of
# the entire function manually
last_exception = None
for _ in range(3):
try:
getattr(modin_obj, fn)(unique_filename_modin, **fn_kwargs)
except EXCEPTIONS as exc:
last_exception = exc
continue
break
else:
raise last_exception
getattr(pandas_obj, fn)(unique_filename_pandas, **fn_kwargs)
assert assert_files_eq(unique_filename_modin, unique_filename_pandas)
@pytest.fixture | @pytest.fixture | 104 | test_io.py | Python | modin/pandas/test/test_io.py | 5086a9ea37bc37e6e58da0ceaf5864b16cc8e0ed | modin | 3 |
89,030 | 6 | 8 | 38 | 25 | 5 | 0 | 6 | 12 | resolve_condition | perf(issue-search): optimize querying on perf issues by using hasAny on transaction.group_id (#41685)
Special optimization for searching on transactions for performance
issues by doing a `hasAny` check instead of arrayJoining `group_ids`
column and applying a filter after.
before query:
```
SELECT (arrayJoin((group_ids AS _snuba_group_ids)) AS _snuba_group_id), _snuba_group_id, (multiply(toUInt64(max((finish_ts AS _snuba_timestamp))), 1000) AS _snuba_last_seen), (ifNull(uniq(_snuba_group_id), 0) AS _snuba_total)
FROM transactions_local SAMPLE 1.0
WHERE greaterOrEquals((finish_ts AS _snuba_finish_ts), toDateTime('2022-08-26T02:02:49', 'Universal'))
AND less(_snuba_finish_ts, toDateTime('2022-11-24T02:03:49', 'Universal'))
AND in((project_id AS _snuba_project_id), tuple(4550959674425346))
AND equals(('transaction' AS _snuba_type), 'transaction')
AND in(_snuba_project_id, tuple(4550959674425346))
AND in(_snuba_group_id, (1, 2))
GROUP BY _snuba_group_id WITH TOTALS
ORDER BY _snuba_last_seen DESC,
_snuba_group_id ASC
LIMIT 150
OFFSET 0
```
after query:
```
SELECT (arrayJoin(arrayIntersect([1, 2], (group_ids AS _snuba_group_ids))) AS _snuba_group_id), (multiply(toUInt64(max((finish_ts AS _snuba_timestamp))), 1000) AS _snuba_last_seen), (ifNull(uniq(_snuba_group_id), 0) AS _snuba_total), _snuba_group_id
FROM transactions_local SAMPLE 1.0
WHERE greaterOrEquals((finish_ts AS _snuba_finish_ts), toDateTime('2022-08-26T02:01:32', 'Universal'))
AND less(_snuba_finish_ts, toDateTime('2022-11-24T02:02:32', 'Universal'))
AND in((project_id AS _snuba_project_id), tuple(4550959669379074))
AND equals(hasAny(_snuba_group_ids, [1, 2]), 1)
AND equals(('transaction' AS _snuba_type), 'transaction')
AND in(_snuba_project_id, tuple(4550959669379074))
GROUP BY _snuba_group_id WITH TOTALS
ORDER BY _snuba_last_seen DESC,
_snuba_group_id ASC
LIMIT 150
OFFSET 0
``` | https://github.com/getsentry/sentry.git | def resolve_condition(cond, column_resolver):
index = get_function_index(cond)
| 312 | snuba.py | Python | src/sentry/utils/snuba.py | 1bcb129d69a6c4e481b950ebc5871e9c118db74f | sentry | 17 |
|
265,190 | 50 | 14 | 13 | 206 | 19 | 0 | 68 | 156 | prepare_cloned_fields | Closes #9414: Add clone() method to NetBoxModel for copying instance attributes | https://github.com/netbox-community/netbox.git | def prepare_cloned_fields(instance):
# Generate the clone attributes from the instance
if not hasattr(instance, 'clone'):
return None
attrs = instance.clone()
# Prepare querydict parameters
params = []
for key, value in attrs.items():
if type(value) in (list, tuple):
params.extend([(key, v) for v in value])
elif value not in (False, None):
params.append((key, value))
else:
params.append((key, ''))
# Return a QueryDict with the parameters
return QueryDict('&'.join([f'{k}={v}' for k, v in params]), mutable=True)
| 122 | utils.py | Python | netbox/utilities/utils.py | f9d81fd36232e9bf3f60a215d2c6a405b9b342fb | netbox | 7 |
|
144,307 | 17 | 11 | 17 | 113 | 12 | 0 | 25 | 112 | _get_toplevel_child_nodes | [Ray DAG] Implement experimental Ray DAG API for task/class (#22058) | https://github.com/ray-project/ray.git | def _get_toplevel_child_nodes(self) -> Set["DAGNode"]:
children = set()
for a in self.get_args():
if isinstance(a, DAGNode):
children.add(a)
for a in self.get_kwargs().values():
if isinstance(a, DAGNode):
children.add(a)
return children
| 68 | dag_node.py | Python | python/ray/experimental/dag/dag_node.py | c065e3f69ec248383d98b45a8d1c00832ccfdd57 | ray | 5 |
|
272,020 | 138 | 24 | 84 | 539 | 40 | 0 | 325 | 2,133 | _validate_or_infer_batch_size | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def _validate_or_infer_batch_size(self, batch_size, steps, x):
if isinstance(
x, (tf.compat.v1.data.Dataset, tf.data.Dataset, data_utils.Sequence)
) or tf_inspect.isgenerator(x):
if batch_size is not None:
raise ValueError(
"The `batch_size` argument must not be specified for the given "
"input type. Received input: {}, batch_size: {}".format(
x, batch_size
)
)
return
# Avoids the override in Sequential.layers which filters Input layers.
# (Which are often the very layers that we're after.)
layers = self._flatten_layers(include_self=False, recursive=False)
first_layer = next(layers, None)
if first_layer:
# The per-replica static batch size.
static_batch_size = training_utils.get_static_batch_size(
first_layer
)
if static_batch_size is not None:
# Determine number of times the user-supplied batch size will be split.
if (
self._distribution_strategy
and distributed_training_utils.global_batch_size_supported(
self._distribution_strategy
)
):
num_splits_for_ds = (
self._distribution_strategy.num_replicas_in_sync
)
else:
num_splits_for_ds = 1
# Check `batch_size` argument is consistent with InputLayer.
if batch_size is not None:
if batch_size % num_splits_for_ds != 0:
raise ValueError(
"The `batch_size` argument ({}) must be divisible "
"the by number of replicas ({})".format(
batch_size, num_splits_for_ds
)
)
per_replica_batch_size = batch_size // num_splits_for_ds
if per_replica_batch_size != static_batch_size:
raise ValueError(
"The `batch_size` argument value {} is "
"incompatible with the specified batch size of "
"your Input Layer: {}".format(
per_replica_batch_size, static_batch_size
)
)
# Check Dataset/Iterator batch size is consistent with InputLayer.
if isinstance(
x,
(
tf.data.Dataset,
tf.compat.v1.data.Iterator,
tf.data.Iterator,
),
):
ds_batch_size = tf.compat.v1.Dimension(
tf.nest.flatten(tf.compat.v1.data.get_output_shapes(x))[
0
][0]
).value
if ds_batch_size is not None:
if ds_batch_size % num_splits_for_ds != 0:
raise ValueError(
"The batch output shape of your `Dataset` {} "
"cannot be divisible by number of replicas {}".format(
ds_batch_size, num_splits_for_ds
)
)
ds_per_replica_batch_size = (
ds_batch_size // num_splits_for_ds
)
if ds_per_replica_batch_size != static_batch_size:
raise ValueError(
"The batch output shape of your `Dataset` is "
"{}, which is incompatible with the specified "
"batch size of your Input Layer: {}".format(
ds_per_replica_batch_size, static_batch_size
)
)
# Set inferred batch size from the InputLayer.
if steps is None:
batch_size = static_batch_size * num_splits_for_ds
if batch_size is None and steps is None:
# Backwards compatibility
batch_size = 32
return batch_size
| 330 | training_v1.py | Python | keras/engine/training_v1.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 18 |
|
19,898 | 44 | 12 | 16 | 112 | 14 | 0 | 52 | 160 | requires_python | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | https://github.com/pypa/pipenv.git | def requires_python(self) -> SpecifierSet:
value = self.metadata.get("Requires-Python")
if value is None:
return SpecifierSet()
try:
# Convert to str to satisfy the type checker; this can be a Header object.
spec = SpecifierSet(str(value))
except InvalidSpecifier as e:
message = "Package %r has an invalid Requires-Python: %s"
logger.warning(message, self.raw_name, e)
return SpecifierSet()
return spec
| 64 | base.py | Python | pipenv/patched/notpip/_internal/metadata/base.py | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | 3 |
|
189,464 | 18 | 13 | 5 | 61 | 9 | 0 | 20 | 59 | _attribute_to_float | Hide more private methods from the docs. (#2468)
* hide privs from text_mobject.py
* hide privs from tex_mobject.py
* hide privs from code_mobject.py
* hide privs from svg_mobject.py
* remove SVGPath and utils from __init__.py
* don't import string_to_numbers
* hide privs from geometry.py
* hide privs from matrix.py
* hide privs from numbers.py
* hide privs from three_dimensions.py
* forgot underscore under set_stroke_width_from_length
* there were more i missed
* unhidea method that was used in docs
* forgot other text2hash
* remove svg_path from docs | https://github.com/ManimCommunity/manim.git | def _attribute_to_float(self, attr):
stripped_attr = "".join(
[char for char in attr if char in string.digits + ".-e"],
)
return float(stripped_attr)
| 36 | svg_mobject.py | Python | manim/mobject/svg/svg_mobject.py | 902e7eb4f0147b5882a613b67467e38a1d47f01e | manim | 3 |
|
120,755 | 76 | 18 | 27 | 287 | 26 | 0 | 96 | 246 | test_converters | [jax2tf] Rewrites the converters_eval framework and makes various improvements.
The most visible change is that we are now outputting a single table with models to test as rows, and the converters that are being tested as columns. This allows us to compare converters much easier: [NEW OUTPUT](https://github.com/google/jax/blob/91366a58e69e21b29677f01967951b988659307a/jax/experimental/jax2tf/converters_eval/converters_results.md) vs [OLD OUTPUT](https://github.com/google/jax/blob/main/jax/experimental/jax2tf/converters_eval/converters_results.md).
Additional improvements:
* The models to test now reside in a subdirectory `test_models`. Before, one had to manually import the Flax examples, which is error prone since these examples may change.
* Simpler testing logic: no suites, just examples. I also reduced the number of abstractions for setting up the tests, now we just build ModelTestCase instances in `models.py`, which uses pure Flax and JAX.
* Testing improvements: Both TFjs and TFLite functions can now be called with multiple arguments.
* Markdown output is now a single table that contains all examples (rows) tested on all converters (columns). All error messages are below and linked.
* We only construct a model once for all converters, which makes the total run ~4x faster (before we constructed one for each converter).
TODO:
* Add `tf.lite.experimental_from_jax` as a converter so we can compare with the jax2tf path.
* For each TFLite converter, include one columns with Flex ops and one without.
* Add more test cases: models from Scenic and T5X seem like good candidates.
* Turns this library into actual tests and move everything under jax2tf/tests.
PiperOrigin-RevId: 452694479 | https://github.com/google/jax.git | def test_converters():
results = {}
converters = {x: CONVERTERS[x] for x in FLAGS.converters}
for example_name, test_case_fn in get_test_cases().items():
if FLAGS.examples and example_name not in FLAGS.examples:
continue
test_case = test_case_fn() # This will create the model's variables.
converter_results = []
for converter_name, converter_fn in converters.items():
logging.info('===== Testing example %s, Converter %s',
example_name, converter_name)
error_msg = ''
try:
converter_fn(test_case)
logging.info('=== OK!')
except Exception as e: # pylint: disable=broad-except
if FLAGS.fail_on_error:
raise e
error_msg = repr(e).replace('\\n', '\n')
logging.info(
'=== ERROR %s',
error_msg if len(error_msg) < 250 else error_msg[:250] +
'... (CROPPED)')
converter_results.append((converter_name, error_msg))
results[example_name] = converter_results
if FLAGS.write_markdown:
write_markdown(results)
| 169 | models_test.py | Python | jax/experimental/jax2tf/converters_eval/models_test.py | 1ecfe05a9e1e8e7b261ceb9c0b03a4ee48dee5b1 | jax | 10 |
|
247,159 | 27 | 12 | 12 | 142 | 10 | 0 | 33 | 169 | test_check_for_extra_dependencies | Use importlib.metadata to read requirements (#12088)
* Pull runtime dep checks into their own module
* Reimplement `check_requirements` using `importlib`
I've tried to make this clearer. We start by working out which of
Synapse's requirements we need to be installed here and now. I was
surprised that there wasn't an easier way to see which packages were
installed by a given extra.
I've pulled out the error messages into functions that deal with "is
this for an extra or not". And I've rearranged the loop over two
different sets of requirements into one loop with a "must be instaled"
flag.
I hope you agree that this is clearer.
* Test cases | https://github.com/matrix-org/synapse.git | def test_check_for_extra_dependencies(self) -> None:
with patch(
"synapse.util.check_dependencies.metadata.requires",
return_value=["dummypkg >= 1; extra == 'cool-extra'"],
), patch("synapse.util.check_dependencies.EXTRAS", {"cool-extra"}):
with self.mock_installed_package(None):
self.assertRaises(DependencyException, check_requirements, "cool-extra")
with self.mock_installed_package(old):
self.assertRaises(DependencyException, check_requirements, "cool-extra")
with self.mock_installed_package(new):
# should not raise
check_requirements()
| 77 | test_check_dependencies.py | Python | tests/util/test_check_dependencies.py | 313581e4e9bc2ec3d59ccff86e3a0c02661f71c4 | synapse | 1 |
|
288,093 | 11 | 11 | 4 | 43 | 5 | 0 | 12 | 44 | _fmt_dewpoint | Use unit_conversion in components (#79204)
* Use unit_conversion in components
* Two more | https://github.com/home-assistant/core.git | def _fmt_dewpoint(dewpoint):
if dewpoint is not None:
return round(TemperatureConverter.kelvin_to_celsius(dewpoint), 1)
return None
| 26 | weather_update_coordinator.py | Python | homeassistant/components/openweathermap/weather_update_coordinator.py | 24c26dc03267da84e3c17d747ecb7143b54e8489 | core | 2 |
|
44,241 | 6 | 6 | 16 | 23 | 4 | 0 | 6 | 20 | get_ui_field_behaviour | Add optional features in providers. (#21074)
Some features in providers can be optional, depending on the
presence of some libraries. Since Providers Manager tries
to import the right classes that are exposed via providers it
should not - in this case - log warning message for those
optional features. Previously, all ImportErrors were turned into
debug log but now we only turn them in debug log when creator
of the provider deliberately raised
an AirflowOptionalProviderFeatureException.
Instructions on how to raise such exception in the way to keep
backwards compatibility were updated in proider's documentation.
Fixes: #20709 | https://github.com/apache/airflow.git | def get_ui_field_behaviour() -> Dict[str, Any]:
...
| 13 | base.py | Python | airflow/hooks/base.py | cb73053211367e2c2dd76d5279cdc7dc7b190124 | airflow | 1 |
|
64,212 | 49 | 13 | 35 | 298 | 20 | 0 | 86 | 63 | get_gl_entries | patch: Removed files and code related to old distributed cost center feature | https://github.com/frappe/erpnext.git | def get_gl_entries(filters, accounting_dimensions):
currency_map = get_currency(filters)
select_fields =
order_by_statement = "order by posting_date, account, creation"
if filters.get("include_dimensions"):
order_by_statement = "order by posting_date, creation"
if filters.get("group_by") == "Group by Voucher":
order_by_statement = "order by posting_date, voucher_type, voucher_no"
if filters.get("group_by") == "Group by Account":
order_by_statement = "order by account, posting_date, creation"
if filters.get("include_default_book_entries"):
filters['company_fb'] = frappe.db.get_value("Company",
filters.get("company"), 'default_finance_book')
dimension_fields = ""
if accounting_dimensions:
dimension_fields = ', '.join(accounting_dimensions) + ','
gl_entries = frappe.db.sql(.format(
dimension_fields=dimension_fields, select_fields=select_fields,
conditions=get_conditions(filters), order_by_statement=order_by_statement
), filters, as_dict=1)
if filters.get('presentation_currency'):
return convert_to_presentation_currency(gl_entries, currency_map, filters.get('company'))
else:
return gl_entries
| 166 | general_ledger.py | Python | erpnext/accounts/report/general_ledger/general_ledger.py | 3dadfc9048d804e097ebfe6801802f2c980e04a7 | erpnext | 7 |
|
112,954 | 12 | 9 | 10 | 51 | 6 | 0 | 14 | 30 | silence_stdout | Logging refactor (step 1) - experiment handlers (#4792) | https://github.com/microsoft/nni.git | def silence_stdout() -> None:
handler = _handlers.pop('_stdout_', None)
if handler is not None:
_root_logger.removeHandler(handler)
| 29 | log.py | Python | nni/runtime/log.py | 4feab0e34b490500b06efd6e7e8a34d686702c2f | nni | 2 |
|
22,604 | 11 | 8 | 19 | 73 | 11 | 0 | 11 | 17 | indiac | refactor: clean code
Signed-off-by: slowy07 <[email protected]> | https://github.com/geekcomputers/Python.git | def indiac():
cases = f
print(cases)
print(
)
print("\nDeveloped By @TheDarkW3b")
| 12 | coronacases.py | Python | coronacases.py | f0af0c43340763724f139fa68aa1e5a9ffe458b4 | Python | 1 |
|
337,632 | 22 | 9 | 6 | 83 | 10 | 0 | 26 | 43 | load_training_checkpoint | DeepSpeed Revamp (#405)
* deepspeed revamp
* Update dataclasses.py
* Update deepspeed.py
* quality
* fixing code
* quality
* FIx imports
* saving 16bit model in zero stage 3
1. Saving 16bit model in zero stage 3
2. zero init in stage 3 support using HFDeepSpeedConfig
* quality
* adding test and fixing bugs
* update makefile for deepspeed tests
* Update test.yml
* adding `deepspeed` as requirement for tests
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* quality
* addressing comments
* add example and minor updates
1. Add example to show the usage of config file with revamped deepspeed support.
2. update required deepspeed version to 0.6.5
2. reverting `reinit` change as it is not required,
3. raising Exception when using `clip_grad_value` with DeepSpeed/FSDP.
* Documentation and Zero-3 Inference Support
1. Changes to support ZeRo Stage-3 Inference support.
2. minor bug fixes.
3. Documentation.
* doc fix
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* addressing comments
* update doc to address comments and bug fixes
1. update tests and add new one testing autofill functionality of `prepare` method.
2. fix bug related to zero-3 init related to HFDeepSpeedConfig
3. Update documentation addressing comments.
* removing image and hosting it on `documentation-images` dataset
* check for hidden_size for zero_opt heurisitics
Co-authored-by: Sylvain Gugger <[email protected]> | https://github.com/huggingface/accelerate.git | def load_training_checkpoint(model, load_dir, tag=None, **kwargs):
_, checkpoint_state_dict = model.load_checkpoint(load_dir, tag=tag, **kwargs)
epoch = checkpoint_state_dict["epoch"]
last_global_step = checkpoint_state_dict["last_global_step"]
del checkpoint_state_dict
return (epoch, last_global_step)
# New Code # | 52 | deepspeed_with_config_support.py | Python | examples/by_feature/deepspeed_with_config_support.py | 1703b79a797dab765996764707186def7533d8fd | accelerate | 1 |
|
129,422 | 4 | 7 | 17 | 20 | 3 | 0 | 4 | 11 | test_actor_task_stacktrace | [Part 5] Set actor died error message in ActorDiedError (#20903)
This is the second last PR to improve `ActorDiedError` exception.
This propagates Actor death cause metadata to the ray error object. In this way, we can raise a better actor died error exception.
After this PR is merged, I will add more metadata to each error message and write a documentation that explains when each error happens.
TODO
- [x] Fix test failures
- [x] Add unit tests
- [x] Fix Java/cpp cases
Follow up PRs
- Not allowing nullptr for RayErrorInfo input. | https://github.com/ray-project/ray.git | def test_actor_task_stacktrace(ray_start_regular):
expected_output =
| 63 | test_traceback.py | Python | python/ray/tests/test_traceback.py | 5514711a3506f9e2675786b13b78c8f10a008f34 | ray | 2 |
|
244,143 | 47 | 14 | 16 | 217 | 25 | 0 | 80 | 249 | forward_head | [Feature] Add Mask2Former to mmdet (#6938)
update doc
update doc format
deepcopy pixel_decoder cfg
move mask_pseudo_sampler cfg to config file
move part of postprocess from head to detector
fix bug in postprocessing
move class setting from head to config file
remove if else
move mask2bbox to mask/util
update docstring
update docstring in result2json
fix bug
update class_weight
add maskformer_fusion_head
add maskformer fusion head
update
add cfg for filter_low_score
update maskformer
update class_weight
update config
update unit test
rename param
update comments in config
rename variable, rm arg, update unit tests
update mask2bbox
add unit test for mask2bbox
replace unsqueeze(1) and squeeze(1)
add unit test for maskformer_fusion_head
update docstrings
update docstring
delete \
remove modification to ce loss
update docstring
update docstring
update docstring of ce loss
update unit test
update docstring
update docstring
update docstring
rename
rename
add msdeformattn pixel decoder
maskformer refactor
add strides in config
remove redundant code
remove redundant code
update unit test
update config
update | https://github.com/open-mmlab/mmdetection.git | def forward_head(self, decoder_out, mask_feature, attn_mask_target_size):
decoder_out = self.transformer_decoder.post_norm(decoder_out)
decoder_out = decoder_out.transpose(0, 1)
# shape (num_queries, batch_size, c)
cls_pred = self.cls_embed(decoder_out)
# shape (num_queries, batch_size, c)
mask_embed = self.mask_embed(decoder_out)
# shape (num_queries, batch_size, h, w)
mask_pred = torch.einsum('bqc,bchw->bqhw', mask_embed, mask_feature)
attn_mask = F.interpolate(
mask_pred,
attn_mask_target_size,
mode='bilinear',
align_corners=False)
# shape (num_queries, batch_size, h, w) ->
# (batch_size * num_head, num_queries, h, w)
attn_mask = attn_mask.flatten(2).unsqueeze(1).repeat(
(1, self.num_heads, 1, 1)).flatten(0, 1)
attn_mask = attn_mask.sigmoid() < 0.5
attn_mask = attn_mask.detach()
return cls_pred, mask_pred, attn_mask
| 137 | mask2former_head.py | Python | mmdet/models/dense_heads/mask2former_head.py | 14f0e9585c15c28f0c31dcc3ea352449bbe5eb96 | mmdetection | 1 |
|
267,950 | 25 | 8 | 7 | 77 | 10 | 1 | 27 | 73 | close | ansible-test - Use more native type hints. (#78435)
* ansible-test - Use more native type hints.
Simple search and replace to switch from comments to native type hints for return types of functions with no arguments.
* ansible-test - Use more native type hints.
Conversion of simple single-line function annotation type comments to native type hints.
* ansible-test - Use more native type hints.
Conversion of single-line function annotation type comments with default values to native type hints.
* ansible-test - Use more native type hints.
Manual conversion of type annotation comments for functions which have pylint directives. | https://github.com/ansible/ansible.git | def close(self) -> None:
if not self.process:
return # forwarding not in use
self.process.terminate()
display.info('Waiting for the session SSH port forwarding process to terminate.', verbosity=1)
self.process.wait()
@contextlib.contextmanager | @contextlib.contextmanager | 39 | containers.py | Python | test/lib/ansible_test/_internal/containers.py | 3eb0485dd92c88cc92152d3656d94492db44b183 | ansible | 2 |
101,421 | 13 | 9 | 5 | 57 | 11 | 0 | 14 | 42 | _random_choice | Bugfix: convert - Gif Writer
- Fix non-launch error on Gif Writer
- convert plugins - linting
- convert/fs_media/preview/queue_manager - typing
- Change convert items from dict to Dataclass | https://github.com/deepfakes/faceswap.git | def _random_choice(self) -> List[int]:
retval = [random.choice(indices) for indices in self._indices]
logger.debug(retval)
return retval
| 35 | preview.py | Python | tools/preview/preview.py | 1022651eb8a7741014f5d2ec7cbfe882120dfa5f | faceswap | 2 |
|
4,880 | 10 | 6 | 12 | 32 | 7 | 0 | 10 | 24 | check_connection | python generators output `spec.yaml` files (#12245)
* generators output spec.yaml files
* source-singer generator also uses spec.yaml
* update scaffold
* update python cdk tutorials to use spec.yaml
* add docs updates
* consistency | https://github.com/airbytehq/airbyte.git | def check_connection(self, logger, config) -> Tuple[bool, any]:
return True, None
| 21 | source.py | Python | airbyte-integrations/connectors/source-scaffold-source-http/source_scaffold_source_http/source.py | 0c12ad9136d992cde35e3975ad6056669188554c | airbyte | 1 |
|
189,525 | 20 | 13 | 9 | 112 | 17 | 0 | 25 | 71 | extract_face_coords | Upgraded typehints (#2429)
* Future Annotations
* Delete template_twitter_post.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Apply suggestions from code review
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fixed broken RTD
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> | https://github.com/ManimCommunity/manim.git | def extract_face_coords(self) -> list[list[np.ndarray]]:
new_vertex_coords = []
for v in self.graph.vertices:
new_vertex_coords.append(self.graph[v].get_center())
layout = dict(enumerate(new_vertex_coords))
return [[layout[j] for j in i] for i in self.faces_list]
| 72 | polyhedra.py | Python | manim/mobject/polyhedra.py | daf23c9d1031b12d9c119b8f6b7e60727d7f9242 | manim | 4 |
|
89,805 | 8 | 6 | 6 | 22 | 3 | 0 | 8 | 22 | get_integration | feat(hybrid-cloud): Create a base parser and middleware for webhooks (#42267)
See [HC-468](https://getsentry.atlassian.net/browse/HC-468)
Requires https://github.com/getsentry/sentry/pull/42260
This PR establishes the base parser that will be inherited from to
forward webhooks to the appropriate integration. It is a slightly
modified, portion of this [much larger
PR](https://github.com/getsentry/sentry/pull/39169). It was split off in
order to update that PR and make it more reviewable.
Some background:
The IntegrationControlMiddleware catches any incoming requests to the
control silo with the `/extensions/` path prefix. It parses the provider
out of the URL (e.g. `sentry.io/extensions/slack/something`), and passes
the request along to that parser to determine how we handle the request
(e.g. do we forward it to a region, multiple regions, handle it async,
respond immediately from control, etc.)
The BaseRequestParser provides a bunch of helpful methods to these
parsers to make the actual integration-specific parsers as minimal as
possible. They only need to implement a method for identifying the
integration (e.g. from headers, from a signature, from a payload, etc),
and how we respond to the webhook (allowing for different behaviour from
different webhooks). | https://github.com/getsentry/sentry.git | def get_integration(self) -> Integration | None:
return None
| 12 | base.py | Python | src/sentry/middleware/integrations/parsers/base.py | d8609112d6e2f373692b414acff6d4a2f7466750 | sentry | 1 |
|
106,355 | 92 | 15 | 33 | 604 | 44 | 0 | 121 | 404 | get | [utils, etc] Kill child processes when yt-dl is killed
* derived from PR #26592, closes #26592
Authored by: Unrud | https://github.com/ytdl-org/youtube-dl.git | def get(self, url, html=None, video_id=None, note=None, note2='Executing JS on webpage', headers={}, jscode='saveAndExit();'):
if 'saveAndExit();' not in jscode:
raise ExtractorError('`saveAndExit();` not found in `jscode`')
if not html:
html = self.extractor._download_webpage(url, video_id, note=note, headers=headers)
with open(self._TMP_FILES['html'].name, 'wb') as f:
f.write(html.encode('utf-8'))
self._save_cookies(url)
replaces = self.options
replaces['url'] = url
user_agent = headers.get('User-Agent') or std_headers['User-Agent']
replaces['ua'] = user_agent.replace('"', '\\"')
replaces['jscode'] = jscode
for x in self._TMP_FILE_NAMES:
replaces[x] = self._TMP_FILES[x].name.replace('\\', '\\\\').replace('"', '\\"')
with open(self._TMP_FILES['script'].name, 'wb') as f:
f.write(self._TEMPLATE.format(**replaces).encode('utf-8'))
if video_id is None:
self.extractor.to_screen('%s' % (note2,))
else:
self.extractor.to_screen('%s: %s' % (video_id, note2))
p = subprocess.Popen([
self.exe, '--ssl-protocol=any',
self._TMP_FILES['script'].name
], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = process_communicate_or_kill(p)
if p.returncode != 0:
raise ExtractorError(
'Executing JS failed\n:' + encodeArgument(err))
with open(self._TMP_FILES['html'].name, 'rb') as f:
html = f.read().decode('utf-8')
self._load_cookies()
return (html, encodeArgument(out))
| 352 | openload.py | Python | youtube_dl/extractor/openload.py | 0700fde6403aa9eec1ff02bff7323696a205900c | youtube-dl | 7 |
|
293,766 | 15 | 10 | 7 | 66 | 8 | 0 | 15 | 48 | test_lazy_state_prefers_shared_attrs_over_attrs | Separate attrs into another table (reduces database size) (#68224) | https://github.com/home-assistant/core.git | async def test_lazy_state_prefers_shared_attrs_over_attrs(caplog):
row = PropertyMock(
entity_id="sensor.invalid",
shared_attrs='{"shared":true}',
attributes='{"shared":false}',
)
assert LazyState(row).attributes == {"shared": True}
| 36 | test_models.py | Python | tests/components/recorder/test_models.py | 9215702388eef03c7c3ed9f756ea0db533d5beec | core | 1 |
|
213,056 | 57 | 15 | 25 | 326 | 18 | 0 | 88 | 319 | _add_iam_resource_policy_for_method | fix: Py27hash fix (#2182)
* Add third party py27hash code
* Add Py27UniStr and unit tests
* Add py27hash_fix utils and tests
* Add to_py27_compatible_template and tests
* Apply py27hash fix to wherever it is needed
* Apply py27hash fix, all tests pass except api_with_any_method_in_swagger
* apply py27hash fix in openapi + run black
* remove py27 testing
* remove other py27 references
* black fixes
* fixes/typos
* remove py27 from tox.ini
* refactoring
* third party notice
* black
* Fix py27hash fix to deal with null events
* Fix Py27UniStr repr for unicode literals
* black reformat
* Update _template_has_api_resource to check data type more defensively
* Apply py27Dict in _get_authorizers
* Apply Py27Dict to authorizers and gateway responses which will go into swagger
* Update to_py27_compatible_template to handle parameter_values; Add Py27LongInt class
* Rename _convert_to_py27_dict to _convert_to_py27_type
* Apply Py27UniStr to path param name
* Handle HttpApi resource under to_py27_compatible_template
* Fix InvalidDocumentException to not sort different exceptions
* black reformat
* Remove unnecessary test files
Co-authored-by: Wing Fung Lau <[email protected]> | https://github.com/aws/serverless-application-model.git | def _add_iam_resource_policy_for_method(self, policy_list, effect, resource_list):
if not policy_list:
return
if effect not in ["Allow", "Deny"]:
raise ValueError("Effect must be one of {}".format(["Allow", "Deny"]))
if not isinstance(policy_list, (dict, list)):
raise InvalidDocumentException(
[InvalidTemplateException("Type of '{}' must be a list or dictionary".format(policy_list))]
)
if not isinstance(policy_list, list):
policy_list = [policy_list]
self.resource_policy["Version"] = "2012-10-17"
policy_statement = Py27Dict()
policy_statement["Effect"] = effect
policy_statement["Action"] = "execute-api:Invoke"
policy_statement["Resource"] = resource_list
policy_statement["Principal"] = Py27Dict({"AWS": policy_list})
if self.resource_policy.get("Statement") is None:
self.resource_policy["Statement"] = policy_statement
else:
statement = self.resource_policy["Statement"]
if not isinstance(statement, list):
statement = [statement]
statement.extend([policy_statement])
self.resource_policy["Statement"] = statement
| 187 | swagger.py | Python | samtranslator/swagger/swagger.py | a5db070f446b7cfebdaa6ad2e3dcf78f6105a272 | serverless-application-model | 7 |
|
163,143 | 94 | 21 | 48 | 427 | 49 | 0 | 115 | 840 | write_file | DOC: improve IO & General Functions API reference (#45208) | https://github.com/pandas-dev/pandas.git | def write_file(self) -> None:
with get_handle(
self._fname,
"wb",
compression=self._compression,
is_text=False,
storage_options=self.storage_options,
) as self.handles:
if self.handles.compression["method"] is not None:
# ZipFile creates a file (with the same name) for each write call.
# Write it first into a buffer and then write the buffer to the ZipFile.
self._output_file, self.handles.handle = self.handles.handle, BytesIO()
self.handles.created_handles.append(self.handles.handle)
try:
self._write_header(
data_label=self._data_label, time_stamp=self._time_stamp
)
self._write_map()
self._write_variable_types()
self._write_varnames()
self._write_sortlist()
self._write_formats()
self._write_value_label_names()
self._write_variable_labels()
self._write_expansion_fields()
self._write_characteristics()
records = self._prepare_data()
self._write_data(records)
self._write_strls()
self._write_value_labels()
self._write_file_close_tag()
self._write_map()
self._close()
except Exception as exc:
self.handles.close()
if isinstance(self._fname, (str, os.PathLike)) and os.path.isfile(
self._fname
):
try:
os.unlink(self._fname)
except OSError:
warnings.warn(
f"This save was not successful but {self._fname} could not "
"be deleted. This file is not valid.",
ResourceWarning,
)
raise exc
| 251 | stata.py | Python | pandas/io/stata.py | fa3dfdb41f0a75c937e85059a5983da5e5d5aac6 | pandas | 6 |
|
309,489 | 9 | 8 | 3 | 43 | 9 | 0 | 9 | 30 | delete | Import frontend (#64104)
Co-authored-by: epenet <[email protected]> | https://github.com/home-assistant/core.git | async def delete(self, request, addon):
frontend.async_remove_panel(self.hass, addon)
return web.Response()
| 26 | addon_panel.py | Python | homeassistant/components/hassio/addon_panel.py | 946238fb02bc484328603625abf106486b8e6c4a | core | 1 |
|
81,148 | 87 | 15 | 14 | 193 | 23 | 0 | 108 | 249 | job_stats_wrapup | Fix notification timing issue by sending in the latter of 2 events (#12110)
* Track host_status_counts and use that to process notifications
* Remove now unused setting
* Back out changes to callback class not needed after all
* Skirt the need for duck typing by leaning on the cached field
* Delete tests for deleted task
* Revert "Back out changes to callback class not needed after all"
This reverts commit 3b8ae350d218991d42bffd65ce4baac6f41926b2.
* Directly hardcode stats_event_type for callback class
* Fire notifications if stats event was never sent
* Remove test content for deleted methods
* Add placeholder for when no hosts matched
* Make field default be None, denote events processed with empty dict
* Make UI process null value for host_status_counts
* Fix tracking of EOF dispatch for system jobs
* Reorganize EVENT_MAP into class properties
* Consolidate conditional I missed from EVENT_MAP refactor
* Give up on the null condition, also applies for empty hosts
* Remove cls position argument not being used
* Move wrapup method out of class, add tests | https://github.com/ansible/awx.git | def job_stats_wrapup(job_identifier, event=None):
try:
# empty dict (versus default of None) can still indicate that events have been processed
# for job types like system jobs, and jobs with no hosts matched
host_status_counts = {}
if event:
host_status_counts = event.get_host_status_counts()
# Update host_status_counts while holding the row lock
with transaction.atomic():
uj = UnifiedJob.objects.select_for_update().get(pk=job_identifier)
uj.host_status_counts = host_status_counts
uj.save(update_fields=['host_status_counts'])
uj.log_lifecycle("stats_wrapup_finished")
# If the status was a finished state before this update was made, send notifications
# If not, we will send notifications when the status changes
if uj.status not in ACTIVE_STATES:
uj.send_notification_templates('succeeded' if uj.status == 'successful' else 'failed')
except Exception:
logger.exception('Worker failed to save stats or emit notifications: Job {}'.format(job_identifier))
| 106 | callback.py | Python | awx/main/dispatch/worker/callback.py | 29d60844a8cee16bcd31657cecc444a692ade689 | awx | 5 |
|
246,128 | 18 | 12 | 15 | 127 | 9 | 0 | 24 | 161 | test_avatar_constraints_file_size | Configurable limits on avatars (#11846)
Only allow files which file size and content types match configured
limits to be set as avatar.
Most of the inspiration from the non-test code comes from matrix-org/synapse-dinsic#19 | https://github.com/matrix-org/synapse.git | def test_avatar_constraints_file_size(self):
self._setup_local_files(
{
"small": {"size": 40},
"big": {"size": 60},
}
)
res = self.get_success(
self.handler.check_avatar_size_and_mime_type("mxc://test/small")
)
self.assertTrue(res)
res = self.get_success(
self.handler.check_avatar_size_and_mime_type("mxc://test/big")
)
self.assertFalse(res)
| 71 | test_profile.py | Python | tests/handlers/test_profile.py | bf60da1a60096fac5fb778b732ff2214862ac808 | synapse | 1 |
|
104,183 | 29 | 13 | 13 | 116 | 18 | 0 | 30 | 87 | from_directory | Run pyupgrade for Python 3.6+ (#3560)
* Run pyupgrade for Python 3.6+
* Fix lint issues
* Revert changes for the datasets code
Co-authored-by: Quentin Lhoest <[email protected]> | https://github.com/huggingface/datasets.git | def from_directory(cls, metric_info_dir) -> "MetricInfo":
logger.info(f"Loading Metric info from {metric_info_dir}")
if not metric_info_dir:
raise ValueError("Calling MetricInfo.from_directory() with undefined metric_info_dir.")
with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), encoding="utf-8") as f:
metric_info_dict = json.load(f)
return cls.from_dict(metric_info_dict)
| 64 | info.py | Python | src/datasets/info.py | 21bfd0d3f5ff3fbfd691600e2c7071a167816cdf | datasets | 2 |
|
109,421 | 4 | 6 | 2 | 19 | 3 | 0 | 4 | 18 | get_boxstyle | Harmonize docstrings for boxstyle/connectionstyle/arrowstyle.
- Rely on `__init_subclass__` to avoid the need for the out-of-order
`interpd.update`/`dedent_interpd`.
- Use consistent wording for all setters, and add ACCEPTS list in all
cases.
- Move get_boxstyle right next to set_boxstyle (consistently with the
other setters/getters).
- Make the type check in the setters consistent in all cases (check for
str, not for forcing inheritance from the private _Base).
- Support `set_connectionstyle()` as equivalent to
`set_connectionstyle(None)`, consistently with the other two setters. | https://github.com/matplotlib/matplotlib.git | def get_boxstyle(self):
return self._bbox_transmuter
| 10 | patches.py | Python | lib/matplotlib/patches.py | 0dc472b4c7cdcc1e88228988fff17762c90f1cb9 | matplotlib | 1 |
|
316,274 | 24 | 14 | 7 | 122 | 16 | 0 | 28 | 53 | test_key_error | Search/replace RESULT_TYPE_* by FlowResultType enum (#74642) | https://github.com/home-assistant/core.git | async def test_key_error(hass):
flow = config_flow.SomaFlowHandler()
flow.hass = hass
with patch.object(SomaApi, "list_devices", return_value={}):
result = await flow.async_step_import({"host": MOCK_HOST, "port": MOCK_PORT})
assert result["type"] == data_entry_flow.FlowResultType.ABORT
assert result["reason"] == "connection_error"
| 68 | test_config_flow.py | Python | tests/components/soma/test_config_flow.py | 7cd68381f1d4f58930ffd631dfbfc7159d459832 | core | 1 |
|
212,687 | 37 | 11 | 10 | 101 | 14 | 0 | 50 | 139 | fonts_installed_list | Added Text.fonts_installed_list - returns the fonts installed as reported by tkinter. | https://github.com/PySimpleGUI/PySimpleGUI.git | def fonts_installed_list(cls):
# if no windows have been created (there is no hidden master root to rely on) then temporarily make a window so the measurement can happen
if Window.hidden_master_root is None:
root = tk.Tk()
else:
root = Window.hidden_master_root
fonts = list(tkinter.font.families())
fonts.sort()
if Window.hidden_master_root is None:
root.destroy()
return fonts
| 58 | PySimpleGUI.py | Python | PySimpleGUI.py | 81599f643bae6867c29cf2006e6110b9f2265f5e | PySimpleGUI | 3 |
|
337,710 | 38 | 16 | 13 | 129 | 12 | 0 | 58 | 219 | del_config_sub_tree | Migrate HFDeepSpeedConfig from trfrs to accelerate (#432)
* Migrate HFDeepSpeedConfig from trfrs to accelerate
* update state.py to resolve comments
1. Adds static method to have a simple API for integrating deepspeed config in transformers trainer.
* reverting changes and addressing comments
* Marking DepSpeed and FSDP as experimental in accelerate | https://github.com/huggingface/accelerate.git | def del_config_sub_tree(self, ds_key_long, must_exist=False):
config = self.config
# find the config node of interest if it exists
nodes = ds_key_long.split(".")
for node in nodes:
parent_config = config
config = config.get(node)
if config is None:
if must_exist:
raise ValueError(f"Can't find {ds_key_long} entry in the config: {self.config}")
else:
return
# if found remove it
if parent_config is not None:
parent_config.pop(node)
| 70 | deepspeed.py | Python | src/accelerate/utils/deepspeed.py | 873dcc63a461558152eec20af991482204e8248f | accelerate | 5 |
|
295,372 | 9 | 10 | 4 | 69 | 4 | 1 | 11 | 22 | unauthorized_update_message_text | Refactor telegram_bot polling/webhooks platforms and add tests (#66433)
Co-authored-by: Pär Berge <[email protected]> | https://github.com/home-assistant/core.git | def unauthorized_update_message_text(update_message_text):
update_message_text["message"]["from"]["id"] = 1234
update_message_text["message"]["chat"]["id"] = 1234
return update_message_text
@pytest.fixture | @pytest.fixture | 32 | conftest.py | Python | tests/components/telegram_bot/conftest.py | d7375f1a9c4a69858a65a56bd524f5a78ecab23c | core | 1 |
154,161 | 11 | 12 | 6 | 47 | 6 | 0 | 11 | 65 | mask | FIX-#4676: drain sub-virtual-partition call queues. (#4695)
Signed-off-by: mvashishtha <[email protected]>
Co-authored-by: Alexey Prutskov <[email protected]> | https://github.com/modin-project/modin.git | def mask(self, row_indices, col_indices):
return (
self.force_materialization()
.list_of_block_partitions[0]
.mask(row_indices, col_indices)
)
| 30 | virtual_partition.py | Python | modin/core/execution/dask/implementations/pandas_on_dask/partitioning/virtual_partition.py | 9bf8d57ca44e22fd69b0abc55793cf60c199ab4d | modin | 1 |
|
3,835 | 48 | 12 | 14 | 310 | 32 | 0 | 68 | 166 | test_stream_slices_with_state | 🎉 🎉 Source FB Marketing: performance and reliability fixes (#9805)
* Facebook Marketing performance improvement
* add comments and little refactoring
* fix integration tests with the new config
* improve job status handling, limit concurrency to 10
* fix campaign jobs, refactor manager
* big refactoring of async jobs, support random order of slices
* update source _read_incremental to hook new state logic
* fix issues with timeout
* remove debugging and clean up, improve retry logic
* merge changes from #8234
* fix call super _read_increment
* generalize batch execution, add use_batch flag
* improve coverage, do some refactoring of spec
* update test, remove overrides of source
* add split by AdSet
* add smaller insights
* fix end_date < start_date case
* add account_id to PK
* add notes
* fix new streams
* fix reversed incremental stream
* update spec.json for SAT
* upgrade CDK and bump version
Co-authored-by: Dmytro Rezchykov <[email protected]>
Co-authored-by: Eugene Kulak <[email protected]> | https://github.com/airbytehq/airbyte.git | def test_stream_slices_with_state(self, api, async_manager_mock, start_date):
end_date = start_date + duration(days=10)
cursor_value = start_date + duration(days=5)
state = {AdsInsights.cursor_field: cursor_value.date().isoformat()}
stream = AdsInsights(api=api, start_date=start_date, end_date=end_date)
async_manager_mock.completed_jobs.return_value = [1, 2, 3]
slices = list(stream.stream_slices(stream_state=state, sync_mode=SyncMode.incremental))
assert slices == [{"insight_job": 1}, {"insight_job": 2}, {"insight_job": 3}]
async_manager_mock.assert_called_once()
args, kwargs = async_manager_mock.call_args
generated_jobs = list(kwargs["jobs"])
assert len(generated_jobs) == (end_date - cursor_value).days
assert generated_jobs[0].interval.start == cursor_value.date() + duration(days=1)
assert generated_jobs[1].interval.start == cursor_value.date() + duration(days=2)
| 197 | test_base_insight_streams.py | Python | airbyte-integrations/connectors/source-facebook-marketing/unit_tests/test_base_insight_streams.py | a3aae8017a0a40ff2006e2567f71dccb04c997a5 | airbyte | 1 |
|
127,765 | 29 | 10 | 15 | 101 | 13 | 0 | 34 | 98 | sample | [RLlib] A few updates for offline DQN usage (#28593)
1. Allow users to select between huber or mse losses for num_atoms=1 case.
2. Allow users to configure temperature parameter for Categorical distribution.
3. Introduce FifoReplayBuffer to allow off-policy algorithms to be used without a real ReplayBuffer.
Signed-off-by: Jun Gong <[email protected]> | https://github.com/ray-project/ray.git | def sample(self, *args, **kwargs) -> Optional[SampleBatchType]:
if len(self._queue) <= 0:
# Return empty SampleBatch if queue is empty.
return MultiAgentBatch({}, 0)
batch = self._queue.pop(0)
# Equal weights of 1.0.
batch["weights"] = np.ones(len(batch))
return batch
| 61 | fifo_replay_buffer.py | Python | rllib/utils/replay_buffers/fifo_replay_buffer.py | 4105ca4d2be368a7893df9a0bd64e1641936c046 | ray | 2 |
|
260,025 | 7 | 10 | 3 | 44 | 9 | 0 | 7 | 21 | _validate_targets | ENH Deprecate `class_weight_` in regression/single class models in SVM module (#22898)
Co-authored-by: Thomas J. Fan <[email protected]> | https://github.com/scikit-learn/scikit-learn.git | def _validate_targets(self, y):
return column_or_1d(y, warn=True).astype(np.float64, copy=False)
| 38 | _base.py | Python | sklearn/svm/_base.py | f205b9579ab44988d28d890a9b4c944b37d89e73 | scikit-learn | 1 |
|
247,511 | 68 | 11 | 49 | 414 | 33 | 0 | 112 | 586 | test_thumbnail_repeated_thumbnail | Add type hints to `tests/rest`. (#12208)
Co-authored-by: Patrick Cloke <[email protected]> | https://github.com/matrix-org/synapse.git | def test_thumbnail_repeated_thumbnail(self) -> None:
self._test_thumbnail(
"scale", self.test_image.expected_scaled, self.test_image.expected_found
)
if not self.test_image.expected_found:
return
# Fetching again should work, without re-requesting the image from the
# remote.
params = "?width=32&height=32&method=scale"
channel = make_request(
self.reactor,
FakeSite(self.thumbnail_resource, self.reactor),
"GET",
self.media_id + params,
shorthand=False,
await_result=False,
)
self.pump()
self.assertEqual(channel.code, 200)
if self.test_image.expected_scaled:
self.assertEqual(
channel.result["body"],
self.test_image.expected_scaled,
channel.result["body"],
)
# Deleting the thumbnail on disk then re-requesting it should work as
# Synapse should regenerate missing thumbnails.
origin, media_id = self.media_id.split("/")
info = self.get_success(self.store.get_cached_remote_media(origin, media_id))
file_id = info["filesystem_id"]
thumbnail_dir = self.media_repo.filepaths.remote_media_thumbnail_dir(
origin, file_id
)
shutil.rmtree(thumbnail_dir, ignore_errors=True)
channel = make_request(
self.reactor,
FakeSite(self.thumbnail_resource, self.reactor),
"GET",
self.media_id + params,
shorthand=False,
await_result=False,
)
self.pump()
self.assertEqual(channel.code, 200)
if self.test_image.expected_scaled:
self.assertEqual(
channel.result["body"],
self.test_image.expected_scaled,
channel.result["body"],
)
| 263 | test_media_storage.py | Python | tests/rest/media/v1/test_media_storage.py | 32c828d0f760492711a98b11376e229d795fd1b3 | synapse | 4 |
|
20,858 | 13 | 12 | 5 | 71 | 6 | 0 | 13 | 45 | plain | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | https://github.com/pypa/pipenv.git | def plain(self) -> str:
if len(self._text) != 1:
self._text[:] = ["".join(self._text)]
return self._text[0]
| 42 | text.py | Python | pipenv/patched/notpip/_vendor/rich/text.py | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | 2 |