Query Text
stringlengths
9
8.71k
Ranking 1
stringlengths
14
5.31k
Ranking 2
stringlengths
11
5.31k
Ranking 3
stringlengths
11
8.42k
Ranking 4
stringlengths
17
8.71k
Ranking 5
stringlengths
14
4.95k
Ranking 6
stringlengths
14
8.42k
Ranking 7
stringlengths
17
8.42k
Ranking 8
stringlengths
10
5.31k
Ranking 9
stringlengths
9
8.42k
Ranking 10
stringlengths
9
8.42k
Ranking 11
stringlengths
10
4.11k
Ranking 12
stringlengths
14
8.33k
Ranking 13
stringlengths
17
3.82k
score_0
float64
1
1.25
score_1
float64
0
0.25
score_2
float64
0
0.25
score_3
float64
0
0.24
score_4
float64
0
0.24
score_5
float64
0
0.24
score_6
float64
0
0.21
score_7
float64
0
0.1
score_8
float64
0
0.02
score_9
float64
0
0
score_10
float64
0
0
score_11
float64
0
0
score_12
float64
0
0
score_13
float64
0
0
Word Embedding Representation with Synthetic Position and Context Information for Relation Extraction In recent years, various knowledge bases have been built and widely used in different natural language possessing tasks. And relation extraction is an effective way to enrich knowledge bases. But in most existing relation extraction methods, they obtain word embedding from pre-trained Word2vec or GloVe, which don't consider the difference of word in different sentences. But, such a fact cannot be ignored, that is, the same word in different contexts or in different position in a sentence has different meanings. So, we propose an approach to get word embedding representation with synthetic context and position information and call it semantic word embedding. After getting semantic word embedding, we can get sentence-level representation by simple average-pooling rather than complex architecture of convolutional neural network. Furthermore, we apply the semantic word embedding representation to the relation extraction task of Natural Language Processing. The experimental results show that the performance of the proposed method on the popular benchmark dataset is better than the state-of-the-art CNN-based approach.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Cost-sensitive sequential three-way decision modeling using a deep neural network. A DNN-based sequential three-way decision for image data analysis is proposed.A cost-sensitive decision strategy is presented to balance two kinds of costs.The granular features are extracted based on different iterations of training DNN.The method presents a simulation on human decisions from rough to precise granular. Three-way decision (3WD) models have been widely investigated in the fields of approximate reasoning and decision making. Recently, sequential 3WD models have attracted increasing interest, especially for image data analysis. It is essential to select an appropriate feature extraction and granulation method for sequential 3WD-based image data analysis. Among the existing feature extraction methods, deep neural networks (DNNs) have been considered widely due to their powerful capacity for representation. However, several important problems affect the application of DNN-based feature extraction methods to sequential 3WD. First, it takes a long time for a DNN to obtain an optimal feature representation. Second, most DNN algorithms are cost-blind methods and they assume that the costs of all misclassifications are the same, which is not the case in real-world scenarios. Third, DNN algorithms are two-way decision models and they cannot provide boundary decisions if sufficient information is not available. To address these problems, we propose a DNN-based sequential granular feature extraction method, which sequentially extracts a hierarchical granular structure from the input images. Based on the sequential multi-level granular features, a cost-sensitive sequential 3WD strategy is presented that considers the misclassification cost and test cost in different decision phases. Our experimental analysis validated the effectiveness of the proposed sequential DNN-based feature extraction method for 3WD.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Modeling Complex Diseases Using Discriminative Network Fragments - (Invited Keynote Talk).
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Complexity of probabilistic planning under average rewards A general and expressive model of sequential decision making under uncertainty is provided by the Markov decision processes (MDPs) framework. Complex applications with very large state spaces are best modelled implicitly (instead of explicitly by enumerating the state space), for example as precondition-effect operators, the representation used in AI planning. This kind of representations are very powerful, and they make the construction of policies/plans computationally very complex. In many applications, average rewards over unit time is the relevant rationality criterion, as opposed to the more widely used discounted reward criterion, and for providing a solid basis for the development of efficient planning algorithms, the computational complexity of the decision problems related to average rewards has to be analyzed. We investigate the complexity of the policy/plan existence problem for MDPs under the average reward criterion, with MDPs represented in terms of conditional probabilistic precondition-effect operators. We consider policies with and without memory, and with different degrees of sensing/observability. The unrestricted policy existence problem for the partially observable cases was earlier known to be undecidable. The results place the remaining computational problems to the complexity classes EXP and NEXP (deterministic and nondeterministic exponential time.)
Temporal representation and reasoning in artificial intelligence: Issues and approaches Time is one of the most relevant topics in AI. It plays a major role in several areas, ranging from logical foundations to applications of knowledge‐based systems. In this paper, we survey a wide range of research in temporal representation and reasoning, without committing ourselves to the point of view of any specific application. The organization of the paper follows the commonly recognized division of the field in two main subfields: reasoning about actions and change, and reasoning about temporal constraints. We give an overview of the basic issues, approaches, and results in these two areas, and outline relevant recent developments. Furthermore, we briefly analyze the major emerging trends in temporal representation and reasoning as well as the relationships with other well‐established areas, such as temporal databases and logic programming.
Fair LTL synthesis for non-deterministic systems using strong cyclic planners We consider the problem of planning in environments where the state is fully observable, actions have non-deterministic effects, and plans must generate infinite state trajectories for achieving a large class of LTL goals. More formally, we focus on the control synthesis problem under the assumption that the LTL formula to be realized can be mapped into a deterministic Büchi automaton. We show that by assuming that action nondeterminism is fair, namely that infinite executions of a nondeterministic action in the same state yield each possible successor state an infinite number of times, the (fair) synthesis problem can be reduced to a standard strong cyclic planning task over reachability goals. Since strong cyclic planners are built on top of efficient classical planners, the transformation reduces the non-deterministic, fully observable, temporally extended planning task into the solution of classical planning problems. A number of experiments are reported showing the potential benefits of this approach to synthesis in comparison with state-of-the-art symbolic methods.
The Complexity of Policy Evaluation for Finite-Horizon Partially-Observable Markov Decision Processes
On the undecidability of probabilistic planning and related stochastic optimization problems Automated planning, the problem of how an agent achieves a goal given a repertoire of actions, is one of the foundational and most widely studied problems in the AI literature. The original formulation of the problem makes strong assumptions regarding the agent's knowledge and control over the world, namely that its information is complete and correct, and that the results of its actions are deterministic and known. Recent research in planning under uncertainty has endeavored te relax these assumptions, providing formal and computation models wherein the agent has incomplete or noisy information about the world and has noisy sensors and effectors. This research has mainly taken one of two approaches: extend the classical planning paradigm to a semantics that admits uncertainty, or adopt another framework for approaching the problem, most commonly the Markov Decision Process (MDP) model. This paper presents a complexity analysis of planning under uncertainty. It begins with the "probabilistic classical planning" problem, showing that problem to be formally undecidable. This fundamental result is then applied to a broad class of stochastic optimization problems, in brief any problem statement where the agent (a) operates over an infinite or indefinite time horizon, and (b) has available only probabilistic information about the system's state. Undecidability is established for policy-existence problems for partially observable infinite-horizon Markov decision processes under discounted and undiscounted total reward models, average-reward models, and state-avoidance models. The results also apply to corresponding approximation problems with undiscounted objective functions. The paper answers a significant open question raised by Papadimitriou and Tsitsiklis [Math. Oper. Res. 12 (3) (1987) 441-450] about the complexity of infinite horizon POMDPs.
Probabilistic Planning with Information Gathering and Contingent Execution Most AI representations and algorithms for plan generationhave not included the concept of informationproducingactions (also called diagnostics, or tests,in the decision making literature). We present aplanning representation and algorithm that modelsinformation-producing actions and constructs plansthat exploit the information produced by those actions.We extend the buridan (Kushmerick et al.1994) probabilistic planning algorithm, adapting theaction representation to model the...
Hypothetical Reasoning About Actions: From Situation Calculus To Event Calculus Hypothetical reasoning about actions is the activity of preevaluating the effect of performing actions in a changing domain; this reasoning underlies applications of knowledge representation, such as planning and explanation generation. Action effects are often specified in the language of situation calculus, introduced by McCarthy and Hayes in 1969. More recently, the event calculus has been defined to describe actual actions, i.e., those that have occurred in the past, and their effects on the domain. Altough the two formalisms share the basic ontology of atomic actions and fluents, situation calculus cannot represent actual actions while event calculus cannot represent hypotethical actions. In this article, the language and the axioms of event calculus are extended to allow representing and reasoning about hypothetical actions, performed either at the present time or in the past, altough counterfactuals are not supported. Both event calculus and its extension are defined as logic programs so that theories are readily adaptable for Prolog query interpretation. For a reasonably large class of theories and queries, Prolog interpretation is shown to be sound and complete w.r.t. the main semantics for logic programs.
Causal independence for probability assessment and inference using Bayesian networks A Bayesian network is a probabilistic representation for uncertain relationships, which has proven to be useful for modeling real-world problems. When there are many potential causes of a given effect, however, both probability assessment and inference using a Bayesian network can be difficult. In this paper, we describe causal independence, a collection of conditional independence assertions and functional relationships that are often appropriate to apply to the representation of the uncertain interactions between causes and effect. We show how the use of causal independence in a Bayesian network can greatly simplify probability assessment as well as probabilistic inference
An algorithm to evaluate quantified Boolean formulae The high computational complexity of advanced reasoning tasks such as belief revision and planning calls for efficient and reliable algorithms for reasoning problems harder than NP. In this paper we propose Evaluate, an algorithm for evaluating Quantified Boolean Formulae, a language that extends propositional logic in a way such that many advanced forms of propositional reasoning, e.g., reasoning about knowledge, can be easily formulated as evaluation of a QBF. Algorithms for evaluation of QBFs are suitable for the experimental analysis on a wide range of complexity classes, a property not easily found in other formalisms. Evaluate is based on a generalization of the Davis-Putnam procedure for SAT, and is guaranteed to work in polynomial space. Before presenting Evaluate, we discuss all the abstract properties of QBFs that we singled out to make the algorithm more efficient. We also briefly mention the main results of the experimental analysis, which is reported elsewhere.
Planning over chain causal graphs for variables with domains of size 5 Is NP-hard Recently, considerable focus has been given to the problem of determining the boundary between tractable and intractable planning problems. In this paper, we study the complexity of planning in the class Cn of planning problems, characterized by unary operators and directed path causal graphs. Although this is one of the simplest forms of causal graphs a planning problem can have, we show that planning is intractable for Cn (unless P = NP), even if the domains of state variables have bounded size. In particular, we show that plan existence for Ckn is NP-hard for k ≥ 5 by reduction from CNF-SAT. Here, k denotes the upper bound on the size of the state variable domains. Our result reduces the complexity gap for the class Ckn to cases k = 3 and k = 4 only, since C2n is known to be tractable.
Algorithms for propositional model counting We present algorithms for the propositional model counting problem #SAT. The algorithms utilize tree decompositions of certain graphs associated with the given CNF formula; in particular we consider primal, dual, and incidence graphs. We describe the algorithms coherently for a direct comparison and with sufficient detail for making an actual implementation reasonably easy. We discuss several aspects of the algorithms including worst-case time and space requirements.
Selected topics on assignment problems We survey recent developments in the fields of bipartite matchings, linear sum assignment and bottleneck assignment problems and applications, multidimensional assignment problems, quadratic assignment problems, in particular lower bounds, special cases and asymptotic results, biquadratic and communication assignment problems.
VI-attached database storage This work presents a Vl-attached database storage architecture to improve database transaction rates. More specifically, we examine how Vl-based interconnects can be used to improve I/O path performance between a database server and a storage subsystem. To facilitate the interaction between client applications and a Vl-aware storage system, we design and implement a software layer called DSA, that is layered between applications and VI. DSA takes advantage of specific VI features and deals with many of its shortcomings. We provide and evaluate one kernel-level and two user-level implementations of DSA. These implementations trade transparency and generality for performance at different degrees and, unlike research prototypes, are designed to be suitable for real-world deployment. We have also investigated many design trade offs in the storage cluster. We present detailed measurements using a commercial database management system with both microbenchmarks and industrial database workloads on a mid-size, 4 CPU, and a large, 32 CPU, database server. We also compare the effectiveness of Vl-attached storage with an iSCSI configuration, and conclude that storage protocols implemented using DSA over VI have significant performance advantages. More generally, our results show that Vl-based interconnects and user-level communication can improve all aspects of the I/O path between the database system and the storage back-end. We also find that to make effective use of VI in I/O intensive environments, we need to provide substantial additional functionality than what is currently provided by VI. Finally, new storage APIs that help minimize kernel involvement in the I/O path are needed to fully exploit the benefits of Vl-based communication.
Learning A Lexical Simplifier Using Wikipedia In this paper we introduce a new lexical simplification approach. We extract over 30K candidate lexical simplifications by identifying aligned words in a sentence-aligned corpus of English Wikipedia with Simple English Wikipedia. To apply these rules, we learn a feature-based ranker using SVMnk trained on a set of labeled simplifications collected using Amazon's Mechanical Turk. Using human simplifications for evaluation, we achieve a precision of 76% with changes in 86% of the examples.
1.102233
0.1
0.1
0.026493
0.016839
0.00353
0.000477
0.000185
0.000044
0.000003
0
0
0
0
Experiments with a New Boosting Algorithm In an earlier paper [9], we introduced a new “boosting” algorithm called AdaBoost which,theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing.We also introduced the related notion of a “pseudo-loss” which is a method for forcing a learning algorithm of multi-label concepts to concentrate on the labels that are hardest to discriminate.In this paper, we describe experiments we carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems.We performed two sets of experiments. The first set compared boosting to Breiman’s [1]“bagging” method when used to aggregate various classifiers (including decision trees and single attribute-value tests). We compared the performance of the two methods on a collection of machine-learning benchmarks. In the second set of experiments, we studied in more detail the performance of boosting using a nearest-neighbor classifier on an OCR problem
Nonlocal estimation of manifold structure. We claim and present arguments to the effect that a large class of manifold learning algorithms that are essentially local and can be framed as kernel learning algorithms will suffer from the curse of dimensionality, at the dimension of the true underlying manifold. This observation invites an exploration of nonlocal manifold learning algorithms that attempt to discover shared structure in the tangent planes at different positions. A training criterion for such an algorithm is proposed, and experiments estimating a tangent plane prediction function are presented, showing its advantages with respect to local manifold learning algorithms: it is able to generalize very far from training data (on learning handwritten character image rotations), where local nonparametric methods fail.
Global Data Analysis and the Fragmentation Problem in Decision Tree Induction We investigate an inherent limitation of top-down decision tree induction in which the continuous partitioning of the instance space progressively lessens the statistical support of every partial (i.e. disjunctive) hypothesis, known as the fragmentation problem. We show, both theoretically and empirically, how the fragmentation problem adversely affects predictive accuracy as variation (a measure of concept difficulty) increases. Applying feature-construction techniques at every tree node, which we implement on a decision tree inducer DALI, is proved to only partially solve the fragmentation problem. Our study illustrates how a more robust solution must also assess the value of each partial hypothesis by recurring to all available training data, an approach we name global data analysis, which decision tree induction alone is unable to accomplish. The value of global data analysis is evaluated by comparing modified versions of C4.5 rules with C4.5 trees and DALI, on both artificial and real-world domains. Empirical results suggest the importance of combining both feature construction and global data analysis to solve the fragmentation problem.
An Information Measure For Classification
Training connectionist models for the structured language model We investigate the performance of the Structured Language Model (SLM) in terms of perplexity (PPL) when its components are modeled by connectionist models. The connectionist models use a distributed representation of the items in the history and make much better use of contexts than currently used interpolated or back-off models, not only because of the inherent capability of the connectionist model in fighting the data sparseness problem, but also because of the sublinear growth in the model size when the context length is increased. The connectionist models can be further trained by an EM procedure, similar to the previously used procedure for training the SLM. Our experiments show that the connectionist models can significantly improve the PPL over the interpolated and back-off models on the UPENN Treebank corpora, after interpolating with a baseline trigram language model. The EM training procedure can improve the connectionist models further, by using hidden events obtained by the SLM parser.
A Nonparametric Bayesian Approach to Modeling Overlapping Clusters Although clustering data into mutually ex- clusive partitions has been an extremely suc- cessful approach to unsupervised learning, there are many situations in which a richer model is needed to fully represent the data. This is the case in problems where data points actually simultaneously belong to mul- tiple, overlapping clusters. For example a particular gene may have several functions, therefore belonging to several distinct clus- ters of genes, and a biologist may want to discover these through unsupervised model- ing of gene expression data. We present a new nonparametric Bayesian method, the In- finite Overlapping Mixture Model (IOMM), for modeling overlapping clusters. The IOMM uses exponential family distributions to model each cluster and forms an over- lapping mixture by taking products of such distributions, much like products of experts (Hinton, 2002). The IOMM allows an un- bounded number of clusters, and assignments of points to (multiple) clusters is modeled us- ing an Indian Buet Process (IBP), (Griths and Ghahramani, 2006). The IOMM has the desirable properties of being able to focus in on overlapping regions while maintaining the ability to model a potentially infinite num- ber of clusters which may overlap. We derive MCMC inference algorithms for the IOMM and show that these can be used to cluster movies into multiple genres.
Natural language processing with modular pdp networks and distributed lexicon An approach to connectionist natural language processing is proposed, which is based on hierarchically organized modular parallel distributed processing (PDP) networks and a central lexicon of distributed input/output representations. The modules communicate using these representations, which are global and publicly available in the system. The representations are developed automatically by all networks while they are learning their processing tasks. The resulting representations reflect the regularities in the subtasks, which facilitates robust processing in the face of noise and damage, supports improved generalization, and provides expectations about possible contexts. The lexicon can be extended by cloning new instances of the items, that is, by generating a number of items with known processing properties and distinct identities. This technique combinatorially increases the processing power of the system. The recurrent FGREP module, together with a central lexicon, is used as a basic building block in modeling higher level natural language tasks. A single module is used to form case-role representations of sentences from word-by-word sequential natural language input. A hierarchical organization of four recurrent FGREP modules (the DISPAR system) is trained to produce fully expanded paraphrases of script-based stories, where unmentioned events and role fillers are inferred.
An Introduction to MCMC for Machine Learning This purpose of this introductory paper is threefold. First, it introduces the Monte Carlo method with emphasis on probabilistic machine learning. Second, it reviews the main building blocks of modern Markov chain Monte Carlo simulation, thereby providing and introduction to the remaining papers of this special issue. Lastly, it discusses new interesting research horizons.
LIBSVM: A library for support vector machines LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Estimating or Propagating Gradients Through Stochastic Neurons Stochastic neurons can be useful for a number of reasons in deep learning models, but in many cases they pose a challenging problem: how to estimate the gradient of a loss function with respect to the input of such stochastic neurons, i.e., can we "back-propagate" through these stochastic neurons? We examine this question, existing approaches, and present two novel families of solutions, applicable in different settings. In particular, it is demonstrated that a simple biologically plausible formula gives rise to an an unbiased (but noisy) estimator of the gradient with respect to a binary stochastic neuron firing probability. Unlike other estimators which view the noise as a small perturbation in order to estimate gradients by finite differences, this estimator is unbiased even without assuming that the stochastic perturbation is small. This estimator is also interesting because it can be applied in very general settings which do not allow gradient back-propagation, including the estimation of the gradient with respect to future rewards, as required in reinforcement learning setups. We also propose an approach to approximating this unbiased but high-variance estimator by learning to predict it using a biased estimator. The second approach we propose assumes that an estimator of the gradient can be back-propagated and it provides an unbiased estimator of the gradient, but can only work with non-linearities unlike the hard threshold, but like the rectifier, that are not flat for all of their range. This is similar to traditional sigmoidal units but has the advantage that for many inputs, a hard decision (e.g., a 0 output) can be produced, which would be convenient for conditional computation and achieving sparse representations and sparse gradients.
Learning deep hierarchical visual feature coding. In this paper, we propose a hybrid architecture that combines the image modeling strengths of the bag of words framework with the representational power and adaptability of learning deep architectures. Local gradient-based descriptors, such as SIFT, are encoded via a hierarchical coding scheme composed of spatial aggregating restricted Boltzmann machines (RBM). For each coding layer, we regularize the RBM by encouraging representations to fit both sparse and selective distributions. Supervised fine-tuning is used to enhance the quality of the visual representation for the categorization task. We performed a thorough experimental evaluation using three image categorization data sets. The hierarchical coding scheme achieved competitive categorization accuracies of 79.7% and 86.4% on the Caltech-101 and 15-Scenes data sets, respectively. The visual representations learned are compact and the model's inference is fast, as compared with sparse coding methods. The low-level representations of descriptors that were learned using this method result in generic features that we empirically found to be transferrable between different image data sets. Further analysis reveal the significance of supervised fine-tuning when the architecture has two layers of representations as opposed to a single layer.
Destage Algorithms for Disk Arrays with Nonvolatile Caches In a disk array with a nonvolatile write cache, destages from the cache to the disk are performed in the background asynchronously while read requests from the host system are serviced in the foreground. In this paper, we study a number of algorithms for scheduling destages in a RAID-5 system. We introduce a new scheduling algorithm, called linear threshold scheduling, that adaptively varies the rate of destages to disks based on the instantaneous occupancy of the write cache. The performance of the algorithm is compared with that of a number of alternative scheduling approaches, such as least-cost scheduling and high/low mark. The algorithms are evaluated in terms of their effectiveness in making destages transparent to the servicing of read requests from the host, disk utilization, and their ability to tolerate bursts in the workload without causing an overflow of the write cache. Our results show that linear threshold scheduling provides the best read performance of all the algorithms compared, while still maintaining a high degree of burst tolerance. An approximate implementation of the linear-threshold scheduling algorithm is also described. The approximate algorithm can be implemented with much lower overhead, yet its performance is virtually identical to that of the ideal algorithm.
Planning with Noisy Actions Ignoring the noise of physical sensors and effectors has always been a crucial barrier towards the application of high-level, cognitive robotics to real robots. We present a method of solving planning problems with noisy actions. The approach builds on the Fluent Calculus as a standard first-order solution to the Frame Problem. To model noise, a formal notion of uncertainty is incorporated into the axiomatization of state update and knowledge update. The formalism provides the theoretical underpinnings of an extension of the action programming language FLUX. Using constraints on real-valued intervals to encode noise, our system allows to solve planning problems for noisy sensors and effectors.
Editorial introduction to the Neural Networks special issue on Deep Learning of Representations.
1.01375
0.013452
0.013452
0.013342
0.013342
0.006808
0.004452
0.001906
0.000323
0.000002
0.000001
0
0
0
Deep Spiking Neural Network for Video-Based Disguise Face Recognition Based on Dynamic Facial Movements. With the increasing popularity of social media and smart devices, the face as one of the key biometrics becomes vital for person identification. Among those face recognition algorithms, video-based face recognition methods could make use of both temporal and spatial information just as humans do to achieve better classification performance. However, they cannot identify individuals when certain ke...
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
PCM: A Parity-Check Matrix Based Approach to Improve Decoding Performance of XOR-based Erasure Codes In large storage systems, erasure codes is a primary technique to provide high reliability with low monetary cost. Among various erasure codes, a major category called XORbased codes uses purely XOR operations to generate redundant data and offer low computational complexity. These codes are conventionally implemented via matrix based method or several specialized non-matrix based methods. However, these approaches are insufficient on decoding performance, which affects the reliability and availability of storage systems. To address the problem, in this paper, we propose a novel Parity-Check Matrix based (PCM) approach, which is a general-purpose method to implement XOR-based codes, and increases the decoding performance by using smaller and sparser matrices. To demonstrate the effectiveness of PCM, we conduct several experiments by using different XOR-based codes. The evaluation results show that, compared to typical matrix based decoding methods, PCM can improve the decoding speed by up to a factor of 1.5× when using EVENODD code (an erasure code for correcting double disk failures), and accelerate the decoding process of STAR code (an erasure code for correcting triple disk failures) by up to a factor of 2.4×.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
An CNN-LSTM Attention Approach to Understanding User Query Intent from Online Health Communities. Understanding user query intent is a crucial task to Question-Answering area. With the development of online health services, online health communities generate huge amount of valuable medical Question-Answering data, where user intention can be mined. However, the queries posted by common users have many domain concepts and colloquial expressions, which make the understanding of user intents very difficult. In this paper, we try to find and predict user intent from the realistic medical text queries. A CNN-LSTM attention model is proposed to predict user intents, and an unsupervised clustering method is applied to mine user intent taxonomy. The CNN-LSTM attention model has a CNN encoders and a Bi-LSTM attention encoder. The two encoder can capture both of global semantic expression and local phrase-level information from an original medical text query, which helps the intent prediction. We also utilize extra knowledge like part-of-speech tags and named entity tags to enrich feature information. Based on the experiments on a health community query intent(HCQI) dataset, we compare our model with baseline models and experiment results demonstrate the effectiveness of our model.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Generating user interface code in a model based user interface development environment Declarative models play an important role in most software design activities, by allowing designs to be constructed that selectively abstract over complex implementation details. In the user interface setting, Model-Based User Interface Development Environments (MB-UIDEs) provide a context within which declarative models can be constructed and related, as part of the interface design process. However, such declarative models are not usually directly executable, and may be difficult to relate to existing software components. It is therefore important that MB-UIDEs both fit in well with existing software architectures and standards, and provide an effective route from declarative interface specification to running user interfaces. This paper describes how user interface software is generated from declarative descriptions in the Teallach MB-UIDE. Distinctive features of Teallach include its open architecture, which connects directly to existing applications and widget sets, and the generation of executable interface applications in Java. This paper focuses on how Java programs, organized using the model-view-controller pattern (MVC), are generated from the task, domain and presentation models of Teallach.
A Model-Based Interface Development Environment Mobi-D is a highly interactive environment that represents all relevant aspects of interface design in tightly connected declarative models. It supports user-centered development and allows structured design from abstract objects like user tasks.
The Teallach tool: using models for flexible user interface design Model-based user interface development environments aim to provide designers with a more systematic approach to user i nterface development using a particular design method. This method is re alised through tools which support the construction and linkage of the support ed models. This paper presents the tools which support the construction o f the Teallach models in the context of the Teallach design method. Distinctive features of the Teallach tool include comprehensive facilities for relating the different models, and the provision of a flexible design method in which mode ls can be constructed and related by designers in different orders and in dif ferent ways.
The FUSE-System: an Integrated User Interface Design Environment With the FUSE (Formal User Interface Specification Environment)-System we pre- sent a methodology and a set of integrated tools for the automatic generation of graphical user interfaces. FUSE provides tool-based support for all phases (task-, user-, problem domain analysis, design of the logical user interface, design of user interface in a particular layout style) of the user interface development process. Based on a formal specification of dialogue- and layout guidelines, FUSE allows the automatic generation of user interfaces out of specifications of the task-, problem domain- and user-model. Moreover, the FUSE-System incorporates a component for the automatic generation of powerful help- and user guidance components. In this paper, we describe the FUSE-methodology by modelling user interfaces of an ISDN phone simulation. Furthermore, the two major components of FUSE (BOSS, PLUG-IN) are presented: The BOSS-System supports the design of the logical user interface and the formal specification of layout guidelines. PLUG-IN generates task-based help- and user guidance components.
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Feasibility of a serverless distributed file system deployed on an existing set of desktop PCs We consider an architecture for a serverless distributed file system that does not assume mutual trust among the client computers. The system provides security, availability, and reliability by distributing multiple encrypted replicas of each file among the client machines. To assess the feasibility of deploying this system on an existing desktop infrastructure, we measure and analyze a large set of client machines in a commercial environment. In particular, we measure and report results on disk usage and content; file activity; and machine uptimes, lifetimes, and loads. We conclude that the measured desktop infrastructure would passably support our proposed system, providing availability on the order of one unfilled file request per user per thousand days.
Partitioning and Mapping Algorithms into Fixed Size Systolic Arrays A technique for partitioning and mapping algorithms into VLSI systolic arrays is presented in this paper. Algorithm partitioning is essential when the size of a computational problem is larger than the size of the VLSI array intended for that problem. Computational models are introduced for systolic arrays and iterative algorithms. First, we discuss the mapping of algorithms into arbitrarily large size VLSI arrays. This mapping is based on the idea of algorithm transformations. Then, we present an approach to algorithm partitioning which is also based on algorithm transformations. Our approach to the partitioning problem is to divide the algorithm index set into bands and to map these bands into the processor space. The partitioning and mapping technique developed throughout the paper is summarized as a six step procedure. A computer program implementing this procedure was developed and some results obtained with this program are presented.
Indexing By Latent Semantic Analysis
Disk Shadowing Disk shadowing is a technique for maintaining a set of two or more identical disk images on separate disk devices. Its primary purpose is to enhance reliability and availability of secondary storage by providing multiple paths to redundant data. However, shadowing can also boost I/O performance. In this paper, we contend that intelligent device scheduling of shadowed discs increases the I/O rate by allowing parallel reads and by substantially reducing the average seek time for random reads. In particular, we develop and analytic model which shows that the seek time for a random read in a shadow set is a monotonic decreasing function of the number of disks.
Fine-Grained Mobility in the Emerald System (Extended Abstract)
Normal forms for answer sets programming Normal forms for logic programs under stable/answer set semantics are introduced. We argue that these forms can simplify the study of program properties, mainly consistency. The first normal form, called the kernel of the program, is useful for studying existence and number of answer sets. A kernel program is composed of the atoms which are undefined in the Well-founded semantics, which are those that directly affect the existence of answer sets. The body of rules is composed of negative literals only. Thus, the kernel form tends to be significantly more compact than other formulations. Also, it is possible to check consistency of kernel programs in terms of colorings of the Extended Dependency Graph program representation which we previously developed. The second normal form is called 3-kernel. A 3-kernel program is composed of the atoms which are undefined in the Well-founded semantics. Rules in 3-kernel programs have at most two conditions, and each rule either belongs to a cycle, or defines a connection between cycles. 3-kernel programs may have positive conditions. The 3-kernel normal form is very useful for the static analysis of program consistency, i.e. the syntactic characterization of existence of answer sets. This result can be obtained thanks to a novel graph-like representation of programs, called Cycle Graph which presented in the companion article Costantini (2004b).
ARIMA time series modeling and forecasting for adaptive I/O prefetching Bursty application I/O patterns, together with transfer limited storage devices, combine to create a major I/O bottleneck on parallel systems. This paper explores the use of time series models to forecast application I/O request times, then prefetching I/O requests during computation intervals to hide I/O latency. Experimental results with I/O intensive scientific codes show performance improvements compared to standard UNIX prefetching strategies.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.2
0.1
0.05
0.008
0
0
0
0
0
0
0
0
0
0
On Periodic Resource scheduling for Continuous-Media Databases.
A feedback-driven proportion allocator for real-rate scheduling In this paper we propose changing the decades-old practice of allocating CPU to threads based on priority to a scheme based on proportion and period. Our scheme allocates to each thread a percentage of CPU cycles over a period of time, and uses a feedback-based adaptive scheduler to assign automatically both proportion and period. Applications with known requirements, such as isochronous software devices, can bypass the adaptive scheduler by specifying their desired proportion and/or period. As a result, our scheme provides reservations to applications that need them, and the benefits of proportion. and period to chose that do not. Adaptive scheduling using proportion and period has several distinct benefits over either fixed or adaptive priority based schemes: finer grain control of allocation, lower variance in the amount of cycles allocated to a thread, and avoidance of accidental priority inversion and starvation, including defense against denial-of-service attacks. This paper describes our design of an adaptive controller and proportion-period scheduler its implementation in Linux, and presents experimental validation of our approach.
Evolving mach 3.0 to a migrating thread model We have modified Mach 3.0 to treat cross-domain remote procedure call (RPC) as a single entity, instead of a sequence of message passing operations. With RPC thus elevated, we improved the transfer of control during RPC by changing the thread model. Like most operating systems, Mach views threads as statically associated with a single task, with two threads involved in an RPC. An alternate model is that of migrating threads, in which, during RPC, a single thread abstraction moves between tasks with the logical flow of control, and "server" code is passively executed. We have compatibly replaced Mach's static threads with migrating threads, in an attempt to isolate this aspect of operating system design and implementation. The key element of our design is a decoupling of the thread abstraction into the execution context and the schedulable thread of control, consisting of a chain of contexts. A key element of our implementation is that threads are now "based" in the kernel, and temporarily make excursions into tasks via upcalls. The new system provides more precisely defined semantics for thread manipulation and additional control operations, allows scheduling and accounting attributes to follow threads, simplifies kernel code, and improves RPC performance. We have retained the old thread and IPC interfaces for backwards compatibility, with no changes required to existing client programs and only a minimal change to servers, as demonstrated by a functional Unix single server and clients. The logical complexity along the critical RPC path has been reduced by a factor of nine. Local RPC, doing normal marshaling, has sped up by factors of 1.7-3.4. We conclude that a migrating-thread model is superior to a static model, that kernel-visible RPC is a prerequisite for this improvement, and that it is feasible to improve existing operating systems in this manner.
Resource Scheduling in Enhanced Pay-Per-View Continuous Media Databases The enhanced pay-per-view (EPPV) model for providing continuous-media-on-demand (CMOD) services associates with each continuous media clip a display frequency that depends on the clip's popularity. The aim is to increase the number of clients that can be serviced concurrently beyond the capacity limitations of available resources, while guaranteeing a constraint on the response time. This is achieved by sharing periodic continuous media streams among multiple clients. In this paper, we provide a comprehensive study of the resource scheduling problems associated with supporting EPPV for continuous media clips with (possibly) different display rates, frequencies, and lengths. Our main objective is to maximize the amount of disk bandwidth that is effectively scheduled under the given data layout and storage constraints. This formulation gives rise to NP-hard combinatorial optimization problems that fall within the realm of hard real-time scheduling theory. Given the intractability of the problems, we propose novel heuristic solutions with polynomial-time complexity. Preliminary results from an experimental evaluation of the proposed schemes are also presented.
Generalized working sets for segment reference strings The working-set concept is extended for programs that reference segments of different sizes. The generalized working-set policy (GWS) keeps as its resident set those segments whose retention costs do not exceed their retrieval costs. The GWS is a model for the entire class of demand-fetching memory policies that satisfy a resident-set inclusion property. A generalized optimal policy (GOPT) is also defined; at its operating points it minimizes aggregated retention and swapping costs. Special cases of the cost structure allow GWS and GOPT to simulate any known stack algorithm, the working set, and VMIN. Efficient procedures for computing demand curves showing swapping load as a function of memory usage are developed for GWS and GOPT policies. Empirical data from an actual system are included.
A probabilistic limit on the virtual size of replicated disk systems Recently, there has been considerable interest in parallel disk drive systems, in which full or partial replication of the stored data is used for both fault tolerance and enhanced performance. The performance-enhancement derives both from the ability to do parallel reads, and from the reduction of seek time which results from being able to assign a read to whichever drive will produce the shortest seek. Although earlier work implied that for a k-drive system, mean seek distance for read converges to 0 as k to alpha , a refined analysis is presented which shows that this limit is actually nonzero. It is further shown that the system behaves probabilistically as if k were small, no matter how large the physical value of k is.
Declustering using error correcting codes The problem examined is to distribute a binary Cartesian product file on multiple disks to maximize the parallelism for partial match queries. Cartesian product files appear as a result of some secondary key access methods, such as the multiattribute hashing [10], the grid file [6] etc.. For the binary case, the problem is reduced into grouping the 2n binary strings on n bits in m groups of unsimilar strings. The main idea proposed in this paper is to group the strings such that the group forms an Error Correcting Code (ECC). This construction guarantees that the strings of a given group will have large Hamming distances, i.e., they will differ in many bit positions. Intuitively, this should result into good declustering. We briefly mention previous heuristics for declustering, we describe how exactly to build a declustering scheme using an ECC, and we prove a theorem that gives a necessary condition for our method to be optimal. Analytical results show that our method is superior to older heuristics, and that it is very close to the theoretical (non-tight) bound.
Staggered Striping in Multimedia Information Systems Multimedia information systems have emerged as an essential component of many application domains ranging from library information systems to entertainment technology. However, most implementations of these systems cannot support the continuous display of multimedia objects and suffer from frequent disruptions and delays termed hiccups. This is due to the low I/O bandwidth of the current disk technology, the high bandwidth requirement of multimedia objects, and the large size of these objects that almost always requires them to be disk resident. One approach to resolve this limitation is to decluster a multimedia object across multiple disk drives in order to employ the aggregate bandwidth of several disks to support the continuous retrieval (and display) of objects. This paper describes staggered striping as a novel technique to provide effective support for multiple users accessing the different objects in the database. Detailed simulations confirm the superiority of staggered striping.
Flexible buffer allocation based on marginal gazns Previous works on buflcx allocation are based f~il$lwr exclusively on the availability of buffers at r{ll)timc or on the access pat t eras of queries. In this paper We p repose a unified approach for buffer allocation in which both of these considerations are taken into accou at. Our approach is based on the notion of marginal y~~ins which specify the expected reduction cm page faults in allocating extra buffers to a query. Simulation results show that our approach is promising, and allocation algorithms based on marginal gains perform cousidwably better than existing on’es.
Enhanced Reliability Modeling of RAID Storage Systems A flexible model for estimating reliability of RAID storage systems is presented. This model corrects errors associated with the common assumption that system times to failure follow a homogeneous Poisson process. Separate generalized failure distributions are used to model catastrophic failures and usage dependent data corruptions for each hard drive. Catastrophic failure restoration is represented by a three-parameter Weibull, so the model can include a minimum time to restore as a function of data transfer rate and hard drive storage capacity. Data can be scrubbed as a background operation to eliminate corrupted data that, in the event of a simultaneous catastrophic failure, results in double disk failures. Field-based times to failure data and mathematic justification for a new model are presented. Model results have been verified and predict between 2 to 1,500 times as many double disk failures as that estimated using the current mean time to data loss method.
An Adaptive High-Low Water Mark Destage Algorithm for Cached RAID5 The High-Low Water Mark destage (HLWM) algorithmis widely used to enable a cached RAID5to flush dirty datafrom its write cache to disks. It activates and deactivates adestaging process based on two time-invariant thresholdswhich are determined by cache occupancy levels. However, the opportunity exists to improve I/O throughput byadaptively changing the thresholds. This paper proposesan adaptive HLWM algorithm which dynamically changesits thresholds according to a varying I/O workload. Twothresholds are defined as the multiplication of changingrates of the cache occupancy level and the time requiredto fill and empty the cache. Performance evaluations with acached RAID5 simulator reveal that the proposed algorithmoutperforms the HLWM algorithm in terms of read responsetime, write cache hit ratio, and disk utilization.
Representing Uncertainty in Simple Planners In this paper, we present an analysis of planningwith uncertain information regardingboth the state of the world and the effectsof actions using a Stripsor (propositional)Adl-style representation [4, 17]. We provideformal definitions of plans under incompleteinformation and conditional plans, and describe Plinth, a conditional linear plannerbased on these definitions. We also clarifythe definition of the term "conditional action," which has been variously used to denote...
Frame consistency: computing with causal explanations This paper presents a computational model for reasoning with causal explanations of observations within the framework of Abductive Event Calculus (AEC). The model is based on abductive reasoning based on the notions of "deserts" and "oases" on the time line. Our work is motivated from the need to recover from the inconsistency that can arise when observations of fluents are added to the narrative of a do- main description. We study how such observations can be assimilated via abductive explanations in order to render the domain frame consistent. Typically, such explanations would involve non-ground events whose time of occurrence can only be constraint within some interval. We present some notions of minimal commitment for such explanations and study how we can reason and compute with these explanations once they have been chosen and added to the theory. The computational model proposed can be readily implemented by exploiting, in a modular way, any of the different computational models for Abductive Logic Programming or for Answer Set Program- ming, augmented, again in a modular way, by suitable forms of temporal constraint solving.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.053319
0.055777
0.055777
0.050929
0.050052
0.017376
0.010698
0.005137
0.000124
0.000011
0.000001
0
0
0
An overview of MetaMap: historical perspective and recent advances. MetaMap is a widely available program providing access to the concepts in the unified medical language system (UMLS) Metathesaurus from biomedical text. This study reports on MetaMap's evolution over more than a decade, concentrating on those features arising out of the research needs of the biomedical informatics community both within and outside of the National Library of Medicine. Such features include the detection of author-defined acronyms/abbreviations, the ability to browse the Metathesaurus for concepts even tenuously related to input text, the detection of negation in situations in which the polarity of predications is important, word sense disambiguation (WSD), and various technical and algorithmic features. Near-term plans for MetaMap development include the incorporation of chemical name recognition and enhanced WSD.
A Semi-Supervised Bayesian Network Model for Microblog Topic Classification. Microblogging services have brought users to a new era of knowledge dissemination and information seeking. However, the large volume and multi-aspect of messages hinder the ability of users to conveniently locate the specific messages that they are interested in. While many researchers wish to employ traditional text classification approaches to effectively understand messages on microblogging services, the limited length of the messages prevents these approaches from being employed to their full potential. To tackle this problem, we propose a novel semi-supervised learning scheme to seamlessly integrate the external web resources to compensate for the limited message length. Our approach first trains a classifier based on the available labeled data as well as some auxiliary cues mined from the web, and probabilistically predicts the categories for all unlabeled data. It then trains a new classifier using the labels for all messages and the auxiliary cues, and iterates the process to convergence. Our approach not only greatly reduces the time-consuming and labor-intensive labeling process, but also deeply exploits the hidden information from unlabeled data and related text resources. We conducted extensive experiments on two real-world microblogging datasets. The results demonstrate the effectiveness of the proposed approaches which produce promising performance as compared to state-of-the-art methods. © 2012 The COLING.
The bag-of-repeats representation of documents n-gram representations of documents may improve over a simple bag-of-word representation by relaxing the independence assumption of word and introducing context. However, this comes at a cost of adding features which are non-descriptive, and increasing the dimension of the vector space model exponentially. We present new representations that avoid both pitfalls. They are based on sound theoretical notions of stringology, and can be computed in optimal asymptotic time with algorithms using data structures from the suffix family. While maximal repeats have been used in the past for similar tasks, we show how another equivalence class of repeats -- largest-maximal repeats -- obtain similar or better results, with only a fraction of the features. This class acts as a minimal generative basis of all repeated substrings. We also report their use for topic modeling, showing easier to interpret models.
Robust Graph Mode Seeking by Graph Shift
Fast detection of dense subgraphs with iterative shrinking and expansion. In this paper, we propose an efficient algorithm to detect dense subgraphs of a weighted graph. The proposed algorithm, called the shrinking and expansion algorithm (SEA), iterates between two phases, namely, the expansion phase and the shrink phase, until convergence. For a current subgraph, the expansion phase adds the most related vertices based on the average affinity between each vertex and the subgraph. The shrink phase considers all pairwise relations in the current subgraph and filters out vertices whose average affinities to other vertices are smaller than the average affinity of the result subgraph. In both phases, SEA operates on small subgraphs; thus it is very efficient. Significant dense subgraphs are robustly enumerated by running SEA from each vertex of the graph. We evaluate SEA on two different applications: solving correspondence problems and cluster analysis. Both theoretic analysis and experimental results show that SEA is very efficient and robust, especially when there exists a large amount of noise in edge weights.
A bayesian learning approach to promoting diversity in ranking for biomedical information retrieval In this paper, we propose a Bayesian learning approach to promoting diversity for information retrieval in biomedicine and a re-ranking model to improve retrieval performance in the biomedical domain. First, the re-ranking model computes the maximum posterior probability of the hidden property corresponding to each retrieved passage. Then it iteratively groups the passages into subsets according to their properties. Finally, these passages are re-ranked from the subsets as our output. There is no need for our proposed method to use any external biomedical resource. We evaluate our Bayesian learning approach by conducting extensive experiments on the TREC 2004-2007 Genomics data sets. The experimental results show the effectiveness of the proposed Bayesian learning approach for promoting diversity in ranking for biomedical information retrieval on four years TREC data sets.
WenZher: comprehensive vertical search for healthcare domain Online health seeking has transformed the way of health knowledge exchange and reusability. The existing general and vertical health search engines, however, just routinely return lists of matched documents or question answer (QA) pairs, which may overwhelm the seekers or not sufficiently meet the seekers' expectations. Instead, our multilingual system is able to return one multi-faceted answer that is well-structured and precisely extracted from multiple heterogeneous healthcare sources. Further, should the seekers not be satisfied with the returned search results, our system can automatically route the unsolved questions to the professionals with relevant expertise.
An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators Statistical and computational concerns have motivated parameter estimators based on various forms of likelihood, e.g., joint, conditional, and pseudolikelihood. In this paper, we present a unified framework for studying these estimators, which allows us to compare their relative (statistical) efficiencies. Our asymptotic analysis suggests that modeling more of the data tends to reduce variance, but at the cost of being more sensitive to model misspecification. We present experiments validating our analysis.
Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure We show how to pretrain and fine-tune a mul- tilayer neural network to learn a nonlinear transformation from the input space to a low- dimensional feature space in which K-nearest neighbour classification performs well. We also show how the non-linear transformation can be improved using unlabeled data. Our method achieves a much lower error rate than Support Vector Machines or standard backpropagation on a widely used version of the MNIST handwrit- ten digit recognition task. If some of the dimen- sions of the low-dimensional feature space are not used for nearest neighbor classification, our method uses these dimensions to explicitly rep- resent transformations of the digits that do not affect their identity.
Unsupervised Learning of Image Transformations We describe a probabilistic model for learning rich, dis- tributed representations of image transformations. The ba- sic model is defined as a gated conditional random field that is trained to predict transformations of its inputs using a factorial set of latent variables. Inference in the model con- sists in extracting the transformation, given a pair of im- ages, and can be performed exactly and efficiently. We show that, when trained on natural videos, the model develops domain specific motion features, in the form of fields of locally transformed edge filters. When trained on affine, or more general, transformations of still images, the model develops codes for these transformations, and can subsequently perform recognition tasks that are invari- ant under these transformations. It can also fantasize new transformations on previously unseen images. We describe several variations of the basic model and provide experi- mental results that demonstrate its applicability to a variety of tasks.
Answer set programming and plan generation The idea of answer set programming is to represent a given computational problem by a logic program whose answer sets correspond to solutions, and then use an answer set solver, such as SMODELS or DLV, to find an answer set for this program. Applications of this method to planning are related to the line of research on the frame problem that started with the invention of formal nonmonotonic reasoning in 1980.
Efficient EM Learning with Tabulation for Parameterized Logic Programs We have been developing a general symbolic-statistical modeling language [6,19,20] based on the logic programming framework that semantically unifies (and extends) major symbolic-statistical frameworks such as hidden Markov models (HMMs) [18], probabilistic context-free grammars (PCFGs) [23] and Bayesian networks [16]. The language, PRISM, is intended to model complex symbolic phenomena governed by rules and probabilities based on the distributional semantics[19]. Programs contain statistical parameters and they are automatically learned from randomly sampled data by a specially derived EM algorithm, the graphical EM algorithm. It works on support graphs representing the shared structure of explanations for an observed goal. In this paper, we propose the use of tabulation technique to build support graphs, and show that as a result, the graphical EM algorithm attains the same time complexity as specilized EM algorithms for HMMs (the Baum-Welch algorithm [18]) and PCFGs (the Inside-Outside algorithm [1]).
Complexity and algorithms for well-structured k-SAT instances This paper consists of two conceptually related but independent parts. In the first part we initiate the study of k-SAT instances of bounded diameter. The diameter of an ordered CNF formula is defined as the maximum difference between the index of the first and the last occurrence of a variable. We investigate the relation between the diameter of a formula and the tree-width and the path-width of its corresponding incidence graph.We show that under highly parallel and efficient transformations, diameter and path-width are equal up to a constant factor. Our main result is that the computational complexity of SAT, MAX-SAT, #SAT grows smoothly with the diameter (as a function of the number of variables). Our focus is in providing space efficient and highly parallel algorithms, while the running time of our algorithms matches previously known results. Our results refer to any diameter, whereas for the special case where the diameter is O(log n) we show NL-completeness of SAT and NC2 algorithms for Max-SAT and #SAT. In the second part we deal directly with k-CNF formulas of bounded tree-width. We describe algorithms in an intuitive but not-so-standard model of computation. Then we apply constructive theorems from computational complexity to obtain deterministic time-efficient and simultaneously space-efficient algorithms for k-SAT as asked by Alekhnovich and Razborov [1].
"The sum of all human knowledge": A systematic review of scholarly research on the content of Wikipedia AbstractWikipedia may be the best-developed attempt thus far to gather all human knowledge in one place. Its accomplishments in this regard have made it a point of inquiry for researchers from different fields of knowledge. A decade of research has thrown light on many aspects of the Wikipedia community, its processes, and its content. However, due to the variety of fields inquiring about Wikipedia and the limited synthesis of the extensive research, there is little consensus on many aspects of Wikipedia's content as an encyclopedic collection of human knowledge. This study addresses the issue by systematically reviewing 110 peer-reviewed publications on Wikipedia content, summarizing the current findings, and highlighting the major research trends. Two major streams of research are identified: the quality of Wikipedia content including comprehensiveness, currency, readability, and reliability and the size of Wikipedia. Moreover, we present the key research trends in terms of the domains of inquiry, research design, data source, and data gathering methods. This review synthesizes scholarly understanding of Wikipedia content and paves the way for future studies.
1.068349
0.067093
0.067093
0.067093
0.067093
0.033546
0.003462
0.000023
0.000002
0
0
0
0
0
POPE: pipeline of parentally-biased expression While one might expect the phenotypes of progeny to be an additive combination of the parents, Mendelian analysis reveals that this is not always the case. Deviations from additive expectation are observable even at the level of gene expression, and identifying such instances is a prerequisite to the understanding of gene regulation and networks. Many biological studies employ mRNA-seq to identify instances where the overall and allelic expression in hybrids deviates from expectation. We describe a pipeline, POPE (Pipeline of Parentally-biased Expression), that is capable of detecting these instances, building off of a linear model of gene expression in terms of regulatory sequence strength and concentration of synergistic transcriptional regulators. We illustrate the performance of POPE on an existing mRNA-seq data set. POPE is implemented entirely in shell, python, and R, and it is designed for unix-based platforms. The code can be found at <ExternalRef><RefSource><Emphasis FontCategory=\"NonProportional\"http://www.cs.ucdavis.</Emphasis> </RefSource> <RefTarget Address=\"http://www.cs.ucdavis.edu/~filkov/POPE/\" TargetType=\"URL\"/</ExternalRef> <ExternalRef><RefSource><Emphasis FontCategory=\"NonProportional\"edu/~filkov/POPE/</Emphasis> </RefSource> <RefTarget Address=\"http://www.cs.ucdavis.edu/~filkov/POPE/\" TargetType=\"URL\"/</ExternalRef> .
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Concurrent Updates on Striped Data Streams in Clustered Server Systems
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
Parameterized complexity for the database theorist
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Cracking Classifiers for Evasion: A Case Study on the Google's Phishing Pages Filter. Various classifiers based on the machine learning techniques have been widely used in security applications. Meanwhile, they also became an attack target of adversaries. Many existing studies have paid much attention to the evasion attacks on the online classifiers and discussed defensive methods. However, the security of the classifiers deployed in the client environment has not got the attention it deserves. Besides, earlier studies only concentrated on the experimental classifiers developed for research purposes only. The security of widely-used commercial classifiers still remains unclear. In this paper, we use the Google's phishing pages filter (GPPF), a classifier deployed in the Chrome browser which owns over one billion users, as a case to investigate the security challenges for the client-side classifiers. We present a new attack methodology targeting on client-side classifiers, called classifiers cracking. With the methodology, we successfully cracked the classification model of GPPF and extracted sufficient knowledge can be exploited for evasion attacks, including the classification algorithm, scoring rules and features, etc. Most importantly, we completely reverse engineered 84.8% scoring rules, covering most of high-weighted rules. Based on the cracked information, we performed two kinds of evasion attacks to GPPF, using 100 real phishing pages for the evaluation purpose. The experiments show that all the phishing pages (100%) can be easily manipulated to bypass the detection of GPPF. Our study demonstrates that the existing client-side classifiers are very vulnerable to classifiers cracking attacks.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
An Approach to Distribution of Object-Oriented Applications in Loosely Coupled Networks With the move to distributed systems and an increasing emphasis on the use of object-orientation for new system design, effective distribution of object-oriented applications is becoming an important concern for designers. Early research in this area has focused on object-clustering schemes for shared memory configurations that have limited value to business applications, which must be distributed over loosely coupled networks. These applications also exhibit the properties of simpler structural relationships and a large number of instances, demanding approaches closer to fragmentation and allocation instead of clustering. This paper develops an approach to distribution of object-oriented applications over geographically dispersed sites in loosely coupled networks—taking account of concerns such as encapsulation, inheritance, messaging, and implicit joins. The approach consists of two phases. First, we develop a scheme for generating class fragments, which ensures that encapsulation is not violated and inheritance is not stretched across sites. Second, considering the message-intensive operation of object-oriented systems, we devise models for allocation of class fragments to sites that minimize inter-site traffic. A nonarbitrary procedure to compile traffic volume estimates exploiting the notion of implicit joins in object-oriented applications provides the natural linkage between the two phases. A research prototype was implemented to establish feasibility of the proposals. Wedemonstrate usefulness of the approach by its application for distribution of a real-world information system.
Distributed, object-based programming systems The development of distributed operating systems and object-based programming languages makes possible an environment in which programs consisting of a set of interacting modules, or objects, may execute concurrently on a collection of loosely coupled processors. An object-based programming language encourages a methodology for designing and creating a program as a set of autonomous components, whereas a distributed operating system permits a collection of workstations or personal computers to be treated as a single entity. The amalgamation of these two concepts has resulted in systems that shall be referred to as distributed, object-based programming systems. This paper discusses issues in the design and implementation of such systems. Following the presentation of fundamental concepts and various object models, issues in object management, object interaction management, and physical resource management are discussed. Extensive examples are drawn from existing systems.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Logic programs with classical negation
The well-founded semantics for general logic programs A general logic program (abbreviated to “program” hereafter) is a set of roles that have both positive and negative subgoals. It is common to view a deductive database as a general logic program consisting of rules (IDB) slttmg above elementary relations (EDB, facts). It is desirable to associate one Herbrand model with a program and think of that model as the “meaning of the program, ” or Its“declarative semantics. ” Ideally, queries directed to the program would be answered in accordance with this model. Recent research indicates that some programs do not have a “satisfactory” total model; for such programs, the question of an appropriate partial model arises. Unfounded sets and well-founded partial models are introduced and the well-founded semantics of a program are defined to be its well-founded partial model. If the well-founded partial model is m fact a total model. it is called the well-founded model. It n shown that the class of programs possessing a total well-founded model properly includes previously studied classes of “stratified” and “locally stratified” programs,The method in this paper is also compared with other proposals in the literature, including Clark’s“program completion, ” Fitting’s and Kunen’s 3-vahred interpretations of it, and the “stable models”of Gelfond and Lifschitz.
Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas We consider the compilation of different reasoning tasks into the evaluation problem of quantified boolean formulas (QBFs) as an approach to develop prototype reasoning sys- tems useful for, e.g., experimental purposes. Such a method is a natural generalization of a similar technique applied to NP-problems and has been recently proposed by other re- searchers. More specifically, we present translations of sev- eral well-known reasoning tasks from the area of nonmono- tonic reasoning into QBFs, and compare their implementa- tion in the prototype system QUIP with established NMR- provers. The results show reasonable performance, and docu- ment that the QBF approach is an attractive tool for rapid pro- totyping of experimental knowledge-representation systems.
Object Recognition from Local Scale-Invariant Features An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection.These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales.The keys are used as input to a nearest-neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low-residual least-squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially-occluded images with a computation time of under 2 seconds.
Support-Vector Networks The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data.High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Improving the I/O Performance of Real-Time Database Systems with Multiple-Disk Storage Structures
Simultaneous Localization And Mapping With Sparse Extended Information Filters In this paper we describe a scalable algorithm for the simultaneous mapping and localization (SLAM) problem. SLAM is the problem of acquiring a map of a static environment with a mobile robot. The vast majority of SLAM algorithms are based on the extended Kahnan filter (EKF), In this paper we advocate an algorithm that relies on the dual of the EKE the extended information filter (EIF). We show that when represented in the information form, map posteriors are dominated by a small number of links that tie together nearby features in the map. This insight is developed into a sparse variant of the EIF called the sparse extended information filter (SEIF). SEIFs represent maps by graphical networks of features that are locally interconnected, where links represent relative information between pairs of nearby,features, as well as information about the robot's pose relative to the map. We show that all essential update equations in SEIFs can be executed in constant time, irrespective of the size of the map. We also provide empirical results obtained for a benchmark data set collected in an outdoor environment, and using a multi-robot mapping simulation.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.2
0.001575
0
0
0
0
0
0
0
0
0
0
0
0
Reducing file system latency using a predictive approach Despite impressive advances in file system through put resulting from technologies such as high-bandwidth networks and disk arrays, file system latency has not improved and in many cases has become worse. Consequently, file system I/O remains one of the major bottlenecks to operating system performance [10]. This paper investigates an automated predictive approach towards reducing file latency. Automatic Prefetching uses past file accesses to predict future file systemrequests. The objective is to provide data in advance of the request for the data, effectively masking access latencies. We have designed and implement a system to measure the performance benefits of automatic prefetching. Our current results, obtained from a trace-driven simulation, show that prefetching results in as much as a 280% improvement over LRU especially for smaller caches. Alternatively, prefetching can reduce cache size by up to 50%.
IBM TotalStorage Enterprise Storage Server: A designer's view In this paper, we describe the background, objectives, and major decisions associated with the design of IBM TotalStorageâ聞¢ Enterprise Storage Server脗® (ESS), IBM's high-end disk storage system. We first present a brief history of disk storage development over the past three decades and then describe ESS architecture and basic functions. Next we discuss the goals associated with the design of ESS and the methods used to achieve these goals. We then explore some design decisions that significantly affected ESS architecture and performance, and we conclude with some comments about possible future enhancements.
An Adaptive Block Management Scheme Using On-Line Detection Of Block Reference Patterns Recent research has shown that near optimal performance can be achieved by adaptive block replacement policies that use user-level hints regarding the block reference pattern. However obtaining user-level hints requires considerable effort from users making it difficult to apply adaptive replacement policies to diverse kinds of applications. We propose a new adaptive black management scheme that we call DEAR (DEtection based Adaptive Replacement) which makes on-line detections of block reference patterns of applications using Decision Trees without user intervention. Based on the detected reference pattern, DEAR applies an appropriate replacement policy to each application. This scheme is suitable for buffer management in systems such as multimedia servers where data reference patterns of applications may be diverse. Results from trace driven simulations show that the DEAR scheme can detect the reference patterns of applications and reduce the miss ratio lip to 15 percentage points compared to the LRU policy.
Predictive Reduction of Power and Latency (PuRPLe) Increasing efforts have been aimed towards the management of power as a critical system resource, and the disk can consume approximately a third of the power required for a typical laptop computer. Mechanisms to manage disk power have included spin-down policies and APIs to modify access workloads to be more powerfriendly. In this work we present a measurement study of disk power consumption, focusing on the potential impact of successfully optimizing disk layout or predicting future disk accesses with predictive read-ahead. We demonstrate how such strategies can allow the reduction of disk power consumption at least as well as traditional disk spin-down schemes, while avoiding the serious performance degradation that can occur from excessive spin-downs. Experimental results showed that a successful predictive disk management policy could reduce disk power consumption by over 80%, while maintaining the responsiveness of a continuously running disk. In contrast, an aggressive spin-down policy that does not attempt to optimize layout or predictively read-ahead data, would achieve the same results at the expense of increasing average delays by 2 to 4 times. Another contribution of this work involves the accuracy of the measurements, which were conducted at a level precise enough to distinguish the power consumption of drive electronics, spindle-motors, and disk arm movement.
File system design using large memories It is shown using experimental data that file activity is fairly stable over time, and the implications of this finding for file system design are examined. Several file access patterns and how they may be exploited to improve file system performance are shown. In particular, it is shown that current file temperature can be used to predict future file temperature. The design of the iPcress file system, which uses both a large disk cache and other techniques to improve file system performance is outlined. iPcress has a variety of cache staging algorithms and can choose the one most appropriate for each file. iPcress also stores access histories for each file to guide decisions such as file layout on DASD and caching. Preliminary performance figures for iPcress are presented
Increasing predictive accuracy by prefetching multiple program and user specific files Recent increases in CPU performance have outpaced increases in hard drive performance. As a result, disk operations have become more expensive in terms of CPU cycles spent waiting for disk operations to complete. File prediction can mitigate this problem by prefetching files into cache before they are accessed However, incorrect prediction is to a certain degree both unavoidable and costly. We present the Program-based and User-based Last n Successors (PULnS) file prediction model that identifies relationships between files through the names of the programs and the users accessing them. Our simulation results show that, in the worst case, PULnS makes at least 20% fewer incorrect predictions and roughly the same number of correct predictions as the last-successor model.
Reducing Web latency with hierarchical cache-based prefetching Proxy caches have become a central mechanism for reducing the latency of web document retrieval. While caching alone reduces latency for previously requested documents, web document prefetching could mask latency for previously unseen, but correctly predicted requests. We describe a prefetching algorithm suitable for use in a network of hierarchical web caches; this algorithm observes requests to a cache and its ancestors, and initiates prefetching for predicted future requests if prefetching is likely to reduce the overall latency seen by the cache's clients. We introduce a novel cost-benefit model that allows us to judge the value of any cached or prefetched document, which we use to state a formal prefetching policy. Extensive simulations were run to judge the improvements offered by prefetching, and our approach is quantitatively compared to the method currently in use.
Sequentiality and prefetching in database systems Sequentiality of access is an inherent characteristic of many database systems. We use this observation to develop an algorithm which selectively prefetches data blocks ahead of the point of reference. The number of blocks prefetched is chosen by using the empirical run length distribution and conditioning on the observed number of sequential block references immediately preceding reference to the current block. The optimal number of blocks to prefetch is estimated as a function of a number of “costs,” including the cost of accessing a block not resident in the buffer (a miss), the cost of fetching additional data blocks at fault times, and the cost of fetching blocks that are never referenced. We estimate this latter cost, described as memory pollution, in two ways. We consider the treatment (in the replacement algorithm) of prefetched blocks, whether they are treated as referenced or not, and find that it makes very little difference. Trace data taken from an operational IMS database system is analyzed and the results are presented. We show how to determine optimal block sizes. We find that anticipatory fetching of data can lead to significant improvements in system operation.
Prefetching in file systems for MIMD multiprocessors The question of whether prefetching blocks on the file into the block cache can effectively reduce overall execution time of a parallel computation, even under favorable assumptions, is considered. Experiments have been conducted with an interleaved file system testbed on the Butterfly Plus multiprocessor. Results of these experiments suggest that (1) the hit ratio, the accepted measure in traditional caching studies, may not be an adequate measure of performance when the workload consists of parallel computations and parallel file access patterns, (2) caching with prefetching can significantly improve the hit ratio and the average time to perform an I/O (input/output) operation, and (3) an improvement in overall execution time has been observed in most cases. In spite of these gains, prefetching sometimes results in increased execution times (a negative result, given the optimistic nature of the study). The authors explore why it is not trivial to translate savings on individual I/O requests into consistently better overall performance and identify the key problems that need to be addressed in order to improve the potential of prefetching techniques in the environment
D-SPTF: decentralized request distribution in brick-based storage systems Distributed Shortest-Positioning Time First (D-SPTF) is a request distribution protocol for decentralized systems of storage servers. D-SPTF exploits high-speed interconnects to dynamically select which server, among those with a replica, should service each read request. In doing so, it simultaneously balances load, exploits the aggregate cache capacity, and reduces positioning times for cache misses. For network latencies expected in storage clusters (e.g., 10--200μs), D-SPTF performs as well as would a hypothetical centralized system with the same collection of CPU, cache, and disk resources. Compared to popular decentralized approaches, D-SPTF achieves up to 65% higher throughput and adapts more cleanly to heterogenous server capabilities.
Application level I/O caching on Blue Gene/P systems In this paper, we present an application level aggressive I/O caching and prefetching system to hide I/O access latency experienced by out-of-core applications. Without the application level prefetching and caching capability, users of I/O intensive applications need to rewrite them with asynchronous I/O calls or restructure their code with MPI-IO calls to efficiently use the large scale system resources. Our proposed solution of user controllable aggressive caching and prefetching system maintains a file-IO cache in the user space of the application, analyzes the I/O access patterns, prefetches requests, and performs write-back of dirty data to storage asynchronously. So each time the application needs the data it does not have to pay the full I/O latency penalty in going to the storage and getting the required data. We have implemented this aggressive caching and asynchronous prefetching on the Blue Gene/P (BGP) system. The preliminary experiment evaluates the caching performance using the WRF benchmark. The results on BGP system demonstrate that our method improves application I/O throughput.
On the complexity of database queries We revisit the issue of the complexity of database queries, in the light of the recent parametric refinement of com- plexity theory. We show that, if the query size (or the number of variables in the query) is considered as a parameter, then the relational calculus and its frag- ments (conjunctive queries, positive queries) are classi- fied at appropriate levels of the so-called W hierarchy of Downey and Fellows. These results strongly suggest that the query size is inherently in the exponent of the data complexity of any query evaluation algorithm, with the implication becoming stronger as the expressibility of the query language increases. For recursive languages (fixpoint logic, Datalog) this is provably the case (14). On the positive side, we show that this exponential de- pendence can be avoided for the extension of acyclic queries with # (but not <) inequalities.
Hypothetical Reasoning About Actions: From Situation Calculus To Event Calculus Hypothetical reasoning about actions is the activity of preevaluating the effect of performing actions in a changing domain; this reasoning underlies applications of knowledge representation, such as planning and explanation generation. Action effects are often specified in the language of situation calculus, introduced by McCarthy and Hayes in 1969. More recently, the event calculus has been defined to describe actual actions, i.e., those that have occurred in the past, and their effects on the domain. Altough the two formalisms share the basic ontology of atomic actions and fluents, situation calculus cannot represent actual actions while event calculus cannot represent hypotethical actions. In this article, the language and the axioms of event calculus are extended to allow representing and reasoning about hypothetical actions, performed either at the present time or in the past, altough counterfactuals are not supported. Both event calculus and its extension are defined as logic programs so that theories are readily adaptable for Prolog query interpretation. For a reasonably large class of theories and queries, Prolog interpretation is shown to be sound and complete w.r.t. the main semantics for logic programs.
Learning A Lexical Simplifier Using Wikipedia In this paper we introduce a new lexical simplification approach. We extract over 30K candidate lexical simplifications by identifying aligned words in a sentence-aligned corpus of English Wikipedia with Simple English Wikipedia. To apply these rules, we learn a feature-based ranker using SVMnk trained on a set of labeled simplifications collected using Amazon's Mechanical Turk. Using human simplifications for evaluation, we achieve a precision of 76% with changes in 86% of the examples.
1.002735
0.004328
0.004306
0.003842
0.002797
0.002311
0.002083
0.00111
0.000605
0.000123
0.000002
0
0
0
Adaptive data block placement based on deterministic zones (adaptiveZ) The deterministic block distribution method proposed for RAID systems (known as striping) has been a traditional solution for achieving high performance, increased capacity and redundancy all the while allowing the system to be managed as if it were a single device. However, this distribution method requires one to completely change the data layout when adding new storage subsystems, which is a drawback for current applications This paper presents AdaptiveZ, an adaptive block placement method based on deterministic zones, which grows dynamically zone-by-zone according to capacity demands. When adapting new storage subsystems, it changes only a fraction of the data layout while preserving a simple management of data due to deterministic placement. AdaptiveZ uses both a mechanism focused on reducing the overhead suffered during the upgrade as well as a heterogeneous data layout for taking advantage of disks with higher capabilities. The evaluation reveals that AdaptiveZ only needs to move a fraction of data blocks to adapt new storage subsystems while delivering an improved performance and a balanced load. The migration scheme used by this approach produces a low overhead within an acceptable time. Finally, it keeps the complexity of the data management at an acceptable level.
Influence of Adaptive Data Layouts on Performance in Dynamically Changing Storage Environments For most of today's IT environments, the tremendous need for storage capacity in combination with a required minimum I/O performance has become highly critical. In dynamically growing environments, a storage management solution's underlying data distribution scheme has great impact to the overall system I/O performance. The evaluation of a number of open system storage virtualization solutions and volume managers has shown that all of them lack the ability to automatically adapt to changing access patterns and storage infrastructures; many of them require an error prone manual re-layout of the data blocks, or rely on a very time consuming re-striping of all available data. This paper evaluates the performance of conventional data distribution approaches compared to the adaptive virtualization solution V:DRIVE in dynamically changing storage environments. Changes of the storage infrastructure are normally not considered in benchmark results, but can have a significant impact on storage performance. Using synthetic benchmarks, V:DRIVE is compared in such changing environments with the non-adaptive Linux Logical Volume Manager (LVM). The performance results of our tests clearly outline the necessity of adaptive data distribution schemes.
Efficient, distributed data placement strategies for storage area networks (extended abstract) In the last couple of years a dramatic growth of enterprise data storage capacity can be observed. As a result, new strategies have been sought that allow servers and storage being centralized to better manage the explosion of data and the overall cost of ownership. Nowadays, a common approach is to combine storage devices into a dedicated network that is connected to LANs and/or servers. Such networks are usually called storage area networks (SAN). A very important aspect for these networks is scalability. If a SAN undergoes changes (for instance, due to insertions or removals of disks), it may be necessary to replace data in order to allow an efficient use of the system. To keep the influence of data replacements on the performance of the SAN small, this should be done as efficiently as possible.In this paper, we investigate the problem of evenly distributing and efficiently locating data in dynamically changing SANs. We consider two scenarios: (1) all disks have the same capacity, and (2) the capacities of the disks are allowed to be arbitrary. For both scenarios, we present placement strategies capable of locating blocks efficiently and that are able to quickly adjust the data placement to insertions or removals of disks or data blocks. Furthermore, we study how the performance of our placement strategies changes if we allow to waste a certain amount of capacity of the disks.
WorkOut: I/O workload outsourcing for boosting RAID reconstruction performance User I/O intensity can significantly impact the performance of on-line RAID reconstruction due to contention for the shared disk bandwidth. Based on this observation, this paper proposes a novel scheme, called WorkOut (I/O Workload Outsourcing), to significantly boost RAID reconstruction performance. WorkOut effectively outsources all write requests and popular read requests originally targeted at the degraded RAID set to a surrogate RAID set during reconstruction. Our lightweight prototype implementation of WorkOut and extensive trace-driven and benchmark-driven experiments demonstrate that, compared with existing reconstruction approaches, WorkOut significantly speeds up both the total reconstruction time and the average user response time. Importantly, WorkOut is orthogonal to and can be easily incorporated into any existing reconstruction algorithms. Furthermore, it can be extended to improving the performance of other background support RAID tasks, such as re-synchronization and disk scrubbing.
A case for redundant arrays of inexpensive disks (RAID) Increasing performance of CPUs and memories will be squandered if not matched by a similar performance increase in I/O. While the capacity of Single Large Expensive Disks (SLED) has grown rapidly, the performance improvement of SLED has been modest. Redundant Arrays of Inexpensive Disks (RAID), based on the magnetic disk technology developed for personal computers, offers an attractive alternative to SLED, promising improvements of an order of magnitude in performance, reliability, power consumption, and scalability. This paper introduces five levels of RAIDs, giving their relative cost/performance, and compares RAID to an IBM 3380 and a Fujitsu Super Eagle.
Microprocessor technology trends The rapid pace of advancement of microprocessor technology has shown no sign of diminishing, and this pace is expected to continue in the future. Recent trends in such areas as silicon technology, processor architecture and implementation, system organization, buses, higher levels of integration, self-testing, caches, coprocessors, and fault tolerance are discussed, and expectations for further ad...
Dynamic Multi-Resource Load Balancing in Parallel Database Systems
Performance Analysis of RAID5 Disk Arrays with a Vacationing Server Model for Rebuild Mode Operation We analyze the performance of RAIDS disk arrays in normal, degraded, and rebuild modes. The analysis, which is shown to be highly accurate through validation against simulation results, achieves its accuracy by (1) modeling detailed disk characteristics; (2) developing a simple approximation to compute the mean response time for fork-join requests arising in degraded mode operation; and (3) using a vacationing server model with multiple vacation types for rebuild mode analysis. According to this model vacations (rebuild reads) are started when the server (disk) becomes idle and are repeated until the arrival of an external disk request. Type one (two) vacations correspond to the reading of the first track which requires a seek (successive tracks requiring no seeks). The analytic solution is used to quantify the effect of different rebuild options, such as read redirection and the split-seek option
On the facial structure of set packing polyhedra In this paper we address ourselves to identifying facets of the set packing polyhedron, i.e., of the convex hull of integer solutions to the set covering problem with equality constraints and/or constraints of the form “?”. This is done by using the equivalent node-packing problem derived from the intersection graph associated with the problem under consideration. First, we show that the cliques of the intersection graph provide a first set of facets for the polyhedron in question. Second, it is shown that the cycles without chords of odd length of the intersection graph give rise to a further set of facets. A rather strong geometric property of this set of facets is exhibited.
Dealing with disaster: surviving misbehaved kernel extensions Today's extensible operating systems allow applications to modify kernel behavior by providing mechanisms for application code to run in the kernel address space. The advantage of this approach is that it provides improved application flexibility and performance; the disadvan- tage is that buggy or malicious code can jeopardize the integrity of the kernel. It has been demonstrated that it is feasible to use safe languages, software fault isolation, or virtual memory protection to safeguard the main ker- nel. However, such protection mechanisms do not address the full range of problems, such as resource hoarding, that can arise when application code is intro- duced into the kernel. In this paper, we present an analysis of extension mechanisms in the VINO kernel. VINO uses software fault isolation as its safety mechanism and a lightweight transaction system to cope with resource-hoarding. We explain how these two mechanisms are sufficient to protect against a large class of errant or malicious extensions, and we quantify the overhead that this protection introduces. We find that while the overhead of these techniques is high relative to the cost of the extensions themselves, it is low relative to the benefits that extensibility brings.
The complexity of Markov decision processes We investigate the complexity of the classical problem of optimal policy computation in Markov decision processes. All three variants of the problem finite horizon, infinite horizon discounted, and...
Über die Analyse randomisierter Suchheuristiken und den Entwurf spezialisierter Algorithmen im Bereich der kombinatorischen Optimierung.
A Conformant Planner with Explicit Disjunctive Representation of Belief States This paper describes a novel and competitive complete con- formant planner. Key to the enhanced performance is an effi- cient encoding of belief states as disjunctive normal form for- mulae and an efficient procedure for computing the successor belief state. We provide experimental comparative evaluation on a large pool of benchmarks. The novel design provides great efficiency and enhanced scalability, along with the intu- itive structure of disjunctive normal form representations.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.11
0.06
0.03375
0.009643
0.000533
0.000022
0.000007
0.000002
0
0
0
0
0
0
CHORUS Distributed Operating System The Cnonus technology has been designed for building o'new generations" of open, distributed, scalable Operating Systems. CHoRus has the following main characteristics:
Arche: A Framework for Parallel Object-Oriented Programming Above a Distributed Architecture
Adaptive placement of method executions within a customizable distributed object-based runtime system: design, implementation and performance Abstract: This paper presents the design and implementation of a mechanism aimed at enhancing the performance of distributed object-based applications. This goal is achieved by means of a new algorithm implementing placement of method executions that adapts to processors' load and to objects' characteristics, the latter allowing to approximate the cost of methods' re-mote execution The behavior of the proposed placement algorithm is examined by providing performance measures obtained from its integration within a customizable distributed object-based runtime system. In particular, the cost of method executions using our algorithm is compared with the cost resulting from the standard placement technique that consists of executing any method on the storing node of its embedding object.
Organizing matrices and matrix operations for paged memory systems Matrix representations and operations are examined for the purpose of minimizing the page faulting occurring in a paged memory system. It is shown that carefully designed matrix algorithms can lead to enormous savings in the number of page faults occurring when only a small part of the total matrix can be in main memory at one time. Examination of addition, multiplication, and inversion algorithms shows that a partitioned matrix representation (i.e. one submatrix or partition per page) in most cases induced fewer page faults than a row-by-row representation. The number of page-pulls required by these matrix manipulation algorithms is also studied as a function of the number of pages of main memory available to the algorithm.
PI/OT: parallel I/O templates This paper presents a novel, top-down, high-level approach to parallelizing file I/O. Each parallel file descriptor is annotated with a high-level specification, or template, of the expected parallel behavior. The annotations are external to and independent of the source code. At run-time, all I/O using a parallel file descriptor adheres to the semantics of the selected template. By separating the parallel I/O specifications from the code, a user can quickly change the I/O behavior without rewriting the code. Templates can be composed hierarchically to construct complex access patterns. Two sample parallel programs using these templates are compared against versions implemented in an existing parallel I/O system (PIOUS). The sample programs show that the use of parallel I/O templates are beneficial from both the performance and software engineering points of view.
Adaptive database buffer allocation using query feedback In this paper, we propose the concept of using query execution feedback for improving database buffer man- agement. A query feedback model which adaptively quantifies the page fault characteristics of all query ac- cess patterns including sequential, looping and most im- portantly random, is defined. Based on this model, a load control and a marginal gain ratio buffer allocation scheme are developed. Simulatidn experiments show that the proposed method is consistently better than the previous methods and in most cases, it significantly outperforms all other methods for random access refer- ence patterns.
Exploiting the non-determinism and asynchrony of set iterators to reduce aggregate file I/O latency A key goal of distributed systems is to provide prompt access to shared information repositories. The high latency of remote access is a serious impediment to this goal. This paper describes a new file system abstraction called dynamic sets - unordered collections created by an application to hold the files it intends to process. Applications that iterate on the set to access its members allow the system to reduce the aggregateU0 Iatency by exploiting the non-determinism and asychrony inherent in the semantics of set iterators. This reduction in latency comes without relying on reference locality, without modifying DFS servers and protocols, and without unduly complicating the programming model. This paperpresents this abstraction and describes an implementation of it that runs on local and distributedfile systems, as well as the World wide Web. Dynamicsets demonstrate substantial performance gains - up to 50% savings in runtbne for search on NFS, and up to 90% reduction in I/O latency for Web searches.
Disk cache—miss ratio analysis and design considerations The current trend of computer system technology is toward CPUs with rapidly increasing processing power and toward disk drives of rapidly increasing density, but with disk performance increasing very slowly if at all. The implication of these trends is that at some point the processing power of computer systems will be limited by the throughput of the input/output (I/O) system.A solution to this problem, which is described and evaluated in this paper, is disk cache. The idea is to buffer recently used portions of the disk address space in electronic storage. Empirically, it is shown that a large (e.g., 80-90 percent) fraction of all I/O requests are captured by a cache of an 8-Mbyte order-of-magnitude size for our workload sample. This paper considers a number of design parameters for such a cache (called cache disk or disk cache), including those that can be examined experimentally (cache location, cache size, migration algorithms, block sizes, etc.) and others (access time, bandwidth, multipathing, technology, consistency, error recovery, etc.) for which we have no relevant data or experiments. Consideration is given to both caches located in the I/O system, as with the storage controller, and those located in the CPU main memory. Experimental results are based on extensive trace-driven simulations using traces taken from three large IBM or IBM-compatible mainframe data processing installations. We find that disk cache is a powerful means of extending the performance limits of high-end computer systems.
Time-Driven Orphan Elimination
Iteration aware prefetching for unstructured grids Due to the increasing quality of instruments and availability of computational resources, the size of spatial scientific datasets has been steadily increasing. However, much of the research on efficient storage and access to spatial datasets has focused on large multidimensional arrays. In contrast, unstructured datasets consisting of collections of simplices (e.g. triangles or tetrahedra) present special challenges that have received less attention. Data values found at the vertices of the simplices may be dispersed throughout a datafile, producing especially poor disk locality. In this paper, we address this important problem of poor locality in two major ways. First, we reorganize the unstructured dataset to improve locality in both the dataset space and in the data file on disk using a specialized chunking approach that maintains the spatial neighborhood relationships inherent in the unstructured data. This reorganization produces significant gains in performance by reducing the number of accesses made to the data file. Second, we extend our previous work and describe a prefetching method that takes advantage of prior knowledge of the user's access pattern. Applying this prefetching method to unstructured data produces further performance gains over and above the gains seen from reorganization alone.
Hibernator: helping disk arrays sleep through the winter Energy consumption has become an important issue in high-end data centers, and disk arrays are one of the largest energy consumers within them. Although several attempts have been made to improve disk array energy management, the existing solutions either provide little energy savings or significantly degrade performance for data center workloads.Our solution, Hibernator, is a disk array energy management system that provides improved energy savings while meeting performance goals. Hibernator combines a number of techniques to achieve this: the use of disks that can spin at different speeds, a coarse-grained approach for dynamically deciding which disks should spin at which speeds, efficient ways to migrate the right data to an appropriate-speed disk automatically, and automatic performance boosts if there is a risk that performance goals might not be met due to disk energy management.In this paper, we describe the Hibernator design, and present evaluations of it using both trace-driven simulations and a hybrid system comprised of a real database server (IBM DB2) and an emulated storage server with multi-speed disks. Our file-system and on-line transaction processing (OLTP) simulation results show that Hibernator can provide up to 65% energy savings while continuing to satisfy performance goals (6.5--26 times better than previous solutions). Our OLTP emulated system results show that Hibernator can save more energy (29%) than previous solutions, while still providing an OLTP transaction rate comparable to a RAID5 array with no energy management.
Learning the Kernel Matrix with Semidefinite Programming Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.
Explanatory update theory: applications of counterfactual reasoning to causation A stratified view of causal reasoning is set forth; one in which the identification of counterfactualdependencies plays an important role in determining what sort of causal connection, if any,exists between two events named by a given pair of partial descriptions. A semantics for temporalcounterfactuals in which events are represented at the object level is then formalized based on asyntactic form of belief updating. Counterfactuals are evaluated relative to an agent's informationstate,...
Learning A Lexical Simplifier Using Wikipedia In this paper we introduce a new lexical simplification approach. We extract over 30K candidate lexical simplifications by identifying aligned words in a sentence-aligned corpus of English Wikipedia with Simple English Wikipedia. To apply these rules, we learn a feature-based ranker using SVMnk trained on a set of labeled simplifications collected using Amazon's Mechanical Turk. Using human simplifications for evaluation, we achieve a precision of 76% with changes in 86% of the examples.
1.035079
0.036863
0.033333
0.016693
0.011132
0.00479
0.002858
0.00077
0.00006
0.000016
0.000002
0
0
0
Unsupervised link prediction in evolving abnormal medical parameter networks. The saying “treat the disease, not the symptoms” is widespread, a cliche for eliminating or repairing the root of a problem rather than mitigating the negative effects. It is taken for granted that prevention is the best course of action. It is ironic, then, that many of today’s best “disease treatments” are actually symptom suppressors. The prediction of abnormal medical parameters based on the past patient medical history revealed efficacious in foreseeing medical signs a patient could likely be affected in the future. In this paper, we predict the onset of future signs on the base of the current health status of patients. For this purpose, we first construct a weighted abnormal medical parameter network considering the relations between abnormal parameters. Then, we propose an unsupervised link prediction method to identify the connections between abnormal parameters, building the evolving structure of abnormal parameter network with respect to patients’ ages. To the best of our knowledge, this is the first attempt in predicting the connections between the results of laboratory tests. Experiments on a real network demonstrate that the proposed approach can reveal new abnormal parameter correlations accurately and perform well at capturing future disease signs.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Estimation of daily bicycle traffic volumes using sparse data Calculating the annual average daily bicycle (AADB) volume at a particular cycling facility requires the availability of year-round daily volume data. Automatic counters (e.g., loop detectors) used to collect such continuous data are subject to periodic malfunctions, leading to sporadic data gaps. This problem could affect the calculated values of the AADBs and impact the estimates of the daily and monthly adjustment factors at these count stations. The impacts become even more significant if the data gaps take place frequently and/or for long periods. This research tackles the problem of missing cycling traffic volumes at count locations that potentially experience frequent sensor malfunctions during the year. The method is also applicable to any other similar research problem (e.g. missing volumes at vehicle count locations). A data-driven, yet novel, model is proposed to estimate missing volumes at some locations, using data from other nearby count locations as well as the historical volumes of the same location. The model is motivated by the spatial–temporal relationship of cycling volumes of similar nearby facilities. The proposed model is dynamic as it assumes no prior knowledge about which locations may experience sensor malfunction (i.e., missing volumes). The model is referred to as the “autoencoder neural network” and it belongs to the family of Artificial Neural Networks (ANNs). This model expresses the relationship between a vector of input variables and itself. Hence, if a daily bicycle count is available on one day at a specific location, it will be used as a model input; whereas, a missing daily volume will be treated as an output variable that needs to be determined. The model was tested using a large dataset of about 13,000 daily bicycle volumes from the City of Vancouver, Canada. The data were collected between 2009 and 2011 at 22 different count locations. The model showed a strong estimation power with an average error of about 10%. Sensitivity analyses were carried out to investigate the impact of different model parameters on the estimation accuracy. The optimum set of model parameters was consequently defined.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Learning Face Representation from Scratch. Pushing by big data and deep convolutional neural network (CNN), the performance of face recognition is becoming comparable to human. Using private large scale training datasets, several groups achieve very high performance on LFW, i.e., 97% to 99%. While there are many open source implementations of CNN, none of large scale face dataset is publicly available. The current situation in the field of face recognition is that data is more important than algorithm. To solve this problem, this paper proposes a semi-automatical way to collect face images from Internet and builds a large scale dataset containing about 10,000 subjects and 500,000 images, called CASIAWebFace. Based on the database, we use a 11-layer CNN to learn discriminative representation and obtain state-of-theart accuracy on LFW and YTF. The publication of CASIAWebFace will attract more research groups entering this field and accelerate the development of face recognition in the wild.
Lighting-aware face frontalization for unconstrained face recognition. Provide both lighting-recovered and lighting-normalized frontalized images.Basic frontalization with a generic 3D face model by the alignment of only five landmarks.Lighting recovered and normalized image filling by the symmetry of quotient image.LRFF method completes well with more sophisticated methods on the LFW benchmark.LNRR+LRA method outperforms the recent deep learning based methods on the MPIE database. Face recognition under variable pose and lighting is still one of the most challenging problems, despite the great progress achieved in unconstrained face recognition in recent years. Pose variation is essentially a misalignment problem together with invisible region caused by self-occlusion. In this paper, we propose a lighting-aware face frontalization method that aims to generate both lighting-recovered and lighting-normalized frontalized images, based on only five fiducial landmarks. Basic frontalization is first performed by aligning a generic 3D face model into the input face and rendering it at frontal pose, with an accurate visible region estimation based on face borderline detection. Then we apply the illumination-invariant quotient image, estimated from the visible region, as a face symmetrical feature to fill the invisible region. Lighting-recovered face frontalization (LRFF) is conducted by rendering the estimated lighting on the invisible region. By adjusting the combination parameters, lighting-normalized face frontalization (LNFF) is performed by rendering the canonical lighting on the face. Although its simplicity, our LRFF method competes well with more sophisticated frontalization techniques, on the experiments of LFW database. Moreover, combined with our recently proposed LRA-based classifier, the LNFF based method outperforms the deep learning based methods by about 6% on the challenging experiment on Multiple PIE database under variable pose and lighting.
Stacked Progressive Auto-Encoders (SPAE) for Face Recognition Across Poses Identifying subjects with variations caused by poses is one of the most challenging tasks in face recognition, since the difference in appearances caused by poses may be even larger than the difference due to identity. Inspired by the observation that pose variations change non-linearly but smoothly, we propose to learn pose-robust features by modeling the complex non-linear transform from the non-frontal face images to frontal ones through a deep network in a progressive way, termed as stacked progressive auto-encoders (SPAE). Specifically, each shallow progressive auto-encoder of the stacked network is designed to map the face images at large poses to a virtual view at smaller ones, and meanwhile keep those images already at smaller poses unchanged. Then, stacking multiple these shallow auto-encoders can convert non-frontal face images to frontal ones progressively, which means the pose variations are narrowed down to zero step by step. As a result, the outputs of the topmost hidden layers of the stacked network contain very small pose variations, which can be used as the pose-robust features for face recognition. An additional attractiveness of the proposed method is that no pose estimation is needed for the test images. The proposed method is evaluated on two datasets with pose variations, i.e., MultiPIE and FERET datasets, and the experimental results demonstrate the superiority of our method to the existing works, especially to those 2D ones.
Learning methods for generic object recognition with invariance to pose and lighting We assess the applicability of several popular learning methods for the problem of recognizing generic visual categories with invariance to pose, lighting, and surrounding clutter. A large dataset comprising stereo image pairs of 50 uniform-colored toys under 36 azimuths, 9 elevations, and 6 lighting conditions was collected (for a total of 194,400 individual images). The objects were 10 instances of 5 generic categories: four-legged animals, human figures, airplanes, trucks, and cars. Five instances of each category were used for training, and the other five for testing. Low-resolution grayscale images of the objects with various amounts of variability and surrounding clutter were used for training and testing. Nearest Neighbor methods, Support Vector Machines, and Convolutional Networks, operating on raw pixels or on PCA-derived features were tested. Test error rates for unseen object instances placed on uniform backgrounds were around 13% for SVM and 7% for Convolutional Nets. On a segmentation/recognition task with highly cluttered images, SVM proved impractical, while Convolutional nets yielded 16/7% error. A real-time version of the system was implemented that can detect and classify objects in natural scenes at around 10 frames per second.
Extended stable semantics for normal and disjunctive programs
A neural probabilistic language model A goal of statistical language modeling is to learn the joint probability function of sequences of words in a language. This is intrinsically difficult because of the curse of dimensionality: a word sequence on which the model will be tested is likely to be different from all the word sequences seen during training. Traditional but very successful approaches based on n-grams obtain generalization by concatenating very short overlapping sequences seen in the training set. We propose to fight the curse of dimensionality by learning a distributed representation for words which allows each training sentence to inform the model about an exponential number of semantically neighboring sentences. The model learns simultaneously (1) a distributed representation for each word along with (2) the probability function for word sequences, expressed in terms of these representations. Generalization is obtained because a sequence of words that has never been seen before gets high probability if it is made of words that are similar (in the sense of having a nearby representation) to words forming an already seen sentence. Training such large models (with millions of parameters) within a reasonable time is itself a significant challenge. We report on experiments using neural networks for the probability function, showing on two text corpora that the proposed approach significantly improves on state-of-the-art n-gram models, and that the proposed approach allows to take advantage of longer contexts.
On the scale and performance of cooperative Web proxy caching Abstract While algorithms for cooperative proxy caching have been widely studied, little is understood about cooperative- caching performance,in the large-scale World Wide Web en- vironment. This paper uses both trace-based analysis and analytic modelling,to show,the potential advantages and drawbacks of inter-proxy cooperation. With our traces, we evaluate quantitatively the performance-improvement po- tential of cooperation between 200 small-organization prox- ies within a university environment, and between two large- organization proxies handling 23,000 and 60,000 clients, re- spectively. With our model, we extend beyond these popula- tions to project cooperative caching behavior in regions with millions of clients. Overall, we demonstrate that cooperative caching has performance,benefits only within limited popu- lation bounds. We also use our model to examine the impli- cations of future trends in Web-access behavior and traffic.
A case for redundant arrays of inexpensive disks (RAID) Increasing performance of CPUs and memories will be squandered if not matched by a similar performance increase in I/O. While the capacity of Single Large Expensive Disks (SLED) has grown rapidly, the performance improvement of SLED has been modest. Redundant Arrays of Inexpensive Disks (RAID), based on the magnetic disk technology developed for personal computers, offers an attractive alternative to SLED, promising improvements of an order of magnitude in performance, reliability, power consumption, and scalability. This paper introduces five levels of RAIDs, giving their relative cost/performance, and compares RAID to an IBM 3380 and a Fujitsu Super Eagle.
Synchronized Disk Interleaving A group of disks may be interleaved to speed up data transfers in a manner analogous to the speedup achieved by main memory interleaving. Conventional disks may be used for interleaving by spreading data across disks and by treating multiple disks as if they were a single one. Furthermore, the rotation of the interleaved disks may be synchronized to simplify control and also to optimize performance. In addition, check- sums may be placed on separate check-sum disks in order to improve reliability. In this paper, we study synchronized disk interleaving as a high-performance mass storage system architecture. The advantages and limitations of the proposed disk interleaving scheme are analyzed using the M/G/1 queueing model and compared to the conventional disk access mechanism.
A Completeness Result for SLDNF-Resolution Because of the possibility of floundering and infinite derivations, SLDNF-resolution is, in general, not complete. The classical approach [17] to get a completeness result is to restrict the attention to normal programs P and normal goals G, such that P or {G} is allowed and P is hierarchical. Unfortunately, the class of all normal programs and all normal goals meeting these requirements is not powerful enough to be of great practical importance. But after refining the concept of allowedness by taking modes [12] into account, we can broaden the notion of a hierarchical program, and thereby define a subclass of the class of normal programs and normal goals which is powerful enough to compute all primitive recursive functions without losing the completeness of SLDNF-resolution.
A logic programming approach to knowledge-state planning: Semantics and complexity We propose a new declarative planning language, called K, which is based on principles and methods of logic programming. In this language, transitions between states of knowledge can be described, rather than transitions between completely described states of the world, which makes the language well suited for planning under incomplete knowledge. Furthermore, our formalism enables the use of default principles in the planning process by supporting negation as failure. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, which shows that the language is very flexible. As we demonstrate on particular examples, the use of knowledge states may allow for a natural and compact problem representation. We then provide a thorough analysis of the computational complexity of K, and consider different planning problems, including standard planning and secure planning (also known as conformant planning) problems. We show that these problems have different complexities under various restrictions, ranging from NP to NEXPTIME in the propositional case. Our results form the theoretical basis for the DLVk system, which implements the language K on top of the DLV logic programming system.
iSAM: Incremental Smoothing and Mapping In this paper, we present incremental smoothing and mapping (iSAM), which is a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, thereby recalculating only those matrix entries that actually change. iSAM is efficient even for robot trajectories with many loops as it avoids unnecessary fill-in in the factor matrix by periodic variable reordering. Also, to enable data association in real time, we provide efficient algorithms to access the estimation uncertainties of interest based on the factored information matrix. We systematically evaluate the different components of iSAM as well as the overall algorithm using various simulated and real-world datasets for both landmark and pose-only settings.
When Multivariate Forecasting Meets Unsupervised Feature Learning - Towards a Novel Anomaly Detection Framework for Decision Support. Many organizations adopt information technologies to make intelligent decisions during operations. Time-series data plays a crucial role in supporting such decision making processes. Though current studies on time-series based decision making provide reasonably well results, the anomaly detection essence underling most of the scenarios and the plenitude of unlabeled data are largely overlooked and left unexplored. We argue that by using multivariate forecasting and unsupervised feature learning, these two important research gaps could be filled. We carried out two experiments in this study to testify our approach and the results showed that decision support performance was significantly improved. We also proposed a novel framework to integrate the two methods so that our approach may be generalized to a larger problem domain. We discussed the advantages, the limitations and the future work of our study. Both practical and theoretical contributions were also discussed in the paper. © 2012 by the AIS/ICIS Administrative Office All rights reserved.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.1
0.1
0.006667
0.001818
0
0
0
0
0
0
0
0
0
0
Reasoning about Complex Actions with Incomplete Knowledge: A Modal Approach In this paper we propose a modal approach for reasoning about dynamic domains in a logic programming setting. We present a logical framework for reasoning about actions in which modal inclusion axioms of the form 驴p0驴驴 驴 驴p1驴 驴p2驴 ... 驴pn驴 allow procedures to be defined for building complex actions from elementary actions. The language is able to handle knowledge producing actions as well as actions which remove information. Incomplete states are represented by means of epistemic operators and test actions can be used to check whether a fluent is true, false or undefined in a state. We give a non-monotonic solution for the frame problem by making use of persistency assumptions in the context of an abductive characterization. A goal directed proof procedure is defined, which allows reasoning about complex actions and generating conditional plans.
Action representation and partially observable planning using epistemic logic Speculative execution of information gathering plans can dramatically reduce the effect of source I/O latencies on overall performance. However, the utility of speculation is closely tied to how accurately data values are predicted at runtime. Caching ...
Conditional planning with external functions We introduce the logic-based planning language κc as an extension of κ [5]. κc has two advantages upon κ. First, the introduction of external function calls in the rules of a planning description allows the knowledge engineer to describe certain planning domains, e.g. involving complex action effects, in a more intuitive fashion then is possible in κ. Secondly, in contrast to the conformant planning framework κ, κc is formalized as a conditional planning system, which enables κc to solve planning problems that are impossible to express in κ, e.g. involving sensing actions. A prototype implementation of conditional planning with κc is build on top of the DLVκsystem, and we illustrate its use by some small examples.
Task decomposition on abstract states, for planning under nondeterminism Although several approaches have been developed for planning in nondeterministic domains, solving large planning problems is still quite difficult. In this work, we present a new planning algorithm, called Yoyo, for solving planning problems in fully observable nondeterministic domains. Yoyo combines an HTN-based mechanism for constraining its search and a Binary Decision Diagram (BDD) representation for reasoning about sets of states and state transitions. We provide correctness theorems for Yoyo, and an experimental comparison of it with MBP and ND-SHOP2, the two previously-best algorithms for planning in nondeterministic domains. In our experiments, Yoyo could easily deal with problem sizes that neither MBP nor ND-SHOP2 could scale up to, and could solve problems about 100 to 1000 times faster than MBP and ND-SHOP2.
Reasoning and planning with sensing actions, incomplete information, and static causal laws using answer set programming We extend the 0-approximation of sensing actions and incomplete information in Son and Baral (2001) to action theories with static causal laws and prove its soundness with respect to the possible world semantics. We also show that the conditional planning problem with respect to this approximation is NP-complete. We then present an answer set programming based conditional planner, called ASCP, that is capable of generating both conformant plans and conditional plans in the presence of sensing actions, incomplete information about the initial state, and static causal laws. We prove the correctness of our implementation and argue that our planner is sound and complete with respect to the proposed approximation. Finally, we present experimental results comparing ASCP to other planners.
Approximation of action theories and its application to conformant planning This paper describes our methodology for building conformant planners, which is based on recent advances in the theory of action and change and answer set programming. The development of a planner for a given dynamic domain starts with encoding the knowledge about fluents and actions of the domain as an action theory D of some action language. Our choice in this paper is AL - an action language with dynamic and static causal laws and executability conditions. An action theory D of AL defines a transition diagram T(D) containing all the possible trajectories of the domain. A transition belongs to T(D) iff the execution of the action a in the state s may move the domain to the state s^'. The second step in the planner development consists in finding a deterministic transition diagram T^l^p(D) such that nodes of T^l^p(D) are partial states of D, its arcs are labeled by actions, and a path in T^l^p(D) from an initial partial state @d^0 to a partial state satisfying the goal @d^f corresponds to a conformant plan for @d^0 and @d^f in T(D). The transition diagram T^l^p(D) is called an 'approximation' of T(D). We claim that a concise description of an approximation of T(D) can often be given by a logic program @p(D) under the answer sets semantics. Moreover, complex initial situations and constraints on plans can be also expressed by logic programming rules and included in @p(D). If this is possible then the problem of finding a parallel or sequential conformant plan can be reduced to computing answer sets of @p(D). This can be done by general purpose answer set solvers. If plans are sequential and long then this method can be too time consuming. In this case, @p(D) is used as a specification for a procedural graph searching conformant planning algorithm. The paper illustrates this methodology by building several conformant planners which work for domains with complex relationship between the fluents. The efficiency of the planners is experimentally evaluated on a number of new and old benchmarks. In addition we show that for a subclass of action theories of AL our planners are complete, i.e., if in T^l^p(D) we cannot get from @d^0 to a state satisfying the goal @d^f then there is no conformant plan for @d^0 and @d^f in T(D).
Adding knowledge to the action description language A We introduce Ak an extension of the action description language A (Gelfond & Lifschitz 1993) to handle actions which affect knowledge. We use sensing actions to increase an agent's knowledge of the world and non-deterministic actions to remove knowledge. We include complex plans involving conditionals and loops in our query language for hypothetical reasoning. Finally, we present a translation of descriptions in Ak to epistemic logic programs.
Splitting a logic program In many cases, a logic program can be divided into two parts, so that oneof them, the &quot;bottom&quot; part, does not refer to the predicates defined in the&quot;top&quot; part. The &quot;bottom&quot; rules can be used then for the evaluation of thepredicates that they define, and the computed values can be used to simplifythe &quot;top&quot; definitions. We discuss this idea of splitting a program inthe context of the answer set semantics. The main theorem shows how computingthe answer sets for a program can be simplified...
A machine program for theorem-proving The programming of a proof procedure is discussed in connection with trial runs and possible improvements.
Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c 1 and given any n nodes in R 2, a randomized version of the scheme finds a (1 + 1/c)-approximation to the optimum traveling salesman tour in O(n(log n)O(c)) time. When the nodes are in R d, the running time increases to O(n(log n)(O(d c))d-1). For every fixed c, d the running time is n • poly(logn), that is nearly linear in n. The algorithmm can be derandomized, but this increases the running time by a factor O(nd). The previous best approximation algorithm for the problem (due to Christofides) achieves a 3/2-aproximation in polynomial time.We also give similar approximation schemes for some other NP-hard Euclidean problems: Minimum Steiner Tree, k-TSP, and k-MST. (The running times of the algorithm for k-TSP and k-MST involve an additional multiplicative factor k.) The previous best approximation algorithms for all these problems achieved a constant-factor approximation. We also give efficient approximation schemes for Euclidean Min-Cost Matching, a problem that can be solved exactly in polynomial time.All our algorithms also work, with almost no modification, when distance is measured using any geometric norm (such as &ell; p for p ≥ 1 or other Minkowski norms). They also have simple parallel (i.e., NC) implementations.
IRON file systems Commodity file systems trust disks to either work or fail completely, yet modern disks exhibit more complex failure modes. We suggest a new fail-partial failure model for disks, which incorporates realistic localized faults such as latent sector errors and block corruption. We then develop and apply a novel failure-policy fingerprinting framework, to investigate how commodity file systems react to a range of more realistic disk failures. We classify their failure policies in a new taxonomy that measures their Internal RObustNess (IRON), which includes both failure detection and recovery techniques. We show that commodity file system failure policies are often inconsistent, sometimes buggy, and generally inadequate in their ability to recover from partial disk failures. Finally, we design, implement, and evaluate a prototype IRON file system, Linux ixt3, showing that techniques such as in-disk checksumming, replication, and parity greatly enhance file system robustness while incurring minimal time and space overheads.
Projection results for vehicle routing A variety of integer programming formulations have been proposed for Vehicle Routing Problems (VRPs), including the so-called two- and three-index formulations, the set partitioning formulation, and various formulations based on extra variables representing the ∞ow of one or more commodities. Until now, there has not been a systematic study of how these formulations relate to each other. An exception is a paper of Luis Gouveia, which shows that a one-commodity ∞ow formulation of Gavish and Graves yields, by projection, certain 'multistar' inequalities in the two-index space. We give a survey of formulations for the capacitated VRP, and then present various results of a similar ∞avour to those of Gouveia. In partic- ular, we show that: † the three-index formulation, augmented by certain families of valid inequalities, gives the same lower bound as the two-index formula- tion, augmented by certain simpler families of valid inequalities, † the two-commodity ∞ow formulation of Baldacci et al. gives the same lower bound and the same multistar inequalities as the one- commodity Gavish and Graves formulation, † a certain non-standard multi-commodity ∞ow formulation, with one commodity per customer, implies by projection certain 'hypotour- like' inequalities in the two-index space, † the set partitioning formulation implies by projection both multistar and hypotour-like inequalities in the two-index space. We also brie∞y look at some other variants of the VRP, such as the VRP with time windows, and derive multistar-like inequalities for them. We also present polynomial-time separation algorithms for some of the new inequalities.
Small cache, big effect: provable load balancing for randomly partitioned cluster services Load balancing requests across a cluster of back-end servers is critical for avoiding performance bottlenecks and meeting service-level objectives (SLOs) in large-scale cloud computing services. This paper shows how a small, fast popularity-based front-end cache can ensure load balancing for an important class of such services; furthermore, we prove an O(n log n) lower-bound on the necessary cache size and show that this size depends only on the total number of back-end nodes n, not the number of items stored in the system. We validate our analysis through simulation and empirical results running a key-value storage system on an 85-node cluster.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.12
0.03
0.028
0.02
0.007778
0.003333
0.000389
0.000067
0
0
0
0
0
0
On the size of reactive plans One of the most widespread approaches to reactive planning is Schoppers' universal plans. We propose a stricter definition of universal plans which guarantees a weak notion of soundness not present in the original definition. Furthermore, we isolate three different types of completeness which capture different behaviours exhibited by universal plans. We show that universal plans which run in polynomial time and are of polynomial size cannot satisfy even the weakest type of completeness unless the polynomial hierarchy collapses. However, by relaxing either the polynomial time or the polynomial space requirement, the construction of universal plans satisfying the strongest type of completeness becomes trivial.
An Overview of Some Formal Methods for Program Design First Page of the Article
From theory to practice: the UTEP robot in the AAAI 96 and AAAI 97 robot contests In this paper we describe the control aspects of Diablo, theUTEP mobile robot participant in two AAAI robot competitions.In the first competition, event one of the AAAI 96robot contest, Diablo consistently scored 2851out of a totalof 295 points. In the second competition, our robot wonthe first place in the event &quot;Tidy Up&quot; of the home vacuumcontest. The main goal in this paper will be to show howthe agent theories - based on action theories -- developed atUTEP and by Saffiotti et...
Representing Sensing Actions: The Middle Ground Revisited To build effective planning systems, it is crucial to find the right level of representation: too impoverished, and important actions and goals are impossible to express; too expressive, and planning becomes intractable. Within the classical framework, Pednault's ADL (Pednault 1986) provided a happy compromise between the impoverished STRIPS representation and the expensive situation calculus. Among languages handling sensing actions and information goals, there is a similar spectrum of expressiveness. UWL, an extension of STRIPS, can't express goals like "Rename the file paper.tex to kr.tex." Nor can it represent universally quantified goals or effects. At the other extreme are elegant languages (Morgenstern 1987; Moore 1985; Levesque 1996) for which effective planners don't exist. In this paper, we combine elements of UWL and ADL, to define SADL: a middle-ground representation for sensing actions. Underlying our language are two insights, missing from UWL: 1) Knowledge goals are inherently temporal. 2) Knowledge preconditions are unnecessary for an important class of domains (those obeying a Markov property). SADL is expressive enough to encode the rich domain theory of the Internet Softbot, including hundreds of UNIX and Internet operators; yet it supports tractable inference by planners such as XII (Golden, Etzioni, & Weld 1994; 1996).
Planning for temporally extended goals In planning, goals have traditionally been viewed as specifying a set of desirable final states. Any plan that transforms the current state to one of these desirable states is viewed to be correct. Goals of this form are limited in what they can specify, and they also do not allow us to constrain the manner in which the plan achieves its objectives. We propose viewing goals as specifying desirable sequences of states, and a plan to be correct if its execution yields one of these desirable sequences. We present a logical language, a temporal logic, for specifying goals with this semantics. Our language is rich and allows the representation of a range of temporally extended goals, including classical goals, goals with temporal deadlines, quantified goals (with both universal and existential quantification), safety goals, and maintenance goals. Our formalism is simple and yet extends previous approaches in this area. We also present a planning algorithm that can generate correct plans for these goals. This algorithm has been implemented, and we provide some examples of the formalism at work. The end result is a planning system which can generate plans that satisfy a novel and useful set of conditions.
Macro-operators: a weak method for learning This article explores the idea of learning efficient strategies for solving problems by searching for macro-operators. A macro-operator, or macro for short, is simply a sequence of operators chosen from the primitive operators of a problem. The technique is particularly useful for problems with non-serializable subgoals, such as Rubik's Cube, for which other weak methods fail. Both a problem-solving program and a learning program are described in detail. The performance of these programs is analyzed in terms of the number of macros required to solve all problem instances, the length of the resulting solutions (expressed as the number of primitive moves), and the amount of time necessary to learn the macros. In addition, a theory of why the method works, and a characterization of the range of problems for which it is useful are presented. The theory introduces a new type of problem structure called operator decomposability. Finally, it is concluded that the macro technique is a new kind of weak method, a method for learning as opposed to problem solving.
Bounded Branching and Modalities in Non-Deterministic Planning. We study the consequences on complexity that arise whenbounds on the number of branch points on the solutions fornon-deterministic planning problems are imposed as well aswhen modal formulae are introduced into the description language.New planning tasks, such as whether there exists aplan with at most k branch points for a fully (or partially)observable non-deterministic domain, and whether there existsa no-branch (a.k.a. conformant) plan for partially observabledomains, are introduced and their complexity analyzed.Among other things, we show that deciding the existenceof a conformant plan for partially observable domains withmodal formulae is 2EXPSPACE-complete, and that the problemof deciding the existence of plans with bounded branching,for fully or partially observable contingent domains,has the same complexity of the conformant task. These resultsgeneralize previous results on the complexity of nondeterministicplanning and fill a slot that has gone unnoticedin non-deterministic planning, that of conformant planningfor partially observable domains.
Heuristic search + symbolic model checking = efficient conformant planning We consider the problem of how an agent creates a discrete spatial representation from its continuous interactions with the environment. Such representation will be the minimal one that explains the experiences of the agent in the environment. In this ...
MAXPLAN: A New Approach to Probabilistic Planning Classical artificial intelligence planning techniques canoperate in large domains but traditionally assume adeterministic universe. Operations research planningtechniques can operate in probabilistic domains butbreak when the domains approach realistic sizes. maxplan is a new probabilistic planning technique thataims at combining the best of these two worlds. maxplan converts a planning instance into an E-Majsatinstance, and then draws on techniques from Booleansatisfiability...
Local search topology in planning benchmarks: an empirical analysis Many state-of-the-art heuristic planners derive their heuristic function by relaxing the planning task at hand, where the relaxation is to assume that all delete lists are empty. Looking at a collection of planning benchmarks, we measure topological properties of state spaces with respect to that relaxation. The results suggest that, given the heuristic based on the relaxation, many planning benchmarks are simple in structure. This sheds light on the recent success of heuristic planners employing local search.
On linear characterizations of combinatorial optimization problems We show that there can be no computationally tractable description by linear inequalities of the polyhedron associated with any NP-complete combinatorial optimization problem unless NP = co-NP -- a very unlikely event. We also apply the ellipsoid method for linear programming to show that a combinatorial optimization problem is solvable in polynomial time if and only if it admits a small generator of violated inequalities.
Zoned-RAID for multimedia database servers This paper proposes a novel fault-tolerant disk subsystem named Zoned-RAID (Z-RAID). Z-RAID improves the performance of traditional RAID system by utilizing the zoning property of modern disks which provides multiple zones with different data transfer rates in a disk. This study proposes to optimize data transfer rate of RAID system by constraining placement of data blocks in multi-zone disks. We apply Z-RAID for multimedia database servers such as video servers that require a high data transfer rate as well as fault tolerance. Our analytical and experimental results demonstrate the superiority of Z-RAID to conventional RAID. Z-RAID provides a higher effective data transfer rate in normal mode with no disadvantage. In the presence of a disk failure, Z-RAID still performs as well as RAID.
Exploiting the non-determinism and asynchrony of set iterators to reduce aggregate file I/O latency A key goal of distributed systems is to provide prompt access to shared information repositories. The high latency of remote access is a serious impediment to this goal. This paper describes a new file system abstraction called dynamic sets - unordered collections created by an application to hold the files it intends to process. Applications that iterate on the set to access its members allow the system to reduce the aggregateU0 Iatency by exploiting the non-determinism and asychrony inherent in the semantics of set iterators. This reduction in latency comes without relying on reference locality, without modifying DFS servers and protocols, and without unduly complicating the programming model. This paperpresents this abstraction and describes an implementation of it that runs on local and distributedfile systems, as well as the World wide Web. Dynamicsets demonstrate substantial performance gains - up to 50% savings in runtbne for search on NFS, and up to 90% reduction in I/O latency for Web searches.
Exploring Sequence Alignment Algorithms On Fpga-Based Heterogeneous Architectures With the rapid development of DNA sequencer, the rate of data generation is rapidly outpacing the rate at which it can be computationally processed. Traditional sequence alignment based on PC cannot fulfill the increasing demand. Accelerating the algorithm using FPGA provides the better performance compared to the other platforms. This paper will explain and classify the current sequence alignment algorithms. In addition, we analyze the different types of sequence alignment algorithms and present the taxonomy of FPGA-based sequence alignment implementations. This work will conclude the current solutions and provide a reference to further accelerating sequence alignment on a FPGA-based heterogeneous architecture.
1.07943
0.068414
0.03418
0.009776
0.007196
0.003651
0.000539
0.000105
0.000037
0.000008
0
0
0
0
Reconstruction of network evolutionary history from extant network topology and duplication history Genome-wide protein-protein interaction (PPI) data are readily available thanks to recent breakthroughs in biotechnology. However, PPI networks of extant organisms are only snapshots of the network evolution. How to infer the whole evolution history becomes a challenging problem in computational biology. In this paper, we present a likelihood-based approach to inferring network evolution history from the topology of PPI networks and the duplication relationship among the paralogs. Simulations show that our approach outperforms the existing ones in terms of the accuracy of reconstruction. Moreover, the growth parameters of several real PPI networks estimated by our method are more consistent with the ones predicted in literature.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Parity striping of disc arrays: low-cost reliable storage with acceptable throughput An analysis of mirrored discs and of RAIDS shows that mirrors have considerably better throughput, measured as requests/second on random requests of arbitrary size (up to IMB). Mirrors have comparable or better response time for requests of reasonable size (less than 1OOKB). But mirrors have a 100% storage penalty: storing the data twice. Parity striping is a data layout that stripes the parity across the discs, but does not stripe the data. Parity striping has throughput almost as good as mirrors, and has cost/GB comparable to RAID5 designs -- combing the advantages of both for high-traffic disc resident data. Parity striping has additional fault containment and software benefits as well. Parity striping sacrifices the high data transfer rates of RAID designs for high throughput, It is argued that response time and throughput ate preferable performance metrics. l.Introduction Disc arrays have traditionally been used in supercomputers to provide high transfer rates by reading or writing multiple discs in parallel (Kim). Rather than getting 2MB/s from a single disc, applications are able to read or write N discs in parallel by striping data across the discs thereby getting a transfer rate of 2NMB/s.
The High Performance Storage System The National Storage Laboratory (NSL) was organized to develop, demonstrate and commercialize technology for the storage systems that will be the future repositories for the national information assets. Within the NSL four Department of Energy laboratories and IBM Federal Systems Company pooled their resources to develop an entirely new High Performance Storage System (HPSS). The HPSS project concentrates on scalable parallel storage systems for highly parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting the high end of storage system and data management requirements, HPSS is designed using network-connected storage devices to transfer data at rates of 100 million bytes per second and beyond. The resulting products will be portable to many vendor's platforms. The three year project is targeted to be complete in 1995. This paper provides an overview of the requirements, design issues, and architecture of HPSS, as well as a description of the distributed, multi-organization industry and national laboratory HPSS project.
An efficient scheme for providing high availability Replication at the partition level is a promising approach for increasing availability in a Shared Nothing architecture. We propose an algorithm for maintaining replicas with little overhead during normal failure-free processing. Our mechanism updates the secondary replica in an asynchronous manner: entire dirty pages are sent to the secondary at some time before they are discarded from primary's buffer. A log server node (hardened against failures) maintains the log for each node. If a primary node fails, the secondary fetches the log from the log server, applied it to its replica, and brings itself to the primary's last transaction-consistent state. We study the performance of various policies for sending pages to secondary and the corresponding trade-offs between recovery time and overhead during failure-free processing.
On Variable Scope of Parity Protection in Disk Arrays In a common form of a RAID 5 architecture, data is organized on a disk array consisting of N + 1 disks into stripes of N data blocks and one parity block (with parity block locations staggered so as to balance the number of parity blocks on each disk). This allows data to be recovered in the event of a single disk failure. Here we consider an extension to this architecture in which parity information applies to arbitrary subsets of the data blocks in each stripe. Using several simplifying assumptions, we present simulation and analytic results that provide estimates of the improvement using this approach, in terms of total I/O operations, as compared to 1) conventional RAID 5 under a random single-block write workload, and 2) the use of a log-structured file system in which data is written out in stripes. Results on the reduction of disk recovery costs are also presented.
Storage Technology: RAID and Beyond
A Cost-effective Near-line Storage Server for Multimedia System We consider a storage server architecture for multimedia information systems. While most other works on multimedia storage servers assume on-line disk storage, we consider a two-tier storage architecture with a robotic tape library as the vast near-line storage and on-line disks as the front-line storage. Magnetic tapes are cheaper, more robust, and have a larger capacity; hence they are more cost effective for large scale storage systems (e.g., video on demand (VOD) systems may store tens of thousands of videos). We study in detail the design issues of the tape subsystem and propose some novel tape scheduling algorithms which give faster response and require less disk buffering.
A comparison of high-availability media recovery techniques We compare two high-availability techniques for recovery from media failures in database systems. Both techniques achieve high availability by having two copies of all data and indexes, so that recovery is immediate. “Mirrored declustering” spreads two copies of each relation across two identical sets of disks. “Interleaved declustering” spreads two copies of each relation across one set of disks while keeping both copies of each tuple on separate disks. Both techniques pay the same costs of doubling storage requirements and requiring updates to be applied to both copies.Mirroring offers greater simplicity and universality. Recovery can be implemented at lower levels of the system software (e.g., the disk controller). For architectures that do not share disks globally, it allows global and local cluster indexes to be independent. Also, mirroring does not require data to be declustered (i.e., spread over multiple disks).Interleaved declustering offers significant improvements in recovery time, mean time to loss of both copies of some data, throughput during normal operation, and response time during recovery. For all architectures, interleaved declustering enables data to be spread over twice as many disks for improved load balancing. We show how tuning for interleaved declustering is simplified because it is dependent only on a few parameters that are usually well known for a specific workload and system configuration.
RAIDframe: rapid prototyping for disk arrays The complexity of advanced disk array architectures makes accurate representation necessary, arduous, and error-prone. In this paper, we present RAIDframe, an array framework that separates architectural policy from execution mechanism. RAIDframe facilitations rapid prototyping of new RAID architec- tures by localizing modifications and providing libraries of existing architectures to extend. In addition, RAIDframe implemented architectures run the same code as a synthetic and trace-driven simulator, as a user-level application managing raw disks, and as a Digital Unix device-driver capable of mounting a filesystem. Evaluation shows that RAIDframe performance is equivalent to less complex array imple- mentations and thance is equivalent to less complex array implementations and that case studies of RAID levels 0, 1, 4, 5, 6, and parity declustering achieve expected performance.
Striping in a RAID level 5 disk array Redundant disk arrays are an increasingly popular way to improve I/O system performance. Past research has studied how to stripe data in non-redundant (RAID Level 0) disk arrays, but none has yet been done on how to stripe data in redundant disk arrays such as RAID Level 5, or on how the choice of striping unit varies with the number of disks. Using synthetic workloads, we derive simple design rules for striping data in RAID Level 5 disk arrays given varying amounts of workload information. We then validate the synthetically derived design rules using real workload traces to show that the design rules apply well to real systems.We find no difference in the optimal striping units for RAID Level 0 and 5 for read-intensive workloads. For write-intensive workloads, in contrast, the overhead of maintaining parity causes full-stripe writes (writes that span the entire error-correction group) to be more efficient than read-modify writes or reconstruct writes. This additional factor causes the optimal striping unit for RAID Level 5 to be four times smaller for write-intensive workloads than for read-intensive workloads.We next investigate how the optimal striping unit varies with the number of disks in an array. We find that the optimal striping unit for reads in a RAID Level 5 varies inversely to the number of disks, but that the optimal striping unit for writes varies with the number of disks. Overall, we find that the optimal striping unit for workloads with an unspecified mix of reads and writes is independent of the number of disks.Together, these trends lead us to recommend (in the absence of specific workload information) that the striping unit over a wide range of RAID Level 5 disk array sizes be equal to 1/2 * average positioning time * disk transfer rate.
System issues in implementing high speed distributed parallel storage systems In this paper we describe several aspects of implementing a high speed network-based distributed application. We describe the design and implementation of a distributed parallel storage system that uses high speed ATM networks as a key element of the architecture. The architecture provides what amounts to a collection of network-based disk block servers, and an associated name server that provides some file system functionality. The implementation approach is that of user level software that runs on UNIX workstations. Both the architecture and the implementation are intended to provide for easy and economical scalability in both performance and capacity. We describe the software architecture, the implementation and operating system overhead issues, and our experiences with this approach in an IP-over-ATM WAN. Although most of the paper is specific to a distributed parallel data server, we believe many of the issues we encountered are generally applicable to any high speed network-based application.
Preserving peer replicas by rate-limited sampled voting The LOCKSS project has developed and deployed in a world-wide test a peer-to-peer system for preserving access to journals and other archival information published on the Web. It consists of a large number of independent, low-cost, persistent web caches that cooperate to detect and repair damage to their content by voting in "opinion polls." Based on this experience, we present a design for and simulations of a novel protocol for voting in systems of this kind. It incorporates rate limitation and intrusion detection to ensure that even some very powerful adversaries attacking over many years have only a small probability of causing irrecoverable damage before being detected.
New developments in structural complexity theory This paper discusses the scope and goals of structural complexity theory, describes some working hypotheses of this field and summarizes (some) recent developments.
Automatic recovery from runtime failures We present a technique to make applications resilient to failures. This technique is intended to maintain a faulty application functional in the field while the developers work on permanent and radical fixes. We target field failures in applications built on reusable components. In particular, the technique exploits the intrinsic redundancy of those components by identifying workarounds consisting of alternative uses of the faulty components that avoid the failure. The technique is currently implemented for Java applications but makes little or no assumptions about the nature of the application, and works without interrupting the execution flow of the application and without restarting its components. We demonstrate and evaluate this technique on four mid-size applications and two popular libraries of reusable components affected by real and seeded faults. In these cases the technique is effective, maintaining the application fully functional with between 19% and 48% of the failure-causing faults, depending on the application. The experiments also show that the technique incurs an acceptable runtime overhead in all cases.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.005047
0.00517
0.004807
0.004067
0.003924
0.002869
0.002113
0.001497
0.00057
0.000038
0.000002
0
0
0
Pre-execution data prefetching with I/O scheduling Parallel applications suffer from I/O latency. Pre-execution I/O prefetching is effective in hiding I/O latency, in which a pre-execution prefetching thread is created and dedicated to fetch the data for the main thread in advance. However, existing pre-execution prefetching works do not pay attention to the relationship between the main thread and the pre-execution prefetching thread. They just simply pre-execute the I/O accesses using the prefetching thread as soon as possible failing to carefully coordinate them with the operations of the main thread. This drawback induces a series of adverse effects on pre-execution prefetching such as diminishing the degree of the parallelism between computation and I/O, delaying the I/O access of main threads, and aggravating the I/O resource competition in the whole system. In this paper, we propose a new method to overcome this drawback by scheduling the I/O operations among the main threads and the pre-execution prefetching threads. The results of extensive experiments on four popular benchmarks in parallel I/O performance area demonstrate the benefits of the proposed approach.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Pilot-Data: An abstraction for distributed data. Scientific problems that depend on processing large amounts of data require overcoming challenges in multiple areas: managing large-scale data distribution, controlling co-placement and scheduling of data with compute resources, and storing, transferring, and managing large volumes of data. Although there exist multiple approaches to address each of these challenges and the complexity of distributed environments, an integrative approach is missing; furthermore, extending existing functionality or enabling interoperable capabilities remains difficult at best. We propose the concept of Pilot-Data to address the fundamental challenges of co-placement and scheduling of data and compute in heterogeneous and distributed environments with interoperability and extensibility as first-order concerns. Pilot-Data is an extension of the Pilot-Job abstraction for supporting the management of data in conjunction with compute tasks. Pilot-Data separates logical data units from physical storage, thereby providing the basis for efficient compute/data placement and scheduling. In this paper, we discuss the design and implementation of the Pilot-Data prototype, demonstrate its use by data-intensive applications on multiple production distributed cyberinfrastructure and illustrate the advantages arising from flexible execution modes enabled by Pilot-Data. Our experiments utilize an implementation of Pilot-Data in conjunction with a scalable Pilot-Job (BigJob) to establish the application performance that can be enabled by the use of Pilot-Data. We demonstrate how the concept of Pilot-Data also provides the basis upon which to build tools and support capabilities like affinity which in turn can be used for advanced data–compute co-placement and scheduling.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
Parameterized complexity for the database theorist
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Implicit-storing and redundant-encoding-of-attribute information in error-correction-codes This paper proposes implicit-storing to extend the logical capacity of a memory array without increasing its physical capacity by leveraging the array's error-correction-codes to infer the implicitly stored bits. Implicit-storing is related to error-code-tagging, a technique that distinguishes between faults in data and invariant attributes of a location when the attributes are not stored in the memory array but are encoded in the error-correction-codes. Both error-code-tagging and implicit-storing cause a code-strength reduction due to their encoding of additional information in the code meant to only protect data. Redundant-encoding-of-attributes is introduced to improve the strength of a code by encoding same information in multiple codewords in a cache or memory. We demonstrate how EREA and IREA, two derivatives of redundant-encoding, alleviate the code-strength reduction experienced by error-code-tagging and implicit-storing respectively. Implementing the proposed methods requires minor modifications in the encoding and decoding logic of the baseline error-correction scheme used in this work. The paper discusses several uses of the proposed schemes to help demonstrate their usefulness.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Calculation of the Kullback-Leibler distance between point process models.
Sensor network security: a survey Wireless sensor networks (WSNs) use small nodes with constrained capabilities to sense, collect, and disseminate information in many types of applications. As sensor networks become wide-spread, security issues become a central concern, especially in mission-critical tasks. In this paper, we identify the threats and vulnerabilities to WSNs and summarize the defense methods based on the networking protocol layer analysis first. Then we give a holistic overview of security issues. These issues are divided into seven categories: cryptography, key management, attack detections and preventions, secure routing, secure location security, secure data fusion, and other security issues. Along the way we analyze the advantages and disadvantages of current secure schemes in each category. In addition, we also summarize the techniques and methods used in these categories, and point out the open research issues and directions in each area.
Collaborative Spectrum Sensing in Cognitive Radio Vehicular Ad Hoc Networks: Belief Propagation on Highway Cognitive radio technique is applied to Vehicular Ad hoc Networks (VANET) to increase frequency bandwidth. Spectrum sensing for opportunistic spectrum access is carried out collaboratively among neighboring vehicles. For the collaborative spectrum sensing, Belief Propagation (BP) is applied to tackle the distributed observations and to exploit redundancies in both space and time. The corresponding performance is analyzed for a three-vehicle case and is demonstrated using numerical simulations.
A Statistical Modeling Approach to Location Estimation Some location estimation methods, such as the GPS satellite navigation system, require nonstandard features either in the mobile terminal or the network. Solutions based on generic technologies not intended for location estimation purposes, such as the cell-ID method in GSM/GPRS cellular networks, are usually problematic due to their inadequate location estimation accuracy. In order to enable accurate location estimation when only inaccurate measurements are available, we present an approach to location estimation that is different from the prevailing geometric one. We call our approach the statistical modeling approach. As an example application of the proposed statistical modeling framework, we present a location estimation method based on a statistical signal power model. We also present encouraging empirical results from simulated experiments supported by real-world field tests.
Modeling primary user emulation attacks and defenses in cognitive radio networks Primary user emulation attacks are a potential security threat to cognitive radio networks. In this work, we attempt to characterize an advanced primary user emulation attack and an advanced countermeasure against such an attack. Specifically, we show that both the attacker and the defender can apply estimation techniques and learning methods to obtain the key information of the environment and thus design better strategies. We further demonstrate that the advanced attack strategy can defeat the naive defense technique that focuses only on the received signal power, whereas the advanced defense strategy that exploits the invariant of communication channels can counteract the advanced attack effectively.
The nature of statistical learning theory~. First Page of the Article
TCP Nice: a mechanism for background transfers Many distributed applications can make use of large background transfers--transfers of data that humans are not waiting for--to improve availability, reliability, latency or consistency. However, given the rapid fluctuations of available network bandwidth and changing resource costs due to technology trends, hand tuning the aggressiveness of background transfers risks (1) complicating applications, (2) being too aggressive and interfering with other applications, and (3) being too timid and not gaining the benefits of background transfers. Our goal is for the operating system to manage network resources in order to provide a simple abstraction of near zero-cost background transfers. Our system, TCP Nice, can provably bound the interference inflicted by background flows on foreground flows in a restricted network model. And our microbenchmarks and case study applications suggest that in practice it interferes little with foreground flows, reaps a large fraction of spare network bandwidth, and simplifies application construction and deployment. For example, in our prefetching case study application, aggressive prefetching improves demand performance by a factor of three when Nice manages resources; but the same prefetching hurts demand performance by a factor of six under standard network congestion control.
LIBSVM: A library for support vector machines LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Expressiveness and tractability in knowledge representation and reasoning
Serverless network file systems We propose a new paradigm for network file system design: serverless network file systems. While traditional network file systems rely on a central server machine, a serverless system utilizes workstations cooperating as peers to provide all file system services. Any machine in the system can store, cache, or control any block of data. Our approach uses this location independence, in combination with fast local area networks, to provide better performance and scalability than traditional file systems. Furthermore, because any machine in the system can assume the responsibilities of a failed component, our serverless design also provides high availability via redundatn data storage. To demonstrate our approach, we have implemented a prototype serverless network file system called xFS. Preliminary performance measurements suggest that our architecture achieves its goal of scalability. For instance, in a 32-node xFS system with 32 active clients, each client receives nearly as much read or write throughput as it would see if it were the only active client.
Multi-threading and remote latency in software DSMs This paper evaluates the use of per-node multi-threading to hide remote memory and synchronization latencies in a software DSM. As with hardware systems, multi-threading in software systems can be used to reduce the costs of remote requests by switching threads when the current thread blocks. We added multi-threading to the CVM software DSM and evaluated its impact on performance for a suite of common shared memory programs. Multi-threading resulted in speed improvements of at least 17% in three of the seven applications in our suite, and lesser improvements in the other applications. However, we found that: good performance is not always achievable transparently for non-trivial applications; multi-threading can negatively interact with DSM operations; multi-threading decreases cache and TLB locality; and any multi-threading speedup is dependent on available work.
Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription. We investigate the problem of modeling symbolic sequences of polyphonic music in a completely general piano-roll representation. We introduce a probabilistic model based on distribution estimators conditioned on a recurrent neural network that is able to discover temporal dependencies in high-dimensional sequences. Our approach outperforms many traditional models of polyphonic music on a variety of realistic datasets. We show how our musical language model can serve as a symbolic prior to improve the accuracy of polyphonic transcription.
Wsben: A Web Services Discovery And Composition Benchmark Toolkit In this article, a novel benchmark toolkit, WSBen, for testing web services discovery and composition algorithms is presented. The WSBen includes: (1) a collection of synthetically generated web services files in WSDL format with diverse data and model characteristics; (2) queries for testing discovery and composition algorithms; (3) auxiliary files to do statistical analysis on the WSDL test sets; (4) converted WSDL test sets that conventional AI planners can read; and (5) a graphical interface to control all these behaviors. Users can fine-tune the generated WSDL test files by varying underlying network models. To illustrate the application of the WSBen, in addition, we present case studies from three domains: (1) web service composition; (2) AI planning; and (3) the laws of networks in Physics community. It is our hope that WSBen will provide useful insights in evaluating the performance of web services discovery and composition algorithms. The WSBen toolkit is available at: http://pike.psu.edu/sw/wsben/.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.204331
0.204331
0.204331
0.068805
0.02919
0
0
0
0
0
0
0
0
0
Geographically Distributed System for Catastrophic Recovery This paper presents the results of a proof-of-concept implementation of an on-going project to create a cost effective method to provide geographic distribution of critical portions of a data center along with methods to make the transition to these backup services quick and accurate. The project emphasizes data integrity over timeliness and prioritizes services to be offered at the remote site. The paper explores the tradeoff of using some common clustering techniques to distribute a backup system over a significant geographical area by relaxing the timing requirements of the cluster technologies at a cost of fidelity.The trade-off is that the fail-over node is not suitable for high availability use as some loss of data is expected and fail-over time is measured in minutes not in seconds. Asynchronous mirroring, exploitation of file commonality in file updates, IP Quality of Service and network efficiency mechanisms are enabling technologies used to provide a low bandwidth solution for the communications requirements. Exploitation of file commonality in file updates decreases the overall communications requirement. IP Quality of Service mechanisms are used to guarantee a minimum available bandwidth to ensure successful data updates. Traffic shaping in conjunction with asynchronous mirroring is used to provide an efficient use of network bandwidth.Traffic shaping allows a maximum bandwidth to be set minimizing the impact on the existing infrastructure and provides a lower requirement for a service level agreement if shared media is used. The resulting disaster recovery site, allows off-line verification of disaster recovery procedures and quick recovery times of critical data center services that is more cost effective than a transactionally aware replication of the data center and more comprehensive than a commercial data replication solution used exclusively for data vaulting. The paper concludes with a discussion of the empirical results of a proof-of-concept implementation.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Precise Positioning of Nonsmooth Dynamic Systems Using Fuzzy Wavelet Echo State Networks and Dynamic Surface Sliding Mode Control. This paper presents a precise positioning robust hybrid intelligent control scheme based on the effective compensation of nonsmooth nonlinearities, such as friction, deadzone, and uncertainty in a dynamic system. A new adaptive fuzzy wavelet echo state network algorithm is proposed to improve performance in terms of approximating unknown uncertainties in conventional neural network algorithms. A s...
Adaptive Neural Control of a Hypersonic Vehicle in Discrete Time The article investigates the discrete-time controller for the longitudinal dynamics of the hypersonic flight vehicle with throttle setting constraint. Based on functional decomposition, the dynamics can be decomposed into the altitude subsystem and the velocity subsystem. Furthermore, the discrete model could be derived using the Euler expansion. For the velocity subsystem, the controller is proposed by estimating the system uncertainty and unknown control gain separately with neural networks. The auxiliary error signal is designed to compensate the effect of throttle setting constraint. For the altitude subsystem, the desired control input is approximated by neural network while the error feedback is synthesized for the design. The singularity problem is avoided. Stability analysis proves that the errors of all the signals in the system are uniformly ultimately bounded. Simulation results show the effectiveness of the proposed controller.
Adaptive fuzzy control of a class of SISO nonaffine nonlinear systems This paper presents a direct adaptive fuzzy control scheme for a class of uncertain continuous-time single-input single-output (SISO) nonaffine nonlinear dynamic systems. Based on the implicit function theory, the existence of an ideal controller, that can achieve control objectives, is firstly shown. Since the implicit function theory guarantees only the existence of the ideal controller and does not provide a way for constructing it, a fuzzy system is employed to approximate this unknown ideal control law. The adjustable parameters in the used fuzzy system are updated using a gradient descent adaptation algorithm. This algorithm is designed in order to minimize a quadratic cost function of the error between the unknown ideal implicit controller and the used fuzzy control law. The stability analysis of the closed-loop system is performed using a Lyapunov approach. In particular, it is shown that the tracking error converges to a neighborhood of zero. The effectiveness of the proposed adaptive control scheme is demonstrated through the simulation of a simple nonaffine nonlinear system.
Command Filter Based Robust Nonlinear Control of Hypersonic Aircraft with Magnitude Constraints on States and Actuators The command filter based robust nonlinear controller is designed for the longitudinal dynamics of a generic hypersonic aircraft in presence of parametric model uncertainty and magnitude constraints on the states and actuators. The functional subsystems are transformed into the linearly parameterized form and the controller is proposed based on dynamic inversion and adaptive gain. Since the dynamics are with cascade structure, the states are considered as virtual control and the signal is filtered to produce the limited command signal and its derivative. To eliminate the effect of the constraint, the auxiliary error compensation design is employed and the parameter projection estimation is proposed based on the compensated tracking error. The uniformly ultimately boundedness is guaranteed for the closed-loop control system. Simulation results show that the proposed approach achieves good tracking performance.
Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems. An adaptive neural network tracking control is studied for a class of multiple-input multiple-output (MIMO) nonlinear systems. The studied systems are in discrete-time form and the discretized dead-zone inputs are considered. In addition, the studied MIMO systems are composed of N subsystems, and each subsystem contains unknown functions and external disturbance. Due to the complicated framework of the discrete-time systems, the existence of the dead zone and the noncausal problem in discrete-time, it brings about difficulties for controlling such a class of systems. To overcome the noncausal problem, by defining the coordinate transformations, the studied systems are transformed into a special form, which is suitable for the backstepping design. The radial basis functions NNs are utilized to approximate the unknown functions of the systems. The adaptation laws and the controllers are designed based on the transformed systems. By using the Lyapunov method, it is proved that the closed-loop system is stable in the sense that the semiglobally uniformly ultimately bounded of all the signals and the tracking errors converge to a bounded compact set. The simulation examples and the comparisons with previous approaches are provided to illustrate the effectiveness of the proposed control algorithm.
Observer-Based Adaptive Fuzzy Backstepping Dynamic Surface Control for a Class of MIMO Nonlinear Systems. In this paper, an adaptive fuzzy backstepping dynamic surface control (DSC) approach is developed for a class of multiple-input-multiple-output nonlinear systems with immeasurable states. Using fuzzy-logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed to estimate the immeasurable states. By combining adaptive-backstepping technique and DSC technique, an adaptive fuzzy output-feedback backstepping-control approach is developed. The proposed control method not only overcomes the problem of "explosion of complexity" inherent in the backstepping-design methods but also overcomes the problem of unavailable state measurements. It is proved that all the signals of the closed-loop adaptive-control system are semiglobally uniformly ultimately bounded, and the tracking errors converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approach.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
An Efficient Unification Algorithm
Tree clustering for constraint networks The paper offers a systematic way of regrouping constraints into hierarchical structures capable of supporting search without backtracking. The method involves the formation and preprocessing of an acyclic database that permits a large variety of queries and local perturbations to be processed swiftly, either by sequential backtrack-free procedures, or by distributed constraint propagation processes.
Bootstrapping with Noise: An Effective Regularization Technique Abstract: Bootstrap samples with noise are shown to be an effective smoothness and capacity controltechnique for training feed-forward networks and for other statistical methods such as generalizedadditive models. It is shown that noisy bootstrap performs best in conjunction with weight decayregularization and ensemble averaging. The two-spiral problem, a highly non-linear noise-freedata, is used to demonstrate these findings. The combination of noisy bootstrap and ensembleaveraging is also...
Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition We present an unsupervised method for learning a hi- erarchy of sparse feature detectors that are invariant to small shifts and distortions. The resulting feature extrac - tor consists of multiple convolution filters, followed by a feature-pooling layer that computes the max of each fil- ter output within adjacent windows, and a point-wise sig- moid non-linearity. A second level of larger and more in- variant features is obtained by training the same algorithm on patches of features from the first level. Training a su- pervised classifier on these features yields 0.64% error on MNIST, and 54% average recognition rate on Caltech 101 with 30 training samples per category. While the result- ing architecture is similar to convolutional networks, the layer-wise unsupervised training procedure alleviates th e over-parameterization problems that plague purely super- vised learning procedures, and yields good performance with very few labeled training samples.
Dynamic resource allocation for database servers running on virtual storage As increasing amounts of valuable information are produced and persist digitally, the ability to determine the origin of data becomes important. In science, medicine, commerce, and government, data provenance tracking is essential for rights protection, ...
Destage Algorithms for Disk Arrays with Nonvolatile Caches In a disk array with a nonvolatile write cache, destages from the cache to the disk are performed in the background asynchronously while read requests from the host system are serviced in the foreground. In this paper, we study a number of algorithms for scheduling destages in a RAID-5 system. We introduce a new scheduling algorithm, called linear threshold scheduling, that adaptively varies the rate of destages to disks based on the instantaneous occupancy of the write cache. The performance of the algorithm is compared with that of a number of alternative scheduling approaches, such as least-cost scheduling and high/low mark. The algorithms are evaluated in terms of their effectiveness in making destages transparent to the servicing of read requests from the host, disk utilization, and their ability to tolerate bursts in the workload without causing an overflow of the write cache. Our results show that linear threshold scheduling provides the best read performance of all the algorithms compared, while still maintaining a high degree of burst tolerance. An approximate implementation of the linear-threshold scheduling algorithm is also described. The approximate algorithm can be implemented with much lower overhead, yet its performance is virtually identical to that of the ideal algorithm.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.20832
0.20832
0.20832
0.20832
0.20832
0.069547
0
0
0
0
0
0
0
0
Applicability conditions for plans with loops: Computability results and algorithms The utility of including loops in plans has been long recognized by the planning community. Loops in a plan help increase both its applicability and the compactness of its representation. However, progress in finding such plans has been limited largely due to lack of methods for reasoning about the correctness and safety properties of loops of actions. We present novel algorithms for determining the applicability and progress made by a general class of loops of actions. These methods can be used for directing the search for plans with loops towards greater applicability while guaranteeing termination, as well as in post-processing of computed plans to precisely characterize their applicability. Experimental results demonstrate the efficiency of these algorithms. We also discuss the factors which can make the problem of determining applicability conditions for plans with loops incomputable.
Proof systems for planning under 0-approximation semantics. In this paper we propose Hoare style proof systems called PR D 0 and PRKW D 0 for plan generation and plan verification under 0-approximation semantics of the action language A K . In PR D 0 (resp. PRKW D 0 ), a Hoare triple of the form {X}c{Y} (resp. {X}c{KW p }) means that all literals in Y become true (resp. p becomes known) after executing plan c in a state satisfying all literals in X. The proof systems are shown to be sound and complete, and more importantly, they give a way to efficiently generate and verify longer plans from existing verified shorter plans by applying so-called composition rule, provided that an enough number of shorter plans have been properly stored. The idea behind is a tradeoff between space and time, we refer it to off-line planning and point out that it could be applied to general planning problems.
Proof Systems for Planning Under Cautious Semantics Planning with incomplete knowledge becomes a very active research area since late 1990s. Many logical formalisms introduce sensing actions and conditional plans to address the problem. The action language $$\mathcal{A}_{K}$$ invented by Son and Baral is a well-known framework for this purpose. In this paper, we propose so-called cautious and weakly cautious semantics for $$\mathcal{A}_{K}$$ , in order to allow an agent to generate and execute reliable plans in safety-critical environments. Intuitively speaking, cautious and weakly cautious semantics enable the agent to know exactly what happens after the execution of an action. Computational complexity analysis shows that cautious semantics reduces the reasoning complexity of $$\mathcal{A}_{K}$$ , it is also worth to point out that many useful domains could still be expressed with this setting. Another important contribution of our work is the development of Hoare style proof systems. These proof systems are served as inference mechanisms for the verification of conditional plans, and proved to be sound and complete. In addition, they could also be used for plan generation, in the sense that constructing a derivation is indeed a procedure to finding a plan. We point out that the proof systems posses a nice property for off-line planning, that is, the agent could generate and store short proofs in her spare time, and perform quick plan query by easily constructing a long proof from the stored shorter ones (under the assumption that sufficient proofs are stored).
An Effective QBF Solver for Planning Problems A large number of applications can be represented by quantified Boolean formulas (QBF). Although evaluating QBF is NP-hard and thus very difficult, there has been significant progress in the development of QBF solvers. These solvers require the quantified Boolean formula to be in a standard format. We have encountered a large class of problems whose representation as QBF is not in that standard format. If we apply current state-of-the-art QBF solvers, the required transformation into standard format increases the size of the formula and tends to hide structural properties of the problem class. We suggest a direct attack of the problem. The solution algorithm is based on backtracking search and on a new form of learning clauses. We have tested a first implementation of the algorithm on a class of planning problems. The tests show that the approach is significantly faster than current state-of-the-art QBF solvers.
Computational complexity of planning and approximate planning in the presence of incompleteness In the last several years the computational complexity of classical planning and HTN planning have been studied. But in both cases it is assumed that the planner has complete knowledge about the initial state. Recently, there has been proposal to use 'sensing' actions to plan in presence of incompleteness. In this paper we study the complexity of planning in such cases. In our study we use the action description language A proposed in 1993 by M. Gelfond and V. Lifschitz and its extensions. The language A allows planning in the situations with complete information. It is known that, if we consider only plans of feasible (polynomial) length, the planning problem for such situations is NP-complete: even checking whether a given objective is attainable from a given initial state is NP-complete. In this paper, we show that the planning problem in presence of incompleteness is indeed harder: it belongs to the next level of complexity hierarchy (in precise terms, it is Σ2P-complete). To overcome the complexity of this problem, C. Baral and T. Son have proposed several approximations. We show that under certain conditions, one of these approximations - O-approximation - makes the problem NP-complete (thus indeed reducing its complexity).
The well-founded semantics for general logic programs A general logic program (abbreviated to “program” hereafter) is a set of roles that have both positive and negative subgoals. It is common to view a deductive database as a general logic program consisting of rules (IDB) slttmg above elementary relations (EDB, facts). It is desirable to associate one Herbrand model with a program and think of that model as the “meaning of the program, ” or Its“declarative semantics. ” Ideally, queries directed to the program would be answered in accordance with this model. Recent research indicates that some programs do not have a “satisfactory” total model; for such programs, the question of an appropriate partial model arises. Unfounded sets and well-founded partial models are introduced and the well-founded semantics of a program are defined to be its well-founded partial model. If the well-founded partial model is m fact a total model. it is called the well-founded model. It n shown that the class of programs possessing a total well-founded model properly includes previously studied classes of “stratified” and “locally stratified” programs,The method in this paper is also compared with other proposals in the literature, including Clark’s“program completion, ” Fitting’s and Kunen’s 3-vahred interpretations of it, and the “stable models”of Gelfond and Lifschitz.
Affinity analysis of coded data sets Coded data sets are commonly used as compact representations of real world processes. Such data sets have been studied within various research fields from association mining, data warehousing, knowledge discovery, collaborative filtering to machine learning. However, previous studies on coded data sets have introduced methods for the analysis of rather small data sets. This study proposes applying information retrieval for enabling high performance analysis of data masses that scale beyond traditional approaches. Part of this PHD study focuses on new type of kernel projection functions that can be used to find similarities in spare discrete data spaces. This study presents experimental results how information retrieval indexes scale and outperform two common relational data schemas with a leading commercial DBMS for market basket analysis.
Internet of Things (IoT): A vision, architectural elements, and future directions Ubiquitous sensing enabled by Wireless Sensor Network (WSN) technologies cuts across many areas of modern day living. This offers the ability to measure, infer and understand environmental indicators, from delicate ecologies and natural resources to urban environments. The proliferation of these devices in a communicating-actuating network creates the Internet of Things (IoT), wherein sensors and actuators blend seamlessly with the environment around us, and the information is shared across platforms in order to develop a common operating picture (COP). Fueled by the recent adaptation of a variety of enabling wireless technologies such as RFID tags and embedded sensor and actuator nodes, the IoT has stepped out of its infancy and is the next revolutionary technology in transforming the Internet into a fully integrated Future Internet. As we move from www (static pages web) to web2 (social networking web) to web3 (ubiquitous computing web), the need for data-on-demand using sophisticated intuitive queries increases significantly. This paper presents a Cloud centric vision for worldwide implementation of Internet of Things. The key enabling technologies and application domains that are likely to drive IoT research in the near future are discussed. A Cloud implementation using Aneka, which is based on interaction of private and public Clouds is presented. We conclude our IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.
The complexity of combinatorial problems with succinct input representation Several languages for the succinct representation of the instances of combinatorial problems are investigated. These languages have been introduced in [20, 2] and [5] where it has been shown that describing the instances by these languages causes a blow-up of the complexities of some problems. In the present paper the descriptional power of these languages is compared by estimating the complexities of some combinatorial problems in terms of completeness in suitable classes of the “counting polynomial-time hierarchy” which is introduced here. It turns out that some of the languages are not comparable, unless P=NP Some problems left open in [2] are solved.
Planning as search: a quantitative approach We present the thesis that planning can be viewed as problem-solving search using subgoals, macro-operators, and abstraction as knowledge sources. Our goal is to quantify problem-solving performance using these sources of knowledge. New results include the identification of subgoal distance as a fundamental measure of problem difficulty, a multiplicative time-space tradeoff for macro-operators, and an analysis of abstraction which concludes that abstraction hierarchies can reduce exponential problems to linear complexity.
Representing actions in logic programs and default theories a situation calculus approach We address the problem of representing common sense knowledge about action domains in the formalisms of logic programming and default logic. We employ a methodology proposed by Gelfond and Lifschitz which involves first defining a high-level language for representing knowledge about actions, and then specifying a translation from the high-level action language into a general-purpose formalism, such as logic programming. Accordingly, we define a high-level action languageAE, and specify sound and complete translations of portions ofAEinto logic programming and default logic. The languageAEincludes propositions that represent “static causal laws” of the following kind: a fluent formula ψ can be made true by making a fluent formula true (or, more precisely, ψ is caused whenever is caused). Such propositions are more expressive than the state constraints traditionally used to represent background knowledge. Our translations ofAEdomain descriptions into logic programming and default logic are simple, in part because the noncontrapositive nature of causal laws is easily reflected in such rule-based formalisms.
The Performance Impact of Kernel Prefetching on Buffer Cache Replacement Algorithms A fundamental challenge in improving file system performance is to design effective block replacement algorithms to minimize buffer cache misses. Despite the well-known interactions between prefetching and caching, almost all buffer cache replacement algorithms have been proposed and studied comparatively, without taking into account file system prefetching, which exists in all modern operating systems. This paper shows that such kernel prefetching can have a significant impact on the relative performance in terms of the number of actual disk I/Os of many well-known replacement algorithms; it can not only narrow the performance gap but also change the relative performance benefits of different algorithms. Moreover, since prefetching can increase the number of blocks clustered for each disk I/O and, hence, the time to complete the I/O, the reduction in the number of disk I/Os may not translate into proportional reduction in the total I/O time. These results demonstrate the importance of buffer caching research taking file system prefetching into consideration and comparing the actual disk I/Os and the execution time under different replacement algorithms.
Representing the Process Semantics in the Event Calculus In this paper we shall present a translation of the process semantics [5] to the event calculus. The aim is to realize a method of integrating high-level semantics with logical calculi to reason about continuous change. The general translation rules and the soundness and completeness theorem of the event calculus with respect to the process semantics are main technical results of this paper.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.2
0.2
0.2
0.02
0.002062
0
0
0
0
0
0
0
0
0
Anytime replanning using locality in agent architectures Anytime planners seek to allow the system to exchange execution time for solution quality. We propose a new anytime planner which will devise new plans to accommodate plan failures. The first new plans to be considered will be relatively local to the plan that failed. Further new plans will be less and less local. We intend the concept of locality to relate the search space to be explored for a new plan to the degree to which a new plan disrupts the not-as-yet executed part of the running plan
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Symbolic reachability analysis for parameterized administrative role-based access control Role-based access control (RBAC) is a widely used access control paradigm. In large organizations, the RBAC policy is managed by multiple administrators. An administrative role-based access control (ARBAC) policy specifies how each administrator may change the RBAC policy. It is often difficult to fully understand the effect of an ARBAC policy by simple inspection, because sequences of changes by different administrators may interact in unexpected ways. ARBAC policy analysis algorithms can help by answering questions, such as user-role reachability, which asks whether a given user can be assigned to given roles by given administrators. Allowing roles and permissions to have parameters significantly enhances the scalability, flexibility, and expressiveness of ARBAC policies. This paper defines PARBAC, which extends the classic ARBAC97 model to support parameters, proves that user-role reachability analysis for PARBAC is undecidable when parameters may range over infinite types, and presents a semi-decision procedure for reachability analysis of PARBAC. To the best of our knowledge, this is the first analysis algorithm specifically for parameterized ARBAC policies. We evaluate its efficiency by analyzing its parameterized complexity and benchmarking it on case studies and synthetic policies. We also experimentally evaluate the effectiveness of several optimizations.
Specification and Analysis of Dynamic Authorisation Policies This paper presents a language, based on transaction logic, for specifying dynamic authorisation policies, i.e., rules governing actions that may depend on and update the authorisation state. The language is more expressive than previous dynamic authorisation languages, featuring conditional bulk insertions and retractions of authorisation facts, non-monotonic negation, and nested action definitions with transactional execution semantics. Two complementary policy analysis methods are also presented, one based on AI planning for verifying reachability properties in finite domains, and the second based on automated theorem proving, for checking policy invariants that hold for all sequences of actions and in arbitrary, including infinite, domains. The combination of both methods can analyse a wide range of security properties, including safety, availability and containment.
Policy Analysis for Administrative Role Based Access Control Role-Based Access Control (RBAC) is a widely used model for expressing access control policies. In large organizations, the RBAC policy may be collectively managed by many administrators. Administrative RBAC (ARBAC) is a model for expressing the authority of administrators, thereby specifying how an organization's RBAC policy may change. Changes by one administrator may interact in unintended ways with changes by other administrators. Consequently, the effect of an ARBAC policy is hard to understand by simple inspection. In this paper, we consider the problem of analyzing ARBAC policies, in particular to determine reachability properties (e.g., whether a user can eventually be assigned to a role by a group of administrators) and availability properties (e.g., whether a user cannot be removed from a role by a group of administrators) implied by a policy. We first establish the connection between security policy analysis and planning in Artificial Intelligence. Based partly on this connection, we show that reachability analysis for ARBAC is PSPACE-complete. We also give algorithms and complexity results for reachability and related analysis problems for several categories of ARBAC policies, defined by simple restrictions on the policy language.
Relationships between nondeterministic and deterministic tape complexities The amount of storage needed to simulate a nondeterministic tape bounded Turingmachine on a deterministic Turing machine is investigated. Results include the following: Theorem. A nondeterministic L(n)-tape bounded Turing machine can be simulated by a deterministic [L(n)]^2-tape bounded Turing machine, provided L(n)=log"2n. Computations of nondeterministic machines are shown to correspond to threadings of certain mazes. This correspondence is used to produce a specific set, namely the set of all codings of threadable mazes, such that, if there is any set which distinguishes nondeterministic tape complexity classes from deterministic tape complexity classes, then this is one such set.
Recent Advances in AI Planning The past five years have seen dramatic advances in planning algorithms, with an emphasis on propositional methods such as Graphplan and compilers that convert planning problems into propositional CNF formulae for solution via systematic or stochastic SAT methods. Related work on the Deep Space One spacecraft control algorithms advances our understanding of interleaved planning and execution. In this survey,we explain the latest techniques and suggest areas for future research.
Refinement Planning as a Unifying Framework for Plan Synthesis
Planning in a hierarchy of abstraction spaces Additive AND/OR graphs are defined as AND/ OR graphs without circuits, which can be considered as folded AND/OR trees; i. e. the cost of a common subproblem is added to the cost as many times as the subproblem occurs, but it is computed only once. Additive ...
Where the really hard problems are It is well known that for many NP-complete problems, such as K-Sat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P = NP). This paper shows that NP-complete problems can be summarized by at least one "order parameter", and that the hard problems occur at a critical value of such a parameter. This critical value separates two regions of characteristically different properties. For example, for K-colorability, the critical value separates overconstrained from underconstrained random graphs, and it marks the value at which the probability of a solution changes abruptly from near 0 to near 1. It is the high density of well-separated almost solutions (local minima) at this boundary that cause search algorithms to "thrash". This boundary is a type of phase transition and we show that it is preserved under mappings between problems. We show that for some P problems either there is no phase transition or it occurs for bounded N (and so bounds the cost). These results suggest a way of deciding if a problem is in P or NP and why they are different.
The frame problem and knowledge-producing actions This paper proposes a solution to the frame problem for knowledge-producing actions. An example of a knowledge-producing action is a sense operation performed by a robot to determine whether or not there is an object of a particular shape within its grasp. The work is an extension of Reiter's solution to the frame problem for ordinary actions and Moore's work on knowledge and action. The properties of our specification are that knowledge-producing actions do not affect fluents other than the knowledge fluent, and actions that are not knowledge-producing only affect the knowledge fluent as appropriate. In addition, memory emerges as a side-effect: if something is known in a certain situation, it remains known at successor situations, unless something relevant has changed. Also, it will be shown that a form of regression examined by Reiter for reducing reasoning about future situations to reasoning about the initial situation now also applies to knowledge-producing actions.
Generalization by weight-elimination with application to forecasting Inspired by the information theoretic idea of minimum description length, we add a term to the back propagation cost function that penalizes network complexity. We give the details of the procedure, called weight-elimination, describe its dynamics, and clarify the meaning of the parameters involved. From a Bayesian perspective, the complexity term can be usefully interpreted as an assumption about prior distribution of the weights. We use this procedure to predict the sunspot time series and the notoriously noisy series of currency exchange rates.
Facets of the knapsack polytope Abstract A necessary and sufficient condition is given for an inequality with coefficients 0 or 1 to define a facet of the knapsack polytope, i.e., of the convex hull of 0–1 points satisfying a given linear inequality. A sufficient condition is also established for a larger class of inequalities (with coefficients not restricted to 0 and 1) to define a facet for the same polytope, and a procedure is given for generating all facets in the above two classes. The procedure can be viewed as a way of generating cutting planes for 0–1 programs.
Higher order contractive auto-encoder We propose a novel regularizer when training an autoencoder for unsupervised feature extraction. We explicitly encourage the latent representation to contract the input space by regularizing the norm of the Jacobian (analytically) and the Hessian (stochastically) of the encoder's output with respect to its input, at the training points. While the penalty on the Jacobian's norm ensures robustness to tiny corruption of samples in the input space, constraining the norm of the Hessian extends this robustness when moving further away from the sample. From a manifold learning perspective, balancing this regularization with the auto-encoder's reconstruction objective yields a representation that varies most when moving along the data manifold in input space, and is most insensitive in directions orthogonal to the manifold. The second order regularization, using the Hessian, penalizes curvature, and thus favors smooth manifold. We show that our proposed technique, while remaining computationally efficient, yields representations that are significantly better suited for initializing deep architectures than previously proposed approaches, beating state-of-the-art performance on a number of datasets.
Representing the Process Semantics in the Event Calculus In this paper we shall present a translation of the process semantics [5] to the event calculus. The aim is to realize a method of integrating high-level semantics with logical calculi to reason about continuous change. The general translation rules and the soundness and completeness theorem of the event calculus with respect to the process semantics are main technical results of this paper.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.105262
0.110525
0.056813
0.004547
0.000692
0.000034
0.00001
0.000002
0
0
0
0
0
0
An Adaptive High-Low Water Mark Destage Algorithm for Cached RAID5 The High-Low Water Mark destage (HLWM) algorithmis widely used to enable a cached RAID5to flush dirty datafrom its write cache to disks. It activates and deactivates adestaging process based on two time-invariant thresholdswhich are determined by cache occupancy levels. However, the opportunity exists to improve I/O throughput byadaptively changing the thresholds. This paper proposesan adaptive HLWM algorithm which dynamically changesits thresholds according to a varying I/O workload. Twothresholds are defined as the multiplication of changingrates of the cache occupancy level and the time requiredto fill and empty the cache. Performance evaluations with acached RAID5 simulator reveal that the proposed algorithmoutperforms the HLWM algorithm in terms of read responsetime, write cache hit ratio, and disk utilization.
Volume Managers in Linux A volume manager is a subsystem for online disk storage management which has become a de-facto standard across UNIX implementations and is a serious enabler for Linux in the enterprise computing area. It adds an additional layer between the physical peripherals and the I/O interface in the kernel to present a logical view of disks, unlike current partition schemes where disks are divided into fixed-size sections.In addition to providing a logical level of management, a volume manager will often implement one or more levels of software RAID to improve performance or reliability. Advanced logical management tools and software RAID axe the specialties of the Logical Volume Manager (LVM) and Multiple. Devices (MD) drivers respectively. These are the two most widely used Linux volume managers today.This paper describes the current technologies available in Linux and new work in the area of volume management.
File system aging—increasing the relevance of file system benchmarks Benchmarks are important because they provide a means for users and researchers to characterize how their workloads will perform on different systems and different system architectures. The field of file system design is no different from other areas of research in this regard, and a variety of file system benchmarks are in use, representing a wide range of the different user workloads that may be run on a file system. A realistic benchmark, however, is only one of the tools that is required in order to understand how a file system design will perform in the real world. The benchmark must also be executed on a realistic file system. While the simplest approach may be to measure the performance of an empty file system, this represents a state that is seldom encountered by real users. In order to study file systems in more representative conditions, we present a methodology for aging a test file system by replaying a workload similar to that experienced by a real file system over a period of many months, or even years. Our aging tools allow the same aging workload to be applied to multiple versions of the same file system, allowing scientific evaluation of the relative merits of competing file system designs.In addition to describing our aging tools, we demonstrate their use by applying them to evaluate two enhancements to the file layout policies of the UNIX fast file system.
Reliability and performance of hierarchical RAID with multiple controllers Redundant arrays of inexpensive disks (RAID) offer fault tolerance against disk failures. However a storage system having more disks suffers from less reliability and performance. A RAID architecture tolerating multiple disk failures shows severe performance degradation in comparison to the RAID Level 5 due to the complexity of implementation. We present a new RAID architecture that tolerates at least three disk failures and offers similar throughout to the RAID Level 5. We call it the hierarchical RAID, which is hierarchically composed of RAID Levels. Furthermore, we formally introduce the mean-time-to-data-loss (MTTDL) of traditional RAID and the hierarchical RAID using Markov process for detailed comparison.
Anticipatory scheduling: a disk scheduling framework to overcome deceptive idleness in synchronous I/O Disk schedulers in current operating systems are generally work-conserving, i.e., they schedule a request as soon as the previous request has finished. Such schedulers often require multiple outstanding requests from each process to meet system-level goals of performance and quality of service. Unfortunately, many common applications issue disk read requests in a synchronous manner, interspersing successive requests with short periods of computation. The scheduler chooses the next request too early; this induces deceptive idleness, a condition where the scheduler incorrectly assumes that the last request issuing process has no further requests, and becomes forced to switch to a request from another process.We propose the anticipatory disk scheduling framework to solve this problem in a simple, general and transparent way, based on the non-work-conserving scheduling discipline. Our FreeBSD implementation is observed to yield large benefits on a range of microbenchmarks and real workloads. The Apache webserver delivers between 29% and 71% more throughput on a disk-intensive workload. The Andrew filesystem benchmark runs faster by 8%, due to a speedup of 54% in its read-intensive phase. Variants of the TPC-B database benchmark exhibit improvements between 2% and 60%. Proportional-share schedulers are seen to achieve their contracts accurately and efficiently.
SARC: sequential prefetching in adaptive replacement cache Sequentiality of reference is an ubiquitous access pattern dating back at least to Multics. Sequential workloads lend themselves to highly accurate prediction and prefetching. In spite of the simplicity of the workload, design and analysis of a good sequential prefetching algorithm and associated cache replacement policy turns out to be surprisingly intricate. As first contribution, we uncover and remedy an anomaly (akin to famous Belady's anomaly) that plagues sequential prefetching when integrated with caching. Typical workloads contain a mix of sequential and random streams. As second contribution, we design a self-tuning, low overhead, simple to implement, locally adaptive, novel cache management policy SARC that dynamically and adaptively partitions the cache space amongst sequential and random streams so as to reduce the read misses. As third contribution, we implemented SARC along with two popular state-of-the-art LRU variants on hardware for IBM's flagship storage controller Shark. On Shark hardware with 8 GB cache and 16 RAID-5 arrays that is serving a workload akin to Storage Performance Council's widely adopted SPC-1 benchmark, SARC consistently and dramatically outperforms the two LRU variants shifting the throughput-response time curve to the right and thus fundamentally increasing the capacity of the system. As anecdotal evidence, at the peak throughput, SARC has average response time of 5.18ms as compared to 33.35ms and 8.92ms for the two LRU variants.
Matrix-Stripe-Cache-Based Contiguity Transform for Fragmented Writes in RAID-5 Given that contiguous reads and writes between a cache and a disk outperform fragmented reads and writes, fragmented reads and writes are forcefully transformed into contiguous reads and writes via a proposed matrix-stripe-cache-based contiguity transform (MSC-CT) method which employs a rule of consistency for data integrity at the block level and a rule of performance that ensures no performance degradation. MSC-CT performs for reads and writes, both of which are produced by write requests from a host as a write request from a host employs reads for parity update and writes to disks in a redundant array of independent disks (RAID)-5. MSC-CT is compatible with existing disk technologies. The proposed implementation in a Linux kernel delivers a peak throughput that is 3.2 times higher than a case without MSC-CT on representative workloads. The results demonstrate that MSC-CT is extremely simple to implement, has low overhead, and is ideally suited for RAID controllers not only for random writes but also for sequential writes in various realistic scenarios.
The Multics Input/Output system An I/0 system has been implemented in the Multics system that facilitates dynamic switching of I/0 devices. This switching is accomplished by providing a general interface for all I/O devices that allows all equivalent operations on different devices to be expressed in the same way. Also particular devices are referenced by symbolic names and the binding of names to devices can be dynamically modified. Available I/0 operations range from a set of basic I/0 calls that require almost no knowledge of the I/O System or the I/0 device being used to fully general calls that permit one to take full advantage of all features of an I/O device but require considerable knowledge of the I/0 System and the device. The I/O System is described and some popular applications of it, illustrating these features, are presented.
An Adaptive Block Management Scheme Using On-Line Detection Of Block Reference Patterns Recent research has shown that near optimal performance can be achieved by adaptive block replacement policies that use user-level hints regarding the block reference pattern. However obtaining user-level hints requires considerable effort from users making it difficult to apply adaptive replacement policies to diverse kinds of applications. We propose a new adaptive black management scheme that we call DEAR (DEtection based Adaptive Replacement) which makes on-line detections of block reference patterns of applications using Decision Trees without user intervention. Based on the detected reference pattern, DEAR applies an appropriate replacement policy to each application. This scheme is suitable for buffer management in systems such as multimedia servers where data reference patterns of applications may be diverse. Results from trace driven simulations show that the DEAR scheme can detect the reference patterns of applications and reduce the miss ratio lip to 15 percentage points compared to the LRU policy.
BPLRU: a buffer management scheme for improving random writes in flash storage Flash memory has become the most important storage media in mobile devices, and is beginning to replace hard disks in desktop systems. However, its relatively poor random write performance may cause problems in the desktop environment, which has much more complicated requirements than mobile devices. While a RAM buffer has been quite successful in hard disks to mask the low efficiency of random writes, managing such a buffer to fully exploit the characteristics of flash storage has still not been resolved. In this paper, we propose a new write buffer management scheme called Block Padding Least Recently Used, which significantly improves the random write performance of flash storage. We evaluate the scheme using trace-driven simulations and experiments with a prototype implementation. It shows about 44% enhanced performance for the workload of MS Office 2003 installation.
Storage systems for movies-on-demand video servers We evaluate storage system alternatives for movies-on-demand video servers. We begin by characterizing the movies-on-demand workload. We briefly discuss performance in disk arrays. First, we study disk farms in which one movie is stored per disk. This is a simple scheme, but it wastes substantial disk bandwidth, because disks holding less popular movies are underutilized; also, good performance requires that movies be replicated to reflect the user request pattern. Next, we examine disk farms in which movies are striped across disks, and find that striped video servers offer nearly full utilization of the disks by achieving better load balancing. For the remainder of the paper, we concentrate on tertiary storage systems. We evaluate the use of storage hierarchies for video service. These hierarchies include a tertiary library along with a disk farm. We examine both magnetic tape libraries and optical disk jukeboxes. We show that, unfortunately, the performance of neither tertiary system performs adequately as part of a storage hierarchy to service the predicted distribution of movie accesses. We suggest changes to tertiary libraries that would make them better-suited to these applications.
Probabilistic Planning with Information Gathering and Contingent Execution Most AI representations and algorithms for plan generationhave not included the concept of informationproducingactions (also called diagnostics, or tests,in the decision making literature). We present aplanning representation and algorithm that modelsinformation-producing actions and constructs plansthat exploit the information produced by those actions.We extend the buridan (Kushmerick et al.1994) probabilistic planning algorithm, adapting theaction representation to model the...
A multi-task learning formulation for predicting disease progression Alzheimer's Disease (AD), the most common type of dementia, is a severe neurodegenerative disorder. Identifying markers that can track the progress of the disease has recently received increasing attentions in AD research. A definitive diagnosis of AD requires autopsy confirmation, thus many clinical/cognitive measures including Mini Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale cognitive subscale (ADAS-Cog) have been designed to evaluate the cognitive status of the patients and used as important criteria for clinical diagnosis of probable AD. In this paper, we propose a multi-task learning formulation for predicting the disease progression measured by the cognitive scores and selecting markers predictive of the progression. Specifically, we formulate the prediction problem as a multi-task regression problem by considering the prediction at each time point as a task. We capture the intrinsic relatedness among different tasks by a temporal group Lasso regularizer. The regularizer consists of two components including an L2,1-norm penalty on the regression weight vectors, which ensures that a small subset of features will be selected for the regression models at all time points, and a temporal smoothness term which ensures a small deviation between two regression models at successive time points. We have performed extensive evaluations using various types of data at the baseline from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database for predicting the future MMSE and ADAS-Cog scores. Our experimental studies demonstrate the effectiveness of the proposed algorithm for capturing the progression trend and the cross-sectional group differences of AD severity. Results also show that most markers selected by the proposed algorithm are consistent with findings from existing cross-sectional studies.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.061329
0.02543
0.022293
0.014941
0.010297
0.004676
0.000841
0.0002
0.000094
0.000026
0
0
0
0
On the Completeness of Approximation Based Reasoning and Planning in Action Theories with Incomplete Information In this paper, we study the completeness of the 0- approximation for action theories with incomplete informa- tion. We propose a sufficient condition for which an action theory under the 0-approximation semantics is complete with respect to the possible world semantics. We then introduce the notion of decisive sets of fluents, based on which an ac- tion theory can be modified into another action theory such that the modified action theory under the 0-approximation is complete with respect to the original theory. We present a polynomial time algorithm for computing decisive sets for action theories and use it in the development of a sound and complete conformant planner. Finally, we compare our plan- ner with other state-of-the-art conformant planners.
Some Results on the Completeness of Approximation Based Reasoning We present two results that relate the completeness condi- tions for the 0-approximation for two formalisms: the action description language A and the situation calculus. The first result indicates that the completeness condition for the situa- tion calculus formalism implies the corresponding condition for the action language formalism. The second result indi- cates that an action theory in A can sometimes be simplified to an equivalent action theory whose completeness condition is weaker than the original theory for certain queries.
Improving Performance of Conformant Planners: Static Analysis of Declarative Planning Domain Specifications The paper presents novel techniques to process planning problem specifications, expressed in a declarative description language, which enables the description of planning problems with incomplete knowledge. The outcome is improved performance and scalability of conformant planners. The paper proposes two transformations of a planning problem specification, aimed at reducing the size of the initial belief state and the number of actions to be dealt with. The two transformations have been implemented in a static analyzer and in a companion heuristic search conformant planner (CpA +). The performance of the resulting system is compared with other state-of-the-art conformant planners.
Conformant planning for domains with constraints: a new approach The paper presents a pair of new conformant planners, CPApc and CPAph, based on recent developments in theory of action and change. As an input the planners take a domain description D in action language AL which allows state constraints (non-stratified axioms), together with a set of CNF formulae describing the initial state, and a set of literals representing the goal. We propose two approximations of the transition diagram T defined by D. Both approximations are deterministic transition functions and can be computed efficiently. Moreover they are sound (and sometimes complete) with respect to T. In its search for a plan, an approximation based planner analyses paths of an approximation instead of that of T. CPApc and CPAph are forward, best first search planners based on this idea. We compare them with two state-of-the-art conformant planners, KACMBP and Conformant-FF (CFF), over benchmarks in the literature, and over two new domains. One has large number of state constraints and another has a high degree of incompleteness. Our planners perform reasonably well in benchmark domains and outperform KACMBP and CFF in the first domain while still working well with the second one. Our experimental result shows that having an integral part of a conformant planner to deal with state constraints directly can significantly improve its performance extending a similar claim for classical planners in (Thiebaux. Hoffmann, & Nebel 2003).
Effective Heuristics and Belief Tracking for Planning with Incomplete Information.
Complexity of Planning with Partial Observability We show that for conditional planning with partial observ- ability the existence problem of plans with success proba- bility 1 is 2-EXP-complete. This result completes the com- plexity picture for non-probabilistic propositional planning. We also give new more direct and informative proofs for the EXP-hardness of conditional planning with full observability and the EXPSPACE-hardness of conditional planning with- out observability. The proofs demonstrate how lack of full observability allows the encoding of exponential space Tur- ing machines in the planning problem, and how the neces- sity to have branching in plans corresponds to the move to a complexity class defined in terms of alternation from the cor- responding deterministic complexity class. Lack of full ob- servability necessitates the use of beliefs states, the number of which is exponential in the number of states, and alternation corresponds to the choices a branching plan can make.
SAT-based planning in complex domains: concurrency, constraints and nondeterminism Planning as satisfiability is a very efficient technique for classical planning, i.e., for planning domains in which both the effects of actions and the initial state are completely specified. In this paper we present C-SAT, a SAT-based procedure capable of dealing with planning domains having incomplete information about the initial state, and whose underlying transition system is specified using the highly expressive action language C. Thus, C-SAT allows for planning in domains involving (i) actions which can be executed concurrently; (ii) (ramification and qualification) constraints affecting the effects of actions; and (iii) nondeterminism in the initial state and in the effects of actions. We first prove the correctness and the completeness of C-SAT, discuss some optimizations, and then we present C-PLAN, a system based on C-SAT. C-PLAN works on any C planning problem, but some optimizations have not been fully implemented yet. Nevertheless, the experimental analysis shows that SAT-based approaches to planning with incomplete information are viable, at least in the case of problems with a high degree of parallelism.
Representing actions in logic programs and default theories a situation calculus approach We address the problem of representing common sense knowledge about action domains in the formalisms of logic programming and default logic. We employ a methodology proposed by Gelfond and Lifschitz which involves first defining a high-level language for representing knowledge about actions, and then specifying a translation from the high-level action language into a general-purpose formalism, such as logic programming. Accordingly, we define a high-level action languageAE, and specify sound and complete translations of portions ofAEinto logic programming and default logic. The languageAEincludes propositions that represent “static causal laws” of the following kind: a fluent formula ψ can be made true by making a fluent formula true (or, more precisely, ψ is caused whenever is caused). Such propositions are more expressive than the state constraints traditionally used to represent background knowledge. Our translations ofAEdomain descriptions into logic programming and default logic are simple, in part because the noncontrapositive nature of causal laws is easily reflected in such rule-based formalisms.
A Logic for Planning under Partial Observability We propose an epistemic dynamic logic EDL able to repre- sent the interactions between action and knowledge that are fundamental to planning under partial observability. EDL en- ables us to represent incomplete knowledge, nondeterministic actions, observations, sensing actions and conditional plans; it also enables a logical expression of several frequently made assumptions about the nature of the domain, such as deter- minism, full observability, unobservability, or pure sensing. Plan verification corresponds to checking the validity of a given EDL formula. The allowed plans are conditional, and a key point of our framework is that a plan is meaningful if and only if the branching conditions bear on the knowledge of the agent only, and not on the real world (to which that agent may not have access); this leads us to consider "plans that reason" which may contain branching conditions referring to implicit knowledge to be evaluated at execution time.
Decision-theoretic planning: Structural assumptions and computational leverage Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDP-related methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to describe performance criteria, in the functions used to describe state transitions and observations, and in the relationships among features used to describe states, actions, rewards, and observations. Specialized representations, and algorithms employing these representations, can achieve computational leverage by exploiting these various forms of structure. Certain AI techniques-in particular those based on the use of structured, intensional representations-can be viewed in this way. This paper surveys several types of representations for both classical and decision-theoretic planning problems, and planning algorithms that exploit these representations in a number of different ways to ease the computational burden of constructing policies or plans. It focuses primarily on abstraction, aggregation and decomposition techniques based on AI-style representations.
Algorithms for propositional model counting We present algorithms for the propositional model counting problem #SAT. The algorithms utilize tree decompositions of certain graphs associated with the given CNF formula; in particular we consider primal, dual, and incidence graphs. We describe the algorithms coherently for a direct comparison and with sufficient detail for making an actual implementation reasonably easy. We discuss several aspects of the algorithms including worst-case time and space requirements.
Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives
Automatic Derivation and Application of Induction Schemes for Mutually Recursive Functions This paper advocates and explores the use of multipredicate induction schemes for proofs about mutually recursive functions. The interactive application of multi-predicate schemes stemming from datatype definitions is already well-established practice; this paper describes an automated proof procedure based on multi-predicate schemes. Multipredicate schemes may be formally derived from (mutually recursive) function definitions; such schemes are often helpful in proving properties of mutually recursive functions where the recursion pattern does not follow that of the underlying datatypes. These ideas have been implemented using the HOL theorem prover and the Clam proof planner.
Learning A Lexical Simplifier Using Wikipedia In this paper we introduce a new lexical simplification approach. We extract over 30K candidate lexical simplifications by identifying aligned words in a sentence-aligned corpus of English Wikipedia with Simple English Wikipedia. To apply these rules, we learn a feature-based ranker using SVMnk trained on a set of labeled simplifications collected using Amazon's Mechanical Turk. Using human simplifications for evaluation, we achieve a precision of 76% with changes in 86% of the examples.
1.024132
0.01832
0.018106
0.015774
0.009592
0.00375
0.001642
0.000469
0.000087
0.000023
0
0
0
0
Why Regularized Auto-Encoders learn Sparse Representation? While the authors of Batch Normalization (BN) identify and address an important problem involved in training deep networks-- \textit{Internal Covariate Shift}-- the current solution has certain drawbacks. For instance, BN depends on batch statistics for layerwise input normalization during training which makes the estimates of mean and standard deviation of input (distribution) to hidden layers inaccurate due to shifting parameter values (especially during initial training epochs). Another fundamental problem with BN is that it cannot be used with batch-size $ 1 $ during training. We address these drawbacks of BN by proposing a non-adaptive normalization technique for removing covariate shift, that we call \textit{Normalization Propagation}. Our approach does not depend on batch statistics, but rather uses a data-independent parametric estimate of mean and standard-deviation in every layer thus being computationally faster compared with BN. We exploit the observation that the pre-activation before Rectified Linear Units follow Gaussian distribution in deep networks, and that once the first and second order statistics of any given dataset are normalized, we can forward propagate this normalization without the need for recalculating the approximate statistics for hidden layers.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Mining Sequential Patterns: Generalizations and Performance Improvements
A comorbidity-based recommendation engine for disease prediction A recommendation engine for disease prediction that combines clustering and association analysis techniques is proposed. The system produces local prediction models, specialized on subgroups of similar patients by using the past patient medical history, to determine the set of possible illnesses an individual could develop. Each model is generated by using the set of frequent diseases that contemporarily appear in the same patient. The illnesses a patient could likely be affected in the future are obtained by considering the items induced by high confidence rules generated by the frequent diseases. Experimental results show that the proposed approach is a feasible way to diagnose diseases.
Simultaneous Pipelining in QPipe: Exploiting Work Sharing Opportunities Across Queries Data warehousing and scientific database applications operate on massive datasets and are characterized by complex queries accessing large portions of the database. Concurrent queries often exhibit high data and computation overlap, e.g., they access the same relations on disk, compute similar aggregates, or share intermediate results. Unfortunately, run-time sharing in modern database engines is limited by the paradigm of invoking an independent set of operator instances per query, potentially missing sharing opportunities if the buffer pool evicts data early.
Database storage management with object-based storage devices
Time to CARE: a collaborative engine for practical disease prediction The monumental cost of health care, especially for chronic disease treatment, is quickly becoming unmanageable. This crisis has motivated the drive towards preventative medicine, where the primary concern is recognizing disease risk and taking action at the earliest signs. However, universal testing is neither time nor cost efficient. We propose CARE, a Collaborative Assessment and Recommendation Engine, which relies only on patient's medical history using ICD-9-CM codes in order to predict future disease risks. CARE uses collaborative filtering methods to predict each patient's greatest disease risks based on their own medical history and that of similar patients. We also describe an Iterative version, ICARE, which incorporates ensemble concepts for improved performance. Also, we apply time-sensitive modifications which make the CARE framework practical for realistic long-term use. These novel systems require no specialized information and provide predictions for medical conditions of all kinds in a single run. We present experimental results on a large Medicare dataset, demonstrating that CARE and ICARE perform well at capturing future disease risks.
Mining block correlations to improve storage performance Block correlations are common semantic patterns in storage systems. They can be exploited for improving the effectiveness of storage caching, prefetching, data layout, and disk scheduling. Unfortunately, information about block correlations is unavailable at the storage system level. Previous approaches for discovering file correlations in file systems do not scale well enough for discovering block correlations in storage systems.In this article, we propose two algorithms, C-Miner and C-Miner&ast;, that use a data mining technique called frequent sequence mining to discover block correlations in storage systems. Both algorithms run reasonably fast with feasible space requirement, indicating that they are practical for dynamically inferring correlations in a storage system. C-Miner is a direct application of a frequent-sequence mining algorithm with a few modifications; compared with C-Miner, C-Miner&ast; is redesigned for mining block correlations by making concessions for the specific problem of long sequences in storage system traces. Therefore, C-Miner&ast; can discover 7--109&percnt; more correlation rules within 2--15 times shorter time than C-Miner. Moreover, we have also evaluated the benefits of block correlation-directed prefetching and data layout through experiments. Our results using real system workloads show that correlation-directed prefetching and data layout can reduce average I/O response time by 12--30&percnt; compared to the base case, and 7--25&percnt; compared to the commonly used sequential prefetching scheme for most workloads.
Track-Aligned Extents: Matching Access Patterns to Disk Drive Characteristics Track-aligned extents (traxtents) utilize disk-specific knowledge to match access patterns to the strengths of modern disks. By allocating and accessing related data on disk track boundaries, a system can avoid most rotational latency and track crossing overheads. Avoiding these overheads can increase disk access efficiency by up to 50% for mid-sized requests (100-500KB). This paper describes traxtents, algorithms for detecting track boundaries, and some uses of traxtents in file systems and video servers. For large-file workloads, a version of FreeBSD's FFS implementation that exploits traxtents reduces application run times by up to 20% compared to the original version. A video server using traxtent-based requests can support 56% more concurrent streams at the same startup latency and buffer space. For LFS, 44% lower overall write cost for track-sized segments can be achieved.
Umbrella file system: Storage management across heterogeneous devices With the advent of and recent developments in Flash storage, device characteristic diversity is becoming both more prevalent and more distinct. In this article, we describe the Umbrella File System (UmbrellaFS), a stackable file system designed to provide flexibility in matching diversity of file access characteristics to diversity of device characteristics through a user or system administrator specified policy. We present the design and results from a prototype implementation of UmbrellaFS on both Linux 2.4 and 2.6. The results show that UmbrellaFS has little overhead for most file system operations while providing an ability better to utilize the differences in Flash and traditional hard drives. With appropriate use of rules, we have shown improvements of up to 44&percnt; in certain situations.
Reducing Energy Consumption of Disk Storage Using Power-Aware Cache Management Reducing energy consumption is an important issue for data centers. Among the various components of a data center, storage is one of the biggest consumers of energy. Previous studies have shown that the average idle period for a server disk in a data center is very small compared to the time taken to spin down and spin up. This significantly limits the effectiveness of disk power management schemes. This paper proposes several power-aware storage cache management algorithms that provide more opportunities for the underlying disk power management schemes to save energy. More specifically, we present an off-line power-aware greedy algorithm that is more energy-efficient than Beladyýs off-line algorithm (which minimizes cache misses only). We also propose an online power-aware cache replacement algorithm. Our trace-driven simulations show that, compared to LRU, our algorithm saves 16% more disk energy and provides 50% better average response time for OLTP I/O workloads. We have also investigated the effects of four storage cache write policies on disk energy consumption.
A continuum of disk scheduling algorithms A continuum of disk scheduling algorithms, V(R), having endpoints V(0) = SSTF and V(1) = SCAN, is defined. V(R) maintains a current SCAN direction (in or out) and services next the request with the smallest effective distance. The effective distance of a request that lies in the current direction is its physical distance (in cylinders) from the read/write head. The effective distance of a request in the opposite direction is its physical distance plus R x (total number of cylinders on the disk). By use of simulation methods, it is shown that this definitional continuum also provides a continuum in performance, both with respect to the mean and with respect to the standard deviation of request waiting time. For objective functions that are linear combinations of the two measures, &mgr;w + kow, intermediate points of the continuum are seen to provide performance uniformly superior to both SSTF and SCAN. A method of implementing V(R) and the results of its experimental use in a real system are presented.
Extending Unix for scalable computing Because it retrieves all instructions and data from a single memory, the von Neumann computer architecture has a fundamental speed limit. The scalable multicomputer architecture, which uses many microprocessors together to solve a single problem and can run at teraflop speeds, may be a solution. While teraflop processor technology is known, the scalable operating and I/O system technology necessary for those speeds are not known. The authors describe how Unix can be extended to scalable computing, permitting teraflop speeds and offering parallel computing to users unfamiliar with parallel programming. They designed this technology into the system software of the Ncube-2, the predecessor to Ncube's announced teraflop parallel computer. The authors describe the system in detail and provide some performance results.<>
Publishing: a reliable broadcast communication mechanism Publishing is a model and mechanism for crash recovery in a distributed computing environment. Published communication works for systems connected via a broadcast medium by recording messages transmitted over the network. The recovery mechanism can be completely transparent to the failed process and all processes interacting with it. Although published communication is intended for a broadcast network such as a bus, a ring, or an Ethernet, it can be used in other environments. A recorder reliably stores all messages that are transmitted, as well as checkpoint and recovery information. When it detects a failure, the recorder may restart affected processes from checkpoints. The recorder subsequently resends to each process all messages which were sent to it since the time its checkpoint was taken, while ignoring duplicate messages sent by it. Message-based systems without shared memory can use published communications to recover groups of processes. Simulations show that at least 5 multi-user minicomputers can be supported on a standard Ethernet using a single recorder. The prototype version implemented in DEMOS/MP demonstrates that an error recovery can be transparent to user processes and can be centralized in the network.
P-Selectivity, immunity, and the power of one bit We prove that P-sel, the class of all P-selective sets, is EXP-immune, but is not EXP/1-immune. That is, we prove that some infinite P-selective set has no infinite EXP-time subset, but we also prove that every infinite P-selective set has some infinite subset in EXP/1. Informally put, the immunity of P-sel is so fragile that it is pierced by a single bit of information. The above claims follow from broader results that we obtain about the immunity of the P-selective sets. In particular, we prove that for every recursive function f, P-sel is DTIME(f)-immune. Yet we also prove that P-sel is not ${\it \Pi}^{p}_{2}$/1-immune.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.120489
0.074667
0.067245
0.067245
0.022632
0.009639
0.002076
0.000139
0.000037
0.000008
0
0
0
0
Extracting MUCs from Constraint Networks We address the problem of extracting Minimal Unsatisfiable Cores (MUCs) from constraint networks. This computationally hard problem has a practical interest in many application domains such as configuration, planning, diagnosis, etc. Indeed, identifying one or several disjoint MUCs can help circumscribe different sources of inconsistency in order to repair a system. In this paper, we propose an original approach that involves performing successive runs of a complete backtracking search, using constraint weighting, in order to surround an inconsistent part of a network, before identifying all transition constraints belonging to a MUC using a dichotomic process. We show the effectiveness of this approach, both theoretically and experimentally.
Boosting MUC extraction in unsatisfiable constraint networks One very fertile domain of applied Artificial Intelligence is constraint solving technologies. Especially, constraint networks that concern problems that can be represented using discrete variables, together with constraints on allowed instantiation values for these variables. Every solution to a constraint network must satisfy every constraint. When no solution exists, the user might want to know the actual reasons leading to the absence of global solution. In this respect, extracting mucs (Minimal Unsatisfiable Cores) from an unsatisfiable constraint network is a useful process when causes of unsatisfiability must be understood so that the network can be re-engineered and relaxed to become satisfiable. Despite bad worst-case computational complexity results, various muc-finding approaches that appear tractable for many real-life instances have been proposed. Many of them are based on the successive identification of so-called transition constraints. In this respect, we show how local search can be used to possibly extract additional transition constraints at each main iteration step. In the general constraint networks setting, the approach is shown to outperform a technique based on a form of model rotation imported from the sat-related technology and that also exhibits additional transition constraints. Our extensive computational experimentations show that this enhancement also boosts the performance of state-of-the-art DC(WCORE)-like MUC extractors.
Understanding, improving and parallelizing MUS finding using model rotation Recently a new technique for improving algorithms for extracting Minimal Unsatisfiable Subsets (MUSes) from unsatisfiable CNF formulas called "model rotation" was introduced [Marques-Silva et. al. SAT2011]. The technique aims to reduce the number of times a MUS finding algorithm needs to call a SAT solver. Although no guarantees for this reduction are provided the technique has been shown to be very effective in many cases. In fact, such model rotation algorithms are now arguably the state-of-the-art in MUS finding. This work analyses the model rotation technique in detail and provides theoretical insights that help to understand its performance. These new insights on the operation of model rotation lead to several modifications and extensions that are empirically evaluated. Moreover, it is demonstrated how such MUS extracting algorithms can be effectively parallelized using existing techniques for parallel incremental SAT solving.
Faster extraction of high-level minimal unsatisfiable cores Various verification techniques are based on SAT's capability to identify a small, or even minimal, unsatisfiable core in case the formula is unsatisfiable, i.e., a small subset of the clauses that are unsatisfiable regardless of the rest of the formula. In most cases it is not the core itself that is being used, rather it is processed further in order to check which clauses from a preknown set of Interesting Constraints (where each constraint is modeled with a conjunction of clauses) participate in the proof. The problem of minimizing the participation of interesting constraints was recently coined high-level minimal unsatisfiable core by Nadel [15]. Two prominent examples of verification techniques that need such small cores are 1) abstraction-refinement model-checking techniques, which use the core in order to identify the state variables that will be used for refinement (smaller number of such variables in the core implies that more state variables can be replaced with free inputs in the abstract model), and 2) assumption minimization, where the goal is to minimize the usage of environment assumptions in the proof, because these assumptions have to be proved separately. We propose seven improvements to the recent solution given in [15], which together result in an overall reduction of 55% in run time and 73% in the size of the resulting core, based on our experiments with hundreds of industrial test cases. The optimized procedure is also better empirically than the assumptions-based minimization technique.
On Approaches to Explaining Infeasibility of Sets of Boolean Clauses These last years, the issue of locating and explaining contradictions inside sets of propositional clauses has received a renewed attention due to the emergence of very efficient SAT solvers. In case of inconsistency, many such solvers merely conclude that no solution exists or provide an upper approximation of the subset of clauses that are contradictory. However, in most application domains, only knowing that a problem does not admit any solution is not enough informative, and it is important to know which clauses are actually conflicting. In this paper, the focus is on the concept of minimally unsatisfiable subformulas (MUSes), which explain logical inconsistency in terms of minimal sets of contradictory clauses. Specifically, various recent results and computational approaches about MUSes and related concepts are discussed.
A scalable algorithm for minimal unsatisfiable core extraction We propose a new algorithm for minimal unsatisfiable core extraction, based on a deeper exploration of resolution-refutation properties. We provide experimental results on formal verification benchmarks confirming that our algorithm finds smaller cores than suboptimal algorithms; and that it runs faster than those algorithms that guarantee minimality of the core. (A more complete version of this paper may be found at arXiv.org/pdf/cs.LO/0605085.)
NP trees and Carnap's modal logic We consider problems and complexity classes definable by interdependent queries to an oracle in NP. How the queries depend on each other is specified by a directed graph G. We first study the class of problems where G is a general dag and show that this class coincides with /spl Delta//sub 2//sup P/. We then consider the class where G is a tree. Our main result states that this class is identical to P/sup NP/ [O(log n)], the class of problems solvable in polynomial time with a logarithmic number of queries to an oracle in NP. Using this result we show that the following problems are all P/sup NP/[O(logn)] complete: validity-checking of formulas in Carnap's modal logic, checking whether a formula is almost surely valid over finite structures in modal logics K, T, and S4, and checking whether a formula belongs to the stable set of beliefs generated by a propositional theory.
Computational Politics: Electoral Systems This paper discusses three computation-related results in the study of electoral systems: 1. Determining the winner in Lewis Carroll's 1876 electoral system is complete for parallel access to NP [22]. 2. For any electoral system that is neutral, consistent, and Condorcet, determining the winner is complete for parallel access to NP [21]. 3. For each census in US history, a simulated annealing algorithm yields provably fairer (in a mathematically rigorous sense) congressional apportionments than any of the classic algorithms--even the algorithm currently used in the United States [24].
The complexity of relational query languages (Extended Abstract) Two complexity measures for query languages are proposed. Data complexity is the complexity of evaluating a query in the language as a function of the size of the database, and expression complexity is the complexity of evaluating a query in the language as a function of the size of the expression defining the query. We study the data and expression complexity of logical languages - relational calculus and its extensions by transitive closure, fixpoint and second order existential quantification - and algebraic languages - relational algebra and its extensions by bounded and unbounded looping. The pattern which will be shown is that the expression complexity of the investigated languages is one exponential higher then their data complexity, and for both types of complexity we show completeness in some complexity class.
MAXPLAN: A New Approach to Probabilistic Planning Classical artificial intelligence planning techniques canoperate in large domains but traditionally assume adeterministic universe. Operations research planningtechniques can operate in probabilistic domains butbreak when the domains approach realistic sizes. maxplan is a new probabilistic planning technique thataims at combining the best of these two worlds. maxplan converts a planning instance into an E-Majsatinstance, and then draws on techniques from Booleansatisfiability...
Global Continuation for Distance Geometry Problems Distance geometry problems arise in the determination of protein structure. We consider the case where only a subset of the distances between atoms is given and formulate this distance geometry problem as a global minimization problem with special structure. We show that global smoothing techniques and a continuation approach for global optimization can be used to determine global solutions of this problem reliably and efficiently. The global continuation approach determines a global solution with less computational effort than is required by a standard multistart algorithm. Moreover, the continuation approach usually finds the global solution from any given starting point, while the multistart algorithm tends to fail.
Projection Using Regression and Sensors In this paper, we consider the projection task (determining what does or does not hold after performing a sequence of actions) in a general setting where a solution to the frame problem may or may not be available, and where online information from sensors may or may not be applicable. We formally characterize the projection task for actions theories of this sort, and show how a generalized form of regression produces correct answers whenever it can be used. We characterize conditions on action theories, sequences of actions, and sensing information that are sufficient to guarantee that regression can be used, and present a provably correct regressionbased procedure in Prolog for performing the task under these conditions.
RAID 6 Hardware Acceleration Inexpensive, reliable hard disk storage is increasingly required in both businesses and the home. As disk capacities increase and multiple drives are combined in one system the probability of multiple disk failures increases. Through the adoption of RAID 6 the capability to recover from up to two simultaneous disk failures becomes available. In this article, we present three different RAID 6 implementations each tailored to support different target applications and optimized to reduce overall hardware resource utilization. We present an optimal Reed-Solomon-based RAID 6 implementation for arrays of four disks. We also present the smallest in terms of hardware resource utilization as well having the highest throughput RAID 6 hardware solution for disk arrays of up to 15 drives. Finally, we present an implementation supporting up to 255 disks in a single array.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.044482
0.04
0.029778
0.022781
0.016404
0.007906
0.001305
0.000014
0.000001
0
0
0
0
0
Initializing Deep Learning Based on Latent Dirichlet Allocation for Document Classification. The gradient-descent learning of deep neural networks is subject to local minima, and good initialization may depend on the tasks. In contrast, for document classification tasks, latent Dirichlet allocation (LDA) was quite successful in extracting topic representations, but its performance was limited by its shallow architecture. In this study, LDA was adopted for efficient layer-by-layer pre-training of deep neural networks for a document classification task. Two-layer feedforward networks were added at the end of the process, and trained using a supervised learning algorithm. With 10 different random initializations, the LDA-based initialization generated a much lower mean and standard deviation for false recognition rates than other state-of-the-art initialization methods. This might demonstrate that the multi-layer expansion of probabilistic generative LDA model is capable of extracting efficient hierarchical topic representations for document classification.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Treelogy: A Novel Tree Classifier Utilizing Deep and Hand-crafted Representations. We propose a novel tree classification system called Treelogy, that fuses deep representations with hand-crafted features obtained from leaf images to perform leaf-based plant classification. Key to this system are segmentation of the leaf from an untextured background, using convolutional neural networks (CNNs) for learning deep representations, extracting hand-crafted features with a number of image processing techniques, training a linear SVM with feature vectors, merging SVM and CNN results, and identifying the species from a dataset of 57 trees. Our classification results show that fusion of deep representations with hand-crafted features leads to the highest accuracy. The proposed algorithm is embedded in a smart-phone application, which is publicly available. Furthermore, our novel dataset comprised of 5408 leaf images is also made public for use of other researchers.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Continuous Body and Hand Gesture Recognition for Natural Human-Computer Interaction: Extended Abstract. We present a new approach to gesture recognition that tracks body and hands simultaneously and recognizes gestures continuously from an unsegmented and unbounded input stream. Our system estimates 3D coordinates of upper body joints and classifies the appearance of hands into a set of canonical shapes. A novel multi-layered filtering technique with a temporal sliding window is developed to enable online sequence labeling and segmentation. Experimental results on the NATOPS dataset show the effectiveness of the approach. We also report on our recent work on multimodal gesture recognition and deep-hierarchical sequence representation learning that achieve the state-ofthe-art performances on several real-world datasets.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
DBMiP: A pre-training method for information propagation over deep networks. Deep neural networks (DNNs) have recently been successful in many applications and have become a popular approach for speech recognition. Training a DNN model for speech recognition is computationally expensive due to the model large number of parameters. Pre-training improves DNN modeling. However, DNN learning is challenging if pre-training is inefficient. This paper introduces a new framework for pre-training that utilizes label information in lower layers (layers near input) for better recognition. The proposed pre-training method dynamically inserts discriminative information not only in the last layer but also in other layers. In this algorithm, the lower layers achieve more generative information while the higher layers achieve more discriminative information. In addition, this method uses speaker information by employing the Subspace Gaussian Mixture Model (SGMM), which improves recognition accuracy. Experimental results on TIMIT, MNIST, Switchboard, and English Broadcast News datasets show that this approach significantly outperforms current state-of-the-art methods such as the Deep Belief Network and the Deep Boltzmann Machine. Moreover, the proposed algorithm has minimal memory requirements.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Zone-bit-recording-enhanced video data layout strategies Rapid progress in high speed networking and mass storage technologies has made it possible to provide video-on-demand (VOD) services, that deliver movies to viewers' homes on request. In this paper, we present a family of novel video data layout strategies, called zone-bit-recording-enhanced (ZBRE) layout schemes, which take into account the multiple-zone-recording feature of modern disk drives. Simulation results show that, by carefully laying out popular movies in the outer zones and aggregating “hot” movies together, disk performance can be improved significantly, with an up to 23% higher throughput than by randomly laying out data on disks. More importantly, these performance benefits are obtained without incurring any extra hardware cost
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
Parameterized complexity for the database theorist
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Causal independence for probability assessment and inference using Bayesian networks A Bayesian network is a probabilistic representation for uncertain relationships, which has proven to be useful for modeling real-world problems. When there are many potential causes of a given effect, however, both probability assessment and inference using a Bayesian network can be difficult. In this paper, we describe causal independence, a collection of conditional independence assertions and functional relationships that are often appropriate to apply to the representation of the uncertain interactions between causes and effect. We show how the use of causal independence in a Bayesian network can greatly simplify probability assessment as well as probabilistic inference
Games Against Nature (Extended Abstract)
Provably Difficult Combinatorial Games
Abstraction and approximate decision-theoretic planning ion and Approximate Decision TheoreticPlanningRichard Dearden and Craig BoutilieryDepartment of Computer ScienceUniversity of British ColumbiaVancouver, British ColumbiaCANADA, V6T 1Z4email: dearden,[email protected] decision processes (MDPs) have recently been proposed asuseful conceptual models for understanding decision-theoretic planning.However, the utility of the associated computational methods remainsopen to question: most algorithms for computing optimal...
The complexity of Markov decision processes We investigate the complexity of the classical problem of optimal policy computation in Markov decision processes. All three variants of the problem finite horizon, infinite horizon discounted, and...
Fault Tolerant Planning: Complexity and Compilation.
Extending Conventional Planning Techniques to Handle Actions with Context-Depen dent Effects
Conformant plans and beyond: Principles and complexity Conformant planning is used to refer to planning for unobservable problems whose solutions, like classical planning, are linear sequences of operators called linear plans. The term 'conformant' is automatically associated with both the unobservable planning model and with linear plans, mainly because the only possible solutions for unobservable problems are linear plans. In this paper we show that linear plans are not only meaningful for unobservable problems but also for partially-observable problems. In such case, the execution of a linear plan generates observations from the environment which must be collected by the agent during the execution of the plan and used at the end in order to determine whether the goal had been achieved or not; this is the typical case in problems of diagnosis in which all the actions are knowledge-gathering actions. Thus, there are substantial differences about linear plans for the case of unobservable or fully-observable problems, and for the case of partially-observable problems: while linear plans for the former model must conform with properties in state space, linear plans for partially-observable problems must conform with properties in belief space. This differences surface when the problems are allowed to express epistemic goals and conditions using modal logic, and place the plan-existence decision problem in different complexity classes. Linear plans is one extreme point in a discrete spectrum of solution forms for planning problems. The other extreme point is contingent plans in which there is a branch point for every possible observation at each time step, and thus the number of branch points is not bounded a priori. In the middle of the spectrum, there are plans with a bounded number of branch points. Thus, linear plans are plans with zero branch points and contingent plans are plans with unbounded number of branch points. In this work, we lay down foundations and principles for the general treatment of linear plans and plans of bounded branching, and provide exact complexity results for novel decision problems. We also show that linear plans for partially-observable problems are not only of theoretical interest since some challenging real-life problems can be dealt with them.
Conformant Planning via Model Checking . Conformant planning is the problem of nding a sequenceof actions that is guaranteed to achieve the goal for any possible initialstate and nondeterministic behavior of the planning domain. In this paperwe present a new approach to conformant planning. We propose analgorithm that returns the set of all conformant plans of minimal lengthif the problem admits a solution, otherwise it returns with failure. Ourwork is based on the planning via model checking paradigm, and relieson...
Computing Circumscription Revisited: A Reduction Algorithm In recent years, a great deal of attention has been devoted to logics of common-sense reasoning. Among the candidates proposed, circumscription has been perceived as an elegant mathematical technique for modeling nonmonotonic reasoning, but difficult to apply in practice. The major reason for this is the second-order nature of circumscription axioms and the difficulty in finding proper substitutions of predicate expressions for predicate variables. One solution to this problem is to compile, where possible, second-order formulas into equivalent first-order formulas. Although some progress has been made using this approach, the results are not as strong as one might desire and they are isolated in nature. In this article, we provide a general method that can be used in an algorithmic manner to reduce certain circumscription axioms to first-order formulas. The algorithm takes as input an arbitrary second-order formula and either returns as output an equivalent first-order formula, or terminates with failure. The class of second-order formulas, and analogously the class of circumscriptive theories that can be reduced, provably subsumes those covered by existing results. We demonstrate the generality of the algorithm using circumscriptive theories with mixed quantifiers (some involving Skolemization), variable constants, nonseparated formulas, and formulas with n-ary predicate variables. In addition, we analyze the strength of the algorithm, compare it with existing approaches, and provide formal subsumption results.
The ellipsoid method and its consequences in combinatorial optimization. L. G. Khachiyan recently published a polynomial algorithm to check feasibility of a system of linear inequalities. The method is an adaptation of an algorithm proposed by Shor for non-linear optimization problems. In this paper we show that the method also yields interesting results in combinatorial optimization. Thus it yields polynomial algorithms for vertex packing in perfect graphs; for the matching and matroid intersection problems; for optimum covering of directed cuts of a digraph; for the minimum value of a submodular set function; and for other important combinatorial problems. On the negative side, it yields a proof that weighted fractional chromatic number is NP-hard.
Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets It is known that for any class $\tweak{\cal C}$ closed under union and intersection, the Boolean closure of ${\cal C}$, the Boolean hierarchy over $\tweak{\cal C}$, and the symmetric difference hierarchy over $\tweak{\cal C}$ all are equal. We prove that these equalities hold for any complexity class closed under intersection; in particular, they thus hold for unambiguous polynomial time (UP). In contrast to the NP case, we prove that the Hausdorff hierarchy and the nested difference hierarchy over UP both fail to capture the Boolean closure of UP in some relativized worlds. Karp and Lipton proved that if nondeterministic polynomial time has sparse Turing-complete sets, then the polynomial hierarchy collapses. We establish the first consequences from the assumption that unambiguous polynomial time has sparse Turing-complete sets: (a) $\up \seq \mbox{Low}_2$, where $\mbox{Low}_2$ is the second level of the low hierarchy, and (b) each level of the unambiguous polynomial hierarchy is contained one level lower in the promise unambiguous polynomial hierarchy than is otherwise known to be the case.
Operating System I/O Speculation: How Two Invocations Are Faster Than One Abstract: We present an in-kernel disk prefetcher which usesspeculative execution to determine what data an applicationis likely to require in the near future. Byplacing our design within the operating system, weprovide several benets compared to the previousapplication-level design. Not only is our system easierto implement and deploy, but by handling pagefaults as well as traditionalle-access methods weare able to apply speculative execution to swappingapplications, which often spend the...
Improving Citation Polarity Classification With Product Reviews Recent work classifying citations in scientific literature has shown that it is possible to improve classification results with extensive feature engineering. While this result confirms that citation classification is feasible, there are two drawbacks to this approach: (i) it requires a large annotated corpus for supervised classification, which in the case of scientific literature is quite expensive; and (ii) feature engineering that is too specific to one area of scientific literature may not be portable to other domains, even within scientific literature. In this paper we address these two drawbacks. First, we frame citation classification as a domain adaptation task and leverage the abundant labeled data available in other domains. Then, to avoid over-engineering specific citation features for a particular scientific domain, we explore a deep learning neural network approach that has shown to generalize well across domains using unigram and bigram features. We achieve better citation classification results with this cross-domain approach than using in-domain classification.
1.105493
0.100424
0.02025
0.008525
0.004166
0.000308
0.000115
0.000061
0.000026
0.000008
0
0
0
0
ScalaBLAST: A Scalable Implementation of BLAST for High-Performance Data-Intensive Bioinformatics Analysis Genes in an organism's DNA (genome) have embedded in them information about proteins, which are the molecules that do most of a cell's work. A typical bacterial genome contains on the order of 5,000 genes. Mammalian genomes can contain tens of thousands of genes. For each genome sequenced, the challenge is to identify protein components (proteome) being actively used for a given set of conditions. Fundamentally, sequence alignment is a sequence matching problem focused on unlocking protein information embedded in the genetic code, making it possible to assemble a "tree of life” by comparing new sequences against all sequences from known organisms. But, the memory footprint of sequence data is growing more rapidly than per-node core memory. Despite years of research and development, high-performance sequence alignment applications either do not scale well, cannot accommodate very large databases in core, or require special hardware. We have developed a high-performance sequence alignment application, ScalaBLAST, which accommodates very large databases and which scales linearly to as many as thousands of processors on both distributed memory and shared memory architectures, representing a substantial improvement over the current state-of-the-art in high-performance sequence alignment with scaling and portability. ScalaBLAST relies on a collection of techniques—distributing the target database over available memory, multilevel parallelism to exploit concurrency, parallel I/O, and latency hiding through data prefetching—to achieve high-performance and scalability. This demonstrated approach of database sharing combined with effective task scheduling should have broad ranging applications to other informatics-driven sciences.
Speeding up subset seed algorithm for intensive protein sequence comparison Abstract—Sequence similarity search is a common and re- peated task in molecular biology. The rapid growth of genomic databases leads to the need of speeding up the treatment of this task. In this paper, we present a subset seed algorithm for intensive protein sequence comparison. We have accelerated this algorithm by using indexing technique and fine grained parallelism of GPU and SIMD instructions. We have implemented two programs: iBLASTP, iTBLASTN. The GPU (SIMD) imple- mentation of the two programs achieves a speed up ranging from 5.5 to 10 (4 to 5.6) compared to the BLASTP and TBLASTN of the BLAST program family, with comparable sensitivity.
Accelerating BLASTP on the Cell Broadband Engine The enormous growth of biological sequence databases has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing rapidly as well. The recent emergence of low cost parallel accelerator technologies has made it possible to reduce execution times of many bioinformatics applications. In this paper, we demonstrate how the PlayStation®3, powered by the Cell Broadband Engine, can be used as an efficient computational platform to accelerate the popular BLASTP algorithm.
Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching In this paper, we borrow the idea of the receiver operating characteristic (ROC) from clinical medicine and demonstrate its application to sequence comparison. The ROC includes elements of both sensitivity and specificity, and is a quantitative measure of the usefulness of a diagnostic. The ROC is used in this work to investigate the effects of scoring table and gap penalties on database searches. Studies on three families of proteins, 4Fe-4S ferredoxins, lysR bacterial regulatory proteins, and bacterial RNA polymerase σ-factors lead to the following conclusions: sequence families are quite idiosyncratic, but the best PAM distance for database searches using the Smith-Waterman method is somewhat larger than predicted by theoretical methods, about 200 PAM. The length independent gap penalty (gap initation penalty) is quite important, but shows a broad peak at values of about 20–24. The length dependent gap penalty (gap extension penalty) is almost irrelevant suggesting that successful database searches rely only to a limited degree on gapped alignments. Taken together, these observations lead to the conclusion that the optimal conditions for alignments and database searches are not, and should not be expected to be, the same.
A hardware filesystem implementation with multidisk support Modern High-End Computing systems frequently include FPGAs as compute accelerators. These programmable logic devices now support disk controller IP cores which offer the ability to introduce new, innovative functionalities that, previously, were not practical. This article describes one such innovation: a filesystem implemented in hardware. This has the potential of improving the performance of data-intensive applications by connecting secondary storage directly to FPGA compute accelerators. To test the feasibility of this idea, a Hardware Filesystem was designed with four basic operations (open, read, write, and delete). Furthermore, multi-disk and RAID-0 (striping) support has been implemented as an option in the filesystem. A RAM Disk core was created to emulate a SATA disk drive so results on running FPGA systems could be readily measured. By varying the block size from 64 to 4096 bytes, it was found that 1024 bytes gave the best performance while using a very modest 7% of a Xilinx XC4VFX60's slices and only four (of the 232) BRAM blocks available.
Seed-based genomic sequence comparison using a FPGA/FLASH accelerator. This paper presents a parallel architecture for computing genomic sequence alignments using seed-based algorithms. Originality comes from the simultaneous use of FPGA components and FLASH memories. The FPGA technology brings the computer power while the FLASH memory provides high memory bandwidth able to feed a large array of specific operators. A 64 GBytes FLASH memory connected to a Xilinx Virtex-2 Pro PCI board has been developed and an array of 160 distance-computation operators have been implemented to perform the first step of seed-based alignment algorithms. Compared to the BLAST reference software family, we measured a speed-up of 75 on a real intensive genomic sequence comparison application. © 2006 IEEE.
RC-BLASTn: Implementation and Evaluation of the BLASTn Scan Function BLASTn is a tool universally used by biologists to identify similarities between nucleotide based biological genome sequences. This report describes anhardware implementation designed to acceleratealgorithm maintaining the same results yielded by the software developed at NCBI. A detailed profile study identifies the Blast_Nt_Scan function as the computationally intensive part of the algorithm. A hardware component has been designed and implemented for this critical section. Rather then trying to implement more of the computation on the FPGA chip, our focus is on improving workload performance. Hence, the hardware has been designed to be replicated and placed on the FPGA to reduce initial comparison latencies between multiple short sequences(queries) and a subject database. Tests reveal the current implementation achieves an approximate 4X speedup over the software run on a modern general purpose computer
A rate-based prefiltering approach to blast acceleration DNA sequence comparison and database search have evolved in the last years as a field of strong competition between several reconfigurable hardware computing groups. In this paper we present a BLAST preprocessor that efficiently marks the parts of the database that may produce matches. Our prefiltering approach offers significant reduction in the size of the database that needs to be fully processed by BLAST, with a corresponding reduction in the run-time of the algorithm. We have implemented our architecture, evaluated its effectiveness for a variety of databases and queries, and compared its accuracy against the original NCBI Blast implementation. We have found that prefiltering offers at least a factor of 5 and up to 3 orders of magnitude reduction in the database space that needs to be fully searched. Due to its prefiltering nature, our approach can be combined with all major reconfigurable acceleration architectures that have been presented up to date.
Restricted Boltzmann machines for collaborative filtering Most of the existing approaches to collaborative filtering cannot handle very large data sets. In this paper we show how a class of two-layer undirected graphical models, called Restricted Boltzmann Machines (RBM's), can be used to model tabular data, such as user's ratings of movies. We present efficient learning and inference procedures for this class of models and demonstrate that RBM's can be successfully applied to the Netflix data set, containing over 100 million user/movie ratings. We also show that RBM's slightly outperform carefully-tuned SVD models. When the predictions of multiple RBM models and multiple SVD models are linearly combined, we achieve an error rate that is well over 6% better than the score of Netflix's own system.
A case for redundant arrays of inexpensive disks (RAID) Increasing performance of CPUs and memories will be squandered if not matched by a similar performance increase in I/O. While the capacity of Single Large Expensive Disks (SLED) has grown rapidly, the performance improvement of SLED has been modest. Redundant Arrays of Inexpensive Disks (RAID), based on the magnetic disk technology developed for personal computers, offers an attractive alternative to SLED, promising improvements of an order of magnitude in performance, reliability, power consumption, and scalability. This paper introduces five levels of RAIDs, giving their relative cost/performance, and compares RAID to an IBM 3380 and a Fujitsu Super Eagle.
EXPLOITING MULTIPLE I/O STREAMS TO PROVIDE HIGH DATA-RATES We present an I/O architecture, called Swift, that addresses the problem of data-rate mismatches between the requirements of an application, the maximum data-rate of the storage devices, and the 6ata-rate of the interconnection medium. The goal of Swift is to support integrated continuous multimedia in general purpose distributed systems. In installations with a high-speed interconnection medium, Swift will provide high data-rate transfers by using multiple slower storage devices in parallel. The data-rates obtained with this approach scale well when using multiple storage devices and multiple interconnections. Swift has the flexibility to use any appropriate storage technology, including disk arrays. The ability to adapt to technological advances will allow Swift to provide for ever increasing I/O demands. To address the problem of partial failures, Swift stores data redundantly. Using the UNIX operating system, we have constructed a simplified prototype of the Swift architecture. Using a single Ethernet-based local-area network and three servers, the prototype provides data-rates that are almost three times as fast as access to the local SCSI disk in the case of writes. When compared to NFS, the Swift prototype provides double the data-rate for reads and eight times the data-rate for writes. The data-rate of our prototype scales almost linearly in the number of servers and the number of network segments. Its performance is shown to be limited by the speed of the Ethernet-based local-area network. We also constructed a simulation model to show how the Swift architecture can exploit storage, communication, and processor advances, and to locate the components that will limit I/O performance. In a simulated gigabit/second token ring local-area network the data-rates are seen to scale proportionally to the size of the transfer unit and to the number of storage agents.
A Comparative Study of 2QBF Algorithms QBF is the problem of evaluating a Quantified Boolean Formula (QBF) with two levels of quantification. Many practical problems in sequential verification can be formulated as instances of 2QBF. Techniques that are not applicable to general QBF evaluation may be useful for 2QBF evalu- ation. In particular, decision order in search based algorithms may not obey quantification order for 2QBF evaluation algorithms. Different branching strategies in search based algorithms together with a resolution based method are described and compared. Experimental results on both random benchmarks and 2QBFs formulated from sequential circuit state space diameter problems are analyzed. Experiments show solvers specially tuned for 2QBF can be more efficient than similar general QBF solvers. The class of 2QBF problems is a subset of the class of Quantified Boolean Formulas (QBF), a generaliza- tion of Boolean satisfiability (SAT) problem. While SAT is known to be NP-complete, QBF is PSPACE- complete, and 2QBF is NPNP-complete, so both 2QBF and QBF are likely to be much more difficult than SAT. Still, QBF attracts much research due to theoretical interest and practical applications such as artificial intelligence (8) and sequential circuit verification (9), (1). The subclass 2QBF is worthy of study in its own right, away from the more general context of QBF. In particular, it may be useful to consider algorithms and techniques specific to 2QBF that may not generalize easily to QBF, as is done in this paper. Moreover, since 2QBF is a gentler generalization of SAT than general QBF, techniques that are useful in SAT algorithms sometimes adapt more easily and more usefully to 2QBF than they do to QBF. In fact, all three of the algorithms we discuss are strongly related to algorithms for propositional satisfiability. This is an advantage, since the study and development of SAT algorithms is more mature than the study of QBF algorithms. In this paper, we study three 2QBF algorithms. Two of them are based on the DPLL procedure (4) and are engineered toward solving 2QBF instances. The third is a resolution algorithm that is not specially designed for 2QBF; it is presented here because it has not been studied separately for 2QBF and because it is useful as a point of comparison.
Browsing and placement of multi-resolution images on parallel disks    Abstract. With rapid advances in computer and communication technologies, there is an increasing demand to build and maintain large image repositories. To reduce the demands on I/O and network resources, multi-resolution representations are being proposed for the storage organization of images. Image decomposition techniques such as wavelets can be used to provide these multi-resolution images. The original image is represented by several coefficients, one of them with visual similarity to the original image, but at a lower resolution. These visually similar coefficients can be thought of as thumbnails or icons of the original image. This paper addresses the problem of storing these multi-resolution coefficients on disks so that thumbnail browsing as well as image reconstruction can be performed efficiently. Several strategies are evaluated to store the image coefficients on parallel disks. These strategies can be classified into two broad classes, depending on whether the access pattern of the images is used in the placement. Disk simulation is used to evaluate the performance of these strategies. Simulation results are validated with results from experiments with real Disks, and are found to be in good qualitative agreement. The results indicate that significant performance improvements can be achieved with as few as four disks by placing image coefficients based upon browsing access patterns.
Exploring Sequence Alignment Algorithms On Fpga-Based Heterogeneous Architectures With the rapid development of DNA sequencer, the rate of data generation is rapidly outpacing the rate at which it can be computationally processed. Traditional sequence alignment based on PC cannot fulfill the increasing demand. Accelerating the algorithm using FPGA provides the better performance compared to the other platforms. This paper will explain and classify the current sequence alignment algorithms. In addition, we analyze the different types of sequence alignment algorithms and present the taxonomy of FPGA-based sequence alignment implementations. This work will conclude the current solutions and provide a reference to further accelerating sequence alignment on a FPGA-based heterogeneous architecture.
1.017838
0.027332
0.020822
0.018221
0.013333
0.008817
0.00475
0.000209
0.000003
0
0
0
0
0
Multi-objective optimisation of machine tool error mapping using automated planning Modelling temporal and measurement uncertainty aspects of machine tool calibration.Development of a multi-objective domain-independent error mapping model.Experimental analysis containing twelve different calibration instances.Results identify the feasibility of multi-objective optimisation results.Further optimisation is achieved through the use of High Performance Computing. Error mapping of machine tools is a multi-measurement task that is planned based on expert knowledge. There are no intelligent tools aiding the production of optimal measurement plans. In previous work, a method of intelligently constructing measurement plans demonstrated that it is feasible to optimise the plans either to reduce machine tool downtime or the estimated uncertainty of measurement due to the plan schedule. However, production scheduling and a continuously changing environment can impose conflicting constraints on downtime and the uncertainty of measurement. In this paper, the use of the produced measurement model to minimise machine tool downtime, the uncertainty of measurement and the arithmetic mean of both is investigated and discussed through the use of twelve different error mapping instances. The multi-objective search plans on average have a 3% reduction in the time metric when compared to the downtime of the uncertainty optimised plan and a 23% improvement in estimated uncertainty of measurement metric when compared to the uncertainty of the temporally optimised plan. Further experiments on a High Performance Computing (HPC) architecture demonstrated that there is on average a 3% improvement in optimality when compared with the experiments performed on the PC architecture. This demonstrates that even though a 4% improvement is beneficial, in most applications a standard PC architecture will result in valid error mapping plan.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Discriminative Feature Learning with Constraints of Category and Temporal for Action Recognition. Recently, with the availability of the depth cameras, a lot of studies of human action recognition have been conducted on the depth sequences. Motivated by the observations that each pose has its relative location during a complete action sequence, and similar actions have the fine spatio-temporal differences. We propose a novel method to recognize human actions based on the depth information in this paper. Representations of depth maps are learned and reconstructed using a stacked denoising autoencoder. By adding the category and temporal constraints, the learned features are more discriminative, able to capture the subtle but significant differences between actions, and mitigate the nuisance variability of temporal misalignment. Greedy layer-wise training strategy is used to train the deep neural network. Then we employ temporal pyramid matching on the feature representation to generate temporal representation. Finally a linear SVM is trained to classify each sequence into actions. We compare our proposal on MSR Action3D dataset with the previous methods, and the results shown that the proposed method significantly outperforms traditional model, and comparable to, state-of-art action recognition performance. Experimental results also indicate the great power of our model to restore highly noisy input data.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Improving random write performance in heterogeneous erasure-coded drive arrays by offloading code block requests Erasure coding is used together with data striping in RAIDs for almost three decades. These techniques combine individual hard disk drives (HDDs) to satisfy requirements on performance, capacity, and reliability that cannot be met by a single drive. While these techniques are well known, the advent of NAND ash memory based solid-state drives (SSDs) now opens up new options to mix heterogeneous drives to combine the specific advantages of the different technologies. In this paper, we address a main weakness of traditional (i.e., homogeneous) erasure-coded drive arrays, namely their inherent random write penalty. We focus on a specific use of heterogeneous drives to improve the performance of small to medium-sized random writes. This is of particular interest, because erasure coding provides significantly better space efficiency compared to replication-based approaches, but performs worse for random writes. We describe a drive array organization alleviating this penalty by storing data blocks on slower and code blocks on faster drives, and we provide an analysis allowing to predict the performance of such arrays. An experimental evaluation of the approach (based on HDDs and SSDs) confirms the performance claims, and demonstrates the viability of the approach.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
ICML2011 Unsupervised and Transfer Learning Workshop.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
The computational complexity of propositional STRIPS planning I present several computational complexity results for propositional STRIPS planning, i.e.,STRIPS planning restricted to ground formulas. Different planning problems can be definedby restricting the type of formulas, placing limits on the number of pre- and postconditions,by restricting negation in pre- and postconditions, and by requiring optimal plans. For thesetypes of restrictions, I show when planning is tractable (polynomial) and intractable (NPhard). In general, it is...
The computational complexity of dominance and consistency in CP-Nets We investigate the computational complexity of testing dominance and consistency in CP-nets. Previously, the complexity of dominance has been determined for restricted classes in which the dependency graph of the CP-net is acyclic. However, there are preferences of interest that define cyclic dependency graphs; these are modeled with general CP-nets. In our main results, we show here that both dominance and consistency for general CP-nets are PSPACE-complete. We then consider the concept of strong dominance, dominance equivalence and dominance incomparability, and several notions of optimality, and identify the complexity of the corresponding decision problems. The reductions used in the proofs are from STRIPS planning, and thus reinforce the earlier established connections between both areas.
Logical Preference Representation and Combinatorial Vote We introduce the notion of combinatorial vote, where a group of agents (or voters) is supposed to express preferences and come to a common decision concerning a set of non-independent variables to assign. We study two key issues pertaining to combinatorial vote, namely preference representation and the automated choice of an optimal decision. For each of these issues, we briefly review the state of the art, we try to define the main problems to be solved and identify their computational complexity.
Generalizing the relaxed planning heuristic to non-linear tasks The relaxed planning heuristic is a prominent state-to-goal estimator function for domain-independent forward-chaining heuristic search and local search planning. It enriches the state-space traversal of almost all currently available suboptimal state-of-the-art planning systems. While current domain description languages allow general arithmetic expressions in precondition and effect lists, the heuristic has been devised for propositional, restricted, and linear tasks only. On the other hand, generalizations of the heuristic to non-linear tasks are of apparent need for modelling complex planning problems and a true necessity to validate software. Subsequently, this work proposes a solid extension to the estimate that can deal with non-linear preconditions and effects. It is derived based on an approximated plan construction with respect to intervals for variable assignments. For plan extraction, weakest preconditions are computed according to the assignment rule in Hoare's calculus.
Simulation, verification and automated composition of web services Web services -- Web-accessible programs and devices - are a key application area for the Semantic Web. With the proliferation of Web services and the evolution towards the Semantic Web comes the opportunity to automate various Web services tasks. Our objective is to enable markup and automated reasoning technology to describe, simulate, compose, test, and verify compositions of Web services. We take as our starting point the DAML-S DAML+OIL ontology for describing the capabilities of Web services. We define the semantics for a relevant subset of DAML-S in terms of a first-order logical language. With the semantics in hand, we encode our service descriptions in a Petri Net formalism and provide decision procedures for Web service simulation, verification and composition. We also provide an analysis of the complexity of these tasks under different restrictions to the DAML-S composite services we can describe. Finally, we present an implementation of our analysis techniques. This implementation takes as input a DAML-S description of a Web service, automatically generates a Petri Net and performs the desired analysis. Such a tool has broad applicability both as a back end to existing manual Web service composition tools, and as a stand-alone tool for Web service developers.
Implicit abstraction heuristics State-space search with explicit abstraction heuristics is at the state of the art of cost-optimal planning. These heuristics are inherently limited, nonetheless, because the size of the abstract space must be bounded by some, even if a very large, constant. Targeting this shortcoming, we introduce the notion of (additive) implicit abstractions, in which the planning task is abstracted by instances of tractable fragments of optimal planning. We then introduce a concrete setting of this framework, called fork-decomposition, that is based on two novel fragments of tractable cost-optimal planning. The induced admissible heuristics are then studied formally and empirically. This study testifies for the accuracy of the fork decomposition heuristics, yet our empirical evaluation also stresses the tradeoff between their accuracy and the runtime complexity of computing them. Indeed, some of the power of the explicit abstraction heuristics comes from precomputing the heuristic function offine and then determining h(s) for each evaluated state s by a very fast lookup in a "database." By contrast, while fork-decomposition heuristics can be calculated in polynomial time, computing them is far from being fast. To address this problem, we show that the time-per-node complexity bottleneck of the fork-decomposition heuristics can be successfully overcome. We demonstrate that an equivalent of the explicit abstraction notion of a "database" exists for the fork-decomposition abstractions as well, despite their exponential-size abstract spaces. We then verify empirically that heuristic search with the "databased" fork-decomposition heuristics favorably competes with the state of the art of cost-optimal planning.
Red-Black Relaxed Plan Heuristics Reloaded.
Macros, Reactive Plans and Compact Representations. The use and study of compact representations of objects is widespread in computer science. AI planning can be viewed as the problem of finding a path in a graph that is implicitly described by a compact representation in a planning language. However, compact representations of the path itself (the plan) have not received much attention in the literature. Although both macro plans and reactive plans can be considered as such compact representations, little emphasis has been placed on this aspect in earlier work. There are also compact plan representations that are defined by their access properties, for instance, that they have efficient random access or efficient sequential access. We formally compare two such concepts with macro plans and reactive plans, viewed as compact representations, and provide a complete map of the relationships between them.
Engineering benchmarks for planning: the domains used in the deterministic part of IPC-4 In a field of research about general reasoning mechanisms, it is essential to have appropriate benchmarks. Ideally, the benchmarks should reflect possible applications of the developed technology. In AI Planning, researchers more and more tend to draw their testing examples from the benchmark collections used in the International Planning Competition (IPC). In the organization of (the deterministic part of) the fourth IPC, IPC-4, the authors therefore invested significant effort to create a useful set of benchmarks. They come from five different (potential) real-world applications of planning: airport ground traffic control, oil derivative transportation in pipeline networks, model-checking safety properties, power supply restoration, and UMTS call setup. Adapting and preparing such an application for use as a benchmark in the IPC involves, at the time, inevitable (often drastic) simplifications, as well as careful choice between, and engineering of, domain encodings. For the first time in the IPC, we used compilations to formulate complex domain features in simple languages such as STRIPS, rather than just dropping the more interesting problem constraints in the simpler language subsets. The article explains and discusses the five application domains and their adaptation to form the PDDL test suites used in IPC-4. We summarize known theoretical results on structural properties of the domains, regarding their computational complexity and provable properties of their topology under the h+ function (an idealized version of the relaxed plan heuristic). We present new (empirical) results illuminating properties such as the quality of the most wide-spread heuristic functions (planning graph, serial planning graph, and relaxed plan), the growth of propositional representations over instance size, and the number of actions available to achieve each fact; we discuss these data in conjunction with the best results achieved by the different kinds of planners participating in IPC-4.
Provably Difficult Combinatorial Games
Nested abnormality theories Abstract: We propose a new approach to the use of circumscription for representingknowledge. Nested abnormality theories are similar to simple abnormality theoriesintroduced by McCarthy, except that their axioms may have a nested structure,with each level corresponding to another application of the circumscriptionoperator. The new style of applying circumscription sometimes leads to moreeconomical and elegant formalizations. Mathematical properties of nested abnormalitytheories may be easier...
Flexible buffer allocation based on marginal gazns Previous works on buflcx allocation are based f~il$lwr exclusively on the availability of buffers at r{ll)timc or on the access pat t eras of queries. In this paper We p repose a unified approach for buffer allocation in which both of these considerations are taken into accou at. Our approach is based on the notion of marginal y~~ins which specify the expected reduction cm page faults in allocating extra buffers to a query. Simulation results show that our approach is promising, and allocation algorithms based on marginal gains perform cousidwably better than existing on’es.
Early Stopping-But When? Abstract: Validation can be used to detect when over#tting starts duringsupervised training of a neural network; training is then stoppedbefore convergence to avoid the over#tting ##early stopping&quot;#. The exactcriterion used for validation-based early stopping, however, is usuallychosen in an ad-hoc fashion or training is stopped interactively. This trickdescribes how to select a stopping criterion in a systematic fashion; itis a trick for either speeding learning procedures or improving...
Incremental learning by message passing in hierarchical temporal memory Hierarchical temporal memory HTM is a biologically inspired framework that can be used to learn invariant representations of patterns in a wide range of applications. Classical HTM learning is mainly unsupervised, and once training is completed, the network structure is frozen, thus making further training i.e., incremental learning quite critical. In this letter, we develop a novel technique for HTM incremental supervised learning based on gradient descent error minimization. We prove that error backpropagation can be naturally and elegantly implemented through native HTM message passing based on belief propagation. Our experimental results demonstrate that a two-stage training approach composed of unsupervised pretraining and supervised refinement is very effective both accurate and efficient. This is in line with recent findings on other deep architectures.
1.000631
0.001291
0.001291
0.001036
0.000927
0.000832
0.000705
0.000641
0.000554
0.000333
0.000019
0
0
0
Using an Object-Based Active Storage Framework to Improve Parallel Storage Systems Modern processors have improved rapidly over recent decades and disk storage has failed to keep pace with this development rate. Object-based storage was proposed as an alternative interface in order to close the gap between the processing units and the storage components. Object-based storage simplifies data representation and increases the intelligence of storage components by offloading data management tasks from the host file system to the storage. However, we believe that object-based storage features have not been fully explored. In this work, we first introduce an active storage framework we developed for an object-based storage platform. Specifically, we show how to enable active storage by exploiting the object-based storage features. Then, we discuss how the active storage framework can be used in order to improve the scalability, reliability and usability of parallel storage systems.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Deep Neural Networks for Object Detection. Deep Neural Networks (DNNs) have recently shown outstanding performance on the task of whole image classification. In this paper we go one step further and address the problem of object detection -- not only classifying but also precisely localizing objects of various classes using DNNs. We present a simple and yet powerful formulation of object detection as a regression to object masks. We define a multi-scale inference procedure which is able to produce a high-resolution object detection at a low cost by a few network applications. The approach achieves state-of-the-art performance on Pascal 2007 VOC.
Deep Metric Learning for Visual Tracking In this paper, we propose a deep metric learning (DML) approach for robust visual tracking under the particle filter framework. Unlike most existing appearance-based visual trackers which use hand-crafted similarity metrics, our DML tracker learns a nonlinear distance metric to classify target object and background regions using a feed-forward neural network architecture. Since there are usually large variations in visual objects caused by varying deformations, illuminations, occlusions, motions, rotations, scales, and cluttered backgrounds, conventional linear similarity metrics cannot work well in such scenarios. To address this, our proposed DML tracker first learns a set of hierarchical nonlinear transformations in the feed-forward neural network to project both the template and particles into the same feature space where the intra-class variations of positive training pairs are minimized and the interclass variations of negative training pairs are maximized, simultaneously. Then, the candidate which is most similar to the template in the learned deep network is identified as the true target. Experiments on the benchmark dataset including 51 challenging videos show that our DML tracker achieves very competitive performance with the state-of-the-art trackers.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
DeepFace: Closing the Gap to Human-Level Performance in Face Verification In modern face recognition, the conventional pipeline consists of four stages: detect => align => represent => classify. We revisit both the alignment step and the representation step by employing explicit 3D face modeling in order to apply a piecewise affine transformation, and derive a face representation from a nine-layer deep neural network. This deep network involves more than 120 million parameters using several locally connected layers without weight sharing, rather than the standard convolutional layers. Thus we trained it on the largest facial dataset to-date, an identity labeled dataset of four million facial images belonging to more than 4, 000 identities. The learned representations coupling the accurate model-based alignment with the large facial database generalize remarkably well to faces in unconstrained environments, even with a simple classifier. Our method reaches an accuracy of 97.35% on the Labeled Faces in the Wild (LFW) dataset, reducing the error of the current state of the art by more than 27%, closely approaching human-level performance.
Tabula rasa: Model transfer for object category detection Our objective is transfer training of a discriminatively trained object category detector, in order to reduce the number of training images required. To this end we propose three transfer learning formulations where a template learnt previously for other categories is used to regularize the training of a new category. All the formulations result in convex optimization problems. Experiments (on PASCAL VOC) demonstrate significant performance gains by transfer learning from one class to another (e.g. motorbike to bicycle), including one-shot learning, specialization from class to a subordinate class (e.g. from quadruped to horse) and transfer using multiple components. In the case of multiple training samples it is shown that a detection performance approaching that of the state of the art can be achieved with substantially fewer training samples.
Cross-modal Retrieval with Correspondence Autoencoder The problem of cross-modal retrieval, e.g., using a text query to search for images and vice-versa, is considered in this paper. A novel model involving correspondence autoencoder (Corr-AE) is proposed here for solving this problem. The model is constructed by correlating hidden representations of two uni-modal autoencoders. A novel optimal objective, which minimizes a linear combination of representation learning errors for each modality and correlation learning error between hidden representations of two modalities, is used to train the model as a whole. Minimization of correlation learning error forces the model to learn hidden representations with only common information in different modalities, while minimization of representation learning error makes hidden representations are good enough to reconstruct input of each modality. A parameter $\\alpha$ is used to balance the representation learning error and the correlation learning error. Based on two different multi-modal autoencoders, Corr-AE is extended to other two correspondence models, here we called Corr-Cross-AE and Corr-Full-AE. The proposed models are evaluated on three publicly available data sets from real scenes. We demonstrate that the three correspondence autoencoders perform significantly better than three canonical correlation analysis based models and two popular multi-modal deep models on cross-modal retrieval tasks.
Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks This paper presents a novel change detection approach for synthetic aperture radar images based on deep learning. The approach accomplishes the detection of the changed and unchanged areas by designing a deep neural network. The main guideline is to produce a change detection map directly from two images with the trained deep neural network. The method can omit the process of generating a difference image (DI) that shows difference degrees between multitemporal synthetic aperture radar images. Thus, it can avoid the effect of the DI on the change detection results. The learning algorithm for deep architectures includes unsupervised feature learning and supervised fine-tuning to complete classification. The unsupervised feature learning aims at learning the representation of the relationships between the two images. In addition, the supervised fine-tuning aims at learning the concepts of the changed and unchanged pixels. Experiments on real data sets and theoretical analysis indicate the advantages, feasibility, and potential of the proposed method. Moreover, based on the results achieved by various traditional algorithms, respectively, deep learning can further improve the detection performance.
Semi-supervised learning of compact document representations with deep networks Finding good representations of text documents is crucial in information retrieval and classification systems. Today the most popular document representation is based on a vector of word counts in the document. This representation neither captures dependencies between related words, nor handles synonyms or polysemous words. In this paper, we propose an algorithm to learn text document representations based on semi-supervised autoencoders that are stacked to form a deep network. The model can be trained efficiently on partially labeled corpora, producing very compact representations of documents, while retaining as much class information and joint word statistics as possible. We show that it is advantageous to exploit even a few labeled samples during training.
Loss Functions for Discriminative Training of Energy-Based Models. Probabilistic graphical models associate a prob- ability to each configuration of the relevant vari- ables. Energy-based models (EBM) associate an energy to those configurations, eliminating the need for proper normalization of probability dis- tributions. Making a decision (an inference) with an EBM consists in comparing the energies asso- ciated with various configurations of the variable to be predicted, and choosing the one with the smallest energy. Such systems must be trained discriminatively to associate low energies to the desired configurations and higher energies to un- desired configurations. A wide variety of loss function can be used for this purpose. We give sufficient conditions that a loss function should satisfy so that its minimization will cause the sys- tem to approach to desired behavior. We give many specific examples of suitable loss func- tions, and show an application to object recog- nition in images.
A study of replacement algorithms for a virtual-storage computer One of the basic limitations of a digitalcomputer is the size of its available memory.'I n most cases, it is neither feasible nor economical for a user to insist that every problem program fit into memory. The number of words of information in a pro-gramoften exceeds the number of cells (i. e., word locations) in memory. The only way to solve this problem is to assign more than one program word to a cell. Since a cell can hold only one word at a time, extra words assigned tothe cell must be held inexternalstorage. Conventionally, overlay techniques are em-ployed to exchange memory words and external-storage words whenever needed; this, of course, places an additional planning and coding burden on the programmer. For several reasons, it wouldbe advantageous to rid the programmer of thisfunction by providing him witha'virtual" memory larger than his pro-gram. An approach that permits him to use a sufficiently large address range can accomplish this objective, assuming that means are provided for automatic execution of the memory-overlay functions. Among the first and most promising of the large-address approaches is the one described byKilburn, et a1.'A similar for framework, the relative merits of various specific algorithms are compared. Before
The case for RAMClouds: scalable high-performance storage entirely in DRAM Disk-oriented approaches to online storage are becoming increasingly problematic: they do not scale gracefully to meet the needs of large-scale Web applications, and improvements in disk capacity have far outstripped improvements in access latency and bandwidth. This paper argues for a new approach to datacenter storage called RAMCloud, where information is kept entirely in DRAM and large-scale systems are created by aggregating the main memories of thousands of commodity servers. We believe that RAMClouds can provide durable and available storage with 100-1000x the throughput of disk-based systems and 100-1000x lower access latency. The combination of low latency and large scale will enable a new breed of dataintensive applications.
Optimal prefetching via data compression Caching and prefetching are important mechanisms for speeding up access time to data on secondary storage. Recent work in competitive online algorithms has uncovered several promising new algorithms for caching. In this paper, we apply a form of the competitive philosophy for the first time to the problem of prefetching to develop an optimal universal prefetcher in terms of fault rate, with particular applications to large-scale databases and hypertext systems. Our prediction algorithms with particular applications to large-scale databases and hypertext systems. Our prediction algorithms for prefetching are novel in that they are based on data compression techniques that are both theoretically optimal and good in practice. Intuitively, in order to compress data effectively, you have to be able to predict future data well, and thus good data compressors should be able to predict well for purposes of prefetching. We show for powerful models such as Markov sources and mthe order Markov sources that the page fault rate incurred by our prefetching algorithms are optimal in the limit for almost all sequences of page requests.
Generating User Interfaces from Formal Specifications of the Application The generation of the dialogue description from an algebraic specification of the application and its restrictions to different user groups are presented. The idea and motivation for the work is that the development of the application and the UI has to go hand in hand. Moreover, the UI should be generated since the programming of UIs is a time consuming and error-prone task. A formal specification of an ap- plication, characterizing the application in an abstract way, allows the automatic analyses and the generation of specifications, describing the dynamic behaviour of the UI. The generated (dynamic) specification can be used as an input for an exist- ing UI Generator (UIG), called BOSS, which is part of a formal UI development environment, called FUSE.
Pedestrian Detection With Deep Convolutional Neural Network The problem of pedestrian detection in image and video frames has been extensively investigated in the past decade. However, the low performance in complex scenes shows that it remains an open problem. In this paper, we propose to cascade simple Aggregated Channel Features (ACF) and rich Deep Convolutional Neural Network (DCNN) features for efficient and effective pedestrian detection in complex scenes. The ACF based detector is used to generate candidate pedestrian windows and the rich DCNN features are used for fine classification. Experiments show that the proposed approach achieved leading performance in the INRIA dataset and comparable performance to the state-of-the-art in the Caltech and ETH datasets.
1.103556
0.053556
0.009222
0.003068
0.001778
0.000341
0.000104
0.000014
0.000002
0
0
0
0
0
The emerging paradigm shift in storage system architectures The challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. Currently dominant, large-scale storage architectures, built around central, shared storage systems with CPU-connected devices are reaching economic and technological limitations and no longer meet performance, capacity, and transparency requirements. This paper briefly reviews models of historical scientific and technological paradigm shifts and describes why the authors believe such a paradigm shift is underway in storage system architectures. The paper describes the requirements to be met, important technical problems being investigated, such as network-connected devices, use of storage hierarchies, and system management, and the characteristics of the emerging large-scale, distributed, storage-architecture paradigm, illustrated with actual implementations and with standards work under way in the IEEE Storage System Standards Working Group.
Extending Unix for scalable computing Because it retrieves all instructions and data from a single memory, the von Neumann computer architecture has a fundamental speed limit. The scalable multicomputer architecture, which uses many microprocessors together to solve a single problem and can run at teraflop speeds, may be a solution. While teraflop processor technology is known, the scalable operating and I/O system technology necessary for those speeds are not known. The authors describe how Unix can be extended to scalable computing, permitting teraflop speeds and offering parallel computing to users unfamiliar with parallel programming. They designed this technology into the system software of the Ncube-2, the predecessor to Ncube's announced teraflop parallel computer. The authors describe the system in detail and provide some performance results.<>
Storage systems for national information assets An industry-led collaborative project, called the National Storage Laboratory (NSL), has been organized to investigate technology for storage systems that will be the future repositories for the national information assets. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) is the operational site and the provider of applications. It is anticipated that the integrated testbed system will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte class files at gigabit-per-second data rates. The NSL collaboration is undertaking research in four areas: network-attached storage; multiple, dynamic, distributed storage hierarchies; layered access to storage system services; and storage system management. An overview of the prototype storage system is given. Three application domains have been chosen to test and demonstrate the system's effect on scientific productivity; climatic models, magnetic fusion energy models, and digital imaging
Striped Tape Arrays A growing number of applications require high capacity, high throughput tertiary storage systems. We are investigating how data striping ideas apply to arrays of magnetic tape drives. Data striping increases throughput and reduces response time for large accesses to a storage system. Striped magnetic tape systems are particularly appealing because many inexpensive magnetic tape drives have low bandwidth; striping may offer dramatic performance improvements for these systems. There are several important issues in designing striped tape systems: the choice of tape drives and robots, whether to stripe within or between robots, and the choice of the best scheme for distributing data on cartridges. One of the most troublesome problems in striped tape arrays is the synchronization of transfers across tape drives. Another issue is how improved devices will affect the desirability of striping in the future. We present the results of simulations comparing the performance of striped tape systems to non-striped systems.
A Cost-effective Near-line Storage Server for Multimedia System We consider a storage server architecture for multimedia information systems. While most other works on multimedia storage servers assume on-line disk storage, we consider a two-tier storage architecture with a robotic tape library as the vast near-line storage and on-line disks as the front-line storage. Magnetic tapes are cheaper, more robust, and have a larger capacity; hence they are more cost effective for large scale storage systems (e.g., video on demand (VOD) systems may store tens of thousands of videos). We study in detail the design issues of the tape subsystem and propose some novel tape scheduling algorithms which give faster response and require less disk buffering.
Staggered Striping in Multimedia Information Systems Multimedia information systems have emerged as an essential component of many application domains ranging from library information systems to entertainment technology. However, most implementations of these systems cannot support the continuous display of multimedia objects and suffer from frequent disruptions and delays termed hiccups. This is due to the low I/O bandwidth of the current disk technology, the high bandwidth requirement of multimedia objects, and the large size of these objects that almost always requires them to be disk resident. One approach to resolve this limitation is to decluster a multimedia object across multiple disk drives in order to employ the aggregate bandwidth of several disks to support the continuous retrieval (and display) of objects. This paper describes staggered striping as a novel technique to provide effective support for multiple users accessing the different objects in the database. Detailed simulations confirm the superiority of staggered striping.
An evaluation of redundant arrays of disks using an Amdahl 5890 Recently we presented several disk array architectures designed to increase the data rate and I/O rate of supercomputing applications, transaction processing, and filesystems (Patterson 88). In this paper we present a hardware performance measure- ment of two of these architectures, mirroring and rotated parity. We see how throughput for these two architectures is affected by response time requirements, request sizes, and read to write ratios. We findthat for applications with large accesses, such as many supercomputingapplications, a rotated parity disk array far outperforms traditional mirroring architecture. For applications dominated by small accesses, such as transaction processing, mir- roring architectures have higher performance per disk than rotated parity architectures. 1. The I/O Crisis Over the past decade, processing speed, memory speed, memory capacity, and disk capacity have all grown tremendously: Single chip processors have increased in speed at the rate of 40%-100% per year (Bell 84, Joy 85). Caches have increased in speed 40% to 100% per year. Main memory has quadrupled in capacity every two or three years (Moore 75, Myers 86).
Traveling to Rome: QoS Specifications for Automated Storage System Management The design and operation of very large-scale storage systems is an area ripe for application of automated design and management techniques - and at the heart of such techniques is the need to represent storage system QoS in many guises: the goals (service level requirements) for the storage system, predictions for the design that results, enforcement constraints for the runtime system to guarantee, and observations made of the system as it runs. Rome is the information model that the Storage Systems Program at HP Laboratories has developed to address these needs. We use it as an "information bus" to tie together our storage system design, configuration, and monitoring tools. In 5 years of development, Rome is now on its third iteration; this paper describes its information model, with emphasis on the QoS-related components, and presents some of the lessons we have learned over the years in using it.
Dynamic Data Distribution (D3) in a Shared-Nothing Multiprocessor Data Store
A status report on research in transparent informed prefetching This paper focuses on extending the power of caching and prefetching to reduce file read latencies by exploiting application level hints about future I/O accesses. We argue that systems that disclose high-level knowledge can transfer optimization information across module boundaries in a manner consistent with sound software engineering principles. Such Transparent Informed Prefetching (TIP) systems provide a technique for converting the high throughput of new technologies such as disk arrays and log-structured file systems into low latency for applications. Our preliminary experiments show that even without a high-throughput I/O subsystem TIP yields reduced execution time of up to 30% for applications obtaining data from a remote file server and up to 13% for applications obtaining data from a single local disk. These experiments indicate that greater performance benefits will be available when TIP is integrated with low level resource management policies and highly parallel I/O subsystems such as disk arrays.
The fast downward planning system Fast Downward is a classical planning system based on heuristic search. It can deal with general deterministic planning problems encoded in the propositional fragment of PDDL2.2, including advanced features like ADL conditions and effects and derived predicates (axioms). Like other well-known planners such as HSP and FF, Fast Downward is a progression planner, searching the space of world states of a planning task in the forward direction. However, unlike other PDDL planning systems, Fast Downward does not use the propositional PDDL representation of a planning task directly. Instead, the input is first translated into an alternative representation called multivalued planning tasks, which makes many of the implicit constraints of a propositional planning task explicit. Exploiting this alternative representation, Fast Downward uses hierarchical decompositions of planning tasks for computing its heuristic function, called the causal graph heuristic, which is very different from traditional HSP-like heuristics based on ignoring negative interactions of operators. In this article, we give a full account of Fast Downward's approach to solving multivalued planning tasks. We extend our earlier discussion of the causal graph heuristic to tasks involving axioms and conditional effects and present some novel techniques for search control that are used within Fast Downward's best-first search algorithm: preferred operators transfer the idea of helpful actions from local search to global best-first search, deferred evaluation of heuristic functions mitigates the negative effect of large branching factors on search performance, and multiheuristic best-first search combines several heuristic evaluation functions within a single search algorithm in an orthogonal way. We also describe efficient data structures for fast state expansion (successor generators and axiom evaluators) and present a new non-heuristic search algorithm called focused iterative-broadening search, which utilizes the information encoded in causal graphs in a novel way. Fast Downward has proven remarkably successful: It won the "classical" (i. e., propositional, non-optimising) track of the 4th International Planning Competition at ICAPS 2004, following in the footsteps of planners such as FF and LPG. Our experiments show that it also performs very well on the benchmarks of the earlier planning competitions and provide some insights about the usefulness of the new search enhancements.
Banishing Robust Turing Completeness ABSTRACT This paper proves that \promise classes" are so fragilely structured that they do not robustly (i.e. with respect to all oracles) possess Turinghard sets even in classes far larger than themselves. In particular, this paper shows that FewP does not robustly possess Turing hard sets for UP \ coUP and IP \ coIP does not robustly possess Turing hard sets for ZPP. It follows that ZPP, R, coR, UP\coUP, UP, FewP\coFewP, FewP, and IP \ coIP do not robustly possess Turing complete sets. This both resolves open questions of whether promise classes lacking robust downward closure under Turing reductions (e.g., R, UP, FewP) might robustly have Turing complete sets, and extends the range of classes known not to robustly contain many-one complete sets. Keywords: Structural complexity theory; Polynomial-time reductions;
The logical foundations of goal-regression planning in autonomous agents This paper addresses the logical foundations of goal-regression planning in autonomous rational agents. It focuses mainly on three problems. The first is that goals and subgoals will often be conjunctions, and to apply goal-regression planning to a conjunction we usually have to plan separately for the conjuncts and then combine the resulting subplans. A logical problem arises from the fact that the subplans may destructively interfere with each other. This problem has been partially solved in the AI literature (e.g., in SNLP and UCPOP), but the solutions proposed there work only when a restrictive assumption is satisfied. This assumption pertains to the computability of threats. It is argued that this assumption may fail for an autonomous rational agent operating in a complex environment. Relaxing this assumption leads to a theory of defeasible planning. The theory is formulated precisely and an implementation in the OSCAR architecture is discussed. The second problem is that goal-regression planning proceeds in terms of reasoning that runs afoul of the Frame Problem. It is argued that a previously proposed solution to the Frame Problem legitimizes goal-regression planning, but also has the consequence that some restrictions must be imposed on the logical form of goals and subgoals amenable to such planning. These restrictions have to do with temporal-projectibility. The third problem is that the theory of goal-regression planning found in the AI literature imposes restrictive syntactical constraints on goals and subgoals and on the relation of logical consequence. Relaxing these restrictions leads to a generalization of the notion of a threat, related to collective defeat in defeasible reasoning. Relaxing the restrictions also has the consequence that the previously adequate definition of Òexpectable-resultÓ no longer guarantees closure under logical consequence, and must be revised accordingly. That in turn leads to the need for an additional rule for goal-regression planning. Roughly, the rule allows us to plan for the achievement of a goal by searching for plans that will achieve states that ÒcauseÓ the goal. Such a rule was not previously necessary, but becomes necessary when the syntactical constraints are relaxed. The final result is a general semantics for goal-regression planning and a set of procedures that is provably sound and complete. It is shown that this semantics can easily handle concurrent actions, quantified preconditions and effects, creation and destruction of objects, and causal connections embodying complex temporal relationships.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.217819
0.073944
0.055565
0.002401
0.001439
0.000427
0.000187
0.000069
0.000022
0.000002
0
0
0
0
Learning real-time ambient occlusion from distance representations. The computation of partial occlusion, as required for ambient occlusion or soft shadows, provides visually important cues but is notoriously expensive. In this paper we propose a novel solution to the ambient occlusion problem, combining signed distance scene representations and machine learning. We demonstrate how to learn and apply mappings which approximate a ray traced ground truth occlusion using only a few nearby samples of a signed distance representation. As representation for our trained mappings we use small feed-forward neural networks which are fast to evaluate, allowing for real-time occlusion queries. Our ambient occlusion approximation outperforms state-of-the-art methods in both quality and performance, yielding temporally stable and smooth results. Since our training data is different from typical machine learning approaches which mostly deal with 2D/3D image data and our techniques are also applicable to other occlusion problems (e.g. soft shadows), we give an in-depth overview of our framework. Furthermore, we discuss arising artifacts and possible extensions of our approach.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Planning in highly dynamic environments: an anytime approach for planning under time constraints In this paper, we present a novel and domain-independent planner aimed at working in highly dynamic environments with time constraints. The planner follows the anytime principles: a first solution can be quickly computed and the quality of the final plan is improved as long as time is available. This way, the planner can provide either fast reactions or very good quality plans depending on the demands of the environment. As an on-line planner, it also offers important advantages: our planner allows the plan to start its execution before it is totally generated, unexpected events are efficiently tackled during execution, and sensing actions allow the acquisition of required information in partially observable domains. The planning algorithm is based on problem decomposition and relaxation techniques. The traditional relaxed planning graph has been adapted to this on-line framework by considering information about sensing actions and action costs. Results also show that our planner is competitive with other top-performing classical planners.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
The expressive powers of stable models for bound and unbound DATALOG queries Various types of stable models are known in the literature: T-stable ( total stable ), P-stable ( partial stable , also called three-valued stable ), M-stable ( maximal stable , also known under various different names), and L-stable ( least undefined stable ). For each type of stable model, the paper analyzes two versions of deterministic semantics: possible semantics, which is based on the union of all stable models of the given type, and definite semantics, which is instead based on their intersection and is like classical certain semantics except that it makes no inference if no model exists. For total stable models, which are the only type of stable models whose existence is not guaranteed for every program, certain semantics is taken into account as well. The expressive powers of each type of stable model under the above versions of semantics are investigated for both bound (i.e., ground) and unbound queries on DATALOG programs with negation. As deterministic semantics is argued to be inappropriate for unbound queries, a non-deterministic semantics is also proposed for them and its expressive power is fully characterized as well.
Why not negation by fixpoint? There is a fixpoint semantics for DATALOG programs with negation that is a natural generalization of the standard semantics for DATALOG programs without negation. We show that, unfortunately, several compelling complexity-theoretic obstacles rule out its efficient implementation. As an alternative, we propose Inflationary DATALOG, an efficiently implementable cemantics for negation,based on inflationarv flxpoints.
The complexity of selecting maximal solutions Many important computational problems involve finding a maximal (with respect to set inclusion) solution in some combinatorial context. We study such maximality problems from the complexity point of view, and categorize their complexity precisely in terms of tight upper and lower bounds. Our results give characterizations of coNP, D P , Π P 2 , FP NP || , FNP//OptP [log n ] and FP Σ P || 2 in terms of subclasses of maximality problems. An important consequence of our results is that finding an X -minimal satisfying truth assignment for a given CNF boolean formula is complete for FNP//OptP[log n ], solving an open question by Papadimitriou [ Proceedings of the 32nd IEEE Symposium on the Foundations of Computer Science , 1991, pp. 163-169].
The well-founded semantics for general logic programs A general logic program (abbreviated to “program” hereafter) is a set of roles that have both positive and negative subgoals. It is common to view a deductive database as a general logic program consisting of rules (IDB) slttmg above elementary relations (EDB, facts). It is desirable to associate one Herbrand model with a program and think of that model as the “meaning of the program, ” or Its“declarative semantics. ” Ideally, queries directed to the program would be answered in accordance with this model. Recent research indicates that some programs do not have a “satisfactory” total model; for such programs, the question of an appropriate partial model arises. Unfounded sets and well-founded partial models are introduced and the well-founded semantics of a program are defined to be its well-founded partial model. If the well-founded partial model is m fact a total model. it is called the well-founded model. It n shown that the class of programs possessing a total well-founded model properly includes previously studied classes of “stratified” and “locally stratified” programs,The method in this paper is also compared with other proposals in the literature, including Clark’s“program completion, ” Fitting’s and Kunen’s 3-vahred interpretations of it, and the “stable models”of Gelfond and Lifschitz.
Extended stable semantics for normal and disjunctive programs
Feasibility of a serverless distributed file system deployed on an existing set of desktop PCs We consider an architecture for a serverless distributed file system that does not assume mutual trust among the client computers. The system provides security, availability, and reliability by distributing multiple encrypted replicas of each file among the client machines. To assess the feasibility of deploying this system on an existing desktop infrastructure, we measure and analyze a large set of client machines in a commercial environment. In particular, we measure and report results on disk usage and content; file activity; and machine uptimes, lifetimes, and loads. We conclude that the measured desktop infrastructure would passably support our proposed system, providing availability on the order of one unfilled file request per user per thousand days.
Partitioning and Mapping Algorithms into Fixed Size Systolic Arrays A technique for partitioning and mapping algorithms into VLSI systolic arrays is presented in this paper. Algorithm partitioning is essential when the size of a computational problem is larger than the size of the VLSI array intended for that problem. Computational models are introduced for systolic arrays and iterative algorithms. First, we discuss the mapping of algorithms into arbitrarily large size VLSI arrays. This mapping is based on the idea of algorithm transformations. Then, we present an approach to algorithm partitioning which is also based on algorithm transformations. Our approach to the partitioning problem is to divide the algorithm index set into bands and to map these bands into the processor space. The partitioning and mapping technique developed throughout the paper is summarized as a six step procedure. A computer program implementing this procedure was developed and some results obtained with this program are presented.
Indexing By Latent Semantic Analysis
Disk Shadowing Disk shadowing is a technique for maintaining a set of two or more identical disk images on separate disk devices. Its primary purpose is to enhance reliability and availability of secondary storage by providing multiple paths to redundant data. However, shadowing can also boost I/O performance. In this paper, we contend that intelligent device scheduling of shadowed discs increases the I/O rate by allowing parallel reads and by substantially reducing the average seek time for random reads. In particular, we develop and analytic model which shows that the seek time for a random read in a shadow set is a monotonic decreasing function of the number of disks.
Fine-Grained Mobility in the Emerald System (Extended Abstract)
Normal forms for answer sets programming Normal forms for logic programs under stable/answer set semantics are introduced. We argue that these forms can simplify the study of program properties, mainly consistency. The first normal form, called the kernel of the program, is useful for studying existence and number of answer sets. A kernel program is composed of the atoms which are undefined in the Well-founded semantics, which are those that directly affect the existence of answer sets. The body of rules is composed of negative literals only. Thus, the kernel form tends to be significantly more compact than other formulations. Also, it is possible to check consistency of kernel programs in terms of colorings of the Extended Dependency Graph program representation which we previously developed. The second normal form is called 3-kernel. A 3-kernel program is composed of the atoms which are undefined in the Well-founded semantics. Rules in 3-kernel programs have at most two conditions, and each rule either belongs to a cycle, or defines a connection between cycles. 3-kernel programs may have positive conditions. The 3-kernel normal form is very useful for the static analysis of program consistency, i.e. the syntactic characterization of existence of answer sets. This result can be obtained thanks to a novel graph-like representation of programs, called Cycle Graph which presented in the companion article Costantini (2004b).
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
Parameterized complexity for the database theorist
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.2
0.028571
0.028571
0.003704
0
0
0
0
0
0
0
0
0
0
Lossless-constraint Denoising based Auto-encoders. In this paper, we address the poor generalization ability problem of traditional auto-encoder on noise data, and propose a Lossless-constraint Denoising (LD) method, which can enhance the anti-noise ability and robustness of auto-encoders. We respectively utilize the denoising capability of Denoising Auto-encoder (DAE) and Sparse Auto-encoder (SAE), design two auto-encoders of better noise immunity: Lossless-constraint Denoising Auto-encoder (LDAE) and Lossless-constraint Denoising Sparse Auto-encoder (LDSAE).
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Improved Personalized Rankings Using Implicit Feedback Most users give feedback through a mixture of implicit and explicit information when interacting with websites. Recommender systems should use both sources of information to improve personalized recommendations. In this paper, it is shown how to integrate implicit feedback information in form of pairwise item rankings into a neural network model to improve personalized item recommendations. The proposed two-sided approach allows the model to be trained even for users where no explicit feedback is available. This is especially useful to alleviate a form of the new user cold-start problem. The experiments indicate an improved predictive performance especially for the task of personalized ranking.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Research of stacked denoising sparse autoencoder. Learning results depend on the representation of data, so how to efficiently represent data has been a research hot spot in machine learning and artificial intelligence. With the deepening of the deep learning research, studying how to train the deep networks to express high dimensional data efficiently also has been a research frontier. In order to present data more efficiently and study how to express data through deep networks, we propose a novel stacked denoising sparse autoencoder in this paper. Firstly, we construct denoising sparse autoencoder through introducing both corrupting operation and sparsity constraint into traditional autoencoder. Then, we build stacked denoising sparse autoencoders which has multi-hidden layers by layer-wisely stacking denoising sparse autoencoders. Experiments are designed to explore the influences of corrupting operation and sparsity constraint on different datasets, using the networks with various depth and hidden units. The comparative experiments reveal that test accuracy of stacked denoising sparse autoencoder is much higher than other stacked models, no matter what dataset is used and how many layers the model has. We also find that the deeper the network is, the less activated neurons in every layer will have. More importantly, we find that the strengthening of sparsity constraint is to some extent equal to the increase in corrupted level.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
An Approach to Knowledge-Based Verification of Actions in Planning of Cognitive Agents' Behavior The problem of planning actions carried out by cognitive agent is discussed. Plan is a sequence of actions that are executed to achieve agent's intentions. The module of plans' verification and choice is presented. The method of the measure of success rate of plans' execution is proposed.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Disk placement for arbitrary-rate playback in an interactive video server Multimedia data, especially continuous media including video and audio objects, represent a rich and natural stimulus for humans, but require large amount of storage capacity and real-time processing. In this paper, we describe how to organize video data efficiently on multiple disks in order to support arbitrary-rate playback requested by different users independently. Our approach is to segment and decluster video objects and to place the segments in multiple disks using a restricted round-robin scheme, called prime round-robin (PRR). Its placement scheme provides uniform load balance of disks for arbitrary retrieval rate as well as normal playback, since it eliminates hot spots. Moreover, it does not require any additional disk bandwidth to support VCR-like operations such as fast-forward and rewind. We have studied the various effects of placement and retrieval schemes in a storage server by simulation. The results show that PRR offers even disk accesses, and the failure in reading segment by deadline occurs only at the beginning of new operations. In addition, the number of users admitted is not decreased, regardless of arbitrary-rate playback requests.
Spatio-temporal effects of multimedia objects storage and delivery for video-on-demand systems As the number of video streams to be supported by a digital video delivery system (DVDS) increases, an improved understanding of the necessity for reliable and cost-efficient support for a considerable number of video streams (in the magnitude of tens of thousands), and the dependency largely on software capabilities emerges. Even in the presence of an optimal hardware configuration, or model, and associated costs, using software to exploit the underlying hardware capabilities is of paramount importance. Although a number of DVDSs have become operational, their ability to deliver the required services mainly depends on the small number of streams supported and the hardware trade-offs. It is imperative that current software developments account for the eventual scalability of the number of video streams without commensurate increase in hardware. In this paper, we present strategies for the management of video streams in order to maintain and satisfy their space and time requirements. We use a DVDS architectural model with functionally dichotomized nodes: a single-node partition is responsible for data retrieval, while the remaining partition of nodes accepts user requests, determines object locations, and routes requests through the network that connects both partitions. We present a detailed analysis of the issues related to queuing I/O requests and data buffering. The discussion includes the requirements for arranging and scheduling I/O requests and data buffers, with the objective of guaranteeing the required data availability rates for continuous media display.
An evaluation of design trade-offs in a high-performance, media-on-demand server We present a high-performance solution to the I/O retrieval problem in a distributed multimedia system. Parallelism of data retrieval is achieved by striping the data across multiple disks. We identify the components that contribute to media data-retrieval delay. The variable delays among these have a great bearing on the server throughput under varying load conditions. We present a buffering scheme to minimize these variations. We have implemented our model on the Intel Paragon parallel computer. The results of componentwise instrumentation of the server operation are presented and analyzed. Experimental results that demonstrate the efficacy of the buffering scheme are presented. Based on our experiments, a dynamic admission-control policy that takes server workloads into account is proposed.
A case for redundant arrays of inexpensive disks (RAID) Increasing performance of CPUs and memories will be squandered if not matched by a similar performance increase in I/O. While the capacity of Single Large Expensive Disks (SLED) has grown rapidly, the performance improvement of SLED has been modest. Redundant Arrays of Inexpensive Disks (RAID), based on the magnetic disk technology developed for personal computers, offers an attractive alternative to SLED, promising improvements of an order of magnitude in performance, reliability, power consumption, and scalability. This paper introduces five levels of RAIDs, giving their relative cost/performance, and compares RAID to an IBM 3380 and a Fujitsu Super Eagle.
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Feasibility of a serverless distributed file system deployed on an existing set of desktop PCs We consider an architecture for a serverless distributed file system that does not assume mutual trust among the client computers. The system provides security, availability, and reliability by distributing multiple encrypted replicas of each file among the client machines. To assess the feasibility of deploying this system on an existing desktop infrastructure, we measure and analyze a large set of client machines in a commercial environment. In particular, we measure and report results on disk usage and content; file activity; and machine uptimes, lifetimes, and loads. We conclude that the measured desktop infrastructure would passably support our proposed system, providing availability on the order of one unfilled file request per user per thousand days.
Partitioning and Mapping Algorithms into Fixed Size Systolic Arrays A technique for partitioning and mapping algorithms into VLSI systolic arrays is presented in this paper. Algorithm partitioning is essential when the size of a computational problem is larger than the size of the VLSI array intended for that problem. Computational models are introduced for systolic arrays and iterative algorithms. First, we discuss the mapping of algorithms into arbitrarily large size VLSI arrays. This mapping is based on the idea of algorithm transformations. Then, we present an approach to algorithm partitioning which is also based on algorithm transformations. Our approach to the partitioning problem is to divide the algorithm index set into bands and to map these bands into the processor space. The partitioning and mapping technique developed throughout the paper is summarized as a six step procedure. A computer program implementing this procedure was developed and some results obtained with this program are presented.
Efficient sparse coding algorithms Sparse coding provides a class of algorithms for finding succinct representations of stimuli; given only unlabeled input data, it discovers basis functions that cap- ture higher-level features in the data. However, finding sparse codes remains a very difficult computational problem. In this paper, we present efficient sparse coding algorithms that are based on iteratively solving two convex optimization problems: an L1-regularized least squares problem and an L2-constrained least squares problem. We propose novel algorithms to solve both of these optimiza- tion problems. Our algorithms result in a significant speedup for sparse coding, allowing us to learn larger sparse codes than possible with previously described algorithms. We apply these algorithms to natural images and demonstrate that the inferred sparse codes exhibit end-stopping and non-classical receptive field sur- round suppression and, therefore, may provide a partial explanation for these two phenomena in V1 neurons.
Synchronized Disk Interleaving A group of disks may be interleaved to speed up data transfers in a manner analogous to the speedup achieved by main memory interleaving. Conventional disks may be used for interleaving by spreading data across disks and by treating multiple disks as if they were a single one. Furthermore, the rotation of the interleaved disks may be synchronized to simplify control and also to optimize performance. In addition, check- sums may be placed on separate check-sum disks in order to improve reliability. In this paper, we study synchronized disk interleaving as a high-performance mass storage system architecture. The advantages and limitations of the proposed disk interleaving scheme are analyzed using the M/G/1 queueing model and compared to the conventional disk access mechanism.
Downward Separation Fails Catastrophically for Limited Nondeterminism Classes The $\beta$ hierarchy consists of classes $\beta_k={\rm NP}[logkn]\subseteq {\rm NP}$. Unlike collapses in the polynomial hierarchy and the Boolean hierarchy, collapses in the $\beta$ hierarchy do not seem to translate up, nor does closure under complement seem to cause the hierarchy to collapse. For any consistent set of collapses and separations of levels of the hierarchy that respects ${\rm P} = \beta_1\subseteq \beta_2\subseteq \cdots \subseteq {\rm NP}$, we can construct an oracle relative to which those collapses and separations hold; at the same time we can make distinct levels of the hierarchy closed under computation or not, as we wish. To give two relatively tame examples: for any $k \geq 1$, we construct an oracle relative to which \[ {\rm P} = \beta_{k} \neq \beta_{k+1} \neq \beta_{k+2} \neq \cdots \] and another oracle relative to which \[ {\rm P} = \beta_{k} \neq \beta_{k+1} = {\rm PSPACE}. \] We also construct an oracle relative to which $\beta_{2k} = \beta_{2k+1} \neq \beta_{2k+2}$ for all k.
Normal forms for answer sets programming Normal forms for logic programs under stable/answer set semantics are introduced. We argue that these forms can simplify the study of program properties, mainly consistency. The first normal form, called the kernel of the program, is useful for studying existence and number of answer sets. A kernel program is composed of the atoms which are undefined in the Well-founded semantics, which are those that directly affect the existence of answer sets. The body of rules is composed of negative literals only. Thus, the kernel form tends to be significantly more compact than other formulations. Also, it is possible to check consistency of kernel programs in terms of colorings of the Extended Dependency Graph program representation which we previously developed. The second normal form is called 3-kernel. A 3-kernel program is composed of the atoms which are undefined in the Well-founded semantics. Rules in 3-kernel programs have at most two conditions, and each rule either belongs to a cycle, or defines a connection between cycles. 3-kernel programs may have positive conditions. The 3-kernel normal form is very useful for the static analysis of program consistency, i.e. the syntactic characterization of existence of answer sets. This result can be obtained thanks to a novel graph-like representation of programs, called Cycle Graph which presented in the companion article Costantini (2004b).
A cost-benefit scheme for high performance predictive prefetching
When Multivariate Forecasting Meets Unsupervised Feature Learning - Towards a Novel Anomaly Detection Framework for Decision Support. Many organizations adopt information technologies to make intelligent decisions during operations. Time-series data plays a crucial role in supporting such decision making processes. Though current studies on time-series based decision making provide reasonably well results, the anomaly detection essence underling most of the scenarios and the plenitude of unlabeled data are largely overlooked and left unexplored. We argue that by using multivariate forecasting and unsupervised feature learning, these two important research gaps could be filled. We carried out two experiments in this study to testify our approach and the results showed that decision support performance was significantly improved. We also proposed a novel framework to integrate the two methods so that our approach may be generalized to a larger problem domain. We discussed the advantages, the limitations and the future work of our study. Both practical and theoretical contributions were also discussed in the paper. © 2012 by the AIS/ICIS Administrative Office All rights reserved.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.111111
0.111111
0.066667
0.000365
0
0
0
0
0
0
0
0
0
0
Large Margin Deep Neural Networks: Theory and Algorithms
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Local-search Extraction of MUSes SAT is probably one of the most-studied constraint satisfaction problems. In this paper, a new hybrid technique based on local search is introduced in order to approximate and extract minimally unsatisfiable subformulas (in short, MUSes) of unsatisfiable SAT instances. It is based on an original counting heuristic grafted to a local search algorithm, which explores the neighborhood of the current interpretation in an original manner, making use of a critical clause concept. Intuitively, a critical clause is a falsified clause that becomes true thanks to a local search flip only when some other clauses become false at the same time. In the paper, the critical clause concept is investigated. It is shown to be the cornerstone of the efficiency of our approach, which outperforms competing ones to compute MUSes, inconsistent covers and sets of MUSes, most of the time.
Linear-Time Reductions of Resolution Proofs DPLL-based SAT solvers progress by implicitly applying binary resolution. The resolution proofs that they generate are used, after the SAT solver's run has terminated, for various purposes. Most notable uses in formal verification are: extracting an unsatisfiable core , extracting an interpolant , and detecting clauses that can be reused in an incremental satisfiability setting (the latter uses the proof only implicitly, during the run of the SAT solver). Making the resolution proof smaller can benefit all of these goals. We suggest two methods that are linear in the size of the proof for doing so. Our first technique, called Recycle-Units , uses each learned constant (unit clause) (x ) for simplifying resolution steps in which x was the pivot, prior to when it was learned. Our second technique, called Recycle-Pivots , simplifies proofs in which there are several nodes in the resolution graph, one of which dominates the others, that correspond to the same pivot. Our experiments with industrial instances show that these simplifications reduce the core by ≈ 5% and the proof by ≈ 13%. It reduces the core less than competing methods such as run-till-fix , but whereas our algorithms are linear in the size of the proof, the latter and other competing techniques are all exponential as they are based on SAT runs. If we consider the size of the proof graph as being polynomial in the number of variables (it is not necessarily the case in general), this gives our method an exponential time reduction comparing to existing tools for small core extraction. Our experiments show that this result is evident in practice more so for the second method: rarely it takes more than a few seconds, even when competing tools time out, and hence it can be used as a cheap proof post-processing procedure.
Deriving small unsatisfiable cores with dominators The problem of finding a small unsatisfiable core of an unsatisfiable CNF formula is addressed. The proposed algorithm, Trimmer, iterates over each internal node d in the resolution graph that ‘consumes' a large number of clauses M (i.e. a large number of original clauses are present in the unsat core only for proving d) and attempts to prove them without the M clauses. If this is possible, it transforms the resolution graph into a new graph that does not have the M clauses at its core. Trimmer can be integrated into a fixpoint framework similarly to Malik and Zhang's fix-point algorithm (run_till_fix). We call this option trim_till_fix. Experimental evaluation on a large number of industrial CNF unsatisfiable formulas shows that trim_till_fix doubles, on average, the number of reduced clauses in comparison to run_till_fix. It is also better when used as a component in a bigger system that enforces short timeouts.
Extracting MUCs from Constraint Networks We address the problem of extracting Minimal Unsatisfiable Cores (MUCs) from constraint networks. This computationally hard problem has a practical interest in many application domains such as configuration, planning, diagnosis, etc. Indeed, identifying one or several disjoint MUCs can help circumscribe different sources of inconsistency in order to repair a system. In this paper, we propose an original approach that involves performing successive runs of a complete backtracking search, using constraint weighting, in order to surround an inconsistent part of a network, before identifying all transition constraints belonging to a MUC using a dichotomic process. We show the effectiveness of this approach, both theoretically and experimentally.
MUP: a minimal unsatisfiability prover After establishing the unsatisfiability of a SAT instance encoding a typical design task, there is a practical need to identify its minimal unsatisfiable subsets, which pinpoint the reasons for the infeasibility of the design. Due to the potentially expensive computation, existing tools for the extraction of unsatisfiable subformulas do not guarantee the minimality of the results. This paper describes a practical algorithm that decides the minimal unsatisfiability of any CNF formula through BDD manipulation. This algorithm has a worse-case complexity that is exponential only in the treewidth of the CNF formula. We provide an empirical evaluation of the algorithm, highlighting its efficiency on a set of hard problems as well as its ability to work with existing subformula extraction tools to achieve optimal results.
AMUSE: a minimally-unsatisfiable subformula extractor This paper describes a new algorithm for extracting unsatisfiable subformulas from a given unsatisfiable CNF formula. Such unsatisfiable "cores" can be very helpful in diagnosing the causes of infeasibility in large systems. Our algorithm is unique in that it adapts the "learning process" of a modern SAT solver to identify unsatisfiable subformulas rather than search for satisfying assignments. Compared to existing approaches, this method can be viewed as a bottom-up core extraction procedure which can be very competitive when the core sizes are much smaller than the original formula size. Repeated runs of the algorithm with different branching orders yield different cores. We present experimental results on a suite of large automotive benchmarks showing the performance of the algorithm and highlighting its ability to locate not just one but several cores.
Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference A formula (in conjunctive normal form) is said to be minimal unsatisfiable if it is unsatisfiable and deleting any clause makes it satisfiable. The deficiency of a formula is the difference of the number of clauses and the number of variables. It is known that every minimal unsatisfiable formula has positive deficiency. Until recently, polynomial-time algorithms were known to recognize minimal unsatisfiable formulas with deficiency 1 and 2. We state an algorithm which recognizes minimal unsatisfiable formulas with any fixed deficiency in polynomial time.
Intriactability of Read-Once Resolution
Solving #SAT using vertex covers We propose an exact algorithm for counting the models of propositional formulas in conjunctive normal form (CNF). Our algorithm is based on the detection of strong backdoor sets of bounded size; each instantiation of the variables of a strong backdoor set puts the given formula into a class of formulas for which models can be counted in polynomial time. For the backdoor set detection we utilize an efficient vertex cover algorithm applied to a certain “obstruction graph” that we associate with the given formula. This approach gives rise to a new hardness index for formulas, the clustering-width. Our algorithm runs in uniform polynomial time on formulas with bounded clustering-width. It is known that the number of models of formulas with bounded clique-width, bounded treewidth, or bounded branchwidth can be computed in polynomial time; these graph parameters are applied to formulas via certain (hyper)graphs associated with formulas. We show that clustering-width and the other parameters mentioned are incomparable: there are formulas with bounded clustering-width and arbitrarily large clique-width, treewidth, and branchwidth. Conversely, there are formulas with arbitrarily large clustering-width and bounded clique-width, treewidth, and branchwidth.
The fast downward planning system Fast Downward is a classical planning system based on heuristic search. It can deal with general deterministic planning problems encoded in the propositional fragment of PDDL2.2, including advanced features like ADL conditions and effects and derived predicates (axioms). Like other well-known planners such as HSP and FF, Fast Downward is a progression planner, searching the space of world states of a planning task in the forward direction. However, unlike other PDDL planning systems, Fast Downward does not use the propositional PDDL representation of a planning task directly. Instead, the input is first translated into an alternative representation called multivalued planning tasks, which makes many of the implicit constraints of a propositional planning task explicit. Exploiting this alternative representation, Fast Downward uses hierarchical decompositions of planning tasks for computing its heuristic function, called the causal graph heuristic, which is very different from traditional HSP-like heuristics based on ignoring negative interactions of operators. In this article, we give a full account of Fast Downward's approach to solving multivalued planning tasks. We extend our earlier discussion of the causal graph heuristic to tasks involving axioms and conditional effects and present some novel techniques for search control that are used within Fast Downward's best-first search algorithm: preferred operators transfer the idea of helpful actions from local search to global best-first search, deferred evaluation of heuristic functions mitigates the negative effect of large branching factors on search performance, and multiheuristic best-first search combines several heuristic evaluation functions within a single search algorithm in an orthogonal way. We also describe efficient data structures for fast state expansion (successor generators and axiom evaluators) and present a new non-heuristic search algorithm called focused iterative-broadening search, which utilizes the information encoded in causal graphs in a novel way. Fast Downward has proven remarkably successful: It won the "classical" (i. e., propositional, non-optimising) track of the 4th International Planning Competition at ICAPS 2004, following in the footsteps of planners such as FF and LPG. Our experiments show that it also performs very well on the benchmarks of the earlier planning competitions and provide some insights about the usefulness of the new search enhancements.
Curriculum learning Humans and animals learn much better when the examples are not randomly presented but organized in a meaningful order which illustrates gradually more concepts, and gradually more complex ones. Here, we formalize such training strategies in the context of machine learning, and call them "curriculum learning". In the context of recent research studying the difficulty of training in the presence of non-convex training criteria (for deep deterministic and stochastic neural networks), we explore curriculum learning in various set-ups. The experiments show that significant improvements in generalization can be achieved. We hypothesize that curriculum learning has both an effect on the speed of convergence of the training process to a minimum and, in the case of non-convex criteria, on the quality of the local minima obtained: curriculum learning can be seen as a particular form of continuation method (a general strategy for global optimization of non-convex functions).
On unique satisfiability and the threshold behavior of randomized reductions The research presented in this paper is motivated by the following new results on the com- plexity of the unique satisfiability problem, USAT. • if USAT ≡Pm USAT, then DP = co-D P and PH collapses. • if USAT ∈ co-DP, then PH collapses. • if USAT has OR!, then PH collapses. The proofs of these results use only the fact that USAT is complete for DP under randomized reductions—even though the probability bound of these reductions may be low. Furthermore, these results show that the structural complexity of USAT and of DP many-one complete sets are very similar, and so they lend support to the argument that even sets complete under "weak" randomized reductions can capture the properties of the many-one complete sets. However, under these "weak" randomized reductions, USAT is complete for PSAT(log n) as well, and in this case, USAT does not capture the properties of the sets many-one complete for PSAT(log n). To explain this anomaly, the concept of the threshold behavior of randomized reductions is developed. Tight bounds on the thresholds are shown for NP, co-NP, DPand co-DP. Furthermore, these results can be generalized to give upper and lower bounds on the thresholds for the Boolean Hierarchy. These upper bounds are expressed in terms of Fibonacci numbers.
RAID 6 Hardware Acceleration Inexpensive, reliable hard disk storage is increasingly required in both businesses and the home. As disk capacities increase and multiple drives are combined in one system the probability of multiple disk failures increases. Through the adoption of RAID 6 the capability to recover from up to two simultaneous disk failures becomes available. In this article, we present three different RAID 6 implementations each tailored to support different target applications and optimized to reduce overall hardware resource utilization. We present an optimal Reed-Solomon-based RAID 6 implementation for arrays of four disks. We also present the smallest in terms of hardware resource utilization as well having the highest throughput RAID 6 hardware solution for disk arrays of up to 15 drives. Finally, we present an implementation supporting up to 255 disks in a single array.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.024367
0.022222
0.021127
0.015452
0.010471
0.007528
0.001558
0.000016
0.000001
0
0
0
0
0
Dynamic Multi-Resource Load Balancing in Parallel Database Systems
NCR 3700 - The Next-Generation Industrial Database Computer
Incremental recovery in main memory database systems Recovery activities, like checkpointing and restart, in traditional database management systems are performed in a quiescent state where no transactions are active. This approach impairs the performance of online transaction processing systems, especially when a large volatile memory is used. An incremental scheme for performing recovery in main memory database systems (MMDBs), in parallel with transaction execution, is presented. A page-based incremental restart algorithm that enables the resumption of transaction processing as soon as the system is up is proposed. Pages are recovered individually and according to the demands of the post-crash transactions. A method for propagating updates from main memory to the backup database on disk is also provided. The emphasis is on decoupling the I/O activities related to the propagation to disk from the forward transaction execution in memory. The authors also construct a high-level recovery manager based on operation logging on top of the page-based algorithms. The proposed algorithms are motivated by the characteristics of large MMDBs, and exploit the technology of nonvolatile RAM.
Microprocessor technology trends The rapid pace of advancement of microprocessor technology has shown no sign of diminishing, and this pace is expected to continue in the future. Recent trends in such areas as silicon technology, processor architecture and implementation, system organization, buses, higher levels of integration, self-testing, caches, coprocessors, and fault tolerance are discussed, and expectations for further ad...
Hamming Filters: A Dynamic Signature File Organization for Parallel Stores
Future trends in database systems The author discusses the likely evolution of commercial data managers over the next several years. Topics to be covered include the following: why SQL (structured query language) has become a universal standard; who can benefit from SQL standardization; why the current SQL standard has no chance of lasting; why all database systems can be distributed soon; what new technologies are likely to be commercialized; and why vendor independence may be achievable.
Optimal disk allocation for partial match queries The problem of disk allocation addresses the issue of how to distribute a file on several disks in order to maximize concurrent disk accesses in response to a partial match query. In this paper a coding-theoretic analysis of this problem is presented, and both necessary and sufficient conditions for the existence of strictly optimal allocation methods are provided. Based on a class of optimal codes, known as maximum distance separable codes, strictly optimal allocation methods are constructed. Using the necessary conditions proved, we argue that the standard definition of strict optimality is too strong and cannot be attained, in general. Hence, we reconsider the definition of optimality. Instead of basing it on an abstract definition that may not be attainable, we propose a new definition based on the best possible allocation method. Using coding theory, allocation methods that are optimal according to our proposed criterion are developed.
Continuous retrieval of multimedia data using parallelism Most implementations of workstation-based multimedia information systems cannot support a continuous display of high resolution audio and video data and suffer from frequent disruptions and delays termed hiccups. This is due to the low I/O bandwidth of the current disk technology, the high bandwidth requirement of multimedia objects, and the large size of these objects, which requires them to be almost always disk resident. A parallel multimedia information system and the key technical ideas that enable it to support a real-time display of multimedia objects are described. In this system, a multimedia object across several disk drives is declustered, enabling the system to utilize the aggregate bandwidth of multiple disks to retrieve an object in real-time. Then, the workload of an application is distributed evenly across the disk drives to maximize the processing capability of the system. To support simultaneous display of several multimedia objects for different users, two alternative approaches are described. The first approach multitasks a disk drive among several requests while the second replicates the data and dedicates resources to each individual request. The trade-offs associated with each approach are investigated using a simulation model.
Traveling to Rome: QoS Specifications for Automated Storage System Management The design and operation of very large-scale storage systems is an area ripe for application of automated design and management techniques - and at the heart of such techniques is the need to represent storage system QoS in many guises: the goals (service level requirements) for the storage system, predictions for the design that results, enforcement constraints for the runtime system to guarantee, and observations made of the system as it runs. Rome is the information model that the Storage Systems Program at HP Laboratories has developed to address these needs. We use it as an "information bus" to tie together our storage system design, configuration, and monitoring tools. In 5 years of development, Rome is now on its third iteration; this paper describes its information model, with emphasis on the QoS-related components, and presents some of the lessons we have learned over the years in using it.
RAID triple parity RAID triple parity (RTP) is a new algorithm for protecting against three-disk failures. It is an extension of the double failure correction Row-Diagonal Parity code. For any number of data disks, RTP uses only three parity disks. This is optimal with respect to the amount of redundant information required and accessed. RTP uses XOR operations and stores all data un-encoded. The algorithm's parity computation complexity is provably optimal. The decoding complexity is also much lower than that of existing comparable codes. This paper also describes a symmetric variant of the algorithm where parity computation is identical to triple reconstruction.
Protection in the Hydra Operating System This paper describes the capability based protection mechanisms provided by the Hydra Operating System Kernel. These mechanisms support the construction of user-defined protected subsystems, including file and directory subsystems, which do not therefore need to be supplied directly by Hydra. In addition, we discuss a number of well known protection problems, including Mutual Suspicion, Confinement and Revocation, and we present the mechanisms that Hydra supplies in order to solve them.
On the structure of some classes of minimal unsatisfiable formulas We investigate classes of minimal unsatisfiable formulas which are closed under splitting. For marginal formulas the equivalence to some natural classes of formulas is proved. Further, we show that maximal formulas are closely related to the so-called hitting formulas. That are formulas for which any two clauses contain a pair of complementary literals.
Want to be on the top? Algorithmic power and the threat of invisibility on Facebook. This article explores the new modalities of visibility engendered by new media, with a focus on the social networking site Facebook. Influenced by Foucault's writings on Panopticism - that is, the architectural structuring of visibility - this article argues for understanding the construction of visibility on Facebook through an architectural framework that pays particular attention to underlying software processes and algorithmic power. Through an analysis of EdgeRank, the algorithm structuring the flow of information and communication on Facebook's 'News Feed', I argue that the regime of visibility constructed imposes a perceived 'threat of invisibility' on the part of the participatory subject. As a result, I reverse Foucault's notion of surveillance as a form of permanent visibility, arguing that participatory subjectivity is not constituted through the imposed threat of an all-seeing vision machine, but by the constant possibility of disappearing and becoming obsolete.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.111973
0.084029
0.066725
0.066725
0.056215
0.033392
0.013612
0.001674
0.000047
0.000017
0.000002
0
0
0
Scaling Up Spike-and-Slab Models for Unsupervised Feature Learning We describe the use of two spike-and-slab models for modeling real-valued data, with an emphasis on their applications to object recognition. The first model, which we call spike-and-slab sparse coding (S3C), is a preexisting model for which we introduce a faster approximate inference algorithm. We introduce a deep variant of S3C, which we call the partially directed deep Boltzmann machine (PD-DBM) and extend our S3C inference algorithm for use on this model. We describe learning procedures for each. We demonstrate that our inference procedure for S3C enables scaling the model to unprecedented large problem sizes, and demonstrate that using S3C as a feature extractor results in very good object recognition performance, particularly when the number of labeled examples is low. We show that the PD-DBM generates better samples than its shallow counterpart, and that unlike DBMs or DBNs, the PD-DBM may be trained successfully without greedy layerwise training.
Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. We present a new statistical pattern recognition approach for the problem of left ventricle endocardium tracking in ultrasound data. The problem is formulated as a sequential importance resampling algorithm such that the expected segmentation of the current time step is estimated based on the appearance, shape, and motion models that take into account all previous and current images and previous segmentation contours produced by the method. The new appearance and shape models decouple the affine and nonrigid segmentations of the left ventricle to reduce the running time complexity. The proposed motion model combines the systole and diastole motion patterns and an observation distribution built by a deep neural network. The functionality of our approach is evaluated using a dataset of diseased cases containing 16 sequences and another dataset of normal cases comprised of four sequences, where both sets present long axis views of the left ventricle. Using a training set comprised of diseased and healthy cases, we show that our approach produces more accurate results than current state-of-the-art endocardium tracking methods in two test sequences from healthy subjects. Using three test sequences containing different types of cardiopathies, we show that our method correlates well with interuser statistics produced by four cardiologists.
Large-Scale Feature Learning With Spike-and-Slab Sparse Coding. We consider the problem of object recognition with a large number of classes. In order to overcome the low amount of labeled examples available in this setting, we introduce a new feature learning and extraction procedure based on a factor model we call spike-and-slab sparse coding (S3C). Prior work on S3C has not prioritized the ability to exploit parallel architectures and scale S3C to the enormous problem sizes needed for object recognition. We present a novel inference procedure for appropriate for use with GPUs which allows us to dramatically increase both the training set size and the amount of latent factors that S3C may be trained with. We demonstrate that this approach improves upon the supervised learning capabilities of both sparse coding and the spike-and-slab Restricted Boltzmann Machine (ssRBM) on the CIFAR-10 dataset. We use the CIFAR-100 dataset to demonstrate that our method scales to large numbers of classes better than previous methods. Finally, we use our method to win the NIPS 2011 Workshop on Challenges In Learning Hierarchical Models? Transfer Learning Challenge.
Tensor Deep Stacking Networks A novel deep architecture, the tensor deep stacking network (T-DSN), is presented. The T-DSN consists of multiple, stacked blocks, where each block contains a bilinear mapping from two hidden layers to the output layer, using a weight tensor to incorporate higher order statistics of the hidden binary (½0; 1) features. A learning algorithm for the T-DSN’s weight matrices and tensors is developed and described in which the main parameter estimation burden is shifted to a convex subproblem with a closed-form solution. Using an efficient and scalable parallel implementation for CPU clusters, we train sets of T-DSNs in three popular tasks in increasing order of the data size: handwritten digit recognition using MNIST (60k), isolated state/phone classification and continuous phone recognition using TIMIT (1.1 m), and isolated phone classification using WSJ0 (5.2 m). Experimental results in all three tasks demonstrate the effectiveness of the T-DSN and the associated learning methods in a consistent manner. In particular, a sufficient depth of the T-DSN, a symmetry in the two hidden layers structure in each T-DSN block, our model parameter learning algorithm, and a softmax layer on top of T-DSN are shown to have all contributed to the low error rates observed in the experiments for all three tasks.
The learning problem of multi-layer neural networks. This manuscript considers the learning problem of multi-layer neural networks (MNNs) with an activation function which comes from cellular neural networks. A systematic investigation of the partition of the parameter space is provided. Furthermore, the recursive formula of the transition matrix of an MNN is obtained. By implementing the well-developed tools in the symbolic dynamical systems, the topological entropy of an MNN can be computed explicitly. A novel phenomenon, the asymmetry of a topological diagram that was seen in Ban, Chang, Lin, and Lin (2009) [J. Differential Equations 246, pp. 552-580, 2009], is revealed.
An empirical evaluation of deep architectures on problems with many factors of variation Recently, several learning algorithms relying on models with deep architectures have been proposed. Though they have demonstrated impressive performance, to date, they have only been evaluated on relatively simple problems such as digit recognition in a controlled environment, for which many machine learning algorithms already report reasonable results. Here, we present a series of experiments which indicate that these models show promise in solving harder learning problems that exhibit many factors of variation. These models are compared with well-established algorithms such as Support Vector Machines and single hidden-layer feed-forward neural networks.
A two-layer ICA-like model estimated by score matching Capturing regularities in high-dimensional data is an important problem in machine learning and signal processing. Here we present a statistical model that learns a nonlinear representation from the data that reflects abstract, invariant properties of the signal without making requirements about the kind of signal that can be processed. The model has a hierarchy of two layers, with the first layer broadly corresponding to Independent Component Analysis (ICA) and a second layer to represent higher order structure. We estimate the model using the mathematical framework of Score Matching (SM), a novel method for the estimation of non-normalized statistical models. The model incorporates a squaring nonlinearity, which we propose to be suitable for forming a higher-order code of invariances. Additionally the squaring can be viewed as modelling subspaces to capture residual dependencies, which linear models cannot capture.
Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables. Score matching (SM) and contrastive divergence (CD) are two recently proposed methods for estimation of nonnormalized statistical methods without computation of the normalization constant (partition function). Although they are based on very different approaches, we show in this letter that they are equivalent in a special case: in the limit of infinitesimal noise in a specific Monte Carlo method. Further, we show how these methods can be interpreted as approximations of pseudolikelihood.
Learning Multilevel Distributed Representations for High-Dimensional Sequences We describe a new family of non-linear sequence models that are substantially more powerful than hidden Markov models or linear dynamical sys- tems. Our models have simple approximate in- ference and learning procedures that work well in practice. Multilevel representations of sequen- tial data can be learned one hidden layer at a time, and adding extra hidden layers improves the resulting generative models. The models can be trained with very high-dimensional, very non-linear data such as raw pixel sequences. Their performance is demonstrated using syn- thetic video sequences of two balls bouncing in a box.
The complexity of combinatorial problems with succinct input representation Several languages for the succinct representation of the instances of combinatorial problems are investigated. These languages have been introduced in [20, 2] and [5] where it has been shown that describing the instances by these languages causes a blow-up of the complexities of some problems. In the present paper the descriptional power of these languages is compared by estimating the complexities of some combinatorial problems in terms of completeness in suitable classes of the “counting polynomial-time hierarchy” which is introduced here. It turns out that some of the languages are not comparable, unless P=NP Some problems left open in [2] are solved.
The role of macros in tractable planning This paper presents several new tractability results for planning based on macros. We describe an algorithm that optimally solves planning problems in a class that we call inverted tree reducible, and is provably tractable for several subclasses of this class. By using macros to store partial plans that recur frequently in the solution, the algorithm is polynomial in time and space even for exponentially long plans. We generalize the inverted tree reducible class in several ways and describe modifications of the algorithm to deal with these new classes. Theoretical results are validated in experiments.
Minimizing Stall Time in Single and Parallel Disk Systems Using Multicommodity Network Flows We study integrated prefetching and caching in single and parallel disk systems. Arecen t approach used linear programming to solve the problem. We show that integrated prefetching and caching can also be formulated as a min-cost multicommodity flow problem and, exploiting special properties of our network, can be solved using combinatorial techniques. Moreover, for parallel disk systems, we develop improved approximation algorithms, trading performance guarantee for running time. If the number of disks is constant, we achieve a 2-approximation.
Destage Algorithms for Disk Arrays with Nonvolatile Caches In a disk array with a nonvolatile write cache, destages from the cache to the disk are performed in the background asynchronously while read requests from the host system are serviced in the foreground. In this paper, we study a number of algorithms for scheduling destages in a RAID-5 system. We introduce a new scheduling algorithm, called linear threshold scheduling, that adaptively varies the rate of destages to disks based on the instantaneous occupancy of the write cache. The performance of the algorithm is compared with that of a number of alternative scheduling approaches, such as least-cost scheduling and high/low mark. The algorithms are evaluated in terms of their effectiveness in making destages transparent to the servicing of read requests from the host, disk utilization, and their ability to tolerate bursts in the workload without causing an overflow of the write cache. Our results show that linear threshold scheduling provides the best read performance of all the algorithms compared, while still maintaining a high degree of burst tolerance. An approximate implementation of the linear-threshold scheduling algorithm is also described. The approximate algorithm can be implemented with much lower overhead, yet its performance is virtually identical to that of the ideal algorithm.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.22
0.11
0.044
0.023158
0.001333
0.00009
0.00002
0.000005
0.000001
0
0
0
0
0
Communicating ASP and the polynomial hierarchy Communicating answer set programming is a framework to represent and reason about the combined knowledge of multiple agents using the idea of stable models. The semantics and expressiveness of this framework crucially depends on the nature of the communication mechanism that is adopted. The communication mechanism we introduce in this paper allows us to focus on a sequence of programs, where each program in the sequence may successively eliminate some of the remaining models. The underlying intuition is that of leaders and followers: each agent's decisions are limited by what its leaders have previously decided. We show that extending answer set programs in this way allows us to capture the entire polynomial hierarchy.
Multi-agent Cooperation: A Description Logic View In this paper we propose dynamic description logic for formalizing multi-agent cooperation process with a clearly defined syntax and semantics. By combining the features of knowledge representation and reasoning of description logic and action theory for multi-agent interaction, our logic is effective and significant both for static and dynamic environment. On the static side, we employ description logic for the representation and reasoning of beliefs and goals. On the dynamic side, we adopt the object-oriented method to describe actions. The description of each action is composed of models, preconditions and effects. It can reflect the real changes of the world and is very suitable for belief revision and action planning. Based on our logic, we investigate how to form joint goal for multi-agent cooperation. In particular, we propose an effective dynamic planning algorithm for scheduling sub goals, which is greatly crucial for coordinating multi-agent behaviors.
Answer set programming and plan generation The idea of answer set programming is to represent a given computational problem by a logic program whose answer sets correspond to solutions, and then use an answer set solver, such as SMODELS or DLV, to find an answer set for this program. Applications of this method to planning are related to the line of research on the frame problem that started with the invention of formal nonmonotonic reasoning in 1980.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Extended stable semantics for normal and disjunctive programs
A sufficient condition for backtrack-bounded search Backtrack search is often used to solve constraint satisfaction problems. A relationship involving the structure of the constraints is described that provides a bound on the backtracking required to advance deeper into the backtrack tree. This analysis leads to upper bounds on the effort required for solution of a class of constraint satisfaction problems. The solutions involve a combination of relaxation preprocessing and backtrack search. The bounds are expressed in terms of the structure of the constraint connections. Specifically, the effort is shown to have a bound exponential in the size of the largest biconnected component of the constraint graph, as opposed to the size of the graph as a whole.
Convergence of a Nonconforming Multiscale Finite Element Method The multiscale finite element method (MsFEM) [T. Y. Hou, X. H. Wu, and Z. Cai, Math. Comp., 1998, to appear; T. Y. Hou and X. H. Wu, J. Comput. Phys., 134 (1997), pp. 169--189] has been introduced to capture the large scale solutions of elliptic equations with highly oscillatory coefficients. This is accomplished by constructing the multiscale base functions from the local solutions of the elliptic operator. Our previous study reveals that the leading order error in this approach is caused by the ``resonant sampling,'' which leads to large error when the mesh size is close to the small scale of the continuous problem. Similar difficulty also arises in numerical upscaling methods. An oversampling technique has been introduced to alleviate this difficulty [T. Y. Hou and X. H. Wu, J. Comput. Phys., 134 (1997), pp. 169--189]. A consequence of the oversampling method is that the resulting finite element method is no longer conforming. Here we give a detailed analysis of the nonconforming error. Our analysis also reveals a new cell resonance error which is caused by the mismatch between the mesh size and the wavelength of the small scale. We show that the cell resonance error is of lower order. Our numerical experiments demonstrate that the cell resonance error is generically small and is difficult to observe in practice.
Efficient sparse coding algorithms Sparse coding provides a class of algorithms for finding succinct representations of stimuli; given only unlabeled input data, it discovers basis functions that cap- ture higher-level features in the data. However, finding sparse codes remains a very difficult computational problem. In this paper, we present efficient sparse coding algorithms that are based on iteratively solving two convex optimization problems: an L1-regularized least squares problem and an L2-constrained least squares problem. We propose novel algorithms to solve both of these optimiza- tion problems. Our algorithms result in a significant speedup for sparse coding, allowing us to learn larger sparse codes than possible with previously described algorithms. We apply these algorithms to natural images and demonstrate that the inferred sparse codes exhibit end-stopping and non-classical receptive field sur- round suppression and, therefore, may provide a partial explanation for these two phenomena in V1 neurons.
Synchronized Disk Interleaving A group of disks may be interleaved to speed up data transfers in a manner analogous to the speedup achieved by main memory interleaving. Conventional disks may be used for interleaving by spreading data across disks and by treating multiple disks as if they were a single one. Furthermore, the rotation of the interleaved disks may be synchronized to simplify control and also to optimize performance. In addition, check- sums may be placed on separate check-sum disks in order to improve reliability. In this paper, we study synchronized disk interleaving as a high-performance mass storage system architecture. The advantages and limitations of the proposed disk interleaving scheme are analyzed using the M/G/1 queueing model and compared to the conventional disk access mechanism.
Simultaneous Localization And Mapping With Sparse Extended Information Filters In this paper we describe a scalable algorithm for the simultaneous mapping and localization (SLAM) problem. SLAM is the problem of acquiring a map of a static environment with a mobile robot. The vast majority of SLAM algorithms are based on the extended Kahnan filter (EKF), In this paper we advocate an algorithm that relies on the dual of the EKE the extended information filter (EIF). We show that when represented in the information form, map posteriors are dominated by a small number of links that tie together nearby features in the map. This insight is developed into a sparse variant of the EIF called the sparse extended information filter (SEIF). SEIFs represent maps by graphical networks of features that are locally interconnected, where links represent relative information between pairs of nearby,features, as well as information about the robot's pose relative to the map. We show that all essential update equations in SEIFs can be executed in constant time, irrespective of the size of the map. We also provide empirical results obtained for a benchmark data set collected in an outdoor environment, and using a multi-robot mapping simulation.
A logic programming approach to knowledge-state planning: Semantics and complexity We propose a new declarative planning language, called K, which is based on principles and methods of logic programming. In this language, transitions between states of knowledge can be described, rather than transitions between completely described states of the world, which makes the language well suited for planning under incomplete knowledge. Furthermore, our formalism enables the use of default principles in the planning process by supporting negation as failure. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, which shows that the language is very flexible. As we demonstrate on particular examples, the use of knowledge states may allow for a natural and compact problem representation. We then provide a thorough analysis of the computational complexity of K, and consider different planning problems, including standard planning and secure planning (also known as conformant planning) problems. We show that these problems have different complexities under various restrictions, ranging from NP to NEXPTIME in the propositional case. Our results form the theoretical basis for the DLVk system, which implements the language K on top of the DLV logic programming system.
iSAM: Incremental Smoothing and Mapping In this paper, we present incremental smoothing and mapping (iSAM), which is a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, thereby recalculating only those matrix entries that actually change. iSAM is efficient even for robot trajectories with many loops as it avoids unnecessary fill-in in the factor matrix by periodic variable reordering. Also, to enable data association in real time, we provide efficient algorithms to access the estimation uncertainties of interest based on the factored information matrix. We systematically evaluate the different components of iSAM as well as the overall algorithm using various simulated and real-world datasets for both landmark and pose-only settings.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.2
0.1
0.007692
0.001852
0
0
0
0
0
0
0
0
0
0
Migration, Caching and Replication in Distributed Object-Oriented Systems: An Integrated Framework In distributed object-oriented systems, fine-grained objects can be moved dynamically between nodes and can also be cached and replicated at different locations. Using such techniques, remote communication can be reduced by increased locality of reference; this way, the overall application performance can be improved. In addition, applications can be made fault-tolerant by object replication.This paper proposes an integrated framework for object migration, caching and replication. These mechanisms are discussed in terms of generic operations based on a generic object identification schema. After the discussion of technical details of each mechanism, their semantic relationships and dependencies are outlined and a linguistic and semantic integration is proposed.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
An active learning paradigm based on a priori data reduction and organization. •A novel active learning paradigm, called DROP, based on a priori data reduction and organization.•DROP does not require classification and reorganization of all non-annotated samples in the dataset at each iteration.•The proposed paradigm allows to achieve high accuracy quickly with minimum user interaction.•Results are shown with different clustering and classification strategies, and on a variety of real-world datasets.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Maximizing performance in a striped disk array Improvements in disk speeds have not kept up with improvements in processor and memory speeds. One way to correct the resulting speed mismatch is to stripe data across many disks. The authors address how to stripe data to get maximum performance from the disks. Specifically, they examine how to choose the striping unit, that is, the amount of logically contiguous data on each disk. Rules for determining the best striping unit for a given range of workloads are synthesized. It is shown how the choice of striping unit depends on only two parameters: (1) the number of outstanding requests in the disk system at any given time, and (2) the average positioning time×data transfer rate of the disks. The authors derive an equation for the optimal striping unit as a function of these two parameters; they also show how to choose the striping unit without prior knowledge about the workload
Striping in Disk Array RM2 Enabling the Tolerance of Double Disk Failures There is a growing demand in high reliability beyond what current RAID can provide and there are various levels of user demand for data reliability. An efficient data placement scheme called RM2 has been proposed in [Efficient Placement of Parity and Data To Tolerate Two Disk Failures In Disk Array Systems], which makes a disk array system tolerable against double disk failures. In this paper, we consider how to choose an optimal striping unit for RM2 particularly when no workload information is available except read/write ratio. A disk array simulator for RM2 has been developed for experimental works. It is shown that RM2 has an optimal striping unit of two and half tracks in the case of disk read operations, and one third of a single track if any disk write operations are involved.
Using dynamic sets to overcome high I/O latencies during search Describes a single unifying abstraction called 'dynamic sets', which can offer substantial benefits to search applications. These benefits include greater opportunity in the I/O subsystem to aggressively exploit prefetching and parallelism, as well as support for associative naming to complement the hierarchical naming in typical file systems. This paper motivates dynamic sets and presents the design of a system that embodies this abstraction.
Striping in large tape libraries
Performance optimization for parallel tape arrays Abstract: With the advent of multimedia computing, the demand forvery-large-scale storage systems becomes ever more imminent.Tertiary memory systems, once considered exotic devicesequipped only with high-end computer systems, arenow gradually moving into the main stream. Although helicalscantape offers an economically feasible solution to the mediacost problem for storing petabytes worth of data, the associateddrives usually exhibit relatively poor performanceand reliability characteristics....
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Vertical Data Migration in Large Near-Line Document Archives Based on Markov-Chain Predictions Large multimedia document archives hold most of their data in near-line tertiary storage libraries for cost reasons. This paper develops an integrated approach to the vertical data migration between the tertiary and secondary storage in that it reconciles speculative preloading, to mask the high latency of the tertiary storage with the replacement policy of the secondary storage. In addition, it considers the interaction of these policies with the tertiary storage scheduling and controls preloading aggressiveness by taking contention for tertiary storage drives into account. The integrated migration policy is based on a continuous-time Markov-chain (CTMC) model for predicting the expected number of accesses to a document within a specified time horizon. The parameters of the CTMC model. the probabilities of co-accessing certain documents and the interaction times between successive accesses, are dynamically estimated and adjusted to evolving workload patterns by keeping online statistics. The integrated policy for vertical data migration has been implemented in a prototype system. Detailed simulation studies with Web-server-like synthetic workloads indicate significant gains in terms of client response time. The studies also show that the overhead of the statistical bookkeeping and the computations for the access predictions is affordable.
RAID-II: a high-bandwidth network file server In 1989, the RAID (Redundant Arrays of Inexpensive Disks) group at U. C. Berkeley built a prototype disk array called RAID-I. The bandwidth delivered to clients by RAID-I was severely limited by the memory system bandwidth of the disk array' s host workstation. We designed our second prototype, RAID-H, to deliver more of the disk array bandwidth to file server clients. A custom-built crossbar memory system called the XBUS board connects the disks directly to the high-speed network, allowing data for large requests to bypass the server workstation. RAID-II runs Log-Structured File System (LFS) software to optimize performance for bandwidth-intensive applications.The RAID-II hardware with a single XBUS controller board delivers 20 megabytes/second for large, random read operations and up to 31 megabytes/second for sequential read operations. A preliminary implementation of LFS on RAID-II delivers 21 megabytes/second on large read requests and 15 megabytes/second on large write operations.
A study of integrated prefetching and caching strategies Prefetching and caching are effective techniques for improving the performance of file systems, but they have not been studied in an integrated fashion. This paper proposes four properties that optimal integrated strategies for prefetching and caching must satisfy, and then presents and studies two such integrated strategies, called aggressive and conservative. We prove that the performance of the conservative approach is within a factor of two of optimal and that the performance of the aggressive strategy is a factor significantly less than twice that of the optimal case. We have evaluated these two approaches by trace-driven simulation with a collection of file access traces. Our results show that the two integrated prefetching and caching strategies are indeed close to optimal and that these strategies can reduce the running time of applications by up to 50%.
On the Impact of Replica Placement to the Reliability of Distributed Brick Storage Systems Data reliability of distributed brick storage systems critically depends on the replica placement policy, and the two governing forces are repair speed and sensitivity to multiple concurrent failures. In this paper, the authors provided an analytical framework to reason and quantify the impact of replica placement policy to system reliability. The novelty of the framework is its consideration of the bounded network bandwidth for data maintenance. The framework was applied to two popular schemes, namely sequential placement and random placement, and showed that both have drawbacks that significantly degrade data reliability. Then the stripe placement scheme was proposed and find the near-optimal configuration parameter such that it provides much better reliability. The possibility of addressing the problem of correlated brick failures in the analytical framework was further discussed
I/O performance challenges at leadership scale Today's top high performance computing systems run applications with hundreds of thousands of processes, contain hundreds of storage nodes, and must meet massive I/O requirements for capacity and performance. These leadership-class systems face daunting challenges to deploying scalable I/O systems. In this paper we present a case study of the I/O challenges to performance and scalability on Intrepid, the IBM Blue Gene/P system at the Argonne Leadership Computing Facility. Listed in the top 5 fastest supercomputers of 2008, Intrepid runs computational science applications with intensive demands on the I/O system. We show that Intrepid's file and storage system sustain high performance under varying workloads as the applications scale with the number of processes.
Experiments with a New Boosting Algorithm In an earlier paper [9], we introduced a new “boosting” algorithm called AdaBoost which,theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing.We also introduced the related notion of a “pseudo-loss” which is a method for forcing a learning algorithm of multi-label concepts to concentrate on the labels that are hardest to discriminate.In this paper, we describe experiments we carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems.We performed two sets of experiments. The first set compared boosting to Breiman’s [1]“bagging” method when used to aggregate various classifiers (including decision trees and single attribute-value tests). We compared the performance of the two methods on a collection of machine-learning benchmarks. In the second set of experiments, we studied in more detail the performance of boosting using a nearest-neighbor classifier on an OCR problem
Distributing trusted third parties Trusted Third Parties (TTPs) are widely employed in various scenarios for providing fairness guarantees (e.g., in fair exchange or e-commerce protocols, including secure two-party computation), for distributing secrets (e.g., in authentication or secret-sharing protocols, as well as group signatures), and for creating trust (e.g., as certificate authorities). Such wide use of TTPs, as well as the trust requirement that is put on them make them a prime target for distributed systems and cryptography research. There are some well-known and proven solutions to the problem of distributing the trust put on TTPs: byzantine agreement or secure multi-party computation techniques can be employed to distribute the job of any TTP to multiple parties, tolerating up to half or one-third of those parties being malicious. Such techniques are not widely-employed in practice possibly due to their quadratic complexity or inter-operation requirements. This brings up the question of distributing TTPs in a much more efficient way, possibly via using autonomous agents, who do not directly communicate with each other. In this paper, we present various known techniques for distributing the trust put on TTPs. Then, we concentrate on using multiple autonomous parties, who do not communicate with each other at all, to realize a single TTP. We discuss the role of synchrony in such attempts, and conclude with some open questions.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.00494
0.008773
0.00557
0.00462
0.004124
0.002175
0.001618
0.001091
0.000299
0.000039
0.000002
0
0
0
Accelerating BLASTP on the Cell Broadband Engine The enormous growth of biological sequence databases has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing rapidly as well. The recent emergence of low cost parallel accelerator technologies has made it possible to reduce execution times of many bioinformatics applications. In this paper, we demonstrate how the PlayStation®3, powered by the Cell Broadband Engine, can be used as an efficient computational platform to accelerate the popular BLASTP algorithm.
Speeding up subset seed algorithm for intensive protein sequence comparison Abstract—Sequence similarity search is a common and re- peated task in molecular biology. The rapid growth of genomic databases leads to the need of speeding up the treatment of this task. In this paper, we present a subset seed algorithm for intensive protein sequence comparison. We have accelerated this algorithm by using indexing technique and fine grained parallelism of GPU and SIMD instructions. We have implemented two programs: iBLASTP, iTBLASTN. The GPU (SIMD) imple- mentation of the two programs achieves a speed up ranging from 5.5 to 10 (4 to 5.6) compared to the BLASTP and TBLASTN of the BLAST program family, with comparable sensitivity.
The Astral Compendium For Protein Structure And Sequence Analysis The ASTRAL compendium provides several databases and tools to aid in the analysis of protein structures, particularly through the use of their sequences. The SPACI scores included in the system summarize the overall characteristics of a protein structure. A structural alignments database indicates residue equivalencies in superimposed protein domain structures, The PDB sequence-map files provide a linkage between the amino acid sequence of the molecule studied (SEQRES records in a database entry) and the sequence of the atoms experimentally observed in the structure (ATOM records). These maps are combined with information in the SCOP database to provide sequences of protein domains. Selected subsets of the domain database, with varying degrees of similarity measured in several different ways, are also available. ASTRAL may be accessed at http://astral.stanford.edu/.
NVIDIA Tesla: A Unified Graphics and Computing Architecture To enable flexible, programmable graphics and high-performance computing, NVIDIA has developed the Tesla scalable unified graphics and parallel computing architecture. Its scalable parallel array of processors is massively multithreaded and programmable in C or via graphics APIs.
A deterministic finite automaton for faster protein hit detection in BLAST. BLAST is the most popular bioinformatics tool and is used to run millions of queries each day. However, evaluating such queries is slow, taking typically minutes on modern workstations. Therefore, continuing evolution of BLAST-by improving its algorithms and optimizations-is essential to improve search times in the face of exponentially increasing collection sizes. We present an optimization to the first stage of the BLAST algorithm specifically designed for protein search. It produces the same results as NCBI-BLAST but in around 59% of the time on Intel-based platforms; we also present results for other popular architectures. Overall, this is a saving of around 15% of the total typical BLAST search time. Our approach uses a deterministic finite automaton (DFA), inspired by the original scheme used in the 1990 BLAST algorithm. The techniques are optimized for modern hardware, making careful use of cache-conscious approaches to improve speed. Our optimized DFA approach has been integrated into a new version of BLAST that is freely available for download at http://www.fsa-blast.org/.
cuBLASTP: Fine-Grained Parallelization of Protein Sequence Search on a GPU BLAST, short for Basic Local Alignment Search Tool, is a fundamental algorithm in the life sciences that compares biological sequences. However, with the advent of next-generation sequencing (NGS) and increase in sequence read-lengths, whether at the outset or downstream from NGS, the exponential growth of sequence databases is arguably outstripping our ability to analyze the data. Though several recent studies have utilized the graphics processing unit (GPU) to speedup the BLAST algorithm for searching protein sequences (i.e., BLASTP), these studies used coarse-grained parallel approaches, where one sequence alignment is mapped to only one thread. Moreover, due to the irregular memory access patterns in BLASTP, there remain significant challenges to map the most time-consuming phases (i.e., hit detection and ungapped extension) to the GPU using a fine-grained multithreaded approach. To address the above issues, we propose cuBLASTP, an efficient fine-grained BLASTP implementation for the GPU using CUDA. Our cuBLASTP realization encompasses many research contributions, including (1) memory-access reordering to reorder hits from column-major order to diagonal-major order, (2) position-based indexing to map a hit with a packed data structure to a bin, (3) aggressive hit filtering to eliminate hits beyond the threshold distance along the diagonal, (4) diagonal-based parallelism and hit-based parallelism for ungapped extension to extend sequences with different lengths in databases, and (5) hierarchical buffering to reduce memory-access overhead for the core data structures. The experimental results show that on a NVIDIA Kepler GPU, cuBLASTP delivers up to a 5.0-fold speedup over sequential FSA-BLAST and a 3.7-fold speedup over multithreaded NCBI-BLAST for the overall program execution. In addition, compared with GPU-BLASTP (the fastest GPU implementation of BLASTP to date), cuBLASTP achieves up to a 2.8-fold speedup for the kernel execution on the GPU and a 1.8-fold speedup for the overall program execution.
CAAD BLASTn: Accelerated NCBI BLASTn with FPGA prefiltering The canonical bioinformatics application is determining the biological similarity of a new sequence (protein or DNA) with respect to databases of known sequences. The BLAST algorithm is used for the vast majority of these searches. Of the various BLAST implementations, the one published by NCBI is a recognized standard. In previous work we described FPGA acceleration of the protein version of NCBI BLAST (BLASTp) using our TreeBLAST-based filter. Here we apply this filter to NCBI BLASTn, the DNA version. We show the modifications to the structures of the filtering components needed to handle DNA, as opposed to protein, sequences. The design has been implemented on an Altera Stratix III family chip. Our experimental results show that the speedup is greater than 12x and the accuracy is 100%.
Kestrel: A Programmable Array for Sequence Analysis Kestrel is a programmable linear array processordesigned for sequence analysis. Among other features, Kestrelincludes an 8-bit word, a single-cycle add-and-minimizeinstruction, a multiplier and efficient communication usingshared registers. This paper describes Kestrel‘s functionalunits in detail, and examines each of their effects on systemperformance. With functional prototype chips completed, we willassemble a full single-board Kestrel array, with 512 processingelements on eight chips, in early 1998.
A fast file system for UNIX
On Computing Boolean Connectives of Characteristic Functions This paper is a study of the existence of polynomial time Boolean connective functions for languages. A language L has an AND function if there is a polynomial time f such that f(x, y) ∈ L ⇐⇒ x ∈ L and y ∈ L. L has an OR function if there is a polynomial time g such that g(x, y) ∈ L ⇐⇒ x ∈ L or y ∈ L. While all NP complete sets have these functions, Graph Isomorphism, which is probably not complete, is also shown to have both AND and OR functions. The results in this paper characterize the complete sets for the classes DP and PSAT(O(log n)) in terms of AND and OR, and relate these functions to the structure of the Boolean hierarchy and the query hierarchies. Also, this paper shows that the complete sets for the levels of the Boolean hierarchy above the second level cannot have AND or OR unless the polynomial hierarchy collapses. Finally, most of the structural properties of the Boolean hierarchy and query hierarchies are shown to depend only on the existence of AND and OR functions for the NP complete sets.
Beyond Objects: Objects Object-orientation offers more than just objects, classes and inheritance as means to structure applications. It is an approach to application development in which software systems can be constructed by composing and refining pre-designed, plug- compatible software components. But for this approach to be successfully applied, programming languages must provide better support for component specification and software composition, the software development life-cycle must separate the issues of generic component design and reuse from that of constructing applications to meet specific requirements, and, more generally, the way we develop, manage, exchange and market software must adapt to better support large-scale reuse for software communities. In this paper we shall explore these themes and we will highlight a number of key research di- rections and open problems to be explored as steps towards improving the effectiveness of object technology.
On the Equivalence of XML Patterns Patterns for matching parts of XML documents are used in a number of areas of XML document management: in links between documents, in templates for document transformation, and in queries for document retrieval. The W3C has defined XSLT patterns as a common sub-language for all these applications. We study the equivalence problem for XSLT patterns by defining a logic-based data model for XML and a semantics for XSLT patterns in terms of Datalog programs. Although uniform equivalence of Datalog programs is not sufficient to capture the equivalence of programs derived from XSLT patterns, we nevertheless show that equivalence can be decided by a variant of the chase process using embedded tuple-generating dependencies. One advantage of this approach is that the method can easily be extended to determine equivalence when documents are known to satisfy constraints imposed by document type definitions.
Hot Block Clustering for Disk Arrays with Dynamic Striping
Learning A Lexical Simplifier Using Wikipedia In this paper we introduce a new lexical simplification approach. We extract over 30K candidate lexical simplifications by identifying aligned words in a sentence-aligned corpus of English Wikipedia with Simple English Wikipedia. To apply these rules, we learn a feature-based ranker using SVMnk trained on a set of labeled simplifications collected using Amazon's Mechanical Turk. Using human simplifications for evaluation, we achieve a precision of 76% with changes in 86% of the examples.
1.076425
0.100954
0.067303
0.042765
0.023026
0.012971
0.000466
0.000113
0
0
0
0
0
0
WPS: A Workload-Aware Placement Scheme for Erasure-Coded In-Memory Stores Data-intensive applications are increasingly depending on in-memory stores to meet high-I/O-performance requirements. To be resilient to server failures and in turn achieve high availability, both replication and erasure codes are introduced to in-memory stores. Since erasure codes have an advantage of memory efficiency over replication, we focus our work on erasure-coded in-memory stores and investigate placement schemes to address the issue of workload fluctuation. To mitigate the I/O imbalanced incurred by workload skew and maximize the utilization of all nodes, we proposed a Workload-aware Placement Scheme called WPS for Reed-Solomon-coded in-memory stores. WPS accomplishes balanced I/Os as follows: it divides in-memory data blocks into multiple groups based on access characteristics (e.g., popularity), and classifies all nodes into several groups according to nodes' access performance (e.g., indicated by available bandwidth), and places or migrates high-access-popularity in-memory data blocks to high-performance nodes without violating the essential principle of fault tolerance. The comparative experiments indicate that WPS can significantly improve load balancing for RS-coded in-memory stores exhibiting workload popularity skew; meanwhile, WPS achieves comparable mean, median, and tail latencies relative to two candidate placement schemes.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Reasoning about Duplicate Elimination with Description Logic Queries commonly perform much better if they manage to avoid duplicate elimination operations in their execution plans. In this paper, we report on a technique that provides a necessary and sufficient condition for removing such operators from object relational conjunctive queries under the standard duplicate semantics. The condition is fully captured as a membership problem in a dialect of description logic called CFD, which is capable of expressing a number of common constraints implicit in object relational database schemas. We also present a PTIME algorithm for arbitrary membership problems in CFD.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
Parameterized complexity for the database theorist
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Neural Network Learning from Ambiguous Training Data
Parallel networks that learn to pronounce English text Abstract. This paper describes NETtalk, a class of massively-parallel network systems that learn to convert English text to speech. The memory representations for pronunciations are learned by practice and are shared among many processing units. The performance of NETtalk has some similarities with observed human performance. (i) The learning follows a power law. (;i) The more words the network learns, the better it is at generalizing and correctly pronouncing new words, (iii) The performance of the network degrades very slowly as connections in the network are damaged: no single link or processing unit is essential. (iv) Relearning after damage is much faster than learning during the original training. (v) Distributed or spaced prac-tice is more effective for long-term retention than massed practice. Network models can be constructed that have the same perfor-mance and learning characteristics on a particular task, but differ completely at the levels of synaptic strengths and single-unit responses. However, hierarchical clustering techniques applied to NETtalk re-veal that these different networks have similar internal representations of letter-to-sound correspondences within groups of processing units. This suggests that invariant internal representations may be found in assemblies of neurons intermediate in size between highly localized and completely distributed representations.
What Size Net Gives Valid Generalization? We address the question of when a network can be expected to generalize from m random training examples chosen from some arbitrary probability distribution, assuming that future test examples are drawn from the same distribution. Among our results are the following bounds on appropriate sample vs. network size. Assume 0 < ∊ ≤ 1/8. We show that if m ≥ O(W/∊ log N/∊) random examples can be loaded on...
Advances in Neural Information Processing Systems 4, [NIPS Conference, Denver, Colorado, USA, December 2-5, 1991]
Backpropagation Applied to Handwritten Zip Code Recognition. The ability of learning networks to generalize can be greatly enhanced by providing constraints from the task domain. This paper demonstrates how such constraints can be integrated into a backpropagation network through the architecture of the network. This approach has been successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service. A single network learns the entire recognition operation, going from the normalized image of the character to the final classification.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Evaluating collaborative filtering recommender systems Recommender systems have been evaluated in many, often incomparable, ways. In this article, we review the key decisions in evaluating collaborative filtering recommender systems: the user tasks being evaluated, the types of analysis and datasets being used, the ways in which prediction quality is measured, the evaluation of prediction attributes other than quality, and the user-based evaluation of the system as a whole. In addition to reviewing the evaluation strategies used by prior researchers, we present empirical results from the analysis of various accuracy metrics on one content domain where all the tested metrics collapsed roughly into three equivalence classes. Metrics within each equivalency class were strongly correlated, while metrics from different equivalency classes were uncorrelated.
Real-time multimedia systems The expansion of multimedia networks and systems depends on real-time support for media streams and interactive multimedia services. Multimedia data are essentially continuous, heterogeneous, and isochronous, three characteristics with strong real-time implications when combined. At the same time, some multimedia services, like video-on-demand or distributed simulation, are real-time applications with sophisticated temporal functionalities in their user interface. We analyze the main problems in building such real-time multimedia systems, and we discuss-under an architectural prospect-some technological solutions especially those regarding determinism and efficient synchronization in the storage, processing, and communication of audio and video data
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages
Fine-Grained Mobility in the Emerald System (Extended Abstract)
Diagnostic reasoning with A-Prolog In this paper, we suggest an architecture for a software agent which operates a physical device and is capable of making observations and of testing and repairing the device's components. We present simplified definitions of the notions of symptom, candidate diagnosis, and diagnosis which are based on the theory of action language ${\cal AL}$. The definitions allow one to give a simple account of the agent's behavior in which many of the agent's tasks are reduced to computing stable models of logic programs.
iSAM: Incremental Smoothing and Mapping In this paper, we present incremental smoothing and mapping (iSAM), which is a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, thereby recalculating only those matrix entries that actually change. iSAM is efficient even for robot trajectories with many loops as it avoids unnecessary fill-in in the factor matrix by periodic variable reordering. Also, to enable data association in real time, we provide efficient algorithms to access the estimation uncertainties of interest based on the factored information matrix. We systematically evaluate the different components of iSAM as well as the overall algorithm using various simulated and real-world datasets for both landmark and pose-only settings.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.2496
0.071373
0.013148
0.000205
0
0
0
0
0
0
0
0
0
0
Temporal Reasoning with Abductive Logic Programming In this paper we extend Gelfond and Lifschitz" actiondescription language A with concurrent actions and give a new semanticsto concurrent actions. In order to automate temporal reasoingwe present a translation from domain descriptions in the resulting newaction description language to abductive logic programs. The translationhas been shown to be both sound and complete. Our methodis applicable to the temporal projection problem with incompleteinformation, as well as to reasoning about...
SLX—a top-down derivation procedure for programs with explicit negation In this paper we define a sound and (theoretically) complete top-down derivationprocedure for a well-founded semantics of logic programs extended with explicitnegation (WFSX). By its nature, it is amenable to a simple interpreter implementationin Prolog, and readily allows pre-processing into Prolog, showing promise asan efficient basis for further development.
Representing and reasoning about concurrent actions with abductive logic programs In this paper we extend Gelfond and Lifschitz’ action description language {\cal A} with concurrent actions and observation propositions to describe the predicted behaviour of domains of (concurrent) actions and actually observed behaviour, respectively, without requiring that the actually observed behaviour of a domain of actions be consistent with its predicted behaviour. We present a translation from domain descriptions and observations in the new action language to abductive normal logic programs. The translation is shown to be both sound and complete. From the standpoint of model&dash;based diagnosis, in particular, we discuss the temporal explanation of inferring actions from fluent changes at two different levels, namely, at the domain description level and at the abductive logic programming level. The method is applicable to the temporal projection problem with incomplete information, as well as to the temporal explanation of inferring actions from fluent changes.
Well founded semantics for logic programs with explicit negation . The aim of this paper is to provide asemantics for general logic programs (with negation bydefault) extended with explicit negation, subsumingwell founded semantics [22].The Well Founded semantics for extended logicprograms (WFSX) is expressible by a default theorysemantics we have devised [11]. This relationshipimproves the cross--fertilization between logic programsand default theories, since we generalize previousresults concerning their relationship [3, 4, 7, 1, 2],and there is...
The Logic of Persistence A recent paper (Hanks19851 examines temporal rea- soning as an example of default reasoning. They conclude that all current systems of default reasoning, including non-monotonic logic, default logic, and circumscription, are inadequate for reasoning about persistence. I present a way of representing persistence in a framework based on a generalization of circumscription, which captures Hanks and McDermott's procedural representation. 1. Persistence
Nested abnormality theories Abstract: We propose a new approach to the use of circumscription for representingknowledge. Nested abnormality theories are similar to simple abnormality theoriesintroduced by McCarthy, except that their axioms may have a nested structure,with each level corresponding to another application of the circumscriptionoperator. The new style of applying circumscription sometimes leads to moreeconomical and elegant formalizations. Mathematical properties of nested abnormalitytheories may be easier...
Applications of circumscription to formalizing common-sense knowledge Abstract We present a new and more symmetric version of the circumscription method of nonmonotonic reasoning rst described in (McCarthy 1980) and some applications to formalizing common,sense knowledge. The applications in this paper are mostly based on minimizing the abnormality of dieren t aspects of various entities. Included are nonmonotonic treatments of is-a hierarchies, the unique names hypothesis, and the frame problem. The new circumscription may be called formula circumscription to distinguish it from the previously dened domain circumscription and predicate circumscription. A still more general formalism called prioritized circumscription is briey explored.
On Stratified Autoepistemic Theories In this paper we investigate some properties of "autoepistemic logic" approach to the formalization of common sense reasoning suggested by R. Moore in [Moore, 1985]. In particular we present a class of autoepistemic theories (called stratified autoepistemic theories) and prove that theories from this class have unique stable autoepistemic expansions and hence a clear notion of "theoremhood". These results are used to establish the relationship of Autoepistemic Logic with other formalizations of non-monotonic reasoning, such as negation as failure rule and circumscription. It is also shown that "classical" SLDNF resolution of Prolog can be used as a deductive mechanism for a rather broad class of autoepistemic theories. Key words and phrases: common sense reasoning, autoepistemic logic, negation as failure rule, non-monotonic reasoning. (Science section).
Logic Programming and Nonmonotonic Reasoning, 5th International Conference, LPNMR'99, El Paso, Texas, USA, December 2-4, 1999, Proceedings
An algorithm to evaluate quantified Boolean formulae The high computational complexity of advanced reasoning tasks such as belief revision and planning calls for efficient and reliable algorithms for reasoning problems harder than NP. In this paper we propose Evaluate, an algorithm for evaluating Quantified Boolean Formulae, a language that extends propositional logic in a way such that many advanced forms of propositional reasoning, e.g., reasoning about knowledge, can be easily formulated as evaluation of a QBF. Algorithms for evaluation of QBFs are suitable for the experimental analysis on a wide range of complexity classes, a property not easily found in other formalisms. Evaluate is based on a generalization of the Davis-Putnam procedure for SAT, and is guaranteed to work in polynomial space. Before presenting Evaluate, we discuss all the abstract properties of QBFs that we singled out to make the algorithm more efficient. We also briefly mention the main results of the experimental analysis, which is reported elsewhere.
Global Continuation for Distance Geometry Problems Distance geometry problems arise in the determination of protein structure. We consider the case where only a subset of the distances between atoms is given and formulate this distance geometry problem as a global minimization problem with special structure. We show that global smoothing techniques and a continuation approach for global optimization can be used to determine global solutions of this problem reliably and efficiently. The global continuation approach determines a global solution with less computational effort than is required by a standard multistart algorithm. Moreover, the continuation approach usually finds the global solution from any given starting point, while the multistart algorithm tends to fail.
Planning with Preferences Automated planning is a branch or AI that addresses the problem of generating a set of actions to achieve a specified goal state, given an initial state of the world. It is an active area of research that is central to the development of intelligent agents and autonomous robots. In many real-world applications, a multitude of valid plans exist, and a user distinguishes plans of high qnality by how well they adhere to the user's preferences. To generate such high-quality plans automatically, a planning system must provide a means of specifying the user's preferences with respect to the planning task, as well as a means of generating plans that ideally optimize these preferences. In the last few years, there has been significant research in the area of planning with preferences. In this article we review current approaches to preference representation for planning as well as overviewing and contrasting the various approaches to generating preferred plans that have been developed to date.
A probabilistic analysis of prepositional STRIPS planning I present a probabilistic analysis of prepositional STRIPS planning. The analysis considers two assumptions. One is that each possible precondition (likewise postcondition) of an operator is selected independently of other pre- and postconditions. The other is that each operator has a fixed number of preconditions (likewise postconditions). Under both assumptions, I derive bounds for when it is highly likely that a planning instance can be efficiently solved, either by finding a plan or proving that no plan exists. Roughly, if planning instances under either assumption have n propositions (ground atoms) and g goals, and the number of operators is less than an O(n In g) bound, then a simple, efficient algorithm can prove that no plan exists for most instances. If the number of operators is greater than an Ω(n In g) bound, then a simple, efficient algorithm can find a plan for most instances. The two bounds differ by a factor that is exponential in the number of pre- and postconditions. A similar result holds for plan modification, i.e., solving a planning instance that is close to another planning instance with a known plan. Thus it appears that prepositional STRIPS planning, a PSPACE-complete problem, exhibits a easy-hard-easy pattern as the number of available operators increases with a narrow range of hard problems. An empirical study demonstrates this pattern for particular parameter values. Because prepositional STRIPS planning is PSPACE-complete, this extends previous phase transition analyses, which have focused on NP-complete problems. Also, the analysis shows that surprisingly simple algorithms can solve a large subset of the planning problem.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.043861
0.018048
0.015068
0.010058
0.006926
0.00222
0.000714
0.000085
0.000002
0
0
0
0
0
Learning in compressed space. We examine two methods which are used to deal with complex machine learning problems: compressed sensing and model compression. We discuss both methods in the context of feed-forward artificial neural networks and develop the backpropagation method in compressed parameter space. We further show that compressing the weights of a layer of a multilayer perceptron is equivalent to compressing the input of the layer. Based on this theoretical framework, we will use orthogonal functions and especially random projections for compression and perform experiments in supervised and reinforcement learning to demonstrate that the presented methods reduce training time significantly.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
Parameterized complexity for the database theorist
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
A System for Tabled Constraint Logic Programming As extensions to traditional logic programming, both tabling and Constraint Logic Programming (CLP) have proven powerful tools in many areas. They make logic programming more efficient and more declarative. However, combining the techniques of tabling and constraint solving is still a relatively new research area. In this paper, we show how to build a Tabled Constraint Logic Programming (TCLP) system based on XSB -- a tabled logic programming system. We first discuss how to extend XSB with the fundamental mechanism of constraint solving, basically the introduction of attributed variables to XSB, and then present a general framework for building a TCLP system. An interface among the XSB tabling engine, the corresponding constraint solver, and the user's program is designed to fully utilize the power of tabling in TCLP programs.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
Parameterized complexity for the database theorist
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
A more efficient BDD-based QBF solver In this paper we present a QBF solver that is based on BDD technologies but includes optimizations from search-based algorithms. We enhance the early quantification technique from model checking, favoring aggressive quantification over conjunction of BDDs. BDD Constraint propagation is also described, a strategy inspired by the efficient simplifications applied to CNFs in DPLL-based algorithms. Some dynamic variable elimination heuristics that enforce quantification and bounded space usage are also presented, coping with the difficulties faced by static heuristics included in previous BDD-based solvers. Experimental results show that our solver outperforms both symbolic and search-based competitive solvers in formal verification benchmarks with practical applications in equivalence checking and theorem proving, by completing more problems or finishing in less time. Some preliminary results also show that the solver is able to handle some other hard problems for symbolic solvers in the planning domain with similar efficiency. The benchmarks we used contain QBFs of nearly up to 9000 variables and are available at the QBFLIB website.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
File server scaling with network-attached secure disks By providing direct data transfer between storage and client, network-attached storage devices have the potential to improve scalability for existing distributed file systems (by removing the server as a bottleneck) and bandwidth for new parallel and distributed file systems (through network striping and more efficient data paths). Together, these advantages influence a large enough fraction of the storage market to make commodity network-attached storage feasible. Realizing the technology's full potential requires careful consideration across a wide range of file system, networking and security issues. This paper contrasts two network-attached storage architectures---(1) Networked SCSI disks (NetSCSI) are network-attached storage devices with minimal changes from the familiar SCSI interface, while (2) Network-Attached Secure Disks (NASD) are drives that support independent client access to drive object services. To estimate the potential performance benefits of these architectures, we develop an analytic model and perform trace-driven replay experiments based on AFS and NFS traces. Our results suggest that NetSCSI can reduce file server load during a burst of NFS or AFS activity by about 30%. With the NASD architecture, server load (during burst activity) can be reduced by a factor of up to five for AFS and up to ten for NFS.
DR-nets: data-reconstruction networks for highly reliable parallel-disk systems We propose DR-nets, Data-Reconstruction networks, to construct massively parallel disk systems with large capacity, wide bandwidth and high reliability. Each node of a DR-net has disks, and is connected by links to form an interconnection network. To realize the high reliability, nodes in a sub-network of the interconnection network organize a group of parity calculation proposed for RAIDs. Inter-node communication for calculating parity keeps the locality of data transfer in DR-nets, and it inhibits bottlenecks from occurring, even if the size of the network becomes very large. Overlapped two types of parity groups on the network make the system able to handle multiple disk-drive failures. A 5 × 5 torus DR-net recovers data 100% with two damaged disk drives located in any place, 95% with four damaged drives, and can recover with up to nine damaged drives.
Clotho: decoupling memory page layout from storage organization As database application performance depends on the utilization of the memory hierarchy, smart data placement plays a central role in increasing locality and in improving memory utilization. Existing techniques, however, do not optimize accesses to all levels of the memory hierarchy and for all the different workloads, because each storage level uses different technology (cache, memory, disks) and each application accesses data using different patterns. Clotho is a new buffer pool and storage management architecture that decouples in-memory page layout from data organization on non-volatile storage devices to enable independent data layout design at each level of the storage hierarchy. Clotho can maximize cache and memory utilization by (a) transparently using appropriate data layouts in memory and non-volatile storage, and (b) dynamically synthesizing data pages to follow application access patterns at each level as needed. Clotho creates in-memory pages individually tailored for compound and dynamically changing workloads, and enables efficient use of different storage technologies (e.g., disk arrays or MEMS-based storage devices). This paper describes the Clotho design and prototype implementation and evaluates its performance under a variety of workloads using both disk arrays and simulated MEMS-based storage devices.
RAID-II: a high-bandwidth network file server In 1989, the RAID (Redundant Arrays of Inexpensive Disks) group at U. C. Berkeley built a prototype disk array called RAID-I. The bandwidth delivered to clients by RAID-I was severely limited by the memory system bandwidth of the disk array' s host workstation. We designed our second prototype, RAID-H, to deliver more of the disk array bandwidth to file server clients. A custom-built crossbar memory system called the XBUS board connects the disks directly to the high-speed network, allowing data for large requests to bypass the server workstation. RAID-II runs Log-Structured File System (LFS) software to optimize performance for bandwidth-intensive applications.The RAID-II hardware with a single XBUS controller board delivers 20 megabytes/second for large, random read operations and up to 31 megabytes/second for sequential read operations. A preliminary implementation of LFS on RAID-II delivers 21 megabytes/second on large read requests and 15 megabytes/second on large write operations.
Hints for Computer System Design Experience with the design and implementation of a number of computer systems, and study of many other systems, has led to some general hints for system design which are described here. They are illustrated by a number of examples, ranging from hardware such as the Alto and the Dorado to applications programs such as Bravo and Star.
Parity logging disk arrays Parity-encoded redundant disk arrays provide highly reliable, cost-effective secondary storage with high performance for reads and large writes. Their performance on small writes, however, is much worse than mirrored disks—the traditional, highly reliable, but expensive organization for secondary storage. Unfortunately, small writes are a substantial portion of the I/O workload of many important, demanding applications such as on-line transaction processing. This paper presents parity logging, a novel solution to the small-write problem for redundant disk arrays. Parity logging applies journalling techniques to reduce substantially the cost of small writes. We provide detailed models of parity logging and competing schemes—mirroring, floating storage, and RAID level 5—and verify these models by simulation. Parity logging provides performance competitive with mirroring, but with capacity overhead close to the minimum offered by RAID level 5. Finally, parity logging can exploit data caching more effectively than all three alternative approaches.
PPFS: a high performance portable parallel file system Rapid increases in processor performance over the pastdecade have outstripped performance improvements ininput/output devices, increasing the importance of input/output performance to overall system performance.Further, experience has shown that the performance ofparallel input/output systems is particularly sensitive todata placement and data management policies, makinggood choices critical. To explore this vast design space, wehave developed a user-level library, the Portable...
Informed prefetching of collective input/output requests
Adaptive Prefetching and Storage Reorganization In A Log-Structured Storage System We present a storage management system that has the ability to adapt to the data access characteristics of the application that uses it based on collection and analysis of runtime statistics. This feature is especially useful in the storage management layer of database systems, where applications exhibit relatively predictable access patterns. Adaptive reorganization is performed by the storage management system in a manner that optimizes the access patterns of the system for which it is used. We enhance the log-structured storage system that naturally caters for write optimization, with the addition of a statistics collection mechanism to determine data access patterns of applications. The storage system can serve as a testbed for a variety of statistics analysis and clustering mechanisms. Higher level application-specific data clustering mechanisms can be used to override the storage system's low-level clustering mechanisms. In addition, the analysis techniques and reorganization scheme can be used in other storage systems. Performance results from our prototype show potential response time speedups of up to 83 percent over the basic log-structured file system in the best case, using a combination of storage reorganization and prefetching.
A Highly Accurate Method for Assessing Reliability of Redundant Arrays of Inexpensive Disks (RAID) Abstract - The statistical bases for current models of RAID reliability are reviewed and a highly accurate alternative is provided and justified. This new model corrects statistical errors associated with the pervasive assumption that system (RAID group) times to failure follow a homogeneous Poisson process, and corrects errors associated with assuming the time-to-failure and time-to-restore distributions are exponentially distributed. Statistical justification for the new model uses theory for reliability of repairable systems. Four critical component distributions are developed from field data. These distributions are for times to catastrophic failure, reconstruction and restoration, read errors, and disk data scrubs. Model results have been verified and predict between 2 to 1,500 times as many double disk failures as estimates made using the mean time to data loss method. Model results are compared to system level field data for RAID group of 14 drives and show excellent correlation and greater accuracy than either MTTDL.
Essential roles of exploiting internal parallelism of flash memory based solid state drives in high-speed data processing Flash memory based solid state drives (SSDs) have shown a great potential to change storage infrastructure fundamentally through their high performance and low power. Most recent studies have mainly focused on addressing the technical limitations caused by special requirements for writes in flash memory. However, a unique merit of an SSD is its rich internal parallelism, which allows us to offset for the most part of the performance loss related to technical limitations by significantly increasing data processing throughput. In this work we present a comprehensive study of essential roles of internal parallelism of SSDs in high-speed data processing. Besides substantially improving I/O bandwidth (e.g. 7.2脳), we show that by exploiting internal parallelism, SSD performance is no longer highly sensitive to access patterns, but rather to other factors, such as data access interferences and physical data layout. Specifically, through extensive experiments and thorough analysis, we obtain the following new findings in the context of concurrent data processing in SSDs. (1) Write performance is largely independent of access patterns (regardless of being sequential or random), and can even outperform reads, which is opposite to the long-existing common understanding about slow writes on SSDs. (2) One performance concern comes from interference between concurrent reads and writes, which causes substantial performance degradation. (3) Parallel I/O performance is sensitive to physical data-layout mapping, which is largely not observed without parallelism. (4) Existing application designs optimized for magnetic disks can be suboptimal for running on SSDs with parallelism. Our study is further supported by a group of case studies in database systems as typical data-intensive applications. With these critical findings, we give a set of recommendations to application designers and system architects for exploiting internal parallelism and maximizing the performance potential of SSDs.
Translating Equality Downwards Downward translation of equality refers to cases where a collapse of some pair of complexity classes would induce a collapse of some other pair of complexity classes that (a priori) one expects are smaller. Recently, the first downward translation of equality was obtained that applied to the polynomial hierarchy---in particular, to bounded access to its levels. In this paper, we provide a much broader downward translation that subsumes not only that downward translation but also that translationUs elegant enhancement by Buhrman and Fortnow. Our work also sheds light on previous research on the structure of refined polynomial hierarchies.
Computing Only Minimal Answers in Disjunctive Deductive Databases A method is presented for computing minimal answers of the form $\bigvee {\cal A}$ in disjunctive deductive databases under the disjunctive stable model semantics. Such answers are constructed by repeatedly extending partial answers. Our method is complete (in that every minimal answer can be computed) and does not admit redundancy (in the sense that every partial answer generated can be extended to a minimal answer), thus no non-minimal answer is generated. The method does not (necessarily) require the computation of models of the database in their entirety. A partitioning of the database into extensional and intensional components is employed in order to overcome the problems caused by the possible non-existence of disjunctive stable models, and a form of compilation is presented as a means of simplifying and improving the efficiency of the run-time computation, which then reduces to relatively trivial processing within the extensional database. In addition, the output from this compilation process has the significant advantage of being immune to updates to the extensional database. Other forms of database pre-processing are also considered, and three transformations are presented mapping a database onto an equivalent positive database, non-disjunctive database, and set of conditional facts.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.022908
0.033333
0.011711
0.006952
0.003554
0.001894
0.000569
0.000098
0.000032
0.000008
0
0
0
0
When cryptography meets storage Confidential data storage through encryption is becoming increasingly important. Designers and implementers of encryption methods of storage media must be aware that storage has different usage patterns and properties compared to securing other information media such as networks. In this paper, we empirically demonstrate two-time pad vulnerabilities in storage that are exposed via shifting file contents, in-place file updates, storage mechanisms hidden by layers of abstractions, inconsistencies between memory and disk content, and backups. We also demonstrate how a simple application of Bloom filters can automatically extract plaintexts from two-time pads. Further, our experience sheds light on system research directions to better support cryptographic assumptions and guarantees.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
Parameterized complexity for the database theorist
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
A study of transformation-invariances of deep belief networks In order to learn transformation-invariant features, several effective deep architectures like hierarchical feature learning and variant Deep Belief Networks (DBN) have been proposed. Considering the complexity of those variants, people are interested in whether DBN itself has transformation-invariances. First of all, we use original DBN to test original data. Almost same error rates will be achieved, if we change weights in the bottom interlayer according to transformations occurred in testing data. It implies that weights in the bottom interlayer can store the knowledge to handle transformations such as rotation, shifting, and scaling. Along with the continuous learning ability and good storage of DBN, we present our Weight-Transformed Training Algorithm (WTTA) without augmenting other layers, units or filters to original DBN. Based upon original training method, WTTA is aiming at transforming weights and is still unsupervised. For MNIST handwritten digits recognizing experiments, we adopted 784-100-100-100 DBN to compare the differences of recognizing ability in weights-transformed ranges. Most error rates generated by WTTA were below 25% while most rates generated by original training algorithm exceeded 25%. Then we also did an experiment on part of MIT-CBCL face database, with varying illumination, and the best testing accuracy can be achieved is 87.5%. Besides, similar results can be achieved by datasets covering all kinds of transformations, but WTTA only needs original training data and transform weights after each training loop. Consequently, we can mine inherent transformation-invariances of DBN by WTTA, and DBN itself can recognize transformed data at satisfying error rates without inserting other components.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Tight Bounds for HTN Planning. Although HTN planning is in general undecidable, there are many syntactically identifiable sub-classes of HTN problems that can be decided. For these sub-classes, the decision procedures provide upper complexity bounds. Lower bounds were often not investigated in more detail, however. We generalize a propositional HTN formalization to one that is based upon a function-free first-order logic and provide tight upper and lower complexity results along three axes: whether variables are allowed in operator and method schemas, whether the initial task and methods must be totally ordered, and where recursion is allowed (arbitrary recursion, tail-recursion, and acyclic problems). Our findings have practical implications, both for the reuse of classical planning techniques for HTN planning, and for the design of efficient HTN algorithms.
Assessing the Expressivity of Planning Formalisms through the Comparison to Formal Languages. From a theoretical perspective, judging the expressivity of planning formalisms helps to understand the relationship of different representations and to infer theoretical properties. From a practical point of view, it is important to be able to choose the best formalism for a problem at hand, or to ponder the consequences of introducing new representation features. Most work on the expressivity is based either on compilation approaches, or on the computational complexity of the plan existence problem. Recently, we introduced a new notion of expressivity. It is based on comparing the structural complexity of the set of solutions to a planning problem by interpreting the set as a formal language and classifying it with respect to the Chomsky hierarchy. This is a more direct measure than the plan existence problem and enables also the comparison of formalisms that can not be compiled into each other. While existing work on that last approach focused on different hierarchical problem classes, this paper investigates STRIPS with and without conditional effects; though we also tighten some existing results on hierarchical formalisms. Our second contribution is a discussion on the language-based expressivity measure with respect to the other approaches.
On the Feasibility of Planning Graph Style Heuristics for HTN Planning. In classical planning, the polynomial-time computability of propositional delete-free planning (planning with only positive effects and preconditions) led to the highly successful Relaxed Graphplan heuristic. We present a hierarchy of new computational complexity results for different classes of propositional delete-free HTN planning, with two main results: We prove that finding a plan for the delete-relaxation of a propositional HTN problem is NP-complete: hence unless P=NP, there is no directly analogous GraphPlan heuristic for HTN planning. However, a further relaxation of HTN planning (delete-free HTN planning with task insertion) is polynomial-time computable. Thus, there may be a possibility of using this or other relaxations to develop search heuristics for HTN planning.
On the decidability of HTN planning with task insertion The field of deterministic AI planning can roughly be divided into two approaches -- classical state-based planning and hierarchical task network (HTN) planning. The plan existence problem of the former is known to be decidable while it has been proved undecidable for the latter. When extending HTN planning by allowing the unrestricted insertion of tasks and ordering constraints, one obtains a form of planning which is often referred to as "hybrid planning". We present a simplified formalization of HTN planning with and without task insertion. We show that the plan existence problem is undecidable for the HTN setting without task insertion and that it becomes decidable when allowing task insertion. In the course of the proof, we obtain an upper complexity bound of EXPSPACE for the plan existence problem for propositional HTN planning with task insertion.
Complexity, decidability and undecidability results for domain-independent planning In this paper, we examine how the complexity of domain-independent planning with STRIPS-style operators depends on the nature of the planning operators. We show conditions under which planning is decidable and undecidable. Our results on this topic solve an open problem posed by Chapman (5), and clear up some diculties with his undecidability theorems.
Temporal data base management Reasoning about time typically involves drawing conclusions on the basis of incomplete information. Uncertainty arises in the form of ignorance, indeterminacy, and indecision. Despite the lack of complete information, a problem solver is continually forced to make predictions in order to pursue hypotheses and plan for the future. Such predictions are frequently contravened by subsequent evidence. This paper presents a computational approach to temporal reasoning that directly confronts these issues. The approach centers around techniques for managing a data base of assertions corresponding to the occurrence of events and the persistence of their effects over time. The resulting computational framework performs the temporal analog of (static) reason maintenance by keeping track of dependency information involving assumptions about the truth of facts spanning various intervals of time. The system described in this paper extends classical predicate-calculus data bases, such as those used by PROLOG, to deal with time in an efficient and natural manner.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
A fast file system for UNIX
Large-scale parallel breadth-first search Recently, best-first search algorithms have been introduced that store their nodes on disk, to avoid their inherent memory limitation. We introduce several improvements to the best of these, including parallel processing, to reduce their storage and time requirements. We also present a linear-time algorithm for bijectively mapping permutations to integers in lexicographic order. We use breadth-first searches of sliding-tile puzzles as testbeds. On the 3×5 Fourteen Puzzle, we reduce both the storage and time needed by a factor of 3.5 on two processors. We also performed the first complete breadth-first search of the 4×4 Fifteen Puzzle, with over 1013 states.
Implementation of Argus Argus is a programming language and system developed to support the construction and execution of distributed programs. This paper describes the implementation of Argus, with particular emphasis on the way we implement atomic actions, because this is where Argus differs most from other implemented systems. The paper also discusses the performance of Argus. The cost of actions is quite reasonable, indicating that action systems like Argus are practical.
More accurate tests for the statistical significance of result differences Statistical significance testing of differences in values of metrics like recall, precision and balanced F-score is a necessary part of empirical natural language processing. Unfortunately, we find in a set of experiments that many commonly used tests often underestimate the significance and so are less likely to detect differences that exist between different techniques. This underestimation comes from an independence assumption that is often violated. We point out some useful tests that do not make this assumption, including computationally-intensive randomization tests.
A comorbidity-based recommendation engine for disease prediction A recommendation engine for disease prediction that combines clustering and association analysis techniques is proposed. The system produces local prediction models, specialized on subgroups of similar patients by using the past patient medical history, to determine the set of possible illnesses an individual could develop. Each model is generated by using the set of frequent diseases that contemporarily appear in the same patient. The illnesses a patient could likely be affected in the future are obtained by considering the items induced by high confidence rules generated by the frequent diseases. Experimental results show that the proposed approach is a feasible way to diagnose diseases.
Representing the process semantics in the situation calculus This paper presents a formal method based on the high-level semantics of processes to reason about continuous change. With a case study we show how the semantics of processes can be integrated with the situation calculus. The soundness and completeness of situation calculus with respect to the process semantics are proven. Furthermore, the logical programming is implemented to support the semantics of processes with the situation calculus.
Improving Citation Polarity Classification With Product Reviews Recent work classifying citations in scientific literature has shown that it is possible to improve classification results with extensive feature engineering. While this result confirms that citation classification is feasible, there are two drawbacks to this approach: (i) it requires a large annotated corpus for supervised classification, which in the case of scientific literature is quite expensive; and (ii) feature engineering that is too specific to one area of scientific literature may not be portable to other domains, even within scientific literature. In this paper we address these two drawbacks. First, we frame citation classification as a domain adaptation task and leverage the abundant labeled data available in other domains. Then, to avoid over-engineering specific citation features for a particular scientific domain, we explore a deep learning neural network approach that has shown to generalize well across domains using unigram and bigram features. We achieve better citation classification results with this cross-domain approach than using in-domain classification.
1.11
0.1
0.065
0.0575
0.000058
0.000006
0
0
0
0
0
0
0
0
Proof Systems for Planning Under Cautious Semantics Planning with incomplete knowledge becomes a very active research area since late 1990s. Many logical formalisms introduce sensing actions and conditional plans to address the problem. The action language $$\mathcal{A}_{K}$$ invented by Son and Baral is a well-known framework for this purpose. In this paper, we propose so-called cautious and weakly cautious semantics for $$\mathcal{A}_{K}$$ , in order to allow an agent to generate and execute reliable plans in safety-critical environments. Intuitively speaking, cautious and weakly cautious semantics enable the agent to know exactly what happens after the execution of an action. Computational complexity analysis shows that cautious semantics reduces the reasoning complexity of $$\mathcal{A}_{K}$$ , it is also worth to point out that many useful domains could still be expressed with this setting. Another important contribution of our work is the development of Hoare style proof systems. These proof systems are served as inference mechanisms for the verification of conditional plans, and proved to be sound and complete. In addition, they could also be used for plan generation, in the sense that constructing a derivation is indeed a procedure to finding a plan. We point out that the proof systems posses a nice property for off-line planning, that is, the agent could generate and store short proofs in her spare time, and perform quick plan query by easily constructing a long proof from the stored shorter ones (under the assumption that sufficient proofs are stored).
Applicability conditions for plans with loops: Computability results and algorithms The utility of including loops in plans has been long recognized by the planning community. Loops in a plan help increase both its applicability and the compactness of its representation. However, progress in finding such plans has been limited largely due to lack of methods for reasoning about the correctness and safety properties of loops of actions. We present novel algorithms for determining the applicability and progress made by a general class of loops of actions. These methods can be used for directing the search for plans with loops towards greater applicability while guaranteeing termination, as well as in post-processing of computed plans to precisely characterize their applicability. Experimental results demonstrate the efficiency of these algorithms. We also discuss the factors which can make the problem of determining applicability conditions for plans with loops incomputable.
Proof systems for planning under 0-approximation semantics. In this paper we propose Hoare style proof systems called PR D 0 and PRKW D 0 for plan generation and plan verification under 0-approximation semantics of the action language A K . In PR D 0 (resp. PRKW D 0 ), a Hoare triple of the form {X}c{Y} (resp. {X}c{KW p }) means that all literals in Y become true (resp. p becomes known) after executing plan c in a state satisfying all literals in X. The proof systems are shown to be sound and complete, and more importantly, they give a way to efficiently generate and verify longer plans from existing verified shorter plans by applying so-called composition rule, provided that an enough number of shorter plans have been properly stored. The idea behind is a tradeoff between space and time, we refer it to off-line planning and point out that it could be applied to general planning problems.
An Effective QBF Solver for Planning Problems A large number of applications can be represented by quantified Boolean formulas (QBF). Although evaluating QBF is NP-hard and thus very difficult, there has been significant progress in the development of QBF solvers. These solvers require the quantified Boolean formula to be in a standard format. We have encountered a large class of problems whose representation as QBF is not in that standard format. If we apply current state-of-the-art QBF solvers, the required transformation into standard format increases the size of the formula and tends to hide structural properties of the problem class. We suggest a direct attack of the problem. The solution algorithm is based on backtracking search and on a new form of learning clauses. We have tested a first implementation of the algorithm on a class of planning problems. The tests show that the approach is significantly faster than current state-of-the-art QBF solvers.
Computational complexity of planning and approximate planning in the presence of incompleteness In the last several years the computational complexity of classical planning and HTN planning have been studied. But in both cases it is assumed that the planner has complete knowledge about the initial state. Recently, there has been proposal to use 'sensing' actions to plan in presence of incompleteness. In this paper we study the complexity of planning in such cases. In our study we use the action description language A proposed in 1993 by M. Gelfond and V. Lifschitz and its extensions. The language A allows planning in the situations with complete information. It is known that, if we consider only plans of feasible (polynomial) length, the planning problem for such situations is NP-complete: even checking whether a given objective is attainable from a given initial state is NP-complete. In this paper, we show that the planning problem in presence of incompleteness is indeed harder: it belongs to the next level of complexity hierarchy (in precise terms, it is Σ2P-complete). To overcome the complexity of this problem, C. Baral and T. Son have proposed several approximations. We show that under certain conditions, one of these approximations - O-approximation - makes the problem NP-complete (thus indeed reducing its complexity).
The well-founded semantics for general logic programs A general logic program (abbreviated to “program” hereafter) is a set of roles that have both positive and negative subgoals. It is common to view a deductive database as a general logic program consisting of rules (IDB) slttmg above elementary relations (EDB, facts). It is desirable to associate one Herbrand model with a program and think of that model as the “meaning of the program, ” or Its“declarative semantics. ” Ideally, queries directed to the program would be answered in accordance with this model. Recent research indicates that some programs do not have a “satisfactory” total model; for such programs, the question of an appropriate partial model arises. Unfounded sets and well-founded partial models are introduced and the well-founded semantics of a program are defined to be its well-founded partial model. If the well-founded partial model is m fact a total model. it is called the well-founded model. It n shown that the class of programs possessing a total well-founded model properly includes previously studied classes of “stratified” and “locally stratified” programs,The method in this paper is also compared with other proposals in the literature, including Clark’s“program completion, ” Fitting’s and Kunen’s 3-vahred interpretations of it, and the “stable models”of Gelfond and Lifschitz.
Affinity analysis of coded data sets Coded data sets are commonly used as compact representations of real world processes. Such data sets have been studied within various research fields from association mining, data warehousing, knowledge discovery, collaborative filtering to machine learning. However, previous studies on coded data sets have introduced methods for the analysis of rather small data sets. This study proposes applying information retrieval for enabling high performance analysis of data masses that scale beyond traditional approaches. Part of this PHD study focuses on new type of kernel projection functions that can be used to find similarities in spare discrete data spaces. This study presents experimental results how information retrieval indexes scale and outperform two common relational data schemas with a leading commercial DBMS for market basket analysis.
Internet of Things (IoT): A vision, architectural elements, and future directions Ubiquitous sensing enabled by Wireless Sensor Network (WSN) technologies cuts across many areas of modern day living. This offers the ability to measure, infer and understand environmental indicators, from delicate ecologies and natural resources to urban environments. The proliferation of these devices in a communicating-actuating network creates the Internet of Things (IoT), wherein sensors and actuators blend seamlessly with the environment around us, and the information is shared across platforms in order to develop a common operating picture (COP). Fueled by the recent adaptation of a variety of enabling wireless technologies such as RFID tags and embedded sensor and actuator nodes, the IoT has stepped out of its infancy and is the next revolutionary technology in transforming the Internet into a fully integrated Future Internet. As we move from www (static pages web) to web2 (social networking web) to web3 (ubiquitous computing web), the need for data-on-demand using sophisticated intuitive queries increases significantly. This paper presents a Cloud centric vision for worldwide implementation of Internet of Things. The key enabling technologies and application domains that are likely to drive IoT research in the near future are discussed. A Cloud implementation using Aneka, which is based on interaction of private and public Clouds is presented. We conclude our IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.
The complexity of combinatorial problems with succinct input representation Several languages for the succinct representation of the instances of combinatorial problems are investigated. These languages have been introduced in [20, 2] and [5] where it has been shown that describing the instances by these languages causes a blow-up of the complexities of some problems. In the present paper the descriptional power of these languages is compared by estimating the complexities of some combinatorial problems in terms of completeness in suitable classes of the “counting polynomial-time hierarchy” which is introduced here. It turns out that some of the languages are not comparable, unless P=NP Some problems left open in [2] are solved.
Planning as search: a quantitative approach We present the thesis that planning can be viewed as problem-solving search using subgoals, macro-operators, and abstraction as knowledge sources. Our goal is to quantify problem-solving performance using these sources of knowledge. New results include the identification of subgoal distance as a fundamental measure of problem difficulty, a multiplicative time-space tradeoff for macro-operators, and an analysis of abstraction which concludes that abstraction hierarchies can reduce exponential problems to linear complexity.
Representing actions in logic programs and default theories a situation calculus approach We address the problem of representing common sense knowledge about action domains in the formalisms of logic programming and default logic. We employ a methodology proposed by Gelfond and Lifschitz which involves first defining a high-level language for representing knowledge about actions, and then specifying a translation from the high-level action language into a general-purpose formalism, such as logic programming. Accordingly, we define a high-level action languageAE, and specify sound and complete translations of portions ofAEinto logic programming and default logic. The languageAEincludes propositions that represent “static causal laws” of the following kind: a fluent formula ψ can be made true by making a fluent formula true (or, more precisely, ψ is caused whenever is caused). Such propositions are more expressive than the state constraints traditionally used to represent background knowledge. Our translations ofAEdomain descriptions into logic programming and default logic are simple, in part because the noncontrapositive nature of causal laws is easily reflected in such rule-based formalisms.
The Performance Impact of Kernel Prefetching on Buffer Cache Replacement Algorithms A fundamental challenge in improving file system performance is to design effective block replacement algorithms to minimize buffer cache misses. Despite the well-known interactions between prefetching and caching, almost all buffer cache replacement algorithms have been proposed and studied comparatively, without taking into account file system prefetching, which exists in all modern operating systems. This paper shows that such kernel prefetching can have a significant impact on the relative performance in terms of the number of actual disk I/Os of many well-known replacement algorithms; it can not only narrow the performance gap but also change the relative performance benefits of different algorithms. Moreover, since prefetching can increase the number of blocks clustered for each disk I/O and, hence, the time to complete the I/O, the reduction in the number of disk I/Os may not translate into proportional reduction in the total I/O time. These results demonstrate the importance of buffer caching research taking file system prefetching into consideration and comparing the actual disk I/Os and the execution time under different replacement algorithms.
Representing the Process Semantics in the Event Calculus In this paper we shall present a translation of the process semantics [5] to the event calculus. The aim is to realize a method of integrating high-level semantics with logical calculi to reason about continuous change. The general translation rules and the soundness and completeness theorem of the event calculus with respect to the process semantics are main technical results of this paper.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.2
0.2
0.2
0.02
0.002062
0
0
0
0
0
0
0
0
0
t-DeLP: an argumentation-based Temporal Defeasible Logic Programming framework The aim of this paper is to propose an argumentation-based defeasible logic, called t-DeLP, that focuses on forward temporal reasoning for causal inference. We extend the language of the DeLP logical framework by associating temporal parameters to literals. A temporal logic program is a set of basic temporal facts and (strict or defeasible) durative rules. Facts and rules combine into durative arguments representing temporal processes. As usual, a dialectical procedure determines which arguments are undefeated, and hence which literals are warranted, or defeasibly follow from the program. t-DeLP, though, slightly differs from DeLP in order to accommodate temporal aspects, like the persistence of facts. The output of a t-DeLP program is a set of warranted literals, which is first shown to be non-contradictory and be closed under sub-arguments. This basic framework is then modified to deal with programs whose strict rules encode mutex constraints. The resulting framework is shown to satisfy stronger logical properties like indirect consistency and closure.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Parallel Sparse Subspace Clustering via Joint Sample and Parameter Blockwise Partition. Sparse subspace clustering (SSC) is a classical method to cluster data with specific subspace structure for each group. It has many desirable theoretical properties and has been shown to be effective in various applications. However, under the condition of a large-scale dataset, learning the sparse sample affinity graph is computationally expensive. To tackle the computation time cost challenge, we develop a memory-efficient parallel framework for computing SSC via an alternating direction method of multiplier (ADMM) algorithm. The proposed framework partitions the data matrix into column blocks and then decomposes the original problem into parallel multivariate Lasso regression subproblems and samplewise operations. The proposed method allows us to allocate multiple cores/machines for the processing of individual column blocks. We propose a stochastic optimization algorithm to minimize the objective function. Experimental results on real-world datasets demonstrate that the proposed blockwise ADMM framework is substantially more efficient than its matrix counterpart used by SSC, without sacrificing performance in applications. Moreover, our approach is directly applicable to parallel neighborhood selection for Gaussian graphical models structure estimation.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
FlexFetch: A History-Aware Scheme for I/O Energy Saving in Mobile Computing Extension of battery lifetime has always been a major issue for mobile computing. While more and more data are involved in mobile computing, energy consumption caused by I/O operations becomes increasingly large. In a pervasive computing environment, the requested data can be stored both on the local disk of a mobile computer by using the hoarding technique, and on the remote server, where data are accessible via wireless communication. Based on the current operational states of local disk (active or standby), the amount of data to be requested (small or large), and currently available wireless bandwidth (strong or weak reception), data access source can be adaptively selected to achieve maximum energy reduction. To this end, we propose a profile-based I/O management scheme, FlexFetch, that is aware of access history and adaptive to current access environment. Our simulation experiments driven by real-life traces demonstrate that the scheme can significantly reduce energy consumption in a mobile computer compared with existing representative schemes.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Enhanced Reliability Modeling of RAID Storage Systems A flexible model for estimating reliability of RAID storage systems is presented. This model corrects errors associated with the common assumption that system times to failure follow a homogeneous Poisson process. Separate generalized failure distributions are used to model catastrophic failures and usage dependent data corruptions for each hard drive. Catastrophic failure restoration is represented by a three-parameter Weibull, so the model can include a minimum time to restore as a function of data transfer rate and hard drive storage capacity. Data can be scrubbed as a background operation to eliminate corrupted data that, in the event of a simultaneous catastrophic failure, results in double disk failures. Field-based times to failure data and mathematic justification for a new model are presented. Model results have been verified and predict between 2 to 1,500 times as many double disk failures as that estimated using the current mean time to data loss method.
Bit Preservation: A Solved Problem?
Preserving peer replicas by rate-limited sampled voting The LOCKSS project has developed and deployed in a world-wide test a peer-to-peer system for preserving access to journals and other archival information published on the Web. It consists of a large number of independent, low-cost, persistent web caches that cooperate to detect and repair damage to their content by voting in "opinion polls." Based on this experience, we present a design for and simulations of a novel protocol for voting in systems of this kind. It incorporates rate limitation and intrusion detection to ensure that even some very powerful adversaries attacking over many years have only a small probability of causing irrecoverable damage before being detected.
Reliability Assurance of RAID Storage Systems for a Wide Range of Latent Sector Errors The low-cost disk drives, which are increasingly being adopted in today's data storage systems, have higher capacity but lower reliability, which leads to more frequent rebuilds and to a higher risk of unrecoverable or latent media errors. An intra-disk redundancy scheme has been proposed to cope with such errors and enhance the reliability of RAID systems. Empirical field results recently reported in the literature, however, suggest that the extent to which unrecoverable media errors occur is higher than the data sheet specifications provided by the disk manufacturers. Our results demonstrate that the reliability improvement due to intradisk redundancy is adversely affected because of the increase in the number of unrecoverable errors. We demonstrate that, by revising the parameter choice of the intradisk redundancy scheme, we can obtain essentially the same reliability as that of a system operating without unrecoverable sector errors. The I/O and throughput performance are evaluated by means of analysis and event-driven simulations. The effects of the spatial locality of errors and of the error-burst length distribution on the system reliability are also investigated.
Using device diversity to protect data against batch-correlated disk failures Batch-correlated failures result from the manifestation of a common defect in most, if not all, disk drives belonging to the same production batch. They are much less frequent than random disk failures but can cause catastrophic data losses even in systems that rely on mirroring or erasure codes to protect their data. We propose to reduce impact of batch-correlated failures on disk arrays by storing redundant copies of the same data on disks from different batches and, possibly, different manufacturers. The technique is especially attractive for mirrored organizations as it only requires that the two disks that hold copies of the same data never belong to the same production batch. We also show that even partial diversity can greatly increase the probability that the data stored in a RAID array will survive batch-correlated failures.
A fresh look at the reliability of long-term digital storage Emerging Web services, such as email, photo sharing, and web site archives, must preserve large volumes of quickly accessible data indefinitely into the future. The costs of doing so often determine whether the service is economically viable. We make the case that these applications' demands on large scale storage systems over long time horizons require us to reevaluate traditional system designs. We examine threats to long-lived data from an end-to-end perspective, taking into account not just hardware and software faults but also faults due to humans and organizations. We present a simple model of long-term storage failures that helps us reason about various strategies for addressing some of these threats. Using this model we show that the most important strategies for increasing the reliability of long-term storage are detecting latent faults quickly, automating fault repair to make it cheaper and faster, and increasing the independence of data replicas.
An analysis of data corruption in the storage stack An important threat to reliable storage of data is silent data corruption. In order to develop suitable protection mechanisms against data corruption, it is essential to understand its characteristics. In this paper, we present the first large-scale study of data corruption. We analyze corruption instances recorded in production storage systems containing a total of 1.53 million disk drives, over a period of 41 months. We study three classes of corruption: checksum mismatches, identity discrepancies, and parity inconsistencies. We focus on checksum mismatches since they occur the most. We find more than 400,000 instances of checksum mismatches over the 41-month period. We find many interesting trends among these instances including: (i) nearline disks (and their adapters) develop checksum mismatches an order of magnitude more often than enterprise class disk drives, (ii) checksum mismatches within the same disk are not independent events and they show high spatial and temporal locality, and (iii) checksum mismatches across different disks in the same storage system are not independent. We use our observations to derive lessons for corruption-proof system design.
AFRAID: a frequently redundant array of independent disks Disk arrays are commonly designed to ensure that stored data will always be able to withstand a disk failure, but meeting this goal comes at a significant cost in performance. We show that this is unnecessary. By trading away a fraction of the enormous reliability provided by disk arrays, it is possible to achieve performance that is almost as good as a non-parity-protected set of disks. In particular, our AFRAID design eliminates the small-update penalty that plagues traditional RAID 5 disk arrays. It does this by applying the data update immediately, but delaying the parity update to the next quiet period between bursts of client activity. That is, AFRAID makes sure that the array is frequently redundant, even if it isn't always so. By regulating the parity update policy, AFRAID allows a smooth trade-off between performance and availability. Under real-life workloads, the AFRAID design can provide close to the full performance of an array of unprotected disks, and data availability comparable to a traditional RAID 5. Our results show that AFRAID offers 42% better performance for only 10% less availability, 97% better for 23% less, and as much as a factor of 4.1 times better performance for giving up less than half RAID 5's availability. We explore here the detailed availability and performance implications of the AFRAID approach.
Network attached storage architecture
An Evaluation of Multiple-Disk I/O Systems Alternative ways of configuring an I/O subsystem with multiple disks to improve the I/O performance are considered. Specifically, the author consider disk synchronization, data declustering/disk striping, and a combination of both these approaches. They evaluate many different organizations that have not been considered before. The effects of block size and other parameters of the system are examined. Two different workloads are considered for the evaluation: a file/transaction system workload and a scientific applications workload. Through simulations it is shown that synchronized organizations perform better than other organizations at very low request rates; that there is a tradeoff in the amount of declustering/synchronization to be used in a system; and that systems with higher parallelism in reading a file perform better in a scientific workload.
Efficient sparse coding algorithms Sparse coding provides a class of algorithms for finding succinct representations of stimuli; given only unlabeled input data, it discovers basis functions that cap- ture higher-level features in the data. However, finding sparse codes remains a very difficult computational problem. In this paper, we present efficient sparse coding algorithms that are based on iteratively solving two convex optimization problems: an L1-regularized least squares problem and an L2-constrained least squares problem. We propose novel algorithms to solve both of these optimiza- tion problems. Our algorithms result in a significant speedup for sparse coding, allowing us to learn larger sparse codes than possible with previously described algorithms. We apply these algorithms to natural images and demonstrate that the inferred sparse codes exhibit end-stopping and non-classical receptive field sur- round suppression and, therefore, may provide a partial explanation for these two phenomena in V1 neurons.
Complexity Results for Quantified Boolean Formulae Based on Complete Propositional Languages Several propositional fragments have been considered so far as target languages for knowledge compilation and used for improving computational tasks from major AI areas (like inference, diagnosis and planning); among them are the ordered binary decision dia- grams, prime implicates, prime implicants, \formulae" in decomposable negation normal form. On the other hand, the validity problem val(QPROPP S) for Quantied Boolean For- mulae (QBF) has been acknowledged for the past few years as an important issue for AI, and many solvers have been designed. In this paper, the complexity of restrictions of the validity problem for QBF obtained by imposing the matrix of the input QBF to belong to propositional fragments used as target languages for compilation, is identied. It turns out that this problem remains hard (PSPACE-complete) even under severe restrictions on the matrix of the input. Nevertheless some tractable restrictions are pointed out.
Oriented principal component analysis for large margin classifiers. Large margin classifiers (such as MLPs) are designed to assign training samples with high confidence (or margin) to one of the classes. Recent theoretical results of these systems show why the use of regularisation terms and feature extractor techniques can enhance their generalisation properties. Since the optimal subset of features selected depends on the classification problem, but also on the particular classifier with which they are used, global learning algorithms for large margin classifiers that use feature extractor techniques are desired. A direct approach is to optimise a cost function based on the margin error, which also incorporates regularisation terms for controlling capacity. These terms must penalise a classifier with the largest margin for the problem at hand. Our work shows that the inclusion of a PCA term can be employed for this purpose. Since PCA only achieves an optimal discriminatory projection for some particular distribution of data, the margin of the classifier can then be effectively controlled. We also propose a simple constrained search for the global algorithm in which the feature extractor and the classifier are trained separately. This allows a degree of flexibility for including heuristics that can enhance the search and the performance of the computed solution. Experimental results demonstrate the potential of the proposed method.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.014623
0.028706
0.014841
0.014412
0.013088
0.007333
0.003647
0.000966
0.000058
0.000008
0
0
0
0
Deep Learning of Constrained Autoencoders for Enhanced Understanding of Data. Unsupervised feature extractors are known to perform an efficient and discriminative representation of data. Insight into the mappings they perform and human ability to understand them, however, remain very limited. This is especially prominent when multilayer deep learning architectures are used. This paper demonstrates how to remove these bottlenecks within the architecture of non-negativity constrained autoencoder. It is shown that using both L1 and L2 regularizations that induce non-negativity of weights, most of the weights in the network become constrained to be non-negative, thereby resulting into a more understandable structure with minute deterioration in classification accuracy. Also, this proposed approach extracts features that are more sparse and produces additional output layer sparsification. The method is analyzed for accuracy and feature interpretation on the MNIST data, the NORB normalized uniform object data, and the Reuters text categorization data set.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Complexity Results for Default Reasoning from Conditional Knowledge Bases Conditional knowledge bases have been pro- posed as belief bases that include defeasible rules (also called defaults) of the form " ", which informally read as "generally, if then ." Such rules may have exceptions, which can be han- dled in different ways. A number of entail- ment semantics for conditional knowledge bases have been proposed in the literature. However, while the semantic properties and interrelation- ships of these formalisms are quite well under- stood, about their algorithmic properties only partial results are known so far. In this paper, we fill these gaps and draw a precise picture of the complexity of default reasoning from con- ditional knowledge bases: Given a conditional knowledge base and a default , does entail ? We classify the complex- ity of this problem for a number of well-known approaches (including Goldszmidt et al.'s maxi- mum entropy approach and Geffner's conditional entailment). We consider the general proposi- tional case as well as syntactic restrictions (in particular, to Horn and literal-Horn conditional knowledge bases). Furthermore, we analyze the effect of precomputing rankings for the respec- tive approaches. Our results complement and ex- tend previous results, and contribute in exploring the tractability/intractability frontier of default reasoning from conditional knowledge bases.
BReLS: A System for the Integration of Knowledge Bases The process of integrating knowledge coming from dierent sources has been widely inves- tigated in the literature. Three distinct con- ceptual approaches to this problem have been most succesful: belief revision, merging and update. In this paper we present a framework that in- tegrates these three approaches. In the pro- posed framework all three operations can be performed. We provide an example that can only be solved by applying more than one sin- gle style of knowledge integration and, there- fore, cannot be addressed by anyone of the approaches alone. The framework has been implemented, and the examples shown in this paper (as well as other examples from the belief revision liter- ature) have been successfully tested.
Utilitarian Desires Autonomous agents reason frequently about preferences such as desires and goals. In this paper we propose a logic of desires with a utilitarian semantics, in which we study nonmonotonic reasoning about desires and preferences based on the idea that desires can be understood in terms of utility losses (penalties for violations) and utility gains (rewards for fulfillments). Our logic allows for a systematic study and classification of desires, for example by distinguishing subtly different ways to add up these utility losses and gains. We propose an explicit construction of the agent's preference relation from a set of desires together with different kinds of knowledge. A set of desires extended with knowledge induces a set of ‘distinguished’ utility functions by adding up the utility losses and gains of the individual desires, and these distinguished utility functions induce the preference relation.
Logical Preference Representation and Combinatorial Vote We introduce the notion of combinatorial vote, where a group of agents (or voters) is supposed to express preferences and come to a common decision concerning a set of non-independent variables to assign. We study two key issues pertaining to combinatorial vote, namely preference representation and the automated choice of an optimal decision. For each of these issues, we briefly review the state of the art, we try to define the main problems to be solved and identify their computational complexity.
Structure and Complexity in Planning with Unary Operators Unary operator domains - i.e., domains in which op- erators have a single effect - arise naturally in many control problems. In its most general form, the problem of STRIPS planning in unary operator domains is known to be as hard as the general STRIPS planning problem - both are PSPACE-complete. However, unary operator domains induce a natural structure, called the domain's causal graph. This graph relates between the precon- ditions and effect of each domain operator. Causal graphs were exploited by Williams and Nayak in order to analyze plan generation for one of the controllers in NASA's Deep-Space One spacecraft. There, they uti- lized the fact that when this graph is a tree, a serializa- tion ordering over any subgoal can be obtained quickly. In this paper we conduct a comprehensive study of the relationship between the structure of a domain's causal graph and the complexity of planning in this domain. On the positive side, we show that a non-trivial polyno- mial time plan generation algorithm exists for domains whose causal graph induces a polytree with a constant bound on its node indegree. On the negative side, we show that even plan existence is hard when the graph is a singly connected DAG. More generally, we show that the number of paths in the causal graph is closely related to the complexity of planning in the associated domain. Finally we relate our results to the question of complexity of planning with serializable subgoals.
The Downward Refinement Property Using abstraction in planning does not guarantee an im­ provement in search efficiency; it is possible for an ab- stract planner to display worse performance than one that does not use abstraction. Analysis and experiments have shown that good abstraction hierarchies have, or are close to having, the downward refinement property, whereby, given that a concrete-level solution exists, every abstract solution can be refined to a concrete-level solu­ tion without backtracking across abstract levels. Work­ ing within a semantics for ABSTRIPS-style abstraction we provide a characterizati on of the downward refinement property. After discussing its effect on search efficiency, we develop a semantic condition sufficient for guarantee­ ing its presence in an abstraction hierarchy. Using the semantic condition, we then provide a set of sufficient and polynomial-time checkable syntactic conditions that can be used for checking a hierarchy for the downward refinement property,
A logic programming approach to knowledge-state planning: Semantics and complexity We propose a new declarative planning language, called K, which is based on principles and methods of logic programming. In this language, transitions between states of knowledge can be described, rather than transitions between completely described states of the world, which makes the language well suited for planning under incomplete knowledge. Furthermore, our formalism enables the use of default principles in the planning process by supporting negation as failure. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, which shows that the language is very flexible. As we demonstrate on particular examples, the use of knowledge states may allow for a natural and compact problem representation. We then provide a thorough analysis of the computational complexity of K, and consider different planning problems, including standard planning and secure planning (also known as conformant planning) problems. We show that these problems have different complexities under various restrictions, ranging from NP to NEXPTIME in the propositional case. Our results form the theoretical basis for the DLVk system, which implements the language K on top of the DLV logic programming system.
Logic Programming and Nonmonotonic Reasoning, 5th International Conference, LPNMR'99, El Paso, Texas, USA, December 2-4, 1999, Proceedings
Formalizing (and Reasoning About) the Specifications of Workflows . We address the problem of workflow requirements specifications under realistic assumptions that it involves experts from differentdomains (different business policies), where not all the possible executionscenarios are known beforehand. Using recent results on reasoningabout actions, we formalize the notion of the specifications" correctness.To address this, we propose a high level language AW as a basis of ourprototype tool for process specification. We go &quot;one step&quot; before...
Optimal brain damage We have used information-theoretic ideas to derive a class of prac(cid:173) tical and nearly optimal schemes for adapting the size of a neural network. By removing unimportant weights from a network, sev(cid:173) eral improvements can be expected: better generalization, fewer training examples required, and improved speed of learning and/or classification. The basic idea is to use second-derivative informa(cid:173) tion to make a tradeoff between network complexity and training set error. Experiments confirm the usefulness of the methods on a real-world application.
Learning long-term dependencies with gradient descent is difficult Recurrent neural networks can be used to map input sequences to output sequences, such as for recognition, production or prediction problems. However, practical difficulties have been reported in training recurrent neural networks to perform tasks in which the temporal contingencies present in the input/output sequences span long intervals. We show why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases. These results expose a trade-off between efficient learning by gradient descent and latching on information for long periods. Based on an understanding of this problem, alternatives to standard gradient descent are considered.
A survey on counting classes Consideration is given to polynomial-time machines. Among these classes are EP and PP. The authors prove PEP[log] 25 PP, investigate the Boolean closure BC(EP) of EP, and give a relativization principle which allows them to completely separate BC(EP) in a suitable relativized world and to give simple proofs for known relativization results. Further results concerning the relationships of such classes in unrelativized and relativized worlds are given
MAXSAT Heuristics for Cost Optimal Planning.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.2496
0.1248
0.1248
0.0496
0.002614
0.000256
0.000053
0.000008
0.000001
0
0
0
0
0
Analysis and simulation of Web services Web services--Web-accessible programs and devices--are a key application area for the Semantic Web. With the proliferation of Web services and the evolution towards the Semantic Web comes the opportunity to automate various Web services tasks. Our objective is to enable markup and automated reasoning technology to describe, simulate, compose, test, and verify compositions of Web services. We take as our starting point the DAML-S DAML + OIL ontology for describing the capabilities of Web services. We define the semantics for a relevant subset of DAML-S in terms of a first-order logical language. With the semantics in hand, we encode our service descriptions in a Petri Net formalism and provide decision procedures for Web service simulation, verification and composition. We also provide an analysis of the complexity of these tasks under different restrictions to the DAML-S composite services we can describe. Finally, we present an implementation of our analysis techniques. This implementation takes as input a DAML-S description of a Web service, automatically generates a Petri Net and performs the desired analysis. Such a tool has broad applicability both as a back end to existing manual Web service composition tools, and as a stand-alone tool for Web service developers.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Exploring Gate-Limited Analytical Models for High Performance Network Storage Servers
Parameterized complexity for the database theorist
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
A two-stage imitation learning framework for the multi-target search problem in swarm robotics. •For the multi-target search problem in swarm robotics, most existing work is about strategic design while this article focuses on strategy imitation.•To our knowledge, it is the first time that the combination of deep learning technologies and evolutionary algorithms is used for the problem.•The strategy obtained from the framework is close to the target strategy on multiple indicators.•The two-stage imitation learning framework can also be used for other swarm tasks.•The network design and evolutionary algorithm settings can be a good reference.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Batch Normalization and the impact of batch structure on the behavior of deep convolution networks. Batch normalization was introduced in 2015 to speed up training of deep convolution networks by normalizing the activations across the current batch to have zero mean and unity variance. The results presented here show an interesting aspect of batch normalization, where controlling the shape of the training batches can influence what the network will learn. If training batches are structured as balanced batches (one image per class), and inference is also carried out on balanced test batches, using the batchu0027s own means and variances, then the conditional results will improve considerably. The network uses the strong information about easy images in a balanced batch, and propagates it through the shared means and variances to help decide the identity of harder images on the same batch. Balancing the test batches requires the labels of the test images, which are not available in practice, however further investigation can be done using batch structures that are less strict and might not require the test image labels. The conditional results show the error rate almost reduced to zero for nontrivial datasets with small number of classes such as the CIFAR10.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
MAGIC: a multiattribute declustering mechanism for multiprocessor database machines During the past decade, parallel database systems have gained increased popularity due to their high performance, scalability, and availability characteristics. With the predicted future database sizes and complexity of queries, the scalability of these systems to hundreds and thousands of processors is essential for satisfying the projected demand. Several studies have repeatedly demonstrated that both the performance and scalability of a parallel database system are contingent on the physical layout of the data across the processors of the system. If the data are not declustered appropriately, the execution of an operation might waste system resources, reducing the overall processing capability of the system. With earlier, single-attribute partitioning mechanisms such as those found in the Tandem, Teradata, Gamma, and Bubba parallel database systems, range selections on any attribute other than the partitioning attribute must be sent to all processors containing tuples of the relation, while range selections on the partitioning attribute can be directed to only a subset of the processors. Although using all the processors for an operation is reasonable for resource intensive operations, directing a query with minimal resource requirements to processors that contain no relevant tuples wastes CPU cycles, communication bandwidth, and I/O bandwidth. As a solution, this paper describes a new partitioning strategy, multiattribute grid declustering (MAGIC), which can use two or more attributes of a relation to decluster its tuples across multiple processors and disks. In addition, MAGIC declustering, unlike other multiattribute partitioning mechanisms that have been proposed, is able to support range selections as well as exact match selections on each of the partitioning attributes. This capability enables a greater variety of selection operations to be directed to a restricted subset of the processors in the system. Finally, MAGIC partitions each relation based on the resource requirements of the queries that constitute the workload for the relation and the processing capacity of the system in order to ensure that the proper number of processors are used to execute queries that reference the relation
Disk Allocation Methods Using Error Correcting Codes The problem of declustering, that is, how to distribute a binary Cartesian product file on multiple disks to maximize the parallelism for partial match queries, is examined. Cartesian product files appear as a result of some secondary key access methods. For the binary case, the problem is reduced to grouping the 2/sup n/ binary strings on n bits in m groups of unsimilar strings. It is proposed that the strings be grouped such that these group forms an error correcting code (ECC). This construction guarantees that the strings of a given group will have large Hamming distances, i.e., they will differ in many bit positions. Intuitively, this should result in good declustering. The authors describe how to build a declustering scheme using an ECC, and prove a theorem that gives a necessary condition for the proposed method to be optimal. Analytical results show that the proposed method is superior to older heuristics, and that it is very close to the theoretical (nontight) bound.
Parallelism in relational database management systems In order to provide real-time responses to complex queries involving large volumes of data, it has become necessary to exploit parallelism in query processing. This paper addresses the issues and solutions relating to intraquery parallelism in a relational database management system (DBMS). We provide a broad framework for the study of the numerous issues that need to be addressed in supporting parallelism efficiently and flexibly. The alternatives for a parallel architecture system are discussed, followed by the focus on how a query can be parallelized and how that affects load balancing of the different tasks created. The final part of the paper contains information about how the IBM DATABASE 2™ (DB2®) Version 3 product provides support for I/O parallelism to reduce response time for data-intensive queries.
Hot Block Clustering for Disk Arrays with Dynamic Striping
Integrated document caching and prefetching in storage hierarchies based on Markov-chain predictions Large multimedia document archives may hold a major fraction of their data in tertiary storage libraries for cost reasons. This paper develops an integrated approach to the vertical data migration between the tertiary, secondary, and primary storage in that it reconciles speculative prefetching, to mask the high latency of the tertiary storage, with the replacement policy of the document caches at the secondary and primary storage level, and also considers the interaction of these policies with the tertiary and secondary storage request scheduling. The integrated migration policy is based on a continuous-time Markov chain model for predicting the expected number of accesses to a document within a specified time horizon. Prefetching is initiated only if that expectation is higher than those of the documents that need to be dropped from secondary storage to free up the necessary space. In addition, the possible resource contention at the tertiary and secondary storage is taken into account by dynamically assessing the response-time benefit of prefetching a document versus the penalty that it would incur on the response time of the pending document requests. The parameters of the continuous-time Markov chain model, the probabilities of co-accessing certain documents and the interaction times between successive accesses, are dynamically estimated and adjusted to evolving workload patterns by keeping online statistics. The integrated policy for vertical data migration has been implemented in a prototype system. The system makes profitable use of the Markov chain model also for the scheduling of volume exchanges in the tertiary storage library. Detailed simulation experiments with Web-server-like synthetic workloads indicate significant gains in terms of client response time. The experiments also show that the overhead of the statistical bookkeeping and the computations for the access predictions is affordable.
Striping in a RAID level 5 disk array Redundant disk arrays are an increasingly popular way to improve I/O system performance. Past research has studied how to stripe data in non-redundant (RAID Level 0) disk arrays, but none has yet been done on how to stripe data in redundant disk arrays such as RAID Level 5, or on how the choice of striping unit varies with the number of disks. Using synthetic workloads, we derive simple design rules for striping data in RAID Level 5 disk arrays given varying amounts of workload information. We then validate the synthetically derived design rules using real workload traces to show that the design rules apply well to real systems.We find no difference in the optimal striping units for RAID Level 0 and 5 for read-intensive workloads. For write-intensive workloads, in contrast, the overhead of maintaining parity causes full-stripe writes (writes that span the entire error-correction group) to be more efficient than read-modify writes or reconstruct writes. This additional factor causes the optimal striping unit for RAID Level 5 to be four times smaller for write-intensive workloads than for read-intensive workloads.We next investigate how the optimal striping unit varies with the number of disks in an array. We find that the optimal striping unit for reads in a RAID Level 5 varies inversely to the number of disks, but that the optimal striping unit for writes varies with the number of disks. Overall, we find that the optimal striping unit for workloads with an unspecified mix of reads and writes is independent of the number of disks.Together, these trends lead us to recommend (in the absence of specific workload information) that the striping unit over a wide range of RAID Level 5 disk array sizes be equal to 1/2 * average positioning time * disk transfer rate.
Declustering using fractals A method for achieving declustering for Cartesian product files on M units is proposed. The focus is on range queries, as opposed to partial match queries that older declustering methods have examined. The method uses a distance-preserving mapping, the Hilbert curve, to impose a linear ordering on the multidimensional points (buckets); then, it traverses the buckets according to this ordering, assigning buckets to disks in a round-robin fashion. Because of the good distance-preserving properties of the Hilbert curve, the end result is that each disk contains buckets that are far away in the linear ordering, and, most probably, far away in the k-d address space. This is exactly the goal of declustering. Experiments show that these intuitive arguments lead to good performance: the proposed method performs at least as well as or better than older declustering schemes
Performance Evaluation of Grid Based Multi-Attibute Record Declustering Methods We focus on multi-attribute declustering methods which are based on some type of grid-based partitioning of the data space. Theoretical results are derived which show that no declustering method can be strictly optimal for range queries if the number of disks is greater than 5. A detailed performance evaluation is carried out to see how various declustering schemes perform under a wide range of query and database scenarios (both relative to each other and to the optimal). Parameters that are varied include shape and size of queries, database size, number of attributes and the number of disks. The results show that information about common queries on a relation is very important and ought to be used in deciding the declustering for it, and that this is especially crucial for small queries. Also, there is no clear winner, and as such parallel database systems must support a number of declustering methods
A file system for continuous media The Continuous Media File System, CMFS, supports real-time storage and retrieval of continuous media data (digital audio and video) on disk. CMFS clients read or write files in “sessions,” each with a guaranteed minimum data rate. Multiple sessions, perhaps with different rates, and non-real-time access can proceed concurrently. CMFS addresses several interrelated design issues; real-time semantics fo sessions, disk layout, an acceptance test for new sessions, and disk scheduling policy. We use simulation to compare different design choices.
ARC: A Self-Tuning, Low Overhead Replacement Cache We consider the problem of cache management in a demand paging scenario with uniform page sizes. We propose a new cache management policy, namely, Adaptive Replacement Cache (ARC), that has several advantages.In response to evolving and changing access patterns, ARC dynamically, adaptively, and continually balances between the recency and frequency components in an online and self-tuning fashion. The policy ARC uses a learning rule to adaptively and continually revise its assumptions about the workload.The policy ARC is empirically universal, that is, it empirically performs as well as a certain fixed replacement policy-even when the latter uses the best workload-specific tuning parameter that was selected in an offline fashion. Consequently, ARC works uniformly well across varied workloads and cache sizes without any need for workload specific a priori knowledge or tuning. Various policies such as LRU-2, 2Q, LRFU, and LIRS require user-defined parameters, and, unfortunately, no single choice works uniformly well across different workloads and cache sizes.The policy ARC is simple-to-implement and, like LRU, has constant complexity per request. In comparison, policies LRU-2 and LRFU both require logarithmic time complexity in the cache size.The policy ARC is scan-resistant: it allows one-time se-quential requests to pass through without polluting the cache.On 23 real-life traces drawn from numerous domains, ARC leads to substantial performance gains over LRU for a wide range of cache sizes. For example, for a SPC1 like synthetic benchmark, at 4GB cache, LRU delivers a hit ratio of 9.19% while ARC achieves a hit ratio of 20%.
Some Fault-Tolerant Aspects of the Chorus Distributed System
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Hypothetical Reasoning About Actions: From Situation Calculus To Event Calculus Hypothetical reasoning about actions is the activity of preevaluating the effect of performing actions in a changing domain; this reasoning underlies applications of knowledge representation, such as planning and explanation generation. Action effects are often specified in the language of situation calculus, introduced by McCarthy and Hayes in 1969. More recently, the event calculus has been defined to describe actual actions, i.e., those that have occurred in the past, and their effects on the domain. Altough the two formalisms share the basic ontology of atomic actions and fluents, situation calculus cannot represent actual actions while event calculus cannot represent hypotethical actions. In this article, the language and the axioms of event calculus are extended to allow representing and reasoning about hypothetical actions, performed either at the present time or in the past, altough counterfactuals are not supported. Both event calculus and its extension are defined as logic programs so that theories are readily adaptable for Prolog query interpretation. For a reasonably large class of theories and queries, Prolog interpretation is shown to be sound and complete w.r.t. the main semantics for logic programs.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.201553
0.101023
0.100776
0.033794
0.018507
0.008801
0.000493
0.000162
0.000072
0.000018
0
0
0
0
A two-phase differential synchronization algorithm for remote files This paper presents a two-phase synchronization algorithm—tpsync, which combines content-defined chunking (CDC) with sliding block duplicated data detection methods tpsync firstly partitions synchronized files into variable-sized chunks in coarse-grained scale with CDC method, locates the unmatched chunks of synchronized files using the edit distance algorithm, and finally generates the fine-grained delta data with fixed-sized sliding block duplicated data detection method At the first-phase, tpsync can quickly locate the partial changed chunks between two files through similar files' fingerprint characteristics On the basis of the first phase's results, small fixed-sized sliding block duplicated data detection method can produce better fine-grained delta data between the corresponding unmatched data chunks further Extensive experiments on ASCII, binary and database files demonstrate that tpsync can achieve a higher performance on synchronization time and total transferred data compared to traditional fixed-sized sliding block method—rsync Compared to rsync, tpsync reduces synchronization time by 12% and bandwidth by 18.9% on average if optimized parameters are applied on both With signature cached synchronization method adopted, tpsync can yield a better performance.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Using machine-learning approaches to predict non-participation in a nationwide general health check-up scheme. •Our predictive models applying machine learning methods were able to identify non-participants more precisely than heuristic method.•The present study revealed the important variables for prediction of participation in general health check-up.•The knowledge added by the present study will improve appropriate targeting of non-participants.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Minimal false quantified boolean formulas This paper is concerned with the minimal falsity problem MF for quantified Boolean formulas. A QCNF formula (i.e., with CNF-matrix) is called minimal false, if the formula is false and any proper subformula is true. It is shown that the minimal falsity problem is PSPACE-complete. Then the deficiency of a QCNF formula is defined as the difference between the number of clauses and the number of existentially quantified variables. For quantified Boolean formulas with deficiency one, MF is solvable in polynomial time.
Lean clause-sets: generalizations of minimally unsatisfiable clause-sets We study the problem of (efficiently) deleting such clauses from conjunctive normal forms (clause-sets) which cannot contribute to any proof of unsatisfiability. For that purpose we introduce the notion of an autarky system A, which detects deletion of superfluous clauses from a clause-set F and yields a canonical normal form NA(F) ⊆ F. Clause-sets where no clauses can be deleted are called A-lean, a natural weakening of minimally unsatisfiable clause-sets opening the possibility for combinatorial approaches and including also satisfiable instances. Three special examples for autarky systems are considered: general autarkies, linear autarkies (based on linear programming) and matching autarkies (based on matching theory). We give new characterizations of ("absolutely") lean clause-sets in terms of qualitative matrix analysis, while matching lean clause-sets are characterized in terms of deficiency (the difference between the number of clauses and the number of variables), by having a cyclic associated transversal matroid, and also in terms of fully indecomposable matrices. Finally we discuss how to obtain polynomial time satisfiability decision for clause-sets with bounded deficiency, and we make a few steps towards a general theory of autarky systems.
An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF We consider the minimal unsatisfiability problem for propositional formulas over n variables with n+k clauses for fixed k. We will show that in case of at most n clauses no formula is minimal unsatisfiable. For n+1 clauses the minimal unsatisfiability problem is solvable in quadratic time. Further, we present a characterization of minimal unsatisfiable formulas with n+1 clauses in terms of a certain form of matrices.
Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference A formula (in conjunctive normal form) is said to be minimal unsatisfiable if it is unsatisfiable and deleting any clause makes it satisfiable. The deficiency of a formula is the difference of the number of clauses and the number of variables. It is known that every minimal unsatisfiable formula has positive deficiency. Until recently, polynomial-time algorithms were known to recognize minimal unsatisfiable formulas with deficiency 1 and 2. We state an algorithm which recognizes minimal unsatisfiable formulas with any fixed deficiency in polynomial time.
Logic programs with classical negation
Logic programming and knowledge representation In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider extensions of the language of definite logic programs by classical (strong) negation, disjunction, and some modal operators and show how each of the added features extends the representational power of the language.
The contract net protocol: high-level communication and control in a distributed problem solver The contract net protocol has been developed to specify problem-solving communication and control for nodes in a distributed problem solver. Task distribution is affected by a negotiation process, a discussion carried on between nodes with tasks to be executed and nodes that may be able to execute those tasks.
A trace-driven analysis of the UNIX 4.2 BSD file system
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages
DC++: distributed object-oriented system support on top of OSF DCE The OSF Distributed Computing Environment (DCE) is becoming an industry standard for open distributed computing. However, DCE only supports client/server-style applications based on the remote procedure call (RPC) communication model. This paper describes the design and imple- mentation of an extended distributed object-oriented environment, DC++, on top of DCE. As op- posed to RPC, it supports a uniform object model, location independent invocation of fine- grained objects, remote reference parameter passing, dynamic migration of objects between nodes, and C++ language integration. Moreover, the implementation is fully integrated with DCE, using DCE UUIDs for object identification, DCE threads for interobject concurrency, DCE RPC for remote object invocation, and the DCE Cell Directory Service (CDS) for optional re- trieval of objects by name. An additional stub compiler enables automatic generation of C++- based object communication interfaces. Low-level parameter encoding is done by DCE RPC's stub generation facility using the C-based DCE interface definition language (IDL). The system has been fully implemented and tested by implementing an office application. Experi- ences with the existing system and performance results are also reported in the paper. Further- more, a former, less transparent implementation of our group using DCE RPC as a pure transport- level mechanism is compared with the described approach. Related C++ extensions and stan- dardization efforts are also compared with our work.
Representing actions in logic programs and default theories a situation calculus approach We address the problem of representing common sense knowledge about action domains in the formalisms of logic programming and default logic. We employ a methodology proposed by Gelfond and Lifschitz which involves first defining a high-level language for representing knowledge about actions, and then specifying a translation from the high-level action language into a general-purpose formalism, such as logic programming. Accordingly, we define a high-level action languageAE, and specify sound and complete translations of portions ofAEinto logic programming and default logic. The languageAEincludes propositions that represent “static causal laws” of the following kind: a fluent formula ψ can be made true by making a fluent formula true (or, more precisely, ψ is caused whenever is caused). Such propositions are more expressive than the state constraints traditionally used to represent background knowledge. Our translations ofAEdomain descriptions into logic programming and default logic are simple, in part because the noncontrapositive nature of causal laws is easily reflected in such rule-based formalisms.
iSAM: Incremental Smoothing and Mapping In this paper, we present incremental smoothing and mapping (iSAM), which is a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, thereby recalculating only those matrix entries that actually change. iSAM is efficient even for robot trajectories with many loops as it avoids unnecessary fill-in in the factor matrix by periodic variable reordering. Also, to enable data association in real time, we provide efficient algorithms to access the estimation uncertainties of interest based on the factored information matrix. We systematically evaluate the different components of iSAM as well as the overall algorithm using various simulated and real-world datasets for both landmark and pose-only settings.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.2
0.028571
0.011429
0.010256
0
0
0
0
0
0
0
0
0
0
Reconfiguring the Bioinformatics Computational Spectrum: Challenges and Opportunities of FPGA-Based Bioinformatics Acceleration Platforms This paper conducts a detailed survey on the use of FPGA-based reconfigurable computing platforms for a wide range of sequence and structural bioinformatics applications, with emphasis on performance and energy savings of the underlying architectures. Applications considered include sequence comparison, multiple sequence alignment, RNA and protein secondary structure prediction, gene prediction, and phylogenetic tree computation.
Seed-based genomic sequence comparison using a FPGA/FLASH accelerator. This paper presents a parallel architecture for computing genomic sequence alignments using seed-based algorithms. Originality comes from the simultaneous use of FPGA components and FLASH memories. The FPGA technology brings the computer power while the FLASH memory provides high memory bandwidth able to feed a large array of specific operators. A 64 GBytes FLASH memory connected to a Xilinx Virtex-2 Pro PCI board has been developed and an array of 160 distance-computation operators have been implemented to perform the first step of seed-based alignment algorithms. Compared to the BLAST reference software family, we measured a speed-up of 75 on a real intensive genomic sequence comparison application. © 2006 IEEE.
A General Reconfigurable Architecture for the BLAST Algorithm The process of DNA sequence matching and database search is one of the major problems of the bioinformatics community. Major scientific efforts to address this problem have provided algorithms and software tools for molecular biologists since the early 1970s. At the algorithmic and software level BLAST is by far the most popular tool. It has been developed and continues to be maintained and distributed by the NCBI organization. The BLAST algorithm and software is computationally very intensive and as a result several computer vendors use it as a benchmark. On the other hand no systematic approach for hardware speedup of BLAST and its variants for different query and database size has been reported to date. In this paper we present our architecture that implements the BLAST algorithm for all of its major versions, and for any size of database and query. The system has been fully designed and partially implemented with reconfigurable logic. It consists of software and hardware parts and achieves a speedup of several times up to thousands of times vs general purpose computers.
Extended stable semantics for normal and disjunctive programs
The nature of statistical learning theory~. First Page of the Article
A machine program for theorem-proving The programming of a proof procedure is discussed in connection with trial runs and possible improvements.
An Introduction to Least Commitment Planning Recent developments have clarified the process of generating partially ordered, partially specified sequences of actions whose execution will achieve an agent's goal. This article summarizes a progression of least commitment planners, starting with one that handles the simple STRIPS representation and ending with UCOPOP a planner that manages actions with disjunctive precondition, conditional effects, and universal quantification over dynamic universes. Along the way, I explain how Chapman's formulation of the modal truth criterion is misleading and why his NP-completeness result for reasoning about plans with conditional effects does not apply to UCOPOP.
Equilibria and steering laws for planar formations This paper presents a Lie group setting for the problem of control of formations, as a natural outcome of the analysis of a planar two-vehicle formation control law. The vehicle trajectories are described using the planar Frenet–Serret equations of motion, which capture the evolution of both the vehicle position and orientation for unit-speed motion subject to curvature (steering) control. The set of all possible (relative) equilibria for arbitrary G-invariant curvature controls is described (where G=SE(2) is a symmetry group for the control law), and a global convergence result for the two-vehicle control law is proved. An n-vehicle generalization of the two-vehicle control law is also presented, and the corresponding (relative) equilibria for the n-vehicle problem are characterized. Work is on-going to discover stability and convergence results for the n-vehicle problem.
Pushing the envelope: planning, propositional logic, and stochastic search Planning is a notoriously hard combinatorial search problem. In many interesting domains, current planning algorithms fail to scale up gracefully. By combining a general, stochastic search algorithm and appropriate problem encodings based on propositional logic, we are able to solve hard planning problems many times faster than the best current planning systems. Although stochastic methods have been shown to be very effective on a wide range of scheduling problems, this is the first demonstration of its power on truly challenging classical planning instances. This work also provides a new perspective on representational issues in planning.
A Completeness Result for SLDNF-Resolution Because of the possibility of floundering and infinite derivations, SLDNF-resolution is, in general, not complete. The classical approach [17] to get a completeness result is to restrict the attention to normal programs P and normal goals G, such that P or {G} is allowed and P is hierarchical. Unfortunately, the class of all normal programs and all normal goals meeting these requirements is not powerful enough to be of great practical importance. But after refining the concept of allowedness by taking modes [12] into account, we can broaden the notion of a hierarchical program, and thereby define a subclass of the class of normal programs and normal goals which is powerful enough to compute all primitive recursive functions without losing the completeness of SLDNF-resolution.
Diagnostic reasoning with A-Prolog In this paper, we suggest an architecture for a software agent which operates a physical device and is capable of making observations and of testing and repairing the device's components. We present simplified definitions of the notions of symptom, candidate diagnosis, and diagnosis which are based on the theory of action language ${\cal AL}$. The definitions allow one to give a simple account of the agent's behavior in which many of the agent's tasks are reduced to computing stable models of logic programs.
ARIMA time series modeling and forecasting for adaptive I/O prefetching Bursty application I/O patterns, together with transfer limited storage devices, combine to create a major I/O bottleneck on parallel systems. This paper explores the use of time series models to forecast application I/O request times, then prefetching I/O requests during computation intervals to hide I/O latency. Experimental results with I/O intensive scientific codes show performance improvements compared to standard UNIX prefetching strategies.
Scheduling parallel I/O operations The I/O bottleneck in parallel computer systems has recently begun receiving increasing interest. Most attention has focused on improving the performance of I/O devices using fairly low-level parallelism in techniques such as disk striping and interleaving. Widely applicable solutions, however, will require an integrated approach which addresses the problem at multiple system levels, including applications, systems software, and architecture. We propose that within the context of such an integrated approach, scheduling parallel I/O operations will become increasingly attractive and can potentially provide substantial performance benefits.We describe a simple I/O scheduling problem and present approximate algorithms for its solution. The costs of using these algorithms in terms of execution time, and the benefits in terms of reduced time to complete a batch of I/O operations, are compared with the situations in which no scheduling is used, and in which an optimal scheduling algorithm is used. The comparison is performed both theoretically and experimentally. We have found that, in exchange for a small execution time overhead, the approximate scheduling algorithms can provide substantial improvements in I/O completion times.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.2
0.025
0.005714
0
0
0
0
0
0
0
0
0
0
0
Parallel pattern matching with swaps on a linear array The Pattern Matching with Swaps problem is a variation of the classical pattern matching problem in which a match is allowed to include disjoint local swaps In 2009, Cantone and Faro devised a new dynamic programming algorithm for this problem that runs in time O(nm), where n is the length of the text and m is the length of the pattern In this paper, first, we present an improved dynamic programming formulation of the approach of Cantone and Faro Then, we present an optimal parallelization of our algorithm, based on a linear array model, that runs in time O(m2) using $\lceil \frac n {m-1}\rceil$ processors.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Retrieval performance of a distributed text database utilizing a parallel processor document server This paper considers text retrieval systems which store extremely huge amounts of text while providing a multi-user retrieval service for a large customer base. Due to the severe I/O demands of such a system, it is usually beneficial if not necessary to utilize a multi-processor system with multiple I/O facilities in an effort to increase the parallel I/O activity, the objective being to lower search response times.After defining the problem, we model a solution and show that the application can be handled in a very effective fashion by a multi-processor system with a simple LAN-based topology. The final discussion describes a type of functional splitting which, if done in a careful manner, helps improve search response time.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
ThinRAID: Thinning down RAID array for energy conservation The current power managements in RAID array are mostly designed to conserve energy by spinning down partial disks of standard RAID architecture. However, spinning down several disks not only decreases disk parallelism, but also creates new problems, for example, partial chunks of the stripe cannot be accessed directly or multiple chunks of the same stripe are stored on the same disk, which affect spatial locality. We refer these problems as Stripe Degradation, which results in further performance degradation. To avoid such problems, this paper proposes a new RAID storage architecture called ThinRAID, which uses a subset of disks to build a capacity-adaptive RAID array based on the volume of the data set. Also, the other non-essential disks are spun down to save energy. When the workload is projected to become heavier based on our forecast model, data are migrated to disks that have recently transitioned from standby to active. Furthermore, we also propose a novel data reorganization algorithm that can minimize data migration. We have implemented ThinRAID in the Linux kernel and evaluated its performance and energy efficiency by replaying seven representative traces. Experimental results show that ThinRAID can save 15%-27% on energy on average over conventional RAID, with minimum performance degradation. In comparison to PARAID, ThinRAID achieves up to 62% performance improvement.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0