Query Text
stringlengths
9
8.71k
Ranking 1
stringlengths
14
5.31k
Ranking 2
stringlengths
11
5.31k
Ranking 3
stringlengths
11
8.42k
Ranking 4
stringlengths
17
8.71k
Ranking 5
stringlengths
14
4.95k
Ranking 6
stringlengths
14
8.42k
Ranking 7
stringlengths
17
8.42k
Ranking 8
stringlengths
10
5.31k
Ranking 9
stringlengths
9
8.42k
Ranking 10
stringlengths
9
8.42k
Ranking 11
stringlengths
10
4.11k
Ranking 12
stringlengths
14
8.33k
Ranking 13
stringlengths
17
3.82k
score_0
float64
1
1.25
score_1
float64
0
0.25
score_2
float64
0
0.25
score_3
float64
0
0.24
score_4
float64
0
0.24
score_5
float64
0
0.24
score_6
float64
0
0.21
score_7
float64
0
0.1
score_8
float64
0
0.02
score_9
float64
0
0
score_10
float64
0
0
score_11
float64
0
0
score_12
float64
0
0
score_13
float64
0
0
Expanding queries to incomplete databases by interpolating general logic programs In databases, queries are usually defined on complete databases. In this paper we introduce and motivate the notion of extended queries that are defined on incomplete databases. We argue that the language of extended logic program is appropriate for representing extended queries. We show through examples that given a query, a particular extension of it has important characteristics which corresponds to removal of the CWA from the original specification of the query. We refer to this particular extension as the expansion of the original query. Normally queries are expressed as general logic programs. We develop an algorithm that given a general logic program (satisfying certain syntactic properties) expressing a query constructs an extended logic program that expresses the expanded query. The extended logic program is referred to as the interpolation of the given general logic program.
An approximative inference method for solving ∃¬so satisfiability problems The fragment ∃∀SO(ID) of second order logic extended with inductive definitions is expressive, and many interesting problems, such as conformant planning, can be naturally expressed as finite domain satisfiability problems of this logic. Such satisfiability problems are computationally hard (Σ2P). In this paper, we develop an approximate, sound but incomplete method for solving such problems that transforms a ∃∀SO(ID) to a ∃SO(ID) problem. The finite domain satisfiability problem for the latter language is in NP and can be handled by several existing solvers. We show that this provides an effective method for solving practically useful problems, such as common examples of conformant planning. We also propose a more complete translation to ∃SO(FP), existential SO extended with nested inductive and coinductive definitions.
Complexity aspects of various semantics for disjunctive databases This paper addresses complexity issues for important problems arising with disjunctive databases. In particular, the complexity of inference of a literal and a formula from a propositional disjunctive database under a variety of well-known disjunctive database semantics is investigated, as well deciding whether a disjunctive database has a model under a particular semantics. The problems are located in appropriate slots of the polynomial hierarchy.
A Completeness Result for SLDNF-Resolution Because of the possibility of floundering and infinite derivations, SLDNF-resolution is, in general, not complete. The classical approach [17] to get a completeness result is to restrict the attention to normal programs P and normal goals G, such that P or {G} is allowed and P is hierarchical. Unfortunately, the class of all normal programs and all normal goals meeting these requirements is not powerful enough to be of great practical importance. But after refining the concept of allowedness by taking modes [12] into account, we can broaden the notion of a hierarchical program, and thereby define a subclass of the class of normal programs and normal goals which is powerful enough to compute all primitive recursive functions without losing the completeness of SLDNF-resolution.
On Stratified Autoepistemic Theories In this paper we investigate some properties of "autoepistemic logic" approach to the formalization of common sense reasoning suggested by R. Moore in [Moore, 1985]. In particular we present a class of autoepistemic theories (called stratified autoepistemic theories) and prove that theories from this class have unique stable autoepistemic expansions and hence a clear notion of "theoremhood". These results are used to establish the relationship of Autoepistemic Logic with other formalizations of non-monotonic reasoning, such as negation as failure rule and circumscription. It is also shown that "classical" SLDNF resolution of Prolog can be used as a deductive mechanism for a rather broad class of autoepistemic theories. Key words and phrases: common sense reasoning, autoepistemic logic, negation as failure rule, non-monotonic reasoning. (Science section).
Splitting a logic program In many cases, a logic program can be divided into two parts, so that oneof them, the "bottom" part, does not refer to the predicates defined in the"top" part. The "bottom" rules can be used then for the evaluation of thepredicates that they define, and the computed values can be used to simplifythe "top" definitions. We discuss this idea of splitting a program inthe context of the answer set semantics. The main theorem shows how computingthe answer sets for a program can be simplified...
Representing action in extended logic programs
Planning under Incomplete Knowledge We propose a new logic-based planning language, called K. Transitions between states of knowledge can be described in K, and the language is well suited for planning under incomplete knowledge. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, proving to be very flexible. A planning system supporting K is implemented on top of the disjunctive logic programming system DLV. This novel systemallows for solving hard planning problems, including secure planning under incomplete initial states, which cannot be solved at all by other logic-based planning systems such as traditional satisfiability planners.
Restricted Monotonicity A knowledge representation problem can be sometimesviewed as an element of a family of problems,with parameters corresponding to possibleassumptions about the domain under consideration.When additional assumptions are made,the class of domains that are being described becomessmaller, so that the class of conclusions thatare true in all the domains becomes larger. Asa result, a satisfactory solution to a parametricknowledge representation problem on the basis ofsome nonmonotonic...
Macro-operators: a weak method for learning This article explores the idea of learning efficient strategies for solving problems by searching for macro-operators. A macro-operator, or macro for short, is simply a sequence of operators chosen from the primitive operators of a problem. The technique is particularly useful for problems with non-serializable subgoals, such as Rubik's Cube, for which other weak methods fail. Both a problem-solving program and a learning program are described in detail. The performance of these programs is analyzed in terms of the number of macros required to solve all problem instances, the length of the resulting solutions (expressed as the number of primitive moves), and the amount of time necessary to learn the macros. In addition, a theory of why the method works, and a characterization of the range of problems for which it is useful are presented. The theory introduces a new type of problem structure called operator decomposability. Finally, it is concluded that the macro technique is a new kind of weak method, a method for learning as opposed to problem solving.
Query Order We study the effect of query order on computational power and show that ${\rm P}^{{\rm BH}_j[1]:{\rm BH}_k[1]}$\allowbreak---the languages computable via a polynomial-time machine given one query to the $j$th level of the boolean hierarchy followed by one query to the $k$th level of the boolean hierarchy---equals ${\rm R}_{{j+2k-1}{\scriptsize\mbox{-tt}}}^{p}({\rm NP})$ if $j$ is even and $k$ is odd and equals ${\rm R}_{{j+2k}{\scriptsize\mbox{-tt}}}^{p}({\rm NP})$ otherwise. Thus unless the polynomial hierarchy collapses it holds that, for each $1\leq j \leq k$, ${\rm P}^{{\rm BH}_j[1]:{\rm BH}_k[1]} = {\rm P}^{{\rm BH}_k[1]:{\rm BH}_j [1]} \iff (j=k) \lor (j\mbox{ is even}\, \land k=j+1)$. We extend our analysis to apply to more general query classes.
A few useful things to know about machine learning Tapping into the \"folk knowledge\" needed to advance machine learning applications.
Dma-based prefetching for i/o-intensive workloads on the cell architecture Recent advent of the asymmetric multi-core processors such as Cell Broadband Engine (Cell/BE) has popularized the use of heterogeneous architectures. A growing body of research is exploring the use of such architectures, especially in High-End Computing, for supporting scientific applications. However, prior research has focused on use of the available Cell/BE operating systems and runtime environments for supporting compute-intensive jobs. Data and I/O intensive workloads have largely been ignored in this domain. In this paper, we take the first steps in supporting I/O intensive workloads on the Cell/BE and deriving guidelines for optimizing the execution of I/O workloads on heterogeneous architectures. We explore various performance enhancing techniques for such workloads on an actual Cell/BE system. Among the techniques we explore, an asynchronous prefetching-based approach, which uses the PowerPC core of the Cell/BE for file prefetching and decentralized DMAs from the synergistic processing cores (SPE's), improves the performance for I/O workloads that include an encryption/decryption component by 22.2%, compared to I/O performed naïvely from the SPE's. Our evaluation shows promising results and lays the foundation for developing more efficient I/O support libraries for multi-core asymmetric architectures.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.115956
0.1248
0.035746
0.015338
0.011943
0.003661
0.000621
0.000058
0.000007
0
0
0
0
0
A case for redundant arrays of inexpensive disks (RAID) Increasing performance of CPUs and memories will be squandered if not matched by a similar performance increase in I/O. While the capacity of Single Large Expensive Disks (SLED) has grown rapidly, the performance improvement of SLED has been modest. Redundant Arrays of Inexpensive Disks (RAID), based on the magnetic disk technology developed for personal computers, offers an attractive alternative to SLED, promising improvements of an order of magnitude in performance, reliability, power consumption, and scalability. This paper introduces five levels of RAIDs, giving their relative cost/performance, and compares RAID to an IBM 3380 and a Fujitsu Super Eagle.
A Dynamic Approach for Efficient TCP Buffer Allocation Abstract The paper proposes local and global optimization schemes for ecient,TCP buer,allocation in an HTTP server. The proposed local optimization scheme dynamically adjusts the TCP send-buer size to the connection and server characteristics. The global optimization scheme divides a certain amount of buer,space among all active TCP connections. These schemes are of increasing importance due to the large scale of TCP connection characteristics. The schemes are compared to the static allocation policy employed by a typical HTTP server, and shown to achieve considerable improvement to server performance and better utilization of its resources. The schemes require only minor code changes and only at the server. Keywords: HTTP, server performance, TCP send-buer. An early version of this paper was presented in IC3N’98, The 7’th International Conference on Computer
Random duplicate storage strategies for load balancing in multimedia servers An important issue in multimedia servers is disk load balancing. In this paper we use randomization and data redundancy to enable good load balancing. We focus on duplicate storage strategies, i.e., each data block is stored twice. This means that a request for a block can be serviced by two disks. A consequence of such a storage strategy is that we have to decide for each block which disk to use for its retrieval. This results in a so-called retrieval selection problem. We describe a graph model for duplicate storage strategies and derive polynomial time optimization algorithms for the retrieval selection problems of several storage strategies. Our model unifies and generalizes chained declustering and random duplicate assignment strategies. Simu- lation results and a probabilistic analysis complete this paper.
Intra-disk Parallelism: An Idea Whose Time Has Come Server storage systems use a large number of disks to achieve high performance, thereby consuming a significant amount of power. In this paper, we propose to significantly reduce the power consumed by such storage systems via intra-disk parallelism, wherein disk drives can exploit parallelism in the I/O request stream. Intra-disk parallelism can facilitate replacing a large disk array with a smaller one, using the minimum number of disk drives needed to satisfy the capacity requirements. We show that the design space of intra-disk parallelism is large and present a taxonomy to formulate specific implementations within this space. Using a set of commercial workloads, we perform a limit study to identify the key performance bottlenecks that arise when we replace a storage array that is tuned to provide high performance with a single high-capacity disk drive. We show that it is possible to match, and even surpass, the performance of a storage array for these workloads by using a single disk drive of sufficient capacity that exploits intra-disk parallelism, while significantly reducing the power consumed by the storage system. We evaluate the performance and power consumption of disk arrays composed of intra-disk parallel drives, and discuss engineering and cost issues related to the implementation and deployment of such disk drives.
Bit Preservation: A Solved Problem?
Higher reliability redundant disk arrays: Organization, operation, and coding Parity is a popular form of data protection in redundant arrays of inexpensive/independent disks (RAID). RAID5 dedicates one out of N disks to parity to mask single disk failures, that is, the contents of a block on a failed disk can be reconstructed by exclusive-ORing the corresponding blocks on surviving disks. RAID5 can mask a single disk failure, and it is vulnerable to data loss if a second disk failure occurs. The RAID5 rebuild process systematically reconstructs the contents of a failed disk on a spare disk, returning the system to its original state, but the rebuild process may be unsuccessful due to unreadable sectors. This has led to two disk failure tolerant arrays (2DFTs), such as RAID6 based on Reed-Solomon (RS) codes. EVENODD, RDP (Row-Diagonal-Parity), the X-code, and RM2 (Row-Matrix) are 2DFTs with parity coding. RM2 incurs a higher level of redundancy than two disks, while the X-code is limited to a prime number of disks. RDP is optimal with respect to the number of XOR operations at the encoding, but not for short write operations. For small symbol sizes EVENODD and RDP have the same disk access pattern as RAID6, while RM2 and the X-code incur a high recovery cost with two failed disks. We describe variations to RAID5 and RAID6 organizations, including clustered RAID, different methods to update parities, rebuild processing, disk scrubbing to eliminate sector errors, and the intra-disk redundancy (IDR) method to deal with sector errors. We summarize the results of recent studies of failures in hard disk drives. We describe Markov chain reliability models to estimate RAID mean time to data loss (MTTDL) taking into account sector errors and the effect of disk scrubbing. Numerical results show that RAID5 plus IDR attains the same MTTDL level as RAID6, while incurring a lower performance penalty. We conclude with a survey of analytic and simulation studies of RAID performance and tools and benchmarks for RAID performance evaluation.
Block locality caching for data deduplication Data deduplication systems discover and remove redundancies between data blocks by splitting the data stream into chunks and comparing a hash of each chunk with all previously stored hashes. Storing the corresponding chunk index on hard disks immediately limits the achievable throughput, as these devices are unable to support the high number of random IOs induced by this index. Several approaches to overcome this chunk lookup disk bottleneck have been proposed. Often, the approaches try to capture the locality information of a backup run and use this in the next backup run to predict future chunk requests. However, often this locality is only captured by a surrogate, e.g., the order of the chunks in containers. [37]. Furthermore, some approaches degenerate slowly when the systems operate over months and years because the locality information becomes outdated. We propose a novel approach, called Block Locality Cache (BLC), that captures the previous backup run significantly better than existing approaches and also always uses up-to-date locality information and which is, therefore, less prone to aging. We evaluate the approach using a trace-based simulation of multiple real-world backup datasets. The simulation compares the Block Locality Cache with the approach of Zhu et al. [37] and provides a detailed analysis of the behavior and IO pattern. Furthermore, a prototype implementation is used to validate the simulation.
Disk placement for arbitrary-rate playback in an interactive video server Multimedia data, especially continuous media including video and audio objects, represent a rich and natural stimulus for humans, but require large amount of storage capacity and real-time processing. In this paper, we describe how to organize video data efficiently on multiple disks in order to support arbitrary-rate playback requested by different users independently. Our approach is to segment and decluster video objects and to place the segments in multiple disks using a restricted round-robin scheme, called prime round-robin (PRR). Its placement scheme provides uniform load balance of disks for arbitrary retrieval rate as well as normal playback, since it eliminates hot spots. Moreover, it does not require any additional disk bandwidth to support VCR-like operations such as fast-forward and rewind. We have studied the various effects of placement and retrieval schemes in a storage server by simulation. The results show that PRR offers even disk accesses, and the failure in reading segment by deadline occurs only at the beginning of new operations. In addition, the number of users admitted is not decreased, regardless of arbitrary-rate playback requests.
Minerva: An automated resource provisioning tool for large-scale storage systems Enterprise-scale storage systems, which can contain hundreds of host computers and storage devices and up to tens of thousands of disks and logical volumes, are difficult to design. The volume of choices that need to be made is massive, and many choices have unforeseen interactions. Storage system design is tedious and complicated to do by hand, usually leading to solutions that are grossly over-provisioned, substantially under-performing or, in the worst case, both.To solve the configuration nightmare, we present minerva: a suite of tools for designing storage systems automatically. Minerva uses declarative specifications of application requirements and device capabilities; constraint-based formulations of the various sub-problems; and optimization techniques to explore the search space of possible solutions.This paper also explores and evaluates the design decisions that went into Minerva, using specialized micro- and macro-benchmarks. We show that Minerva can successfully handle a workload with substantial complexity (a decision-support database benchmark). Minerva created a 16-disk design in only a few minutes that achieved the same performance as a 30-disk system manually designed by human experts. Of equal importance, Minerva was able to predict the resulting system's performance before it was built.
The LOCKSS peer-to-peer digital preservation system The LOCKSS project has developed and deployed in a world-wide test a peer-to-peer system for preserving access to journals and other archival information published on the Web. It consists of a large number of independent, low-cost, persistent Web caches that cooperate to detect and repair damage to their content by voting in “opinion polls.” Based on this experience, we present a design for and simulations of a novel protocol for voting in systems of this kind. It incorporates rate limitation and intrusion detection to ensure that even some very powerful adversaries attacking over many years have only a small probability of causing irrecoverable damage before being detected.
Strategic directions in storage I/O issues in large-scale computing
Evaluating collaborative filtering recommender systems Recommender systems have been evaluated in many, often incomparable, ways. In this article, we review the key decisions in evaluating collaborative filtering recommender systems: the user tasks being evaluated, the types of analysis and datasets being used, the ways in which prediction quality is measured, the evaluation of prediction attributes other than quality, and the user-based evaluation of the system as a whole. In addition to reviewing the evaluation strategies used by prior researchers, we present empirical results from the analysis of various accuracy metrics on one content domain where all the tested metrics collapsed roughly into three equivalence classes. Metrics within each equivalency class were strongly correlated, while metrics from different equivalency classes were uncorrelated.
A simplified way of proving trade-off results for resolution We present a greatly simplified proof of the length-space trade-off result for resolution in [P. Hertel, T. Pitassi, Exponential time/space speedups for resolution and the PSPACE-completeness of black-white pebbling, in: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS '07), Oct. 2007, pp. 137-149], and also prove a couple of other theorems in the same vein. We point out two important ingredients needed for our proofs to work, and discuss some possible conclusions. Our key trick is to look at formulas of the type F=G@?H, where G and H are over disjoint sets of variables and have very different length-space properties with respect to resolution.
Privacy-preserving restricted boltzmann machine. With the arrival of the big data era, it is predicted that distributed data mining will lead to an information technology revolution. To motivate different institutes to collaborate with each other, the crucial issue is to eliminate their concerns regarding data privacy. In this paper, we propose a privacy-preserving method for training a restricted boltzmann machine (RBM). The RBM can be got without revealing their private data to each other when using our privacy-preserving method. We provide a correctness and efficiency analysis of our algorithms. The comparative experiment shows that the accuracy is very close to the original RBM model.
1.000324
0.001097
0.000765
0.000646
0.000556
0.000482
0.000439
0.000365
0.0003
0.000238
0.000054
0
0
0
On Computing Minimum Unsatisfiable Cores Certifying a SAT solver for unsatisfiable instances is a computationally hard problem. Nevertheless, in the utilization of SAT in industrial settings, one often needs to be able to generate unsatisfiability proofs, either to guarantee the correctness of the SAT solver or as part of the utilization of SAT in some applications (e.g. in model checking). As part of the process of generating unsatisfiable proofs, one is also interested in unsatisfiable sub- formulas of the original formula, also known as unsatisfiable cores. Furthermore, it may by useful identifying the minimum unsatisfiable core of a given problem instance, i.e. the smallest number of clauses that make the instance unsatisfiable. This approach is be very useful in AI problems where identifying the minimum core is crucial for correcting the minimum amount of inconsistent information (e.g. in knowledge bases).
MUP: a minimal unsatisfiability prover After establishing the unsatisfiability of a SAT instance encoding a typical design task, there is a practical need to identify its minimal unsatisfiable subsets, which pinpoint the reasons for the infeasibility of the design. Due to the potentially expensive computation, existing tools for the extraction of unsatisfiable subformulas do not guarantee the minimality of the results. This paper describes a practical algorithm that decides the minimal unsatisfiability of any CNF formula through BDD manipulation. This algorithm has a worse-case complexity that is exponential only in the treewidth of the CNF formula. We provide an empirical evaluation of the algorithm, highlighting its efficiency on a set of hard problems as well as its ability to work with existing subformula extraction tools to achieve optimal results.
Extracting minimum unsatisfiable cores with a greedy genetic algorithm Explaining the causes of infeasibility of Boolean formulas has practical applications in various fields. We are generally interested in a minimum explanation of infeasibility that excludes irrelevant information. A smallest-cardinality unsatisfiable subset, called a minimum unsatisfiable core, can provide a succinct explanation of infeasibility and is valuable for applications. However little attention has been concentrated on extraction of minimum unsatisfiable cores. In this paper, we propose an efficient greedy genetic algorithm to derive an exact or nearly exact minimum unsatisfiable core. It takes advantage of the relationship between maximal satisfiability and minimum unsatisfiability. We report experimental results on practical benchmarks, as compared with the branch-and-bound algorithm and the ant colony optimization.
Linear-Time Reductions of Resolution Proofs DPLL-based SAT solvers progress by implicitly applying binary resolution. The resolution proofs that they generate are used, after the SAT solver's run has terminated, for various purposes. Most notable uses in formal verification are: extracting an unsatisfiable core , extracting an interpolant , and detecting clauses that can be reused in an incremental satisfiability setting (the latter uses the proof only implicitly, during the run of the SAT solver). Making the resolution proof smaller can benefit all of these goals. We suggest two methods that are linear in the size of the proof for doing so. Our first technique, called Recycle-Units , uses each learned constant (unit clause) (x ) for simplifying resolution steps in which x was the pivot, prior to when it was learned. Our second technique, called Recycle-Pivots , simplifies proofs in which there are several nodes in the resolution graph, one of which dominates the others, that correspond to the same pivot. Our experiments with industrial instances show that these simplifications reduce the core by ≈ 5% and the proof by ≈ 13%. It reduces the core less than competing methods such as run-till-fix , but whereas our algorithms are linear in the size of the proof, the latter and other competing techniques are all exponential as they are based on SAT runs. If we consider the size of the proof graph as being polynomial in the number of variables (it is not necessarily the case in general), this gives our method an exponential time reduction comparing to existing tools for small core extraction. Our experiments show that this result is evident in practice more so for the second method: rarely it takes more than a few seconds, even when competing tools time out, and hence it can be used as a cheap proof post-processing procedure.
Local-search Extraction of MUSes SAT is probably one of the most-studied constraint satisfaction problems. In this paper, a new hybrid technique based on local search is introduced in order to approximate and extract minimally unsatisfiable subformulas (in short, MUSes) of unsatisfiable SAT instances. It is based on an original counting heuristic grafted to a local search algorithm, which explores the neighborhood of the current interpretation in an original manner, making use of a critical clause concept. Intuitively, a critical clause is a falsified clause that becomes true thanks to a local search flip only when some other clauses become false at the same time. In the paper, the critical clause concept is investigated. It is shown to be the cornerstone of the efficiency of our approach, which outperforms competing ones to compute MUSes, inconsistent covers and sets of MUSes, most of the time.
On subclasses of minimal unsatisfiable formulas We consider the minimal unsatisfiablity problem MU ( k ) for propositional formulas in conjunctive normal form (CNF) over n variables and n + k clauses, where k is fixed. k is called the difference. Any formula in MU ( k ) can be split into two minimal unsatisfiable formula. For such splittings we investigate the size of the differences of the resulting formulas in comparison to the difference of the initial formula. Based on these results we prove that MU ( k ) for fixed k is in NP, and for MU (2) we present a simple and unique characterization.
Boosting minimal unsatisfiable core extraction A variety of tasks in formal verification require finding small or minimal unsatisfiable cores (subsets) of an unsatisfiable set of constraints. This paper proposes two algorithms for finding a minimal unsatisfiable core or, if a time-out occurs, a small non-minimal unsatisfiable core. Our algorithms can be applied to either standard clause-level unsatisfiable core extraction or high-level unsatisfiable core extraction, that is, an extraction of an unsatisfiable core in terms of “interesting” propositional constraints supplied by the user application. We demonstrate that one of our algorithms outperforms existing algorithms for clause-level minimal unsatisfiable core extraction on large well-known industrial benchmarks. We also show that our algorithms are highly scalable for the problem of high-level minimal unsatisfiable core extraction on huge benchmarks generated by Intel's proof-based abstraction refinement flow. In addition, we provide a comparative analysis of the impact of various algorithms on unsatisfiable core extraction.
Facets of the knapsack polytope Abstract A necessary and sufficient condition is given for an inequality with coefficients 0 or 1 to define a facet of the knapsack polytope, i.e., of the convex hull of 0–1 points satisfying a given linear inequality. A sufficient condition is also established for a larger class of inequalities (with coefficients not restricted to 0 and 1) to define a facet for the same polytope, and a procedure is given for generating all facets in the above two classes. The procedure can be viewed as a way of generating cutting planes for 0–1 programs.
Smodels - An Implementation of the Stable Model and Well-Founded Semantics for Normal LP
Natural Actions, Concurrency and Continuous Time in the Situation Calculus Our focus in this paper is on natural exogenous actions (Pinto [23]), namely those which occur in response to known laws of physics, like a ball bouncing at times determined by Newtonian equations of motion. The property of such actions that we wish to capture is that they must occur at their predicted times, provided no earlier actions (natural or agent initiated) prevent them from occurring. Because several such actions may occur simultaneously, we need a theory of concurrency. Because such actions may be modeled by equations of motion, we need to represent continuous time. This paper shows how to gracefully accommodate all these features within the situation calculus, without sacrificing the simple solution to the frame problem of Reiter [25]. One nice consequence of this approach is a situation calculus specification of deductive planning, with continuous time and true concurrency, and where the agent can incorporate external natural event occurrences into her plans.
Some Alternative Formulations of the Event Calculus The Event Calculus is a narrative based formalism for reasoning about actions and change originally proposed in logic programming form by Kowalski and Sergot. In this paper we summarise how variants of the Event Calculus may be expressed as classical logic axiomatisations, and how under certain circumstances these theories may be reformulated as "action description language" domain descriptions using the Language 驴. This enables the classical logic Event Calculus to inherit various provably correct automated reasoning procedures recently developed for 驴.
Analysis and simulation of Web services Web services--Web-accessible programs and devices--are a key application area for the Semantic Web. With the proliferation of Web services and the evolution towards the Semantic Web comes the opportunity to automate various Web services tasks. Our objective is to enable markup and automated reasoning technology to describe, simulate, compose, test, and verify compositions of Web services. We take as our starting point the DAML-S DAML + OIL ontology for describing the capabilities of Web services. We define the semantics for a relevant subset of DAML-S in terms of a first-order logical language. With the semantics in hand, we encode our service descriptions in a Petri Net formalism and provide decision procedures for Web service simulation, verification and composition. We also provide an analysis of the complexity of these tasks under different restrictions to the DAML-S composite services we can describe. Finally, we present an implementation of our analysis techniques. This implementation takes as input a DAML-S description of a Web service, automatically generates a Petri Net and performs the desired analysis. Such a tool has broad applicability both as a back end to existing manual Web service composition tools, and as a stand-alone tool for Web service developers.
Building extensible frameworks for data processing: The case of MDP, Modular toolkit for Data Processing. Data processing is a ubiquitous task in scientific research, and much energy is spent on the development of appropriate algorithms. It is thus relatively easy to find software implementations of the most common methods. On the other hand, when building concrete applications, developers are often confronted with several additional chores that need to be carried out beside the individual processing steps. These include for example training and executing a sequence of several algorithms, writing code that can be executed in parallel on several processors, or producing a visual description of the application. The Modular toolkit for Data Processing (MDP) is an open source Python library that provides an implementation of several widespread algorithms and offers a unified framework to combine them to build more complex data processing architectures. In this paper we concentrate on some of the newer features of MOP, focusing on the choices made to automatize repetitive tasks for users and developers. In particular, we describe the support for parallel computing and how this is implemented via a flexible extension mechanism. We also briefly discuss the support for algorithms that require bi-directional data flow. (C) 2011 Elsevier B.V. All rights reserved.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.014287
0.013755
0.013397
0.011111
0.008839
0.004069
0.000599
0.000029
0.000001
0
0
0
0
0
Fixed-parameter tractability of satisfying beyond the number of variables We consider a CNF formula F as a multiset of clauses: F={c1,…, cm}. The set of variables of F will be denoted by V(F). Let BF denote the bipartite graph with partite sets V(F) and F and an edge between v∈V(F) and c∈F if v∈c or $\bar{v} \in c$. The matching number ν(F) of F is the size of a maximum matching in BF. In our main result, we prove that the following parameterization of MaxSat is fixed-parameter tractable: Given a formula F, decide whether we can satisfy at least ν(F)+k clauses in F, where k is the parameter. A formula F is called variable-matched if ν(F)=|V(F)|. Let δ(F)=|F|−|V(F)| and δ*(F)= max F′⊆Fδ(F′). Our main result implies fixed-parameter tractability of MaxSat parameterized by δ(F) for variable-matched formulas F; this complements related results of Kullmann (2000) and Szeider (2004) for MaxSat parameterized by δ*(F). To prove our main result, we obtain an O((2e)2kkO(logk) (m+n)O(1))-time algorithm for the following parameterization of the Hitting Set problem: given a collection $\cal C$ of m subsets of a ground set U of n elements, decide whether there is X⊆U such that C∩X≠∅ for each $C\in \cal C$ and |X|≤m−k, where k is the parameter. This improves an algorithm that follows from a kernelization result of Gutin, Jones and Yeo (2011).
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
An FPGA implementation for a high-speed optical link with a PCIe interface To achieve speedup for multi-node, multi-GPU computing platforms, it is necessary to overcome performance bottlenecks in networks based on Ethernet or Infiniband. This paper describes an FPGA implementation of a custom network interface for an optical link between PCIe buses of compute nodes. The implementation uses an Altera Stratix IV chip with integrated PCIe interface logic and high-speed input/output for connecting optical fiber interfaces. The interface is designed with control and buffering for concurrent data transfers. A software driver enables application programs on the host computer to use the high-speed link. A bandwidth of 8.5 Gbit/s was achieved between software applications, exceeding bandwidth reported in recent work [7].
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Angelic Hierarchical Planning: Optimal and Online Algorithms High-level actions (HLAs) are essential tools for coping with the large search spaces and long decision horizons encoun- tered in real-world decision making. In a recent paper, we proposed an "angelic" semantics for HLAs that supports proofs that a high-level plan will (or will not) achieve a goal, without first reducing the plan to primitive action sequences. This paper extends the angelic semantics with cost informa- tion to support proofs that a high-level plan is (or is not) op- timal. We describe the Angelic Hierarchical A* algorithm, which generates provably optimal plans, and show its advan- tages over alternative algorithms. We also present the Angelic Hierarchical Learning Real-Time A* algorithm for situated agents, one of the first algorithms to do hierarchical looka- head in an online setting. Since high-level plans are much shorter, this algorithm can look much farther ahead than pre- vious algorithms (and thus choose much better actions) for a given amount of computational effort.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Learning High-Level Feature by Deep Belief Networks for 3-D Model Retrieval and Recognition. 3-D shape analysis has attracted extensive research efforts in recent years, where the major challenge lies in designing an effective high-level 3-D shape feature. In this paper, we propose a multi-level 3-D shape feature extraction framework by using deep learning. The low-level 3-D shape descriptors are first encoded into geometric bag-of-words, from which middle-level patterns are discovered to explore geometric relationships among words. After that, high-level shape features are learned via deep belief networks, which are more discriminative for the tasks of shape classification and retrieval. Experiments on 3-D shape recognition and retrieval demonstrate the superior performance of the proposed method in comparison to the state-of-the-art methods.
3D object understanding with 3D Convolutional Neural Networks Feature engineering plays an important role in object understanding. Expressive discriminative features can guarantee the success of object understanding tasks. With remarkable ability of data abstraction, deep hierarchy architecture has the potential to represent objects. For 3D objects with multiple views, the existing deep learning methods can not handle all the views with high quality. In this paper, we propose a 3D convolutional neural network, a deep hierarchy model which has a similar structure with convolutional neural network. We employ stochastic gradient descent (SGD) method to pretrain the convolutional layer, and then a back-propagation method is proposed to fine-tune the whole network. Finally, we use the result of the two phases for 3D object retrieval. The proposed method is shown to out-perform the state-of-the-art approaches by experiments conducted on publicly available 3D object datasets.
Deep Fusion of Multiple Semantic Cues for Complex Event Recognition. We present a deep learning strategy to fuse multiple semantic cues for complex event recognition. In particular, we tackle the recognition task by answering how to jointly analyze human actions (who is doing what), objects (what), and scenes (where). First, each type of semantic features (e.g., human action trajectories) is fed into a corresponding multi-layer feature abstraction pathway, followed...
Deep Learning Advances in Computer Vision with 3D Data: A Survey. Deep learning has recently gained popularity achieving state-of-the-art performance in tasks involving text, sound, or image processing. Due to its outstanding performance, there have been efforts to apply it in more challenging scenarios, for example, 3D data processing. This article surveys methods applying deep learning on 3D data and provides a classification based on how they exploit them. From the results of the examined works, we conclude that systems employing 2D views of 3D data typically surpass voxel-based (3D) deep models, which however, can perform better with more layers and severe data augmentation. Therefore, larger-scale datasets and increased resolutions are required.
FitNets: Hints for Thin Deep Nets. While depth tends to improve network performances, it also makes gradient-based training more difficult since deeper networks tend to be more non-linear. The recently proposed knowledge distillation approach is aimed at obtaining small and fast-to-execute models, and it has shown that a student network could imitate the soft output of a larger teacher network or ensemble of networks. In this paper, we extend this idea to allow the training of a student that is deeper and thinner than the teacher, using not only the outputs but also the intermediate representations learned by the teacher as hints to improve the training process and final performance of the student. Because the student intermediate hidden layer will generally be smaller than the teacher's intermediate hidden layer, additional parameters are introduced to map the student hidden layer to the prediction of the teacher hidden layer. This allows one to train deeper students that can generalize better or run faster, a trade-off that is controlled by the chosen student capacity. For example, on CIFAR-10, a deep student network with almost 10.4 times less parameters outperforms a larger, state-of-the-art teacher network.
Using fast weights to improve persistent contrastive divergence The most commonly used learning algorithm for restricted Boltzmann machines is contrastive divergence which starts a Markov chain at a data point and runs the chain for only a few iterations to get a cheap, low variance estimate of the sufficient statistics under the model. Tieleman (2008) showed that better learning can be achieved by estimating the model's statistics using a small set of persistent "fantasy particles" that are not reinitialized to data points after each weight update. With sufficiently small weight updates, the fantasy particles represent the equilibrium distribution accurately but to explain why the method works with much larger weight updates it is necessary to consider the interaction between the weight updates and the Markov chain. We show that the weight updates force the Markov chain to mix fast, and using this insight we develop an even faster mixing chain that uses an auxiliary set of "fast weights" to implement a temporary overlay on the energy landscape. The fast weights learn rapidly but also decay rapidly and do not contribute to the normal energy landscape that defines the model.
Learning deep hierarchical visual feature coding. In this paper, we propose a hybrid architecture that combines the image modeling strengths of the bag of words framework with the representational power and adaptability of learning deep architectures. Local gradient-based descriptors, such as SIFT, are encoded via a hierarchical coding scheme composed of spatial aggregating restricted Boltzmann machines (RBM). For each coding layer, we regularize the RBM by encouraging representations to fit both sparse and selective distributions. Supervised fine-tuning is used to enhance the quality of the visual representation for the categorization task. We performed a thorough experimental evaluation using three image categorization data sets. The hierarchical coding scheme achieved competitive categorization accuracies of 79.7% and 86.4% on the Caltech-101 and 15-Scenes data sets, respectively. The visual representations learned are compact and the model's inference is fast, as compared with sparse coding methods. The low-level representations of descriptors that were learned using this method result in generic features that we empirically found to be transferrable between different image data sets. Further analysis reveal the significance of supervised fine-tuning when the architecture has two layers of representations as opposed to a single layer.
Contractive Auto-Encoders: Explicit Invariance During Feature Extraction.
On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes We compare discriminative and generative learning as typified by logistic regression and naive Bayes. We show, contrary to a widely-held belief that discriminative classifiers are almost always to be preferred, that there can often be two distinct regimes of performance as the training set size is increased, one in which each algorithm does better. This stems from the observation-which is borne out in repeated experiments-that while discriminative learning has lower asymptotic error, a generative classifier may also approach its (higher) asymptotic error much faster.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Semantic email This paper investigates how the vision of the Semantic Web can be carried overto the realm of email. We introduce a general notion of semantice mail, in which an email message consists of an RDF query or update coupled with corresponding explanatory text. Semantic email opens the door to a wide range of automated, email-mediated applications with formally guaranteed properties. In particular, this paper introduces a broad class of semantic email processes. For example consider the process of sending an email to a program committee asking who will attend the PC dinner automatically collecting the responses and tallying them up. We define bothlogical and decision-theoretic models where an email process ismodeled as a set of updates to a data set on which we specify goals via certain constraints or utilities. We then describe a set ofinference problems that arise while trying to satisfy these goals and analyze their computational tractability. In particular weshow that for the logical model it is possible to automatically infer which email responses are acceptable w.r.t. a set ofconstraints in polynomial time and for the decision-theoreticmodel it is possible to compute the optimal message-handling policy in polynomial time. Finally we discuss our publicly available implementation of semantic email and outline research challenges inthis realm.
Complexity of propositional nested circumscription and nested abnormality theories Circumscription has been recognized as an important principle for knowledge representation and common-sense reasoning. The need for a circumscriptive formalism that allows for simple yet elegant modular problem representation has led Lifschitz (AIJ, 1995) to introduce nested abnormality theories (NATs) as a tool for modular knowledge representation, tailored for applying circumscription to minimize exceptional circumstances. Abstracting from this particular objective, we propose LCIRC, which is an extension of generic propositional circumscription by allowing propositional combinations and nesting of circumscriptive theories. As shown, NATs are naturally embedded into this language, and are in fact of equal expressive capability. We then analyze the complexity of LCIRC and NATs, and in particular the effect of nesting. The latter is found to be a source of complexity, which climbs the Polynomial Hierarchy as the nesting depth increases and reaches PSPACE-completeness in the general case. We also identify meaningful syntactic fragments of NATs which have lower complexity. In particular, we show that the generalization of Horn circumscription in the NAT framework remains coNP-complete, and that Horn NATs without fixed letters can be efficiently transformed into an equivalent Horn CNF, which implies polynomial solvability of principal reasoning tasks. Finally, we also study extensions of NATs and briefly address the complexity in the first-order case. Our results give insight into the “cost” of using LCIRC (respectively, NATs) as a host language for expressing other formalisms such as action theories, narratives, or spatial theories.
Structure and Problem Hardness: Goal Asymmetry and DPLL Proofs in SAT-Based Planning In Verification and in (optimal) AI Planning, a successful method is to formulate the application as boolean satisfiability ( SAT), and solve it with state-of-the-art DPLL-based procedures. There is a lack of understanding of why this works so well. Focussing on the Planning context, we identify a form of problem structure concerned with the symmetrical or asymmetrical nature of the cost of achieving the individual planning goals. We quantify this sort of structure with a simple numeric parameter called AsymRatio, ranging between 0 and 1. We run experiments in 10 benchmark domains from the International Planning Competitions since 2000; we show that AsymRatio is a good indicator of SAT solver performance in 8 of these domains. We then examine carefully crafted synthetic planning domains that allow control of the amount of structure, and that are clean enough for a rigorous analysis of the combinatorial search space. The domains are parameterized by size, and by the amount of structure. The CNFs we examine are unsatisfiable, encoding one planning step less than the length of the optimal plan. We prove upper and lower bounds on the size of the best possible DPLL refutations, under different settings of the amount of structure, as a function of size. We also identify the best possible sets of branching variables (backdoors). With minimum AsymRatio, we prove exponential lower bounds, and identify minimal backdoors of size linear in the number of variables. With maximum AsymRatio, we identify logarithmic DPLL refutations ( and backdoors), showing a doubly exponential gap between the two structural extreme cases. The reasons for this behavior - the proof arguments - illuminate the prototypical patterns of structure causing the empirical behavior observed in the competition benchmarks.
Mobile Robot Control Using a Cloud of Particles. Common control systems for mobile robots include the use of deterministic control laws together with state estimation approaches and the consideration of the certainty equivalence principle. Recent approaches consider the use of partially observable Markov decision process strategies together with Bayesian estimators. In order to reduce the required processing power and yet allow for multimodal or non-Gaussian distributions, a scheme based on a particle filter and a corresponding cloud of input signals is proposed in this paper. Results are presented and compared to a scheme with extended Kalman filter and the assumption that the certainty equivalence holds.
1.036389
0.037
0.037
0.016667
0.006167
0.000973
0.000167
0.000034
0.00001
0
0
0
0
0
Consistency of posterior distributions for neural networks In this paper we show that the posterior distribution for feedforward neural networks is asymptotically consistent. This paper extends earlier results on universal approximation properties of neural networks to the Bayesian setting. The proof of consistency embeds the problem in a density estimation problem, then uses bounds on the bracketing entropy to show that the posterior is consistent over Hellinger neighborhoods. It then relates this result back to the regression setting. We show consistency in both the setting of the number of hidden nodes growing with the sample size, and in the case where the number of hidden nodes is treated as a parameter. Thus we provide a theoretical justification for using neural networks for nonparametric regression in a Bayesian framework. (C) 2000 Elsevier Science Ltd. All rights reserved.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Planning under Incomplete Knowledge We propose a new logic-based planning language, called K. Transitions between states of knowledge can be described in K, and the language is well suited for planning under incomplete knowledge. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, proving to be very flexible. A planning system supporting K is implemented on top of the disjunctive logic programming system DLV. This novel systemallows for solving hard planning problems, including secure planning under incomplete initial states, which cannot be solved at all by other logic-based planning systems such as traditional satisfiability planners.
Possibilistic Planning: Representation and Complexity A possibilistic approach of planning under uncertainty has been developed recently. It applies to problems in which the initial state is partially known and the actions have graded nondeterministic effects, some being more possible (normal) than the others. The uncertainty on states and effects of actions is represented by possibility distributions. The paper first recalls the essence of possibilitic planning concerning the representational aspects and the plan generation algorithms used to...
Planning with sensing, concurrency, and exogenous events: logical framework and implementation The focus of current research in cognitive robotics is both on the realization of sys- tems based on known formal settings and on the extension of previous formal approaches to account for features that play a signifl- cant role for autonomous robots, but have not yet received an adequate treatment. In this paper we adopt a formal framework de- rived from Propositional Dynamic Logics by exploiting their formal correspondence with Description Logics, and present an extension of such a framework obtained by introducing both concurrency on primitive actions and autoepistemic operators for explicitly repre- senting the robot's epistemic state. We show that the resulting formal setting allows for the representation of actions with context- dependent efiects, sensing actions, and con- current actions, and address both the pres- ence of exogenous events and the characteri- zation of the notion of executable plan in such a complex setting. Moreover, we present an implementation of this framework in a system which is capable of generating plans that are actually executed on mobile robots, and illus- trate the experimentation of such a system in the design and implementation of soccer players for the 1999 Robocup competition.
Conformant Planning via Model Checking . Conformant planning is the problem of nding a sequenceof actions that is guaranteed to achieve the goal for any possible initialstate and nondeterministic behavior of the planning domain. In this paperwe present a new approach to conformant planning. We propose analgorithm that returns the set of all conformant plans of minimal lengthif the problem admits a solution, otherwise it returns with failure. Ourwork is based on the planning via model checking paradigm, and relieson...
Approximation of action theories and its application to conformant planning This paper describes our methodology for building conformant planners, which is based on recent advances in the theory of action and change and answer set programming. The development of a planner for a given dynamic domain starts with encoding the knowledge about fluents and actions of the domain as an action theory D of some action language. Our choice in this paper is AL - an action language with dynamic and static causal laws and executability conditions. An action theory D of AL defines a transition diagram T(D) containing all the possible trajectories of the domain. A transition belongs to T(D) iff the execution of the action a in the state s may move the domain to the state s^'. The second step in the planner development consists in finding a deterministic transition diagram T^l^p(D) such that nodes of T^l^p(D) are partial states of D, its arcs are labeled by actions, and a path in T^l^p(D) from an initial partial state @d^0 to a partial state satisfying the goal @d^f corresponds to a conformant plan for @d^0 and @d^f in T(D). The transition diagram T^l^p(D) is called an 'approximation' of T(D). We claim that a concise description of an approximation of T(D) can often be given by a logic program @p(D) under the answer sets semantics. Moreover, complex initial situations and constraints on plans can be also expressed by logic programming rules and included in @p(D). If this is possible then the problem of finding a parallel or sequential conformant plan can be reduced to computing answer sets of @p(D). This can be done by general purpose answer set solvers. If plans are sequential and long then this method can be too time consuming. In this case, @p(D) is used as a specification for a procedural graph searching conformant planning algorithm. The paper illustrates this methodology by building several conformant planners which work for domains with complex relationship between the fluents. The efficiency of the planners is experimentally evaluated on a number of new and old benchmarks. In addition we show that for a subclass of action theories of AL our planners are complete, i.e., if in T^l^p(D) we cannot get from @d^0 to a state satisfying the goal @d^f then there is no conformant plan for @d^0 and @d^f in T(D).
The KR System dlv: Progress Report, Comparisons and Benchmarks
An Introduction to Least Commitment Planning Recent developments have clarified the process of generating partially ordered, partially specified sequences of actions whose execution will achieve an agent's goal. This article summarizes a progression of least commitment planners, starting with one that handles the simple STRIPS representation and ending with UCOPOP a planner that manages actions with disjunctive precondition, conditional effects, and universal quantification over dynamic universes. Along the way, I explain how Chapman's formulation of the modal truth criterion is misleading and why his NP-completeness result for reasoning about plans with conditional effects does not apply to UCOPOP.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Heterogeneous active agents, I: semantics Over the years, many different agent programming languages have been proposed. In this paper, we propose a concept called Agent Programs using which, the way an agent should act in various situations can be declaratively specified by the creator of that agent. Agent Programs may be built on top of arbitrary pieces of software code and may be used to specify what an agent is obliged to do, what an agent may do, and what an agent may not do. In this paper, we define several successively more sophisticated and epistemically satisfying declarative seman- tics for agent programs. We further show that agent programs cleanly extend well understood semantics for logic programs, and thus are clearly linked to existing res ults on logic program- ming and nonmonotonic reasoning.
A monotonicity theorem for extended logic programs Because general and extended logic programs behave nonmonotonically, itis in general difficult to predict how even minor changes to such programswill affect their meanings. This paper shows that for a restricted class ofextended logic programs --- those with signings --- it is possible to state afairly general theorem comparing the entailments of programs. To this end,we generalize (to the class of extended logic programs) the definition of asigning, first formulated by Kunen for general ...
Further facet generating procedures for vertex packing polytopes
Automated service composition using heuristic search Automated service composition is an important approach to automatically aggregate existing functionality. While different planning algorithms are applied in this area, heuristic search is currently not used. Lacking features like the creation of compositions with parallel or alternative control flow are preventing its application. The prospect of using heuristic search for composition with quality of service properties motivated the extension of existing heuristic search algorithms. In this paper we present a heuristic search algorithm for automated service composition. Based on the requirements for automated service composition, shortcomings of existing algorithms are identified, and solutions for them presented.
ILP: Just Do It Inductive logic programming (ILP) is built on a foundation laid by research in other areas of computational logic. But in spite of this strong foundation, at 10 years of age ILP now faces a number of new challenges brought on by exciting application opportunities. The purpose of this paper is to interest researchers from other areas of computational logic in contributing their special skill sets to help ILP meet these challenges. The paper presents five future research directions for ILP and points to initial approaches or results where they exist. It is hoped that the paper will motivate researchers from throughout computational logic to invest some time into "doing" ILP.
Improving Citation Polarity Classification With Product Reviews Recent work classifying citations in scientific literature has shown that it is possible to improve classification results with extensive feature engineering. While this result confirms that citation classification is feasible, there are two drawbacks to this approach: (i) it requires a large annotated corpus for supervised classification, which in the case of scientific literature is quite expensive; and (ii) feature engineering that is too specific to one area of scientific literature may not be portable to other domains, even within scientific literature. In this paper we address these two drawbacks. First, we frame citation classification as a domain adaptation task and leverage the abundant labeled data available in other domains. Then, to avoid over-engineering specific citation features for a particular scientific domain, we explore a deep learning neural network approach that has shown to generalize well across domains using unigram and bigram features. We achieve better citation classification results with this cross-domain approach than using in-domain classification.
1.019588
0.010945
0.008206
0.004742
0.003654
0.002319
0.001278
0.000632
0.000118
0.000025
0
0
0
0
Adaptive cache coherence over a high bandwidth broadband mesh network Networks have traditionally been an obstacle to high performance distributed computing. Specific problems are insufficient bandwidth and long transaction latencies. While pipelining data can achieve high bandwidth, it does nothing for latency which is still a bottleneck in performance. One approach is to develop a cache coherence protocol which exploits recurring data sharing patterns to reduce the impact of latency. This paper proposes an adaptive cache coherence protocol which detects producer–consumer type sharing and maintains coherence on only those cache blocks which exhibit producer–consumer sharing via updates rather than invalidates. Execution driven simulations of this protocol show improved performance compared to a standard write-invalidate protocol protocol and a competitive update protocol. When there are no access patterns to exploit, the protocol does not degrade performance. When there is producer–consumer type sharing, the proposed protocol runs benchmarks up to 30% faster than the better of either write-invalidate or competitive update. As a side-effect, it shows improved tolerance of increasing network latency.
Combining compile-time and run-time support for efficient software distributed shared memory We describe an integrated compile time and run time system for efficient shared memory parallel computing on distributed memory machines. The combined system presents the user with a shared memory programming model. The run time system implements a consistent shared memory abstraction using memory access detection and automatic data caching. The compiler improves the efficiency of the shared memor...
Effectiveness of dynamic prefetching in multiple-writer distributed virtual shared-memory systems We consider a network of workstations (NOW) organization consisting of bus- based multiprocessors interconnected by an ATM interconnect on which a shared- memory programming model is imposed by using a multiple-write r distributed virtual shared memory system. The latencies associated with bringing data into the local memory are a severe performance limitation of such systems. To tolerate the access latencies, we propose a novel prefetch approach and show how it can be integrated into the software-based coherence layer of a multi- ple-writer protocol. This approach uses the access history of each page to guide which pages to prefetch. Based on detailed architectural simulations and seven scientific applications we f ind that our prefetch algorithm can remove a vast majority of the remote operations which improves the performance of all applica- tions. We also find that the bandwidth provided by ATM switches available today is sufficient to accommodate prefetching. However, the protocol processing over- head of available ATM interfaces limits the gain of the prefetching algorithms.
Comparative Evaluation of Latency Tolerance Techniques for Software Distributed Shared Memory A key challenge in achieving high performance on software DSMs is overcoming their relatively large communication latencies. In this paper, we consider two techniques which address this problem: prefetching and multithreading. While previous studies have examined each of these techniques in isolation, this paper is the first to evaluate both techniques using a consistent hardware platform and set of applications, thereby allowing direct comparisons. In addition, this is the first study to consider combining prefetching and multithreading in a software DSM. We performed our experiments on real hardware using a full implementation of both techniques. Our experimental results demonstrate that both prefetching and multithreading result in significant performance improvements when applied individually. In addition, we observe that prefetching and multithreading can potentially complement each other by using prefetching to hide memory latency and multithreading to hide synchronization latency.
Adaptive protocols for software distributed shared memory We demonstrate the benefits of software shared memory protocols that adapt at run time to the memory access patterns observed in the applications. This adaptation is automatic-no user annotations are required-and does not rely on compiler support or special hardware. We investigate adaptation between singleand multiple-writer protocols, dynamic aggregation of pages into a larger transfer unit, and adaptation between invalidate and update. Our results indicate that adaptation between single- and multiple-writer and dynamic page aggregation are clearly beneficial. The results for the adaptation between invalidate and update are less compelling, showing at best gains similar to the dynamic aggregation adaptation and at worst serious performance deterioration
A Comparison of Two Strategies of Dynamic Data Prefetching in Software DSM A major overhead of software DSM is the long remote access latency when the accessed page is not in the local cache. One method for tolerating the remote access latency isto prefetch the pages before they are accessed. This paper compares two methods of dynamic data prefetching-history prefetching, which utilizes the temporal locality of theprogram to prefetch, and aggregate prefetching, which utilizes the spatial locality of the program to prefetch-on the JIAJIA software DSM. Experiments with eight well-acceptedbenchmarks and a real application show that both can dramatically reduce the number of remote page faults and the number of messages exchanged. All applications benefit fromthe prefetching in overall running time, and four achieve a performance improvement of 10%-20%. We then analyze the advantages and disadvantages of the two prefetchingstrategies. We find that aggregate prefetching may be more efficient than history prefetching for most applications in software DSM systems.
Simultaneous Pipelining in QPipe: Exploiting Work Sharing Opportunities Across Queries Data warehousing and scientific database applications operate on massive datasets and are characterized by complex queries accessing large portions of the database. Concurrent queries often exhibit high data and computation overlap, e.g., they access the same relations on disk, compute similar aggregates, or share intermediate results. Unfortunately, run-time sharing in modern database engines is limited by the paradigm of invoking an independent set of operator instances per query, potentially missing sharing opportunities if the buffer pool evicts data early.
Informed prefetching of collective input/output requests
Adaptive caching for demand prepaging Demand prepaging was long ago proposed as a method for taking advantage of high disk bandwidths and avoiding long disk latencies by fetching, at each page fault, not only the demanded page but also other pages predicted to be used soon. Studies performed more than twenty years ago found that demand prepaging would not be generally beneficial. Those studies failed to examine thoroughly the interaction between prepaging and main memory caching. It is unclear how many main memory page frames should be allocated to cache pages that were prepaged but have not yet been referenced. This issue is critical to the efficacy of any demand prepaging policy.In this paper, we examine prepaged allocation and its interaction with two other important demand prepaging parameters: the degree, which is the number of extra pages that may be fetched at each page fault, and the predictor that selects which pages to prepage. The choices for these two parameters, the reference behavior of the workload, and the main memory size all substantially affect the appropriate choice of prepaged allocation. In some situations, demand prepaging cannot provide benefit, as any allocation to prepaged pages will increase page faults, while in other situations, a good choice of allocation will yield a substantial reduction in page faults. We will present a mechanism that dynamically adapts the prepaged allocation on-line, as well as experimental results that show that this mechanism typically reduces page faults by 10 to 40% and sometimes by more than 50%. In those cases where demand prepaging should not be used, the mechanism correctly allocates no space for prepaged pages and thus does not increase the number of page faults. Finally, we will show that prepaging offers substantial benefits over the simpler solution of sing larger pages, which can substantially increase page faults.
An evaluation of buffer management strategies for relational database systems In this paper we present a new algorithm, DBMIN, for managing the buffer pool of a relational database management system. DBMIN is based on a new model of relational query behavior, the (QLSM). Like the hot set model, the QLSM has an advantage over the stochastic models due to its ability to predict future reference behavior. However, the QLSM avoids the potential problems of the hot set model by separating the modeling of reference behavior from any particular buffer management algorithm. After introducing the QLSM and describing the DBMIN algorithm, we present a performance evaluation methodology for evaluating buffer management algorithms in a multiuser environment. This methodology employed a hybrid model that combines features of both trace-driven and distribution-driven simulation models. Using this model, the performance of the DBMIN algorithm in a multiuser environment is compared with that of the hot set algorithm and four more traditional buffer replacement algorithms.
The complexity of relational query languages (Extended Abstract) Two complexity measures for query languages are proposed. Data complexity is the complexity of evaluating a query in the language as a function of the size of the database, and expression complexity is the complexity of evaluating a query in the language as a function of the size of the expression defining the query. We study the data and expression complexity of logical languages - relational calculus and its extensions by transitive closure, fixpoint and second order existential quantification - and algebraic languages - relational algebra and its extensions by bounded and unbounded looping. The pattern which will be shown is that the expression complexity of the investigated languages is one exponential higher then their data complexity, and for both types of complexity we show completeness in some complexity class.
On linear characterizations of combinatorial optimization problems We show that there can be no computationally tractable description by linear inequalities of the polyhedron associated with any NP-complete combinatorial optimization problem unless NP = co-NP -- a very unlikely event. We also apply the ellipsoid method for linear programming to show that a combinatorial optimization problem is solvable in polynomial time if and only if it admits a small generator of violated inequalities.
The Computational Complexity of Agent Design Problems This paper investigates the computational complexity of a fundamental problem in multi-agent systems: given an environment together with a specification of some task, can we construct an agent that will successfully achieve the task in the environment? We refer to this problem as agent design. Using an abstract formal model of agents and their environments, we begin by investigating various possible ways of specifying tasks for agents, and identify two important classes of such tasks. Achievement tasks are those in which an agent is required to bring about one of a specified set of goal states, and maintenance tasks are those in which an agent is required to avoid some specified set of states. We prove that in the most general case the agent design problem is PSPACE-complete for both achievement and maintenance tasks. We briefly discuss the automatic synthesis of agents from task environment specifications, and conclude by discussing related work and presenting some conclusions.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.203647
0.203647
0.103617
0.101913
0.051809
0.000899
0.000128
0.000021
0.000002
0
0
0
0
0
A logic programming approach to knowledge-state planning, II: the DLVk system In Part I of this series of papers, we have proposed a new logic-based planning language, called K. This language facilitates the description of transitions between states of knowledge and it is well suited for planning under incomplete knowledge. Nonetheless,K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, proving to be very flexible. In the present Part II, we describe the DLVK planning system, which implements K on top of the disjunctive logic programming system DLV. This novel planning system allows for solving hard planning problems, including secure planning under incomplete initial states (often called conformant planning in the literature), which cannot be solved at all by other logic-based planning systems such as traditional satisfiability planners. We present a detailed comparison of the DLVK system to several state-of-the-art conformant planning systems, both at the level of system features and on benchmark problems. Our results indicate that, thanks to the power of knowledge-state problem encoding, the DLVK system is competitive even with special purpose conformant planning systems, and it often supplies a more natural and simple representation of the planning problems.
Monitoring agents using declarative planning In this paper we consider the following problem: Given a particular description of a multi-agent system (MAS), is it implemented properly? We assume that we are given (possibly incomplete) information about the system and aim at refuting its proper implementation. In our approach, agent collaboration is described as an action theory. Action sequences reaching the collaboration goal are computed by a planner, whose compliance with the actual MAS behaviour allows to detect possible collaboration failures. The approach can be fruitfully applied to aid in offline testing of a MAS implementation, as well as in online monitoring.
Hypothesizing about signaling networks The current knowledge about signaling networks is largely incomplete. Thus biologists constantly need to revise or extend existing knowledge. The revision and/or extension is first formulated as theoretical hypotheses, then verified experimentally. Many computer-aided systems have been developed to assist biologists in undertaking this challenge. The majority of the systems help in finding “patterns” in data and leave the reasoning to biologists. A few systems have tried to automate the reasoning process of hypothesis formation. These systems generate hypotheses from a knowledge base and given observations. A main drawback of these knowledge-based systems is the knowledge representation formalism they use. These formalisms are mostly monotonic and are now known to be not quite suitable for knowledge representation, especially in dealing with the inherently incomplete knowledge about signaling networks. We propose an action language based framework for hypothesis formation for signaling networks. We show that the hypothesis formation problem can be translated into an abduction problem. This translation facilitates the complexity analysis and an efficient implementation of our system. We illustrate the applicability of our system with an example of hypothesis formation in the signaling network of the p53 protein.
Cognitive Technical Systems -- What Is the Role of Artificial Intelligence? The newly established cluster of excellence CoTeSysinvestigates the realization of cognitive capabilities such as perception, learning, reasoning, planning, and execution for technical systems including humanoid robots, flexible manufacturing systems, and autonomous vehicles. In this paper we describe cognitive technical systems using a sensor-equipped kitchen with a robotic assistant as an example. We will particularly consider the role of Artificial Intelligence in the research enterprise.Key research foci of Artificial Intelligence research in CoTeSysinclude (茂戮驴) symbolic representations grounded in perception and action, (茂戮驴) first-order probabilistic representations of actions, objects, and situations, (茂戮驴) reasoning about objects and situations in the context of everyday manipulation tasks, and (茂戮驴) the representation and revision of robot plans for everyday activity.
Modeling Biological Networks by Action Languages via Answer Set Programming We describe an approach to modeling biological networks by action languages via answer set programming. To this end, we propose an action language for modeling biological networks, building on previous work by Baral et al. We introduce its syntax and semantics along with a translation into answer set programming, an efficient Boolean Constraint Programming Paradigm. Finally, we describe one of its applications, namely, the sulfur starvation response-pathway of the model plant Arabidopsis thaliana and sketch the functionality of our system and its usage.
Planning with Sensing Actions and Incomplete Information Using Logic Programming We present a logic programming based conditional planner that is capable of generating both conditional plans and conformant plans in the presence of sensing actions and incomplete information. We prove the correctness of our implementation and show that our planner is complete with respect to the 0-approximation of sensing actions and the class of conditional plans considered in this paper. Finally, we present preliminary experimental results and discuss further enhancements to the program.
Planning under Incomplete Knowledge We propose a new logic-based planning language, called K. Transitions between states of knowledge can be described in K, and the language is well suited for planning under incomplete knowledge. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, proving to be very flexible. A planning system supporting K is implemented on top of the disjunctive logic programming system DLV. This novel systemallows for solving hard planning problems, including secure planning under incomplete initial states, which cannot be solved at all by other logic-based planning systems such as traditional satisfiability planners.
Representing Concurrent Actions and Solving Conflicts As an extension of the well{known Action Description lan- guage A introduced by M. Gelfond and V. Lifschitz (7), C. Baral and M. Gelfond recently deflned the dialect AC which allows the descrip- tion of concurrent actions (1). Also, a sound but incomplete encoding of AC by means of an extended logic program was presented there. In this paper, we work on interpretations of contradictory inferences from par- tial action descriptions. Employing an interpretation difierent from the one implicitly used in AC , we present a new dialect A + C , which allows to infer non-contradictory information from contradictory descriptions and to describe nondeterminism and uncertainty. Furthermore, we give the flrst sound and complete encoding of AC , using equational logic programming, and extend it to A+C as well.
Representing actions: Laws, observations and hypotheses We propose a modificationL 1 of the action description languageA. The languageL 1 allows representation of hypothetical situations and hypothetical occurrence of actions (as inA) as well as representation of actual occurrences of actions and observations of the truth values of fluents in actual situations. The corresponding entailment relation formalizes various types of common-sense reasoning about actions and their effects not modeled by previous approaches. As an application of L1 we also present an architecture for intelligent agents capable of observing, planning and acting in a changing environment based on the entailment relation of L1 and use logic programming approximation of this entailment to implement a planning module for this architecture. We prove the soundness of our implementation and give a sufficient condition for its completeness.
Automata Theory for Reasoning About Actions In this paper, we show decidability of a rather expressive fragment of the situation calculus. We allow second order quantification over finite and infinite sets of situations. We do not impose a domain closure assumption on actions; therefore, infinite and even uncountable domains are allowed. The decision procedure is based on automata accepting infinite trees.
A New Approach to Tractable Planning We describe a restricted class of planning problems and poly- nomial time membership and plan existence decision algo- rithms for this class. The definition of the problem class is based on a graph representation of planning problems, similar to Petri nets, and the use of a graph grammar to characterise a subset of such graphs. Thus, testing membership in the class is a graph parsing problem. The planning algorithm also ex- ploits this connection, making use of the parse tree. We show that the new problem class is incomparable with, i.e., nei- ther a subset nor a superset of, previously known classes of tractable planning problems. for solving problems in the class. Plan existence is decided by bottom-up label-propagation over the parse tree, similar in spirit to the algorithm for tree-shaped CSPs. Although it may be less transparent than restrictions on syntax or the causal graph, the use of a graph grammar has the important advantage of allowing us to explore novel classes of restrictions, that can not be formulated in those terms. To demonstrate this potential, we design a new tractable problem class, with the explicit aim of making it distinct from previously known tractable classes. The graph representation of planning problems we use is closely re- lated to (and, indeed, strongly inspired by) the Petri net formalism, so our results are easily related also to known tractable classes of Petri nets. The class we define is novel also with respect to them.
Evolving Fuzzy Neural Networks For Supervised/Unsupervised Online Knowledge-Based Learning This paper introduces evolving fuzzy neural networks (EFuNNs) as a means for the implementation of the evolving connectionist systems (ECOS) paradigm that is aimed at building online, adaptive intelligent systems that have both their structure and functionality evolving in time. EFuNNs evolve their structure and parameter values through incremental, hybrid supervised/unsupervised, online learning. They can accommodate new input data, including new features, new classes, etc., through local element tuning. New connections and new neurons are created during the operation of the system. EFuNNs can learn spatial-temporal sequences in an adaptive way through one pass learning and automatically adapt their parameter values as they operate. Fuzzy or crisp rules can be inserted and extracted at any time of the EFuNN operation. The characteristics of EFuNNs are illustrated on several case study data sets for time series prediction and spoken word classification. Their performance is compared with traditional connectionist methods and systems. The applicability of EFuNNs as general purpose online learning machines, what concerns systems that learn from large databases, life-long learning systems, and online adaptive systems in different areas of engineering are discussed.
Reducing seek overhead with application-directed prefetching An analysis of performance characteristics of modern disks finds that prefetching can improve the performance of nonsequential read access patterns by an order of magnitude or more, far more than demonstrated by prior work. Using this analysis, we design prefetching algorithms that make effective use of primary memory, and can sometimes gain additional speedups by reading unneeded data.We show when additional prefetching memory is most critical for performance. A contention controller automatically adjusts prefetching memory usage, preserving the benefits of prefetching while sharing available memory with other applications. When implemented in a library with some kernel changes, our prefetching system improves performance for some workloads of the GIMP image manipulation program and the SQLite database by factors of 4.9x to 20x.
Improving Citation Polarity Classification With Product Reviews Recent work classifying citations in scientific literature has shown that it is possible to improve classification results with extensive feature engineering. While this result confirms that citation classification is feasible, there are two drawbacks to this approach: (i) it requires a large annotated corpus for supervised classification, which in the case of scientific literature is quite expensive; and (ii) feature engineering that is too specific to one area of scientific literature may not be portable to other domains, even within scientific literature. In this paper we address these two drawbacks. First, we frame citation classification as a domain adaptation task and leverage the abundant labeled data available in other domains. Then, to avoid over-engineering specific citation features for a particular scientific domain, we explore a deep learning neural network approach that has shown to generalize well across domains using unigram and bigram features. We achieve better citation classification results with this cross-domain approach than using in-domain classification.
1.007898
0.014329
0.011429
0.007619
0.005948
0.003815
0.00243
0.001432
0.000338
0.000038
0.000001
0
0
0
Promoting Constraints to First-Class Status This paper proposes to promote constraints to first-class status. In contrast to constraint propagation, which performs inference on values of variables, first-class constraints allow reasoning about the constraints themselves. This lets the programmer access the current state of a constraint and control a constraint's behavior directly, thus making powerful new programming and inference techniques possible, as the combination of constraint propagation and rewriting constraints à la term rewriting. First-class constraints allow for true meta constraint programming. Promising applications in the field of combinatorial optimization include early unsatisfiability detection, constraint reformulation to improve propagation, garbage collection of redundant but not yet entailed constraints, and finding minimal inconsistent subsets of a given set of constraints for debugging immediately failing constraint programs. We demonstrate the above-mentioned applications by means of examples. The experiments were done with Mozart Oz but can be easily ported to other constraint solvers.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Dynamic Parity Stripe Reorganizations for RAID5 Disk Arrays RAID5 disk arrays provide high performance and high reliability for reasonable cost. However RAID5 suffers a performance penalty during block updates. In this paper, we examine the feasibility of using “dynamic parity striping” to improve the performance of block updates. Instead of updating each block independently, this method buffers a number of updates, generates a new stripe composed of the newly updated blocks, then writes the full stripe back to disk. Two implementations are considered in this paper. One is a log-structured file system(LFS)[8, 9] based method and the other is Virtual Striping[4]. Both methods achieve much higher performance than conventional approaches. The performance characteristics of the LFS based method and the Virtual Striping method are clarified.
MAGIC: a multiattribute declustering mechanism for multiprocessor database machines During the past decade, parallel database systems have gained increased popularity due to their high performance, scalability, and availability characteristics. With the predicted future database sizes and complexity of queries, the scalability of these systems to hundreds and thousands of processors is essential for satisfying the projected demand. Several studies have repeatedly demonstrated that both the performance and scalability of a parallel database system are contingent on the physical layout of the data across the processors of the system. If the data are not declustered appropriately, the execution of an operation might waste system resources, reducing the overall processing capability of the system. With earlier, single-attribute partitioning mechanisms such as those found in the Tandem, Teradata, Gamma, and Bubba parallel database systems, range selections on any attribute other than the partitioning attribute must be sent to all processors containing tuples of the relation, while range selections on the partitioning attribute can be directed to only a subset of the processors. Although using all the processors for an operation is reasonable for resource intensive operations, directing a query with minimal resource requirements to processors that contain no relevant tuples wastes CPU cycles, communication bandwidth, and I/O bandwidth. As a solution, this paper describes a new partitioning strategy, multiattribute grid declustering (MAGIC), which can use two or more attributes of a relation to decluster its tuples across multiple processors and disks. In addition, MAGIC declustering, unlike other multiattribute partitioning mechanisms that have been proposed, is able to support range selections as well as exact match selections on each of the partitioning attributes. This capability enables a greater variety of selection operations to be directed to a restricted subset of the processors in the system. Finally, MAGIC partitions each relation based on the resource requirements of the queries that constitute the workload for the relation and the processing capacity of the system in order to ensure that the proper number of processors are used to execute queries that reference the relation
Extended ephemeral logging: log storage management for applications with long lived transactions Extended ephemeral logging (XEL) is a new technique for managing a log of database activity subject to the general assumption that the lifetimes of an application’s transactions may be statistically distributed over a wide range. The log resides on nonvolatile disk storage and provides fault tolerance to system failures (in which the contents of volatile main memory storage may be lost). XEL segments a log into a chain of fixed-size FIFO queues and performs generational garbage collection on records in the log. Log records that are no longer necessary for recovery purposes are “thrown away” when they reach the head of a queue; only records that are still needed for recovery are forwarded from the head of one queue to the tail of the next. XEL does not require checkpoints, permits fast recovery after a crash and is well suited for applications that have a wide distribution of transaction lifetimes. Quantitative evaluation of XEL via simulation indicates that it can significantly reduce the disk space required for the log, at the expense of slightly higher bandwidth for log information and more main memory; the reduced size of the log permits much faster recovery after a crash as well as cost savings. XEL can significantly reduce both the disk space and the disk bandwidth required for log information in a system that has been augmented with a nonvolatile region of main memory.
The SEQUOIA 2000 Project This paper describes the objectives of the SEQUOIA 2000 project and the software development that is being done to achieve these objectives. In addition, several lessons relevant to Geographic Information Systems (GIS) that have have been learned from the project are explained.
Proceedings of the 1988 ACM SIGMOD International Conference on Management of Data, Chicago, Illinois, June 1-3, 1988
Database Recovery Using Redundant Disk Arrays
Data allocation for multidisk databases This paper deals with I/O throughput maximization in a single processor/multidisk database system, by means of optimal allocation of entire relations (or other nonfragmented data objects) to disks. We examine the cases in which such allocation is beneficial, and present a mathematical formulation of the problem. This formulation is shown to be flexible enough to accommodate various objectives and constraints of a typical system design.
A quarter century of disk file innovation This paper traces the development of disk file technology from the first disk drive to the present. A number of innovative advances are reviewed in the evolution of mechanical design, materials, and processes. These advances constitute the technological base that has permitted almost four orders of magnitude of improvement in areal density; they are discussed from four in terrelated aspects: the magnetic head and its air bearing support; the head positioning actuator; the disk substrate and its magnetic coating; and the read/write signal detection and clocking electronics.
Input/output access pattern classification using hidden Markov models Input/output performance on current parallel file systemsis sensitive to a good match of application access patternto file system capabilities. Automatic input/output accessclassification can determine application access patterns atexecution time, guiding adaptive file system policies. Inthis paper we examine a new method for access patternclassification that uses hidden Markov models, trained onaccess patterns from previous executions, to create a probabilisticmodel of input/output...
A performance evaluation of RAID architectures In today's computer systems, the disk I/O subsystem is often identified as the major bottleneck to system performance. One proposed solution is the so called redundant array of inexpensive disks (RAID). We examine the performance of two of the most promising RAID architectures, the mirrored array and the rotated parity array. First, we propose several scheduling policies for the mirrored array and a new data layout, group-rotate declustering, and compare their performance with each other and in combination with other data layout schemes. We observe that a policy that routes reads to the disk with the smallest number of requests provides the best performance, especially when the load on the I/O system is high. Second, through a combination of simulation and analysis, we compare the performance of this mirrored array architecture to the rotated parity array architecture. This latter study shows that: 1) given the same storage capacity (approximately double the number of disks), the mirrored array considerably outperforms the rotated parity array; and 2) given the same number of disks, the mirrored array still outperforms the rotated parity array in most cases, even for applications where I/O requests are for large amounts of data. The only exception occurs when the I/O size is very large; most of the requests are writes, and most of these writes perform full stripe write operations
Dynamo: amazon's highly available key-value store Reliability at massive scale is one of the biggest challenges we face at Amazon.com, one of the largest e-commerce operations in the world; even the slightest outage has significant financial consequences and impacts customer trust. The Amazon.com platform, which provides services for many web sites worldwide, is implemented on top of an infrastructure of tens of thousands of servers and network components located in many datacenters around the world. At this scale, small and large components fail continuously and the way persistent state is managed in the face of these failures drives the reliability and scalability of the software systems. This paper presents the design and implementation of Dynamo, a highly available key-value storage system that some of Amazon's core services use to provide an "always-on" experience. To achieve this level of availability, Dynamo sacrifices consistency under certain failure scenarios. It makes extensive use of object versioning and application-assisted conflict resolution in a manner that provides a novel interface for developers to use.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Design and modeling of a non-blocking checkpointing system As the capability and component count of systems increase, the MTBF decreases. Typically, applications tolerate failures with checkpoint/restart to a parallel file system (PFS). While simple, this approach can suffer from contention for PFS resources. Multi-level checkpointing is a promising solution. However, while multi-level checkpointing is successful on today's machines, it is not expected to be sufficient for exascale class machines, which are predicted to have orders of magnitude larger memory sizes and failure rates. Our solution combines the benefits of non-blocking and multi-level checkpointing. In this paper, we present the design of our system and model its performance. Our experiments show that our system can improve efficiency by 1.1 to 2.0x on future machines. Additionally, applications using our checkpointing system can achieve high efficiency even when using a PFS with lower bandwidth.
Learning A Lexical Simplifier Using Wikipedia In this paper we introduce a new lexical simplification approach. We extract over 30K candidate lexical simplifications by identifying aligned words in a sentence-aligned corpus of English Wikipedia with Simple English Wikipedia. To apply these rules, we learn a feature-based ranker using SVMnk trained on a set of labeled simplifications collected using Amazon's Mechanical Turk. Using human simplifications for evaluation, we achieve a precision of 76% with changes in 86% of the examples.
1.014537
0.012822
0.012661
0.01254
0.01254
0.006385
0.004253
0.002591
0.000906
0.000029
0.000005
0
0
0
Improve Prefetch Performance by Splitting the Cache Replacement Queue.
Automated Control of Aggressive Prefetching for HTTP Streaming Video Servers Past work has shown that disk prefetching can be an effective technique for improving the performance of disk bound workloads. However, the performance gains are highly dependent on selecting a prefetch size that is appropriate for a specific system and workload. Using a prefetch size that is too small can lead to poor overall disk throughput, whereas prefetch sizes that are too large can lead to data being evicted before it can be used by a subsequent request. This paper looks at disk prefetch sizing for HTTP video streaming servers, such as those used by Apple, Adobe, Netflix, YouTube and Microsoft. We evaluate various representative streaming video workloads and show that the prefetch size that produces the best throughput can vary from 2 MB to 12 MB, and can depend on workload and system characteristics such as video bitrate, hard drive specifications, and memory capacity. A good choice of prefetch size can result in substantial performance gains, for example up to 3 times higher throughput than when using a prefetch size that is too large. We also find that application-level prefetching using the best prefetch size can provide up to 4 times higher throughput. In order to take full advantage of disk prefetching without extensive workload specific experimentation, we introduce an adaptive algorithm that dynamically selects an appropriate prefetch size. Most importantly, our results show our adaptive algorithm selects prefetch sizes that provide performance rivaling the best sizes determined through manual tuning, which requires extensive testing over different possible sizes.
Using Libception to Understand and Improve HTTP Streaming Video Server Throughput. Video streaming applications generate a large fraction of Internet traffic. Much of this content is delivered over HTTP using standard web servers. Unlike other types of web workloads, HTTP video streaming workloads are typically disk bound, and therefore an important problem is that of optimizing disk access. In this paper we design, implement and evaluate Libception, an application-level shim library that implements techniques for improving disk I/O efficiency. Web servers can achieve the benefits of these techniques simply by linking with Libception, without the need to modify source code. In contrast to making kernel changes or attempting to optimize kernel tuning, Libception provides a portable and relatively simple setting in which techniques for optimizing I/O in HTTP video streaming servers can be implemented and evaluated. We report experimental results evaluating the efficacy of the aggressive prefetching and disk I/O serialization techniques currently implemented in Libception, for three web servers (Apache, nginx and the userver) and two operating systems (FreeBSD, Linux). We find that on FreeBSD, video streaming throughput with all three web servers can be doubled by linking with Libception. On Linux, performance similar to that provided with Libception was eventually obtained by examining the kernel source to understand and tune kernel parameters. With the default kernel parameter settings, however, and regardless of which Linux disk scheduler is selected, we find that use of Libception can approximately double throughput. We find that both aggressive prefetching and serialization are necessary to achieve these benefits.
A Prefetching Scheme Exploiting both Data Layout and Access History on Disk Prefetching is an important technique for improving effective hard disk performance. A prefetcher seeks to accurately predict which data will be requested and load it ahead of the arrival of the corresponding requests. Current disk prefetch policies in major operating systems track access patterns at the level of file abstraction. While this is useful for exploiting application-level access patterns, for two reasons file-level prefetching cannot realize the full performance improvements achievable by prefetching. First, certain prefetch opportunities can only be detected by knowing the data layout on disk, such as the contiguous layout of file metadata or data from multiple files. Second, nonsequential access of disk data (requiring disk head movement) is much slower than sequential access, and the performance penalty for mis-prefetching a randomly located block, relative to that of a sequential block, is correspondingly greater. To overcome the inherent limitations of prefetching at logical file level, we propose to perform prefetching directly at the level of disk layout, and in a portable way. Our technique, called DiskSeen, is intended to be supplementary to, and to work synergistically with, any present file-level prefetch policies. DiskSeen tracks the locations and access times of disk blocks and, based on analysis of their temporal and spatial relationships, seeks to improve the sequentiality of disk accesses and overall prefetching performance. It also implements a mechanism to minimize mis-prefetching, on a per-application basis, to mitigate the corresponding performance penalty. Our implementation of the DiskSeen scheme in the Linux 2.6 kernel shows that it can significantly improve the effectiveness of prefetching, reducing execution times by 20%--60% for microbenchmarks and real applications such as grep, CVS, and TPC-H. Even for workloads specifically designed to expose its weaknesses, DiskSeen incurs only minor performance loss.
Improving Disk Throughput in Data-Intensive Servers Low disk throughput is one of the main impediments to improving the performance of data-intensive servers. In this paper, we propose two management techniques for the disk controller cache that can significantly increase disk throughput. The first technique, called File-Oriented Read-ahead (FOR), adjusts the number of read-ahead blocks brought into the disk controller cache according to file system information. The second technique, called Host-guided Device Caching (HDC), gives the host control over part of the disk controller cache. As an example use of this mechanism, we keep the blocks that cause the most misses in the host buffer cache permanently cached in the disk controller. Our detailed simulations of real server workloads show that FOR and HDC can increase disk throughput by up to 34% and 24%, respectively, in comparison to conventional disk controller cache management techniques. When combined, the techniques can increase throughput by up to 47%.
Informed prefetching and caching The underutilization of disk parallelism and file cache buffers by traditional file systems induces I/O stall time that degrades the performance of modern microprocessor-based systems. In this paper, we present aggressive mechanisms that tailor file system resource management to the needs of I/O-intensive applications. In particular, we show how to use application-disclosed access patterns (hints) to expose and exploit I/O parallelism and to allocate dynamically file buffers among three competing demands: prefetching hinted blocks, caching hinted blocks for reuse, and caching recently used data for unhinted accesses. Our approach estimates the impact of alternative buffer allocations on application execution time and applies a cost-benefit analysis to allocate buffers where they will have the greatest impact. We implemented informed prefetching and caching in DEC''s OSF/1 operating system and measured its performance on a 150 MHz Alpha equipped with 15 disks running a range of applications including text search, 3D scientific visualization, relational database queries, speech recognition, and computational chemistry. Informed prefetching reduces the execution time of the first four of these applications by 20% to 87%. Informed caching reduces the execution time of the fifth application by up to 30%.
FS2: dynamic data replication in free disk space for improving disk performance and energy consumption Disk performance is increasingly limited by its head positioning latencies, i.e., seek time and rotational delay. To reduce the head positioning latencies, we propose a novel technique that dynamically places copies of data in file system's free blocks according to the disk access patterns observed at runtime. As one or more replicas can now be accessed in addition to their original data block, choosing the "nearest" replica that provides fastest access can significantly improve performance for disk I/O operations.We implemented and evaluated a prototype based on the popular Ext2 file system. In our prototype, since the file system layout is modified only by using the free/unused disk space (hence the name Free Space File System, or FS2), users are completely oblivious to how the file system layout is modified in the background; they will only notice performance improvements over time. For a wide range of workloads running under Linux, FS2 is shown to reduce disk access time by 41--68% (as a result of a 37--78% shorter seek time and a 31--68% shorter rotational delay) making a 16--34% overall user-perceived performance improvement. The reduced disk access time also leads to a 40--71% energy savings per access.
A trace-driven analysis of the UNIX 4.2 BSD file system
Disk cache—miss ratio analysis and design considerations The current trend of computer system technology is toward CPUs with rapidly increasing processing power and toward disk drives of rapidly increasing density, but with disk performance increasing very slowly if at all. The implication of these trends is that at some point the processing power of computer systems will be limited by the throughput of the input/output (I/O) system.A solution to this problem, which is described and evaluated in this paper, is disk cache. The idea is to buffer recently used portions of the disk address space in electronic storage. Empirically, it is shown that a large (e.g., 80-90 percent) fraction of all I/O requests are captured by a cache of an 8-Mbyte order-of-magnitude size for our workload sample. This paper considers a number of design parameters for such a cache (called cache disk or disk cache), including those that can be examined experimentally (cache location, cache size, migration algorithms, block sizes, etc.) and others (access time, bandwidth, multipathing, technology, consistency, error recovery, etc.) for which we have no relevant data or experiments. Consideration is given to both caches located in the I/O system, as with the storage controller, and those located in the CPU main memory. Experimental results are based on extensive trace-driven simulations using traces taken from three large IBM or IBM-compatible mainframe data processing installations. We find that disk cache is a powerful means of extending the performance limits of high-end computer systems.
Random Forests Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, ***, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.
PatternHunter II: highly sensitive and fast homology search. Extending the single optimized spaced seed of PatternHunter to multiple ones, PatternHunter II simultaneously remedies the lack of sensitivity of Blastn and the lack of speed of Smith-Waterman, for homology search. At Blastn speed, PatternHunter II approaches Smith-Waterman sensitivity, bringing homology search technology back to a full circle.
Complexity of Data Tree Patterns over XML Documents We consider Boolean combinations of data tree patterns as a specification and query language for XML documents. Data tree patterns are tree patterns plus variable (in)equalities which express joins between attribute values. Data tree patterns are a simple and natural formalism for expressing properties of XML documents. We consider first the model checking problem (query evaluation), we show that it is DP-complete in general and already NP-complete when we consider a single pattern. We then consider the satisfiability problem in the presence of a DTD. We show that it is in general undecidable and we identify several decidable fragments.
Improving the tolerance of multilayer perceptrons by minimizing the statistical sensitivity to weight deviations This paper proposes a version of the backpropagation algorithm which increases the tolerance of a feedforward neural network against deviations in the weight values. These changes can originate either when the neural network is mapped on a given VLSI circuit where the precision and/or weight matching are low, or by physical defects affecting the neural circuits. The modified backpropagation algorithm we propose uses the statistical sensitivity of the network to changes in the weights as a quantitative measure of network tolerance and attempts to reduce this statistical sensitivity while keeping the figures for the usual training performance (in errors and time) similar to those obtained with the usual backpropagation algorithm.
Learning A Lexical Simplifier Using Wikipedia In this paper we introduce a new lexical simplification approach. We extract over 30K candidate lexical simplifications by identifying aligned words in a sentence-aligned corpus of English Wikipedia with Simple English Wikipedia. To apply these rules, we learn a feature-based ranker using SVMnk trained on a set of labeled simplifications collected using Amazon's Mechanical Turk. Using human simplifications for evaluation, we achieve a precision of 76% with changes in 86% of the examples.
1.11
0.11
0.1
0.024444
0.006667
0.000568
0.000101
0.000019
0.000001
0
0
0
0
0
On the computational complexity of temporal projection, planning, and plan validation One kind of temporal reasoning is temporal projection---the computationof the consequences of a set of events. This problem is relatedto a number of other temporal reasoning tasks such as plan validationand planning. We show that one particular, simple case of temporalprojection on partially ordered events turns out to be harder thanpreviously conjectured, while planning is easy under the same restrictions.Additionally, we show that plan validation is tractable for aneven larger class...
Towards efficient universal planning: a randomized approach One of the most widespread approaches to reactive planning isSchoppers" universal plans. We propose a stricter definition of universalplans which guarantees a weak notion of soundness, not present inthe original definition, and isolate three different types of completenessthat capture different behaviors exhibited by universal plans. Weshow that universal plans which run in polynomial time and are ofpolynomial size cannot satisfy even the weakest type of completenessunless the...
On the Feasibility of Planning Graph Style Heuristics for HTN Planning. In classical planning, the polynomial-time computability of propositional delete-free planning (planning with only positive effects and preconditions) led to the highly successful Relaxed Graphplan heuristic. We present a hierarchy of new computational complexity results for different classes of propositional delete-free HTN planning, with two main results: We prove that finding a plan for the delete-relaxation of a propositional HTN problem is NP-complete: hence unless P=NP, there is no directly analogous GraphPlan heuristic for HTN planning. However, a further relaxation of HTN planning (delete-free HTN planning with task insertion) is polynomial-time computable. Thus, there may be a possibility of using this or other relaxations to develop search heuristics for HTN planning.
Optimal Planning in the Presence of Conditional Effects: Extending LM-Cut with Context Splitting. The LM-Cut heuristic is currently the most successful heuristic in optimal STRIPS planning but it cannot be applied in the presence of conditional effects. Keyder, Hoffmann and Haslum recently showed that the obvious extensions to such effects ruin the nice theoretical properties of LM-Cut. We propose a new method based on context splitting that preserves these properties.
Synthesizing plans that contain actions with context-dependent effects
Combining Situation Calculus and Event Calculus In this paper we study the differences between two logic theories for temporalreasoning, the Situation Calculus and the Event Calculus, and the implicationsof these differences. We construct a new formalism that combines the advantagesof both Situation and Event Calculus and avoids the problems of either.The new formalism is useful for general temporal reasoning in worlds with discreteand continuous change, and enables representation of a wide range ofhypothetical temporal reasoning...
On the complexity of domain-independent planning In this paper, we examine how the complexity of domain-independent planning with STRIPS-style operators depends on the nature of the planning operators. We show how the time complexity varies depending on a wide variety of conditions: • whether or not delete lists are allowed; • whether or not negative preconditions are allowed; • whether or not the predicates are restricted to be propositions (i.e., 0-ary); • whether the planning operators are given as part of the input to the planning problem, or instead are fixed in advance.
Towards a general theory of action and time A formalism for reasoning about actions is proposed that is based on a temporal logic. It allows a much wider range of actions to be described than with previous approaches such as the situation calculus. This formalism is then used to characterize the different types of events, processes, actions, and properties that can be described in simple English sentences. In addressing this problem, we consider actions that involve non-activity as well as actions that can only be defined in terms of the beliefs and intentions of the actors. Finally, a framework for planning in a dynamic world with external events and multiple agents is suggested.
FF: The fast-forward planning systems FAST-FORWARD (FF) was the most successful automatic planner in the Fifth International Conference on Artificial Intelligence Planning and Scheduling (AIPS'00) planning systems competition. Like the well-known HSP system, FF relies on forward search in the state space, guided by a heuristic that estimates goal distances by ignoring delete lists. It differs from HSF in a number of important details. This article describes the algorithmic techniques used in FF in comparison to HsP and evaluates their benefits in terms of run-time and solution-length behavior.
An Approach To Planning With Incomplete Information Classical planners presuppose complete and correct informationabout the world. This paper provides thesyntax and semantics for uwl, a representation forgoals and actions that facilitates planning with incompleteinformation about the world's state. While theexpressive power of uwl is limited compared to previouswork on logics of knowledge and belief, uwl hasthe advantage of being easily incorporated into planningalgorithms. We describe a provably correct planningalgorithm based on uwl....
Computing Stable Models with Quantified Boolean Formulas: Some Experimental Results Quantified boolean formulas (QBFs) are extensions of ordi- nary propositional formulas which admit efficient represen- tations of many important reasoning tasks. The existence of sophisticated QBF-solvers makes it possible to realize pro- totype systems for quite different knowledge-representation formalisms in a uniform manner. The system QUIP follows this idea and implements inference tasks from the area of non- monotonic reasoning by using suitable encodings to QBFs. In this paper, we report experimental results evaluating the per- formance of QUIP .I nparticular, we deal here with the dis- junctive logic programming module of QUIP, which will be the subject of two kinds of performance tests: First, we com- pare QUIP with the state-of-the-art logic programming sys- tems dlv and smodels, and second, we examine the per- formance of different QBF-solvers on the considered prob- lem classes. As benchmark philosophy we employ classes of disjunctive logic programs which are responsible for the - hardness of the given decision problems. The results show reasonable performance of the QBF approach and indicate possible improvements of QUIP by exploiting different QBF- solvers as underlying inference engines.
Implementation of Argus Argus is a programming language and system developed to support the construction and execution of distributed programs. This paper describes the implementation of Argus, with particular emphasis on the way we implement atomic actions, because this is where Argus differs most from other implemented systems. The paper also discusses the performance of Argus. The cost of actions is quite reasonable, indicating that action systems like Argus are practical.
A Provably Efficient Algorithm for Training Deep Networks
Anatomical Structure Sketcher For Cephalograms By Bimodal Deep Learning The lateral cephalogram is a commonly used medium to acquire patient-specific morphology for diagnose and treatment planning in clinical dentistry. The robust anatomical structure detection and accurate annotation remain challenging considering the personal skeletal variations and image blurs caused by device-specific projection magnification, together with structure overlapping in the lateral cephalograms. We propose a novel cephalogram sketcher system, where the contour extraction of anatomical structures is formulated as a cross-modal morphology transfer from regular image patches to arbitrary curves. Specifically, the image patches of structures of interest are located by a hierarchical pictorial model. The automatic contour sketcher converts the image patch to a morphable boundary curve via a bimodal deep Boltzmann machine. The deep machine learns a joint representation of patch textures and contours, and forms a path from one modality (patches) to the other (contours). Thus, the sketcher can infer the contours by alternating Gibbs sampling along the path in a manner similar to the data completion. The proposed method is robust not only to structure detection, but also tends to produce accurate structure shapes and landmarks even in blurry X-ray images. The experiments performed on clinically captured cephalograms demonstrate the effectiveness of our method.
1.029473
0.012398
0.011818
0.010934
0.007031
0.004364
0.002036
0.000696
0.000152
0.00002
0
0
0
0
Discriminative Hierarchical Modeling of Spatio-temporally Composable Human Activities This paper proposes a framework for recognizing complex human activities in videos. Our method describes human activities in a hierarchical discriminative model that operates at three semantic levels. At the lower level, body poses are encoded in a representative but discriminative pose dictionary. At the intermediate level, encoded poses span a space where simple human actions are composed. At the highest level, our model captures temporal and spatial compositions of actions into complex human activities. Our human activity classifier simultaneously models which body parts are relevant to the action of interest as well as their appearance and composition using a discriminative approach. By formulating model learning in a max-margin framework, our approach achieves powerful multi-class discrimination while providing useful annotations at the intermediate semantic level. We show how our hierarchical compositional model provides natural handling of occlusions. To evaluate the effectiveness of our proposed framework, we introduce a new dataset of composed human activities. We provide empirical evidence that our method achieves state-of-the-art activity classification performance on several benchmark datasets.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Prefetching in file systems for MIMD multiprocessors The question of whether prefetching blocks on the file into the block cache can effectively reduce overall execution time of a parallel computation, even under favorable assumptions, is considered. Experiments have been conducted with an interleaved file system testbed on the Butterfly Plus multiprocessor. Results of these experiments suggest that (1) the hit ratio, the accepted measure in traditional caching studies, may not be an adequate measure of performance when the workload consists of parallel computations and parallel file access patterns, (2) caching with prefetching can significantly improve the hit ratio and the average time to perform an I/O (input/output) operation, and (3) an improvement in overall execution time has been observed in most cases. In spite of these gains, prefetching sometimes results in increased execution times (a negative result, given the optimistic nature of the study). The authors explore why it is not trivial to translate savings on individual I/O requests into consistently better overall performance and identify the key problems that need to be addressed in order to improve the potential of prefetching techniques in the environment
MAPFS: a flexible multiagent parallel file system for clusters The emergence of applications with greater processing and speedup requirements, such as Grand Challenge Applications (GCA), involves new computing and I/O needs. Many of these applications require access to huge data repositories and other I/O sources, making the I/O phase a bottleneck in the computing systems, due to its poor performance. In this sense, parallel I/O is becoming one of the major topics in the area of high-performance systems. Existing data-intensive GCA have been used in several domains, such as high energy physics, climate modeling, biology or visualization. Since the I/O problem has not been solved in this kind of applications, new approaches are required in this case. This paper presents MAPFS, a multiagent architecture, whose goal is to allow applications to access data in a cluster of workstations in an efficient and flexible fashion, providing formalisms for modifying the topology of the storage system, specifying different data access patterns and selecting additional functionalities.
Profiler and compiler assisted adaptive I/O prefetching for shared storage caches I/O prefetching has been employed in the past as one of the mechanisms to hide large disk latencies. However, I/O prefetching in parallel applications is problematic when multiple CPUs share the same set of disks due to the possibility that prefetches from different CPUs can interact on shared memory caches in the I/O nodes in complex and unpredictable ways. In this paper, we (i) quantify the impact of compiler-directed I/O prefetching - developed originally in the context of sequential execution - on shared caches at I/O nodes. The experimental data collected shows that while I/O prefetching brings benefits, its effectiveness reduces significantly as the number of CPUs is increased; (ii) identify inter-CPU misses due to harmful prefetches as one of the main sources for this reduction in performance with the increased number of CPUs; and (iii) propose and experimentally evaluate a profiler and compiler assisted adaptive I/O prefetching scheme targeting shared storage caches. The proposed scheme obtains inter-thread data sharing information using profiling and, based on the captured data sharing patterns, divides the threads into clusters and assigns a separate (customized) I/O prefetcher thread for each cluster. In our approach, the compiler generates the I/O prefetching threads automatically. We implemented this new I/O prefetching scheme using a compiler and the PVFS file system running on Linux, and the empirical data collected clearly underline the importance of adapting I/O prefetching based on program phases. Specifically, our proposed scheme improves performance, on average, by 19.9%, 11.9% and 10.3% over the cases without I/O prefetching, with independent I/O prefetching (each CPU is performing compiler-directed I/O prefetching independently), and with one CPU prefetching (one CPU is reserved for prefetching on behalf of others), respectively, when 8 CPUs are used.
Pre-execution Data Prefetching with Inter-thread I/O Scheduling. With the rate of computing power growing much faster than that of storage I/O access, parallel applications suffer more from I/O latency. I/O prefetching is effective in hiding I/O latency. However, existing I/O prefetching techniques are conservative and their effectiveness is limited. Recently, a more aggressive prefetching approach named pre-execution prefetching [19] has been proposed. In this paper, we first identify the drawback of this pre-execution prefetching approach, and then propose a new method to overcome the drawback by scheduling the I/O operations between the main thread and the prefetching thread. By careful I/O scheduling, our approach further extends the computation and I/O concurrency and avoids the I/O competition within one process. The results of extensive experiments, including experiments on real-life applications such as big matrix manipulation and Hill encryption, demonstrate the benefits of the proposed approach.
Caching Hints in Distributed Systems Caching reduces the average cost of retrieving data by amortizing the lookup cost over several references to the data. Problems with maintaining strong cache consistency in a distributed system can be avoided by treating cached information as hints. A new approach to managing caches of hints suggests maintaining a minimum level of cache accuracy, rather than maximizing the cache hit ratio, in order to guarantee performance improvements. The desired accuracy is based on the ratio of lookup costs to the costs of detecting and recovering from invalid cache entries. Cache entries are aged so that they get purged when their estimated accuracy falls below the desired level. The age thresholds are dictated solely by clients' accuracy requirements instead of being suggested by data storage servers or system administrators.
Tuning the performance of I/O-intensive parallel applications Getting good I/O performance from parallel programs is a critical problem for many application domains. Inthis paper, we report our experience tuning the I/O performance of four application programs from the areas ofsensor data processing and linear algebra. After tuning, three of the four applications achieve effective I/O rates ofover 100Mb/s, on 16 processors. The total volume of I/O required by the programs ranged from about 75MB toover 200GB. We report the lessons learned in achieving...
Specifying data availability in multi-device file systems
Synchronized Disk Interleaving A group of disks may be interleaved to speed up data transfers in a manner analogous to the speedup achieved by main memory interleaving. Conventional disks may be used for interleaving by spreading data across disks and by treating multiple disks as if they were a single one. Furthermore, the rotation of the interleaved disks may be synchronized to simplify control and also to optimize performance. In addition, check- sums may be placed on separate check-sum disks in order to improve reliability. In this paper, we study synchronized disk interleaving as a high-performance mass storage system architecture. The advantages and limitations of the proposed disk interleaving scheme are analyzed using the M/G/1 queueing model and compared to the conventional disk access mechanism.
Zoned-RAID for multimedia database servers This paper proposes a novel fault-tolerant disk subsystem named Zoned-RAID (Z-RAID). Z-RAID improves the performance of traditional RAID system by utilizing the zoning property of modern disks which provides multiple zones with different data transfer rates in a disk. This study proposes to optimize data transfer rate of RAID system by constraining placement of data blocks in multi-zone disks. We apply Z-RAID for multimedia database servers such as video servers that require a high data transfer rate as well as fault tolerance. Our analytical and experimental results demonstrate the superiority of Z-RAID to conventional RAID. Z-RAID provides a higher effective data transfer rate in normal mode with no disadvantage. In the presence of a disk failure, Z-RAID still performs as well as RAID.
Notes on Data Base Operating Systems This paper is a compendium of data base management operating systems folklore. It is an early paper and is still in draft form. It is intended as a set of course notes for a class on data base operating systems. After a brief overview of what a data management system is it focuses on particular issues unique to the transaction management component especially locking and recovery.
Regeneration of replicated objects: a technique and its Eden implementation A replicated directory system based on a method called regeneration is designed and implemented. The directory system allows selection of arbitrary object to be replicated, choice of the number of replicas for each object, and placement of the copies on machines with independent failure modes. Copies can become inaccessible due to node crashes, but as long as a single copy survives, the replication level is restored by automatically replacing lost copies on other active machines. The focus is on a regeneration algorithm for replica replacement and its application to a replicated directory structure in the Eden local area network. A simple probabilistic approach is used to compare the availability provided by the algorithm to three other replication techniques.
Consistency of Clark's completion and existence of stable models.
Early Stopping-But When? Abstract: Validation can be used to detect when over#tting starts duringsupervised training of a neural network; training is then stoppedbefore convergence to avoid the over#tting ##early stopping"#. The exactcriterion used for validation-based early stopping, however, is usuallychosen in an ad-hoc fashion or training is stopped interactively. This trickdescribes how to select a stopping criterion in a systematic fashion; itis a trick for either speeding learning procedures or improving...
Learning A Lexical Simplifier Using Wikipedia In this paper we introduce a new lexical simplification approach. We extract over 30K candidate lexical simplifications by identifying aligned words in a sentence-aligned corpus of English Wikipedia with Simple English Wikipedia. To apply these rules, we learn a feature-based ranker using SVMnk trained on a set of labeled simplifications collected using Amazon's Mechanical Turk. Using human simplifications for evaluation, we achieve a precision of 76% with changes in 86% of the examples.
1.008729
0.008643
0.008643
0.007143
0.003712
0.002569
0.001746
0.000979
0.00024
0.000032
0.000002
0
0
0
Deep learning code fragments for code clone detection. Code clone detection is an important problem for software maintenance and evolution. Many approaches consider either structure or identifiers, but none of the existing detection techniques model both sources of information. These techniques also depend on generic, handcrafted features to represent code fragments. We introduce learning-based detection techniques where everything for representing terms and fragments in source code is mined from the repository. Our code analysis supports a framework, which relies on deep learning, for automatically linking patterns mined at the lexical level with patterns mined at the syntactic level. We evaluated our novel learning-based approach for code clone detection with respect to feasibility from the point of view of software maintainers. We sampled and manually evaluated 398 file- and 480 method-level pairs across eight real-world Java systems; 93% of the file- and method-level samples were evaluated to be true positives. Among the true positives, we found pairs mapping to all four clone types. We compared our approach to a traditional structure-oriented technique and found that our learning-based approach detected clones that were either undetected or suboptimally reported by the prominent tool Deckard. Our results affirm that our learning-based approach is suitable for clone detection and a tenable technique for researchers.
Automatically learning semantic features for defect prediction. Software defect prediction, which predicts defective code regions, can help developers find bugs and prioritize their testing efforts. To build accurate prediction models, previous studies focus on manually designing features that encode the characteristics of programs and exploring different machine learning algorithms. Existing traditional features often fail to capture the semantic differences of programs, and such a capability is needed for building accurate prediction models. To bridge the gap between programs' semantics and defect prediction features, this paper proposes to leverage a powerful representation-learning algorithm, deep learning, to learn semantic representation of programs automatically from source code. Specifically, we leverage Deep Belief Network (DBN) to automatically learn semantic features from token vectors extracted from programs' Abstract Syntax Trees (ASTs). Our evaluation on ten open source projects shows that our automatically learned semantic features significantly improve both within-project defect prediction (WPDP) and cross-project defect prediction (CPDP) compared to traditional features. Our semantic features improve WPDP on average by 14.7% in precision, 11.5% in recall, and 14.2% in F1. For CPDP, our semantic features based approach outperforms the state-of-the-art technique TCA+ with traditional features by 8.9% in F1.
Toward deep learning software repositories Deep learning subsumes algorithms that automatically learn compositional representations. The ability of these models to generalize well has ushered in tremendous advances in many fields such as natural language processing (NLP). Recent research in the software engineering (SE) community has demonstrated the usefulness of applying NLP techniques to software corpora. Hence, we motivate deep learning for software language modeling, highlighting fundamental differences between state-of-the-practice software language models and connectionist models. Our deep learning models are applicable to source code files (since they only require lexically analyzed source code written in any programming language) and other types of artifacts. We show how a particular deep learning model can remember its state to effectively model sequential data, e.g., streaming software tokens, and the state is shown to be much more expressive than discrete tokens in a prefix. Then we instantiate deep learning models and show that deep learning induces high-quality models compared to n-grams and cache-based n-grams on a corpus of Java projects. We experiment with two of the models' hyperparameters, which govern their capacity and the amount of context they use to inform predictions, before building several committees of software language models to aid generalization. Then we apply the deep learning models to code suggestion and demonstrate their effectiveness at a real SE task compared to state-of-the-practice models. Finally, we propose avenues for future work, where deep learning can be brought to bear to support model-based testing, improve software lexicons, and conceptualize software artifacts. Thus, our work serves as the first step toward deep learning software repositories.
Extracting and composing robust features with denoising autoencoders Previous work has shown that the difficulties in learning deep generative or discriminative models can be overcome by an initial unsupervised learning step that maps inputs to useful intermediate representations. We introduce and motivate a new training principle for unsupervised learning of a representation based on the idea of making the learned representations robust to partial corruption of the input pattern. This approach can be used to train autoencoders, and these denoising autoencoders can be stacked to initialize deep architectures. The algorithm can be motivated from a manifold learning and information theoretic perspective or from a generative model perspective. Comparative experiments clearly show the surprising advantage of corrupting the input of autoencoders on a pattern classification benchmark suite.
Logic programs with classical negation
Logic programming and knowledge representation In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider extensions of the language of definite logic programs by classical (strong) negation, disjunction, and some modal operators and show how each of the added features extends the representational power of the language.
The contract net protocol: high-level communication and control in a distributed problem solver The contract net protocol has been developed to specify problem-solving communication and control for nodes in a distributed problem solver. Task distribution is affected by a negotiation process, a discussion carried on between nodes with tasks to be executed and nodes that may be able to execute those tasks.
A trace-driven analysis of the UNIX 4.2 BSD file system
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages
Downward Separation Fails Catastrophically for Limited Nondeterminism Classes The $\beta$ hierarchy consists of classes $\beta_k={\rm NP}[logkn]\subseteq {\rm NP}$. Unlike collapses in the polynomial hierarchy and the Boolean hierarchy, collapses in the $\beta$ hierarchy do not seem to translate up, nor does closure under complement seem to cause the hierarchy to collapse. For any consistent set of collapses and separations of levels of the hierarchy that respects ${\rm P} = \beta_1\subseteq \beta_2\subseteq \cdots \subseteq {\rm NP}$, we can construct an oracle relative to which those collapses and separations hold; at the same time we can make distinct levels of the hierarchy closed under computation or not, as we wish. To give two relatively tame examples: for any $k \geq 1$, we construct an oracle relative to which \[ {\rm P} = \beta_{k} \neq \beta_{k+1} \neq \beta_{k+2} \neq \cdots \] and another oracle relative to which \[ {\rm P} = \beta_{k} \neq \beta_{k+1} = {\rm PSPACE}. \] We also construct an oracle relative to which $\beta_{2k} = \beta_{2k+1} \neq \beta_{2k+2}$ for all k.
Diagnostic reasoning with A-Prolog In this paper, we suggest an architecture for a software agent which operates a physical device and is capable of making observations and of testing and repairing the device's components. We present simplified definitions of the notions of symptom, candidate diagnosis, and diagnosis which are based on the theory of action language ${\cal AL}$. The definitions allow one to give a simple account of the agent's behavior in which many of the agent's tasks are reduced to computing stable models of logic programs.
ARIMA time series modeling and forecasting for adaptive I/O prefetching Bursty application I/O patterns, together with transfer limited storage devices, combine to create a major I/O bottleneck on parallel systems. This paper explores the use of time series models to forecast application I/O request times, then prefetching I/O requests during computation intervals to hide I/O latency. Experimental results with I/O intensive scientific codes show performance improvements compared to standard UNIX prefetching strategies.
Scheduling parallel I/O operations The I/O bottleneck in parallel computer systems has recently begun receiving increasing interest. Most attention has focused on improving the performance of I/O devices using fairly low-level parallelism in techniques such as disk striping and interleaving. Widely applicable solutions, however, will require an integrated approach which addresses the problem at multiple system levels, including applications, systems software, and architecture. We propose that within the context of such an integrated approach, scheduling parallel I/O operations will become increasingly attractive and can potentially provide substantial performance benefits.We describe a simple I/O scheduling problem and present approximate algorithms for its solution. The costs of using these algorithms in terms of execution time, and the benefits in terms of reduced time to complete a batch of I/O operations, are compared with the situations in which no scheduling is used, and in which an optimal scheduling algorithm is used. The comparison is performed both theoretically and experimentally. We have found that, in exchange for a small execution time overhead, the approximate scheduling algorithms can provide substantial improvements in I/O completion times.
Improving Citation Polarity Classification With Product Reviews Recent work classifying citations in scientific literature has shown that it is possible to improve classification results with extensive feature engineering. While this result confirms that citation classification is feasible, there are two drawbacks to this approach: (i) it requires a large annotated corpus for supervised classification, which in the case of scientific literature is quite expensive; and (ii) feature engineering that is too specific to one area of scientific literature may not be portable to other domains, even within scientific literature. In this paper we address these two drawbacks. First, we frame citation classification as a domain adaptation task and leverage the abundant labeled data available in other domains. Then, to avoid over-engineering specific citation features for a particular scientific domain, we explore a deep learning neural network approach that has shown to generalize well across domains using unigram and bigram features. We achieve better citation classification results with this cross-domain approach than using in-domain classification.
1.2
0.1
0.066667
0.000707
0
0
0
0
0
0
0
0
0
0
Diverse Planning for UAV Control and Remote Sensing. Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
A Mean-Field Optimal Control Formulation of Deep Learning. Recent work linking deep neural networks and dynamical systems opened up new avenues to analyze deep learning. In particular, it is observed that new insights can be obtained by recasting deep learning as an optimal control problem on difference or differential equations. However, the mathematical aspects of such a formulation have not been systematically explored. This paper introduces the mathematical formulation of the population risk minimization problem in deep learning as a mean-field optimal control problem. Mirroring the development of classical optimal control, we state and prove optimality conditions of both the Hamilton–Jacobi–Bellman type and the Pontryagin type. These mean-field results reflect the probabilistic nature of the learning problem. In addition, by appealing to the mean-field Pontryagin’s maximum principle, we establish some quantitative relationships between population and empirical learning problems. This serves to establish a mathematical foundation for investigating the algorithmic and theoretical connections between optimal control and deep learning.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Landmark-based Plan Recognition. Recognition of goals and plans using incomplete evidence from action execution can be done efficiently by using planning techniques. In many applications it is important to recognize goals and plans not only accurately, but also quickly. In this paper, we develop a heuristic approach for recognizing plans based on planning techniques that rely on ordering constraints to filter candidate goals from observations. These ordering constraints are called landmarks in the planning literature, which are facts or actions that cannot be avoided to achieve a goal. We show the applicability of planning landmarks in two settings: first, we use it directly to develop a heuristic-based plan recognition approach; second, we refine an existing planning-based plan recognition approach by pre-filtering its candidate goals. Our empirical evaluation shows that our approach is not only substantially more accurate than the state-of-the-art in all available datasets, it is also an order of magnitude faster.
The computational complexity of propositional STRIPS planning I present several computational complexity results for propositional STRIPS planning, i.e.,STRIPS planning restricted to ground formulas. Different planning problems can be definedby restricting the type of formulas, placing limits on the number of pre- and postconditions,by restricting negation in pre- and postconditions, and by requiring optimal plans. For thesetypes of restrictions, I show when planning is tractable (polynomial) and intractable (NPhard). In general, it is...
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Logic programs with classical negation
The well-founded semantics for general logic programs A general logic program (abbreviated to “program” hereafter) is a set of roles that have both positive and negative subgoals. It is common to view a deductive database as a general logic program consisting of rules (IDB) slttmg above elementary relations (EDB, facts). It is desirable to associate one Herbrand model with a program and think of that model as the “meaning of the program, ” or Its“declarative semantics. ” Ideally, queries directed to the program would be answered in accordance with this model. Recent research indicates that some programs do not have a “satisfactory” total model; for such programs, the question of an appropriate partial model arises. Unfounded sets and well-founded partial models are introduced and the well-founded semantics of a program are defined to be its well-founded partial model. If the well-founded partial model is m fact a total model. it is called the well-founded model. It n shown that the class of programs possessing a total well-founded model properly includes previously studied classes of “stratified” and “locally stratified” programs,The method in this paper is also compared with other proposals in the literature, including Clark’s“program completion, ” Fitting’s and Kunen’s 3-vahred interpretations of it, and the “stable models”of Gelfond and Lifschitz.
Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas We consider the compilation of different reasoning tasks into the evaluation problem of quantified boolean formulas (QBFs) as an approach to develop prototype reasoning sys- tems useful for, e.g., experimental purposes. Such a method is a natural generalization of a similar technique applied to NP-problems and has been recently proposed by other re- searchers. More specifically, we present translations of sev- eral well-known reasoning tasks from the area of nonmono- tonic reasoning into QBFs, and compare their implementa- tion in the prototype system QUIP with established NMR- provers. The results show reasonable performance, and docu- ment that the QBF approach is an attractive tool for rapid pro- totyping of experimental knowledge-representation systems.
Object Recognition from Local Scale-Invariant Features An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection.These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales.The keys are used as input to a nearest-neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low-residual least-squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially-occluded images with a computation time of under 2 seconds.
Support-Vector Networks The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data.High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Improving the I/O Performance of Real-Time Database Systems with Multiple-Disk Storage Structures
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.2
0.000459
0
0
0
0
0
0
0
0
0
0
0
0
Norm matters: efficient and accurate normalization schemes in deep networks. Over the past few years, Batch-Normalization has been commonly used in deep networks, allowing faster training and high performance for a wide variety of applications. However, the reasons behind its merits remained unanswered, with several shortcomings that hindered its use for certain tasks. In this work, we present a novel view on the purpose and function of normalization methods and weight-decay, as tools to decouple weights' norm from the underlying optimized objective. This property highlights the connection between practices such as normalization, weight decay and learning-rate adjustments. We suggest several alternatives to the widely used L-2 batch-norm, using normalization in L-1 and L-infinity spaces that can substantially improve numerical stability in low-precision implementations as well as provide computational and memory benefits. We demonstrate that such methods enable the first batch-norm alternative to work for half-precision implementations. Finally, we suggest a modification to weight-normalization, which improves its performance on large-scale tasks.(2)
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Cross-covariance regularized autoencoders for nonredundant sparse feature representation. We propose a new feature representation algorithm using cross-covariance in the context of deep learning. Existing feature representation algorithms based on the sparse autoencoder and nonnegativity-constrained autoencoder tend to produce duplicative encoding and decoding receptive fields, which leads to feature redundancy and overfitting. We propose using the cross-covariance to regularize the feature weight vector to construct a new objective function to eliminate feature redundancy and reduce overfitting. The results from the MNIST handwritten digits dataset, the NORB normalized-uniform dataset and the Yale face dataset indicate that relative to other algorithms based on the conventional sparse autoencoder and nonnegativity-constrained autoencoder, our method can effectively eliminate feature redundancy, extract more distinctive features, and improve sparsity and reconstruction quality. Furthermore, this method improves the image classification performance and reduces the overfitting of conventional networks without adding more computational time.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
DPCT: distributed parity cache table for redundant parallel file system Using parity information to protect data from loss in a parallel file system is a straightforward and cost-effective method. However, the “small-write” phenomenon can lead to poor write performance. This is still true in the distributed paradigm even when file system cache is used. The local file system knows nothing about a stripe and thus can not benefit from the related blocks of a stripe. We propose a distributed parity cache table (DPCT) which knows the related blocks of a stripe and can use them to improve the performance of parity calculation and parity updating. This high level cache can benefit from previous reads and can aggregate small writes to improve the overall performance. We implement this mechanism in our reliable parallel file system (RPFS). The experimental results show that both read and write performance can be improved with DPCT support. The improvement comes from the fact that we can reduce the number of disk accesses by DPCT. This matches our quantitative analysis which shows that the number of disk accesses can be reduced from N to N(1–H), where N is the number of I/O nodes and H is the DPCT hit ratio.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Families of FPGA-Based Accelerators for BLAST Algorithm with Multi-seeds Detection and Parallel Extension As one of the most widely used bio-sequence searching tools, BLAST adopts index-based approach to detect the matches between two substrings by looking up a large table and processing one match per query. In this paper, we propose a systolic array approach to detect string matches without using looking up tables. The pipelining systolic array is implemented as a multi-seeds detection and parallel extension pipeline engine to accelerate the first two stages of NCBI BLAST family algorithms. Different from the index-based approach, our implementation consumes little memory resources and eliminates redundant string extensions by merging multiple adjoin seeds into a valid seed. Our FPGA implementation achieves superior performance results in both of processing element number and clock frequency over related works in the area of FPGA BLAST accelerators. The experimental results also show the speedup can reach about 17, 48, 14, 71 and 10 compared to the NCBI BLASTp, TBLASTn, BLASTx, TBLASTx and BLASTn programs for 3072-residue queries on Intel P4 CPU, respectively. Furthermore, the idea of multi-seeds detection also can be adopted in other seed-based heuristic searching applications.
Proceedings of the 24th International Conference on Supercomputing, 2010, Tsukuba, Ibaraki, Japan, June 2-4, 2010
CAAD BLASTn: Accelerated NCBI BLASTn with FPGA prefiltering The canonical bioinformatics application is determining the biological similarity of a new sequence (protein or DNA) with respect to databases of known sequences. The BLAST algorithm is used for the vast majority of these searches. Of the various BLAST implementations, the one published by NCBI is a recognized standard. In previous work we described FPGA acceleration of the protein version of NCBI BLAST (BLASTp) using our TreeBLAST-based filter. Here we apply this filter to NCBI BLASTn, the DNA version. We show the modifications to the structures of the filtering components needed to handle DNA, as opposed to protein, sequences. The design has been implemented on an Altera Stratix III family chip. Our experimental results show that the speedup is greater than 12x and the accuracy is 100%.
Design and implementation of a database filter for BLAST acceleration BLAST is a very popular computational biology algorithm. Since it is computationally expensive it is a natural target for acceleration research, and many reconfigurable architectures have been proposed offering significant improvements. In this paper we approach the same problem with a different approach: we propose a BLAST algorithm preprocessor that efficiently identifies the portions of the database that must be processed by the full algorithm in order to find the complete set of desired results. We show that this preprocessing is feasible and quick, and requires minimal FPGA resources, while achieving a significant reduction in the size of the database that needs to be processed by BLAST. We also determine the parameters under which prefiltering is guaranteed to identify the same set of solutions as the original NCBI software. We model our preprocessor in VHDL and implement it in reconfigurable architecture. To evaluate the performance, we use a large set of datasets and compare against the original (NCBI) software. Prefiltering is able to determine that between 80 and 99.9% of the database will not produce matches and can be safely ignored. Processing only the remaining portions using software such as NCBI-BLAST improves the system performance (reduces execution time) by 3 to 15 times. Since our prefiltering technique is generic, it can be combined with any other software or reconfigurable acceleration technique.
Single pass streaming BLAST on FPGAs Approximate string matching is fundamental to bioinformatics and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic-programming- (DP) based methods. Our primary contribution is a new algorithm for emulating the seeding and extension phases of BLAST. This operates in a single pass through a database at streaming rate, and with no preprocessing other than loading the query string. Moreover, it emulates parameters turned to maximum possible sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations showing order of magnitude acceleration over serial reference code. A simple extension assures compatibility with NCBI BLAST.
A General Reconfigurable Architecture for the BLAST Algorithm The process of DNA sequence matching and database search is one of the major problems of the bioinformatics community. Major scientific efforts to address this problem have provided algorithms and software tools for molecular biologists since the early 1970s. At the algorithmic and software level BLAST is by far the most popular tool. It has been developed and continues to be maintained and distributed by the NCBI organization. The BLAST algorithm and software is computationally very intensive and as a result several computer vendors use it as a benchmark. On the other hand no systematic approach for hardware speedup of BLAST and its variants for different query and database size has been reported to date. In this paper we present our architecture that implements the BLAST algorithm for all of its major versions, and for any size of database and query. The system has been fully designed and partially implemented with reconfigurable logic. It consists of software and hardware parts and achieves a speedup of several times up to thousands of times vs general purpose computers.
CUDA-BLASTP: accelerating BLASTP on CUDA-enabled graphics hardware. Scanning protein sequence database is an often repeated task in computational biology and bioinformatics. However, scanning large protein databases, such as GenBank, with popular tools such as BLASTP requires long runtimes on sequential architectures. Due to the continuing rapid growth of sequence databases, there is a high demand to accelerate this task. In this paper, we demonstrate how GPUs, powered by the Compute Unified Device Architecture (CUDA), can be used as an efficient computational platform to accelerate the BLASTP algorithm. In order to exploit the GPU’s capabilities for accelerating BLASTP, we have used a compressed deterministic finite state automaton for hit detection as well as a hybrid parallelization scheme. Our implementation achieves speedups up to 10.0 on an NVIDIA GeForce GTX 295 GPU compared to the sequential NCBI BLASTP 2.2.22. CUDA-BLASTP source code which is available at https://sites.google.com/site/liuweiguohome/software.
Massively Parallelized DNA Motif Search on the Reconfigurable Hardware Platform COPACOBANA An enhanced version of an existing motif search algorithm BMA is presented. Motif searching is a computationally expensive task which is frequently performed in DNA sequence analysis. The algorithm has been tailored to fit on the COPACOBANA architecture, which is a massively parallel machine consisting of 120 FPGA chips. The performance gained exceeds that of a standard PC by a factor of over 1,650 and speeds up the time intensive search for motifs in DNA sequences. In terms of energy consumption COPACOBANA needs 1/400 of the energy of a PC implementation.
Optimal disk allocation for partial match queries The problem of disk allocation addresses the issue of how to distribute a file on several disks in order to maximize concurrent disk accesses in response to a partial match query. In this paper a coding-theoretic analysis of this problem is presented, and both necessary and sufficient conditions for the existence of strictly optimal allocation methods are provided. Based on a class of optimal codes, known as maximum distance separable codes, strictly optimal allocation methods are constructed. Using the necessary conditions proved, we argue that the standard definition of strict optimality is too strong and cannot be attained, in general. Hence, we reconsider the definition of optimality. Instead of basing it on an abstract definition that may not be attainable, we propose a new definition based on the best possible allocation method. Using coding theory, allocation methods that are optimal according to our proposed criterion are developed.
The well-founded semantics for general logic programs A general logic program (abbreviated to “program” hereafter) is a set of roles that have both positive and negative subgoals. It is common to view a deductive database as a general logic program consisting of rules (IDB) slttmg above elementary relations (EDB, facts). It is desirable to associate one Herbrand model with a program and think of that model as the “meaning of the program, ” or Its“declarative semantics. ” Ideally, queries directed to the program would be answered in accordance with this model. Recent research indicates that some programs do not have a “satisfactory” total model; for such programs, the question of an appropriate partial model arises. Unfounded sets and well-founded partial models are introduced and the well-founded semantics of a program are defined to be its well-founded partial model. If the well-founded partial model is m fact a total model. it is called the well-founded model. It n shown that the class of programs possessing a total well-founded model properly includes previously studied classes of “stratified” and “locally stratified” programs,The method in this paper is also compared with other proposals in the literature, including Clark’s“program completion, ” Fitting’s and Kunen’s 3-vahred interpretations of it, and the “stable models”of Gelfond and Lifschitz.
Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions An approach to semi-supervised learning is pro- posed that is based on a Gaussian random field model. Labeled and unlabeled data are rep- resented as vertices in a weighted graph, with edge weights encoding the similarity between in- stances. The learning problem is then formulated in terms of a Gaussian random field on this graph, where the mean of the field is characterized in terms of harmonic functions, and is efficiently obtained using matrix methods or belief propa- gation. The resulting learning algorithms have intimate connections with random walks, elec- tric networks, and spectral graph theory. We dis- cuss methods to incorporate class priors and the predictions of classifiers obtained by supervised learning. We also propose a method of parameter learning by entropy minimization, and show the algorithm's ability to perform feature selection. Promising experimental results are presented for synthetic data, digit classification, and text clas- sification tasks.
Contingent planning with goal preferences The importance of the problems of contingent planning with actions that have non-deterministic effects and of planning with goal preferences has been widely recognized, and several works address these two problems separately. However, combining conditional planning with goal preferences adds some new difficulties to the problem. Indeed, even the notion of optimal plan is far from trivial, since plans in nondeterministic domains can result in several different behaviors satisfying conditions with different preferences. Planning for optimal conditional plans must therefore take into account the different behaviors, and conditionally search for the highest preference that can be achieved. In this paper, we address this problem. We formalize the notion of optimal conditional plan, and we describe a correct and complete planning algorithm that is guaranteed to find optimal solutions. We implement the algorithm using BDD-based techniques, and show the practical potentialities of our approach through a preliminary experimental evaluation.
Structure and Problem Hardness: Goal Asymmetry and DPLL Proofs in SAT-Based Planning In Verification and in (optimal) AI Planning, a successful method is to formulate the application as boolean satisfiability ( SAT), and solve it with state-of-the-art DPLL-based procedures. There is a lack of understanding of why this works so well. Focussing on the Planning context, we identify a form of problem structure concerned with the symmetrical or asymmetrical nature of the cost of achieving the individual planning goals. We quantify this sort of structure with a simple numeric parameter called AsymRatio, ranging between 0 and 1. We run experiments in 10 benchmark domains from the International Planning Competitions since 2000; we show that AsymRatio is a good indicator of SAT solver performance in 8 of these domains. We then examine carefully crafted synthetic planning domains that allow control of the amount of structure, and that are clean enough for a rigorous analysis of the combinatorial search space. The domains are parameterized by size, and by the amount of structure. The CNFs we examine are unsatisfiable, encoding one planning step less than the length of the optimal plan. We prove upper and lower bounds on the size of the best possible DPLL refutations, under different settings of the amount of structure, as a function of size. We also identify the best possible sets of branching variables (backdoors). With minimum AsymRatio, we prove exponential lower bounds, and identify minimal backdoors of size linear in the number of variables. With maximum AsymRatio, we identify logarithmic DPLL refutations ( and backdoors), showing a doubly exponential gap between the two structural extreme cases. The reasons for this behavior - the proof arguments - illuminate the prototypical patterns of structure causing the empirical behavior observed in the competition benchmarks.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.026155
0.020918
0.020918
0.02
0.013106
0.006994
0.002155
0.000094
0
0
0
0
0
0
Tensor Object Classification Via Multilinear Discriminant Analysis Network This paper proposes an multilinear discriminant analysis network (MLDANet) for the recognition of multidimensional objects, knows as tensor objects. The MLDANet is a variation of linear discriminant analysis network (LDANet) and principal component analysis network (PCANet), both of which are the recently proposed deep learning algorithms. The MLDANet consists of three parts: 1) The encoder learned by MLDA from tensor data. 2) Features maps obtained from decoder. 3) The use of binary hashing and histogram for feature pooling. A learning algorithm for MLDANet is described. Evaluations on UCF11 database indicate that the proposed MLDANet outperforms the PCANet, LDANct, MPCA+LDA, and MLDA in terms of classification for tensor objects.
A deep graph embedding network model for face recognition In this paper, we propose a new deep learning network “GENet”, it combines the multi-layer network architecture and graph embedding framework. Firstly, we use simplest unsupervised learning PCA/LDA as first layer to generate the low-level feature. Secondly, many cascaded dimensionality reduction layers based on graph embedding framework are applied to GENet. Finally, a linear SVM classifier is used to classify dimension-reduced features. The experiments indicate that higher classification accuracy can be obtained by this algorithm on the CMU-PIE, ORL, Extended Yale B dataset.
On Invariance and Selectivity in Representation Learning. We study the problem of learning from data representations that are invariant to transformations, and at the same time selective, in the sense that two points have the same representation if one is the transformation of the other. The mathematical results here sharpen some of the key claims of i-theory—a recent theory of feedforward processing in sensory cortex (Anselmi et al., 2013, Theor. Comput...
Deep learning and the information bottleneck principle Deep Neural Networks (DNNs) are analyzed via the theoretical framework of the information bottleneck (IB) principle. We first show that any DNN can be quantified by the mutual information between the layers and the input and output variables. Using this representation we can calculate the optimal information theoretic limits of the DNN and obtain finite sample generalization bounds. The advantage of getting closer to the theoretical limit is quantifiable both by the generalization bound and by the network's simplicity. We argue that both the optimal architecture, number of layers and features/connections at each layer, are related to the bifurcation points of the information bottleneck tradeoff, namely, relevant compression of the input layer with respect to the output layer. The hierarchical representations at the layered network naturally correspond to the structural phase transitions along the information curve. We believe that this new insight can lead to new optimality bounds and deep learning algorithms.
An empirical evaluation of deep architectures on problems with many factors of variation Recently, several learning algorithms relying on models with deep architectures have been proposed. Though they have demonstrated impressive performance, to date, they have only been evaluated on relatively simple problems such as digit recognition in a controlled environment, for which many machine learning algorithms already report reasonable results. Here, we present a series of experiments which indicate that these models show promise in solving harder learning problems that exhibit many factors of variation. These models are compared with well-established algorithms such as Support Vector Machines and single hidden-layer feed-forward neural networks.
A fast learning algorithm for deep belief nets. We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.
Moving Beyond Feature Design: Deep Architectures and Automatic Feature Learning in Music Informatics.
Learning methods for generic object recognition with invariance to pose and lighting We assess the applicability of several popular learning methods for the problem of recognizing generic visual categories with invariance to pose, lighting, and surrounding clutter. A large dataset comprising stereo image pairs of 50 uniform-colored toys under 36 azimuths, 9 elevations, and 6 lighting conditions was collected (for a total of 194,400 individual images). The objects were 10 instances of 5 generic categories: four-legged animals, human figures, airplanes, trucks, and cars. Five instances of each category were used for training, and the other five for testing. Low-resolution grayscale images of the objects with various amounts of variability and surrounding clutter were used for training and testing. Nearest Neighbor methods, Support Vector Machines, and Convolutional Networks, operating on raw pixels or on PCA-derived features were tested. Test error rates for unseen object instances placed on uniform backgrounds were around 13% for SVM and 7% for Convolutional Nets. On a segmentation/recognition task with highly cluttered images, SVM proved impractical, while Convolutional nets yielded 16/7% error. A real-time version of the system was implemented that can detect and classify objects in natural scenes at around 10 frames per second.
Supervised Dictionary Learning It is now well established that sparse signal models are well suited to restoration tasks and can effectively be learned from audio, image, and video data. Recent research has been aimed at learning discriminative sparse models instead of purely reconstructive ones. This paper proposes a new step in that direction, with a novel sparse representation for signals belonging to different classes in terms of a shared dictionary and multiple class-decision functions. The linear variant of the proposed model admits a simple probabilistic interpretation, while its most general variant admits an interpretation in terms of kernels. An optimization framework for learning all the components of the proposed model is presented, along with experimental results on standard handwritten digit and texture classification tasks.
Mach: A New Kernel Foundation for UNIX Development Mach is a multiprocessor operating system kernel and environment under development at Carnegie Mellon University. Mach provides a new foundation for UNIX development that spans networks of uniprocessors and multiprocessors. This paper describes Mach and the motivations that led to its design. Also described are some of the details of its implemen- tation and current status.
Cryptanalysis with COPACOBANA Cryptanalysis of ciphers usually involves massive computations. The security parameters of cryptographic algorithms are commonly chosen so that attacks are infeasible with available computing resources. This contribution presents a variety of cryptanalytical applications utilizing the COPACOBANA (Cost-Optimized Parallel Code Breaker) machine which is a high-performance, low-cost cluster consisting of 120 Field Programmable Gate Arrays (FPGA). COPACOBANA appears to be the only such reconfigurable parallel FPGA machine optimized for code breaking tasks reported in the open literature. Depending on the actual algorithm, the parallel hardware architecture can outperform conventional computers by several orders of magnitude. In this work, we will focus on novel implementations of cryptanalytical algorithms, utilizing the impressive computational power of COPACOBANA. We describe various exhaustive key search attacks on symmetric ciphers and demonstrate an attack on a security mechanism employed in the electronic passport. Furthermore, we describe time-memory tradeoff techniques which can, e.g., be used for attacking the popular A5/1 algorithm used in GSM voice encryption. In addition, we introduce efficient implementations of more complex cryptanalysis on asymmetric cryptosystems, e.g., Elliptic Curve Cryptosystems (ECC) and number co-factorization for RSA.
Transforming policies into mechanisms with infokernel We describe an evolutionary path that allows operating systems to be used in a more flexible and appropriate manner by higher-level services. An infokernel exposes key pieces of information about its algorithms and internal state; thus, its default policies become mechanisms, which can be controlled from user-level. We have implemented two prototype infokernels based on the linuxtwofour and netbsdver kernels, called infolinux and infobsd, respectively. The infokernels export key abstractions as well as basic information primitives. Using infolinux, we have implemented four case studies showing that policies within Linux can be manipulated outside of the kernel. Specifically, we show that the default file cache replacement algorithm, file layout policy, disk scheduling algorithm, and TCP congestion control algorithm can each be turned into base mechanisms. For each case study, we have found that infokernel abstractions can be implemented with little code and that the overhead and accuracy of synthesizing policies at user-level is acceptable.
Enhancing write I/O performance of disk array RM2 tolerating double disk failures With a large number of internal disks and the rapid growth of disk capacity, storage systems become more susceptible to double disk failures. Thus, the need for such reliable storage systems as RAID6 is expected to gain in importance. However RAID6 architectures such as RM2, P+Q, EVEN-ODD, and DATUM traditionally suffer from a low write I/O performance caused by updating two distinctive parity data associated with user data. To overcome such a low write I/O performance, we propose an enhanced RM2 architecture which combines RM2, one of the well-known RAID6 architectures, with a Lazy Parity Update (LPU) technique. Extensive performance evaluations reveal that the write I/O performance of the proposed architecture is about two times higher than that of RM2 under various I/O workloads with little degradation in reliability.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.11
0.11
0.1
0.02
0.0013
0.000286
0.000041
0.00001
0.000001
0
0
0
0
0
Planning and Monitoring the Execution of Web Service Requests Interaction with web services enabled marketplaces would be greatly facilitated if users were given a high level service request language to express their goals in complex business domains. This can be achieved by using a planning framework which monitors the execution of planned goals against predefined standard business processes and interacts with the user to achieve goal satisfaction. We present a planning architecture that accepts high level requests, expressed in a service request language known as XSRL. The planning framework is based on the principle of interleaving planning and execution. This is accomplished on the basis of refinement and revision as new service-related information is gathered from service repositories such as UDDI and web services instances, and as execution circumstances necessitate change. The planning system interacts with the user whenever confirmation or verification is needed.
Constructing conditional plans by a theorem-prover The research on conditional planning rejects the assumptions that there is no uncertainty or incompleteness of knowledge with respect to the state and changes of the system the plans operate on. Without these assumptions the sequences of operations that achieve the goals depend on the initial state and the outcomes of nondeterministic changes in the system. This setting raises the questions of how to represent the plans and how to perform plan search. The answers are quite different from those in the simpler classical framework. In this paper, we approach conditional planning from a new viewpoint that is motivated by the use of satisfiability algorithms in classical planning. Translating conditional planning to formulae in the propositional logic is not feasible because of inherent computational limitations. Instead, we translate conditional planning to quantified Boolean formulae. We discuss three formalizations of conditional planning as quantified Boolean formulae, and present experimental results obtained with a theorem-prover.
A Planning Algorithm not based on Directional Search The initiative in STRIPS planning has recently been taken by work on propositional satisfiabil- ity. Best current planners, like Graphplan, and earlier planners originating in the partial-order or refinement planning community have proved in many cases to be inferior to general-purpose sat- isfiability algorithms in solving planning prob- lems. However, no explanation of the success of programs like Walksat or relsat in planning has been offered. In this paper we discuss a simple planning algorithm that reconstructs the planner in the background of the SAT/CSP approach.
Heuristics based on unit propagation for satisfiability problems The paper studies new unit propagation based heuristics for Davis-Putnam-Loveland (DPL) procedure. These are the novel combinations of unit propagation and the usual "Maximum Occurrences in clauses of Minimum Size" heuristics. Based on the experimental evaluations of different alternatives a new simple unit propagation based heuristic is put forward. This compares favorably with the heuristics employed in the current state-of-the-art DPL implementations (C-SAT, Tableau, POSIT).
Systemic Nonlinear Planning This paper presents a simple, sound, complete, and systematic algorithm for domain independent STRIPS planning. Simplicity is achieved by starting with a ground procedure and then applying a general, and independently verifiable, lifting transformation. Previous planners have been designed directly as lifted procedures. Our ground procedure is a ground version of Tate''s NONLIN procedure. In Tate''s procedure one is not required to determine whether a prerequisite of a step in an unfinished plan is guaranteed to hold in all linearizations. This allows Tate''s procedure to avoid the use of Chapman''s modal truth criterion. Systematicity is the property that the same plan, or partial plan, is never examined more than once.
Fast planning through planning graph analysis We introduce a new approach to planning in STRIPS-like domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest-possible partial-order plan, or states that no valid plan exists. We provide empirical evidence in favor of this approach, showing that Graphplan outperforms the total-order planner, Prodigy, and the partial-order planner, UCPOP, on a variety of interesting natural and artificial planning problems. We also give empirical evidence that the plans produced by Graphplan are quite sensible. Since searches made by this approach are fundamentally different from the searches of other common planning methods, they provide a new perspective on the planning problem.
Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems This paper describes a simple heuristic approach to solving large-scale constraint satisfaction andscheduling problems. In this approach one starts with an inconsistent assignment for a set of variablesand searches through the space of possible repairs. The search can be guided by a value-ordering heuristic,the min-conflicts heuristic, that attempts to minimize the number of constraint violations after each step.The heuristic can be used with a variety of different search strategies.We...
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
On the facial structure of set packing polyhedra In this paper we address ourselves to identifying facets of the set packing polyhedron, i.e., of the convex hull of integer solutions to the set covering problem with equality constraints and/or constraints of the form “?”. This is done by using the equivalent node-packing problem derived from the intersection graph associated with the problem under consideration. First, we show that the cliques of the intersection graph provide a first set of facets for the polyhedron in question. Second, it is shown that the cycles without chords of odd length of the intersection graph give rise to a further set of facets. A rather strong geometric property of this set of facets is exhibited.
Inducing causal laws by regular inference Recent work on representing action and change has introduced high-level action languages which describe the effects of actions as causal laws in a declarative way. In this paper, we propose an algorithm to induce the effects of actions from an incomplete domain description and observations after executing action sequences, all of which are represented in the action language $\mathcal{A}$. Our induction algorithm generates effect propositions in $\mathcal{A}$ based on regular inference, i.e., an algorithm to learn finite automata. As opposed to previous work on learning automata from scratch, we are concerned with explanatory induction which accounts for observations from background knowledge together with induced hypotheses. Compared with previous approaches in ILP, an observation input to our induction algorithm is not restricted to a narrative but can be any fact observed after executing a sequence of actions. As a result, induction of causal laws can be formally characterized within action languages.
Regularization and Semi-Supervised Learning on Large Graphs We consider the problem of labeling a partially labeled graph. This setting may arise in a number of situations from survey sampling to information retrieval to pattern recognition in manifold settings. It is also of potential practical importance, when the data is abundant, but labeling is expensive or requires human assistance. Our approach develops a framework for regularization on such graphs. The algorithms are very simple and involve solving a single, usually sparse, system of linear equations. Using the notion of algorithmic stability, we derive bounds on the generalization error and relate it to structural invariants of the graph. Some experimental results testing the performance of the regularization algorithm and the usefulness of the generalization bound are presented.
An evaluation of redundant arrays of disks using an Amdahl 5890 Recently we presented several disk array architectures designed to increase the data rate and I/O rate of supercomputing applications, transaction processing, and filesystems (Patterson 88). In this paper we present a hardware performance measure- ment of two of these architectures, mirroring and rotated parity. We see how throughput for these two architectures is affected by response time requirements, request sizes, and read to write ratios. We findthat for applications with large accesses, such as many supercomputingapplications, a rotated parity disk array far outperforms traditional mirroring architecture. For applications dominated by small accesses, such as transaction processing, mir- roring architectures have higher performance per disk than rotated parity architectures. 1. The I/O Crisis Over the past decade, processing speed, memory speed, memory capacity, and disk capacity have all grown tremendously: Single chip processors have increased in speed at the rate of 40%-100% per year (Bell 84, Joy 85). Caches have increased in speed 40% to 100% per year. Main memory has quadrupled in capacity every two or three years (Moore 75, Myers 86).
Parameterized complexity for the database theorist
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.2496
0.00195
0.000055
0.000039
0.000018
0.000007
0
0
0
0
0
0
0
0
Accelerated learning for Restricted Boltzmann Machine with momentum term
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
How to Center Binary Restricted Boltzmann Machines.
Training restricted boltzmann machines with multi-tempering: harnessing parallelization Restricted Boltzmann Machines (RBM's) are unsupervised probabilistic neural networks that can be stacked to form Deep Belief Networks. Given the recent popularity of RBM's and the increasing availability of parallel computing architectures, it becomes interesting to investigate learning algorithms for RBM's that benefit from parallel computations. In this paper, we look at two extensions of the parallel tempering algorithm, which is a Markov Chain Monte Carlo method to approximate the likelihood gradient. The first extension is directed at a more effective exchange of information among the parallel sampling chains. The second extension estimates gradients by averaging over chains from different temperatures. We investigate the efficiency of the proposed methods and demonstrate their usefulness on the MNIST dataset. Especially the weighted averaging seems to benefit Maximum Likelihood learning.
On Tracking The Partition Function.
Adaptive Parallel Tempering for Stochastic Maximum Likelihood Learning of RBMs Restricted Boltzmann Machines (RBM) have attracted a lot of attention of late, as one the principle building blocks of deep networks. Training RBMs remains problematic however, because of the intractibility of their partition function. The maximum likelihood gradient requires a very robust sampler which can accurately sample from the model despite the loss of ergodicity often incurred during learning. While using Parallel Tempering in the negative phase of Stochastic Maximum Likelihood (SML-PT) helps address the issue, it imposes a trade-off between computational complexity and high ergodicity, and requires careful hand-tuning of the temperatures. In this paper, we show that this trade-off is unnecessary. The choice of optimal temperatures can be automated by minimizing average return time (a concept first proposed by [Katzgraber et al., 2006]) while chains can be spawned dynamically, as needed, thus minimizing the computational overhead. We show on a synthetic dataset, that this results in better likelihood scores.
Deep Learning Made Easier by Linear Transformations in Perceptrons.
Representational power of restricted boltzmann machines and deep belief networks Deep belief networks (DBN) are generative neural network models with many layers of hidden explanatory factors, recently introduced by Hinton, Osindero, and Teh (2006) along with a greedy layer-wise unsupervised learning algorithm. The building block of a DBN is a probabilistic model called a restricted Boltzmann machine (RBM), used to represent one layer of the model. Restricted Boltzmann machines are interesting because inference is easy in them and because they have been successfully used as building blocks for training deeper models. We first prove that adding hidden units yields strictly improved modeling power, while a second theorem shows that RBMs are universal approximators of discrete distributions. We then study the question of whether DBNs with more layers are strictly more powerful in terms of representational power. This suggests a new and less greedy criterion for training RBMs within DBNs.
Detonation Classification from Acoustic Signature with the Restricted Boltzmann Machine We compare the recently proposed Discriminative Restricted Boltzmann Machine (DRBM) to the classical Support Vector Machine (SVM) on a challenging classification task consisting in identifying weapon classes from audio signals. The three weapon classes considered in this work (mortar, rocket, and rocket-propelled grenade), are difficult to reliably classify with standard techniques because they tend to have similar acoustic signatures. In addition, specificities of the data available in this study make it challenging to rigorously compare classifiers, and we address methodological issues arising from this situation. Experiments show good classification accuracy that could make these techniques suitable for fielding on autonomous devices. DRBMs appear to yield better accuracy than SVMs, and are less sensitive to the choice of signal preprocessing and model hyperparameters. This last property is especially appealing in such a task where the lack of data makes model validation difficult. (10Roughly speaking, the number of DOF in the regression residuals is computed as the number of observations in the training set minus the number of parameters that are part of the regression model. © 2012 Wiley Periodicals, Inc.)
Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers, markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the DNN would significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked autoencoder based pre-training to further improve the classification performance. Classification accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, which was quantified by using kurtosis/modularity measures and features from the higher hidden layer showed holistic/global FC patterns differentiating SZ from HC. Our proposed schemes and reported findings attained by using the DNN classifier and whole-brain FC data suggest that such approaches show improved ability to learn hidden patterns in brain imaging data, which may be useful for developing diagnostic tools for SZ and other neuropsychiatric disorders and identifying associated aberrant FC patterns.
Disentangling factors of variation for facial expression recognition We propose a semi-supervised approach to solve the task of emotion recognition in 2D face images using recent ideas in deep learning for handling the factors of variation present in data. An emotion classification algorithm should be both robust to (1) remaining variations due to the pose of the face in the image after centering and alignment, (2) the identity or morphology of the face. In order to achieve this invariance, we propose to learn a hierarchy of features in which we gradually filter the factors of variation arising from both (1) and (2). We address (1) by using a multi-scale contractive convolutional network (CCNET) in order to obtain invariance to translations of the facial traits in the image. Using the feature representation produced by the CCNET, we train a Contractive Discriminative Analysis (CDA) feature extractor, a novel variant of the Contractive Auto-Encoder (CAE), designed to learn a representation separating out the emotion-related factors from the others (which mostly capture the subject identity, and what is left of pose after the CCNET). This system beats the state-of-the-art on a recently proposed dataset for facial expression recognition, the Toronto Face Database, moving the state-of-art accuracy from 82.4% to 85.0%, while the CCNET and CDA improve accuracy of a standard CAE by 8%.
Deep learning of representations: looking forward Deep learning research aims at discovering learning algorithms that discover multiple levels of distributed representations, with higher levels representing more abstract concepts. Although the study of deep learning has already led to impressive theoretical results, learning algorithms and breakthrough experiments, several challenges lie ahead. This paper proposes to examine some of these challenges, centering on the questions of scaling deep learning algorithms to much larger models and datasets, reducing optimization difficulties due to ill-conditioning or local minima, designing more efficient and powerful inference and sampling procedures, and learning to disentangle the factors of variation underlying the observed data. It also proposes a few forward-looking research directions aimed at overcoming these challenges.
A complexity theory for feasible closure properties The study of the complexity of sets encompasses two complementary aims: (1) establishing—usually via explicit construction of algorithms-that sets are feasible, and (2) studying the relative complexity of sets that plausibly might be feasible but are not currently known to be feasible (such as the NP-complete sets and the PSPACE-complete sets). For the study of the complexity of closure properties, a recent flurry of results has established an analog of (1); these papers explicitly demonstrate many closure properties possessed by PP and C = P (and the proofs implicitly give closure properties of the function class #P). The present paper presents and develops, for function classes such as #P, SpanP, OptP, and MidP, an analog of (2): a general theory of the complexity of closure properties. In particular, we show that subtraction is hard for the closure properties of each of these classes: each is closed under subtraction if and only if it is closed under every polynomial-time operation. Previously, no property—natural or unnatural—had been known to have this behavior. We also prove other natural operations hard for the closure properties of #P, SpanP, OptP, and MidP, and we explore the relative complexity of operations that seem not to be # P-hard, such as maximum, minimum, decrement, and median. Moreover, for each of #P, SpanP, OptP, and MidP, we give a natural complete characterization—in terms of the collapse of complexity classes—of the conditions under which that class has every feasible closure property.
On linear characterizations of combinatorial optimization problems We show that there can be no computationally tractable description by linear inequalities of the polyhedron associated with any NP-complete combinatorial optimization problem unless NP = co-NP -- a very unlikely event. We also apply the ellipsoid method for linear programming to show that a combinatorial optimization problem is solvable in polynomial time if and only if it admits a small generator of violated inequalities.
Using SAT in QBF QBF is the problem of deciding the satisfiability of quantified boolean formulae in which variables can be either universally or existentially quantified. QBF generalizes SAT (SAT is QBF under the restriction all variables are existential) and is in practice much harder to solve than SAT. One of the sources of added complexity in QBF arises from the restrictions quantifier nesting places on the variable orderings that can be utilized during backtracking search. In this paper we present a technique for alleviating some of this complexity by utilizing an order unconstrained SAT solver during QBF solving. The innovation of our paper lies in the integration of SAT and QBF We have developed methods that allow information obtained from each solver to be used to improve the performance of the other. Unlike previous attempts to avoid the ordering constraints imposed by quantifier nesting, our algorithm retains the polynomial space requirements of standard backtracking search. Our empirical results demonstrate that our techniques allow improvements over the current state-of-the-art in QBF solvers.
Privacy-preserving restricted boltzmann machine. With the arrival of the big data era, it is predicted that distributed data mining will lead to an information technology revolution. To motivate different institutes to collaborate with each other, the crucial issue is to eliminate their concerns regarding data privacy. In this paper, we propose a privacy-preserving method for training a restricted boltzmann machine (RBM). The RBM can be got without revealing their private data to each other when using our privacy-preserving method. We provide a correctness and efficiency analysis of our algorithms. The comparative experiment shows that the accuracy is very close to the original RBM model.
1.202234
0.067516
0.067434
0.050836
0.015598
0.003865
0.000639
0.000096
0.000027
0.000002
0
0
0
0
Integrative Analysis of Patient Health Records and Neuroimages via Memory-based GraphConvolutional Network. With the arrival of the big data era, more and more data are becoming readily available in various real-world applications and those data are usually highly heterogeneous. Taking computational medicine as an example, we have both Electronic Health Records (EHR) and medical images for each patient. For complicated diseases such as Parkinsonu0027s and Alzheimeru0027s, both EHR and neuroimaging information are very important for disease understanding because they contain complementary aspects of the disease. However, EHR and neuroimage are completely different. So far the existing research has been mainly focusing on one of them. In this paper, we proposed a framework, Memory-Based Graph Convolution Network (MemGCN), to perform integrative analysis with such multi-modal data. Specifically, GCN is used to extract useful information from the patientsu0027 neuroimages. The information contained in the patient EHRs before the acquisition of each brain image is captured by a memory network because of its sequential nature. The information contained in each brain image is combined with the information read out from the memory network to infer the disease state at the image acquisition timestamp. To further enhance the analytical power of MemGCN, we also designed a multi-hop strategy that allows multiple reading and updating on the memory can be performed at each iteration. We conduct experiments using the patient data from the Parkinsonu0027s Progression Markers Initiative (PPMI) with the task of classification of Parkinsonu0027s Disease (PD) cases versus controls. We demonstrate that superior classification performance can be achieved with our proposed framework, compared with existing approaches involving a single type of data.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Verification of partial designs using incremental QBF. SAT solving is an indispensable core component of numerous formal verification tools and has found widespread use in industry, in particular when using it in an incremental fashion, e.g., in Bounded Model Checking (BMC). On the other hand, for some applications SAT formulas are not expressive enough, whereas a description via Quantified Boolean Formulas (QBF) is much more adequate, for instance when dealing with partial designs.Motivated by the success of incremental SAT, in this paper we explore various approaches to solve QBF problems in an incremental fashion and thereby make this technology usable as a core component of BMC. Firstly, we realized an incremental QBF solver based on the state-of-the-art QBF solver QuBE: Taking profit from the reuse of some information from previous iterations, the search space can be pruned, in some cases, to even less than a quarter.However, the need for preprocessing QBF formulas prior to the solving phase, that in general cannot be paired with incremental solving because of the non-predictable elimination of variables in the future incremental steps, posed the question of incremental QBF preprocessing. In this context we present an approach for retaining the QBF formula being preprocessed while extending its clauses and prefix incrementally. This procedure results in a significant size reduction of the QBF formulas, hence leading to a reduced solving time.As this may come together with a high preprocessing time, we analyze various heuristics to dynamically disable incremental preprocessing when its overhead raises over a certain threshold and is not compensated by the reduced solving time anymore.For proving the efficacy of our methods experimentally, as an application we consider BMC for partial designs (i.e., designs containing so-called blackboxes which represent unknown parts). Here, we disprove realizability, that is, we prove that an unsafe state is reachable no matter how the blackboxes are implemented. We examine all these incremental approaches from both the point of view of the effectiveness of the single procedure and the benefits that a range of QBF solvers can take from it. On a domain of partial design benchmarks, engaging incremental QBF methods significant performance gains over non incremental BMC can be achieved.
Unified QBF certification and its applications Quantified Boolean formulae (QBF) allow compact encoding of many decision problems. Their importance motivated the development of fast QBF solvers. Certifying the results of a QBF solver not only ensures correctness, but also enables certain synthesis and verification tasks. To date the certificate of a true formula can be in the form of either a syntactic cube-resolution proof or a semantic Skolem-function model whereas that of a false formula is only in the form of a syntactic clause-resolution proof. The semantic certificate for a false QBF is missing, and the syntactic and semantic certificates are somewhat unrelated. This paper identifies the missing Herbrand-function countermodel for false QBF, and strengthens the connection between syntactic and semantic certificates by showing that, given a true QBF, its Skolem-function model is derivable from its cube-resolution proof of satisfiability as well as from its clause-resolution proof of unsatisfiability under formula negation. Consequently Skolem-function derivation can be decoupled from special Skolemization-based solvers and computed from standard search-based ones. Experimental results show strong benefits of the new method.
Planning as Quantified Boolean Formula. This paper introduces two techniques for translating bounded propositional reachability problems into Quantified Boolean Formulae (QBF). Both exploit the binary-tree structure of the QBF problem to produce encodings logarithmic in the size of the instance and thus exponentially smaller than the corresponding SAT encoding with the same bound. The first encoding is based on the iterative squaring formulation of Rintanen. The second encoding is a compact tree encoding that is more efficient than the first one, requiring fewer alternations of quantifiers and fewer variables. We present experimental results showing that the approach is feasible, although not yet competitive with current state of the art SAT-based solvers.
sQueezeBF: an effective preprocessor for QBFs based on equivalence reasoning In this paper we present sQueezeBF, an effective preprocessor for QBFs that combines various techniques for eliminating variables and/or redundant clauses. In particular sQueezeBF combines (i) variable elimination via Q-resolution, (ii) variable elimination via equivalence substitution and (iii) equivalence breaking via equivalence rewriting. The experimental analysis shows that sQueezeBF can produce significant reductions in the number of clauses and/or variables - up to the point that some instances are solved directly by sQueezeBF - and that it can significantly improve the efficiency of a range of state-of-the-art QBF solvers - up to the point that some instances cannot be solved without sQueezeBF preprocessing.
Validating the result of a Quantified Boolean Formula (QBF) solver: theory and practice Despite the increasing use of QBF solvers, current QBF solvers do not provide for any mechanism to verify their results. This paper demonstrates a methodology for independently validating the results of a DLL based QBF solver using the traces generated during the solving process. It also presents a mechanism to extract small unsatisfiable subformulas, called cores, from unsatisfiable QBF instances.
Extracting certificates from quantified boolean formulas A certificate of satisfiability for a quantified boolean formula is a compact representation of one of its models which is used to provide solver-independent evidence of satisfiability. In addition, it can be inspected to gather explicit information about the semantics of the formula. Due to the intrinsic nature of quantified formulas, such certificates demand much care to be efficiently extracted, compactly represented, and easily queried. We show how to solve all these problems.
Using SAT in QBF QBF is the problem of deciding the satisfiability of quantified boolean formulae in which variables can be either universally or existentially quantified. QBF generalizes SAT (SAT is QBF under the restriction all variables are existential) and is in practice much harder to solve than SAT. One of the sources of added complexity in QBF arises from the restrictions quantifier nesting places on the variable orderings that can be utilized during backtracking search. In this paper we present a technique for alleviating some of this complexity by utilizing an order unconstrained SAT solver during QBF solving. The innovation of our paper lies in the integration of SAT and QBF We have developed methods that allow information obtained from each solver to be used to improve the performance of the other. Unlike previous attempts to avoid the ordering constraints imposed by quantifier nesting, our algorithm retains the polynomial space requirements of standard backtracking search. Our empirical results demonstrate that our techniques allow improvements over the current state-of-the-art in QBF solvers.
Backjumping for quantified Boolean logic satisfiability The implementation of effective reasoning tools for deciding the satisfiability of Quantified Boolean Formulas (QBFs) is an important research issue in Artificial Intelligence. Many decision procedures have been proposed in the last few years, most of them based on the Davis, Logemann, Loveland procedure (DLL) for propositional satisfiability (SAT). In this paper we show how it is possible to extend the conflict-directed backjumping schema for SAT to the satisfiability of QBFs: When applicable, conflict-directed backjumping allows search to skip over existentially quantified literals while backtracking. We introduce solution-directed backjumping, which allows the same behavior for universally quantified literals. We show how it is possible to incorporate both conflict-directed and solution-directed backjumping in a DLL-based decision procedure for satisfiability of QBFs. We also implement and test the procedure: The experimental analysis shows that, because of backjumping, significant speed-ups can be obtained.Summing up: We present the first algorithm that applies conflict and solution directed backjumping to QBF, and demonstrate the performance of this algorithm via an empirical study.
Formalizing sensing actions—a transition function based approach In presence of incomplete information about the world we need to distinguish between the state of the world and the state of the agent's knowledge about the world. In such a case the agent may need to have at its disposal sensing actions that change its state of knowledge about the world and may need to construct more general plans consisting of sensing actions and conditional statements to achieve its goal. In this paper we first develop a high-level action description language that allows specification of sensing actions and their effects in its domain description and allows queries with conditional plans. We give provably correct translations of domain description in our language to axioms in first-order logic, and relate our formulation to several earlier formulations in the literature. We then analyze the state space of our formulation and develop several sound approximations that have much smaller state spaces. Finally we define regression of knowledge formulas over conditional plans. © 2001 Elsevier Science B.V. All rights reserved.
Abstraction and approximate decision-theoretic planning ion and Approximate Decision TheoreticPlanningRichard Dearden and Craig BoutilieryDepartment of Computer ScienceUniversity of British ColumbiaVancouver, British ColumbiaCANADA, V6T 1Z4email: dearden,[email protected] decision processes (MDPs) have recently been proposed asuseful conceptual models for understanding decision-theoretic planning.However, the utility of the associated computational methods remainsopen to question: most algorithms for computing optimal...
Serverless network file systems We propose a new paradigm for network file system design: serverless network file systems. While traditional network file systems rely on a central server machine, a serverless system utilizes workstations cooperating as peers to provide all file system services. Any machine in the system can store, cache, or control any block of data. Our approach uses this location independence, in combination with fast local area networks, to provide better performance and scalability than traditional file systems. Furthermore, because any machine in the system can assume the responsibilities of a failed component, our serverless design also provides high availability via redundatn data storage. To demonstrate our approach, we have implemented a prototype serverless network file system called xFS. Preliminary performance measurements suggest that our architecture achieves its goal of scalability. For instance, in a 32-node xFS system with 32 active clients, each client receives nearly as much read or write throughput as it would see if it were the only active client.
From logic programs updates to action description updates An important branch of investigation in the field of agents has been the definition of high level languages for representing effects of actions, the programs written in such languages being usually called action programs. Logic programming is an important area in the field of knowledge representation and some languages for specifying updates of Logic Programs had been defined. Starting from the update language Evolp, in this work we propose a new paradigm for reasoning about actions called Evolp action programs. We provide translations of some of the most known action description languages into Evolp action programs, and underline some peculiar features of this newly defined paradigm. One such feature is that Evolp action programs can easily express changes in the rules of the domains, including rules describing changes.
Enhancing write I/O performance of disk array RM2 tolerating double disk failures With a large number of internal disks and the rapid growth of disk capacity, storage systems become more susceptible to double disk failures. Thus, the need for such reliable storage systems as RAID6 is expected to gain in importance. However RAID6 architectures such as RM2, P+Q, EVEN-ODD, and DATUM traditionally suffer from a low write I/O performance caused by updating two distinctive parity data associated with user data. To overcome such a low write I/O performance, we propose an enhanced RM2 architecture which combines RM2, one of the well-known RAID6 architectures, with a Lazy Parity Update (LPU) technique. Extensive performance evaluations reveal that the write I/O performance of the proposed architecture is about two times higher than that of RM2 under various I/O workloads with little degradation in reliability.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.224373
0.224373
0.149582
0.101706
0.051458
0.008885
0.002493
0.000588
0.000024
0
0
0
0
0
Prefetching on Storage Servers through Mining Access Patterns on Blocks. Distributed file systems have been widely deployed as back-end storage systems to offer I/O services for parallel/distributed applications that process large amounts of data. Data prefetching in distributed file systems is a well-known optimization technique which can mask both network and disk latency and consequently boost I/O performance. Traditionally, data prefetching is initiated by the client file systems, however, conventional prefetching schemes are not well suited for client machines that have limited memory and computing capacity. To offer an efficient prefetching approach for resource-limited client machines, this paper proposes a novel server-side prefetching mechanism. Specifically, we propose to piggyback client identification to I/O requests so that server side block access history can be put into context. On the server side, we utilize the horizontal visibility graph technique to transform per-client time series of block access sequences into a connected graph for which we employ Tarjan’s algorithm to disclose cut points in the connected graph. We express these patterns with feature tuples and we propose the X-step pattern matching algorithm to find a matching access pattern (i.e., a feature tuple) for a given block access history. Experimental results indicate that our newly proposed prefetching mechanism can ease client machines and their applications from the process of data prefetching, boosting client performance accordingly, and that it yields an attractive increase in data throughput as well.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Detecting Inconsistencies in Large Biological Networks with Answer Set Programming We introduce an approach to detecting inconsistencies in large biological networks by using Answer Set Programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on Answer Set Programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies in the data by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions.
Modeling Biological Networks by Action Languages via Answer Set Programming We describe an approach to modeling biological networks by action languages via answer set programming. To this end, we propose an action language for modeling biological networks, building on previous work by Baral et al. We introduce its syntax and semantics along with a translation into answer set programming, an efficient Boolean Constraint Programming Paradigm. Finally, we describe one of its applications, namely, the sulfur starvation response-pathway of the model plant Arabidopsis thaliana and sketch the functionality of our system and its usage.
Consistency of Clark's completion and existence of stable models.
Extracting minimum unsatisfiable cores with a greedy genetic algorithm Explaining the causes of infeasibility of Boolean formulas has practical applications in various fields. We are generally interested in a minimum explanation of infeasibility that excludes irrelevant information. A smallest-cardinality unsatisfiable subset, called a minimum unsatisfiable core, can provide a succinct explanation of infeasibility and is valuable for applications. However little attention has been concentrated on extraction of minimum unsatisfiable cores. In this paper, we propose an efficient greedy genetic algorithm to derive an exact or nearly exact minimum unsatisfiable core. It takes advantage of the relationship between maximal satisfiability and minimum unsatisfiability. We report experimental results on practical benchmarks, as compared with the branch-and-bound algorithm and the ant colony optimization.
Answer set programming and plan generation The idea of answer set programming is to represent a given computational problem by a logic program whose answer sets correspond to solutions, and then use an answer set solver, such as SMODELS or DLV, to find an answer set for this program. Applications of this method to planning are related to the line of research on the frame problem that started with the invention of formal nonmonotonic reasoning in 1980.
A knowledge based approach for representing and reasoning about signaling networks. In this paper we propose to use recent developments in knowledge representation languages and reasoning methodologies for representing and reasoning about signaling networks. Our approach is different from most other qualitative systems biology approaches in that it is based on reasoning (or inferencing) rather than simulation. Some of the advantages of our approach are, we can use recent advances in reasoning with incomplete and partial information to deal with gaps in signal network knowledge; and can perform various kinds of reasoning such as planning, hypothetical reasoning and explaining observations.Using our approach we have developed the system BioSigNet-RR for representation and reasoning about signaling networks. We use a NFkappaB related signaling pathway to illustrate the kinds of reasoning and representation that our system can currently do.The system is available on the Web at http://www.public.asu.edu/~cbaral/biosignet
Visualizing SAT Instances and Runs of the DPLL Algorithm SAT-solvers have turned into essential tools in many areas of applied logic like, for example, hardware verification or satisfiability checking modulo theories. However, although recent implementations are able to solve problems with hundreds of thousands of variables and millions of clauses, much smaller instances remain unsolved. What makes a particular instance hard or easy is at most partially understood --- and is often attributed to the instance's internal structure. By converting SAT instances into graphs and applying established graph layout techniques, this internal structure can be visualized and thus serve as the basis of subsequent analysis. Moreover, by providing tools that animate the structure during the run of a SAT algorithm, dynamic changes of the problem instance become observable. Thus, we expect both to gain new insights into the hardness of the SAT problem and to help in teaching SAT algorithms.
An action language based on causal explanation: preliminary report Action languages serve for describing changes that are caused by performing actions. We define a new action language C, based on the theory of causal explanation proposed recently by McCain and Turner, and illustrate its expressive power by applying it to a number of examples. The mathematical results presented in the paper relate C to the Baral-Gelfond theory of concurrent actions.
Two components of an action language Some of the recent work on representing action makes use of high‐level action languages. In this paper we show that an action language can be represented as the sum of two distinct parts: an “action description language” and an “action query language.” A set of propositions in an action description language describes the effects of actions on states. Mathematically, it defines a transition system of the kind familiar from the theory of finite automata. An action query language serves for expressing properties of paths in a given transition system. We define the general concepts of a transition system, of an action description language and of an action query language, give a series of examples of languages of both kinds, and show how to combine a description language and a query language into one. This construction makes it possible to design the two components of an action language independently, which leads to the simplification and clarification of the theory of actions.
Bounded queries to SAT and the Boolean hierarchy We study the complexity of decision problems that can be solved by a polynomial-time Turing machine that makes a bounded number of queries to an NP oracle. Depending on whether we allow some queries to depend on the results of other queries, we obtain two (probably) different hierarchies. We present several results relating the bounded NP query hierarchies to each other and to the Boolean hierarchy. We also consider the similarly defined hierarchies of functions that can be computed by a polynomial-time Turing machine that makes a bounded number of queries to an NP oracle. We present relations among these two hierarchies and the Boolean hierarchy. In particular we show for all k that there are functions computable with 2 k parallel queries to an NP set that are not computable in polynomial time with k serial queries to any oracle, unless P = NP. As a corollary k + 1 parallel queries to an NP set allow us to compute more functions than are computable with only k parallel queries to an NP set, unless P = NP; the same is true of serial queries. Similar results hold for all tt-self-reducible sets. Using a “mind-change” technique, we show that 2 k - 1 parallel queries to an NP set allow us to accept in polynomial time exactly the same sets as can be accepted in polynomial time with k serial queries to an NP set. (In fact, the same is true for any class in place of NP that is closed under polynomial-time positive-bounded-truth-table reductions.) This contrasts with the expected result for function computations with an NP oracle (Beigel, 1988). In addition we show that the Boolean hierarchy and the bounded query hierarchies (of languages) either stand or collapse together. Finally we show that if the Boolean hierarchy collapses to any level but the zeroth (deterministic polynomial time), then for all k there are functions computable in polynomial time with k parallel queries to an NP set that are not computable in polynomial time with k - 1 serial queries to any set (NP-complete sets are p-superterse).
Main memory database systems: an overview Main memory database systems (MMDBs) store their data in main physical memory and provide very high-speed access. Conventional database systems are optimized for the particular characteristics of disk storage mechanisms. Memory resident systems, on the other hand, use different optimizations to structure and organize data, as well as to make it reliable. The authors survey the major memory residence optimizations and briefly discuss some of the MMDBs that have been designed or implemented.
The Boolean Hierarchy over Level 1/2 of the Straubing-Therien Hierarchy For some fixed alphabet A with |A| ≥ 2, a language L ⊆ A∗ is in the class L1/2 of the Straubing-Therien hierarchy if and only if it can be expressed as a finite union of languages A∗a1A∗a2A∗ � � � A∗anA∗, where ai ∈ A and n ≥ 0. The class L1 is defined as the boolean closure of L1/2. It is known that the classes L1/2 and L1 are decidable. We give a membership criterion for the single classes of the boolean hierarchy ov er L1/2. From this criterion we can conclude that this boolean hierarchy is proper and that its c lasses are decidable. In finite model theory the latter implies the decidability of the classes of the boolean hierarchy over the class �1 of the FO(<)-logic. Moreover we prove a "forbidden-pattern" characterization of L1 of the type: L ∈ L1 if and only if a certain pattern does not appear in the transit ion graph of a deterministic finite automaton accepting L. We discuss complexity theoretical consequences of our results. Classification: finite automata, concatenation hierarchies, boolean hiera rchy, decidability
Generating User Interfaces from Formal Specifications of the Application The generation of the dialogue description from an algebraic specification of the application and its restrictions to different user groups are presented. The idea and motivation for the work is that the development of the application and the UI has to go hand in hand. Moreover, the UI should be generated since the programming of UIs is a time consuming and error-prone task. A formal specification of an ap- plication, characterizing the application in an abstract way, allows the automatic analyses and the generation of specifications, describing the dynamic behaviour of the UI. The generated (dynamic) specification can be used as an input for an exist- ing UI Generator (UIG), called BOSS, which is part of a formal UI development environment, called FUSE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.118813
0.040952
0.028701
0.018513
0.011049
0.00388
0.000978
0.000273
0.000064
0
0
0
0
0
QUBOS: Deciding Quantified Boolean Logic Using Propositional Satisfiability Solvers We describe Qubos (QUantified BOolean Solver), a decision procedure for quantified Boolean logic. The procedure is based on nonclausal simplification techniques that reduce formulae to a propositional clausal form after which off-the-shelf satisfiability solvers can be employed. W e show that there are domains exhibiting structure for which this procedure is very effective and we report on experimental results.
Structure and Problem Hardness: Goal Asymmetry and DPLL Proofs in SAT-Based Planning In Verification and in (optimal) AI Planning, a successful method is to formulate the application as boolean satisfiability ( SAT), and solve it with state-of-the-art DPLL-based procedures. There is a lack of understanding of why this works so well. Focussing on the Planning context, we identify a form of problem structure concerned with the symmetrical or asymmetrical nature of the cost of achieving the individual planning goals. We quantify this sort of structure with a simple numeric parameter called AsymRatio, ranging between 0 and 1. We run experiments in 10 benchmark domains from the International Planning Competitions since 2000; we show that AsymRatio is a good indicator of SAT solver performance in 8 of these domains. We then examine carefully crafted synthetic planning domains that allow control of the amount of structure, and that are clean enough for a rigorous analysis of the combinatorial search space. The domains are parameterized by size, and by the amount of structure. The CNFs we examine are unsatisfiable, encoding one planning step less than the length of the optimal plan. We prove upper and lower bounds on the size of the best possible DPLL refutations, under different settings of the amount of structure, as a function of size. We also identify the best possible sets of branching variables (backdoors). With minimum AsymRatio, we prove exponential lower bounds, and identify minimal backdoors of size linear in the number of variables. With maximum AsymRatio, we identify logarithmic DPLL refutations ( and backdoors), showing a doubly exponential gap between the two structural extreme cases. The reasons for this behavior - the proof arguments - illuminate the prototypical patterns of structure causing the empirical behavior observed in the competition benchmarks.
Complexity of Nested Circumscription and Nested Abnormality Theories Circumscription has been recognized as an important principle for knowledge representa- tion and common-sense reasoning. The need for a circumscriptive formalism that allows for simple yet elegant modular problem representation has led Lifschitz (AIJ, 1995) to introduce nested abnormality theories (NATs) as a tool for modular knowledge representation, tailored for applying circumscription to minimize exceptional circumstances. Abstracting from this particular objective, we propose LCIRC, which is an extension of generic propositional circum- scription by allowing propositional combinations and nesting of circumscriptive theories. As shown, NATs are naturally embedded into this language, and are in fact of equal expressive capability. We then analyze the complexity of LCIRC and NATs, and in particular the effect of nesting. The latter is found to be a source of complexity, which climbs the Polynomial Hierar- chy as the nesting depth increases and reaches PSPACE-completeness in the general case. We also identify meaningful syntactic fragments of NATs which have lower complexity. In partic- ular, we show that the generalization of Horn circumscription in the NAT framework remains coNP-complete, and that Horn NATs without fixed letters can b e efficiently transformed into an equivalent Horn CNF, which implies polynomial solvability of principal reasoning tasks. Finally, we also study extensions of NATs and briefly address the complexity in the first-order case. Our results give insight into the "cost" of using LCIRC (resp. NATs) as a host language for expressing other formalisms such as action theories, narratives, or spatial theories.
Solving quantified boolean formulas with circuit observability don't cares Traditionally the propositional part of a Quantified Boolean Formula (QBF) instance has been represented using a conjunctive normal form (CNF). As with propositional satisfiability (SAT), this is motivated by the efficiency of this data structure. However, in many cases, part of or the entire propositional part of a QBF instance can often be represented as a combinational logic circuit. In a logic circuit, the limited observability of the internal signals at the circuit outputs may make their assignments irrelevant for specific assignments of values to other signals in the circuit. This circuit observability don't care (ODC) information has been used to advantage in circuit based SAT solvers. A CNF encoding of the circuit, however, does not capture the signal direction and this limited observability, and thus cannot directly take advantage of this. However, recently it has been shown that this don't care information can be encoded in the CNF description and taken advantage of in a DPLL based SAT solver by modifying the decision heuristics/Boolean constraint propagation/conflict-driven-learning to account for these don't cares. Thus far, however, the use of these don't cares in the CNF encoding has not been explored for QBF solvers. In this paper, we examine how this can be done for QBF solvers as well as evaluate its practical benefits through experimentation. We have developed and implemented the usage of circuit ODCs in various parts of the DPLL-based procedure of the Quaffle QBF solver. We show that DPLL search based QBF solvers can use circuit ODC information to detect satisfying branches earlier during search and make satisfiability directed learning more effective. Our experiments demonstrate that significant performance gain can be obtained by considering circuit ODCs in checking the satisfiability of QBFs.
Towards Implementations for Advanced Equivalence Checking in Answer-Set Programming In recent work, a general framework for specifying program corre- spondences under the answer-set semantics has been defined. The framework al- lows to define different notions of equivalence, including the well-known notions of strong and uniform equivalence, as well as refined equivalence notions based on the projection of answer sets, where not all parts of an answer set are of rel- evance (like, e.g., removal of auxiliary letters). In the general case, deciding the correspondence of two programs lies on the fourth level of the polynomial hierar- chy and therefore this task can (presumably) not be efficiently reduced to answer- set programming. In this paper, we describe an approach to compute program correspondences in this general framework by means of linear-time constructible reductions to quantified propositional logic. We can thus use extant solvers for the latter language as back-end inference engines for computing program corre- spondence problems. We also describe how our translations provide a method to construct counterexamples in case a program correspondence does not hold.
Representing paraconsistent reasoning via quantified propositional logic Quantified propositional logic is an extension of classical propositional logic where quantifications over atomic formulas are permitted. As such, quantified propositional logic is a fragment of second-order logic, and its sentences are usually referred to as quantified Boolean formulas (QBFs). The motivation to study quantified propositional logic for paraconsistent reasoning is based on two fundamental observations. Firstly, in recent years, practicably efficient solvers for quantified propositional logic have been presented. Secondly, complexity results imply that there is a wide range of paraconsistent reasoning problems which can be efficiently represented in terms of QBFs. Hence, solvers for QBFs can be used as a core engine in systems prototypically implementing several of such reasoning tasks, most of them lacking concrete realisations. To this end, we show how certain paraconsistent reasoning principles can be naturally formulated or reformulated by means of quantified Boolean formulas. More precisely, we describe polynomial-time constructible encodings providing axiomatisations of the given reasoning tasks. In this way, a whole variety of a priori distinct approaches to paraconsistent reasoning become comparable in a uniform setting.
Clause/term resolution and learning in the evaluation of quantified Boolean formulas Resolution is the rule of inference at the basis of most procedures for automated reasoning. In these procedures, the input formula is first translated into an equisatisfiable formula in conjunctive normal form (CNF) and then represented as a set of clauses. Deduction starts by inferring new clauses by resolution, and goes on until the empty clause is generated or satisfiability of the set of clauses is proven, e.g., because no new clauses can be generated. In this paper, we restrict our attention to the problem of evaluating Quantified Boolean Formulas (QBFs). In this setting, the above outlined deduction process is known to be sound and complete if given a formula in CNF and if a form of resolution, called "Q-resolution", is used. We introduce Q-resolution on terms, to be used for formulas in disjunctive normal form. We show that the computation performed by most of the available procedures for QBFs -based on the Davis-Logemann-Loveland procedure (DLL) for propositional satisfiability- corresponds to a tree in which Q-resolution on terms and clauses alternate. This poses the theoretical bases for the introduction of learning, corresponding to recording Q-resolution formulas associated with the nodes of the tree. We discuss the problems related to the introduction of learning in DLL based procedures, and present solutions extending state-of-the-art proposals coming from the literature on propositional satisfiability. Finally, we show that our DLL based solver extended with learning, performs significantly better on benchmarks used in the 2003 QBF solvers comparative evaluation.
Computing Stable Models with Quantified Boolean Formulas: Some Experimental Results Quantified boolean formulas (QBFs) are extensions of ordi- nary propositional formulas which admit efficient represen- tations of many important reasoning tasks. The existence of sophisticated QBF-solvers makes it possible to realize pro- totype systems for quite different knowledge-representation formalisms in a uniform manner. The system QUIP follows this idea and implements inference tasks from the area of non- monotonic reasoning by using suitable encodings to QBFs. In this paper, we report experimental results evaluating the per- formance of QUIP .I nparticular, we deal here with the dis- junctive logic programming module of QUIP, which will be the subject of two kinds of performance tests: First, we com- pare QUIP with the state-of-the-art logic programming sys- tems dlv and smodels, and second, we examine the per- formance of different QBF-solvers on the considered prob- lem classes. As benchmark philosophy we employ classes of disjunctive logic programs which are responsible for the - hardness of the given decision problems. The results show reasonable performance of the QBF approach and indicate possible improvements of QUIP by exploiting different QBF- solvers as underlying inference engines.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Expressiveness and tractability in knowledge representation and reasoning
Read Optimized File System Designs: A Performance Evaluation This paper presents a performance comparison of several file system allocation policies. The file systems are designed to provide high bandwidth between disks and main memory by taking advantage of parallelism in an underlying disk array, catering to large units of transfer, and minimizing the bandwidth dedicated to the transfer of meta data. All of the file systems described use a mul- tiblock allocation strategy which allows both large and small files to be allocated efficiently. Simulation results show that these multiblock policies result in systems that are able to utilize a large percentage of the underlying disk bandwidth; more than 90% in sequential cases. As general purpose systems are called upon to support more data intensive applications such as databases and super- computing, these policies offer an opportunity to provide superior performance to a larger class of users.
Wave Scheduling: Distributed Allocation of Task Forces in Network Computers
Automatic Derivation and Application of Induction Schemes for Mutually Recursive Functions This paper advocates and explores the use of multipredicate induction schemes for proofs about mutually recursive functions. The interactive application of multi-predicate schemes stemming from datatype definitions is already well-established practice; this paper describes an automated proof procedure based on multi-predicate schemes. Multipredicate schemes may be formally derived from (mutually recursive) function definitions; such schemes are often helpful in proving properties of mutually recursive functions where the recursion pattern does not follow that of the underlying datatypes. These ideas have been implemented using the HOL theorem prover and the Clam proof planner.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.020936
0.024231
0.018113
0.017675
0.012295
0.007821
0.003052
0.00063
0.000055
0.000003
0
0
0
0
A jamming transition from under- to over-parametrization affects loss landscape and generalization. We argue that in fully-connected networks a phase transition delimits the over- and under-parametrized regimes where fitting can or cannot be achieved. Under some general conditions, we show that this transition is sharp for the hinge loss. In the whole over-parametrized regime, poor minima of the loss are not encountered during training since the number of constraints to satisfy is too small to hamper minimization. Our findings support a link between this transition and the generalization properties of the network: as we increase the number of parameters of a given model, starting from an under-parametrized network, we observe that the generalization error displays three phases: (i) initial decay, (ii) increase until the transition point --- where it displays a cusp --- and (iii) power law decay toward a constant for the rest of the over-parametrized regime. Thereby we identify the region where the classical phenomenon of over-fitting takes place, and the region where the model keeps improving, in line with previous empirical observations for modern neural networks. The theoretical results presented here appeared elsewhere for a physics audience. The results on generalization are new.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
UnTran: Recognizing Unseen Activities with Unlabeled Data Using Transfer Learning The success and impact of activity recognition algorithms largely depends on the availability of the labeled training samples and adaptability of activity recognition models across various domains. In a new environment, the pre-trained activity recognition models face challenges in presence of sensing bias- ness, device heterogeneities, and inherent variabilities in human behaviors and activities. Activity Recognition (AR) system built in one environment does not scale well in another environment, if it has to learn new activities and the annotated activity samples are scarce. Indeed building a new activity recognition model and training the model with large annotated samples often help overcome this challenging problem. However, collecting annotated samples is cost-sensitive and learning activity model at wild is computationally expensive. In this work, we propose an activity recognition framework, UnTran that utilizes source domains' pre-trained autoencoder enabled activity model that transfers two layers of this network to generate a common feature space for both source and target domain activities. We postulate a hybrid AR framework that helps fuse the decisions from a trained model in source domain and two activity models (raw and deep-feature based activity model) in target domain reducing the demand of annotated activity samples to help recognize unseen activities. We evaluated our framework with three real-world data traces consisting of 41 users and 26 activities in total. Our proposed UnTran AR framework achieves ≈ 75% F1 score in recognizing unseen new activities using only 10% labeled activity data in the target domain. UnTran attains ≈ 98% F1 score while recognizing seen activities in presence of only 2-3% of labeled activity samples.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
A file system for continuous media The Continuous Media File System, CMFS, supports real-time storage and retrieval of continuous media data (digital audio and video) on disk. CMFS clients read or write files in “sessions,” each with a guaranteed minimum data rate. Multiple sessions, perhaps with different rates, and non-real-time access can proceed concurrently. CMFS addresses several interrelated design issues; real-time semantics fo sessions, disk layout, an acceptance test for new sessions, and disk scheduling policy. We use simulation to compare different design choices.
Providing QoS guarantees for disk I/O In this paper, we address the problem of providing different levels of performance guarantees or quality ofservice for disk I/O. We classify disk requests into threecategories based on the provided level of service. We propose an integrated scheme that provides different levels ofperformance guarantees in a single system. We propose andevaluate a mechanism for providing deterministic servicefor variable-bit-rate streams at the disk. We will show that,through proper admission control and bandwidth allocation,requests in different categories can be ensured of performance guarantees without getting impacted by requests inother categories. We evaluate the impact of scheduling policy decisions on the provided service. We also quantify theimprovements in stream throughput possible by using statistical guarantees instead of deterministic guarantees in thecontext of the proposed approach.
Operating system support for multimedia systems Distributed multimedia applications will be an important part of tomorrow's application mix and require appropriate operating system (OS) support. Neither hard real-time solutions nor best-effort solutions are directly well suited for this support. One reason is the co-existence of real-time and best effort requirements in future systems. Another reason is that the requirements of multimedia applications are not easily predictable, like variable bit rate coded video data and user interactivity. In this article, we present a survey of new developments in OS support for (distributed) multimedia systems, which include: (1) development of new CPU and disk scheduling mechanisms that combine real-time and best effort in integrated solutions; (2) provision of mechanisms to dynamically adapt resource reservations to current needs; (3) establishment of new system abstractions for resource ownership to account more accurate resource consumption; (4) development of new file system structures; (5) introduction of memory management mechanisms that utilize knowledge about application behavior; (6) reduction of major performance bottlenecks, like copy operations in I/O subsystems; and (7) user-level control of resources including communication.
A feedback-driven proportion allocator for real-rate scheduling In this paper we propose changing the decades-old practice of allocating CPU to threads based on priority to a scheme based on proportion and period. Our scheme allocates to each thread a percentage of CPU cycles over a period of time, and uses a feedback-based adaptive scheduler to assign automatically both proportion and period. Applications with known requirements, such as isochronous software devices, can bypass the adaptive scheduler by specifying their desired proportion and/or period. As a result, our scheme provides reservations to applications that need them, and the benefits of proportion. and period to chose that do not. Adaptive scheduling using proportion and period has several distinct benefits over either fixed or adaptive priority based schemes: finer grain control of allocation, lower variance in the amount of cycles allocated to a thread, and avoidance of accidental priority inversion and starvation, including defense against denial-of-service attacks. This paper describes our design of an adaptive controller and proportion-period scheduler its implementation in Linux, and presents experimental validation of our approach.
A study of I/O system organizations With the increasing processing speeds, it has become important to design powerful and efficient I/O systems. In this paper, we look at several design options in designing an I/O system and study their impact on the performance. Specifically, we use trace driven simulations to study a disk system with a nonvolatile cache. Some of the considered design parameters include the cache block size, the fetch size, the cache size and the disk access policy. We show that decoupling the fetch size and the cache block size results in significant performance improvements. A new write-back policy is presented that is shown to offer significant performance benefits. We show that optimal block size in a two-level memory hierarchy is dependent only on the latency, data rate product of the second level as previously conjectured. We also present results showing the effect of a split access operation of a disk read/write head.
Staggered Striping in Multimedia Information Systems Multimedia information systems have emerged as an essential component of many application domains ranging from library information systems to entertainment technology. However, most implementations of these systems cannot support the continuous display of multimedia objects and suffer from frequent disruptions and delays termed hiccups. This is due to the low I/O bandwidth of the current disk technology, the high bandwidth requirement of multimedia objects, and the large size of these objects that almost always requires them to be disk resident. One approach to resolve this limitation is to decluster a multimedia object across multiple disk drives in order to employ the aggregate bandwidth of several disks to support the continuous retrieval (and display) of objects. This paper describes staggered striping as a novel technique to provide effective support for multiple users accessing the different objects in the database. Detailed simulations confirm the superiority of staggered striping.
Gracefully degradable disk arrays The problem of designing fault-tolerant disk arrays that are not susceptible to 100% load increases on the functional disks when one of the disks in the system fails is addressed. A technique that combines the advantages of parity schemes and the traditional dual copy methods and offers a wide variety of options in providing fault-tolerance is proposed. A theoretical framework for solving the problem is presented and a number of constructive techniques are proposed. By utilizing the same amount of hardware as the earlier methods but with a better data organization and a different reconstruction technique, the system yields better performance during a failure. Merging two parity groups as a reconfiguration strategy is shown to have a number of benefits, such as reduced hardware overhead and improved reliability. A combination of block designs and the proposed reconfiguration strategy results in a highly reliable disk array with the same or less overhead as the earlier approaches and better performance during a failure.<>
Automatic I/O hint generation through speculative execution Aggressive prefetching is an effective technique for reducing the execution times of disk-bound applications; that is, applications that manipulate data too large or too infrequently used to be found in file or disk caches. While automatic prefetching approaches based on static analysis or historical access patterns are effective for some workloads, they are not as effective as manually-driven (programmer-inserted) prefetching for applications with irregular or input-dependent access patterns. In this paper; we propose to exploit whatever processor cycles are left idle while an application is stalled on I/O by using these cycles to dynamically analyze the application and predict its future I/O accesses. Our approach is to speculatively pre-execute the application's code in order to discover and issue hints for its future read accesses. Coupled with an aggressive hint-driven prefetching system, this automatic approach could be applied to arbitrary applications, and should be particularly effective for those with irregular and, up to a point, input-dependent access patterns.We have designed and implemented a binary modification tool, called "SpecHint", that transforms Digital UNIX application binaries to perform speculative execution and issue hints. TIP [Patterson95], an informed prefetching and caching manager; takes advantage of these application-generated hints to better use the file cache and I/O resources. Ne evaluate our design and implementation with three real-world, disk-bound applications from the TIP benchmark suite. While our techniques are currently unsophisticated, they perform surprisingly well. Without any manual modifications, Ice achieve 29%, 69% and 70% reductions in execution time when the data files are striped over four disks, improving performance by the same amount as manually-hinted prefetching for two of our three applications. We examine the performance of our design in a variety of configurations, explaining the circumstances under which it falls short of that achieved when applications were manually modified to issue hints. Through simulation, Mle also estimate how the performance of our design will be affected by the widening gap between processor and disk speeds.
The Counterpoint Fast File System
LegionFS: a secure and scalable file system supporting cross-domain high-performance applications Realizing that current file systems can not cope with the diverse requirements of wide-area collaborations, researchers have developed data access facilities to meet their needs. Recent work has focused on comprehensive data access architectures. In order to fulfill the evolving requirements in this environment, we suggest a more fully-integrated architecture built upon the fundamental tenets of naming, security, scalability, extensibility, and adaptability. These form the underpinning of the Legion File System (LegionFS). This paper motivates the need for these requirements and presents benchmarks that highlight the scalability of LegionFS. LegionFS aggregate throughput follows the linear growth of the network, yielding an aggregate read bandwidth of 193.8 MB/s on a 100 Mbps Ethernet backplane with 50 simultaneous readers. The serverless architecture of LegionFS is shown to benefit important scientific applications, such as those accessing the Protein Data Bank, within both local- and wide-area environments.
DiskSeen: exploiting disk layout and access history to enhance I/O prefetch Current disk prefetch policies in major operating systems track access patterns at the level of the file abstraction. While this is useful for exploiting application-level access patterns, file-level prefetching cannot realize the full performance improvements achievable by prefetching. There are two reasons for this. First, certain prefetch opportunities can only be detected by knowing the data layout on disk, such as the contiguous layout of file metadata or data from multiple files. Second, nonsequential access of disk data (requiring disk head movement) is much slower than sequential access, and the penalty for mis-prefetching a 'random' block, relative to that of a sequential block, is correspondingly more costly. To overcome the inherent limitations of prefetching at the logical file level, we propose to perform prefetching directly at the level of disk layout, and in a portable way. Our technique, called DiskSeen, is intended to be supplementary to, and to work synergistically with, file-level prefetch policies, if present. DiskSeen tracks the locations and access times of disk blocks, and based on analysis of their temporal and spatial relationships, seeks to improve the sequentiality of disk accesses and overall prefetching performance. Our implementation of the DiskSeen scheme in the Linux 2.6 kernel shows that it can significantly improve the effectiveness of prefetching, reducing execution times by 20%-53% for micro-benchmarks and real applications such as grep, CVS, and TPC-H.
Deep learning via semi-supervised embedding We show how nonlinear embedding algorithms popular for use with shallow semi-supervised learning techniques such as kernel methods can be applied to deep multilayer architectures, either as a regularizer at the output layer, or on each layer of the architecture. This provides a simple alternative to existing approaches to deep learning whilst yielding competitive error rates compared to those methods, and existing shallow semi-supervised techniques.
Reasoning about actions in a probabilistic setting In this paper we present a language to reason about actions in a probabilistic setting and compare our work with earlier work by Pearl.The main feature of our language is its use of static and dynamic causal laws, and use of unknown (or background) variables - whose values are determined by factors beyond our model - in incorporating probabilities. We use two kind of unknown variables: inertial and non-inertial. Inertial unknown variables are helpful in assimilating observations and modeling counterfactuals and causality; while non-inertial unknown variables help characterize stochastic behavior, such as the outcome of tossing a coin, that are not impacted by observations. Finally, we give a glimpse of incorporating probabilities into reasoning with narratives.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.019382
0.028137
0.018758
0.01536
0.009414
0.005642
0.001246
0.000205
0.000052
0.000002
0
0
0
0
A method for regularization of evolutionary polynomial regression. •A regularization term is proposed to control complexity in polynomial regression using genetic algorithms.•Regularization reduces out-of-sample error with respect to polynomials found by non-regularized methods.•Regularization improves convergence speed.•Error performance is empirically evaluated on some common datasets versus standard regression methods.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Data-driven prediction model for adjusting burden distribution matrix of blast furnace based on improved multilayer extreme learning machine. Reasonable burden distribution matrix is one of important requirements that can realize low consumption, high efficiency, high quality and long campaign life of the blast furnace. This paper proposes a data-driven prediction model of adjusting the burden distribution matrix based on the improved multilayer extreme learning machine (ML-ELM) algorithm. The improved ML-ELM algorithm is based on our previously modified ML-ELM algorithm (named as PLS-ML-ELM) and the ensemble model. It is named as EPLS-ML-ELM. The PLS-ML-ELM algorithm uses the partial least square (PLS) method to improve the algebraic property of the last hidden layer output matrix for the ML-ELM algorithm. However, the PLS-ML-ELM algorithm may have different results in different trails of simulations. The ensemble model can overcome this problem. Moreover, it can improve the generalization performance. Hence, the EPLS-ML-ELM algorithm is consisted of several PLS-ML-ELMs. The real blast furnace data are used to testify the data-driven prediction model. Compared with other prediction models which are based on the SVM algorithm, the ELM algorithm, the ML-ELM algorithm and the PLS-ML-ELM algorithm, the simulation results demonstrate that the data-driven prediction model based on the EPLS-ML-ELM algorithm has better prediction accuracy and generalization performance.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
SoftTarget Regularization: An Effective Technique to Reduce Over-Fitting in Neural Networks Deep neural networks are learning models with a very high capacity and therefore prone to over- fitting. Many regularization techniques such as Dropout, DropConnect, and weight decay all attempt to solve the problem of over-fitting by reducing the capacity of their respective models (Srivastava et al., 2014), (Wan et al., 2013), (Krogh & Hertz, 1992). In this paper we introduce a new form of regularization that guides the learning problem in a way that reduces over- fitting without sacrificing the capacity of the model. The mistakes that models make in early stages of training carry information about the learning problem. By adjusting the labels of the current epoch of training through a weighted average of the real labels, and an exponential average of the past soft-targets we achieved a regularization scheme as powerful as Dropout without necessarily reducing the capacity of the model, and simplified the complexity of the learning problem. SoftTarget regularization proved to be an effective tool in various neural network architectures.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
A fresh look at the reliability of long-term digital storage Emerging Web services, such as email, photo sharing, and web site archives, must preserve large volumes of quickly accessible data indefinitely into the future. The costs of doing so often determine whether the service is economically viable. We make the case that these applications' demands on large scale storage systems over long time horizons require us to reevaluate traditional system designs. We examine threats to long-lived data from an end-to-end perspective, taking into account not just hardware and software faults but also faults due to humans and organizations. We present a simple model of long-term storage failures that helps us reason about various strategies for addressing some of these threats. Using this model we show that the most important strategies for increasing the reliability of long-term storage are detecting latent faults quickly, automating fault repair to make it cheaper and faster, and increasing the independence of data replicas.
Bit Preservation: A Solved Problem?
Preserving peer replicas by rate-limited sampled voting The LOCKSS project has developed and deployed in a world-wide test a peer-to-peer system for preserving access to journals and other archival information published on the Web. It consists of a large number of independent, low-cost, persistent web caches that cooperate to detect and repair damage to their content by voting in "opinion polls." Based on this experience, we present a design for and simulations of a novel protocol for voting in systems of this kind. It incorporates rate limitation and intrusion detection to ensure that even some very powerful adversaries attacking over many years have only a small probability of causing irrecoverable damage before being detected.
Dynamically Quantifying and Improving the Reliability of Distributed Storage Systems In this paper, we argue that the reliability of large-scale storage systems can be significantly improved by using better reliability metrics and more efficient policies for recovering from hardware failures. Specifically, we make three main contributions. First, we introduce NDS (Normalcy Deviation Score), a new metric for dynamically quantifying the reliability status of a storage system. Second, we propose MinI (Minimum Intersection), a novel recovery scheduling policy that improves reliability by efficiently reconstructing data after a hardware failure. MinI uses NDS to tradeoff reliability and performance in making its scheduling decisions. Third, we evaluate NDS and MinI for three common data-allocation schemes and a number of different parameters. Our evaluation focuses on a distributed storage system based on erasure codes. We find that MinI improves reliability significantly, as compared to conventional policies.
Keeping Bits Safe: How Hard Can It Be? As storage systems grow larger and larger, protecting their data for long-term storage is becoming more and more challenging.
Understanding disk failure rates: What does an MTTF of 1,000,000 hours mean to you? Component failure in large-scale IT installations is becoming an ever-larger problem as the number of components in a single cluster approaches a million. This article is an extension of our previous study on disk failures [Schroeder and Gibson 2007] and presents and analyzes field-gathered disk replacement data from a number of large production systems, including high-performance computing sites and internet services sites. More than 110,000 disks are covered by this data, some for an entire lifetime of five years. The data includes drives with SCSI and FC, as well as SATA interfaces. The mean time-to-failure (MTTF) of those drives, as specified in their datasheets, ranges from 1,000,000 to 1,500,000 hours, suggesting a nominal annual failure rate of at most 0.88&percnt;. We find that in the field, annual disk replacement rates typically exceed 1&percnt;, with 2--4&percnt; common and up to 13&percnt; observed on some systems. This suggests that field replacement is a fairly different process than one might predict based on datasheet MTTF. We also find evidence, based on records of disk replacements in the field, that failure rate is not constant with age, and that rather than a significant infant mortality effect, we see a significant early onset of wear-out degradation. In other words, the replacement rates in our data grew constantly with age, an effect often assumed not to set in until after a nominal lifetime of 5 years. Interestingly, we observe little difference in replacement rates between SCSI, FC, and SATA drives, potentially an indication that disk-independent factors such as operating conditions affect replacement rates more than component-specific ones. On the other hand, we see only one instance of a customer rejecting an entire population of disks as a bad batch, in this case because of media error rates, and this instance involved SATA disks. Time between replacement, a proxy for time between failure, is not well modeled by an exponential distribution and exhibits significant levels of correlation, including autocorrelation and long-range dependence.
Reliability analysis of deduplicated and erasure-coded storage Space efficiency and data reliability are two primary concerns for modern storage systems. Chunk-based deduplication, which breaks up data objects into single-instance chunks that can be shared across objects, is an effective method for saving storage space. However, deduplication affects data reliability because an object's constituent chunks are often spread across a large number of disks, potentially decreasing the object's reliability. Therefore, an important problem in deduplicated storage is how to achieve space efficiency yet maintain each object's original reliability. In this paper, we present initial results on the reliability analysis of HP-KVS, a deduplicated key-value store that allows each object to specify its own reliability level and that uses software erasure coding for data reliability. The combination of deduplication and erasure coding gives rise to several interesting research problems. We show how to compare the reliability of erasure codes with different parameters and how to analyze the reliability of a big data object given its constituent parts' reliabilities. We also present a method for system designers to determine under what conditions deduplication will save space for erasure-coded data.
RAIDShield: characterizing, monitoring, and proactively protecting against disk failures Modern storage systems orchestrate a group of disks to achieve their performance and reliability goals. Even though such systems are designed to withstand the failure of individual disks, failure of multiple disks poses a unique set of challenges. We empirically investigate disk failure data from a large number of production systems, specifically focusing on the impact of disk failures on RAID storage systems. Our data covers about one million SATA disks from 6 disk models for periods up to 5 years. We show how observed disk failures weaken the protection provided by RAID. The count of reallocated sectors correlates strongly with impending failures. With these findings we designed RAIDSHIELD, which consists of two components. First, we have built and evaluated an active defense mechanism that monitors the health of each disk and replaces those that are predicted to fail imminently. This proactive protection has been incorporated into our product and is observed to eliminate 88% of triple disk errors, which are 80% of all RAID failures. Second, we have designed and simulated a method of using the joint failure probability to quantify and predict how likely a RAID group is to face multiple simultaneous disk failures, which can identify disks that collectively represent a risk of failure even when no individual disk is flagged in isolation. We find in simulation that RAID-level analysis can effectively identify most vulnerable RAID-6 systems, improving the coverage to 98% of triple errors.
An analytic performance model of disk arrays As disk arrays become widely used, tools for understanding and analyzing their performance become increasingly important. In particular, performance models can be invaluable in both configuring and designing disk arrays. Accurate analytic performance models are preferable to other types of models because they can be quickly evaluated, are applicable under a wide range of system and workload parameters, and can be manipulated by a range of mathematical techniques. Unfortunately, analytic performance models of disk arrays are difficult to formulate due to the presence of queueing and fork-join synchronization; a disk array request is broken up into independent disk requests which must all complete to satisfy the original request. In this paper, we develop and validate an analytic performance model for disk arrays. We derive simple equations for approximating their utilization, response time and throughput. We validate the analytic model via simulation, investigate the error introduced by each approximation used in deriving the analytic model, and examine the validity of some of the conclusions that can be drawn from the model.
Fault tolerant design of multimedia servers Recent technological advances have made multimedia on-demand servers feasible. Two challenging tasks in such systems are: a) satisfying the real-time requirement for continuous delivery of objects at specified bandwidths and b) efficiently servicing multiple clients simultaneously. To accomplish these tasks and realize economies of scale associated with servicing a large user population, the multimedia server can require a large disk subsystem. Although a single disk is fairly reliable, a large disk farm can have an unacceptably high probability of disk failure. Further, due to the real-time constraint, the reliability and availability requirements of multimedia systems are very stringent. In this paper we investigate techniques for providing a high degree of reliability and availability, at low disk storage, bandwidth, and memory costs for on-demand multimedia servers.
Optimal Read-Once Parallel Disk Scheduling An optimal prefetching and I/O scheduling algorithm L-OPT, for parallel I/O systems, using a read-once model of block references is presented. The algorithm uses knowledge of the next $L$ references, $L$-block lookahead, to create a minimal-length I/O schedule. For a system with $D$ disks and a buffer of capacity $m$ blocks, we show that the competitive ratio of L-OPT is $\Theta(\sqrt{mD/L})$ when $L \geq m$, which matches the lower bound of any prefetching algorithm with $L$-block lookahead. Tight bounds for the remaining ranges of lookahead are also presented. In addition we show that L-OPT is the optimal offline algorithm: when the lookahead consists of the entire reference string, it performs the absolute minimum possible number of I/Os. Finally, we show that L-OPT is comparable with the best online algorithm with the same amount of lookahead; the ratio of the length of its schedule to the length of the optimal schedule is always within a constant factor.
The Logistical Backbone: Scalable Infrastructure for Global Data Grids Logistical Networking can be defined as the global optimisation and scheduling of data storage, data movement, and computation. It is a technology for shared network storage that allows an easy scaling in terms of the size of the user community, the aggregate quantity of storage that can be allocated, and the distribution breadth of service nodes across network borders.After describing the base concepts of Logistical Networking, we will introduce the Internet Backplane Protocol, a middleware for managing and using remote storage through allocation of primitive "byte arrays", showing a semantic in between buffer block and common files. As this characteristic can be too limiting for a large number of applications, we developed the exNode, that can be defined, in two words, as an inode for the for network distributed files. We will introduce then the Logistical Backbone, or L-Bone, is a distributed set of facilities that aim to provide high-performance, location- and application-independent access to storage for network and Grid applications of all kind.
MIND: A black-box energy consumption model for disk arrays Energy consumption is becoming a growing concern in data centers. Many energy-conservation techniques have been proposed to address this problem. However, an integrated method is still needed to evaluate energy efficiency of storage systems and various power conservation techniques. Extensive measurements of different workloads on storage systems are often very time-consuming and require expensive equipments. We have analyzed changing characteristics such as power and performance of stand-alone disks and RAID arrays, and then defined MIND as a black box power model for RAID arrays. MIND is devised to quantitatively measure the power consumption of redundant disk arrays running different workloads in a variety of execution modes. In MIND, we define five modes (idle, standby, and several types of access) and four actions, to precisely characterize power states and changes of RAID arrays. In addition, we develop corresponding metrics for each mode and action, and then integrate the model and a measurement algorithm into a popular trace tool - blktrace. With these features, we are able to run different IO traces on large-scale storage systems with power conservation techniques. Accurate energy consumption and performance statistics are then collected to evaluate energy efficiency of storage system designs and power conservation techniques. Our experiments running both synthetic and real-world workloads on enterprise RAID arrays show that MIND can estimate power consumptions of disk arrays with an error rate less than 2%.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.016749
0.025684
0.013291
0.013138
0.010526
0.004377
0.002105
0.000351
0.000027
0.000004
0
0
0
0
Many-layered learning. We explore incremental assimilation of new knowledge by sequential learning. Of particular interest is how a network of many knowledge layers can be constructed in an on-line manner, such that the learned units represent building blocks of knowledge that serve to compress the overall representation and facilitate transfer. We motivate the need for many layers of knowledge, and we advocate sequential learning as an avenue for promoting the construction of layered knowledge structures. Finally, our novel STL algorithm demonstrates a method for simultaneously acquiring and organizing a collection of concepts and functions as a network from a stream of unstructured information.
Nonlinear autoassociation is not equivalent to PCA. A common misperception within the neural network community is that even with nonlinearities in their hidden layer, autoassociators trained with backpropagation are equivalent to linear methods such as principal component analysis (PCA). Our purpose is to demonstrate that nonlinear autoassociators actually behave differently from linear methods and that they can outperform these methods when used for latent extraction, projection, and classification. While linear autoassociators emulate PCA, and thus exhibit a flat or unimodal reconstruction error surface, autoassociators with nonlinearities in their hidden layer learn domains by building error reconstruction surfaces that, depending on the task, contain multiple local valleys. This interpolation bias allows nonlinear autoassociators to represent appropriate classifications of nonlinear multimodal domains, in contrast to linear autoassociators, which are inappropriate for such tasks. In fact, autoassociators with hidden unit nonlinearities can be shown to perform nonlinear classification and nonlinear recognition.
Convex Neural Networks Convexity has recently received a lot of attention in the machine learning community, and the lack of convexity has been seen as a major disad- vantage of many learning algorithms, such as multi-layer artificial neural networks. We show that training multi-layer neural networks in which the number of hidden units is learned can be viewed as a convex optimization problem. This problem involves an infinite number of variables, but can be solved by incrementally inserting a hidden unit at a time, each time finding a linear classifier that minimizes a weighted sum of errors.
An Information Measure For Classification
Training connectionist models for the structured language model We investigate the performance of the Structured Language Model (SLM) in terms of perplexity (PPL) when its components are modeled by connectionist models. The connectionist models use a distributed representation of the items in the history and make much better use of contexts than currently used interpolated or back-off models, not only because of the inherent capability of the connectionist model in fighting the data sparseness problem, but also because of the sublinear growth in the model size when the context length is increased. The connectionist models can be further trained by an EM procedure, similar to the previously used procedure for training the SLM. Our experiments show that the connectionist models can significantly improve the PPL over the interpolated and back-off models on the UPENN Treebank corpora, after interpolating with a baseline trigram language model. The EM training procedure can improve the connectionist models further, by using hidden events obtained by the SLM parser.
Nonlocal estimation of manifold structure. We claim and present arguments to the effect that a large class of manifold learning algorithms that are essentially local and can be framed as kernel learning algorithms will suffer from the curse of dimensionality, at the dimension of the true underlying manifold. This observation invites an exploration of nonlocal manifold learning algorithms that attempt to discover shared structure in the tangent planes at different positions. A training criterion for such an algorithm is proposed, and experiments estimating a tangent plane prediction function are presented, showing its advantages with respect to local manifold learning algorithms: it is able to generalize very far from training data (on learning handwritten character image rotations), where local nonparametric methods fail.
A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images We describe an unsupervised learning algorithm for ex- tracting sparse and locally shift-invariant features. We also devise a principled procedure for learning hierarchies of in- variant features. Each feature detector is composed of a set of trainable convolutional filters followed by a max-pooling layer over non-overlapping windows, and a point-wise sig- moid non-linearity. A second stage of more invariant fea- tures is fed with patches provided by the first stage feature extractor, and is trained in the same way. The method is used to pre-train the first four layers of a deep convolutional network which achieves state-of-the-art performance on the MNIST dataset of handwritten digits. The final testing error rate is equal to 0.42%. Preliminary experiments on com- pression of bitonal document images show very promising results in terms of compression ratio and reconstruction er- ror.
Modeling image patches with a directed hierarchy of Markov random fields We describe an efficient learning procedure for multilayer g enerative models that combine the best aspects of Markov random fields and deep, dir ected belief nets. The generative models can be learned one layer at a time and when learning is complete they have a very fast inference procedure for computing a good approx- imation to the posterior distribution in all of the hidden la yers. Each hidden layer has its own MRF whose energy function is modulated by the top-down directed connections from the layer above. To generate from the model, each layer in turn must settle to equilibrium given its top-down input. We show that this type of model is good at capturing the statistics of patches of natur al images.
DeepFace: Closing the Gap to Human-Level Performance in Face Verification In modern face recognition, the conventional pipeline consists of four stages: detect => align => represent => classify. We revisit both the alignment step and the representation step by employing explicit 3D face modeling in order to apply a piecewise affine transformation, and derive a face representation from a nine-layer deep neural network. This deep network involves more than 120 million parameters using several locally connected layers without weight sharing, rather than the standard convolutional layers. Thus we trained it on the largest facial dataset to-date, an identity labeled dataset of four million facial images belonging to more than 4, 000 identities. The learned representations coupling the accurate model-based alignment with the large facial database generalize remarkably well to faces in unconstrained environments, even with a simple classifier. Our method reaches an accuracy of 97.35% on the Labeled Faces in the Wild (LFW) dataset, reducing the error of the current state of the art by more than 27%, closely approaching human-level performance.
Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription. We investigate the problem of modeling symbolic sequences of polyphonic music in a completely general piano-roll representation. We introduce a probabilistic model based on distribution estimators conditioned on a recurrent neural network that is able to discover temporal dependencies in high-dimensional sequences. Our approach outperforms many traditional models of polyphonic music on a variety of realistic datasets. We show how our musical language model can serve as a symbolic prior to improve the accuracy of polyphonic transcription.
Gaussian-binary Restricted Boltzmann Machines on Modeling Natural Image Statistics. We present a theoretical analysis of Gaussian-binary restricted Boltzmann machines (GRBMs) from the perspective of density models. The key aspect of this analysis is to show that GRBMs can be formulated as a constrained mixture of Gaussians, which gives a much better insight into the model's capabilities and limitations. We show that GRBMs are capable of learning meaningful features both in a two-dimensional blind source separation task and in modeling natural images. Further, we show that reported difficulties in training GRBMs are due to the failure of the training algorithm rather than the model itself. Based on our analysis we are able to propose several training recipes, which allowed successful and fast training in our experiments. Finally, we discuss the relationship of GRBMs to several modifications that have been proposed to improve the model.
Consistency of Clark's completion and existence of stable models.
A systematic approach to system state restoration during storage controller micro-recovery Micro-recovery, or failure recovery at a fine granularity, is a promising approach to improve the recovery time of software for modern storage systems. Instead of stalling the whole system during failure recovery, micro-recovery can facilitate recovery by a single thread while the system continues to run. A key challenge in performing micro-recovery is to be able to perform efficient and effective state restoration while accounting for dynamic dependencies between multiple threads in a highly concurrent environment. We present Log(Lock), a practical and flexible architecture for performing state restoration without re-architecting legacy code. We formally model thread dependencies based on accesses to both shared state and resources. The Log(Lock) execution model tracks dependencies at runtime and captures the failure context through the restoration level. We develop restoration protocols based on recovery points and restoration levels that identify when micro-recovery is possible and the recovery actions that need to be performed for a given failure context. We have implemented Log(Lock) in a real enterprise storage controller. Our experimental evaluation shows that Log(Lock)-enabled micro-recovery is efficient. It imposes
Editorial introduction to the Neural Networks special issue on Deep Learning of Representations.
1.022467
0.016704
0.016701
0.016683
0.016683
0.008359
0.008342
0.002652
0.000468
0.000014
0.000001
0
0
0
The Taming of the (X)OR Many key verification problems such as boundedmodel-checking, circuit verification and logical cryptanalysis are formalized with combined clausal and affine logic (i.e. clauses with xor as the connective) and cannot be efficiently (if at all) solved by using CNF-only provers. We present a decision procedure to efficiently decide such problems. The Gauss-DPLL procedure is a tight integration in a unifying framework of a Gauss-Elimination procedure (for affine logic) and a Davis-Putnam-Logeman-Loveland procedure (for usual clause logic). The key idea, which distinguishes our approach from others, is the full interaction bewteen the two parts which makes it possible to maximize (deterministic) simplification rules by passing around newly created unit or binary clauses in either of these parts. We show the correcteness and the termination of Gauss-DPLL under very liberal assumptions.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Exploring Gate-Limited Analytical Models for High Performance Network Storage Servers
Parameterized complexity for the database theorist
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Tracking human-like natural motion by combining two deep recurrent neural networks with Kalman filter. The Kinect skeleton tracker can achieve considerable performance with human body tracking in a convenient and low-cost manner. However, the tracker often captures unnatural human poses, such as discontinuous and vibrational movement when self-occlusions occur. In this study, we propose an advanced post-processing method to improve the Kinect skeleton using a single Kinect sensor, in which a combination of probabilistic filtering techniques and supervised learning techniques is employed to correct unnatural tracking movements. Specifically, two deep recurrent neural networks are used to improve joint velocities, as well as joint positions produced by the Kinect skeleton tracker. Moreover, a classic Kalman filter further refines positions and velocities. In addition, we propose a novel measure to evaluate the naturalness of captured joint trajectories. We evaluated the proposed approach by comparing it to ground truth obtained using a commercial optical maker-based motion capture system.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
The Computational Complexity of Structure-Based Causality Halpern and Pearl introduced a definition of actual causality; Eiter and Lukasiewicz showed that computing whether X = x is a cause of Y = y is NP-complete in binary models (where all variables can take on only two values) and Sigma(P)(2)-complete in general models. In the final version of their paper, Halpern and Pearl slightly modified the definition of actual cause, in order to deal with problems pointed out by Hopkins and Pearl. As we show, this modification has a nontrivial impact on the complexity of computing whether (X) over right arrow = (x) over right arrow is a cause of Y = y. To characterize the complexity, a new family D (p)(k), k = 1; 2; 3,.., of complexity classes is introduced, which generalizes the class D-P introduced by Papadimitriou and Yannakakis (D-P is just D-1(p)). We show that the complexity of computing causality under the updated definition is D-2(P)-complete. Chockler and Halpern extended the definition of causality by introducing notions of responsibility and blame, and characterized the complexity of determining the degree of responsibility and blame using the original definition of causality. Here, we completely characterize the complexity using the updated definition of causality. In contrast to the results on causality, we show that moving to the updated definition does not result in a difference in the complexity of computing responsibility and blame.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Statistical models for partial membership We present a principled Bayesian framework for modeling partial memberships of data points to clusters. Unlike a standard mixture model which assumes that each data point belongs to one and only one mixture component, or cluster, a partial membership model allows data points to have fractional membership in multiple clusters. Algorithms which assign data points partial memberships to clusters can be useful for tasks such as clustering genes based on microarray data (Gasch & Eisen, 2002). Our Bayesian Partial Membership Model (BPM) uses exponential family distributions to model each cluster, and a product of these distibtutions, with weighted parameters, to model each datapoint. Here the weights correspond to the degree to which the datapoint belongs to each cluster. All parameters in the BPM are continuous, so we can use Hybrid Monte Carlo to perform inference and learning. We discuss relationships between the BPM and Latent Dirichlet Allocation, Mixed Membership models, Exponential Family PCA, and fuzzy clustering. Lastly, we show some experimental results and discuss nonparametric extensions to our model.
Rational Kernels: Theory and Algorithms Many classification algorithms were originally designed for fixed-size vectors. Recent applications in text and speech processing and computational biology require however the analysis of variable-length sequences and more generally weighted automata. An approach widely used in statistical learning techniques such as Support Vector Machines (SVMs) is that of kernel methods, due to their computational efficiency in high-dimensional feature spaces. We introduce a general family of kernels based on weighted transducers or rational relations, rational kernels , that extend kernel methods to the analysis of variable-length sequences or more generally weighted automata. We show that rational kernels can be computed efficiently using a general algorithm of composition of weighted transducers and a general single-source shortest-distance algorithm. Not all rational kernels are positive definite and symmetric (PDS), or equivalently verify the Mercer condition, a condition that guarantees the convergence of training for discriminant classification algorithms such as SVMs. We present several theoretical results related to PDS rational kernels. We show that under some general conditions these kernels are closed under sum, product, or Kleene-closure and give a general method for constructing a PDS rational kernel from an arbitrary transducer defined on some non-idempotent semirings. We give the proof of several characterization results that can be used to guide the design of PDS rational kernels. We also show that some commonly used string kernels or similarity measures such as the edit-distance, the convolution kernels of Haussler, and some string kernels used in the context of computational biology are specific instances of rational kernels. Our results include the proof that the edit-distance over a non-trivial alphabet is not negative definite, which, to the best of our knowledge, was never stated or proved before. Rational kernels can be combined with SVMs to form efficient and powerful techniques for a variety of classification tasks in text and speech processing, or computational biology. We describe examples of general families of PDS rational kernels that are useful in many of these applications and report the result of our experiments illustrating the use of rational kernels in several difficult large-vocabulary spoken-dialog classification tasks based on deployed spoken-dialog systems. Our results show that rational kernels are easy to design and implement and lead to substantial improvements of the classification accuracy.
An Information Measure For Classification
Self Supervised Boosting Boosting algorithms and successful applications thereof abound for clas- sification and regression learning problems, but not for unsupervised learning. We propose a sequential approach to adding features to a ran- dom field model by training them to improve classification performance between the data and an equal-sized sample of "negative examples" gen- erated from the model's current estimate of the data density. Training in each boosting round proceeds in three stages: first we sample negative examples from the model's current Boltzmann distribution. Next, a fea- ture is trained to improve classification performance between data and negative examples. Finally, a coefficient is learned which determines the importance of this feature relative to ones already in the pool. Negative examples only need to be generated once to learn each new feature. The validity of the approach is demonstrated on binary digits and continuous synthetic data.
Global Continuation for Distance Geometry Problems Distance geometry problems arise in the determination of protein structure. We consider the case where only a subset of the distances between atoms is given and formulate this distance geometry problem as a global minimization problem with special structure. We show that global smoothing techniques and a continuation approach for global optimization can be used to determine global solutions of this problem reliably and efficiently. The global continuation approach determines a global solution with less computational effort than is required by a standard multistart algorithm. Moreover, the continuation approach usually finds the global solution from any given starting point, while the multistart algorithm tends to fail.
A Nonparametric Bayesian Approach to Modeling Overlapping Clusters Although clustering data into mutually ex- clusive partitions has been an extremely suc- cessful approach to unsupervised learning, there are many situations in which a richer model is needed to fully represent the data. This is the case in problems where data points actually simultaneously belong to mul- tiple, overlapping clusters. For example a particular gene may have several functions, therefore belonging to several distinct clus- ters of genes, and a biologist may want to discover these through unsupervised model- ing of gene expression data. We present a new nonparametric Bayesian method, the In- finite Overlapping Mixture Model (IOMM), for modeling overlapping clusters. The IOMM uses exponential family distributions to model each cluster and forms an over- lapping mixture by taking products of such distributions, much like products of experts (Hinton, 2002). The IOMM allows an un- bounded number of clusters, and assignments of points to (multiple) clusters is modeled us- ing an Indian Buet Process (IBP), (Griths and Ghahramani, 2006). The IOMM has the desirable properties of being able to focus in on overlapping regions while maintaining the ability to model a potentially infinite num- ber of clusters which may overlap. We derive MCMC inference algorithms for the IOMM and show that these can be used to cluster movies into multiple genres.
Input space versus feature space in kernel-based methods. This paper collects some ideas targeted at advancing our understanding of the feature spaces associated with support vector (SV) kernel functions. We first discuss the geometry of feature space. In particular, we review what is known about the shape of the image of input space under the feature space map, and how this influences the capacity of SV methods. Following this, we describe how the metric governing the intrinsic geometry of the mapped surface can be computed in terms of the kernel, using the example of the class of inhomogeneous polynomial kernels, which are often used in SV pattern recognition. We then discuss the connection between feature space and input space by dealing with the question of how one can, given some vector in feature space, find a preimage (exact or approximate) in input space. We describe algorithms to tackle this issue, and show their utility in two applications of kernel methods. First, we use it to reduce the computational complexity of SV decision functions; second, we combine it with the Kernel PCA algorithm, thereby constructing a nonlinear statistical denoising technique which is shown to perform well on real-world data.
Principled Hybrids of Generative and Discriminative Models When labelled training data is plentiful, discriminative techniques are widely used since they give excellent generalization performance. However, for large-scale applications such as object recognition, hand labelling of data is expensive, and there is much interest in semi-supervised techniques based on generative models in which the majority of the training data is unlabelled. Although the generalization performance of generative models can often be improved by 'training them discriminatively', they can then no longer make use of unlabelled data. In an attempt to gain the benefit of both generative and discriminative approaches, heuristic procedure have been proposed [2, 3] which interpolate between these two extremes by taking a convex combination of the generative and discriminative objective functions. In this paper we adopt a new perspective which says that there is only one correct way to train a given model, and that a 'discriminatively trained' generative model is fundamentally a new model [7]. From this viewpoint, generative and discriminative models correspond to specific choices for the prior over parameters. As well as giving a principled interpretation of 'discriminative training', this approach opens door to very general ways of interpolating between generative and discriminative extremes through alternative choices of prior. We illustrate this framework using both synthetic data and a practical example in the domain of multi-class object recognition. Our results show that, when the supply of labelled training data is limited, the optimum performance corresponds to a balance between the purely generative and the purely discriminative.
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations There has been much interest in unsupervised learning of hierarchical generative models such as deep belief networks. Scaling such models to full-sized, high-dimensional images remains a difficult problem. To address this problem, we present the convolutional deep belief network, a hierarchical generative model which scales to realistic image sizes. This model is translation-invariant and supports efficient bottom-up and top-down probabilistic inference. Key to our approach is probabilistic max-pooling, a novel technique which shrinks the representations of higher layers in a probabilistically sound way. Our experiments show that the algorithm learns useful high-level visual features, such as object parts, from unlabeled images of objects and natural scenes. We demonstrate excellent performance on several visual recognition tasks and show that our model can perform hierarchical (bottom-up and top-down) inference over full-sized images.
Instant Learning: Parallel Deep Neural Networks and Convolutional Bootstrapping Although deep neural networks (DNN) are able to scale with direct advances in computational power (e.g., memory and processing speed), they are not well suited to exploit the recent trends for parallel architectures. In particular, gradient descent is a sequential process and the resulting serial dependencies mean that DNN training cannot be parallelized effectively. Here, we show that a DNN may be replicated over a massive parallel architecture and used to provide a cumulative sampling of local solution space which results in rapid and robust learning. We introduce a complimentary convolutional bootstrapping approach that enhances performance of the parallel architecture further. Our parallelized convolutional bootstrapping DNN out-performs an identical fully-trained traditional DNN after only a single iteration of training.
Parallel networks that learn to pronounce English text Abstract. This paper describes NETtalk, a class of massively-parallel network systems that learn to convert English text to speech. The memory representations for pronunciations are learned by practice and are shared among many processing units. The performance of NETtalk has some similarities with observed human performance. (i) The learning follows a power law. (;i) The more words the network learns, the better it is at generalizing and correctly pronouncing new words, (iii) The performance of the network degrades very slowly as connections in the network are damaged: no single link or processing unit is essential. (iv) Relearning after damage is much faster than learning during the original training. (v) Distributed or spaced prac-tice is more effective for long-term retention than massed practice. Network models can be constructed that have the same perfor-mance and learning characteristics on a particular task, but differ completely at the levels of synaptic strengths and single-unit responses. However, hierarchical clustering techniques applied to NETtalk re-veal that these different networks have similar internal representations of letter-to-sound correspondences within groups of processing units. This suggests that invariant internal representations may be found in assemblies of neurons intermediate in size between highly localized and completely distributed representations.
Well founded semantics for logic programs with explicit negation . The aim of this paper is to provide asemantics for general logic programs (with negation bydefault) extended with explicit negation, subsumingwell founded semantics [22].The Well Founded semantics for extended logicprograms (WFSX) is expressible by a default theorysemantics we have devised [11]. This relationshipimproves the cross--fertilization between logic programsand default theories, since we generalize previousresults concerning their relationship [3, 4, 7, 1, 2],and there is...
Unbiased estimate of generalization error and model selection in neural network Model selection is based upon the generalization errors of the models in consideration. To estimate the generalization error of a model from the training data, the method of cross-validation and the asymptotic form of the jackknife estimator are used. The average of the predictive errors is used to estimate the generalization error. This estimate is also used as the model selection criterion. The asymptotic form of this estimate is obtained. Asymptotic model selection criterion is also provided for the case when the error function is the penalized negative log-likelihood. In the regression case, it also proves the asymptotic equivalence of Moody's model selection criterion and the cross-validation method under a condition on the error function.
Editorial introduction to the Neural Networks special issue on Deep Learning of Representations.
1.200023
0.200023
0.200023
0.200023
0.133355
0.100012
0.050016
0.020021
0.001168
0.000015
0.000004
0
0
0
Of Mechanism Design Multiagent Planning Multiagent planning methods are concerned with planning by and for a group of agents. If the agents are self-interested, they may be tempted to lie in order to obtain an outcome that is more rewarding for them. We therefore study the multiagent planning problem from a mechanism design perspective, showing how to incentivise agents to be truthful. We prove that the well-known truthful VCG mechanism is not always truthful in the context of optimal planning, and present a modification to fix this. Finally, we present some (domain-dependent) poly-time planning algorithms using this fix that maintain truthfulness in spite of their non-optimality.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
Parameterized complexity for the database theorist
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
The Logarithmic Alternation Hierarchy Collapses: A \sum^\calL_2=APi^\calL_2
On Restricting the Access to an NP-Oracle Polynomial time machines having restricted access to an NP oracle are investigated. Restricted access means that the number of queries to the oracle is restricted and/or the way in which the queries are made is restricted. Very different kinds of such restrictions result in the same or comparable complexity classes. In particular, the class PNP[O(log n)] can be characterized in very different ways.
On truth-table reducibility to SAT and the difference hierarchy over NP We show that polynomial time truth-table reducibility via Boolean circuits to SAT is the same as log space truth-table reducibility via Boolean formulas to SAT and the same as log space Turing reducibility to SAT. In addition, we prove that a constant number of rounds of parallel queries to SAT is equivalent to one round of parallel queries. Finally, we show that the inflnite difierence hierarchy over NP is equal to ?,<SUB>2 and give an oracle oracle separating ?,<SUB>2 from the class of predicates polynomial time truth-table reducible to SAT.
Bounded queries to SAT and the Boolean hierarchy We study the complexity of decision problems that can be solved by a polynomial-time Turing machine that makes a bounded number of queries to an NP oracle. Depending on whether we allow some queries to depend on the results of other queries, we obtain two (probably) different hierarchies. We present several results relating the bounded NP query hierarchies to each other and to the Boolean hierarchy. We also consider the similarly defined hierarchies of functions that can be computed by a polynomial-time Turing machine that makes a bounded number of queries to an NP oracle. We present relations among these two hierarchies and the Boolean hierarchy. In particular we show for all k that there are functions computable with 2 k parallel queries to an NP set that are not computable in polynomial time with k serial queries to any oracle, unless P = NP. As a corollary k + 1 parallel queries to an NP set allow us to compute more functions than are computable with only k parallel queries to an NP set, unless P = NP; the same is true of serial queries. Similar results hold for all tt-self-reducible sets. Using a “mind-change” technique, we show that 2 k - 1 parallel queries to an NP set allow us to accept in polynomial time exactly the same sets as can be accepted in polynomial time with k serial queries to an NP set. (In fact, the same is true for any class in place of NP that is closed under polynomial-time positive-bounded-truth-table reductions.) This contrasts with the expected result for function computations with an NP oracle (Beigel, 1988). In addition we show that the Boolean hierarchy and the bounded query hierarchies (of languages) either stand or collapse together. Finally we show that if the Boolean hierarchy collapses to any level but the zeroth (deterministic polynomial time), then for all k there are functions computable in polynomial time with k parallel queries to an NP set that are not computable in polynomial time with k - 1 serial queries to any set (NP-complete sets are p-superterse).
The Boolean hierarchy: hardware over NP In this paper, we study the complexity of sets formed by boolean operations $(\bigcup, \bigcap,$ and complementation) on NP sets. These are the sets accepted by trees of hardware with NP predicates as leaves, and together form the boolean hierarchy. We present many results about the boolean hierarchy: separation and immunity results, complete languages, upward separations, connections to sparse oracles for NP, and structural asymmetries between complementary classes. Some results present new ideas and techniques. Others put previous results about NP and $D^{P}$ in a richer perspective. Throughout, we emphasize the structure of the boolean hierarchy and its relations with more common classes.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Two remarks on the power of counting The relationship between the polynomial hierarchy and Valiant's class #P is at present unknown. We show that some low portions of the polynomial hierarchy, namely deterministic polynomial algorithms using an NP oracle at most a logarithmic number of times, can be simulated by one #P computation. We also show that the class of problems solvable by polynomial-time nondeterministic Turing machines which accept whenever there is an odd number of accepting computations is idempotent, that is, closed under usage of oracles from the same class.
A Downward Collapse within the Polynomial Hierarchy Downward collapse (also known as upward separation) refers to cases where the equality of two larger classes implies the equality of two smaller classes. We provide an unqualified downward collapse result completely within the polynomial hierarchy. In particular, we prove that, for k 2, if ${\rm P}^{\Sigma^p_k[1]} = {\rm P}^{\Sigma^p_k[2]}$ then $\Sigma^p_k = \Pi^p_k = {\rm PH}$. We extend this to obtain a more general downward collapse result.
Pushing Goal Derivation in DLP Computations dlv is a knowledge representation system, based on disjunctive logic programming, which offers front-ends to several advanced KR formalisms. This paper describes new techniques for the computation of answer sets of disjunctive logic programs, that have been developed and implemented in the dlv system. These techniques try to "push" the query goals in the process of model generation (query goals are often present either explicitly, like in planning and diagnosis, or implicitly in the form of integrity constraints). This way, a lot of useless models are discarded "a priori" and the computation converges rapidly toward the generation of the "right" answer set. A few preliminary benchmarks show dramatic efficiency gains due to the new techniques.
Representing actions: Laws, observations and hypotheses We propose a modificationL 1 of the action description languageA. The languageL 1 allows representation of hypothetical situations and hypothetical occurrence of actions (as inA) as well as representation of actual occurrences of actions and observations of the truth values of fluents in actual situations. The corresponding entailment relation formalizes various types of common-sense reasoning about actions and their effects not modeled by previous approaches. As an application of L1 we also present an architecture for intelligent agents capable of observing, planning and acting in a changing environment based on the entailment relation of L1 and use logic programming approximation of this entailment to implement a planning module for this architecture. We prove the soundness of our implementation and give a sufficient condition for its completeness.
The satanic notations: counting classes beyond #P and other definitional adventures We explore the potentially "off-by-one" nature of the definitions of counting (#P versus #NP), difference (DP versus DNP), and unambiguous (UP versus UNP; FewP versus FewNP) classes, and make suggestions as to logical approaches in each case. We discuss the strangely differing representations that oracle and predicate models give for counting classes, and we survey the properties of counting classes beyond #P. We ask whether subtracting a #P function from a P function it is no greater than necessarily yields a #P function.
Maximizing performance in a striped disk array Improvements in disk speeds have not kept up with improvements in processor and memory speeds. One way to correct the resulting speed mismatch is to stripe data across many disks. The authors address how to stripe data to get maximum performance from the disks. Specifically, they examine how to choose the striping unit, that is, the amount of logically contiguous data on each disk. Rules for determining the best striping unit for a given range of workloads are synthesized. It is shown how the choice of striping unit depends on only two parameters: (1) the number of outstanding requests in the disk system at any given time, and (2) the average positioning time×data transfer rate of the disks. The authors derive an equation for the optimal striping unit as a function of these two parameters; they also show how to choose the striping unit without prior knowledge about the workload
Beyond striping: the bridge multiprocessor file system High-performance parallel computers require high-performance file systems. Exotic I/O hardware will be of little use if file system software runs on a single processor of a many-processor machine. We believe that cost-effective I/O for large multiprocessors can best be obtained by spreading both data and file system computation over a large number of processors and disks. To assess the effectiveness of this approach, we have implemented a prototype system called Bridge, and have studied its performance on several data intensive applications, among them external sorting. A detailed analysis of our sorting algorithm indicates that Bridge can profitably be used on configurations in excess of one hundred processors with disks. Empirical results on a 32-processor implementation agree with the analysis, providing us with a high degree of confidence in this prediction. Based on our experience, we argue that file systems such as Bridge will satisfy the I/O needs of a wide range of parallel architectures and applications.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.204094
0.103254
0.018864
0.006864
0.004864
0.000657
0.000153
0.000064
0.000011
0.000001
0
0
0
0
Accuracy of admissible heuristic functions in selected planning domains The efficiency of optimal planning algorithms based on heuristic search crucially depends on the accuracy of the heuristic function used to guide the search. Often, we are interested in domain-independent heuristics for planning. In order to assess the limitations of domain-independent heuristic planning, we analyze the (in)accuracy of common domain-independent planning heuristics in the IPC benchmark domains. For a selection of these domains, we analytically investigate the accuracy of the h+ heuristic, the hm family of heuristics, and certain (additive) pattern database heuristics, compared to the perfect heuristic h*. Whereas h+and additive pattern database heuristics usually return cost estimates proportional to the true cost, non-additive hm and nonadditive pattern-database heuristics can yield results underestimating the true cost by arbitrarily large factors.
The Complexity of Optimal Monotonic Planning: The Bad, The Good, and The Causal Graph. For almost two decades, monotonic, or "delete free," relaxation has been one of the key auxiliary tools in the practice of domain-independent deterministic planning. In the particular contexts of both satisficing and optimal planning, it underlies most state-of-theart heuristic functions. While satisficing planning for monotonic tasks is polynomial-time, optimal planning for monotonic tasks is NP-equivalent. Here we establish both negative and positive results on the complexity of some wide fragments of optimal monotonic planning, with the fragments being defined around the causal graph topology. Our results shed some light on the link between the complexity of general optimal planning and the complexity of optimal planning for the respective monotonic relaxations.
Cost-Sharing Approximations for h Relaxations based on (either complete or partial) ignor- ing delete effects of the actions provide the basis for some seminal classical planning heuristics. However, the palette of the conceptual tools exploited by these heuristics remains rather limited. We study a framework for approximating the optimal cost solutions for prob- lems with no delete effects that bridges between cer- tain works on heuristic search for probabilistic reason- ing and classical planning. In particular, this framework generalizes some previously known, as well as suggests some novel, tools for heuristic estimates for Strips plan- ning.
Structural Patterns of Tractable Sequentially-Optimal Planning We study the complexity of sequentially-optimal clas- sical planning, and discover new problem classes for whose such optimization is tractable. The results are based on exploiting numerous structural characteristics of planning problems, and a constructive proof tech- nique that connects between certain tools from planning and tractable constraint optimization. In particular, we believe that structure-based tractability results of this kind may help devising new admissible search heuris- tics. We discuss the prospects of this direction along a principled extension of pattern-database heuristics to "structural patterns" of unlimited dimensionality.
On the Hardness of Planning Problems with Simple Causal Graphs We present three new complexity results for classes of plan- ning problems with simple causal graphs. First, we describe a polynomial time algorithm that uses macros to generate plans for a class of planning problems with binary state variables and acyclic causal graphs. This implies that plan generation may not be intractable just because a planning problem has exponential length solution. We also prove that the problem of plan existence for planning problems with multi-valued variables and chain causal graphs is NP-hard. Finally, we show that plan existence for planning problems with binary state variables and polytree causal graphs is NP-complete.
State-variable planning under structural restrictions: algorithms and complexity Computationally tractable planning problems reported in the literature sofar have almost exclusively been defined by syntactical restrictions. To betterexploit the inherent structure in problems, it is probably necessary to studyalso structural restrictions on the underlying state-transition graph. Theexponential size of this graph, though, makes such restrictions costly to test.Hence, we propose an intermediate approach, using a state variable modelfor planning and defining restrictions...
Planning over chain causal graphs for variables with domains of size 5 Is NP-hard Recently, considerable focus has been given to the problem of determining the boundary between tractable and intractable planning problems. In this paper, we study the complexity of planning in the class Cn of planning problems, characterized by unary operators and directed path causal graphs. Although this is one of the simplest forms of causal graphs a planning problem can have, we show that planning is intractable for Cn (unless P = NP), even if the domains of state variables have bounded size. In particular, we show that plan existence for Ckn is NP-hard for k ≥ 5 by reduction from CNF-SAT. Here, k denotes the upper bound on the size of the state variable domains. Our result reduces the complexity gap for the class Ckn to cases k = 3 and k = 4 only, since C2n is known to be tractable.
Limits for Compact Representation of Plans.
Expressive equivalence of planning formalisms A concept of expressive equivalence for planning formalisms based on polynomialtransformations is defined. It is argued that this definition is reasonable and usefulboth from a theoretical and from a practical perspective; if two languages areequivalent, then theoretical results carry over and, more practically, we can modelan application problem in one language and then easily use a planner for the otherlanguage. In order to cope with the problem of exponentially sized solutions for...
Minimal unsatisfiable formulas with bounded clause-variable difference are fixed-parameter tractable Recognition of minimal unsatisfiable CNF formulas (unsatisfiable CNF formulas which become satisfiable if any clause is removed) is a classical Dp-complete problem. It was shown recently that minimal unsatisfiable formulas with n variables and n + k clauses can be recognized in time nO(k). We improve this result and present an algorithm with time complexity O(2kn4); hence the problem turns out to be fixed-parameter tractable (FTP) in the sense of Downey and Fellows (Parameterized Complexity, 1999).Our algorithm gives rise to a fixed-parameter tractable parameterization of the satisfiability problem: If for a given set of clauses F, the number of clauses in each of its subsets exceeds the number of variables occurring in the subset at most by k, then we can decide in time O(2kn3) whether F is satisfiable; k is called the maximum deficiency of F and can be efficiently computed by means of graph matching algorithms. Known parameters for fixed-parameter tractable satisfiability decision are tree-width or related to tree-width. Tree-width and maximum deficiency are incomparable in the sense that we can find formulas with constant maximum deficiency and arbitrarily high tree-width, and formulas where the converse prevails.
Declustering using error correcting codes The problem examined is to distribute a binary Cartesian product file on multiple disks to maximize the parallelism for partial match queries. Cartesian product files appear as a result of some secondary key access methods, such as the multiattribute hashing [10], the grid file [6] etc.. For the binary case, the problem is reduced into grouping the 2n binary strings on n bits in m groups of unsimilar strings. The main idea proposed in this paper is to group the strings such that the group forms an Error Correcting Code (ECC). This construction guarantees that the strings of a given group will have large Hamming distances, i.e., they will differ in many bit positions. Intuitively, this should result into good declustering. We briefly mention previous heuristics for declustering, we describe how exactly to build a declustering scheme using an ECC, and we prove a theorem that gives a necessary condition for our method to be optimal. Analytical results show that our method is superior to older heuristics, and that it is very close to the theoretical (non-tight) bound.
Recursive distributed representations A long-standing difficulty for connectionist modeling has been how to represent variable-sized recursive data structures, such as trees and lists, in fixed-width patterns. This paper presents a connectionist architecture which automatically develops compact distributed representations for such compositional structures, as well as efficient access- ing mechanisms for them. Patterns which stand for the internal nodes of fixed-valence trees are devised through the recursive use of back-propagation on three-layer auto- associative encoder networks. The resulting representations are novel, in that they com- bine apparently immiscible aspects of features, pointers, and symbol structures. They form a bridge between the data structures necessary for high-level cognitive tasks and the associative, pattern recognition machinery provided by neural networks.
Time-Driven Orphan Elimination
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.023155
0.021818
0.018635
0.016425
0.009277
0.005925
0.003038
0.000571
0.000114
0.000008
0
0
0
0
Learning and Selecting Features Jointly with Point-wise Gated Boltzmann Machines. Unsupervised feature learning has emerged as a promising tool in learning representations from unlabeled data. However, it is still challenging to learn useful high-level features when the data contains a significant amount of irrelevant patterns. Although feature selection can be used for such complex data, it may fail when we have to build a learning system from scratch (i.e., starting from the lack of useful raw features). To address this problem, we propose a point-wise gated Boltzmann machine, a unified generative model that combines feature learning and feature selection. Our model performs not only feature selection on learned high-level features (i.e., hidden units), but also dynamic feature selection on raw features (i.e., visible units) through a gating mechanism. For each example, the model can adaptively focus on a variable subset of visible nodes corresponding to the task-relevant patterns, while ignoring the visible units corresponding to the task-irrelevant patterns. In experiments, our method achieves improved performance over state-of-the-art in several visual recognition benchmarks.
Enhancing performance of restricted Boltzmann machines via log-sum regularization. Restricted Boltzmann machines (RBMs) are often used as building blocks to construct a deep belief network. By optimizing several RBMs, the deep networks can be trained quickly to achieve good performance on the tasks of interest. To further improve the performance of data representation, many researches focus on incorporating sparsity into RBMs. In this paper, we propose a novel sparse RBM model, referred to as LogSumRBM. Instead of constraining the expected activation of every hidden unit to the same low level of sparsity as done in [27], we explicitly encourage the hidden units to be sparse through adding a log-sum norm constraint on the totality of the hidden units’ activation probabilities. In this approach, we do not need to keep the “firing rate” of each hidden unit at a certain level that is set beforehand, and therefore the level of sparsity corresponding to each hidden unit can be automatically learnt based on the task at hand. Some experiments conducted on several image data sets of different scales show that LogSumRBM learns sparser and more discriminative representations compared with the related state-of-the-art models, and stacking two LogSumRBMs learns more significant features which mimic computations in the cortical hierarchy. Meanwhile, LogSumRBM can also be used to pre-train deep networks, and achieve better classification performance.
DeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection. In this paper, we propose multi-stage and deformable deep convolutional neural networks for object detection. This new deep learning object detection diagram has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. With the proposed multi-stage training strategy, multiple classifiers are jointly optimized to process samples at different difficulty levels. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of modeling averaging. The proposed approach ranked \#2 in ILSVRC 2014. It improves the mean averaged precision obtained by RCNN, which is the state-of-the-art of object detection, from $31\%$ to $45\%$. Detailed component-wise analysis is also provided through extensive experimental evaluation.
On Autoencoders and Score Matching for Energy Based Models.
Better Mixing via Deep Representations It has previously been hypothesized, and supported with some experimental evidence, that deeper representations, when well trained, tend to do a better job at disentangling the underlying factors of variation. We study the following related conjecture: better representations, in the sense of better disentangling, can be exploited to produce faster-mixing Markov chains. Consequently, mixing would be more efficient at higher levels of representation. To better understand why and how this is happening, we propose a secondary conjecture: the higher-level samples fill more uniformly the space they occupy and the high-density manifolds tend to unfold when represented at higher levels. The paper discusses these hypotheses and tests them experimentally through visualization and measurements of mixing and interpolating between samples.
Contractive Auto-Encoders: Explicit Invariance During Feature Extraction.
Efficient Learning of Sparse Representations with an Energy-Based Model We describe a novel unsupervised method for learning sparse, overcomplete fea- tures. The model uses a linear encoder, and a linear decoder preceded by a spar- sifying non-linearity that turns a code vector into a quasi- binary sparse code vec- tor. Given an input, the optimal code minimizes the distance between the output of the decoder and the input patch while being as similar as possible to the en- coder output. Learning proceeds in a two-phase EM-like fashion: (1) compute the minimum-energy code vector, (2) adjust the parameters of the encoder and de- coder so as to decrease the energy. The model produces "stroke detectors" when trained on handwritten numerals, and Gabor-like filters whe n trained on natural image patches. Inference and learning are very fast, requiring no preprocessing, and no expensive sampling. Using the proposed unsupervised method to initialize the first layer of a convolutional network, we achieved an err or rate slightly lower than the best reported result on the MNIST dataset. Finally, an extension of the method is described to learn topographical filter maps.
How to Construct Deep Recurrent Neural Networks. In this paper, we explore different ways to extend a recurrent neural network (RNN) to a \textit{deep} RNN. We start by arguing that the concept of depth in an RNN is not as clear as it is in feedforward neural networks. By carefully analyzing and understanding the architecture of an RNN, however, we find three points of an RNN which may be made deeper; (1) input-to-hidden function, (2) hidden-to-hidden transition and (3) hidden-to-output function. Based on this observation, we propose two novel architectures of a deep RNN which are orthogonal to an earlier attempt of stacking multiple recurrent layers to build a deep RNN (Schmidhuber, 1992; El Hihi and Bengio, 1996). We provide an alternative interpretation of these deep RNNs using a novel framework based on neural operators. The proposed deep RNNs are empirically evaluated on the tasks of polyphonic music prediction and language modeling. The experimental result supports our claim that the proposed deep RNNs benefit from the depth and outperform the conventional, shallow RNNs.
Analyzing Drum Patterns Using Conditional Deep Belief Networks.
Energy-based models for sparse overcomplete representations We present a new way of extending independent components analysis(ICA) to overcomplete representations. In contrast to the causalgenerative extensions of ICA which maintain marginal independenceof sources, we define features as deterministic(linear) functions of the inputs. This assumption results inmarginal dependencies among the features, but conditionalindependence of the features given the inputs. By assigningenergies to the features a probability distribution over the inputstates is defined through the Boltzmann distribution. Freeparameters of this model are trained using the contrastivedivergence objective (Hinton, 2002). When the number of features isequal to the number of input dimensions this energy-based modelreduces to noiseless ICA and we show experimentally that theproposed learning algorithm is able to perform blind sourceseparation on speech data. In additional experiments we trainovercomplete energy-based models to extract features from variousstandard data-sets containing speech, natural images, hand-writtendigits and faces.
Reasoning About Time in the Situation Calculus We extend the ontology of the situation calculus to provide for the representation of time and event occurrences. We do this by defining a time line corresponding to a sequence of situations (calledactual situations) beginning with the initial situation. Actual situations are totally ordered and the actions that lead to different actual situations are said to haveoccurred. This extension to the situation calculus permits one to express truths about the state of the world at different times. For example, we can state that at some point in the future certain fluents will be true. We can also express constraints on the occurrences of events, for example, that after releasing a cup, it will eventually hit the floor. Our version of the situation calculus subsumes other temporal logics. In particular, we show that the modaltemporal logic of concurrency [4] can be embedded in the extended situation calculus. Our extension can also realize the essential features of other first-order proposals for reasoning about time commonly used for AI purposes (e.g. Allen [1], Kowalski and Sergot [6]).
Analysis of disk arm movement for large sequential reads The common model for analyzing seek distances on a magnetic disk uses a continuous approximation in which the range of motion of the disk arm is the interval [0,1]. In this model, both the current location of the disk arm and the location of the next request are assumed to be points uniformly distributed on the interval [0,1] and therefore the expected seek distance to service the next request is 1/3. In many types of databases including scientific, object oriented, and multimedia database systems, a disk service request may involve fetching very large objects which must be transferred from the disk without interruption. In this paper we show that the common model does not accurately reflect disk arm movement in such cases as both the assumption of uniformity and the range of motion of the disk arm may depend on the size of the objects. We propose a more accurate model that takes into consideration the distribution of the sizes of the objects fetched as well as the disk arm scheduling policy. We provide closed form expressions for the expected seek distance in this model under various assumptions on the distribution of object sizes and the capability of the disk arm to read in both directions and to correct its position before the next read is performed.
Design And Implementation Of An Fpga-Based Core For Gapped Blast Sequence Alignment With The Two-Hit Method This paper presents the design and implementation of the first FPGA-based core for Gapped BLAST sequence alignment with the two-hit method, ever reported in the literature. Gapped BLAST with two hit is a heuristic biological sequence alignment algorithm which is very widely used in the Bioinformatics and Computational Biology world. The architecture of the core is parameterized in terms of sequence lengths, match scores, gap penalties and cut-off, and threshold values. It is composed of various blocks each of which performs one step of the algorithm in parallel. This results in high performance and efficient FPGA implementations, which easily outperform equivalent software implementations by one order of magnitude or more. Furthermore, the core was captured in an FPGA-platform-independent language, namely the Handel-C language, to which no specific resource inference or placement constraints were applied. Hence, the core can be ported to different FPGA families and architectures.
Secure the Cloud: From the Perspective of a Service-Oriented Organization In response to the revival of virtualized technology by Rosenblum and Garfinkel [2005], NIST defined cloud computing, a new paradigm in service computing infrastructures. In cloud environments, the basic security mechanism is ingrained in virtualization—that is, the execution of instructions at different privilege levels. Despite its obvious benefits, the caveat is that a crashed virtual machine (VM) is much harder to recover than a crashed workstation. When crashed, a VM is nothing but a giant corrupt binary file and quite unrecoverable by standard disk-based forensics. Therefore, VM crashes should be avoided at all costs. Security is one of the major contributors to such VM crashes. This includes compromising the hypervisor, cloud storage, images of VMs used infrequently, and remote cloud client used by the customer as well as threat from malicious insiders. Although using secure infrastructures such as private clouds alleviate several of these security problems, most cloud users end up using cheaper options such as third-party infrastructures (i.e., private clouds), thus a thorough discussion of all known security issues is pertinent. Hence, in this article, we discuss ongoing research in cloud security in order of the attack scenarios exploited most often in the cloud environment. We explore attack scenarios that call for securing the hypervisor, exploiting co-residency of VMs, VM image management, mitigating insider threats, securing storage in clouds, abusing lightweight software-as-a-service clients, and protecting data propagation in clouds. Wearing a practitioner's glasses, we explore the relevance of each attack scenario to a service company like Infosys. At the same time, we draw parallels between cloud security research and implementation of security solutions in the form of enterprise security suites for the cloud. We discuss the state of practice in the form of enterprise security suites that include cryptographic solutions, access control policies in the cloud, new techniques for attack detection, and security quality assurance in clouds.
1.035109
0.011111
0.008001
0.003348
0.002936
0.00149
0.000633
0.00007
0.000013
0.000001
0
0
0
0
Facial Affect "In-the-Wild": A Survey and a New Database. Well-established databases and benchmarks have been developed in the past 20 years for automatic facial behaviour analysis. Nevertheless, for some important problems regarding analysis of facial behaviour, such as (a) estimation of affect in a continuous dimensional space (e.g., valence and arousal) in videos displaying spontaneous facial behaviour and (b) detection of the activated facial muscles (i.e., facial action unit detection), to the best of our knowledge, well-established in-the-wild databases and benchmarks do not exist. That is, the majority of the publicly available corpora for the above tasks contain samples that have been captured in controlled recording conditions and/or captured under a very specific milieu. Arguably, in order to make further progress in automatic understanding of facial behaviour, datasets that have been captured in in-the-wild and in various milieus have to be developed. In this paper, we survey the progress that has been recently made on understanding facial behaviour in-the-wild, the datasets that have been developed so far and the methodologies that have been developed, paying particular attention to deep learning techniques for the task. Finally, we make a significant step further and propose a new comprehensive benchmark for training methodologies, as well as assessing the performance of facial affect/behaviour analysis/understanding in-the-wild. To the best of our knowledge, this is the first time that such a benchmark for valence and arousal "in-the-wild" is presented.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
QBF-Based Formal Verification: Experience and Perspectives The language of Quantied Boolean Formulas (QBF) has a lot of potential applications to Formal Verication (FV) tasks, as it captures many of these tasks in a natural and compact way. Practical experience has been disappointing though. When compared with contending approaches such as SAT, QBF-based FV has invariably yielded unfavorable experimental results. This paper makes two contributions. We rst provide an account of the status quo in QBF-based FV. We examine commonly adopted formalizations and the relative strengths of dierent decision procedures. In the second part of this paper, we investigate for the rst time the relevance of some advanced QBF techniques to FV tasks. In particular, we describe the use and the benets of restricted quantiers, QBF certicates, alternative encodings for classical model checking problems, and encodings with free variables. These promising research perspectives seem to reverse the negative standing of QBF applied to FV, as conrmed by the experimental evidence we discuss. Experiments are conducted by extending the publicly available solver sKizzo in several ways, and they include the rst case studies where QBF compares favorably to SAT, its traditional competitor. QBF turns out to be an order of magnitude faster than SAT in some tasks (e.g., automated design debugging of large circuits). Moreover, as the size of the problems grows, the SAT encodings result in excessive memory requirements leading to out-of-memory conditions, while the more compact QBF encodings continue to be manageable and solvable.
Reasoning in Argumentation Frameworks Using Quantified Boolean Formulas This paper describes a generic approach to implement propositional argumentation frameworks by means of quantified Boolean formulas (QBFs). The motivation to this work is based on the following observations: Firstly, depending on the underlying deductive system and the chosen semantics (i.e., the kind of extension under consideration), reasoning in argumentation frameworks can become computationally involving up to the fourth level of the polynomial hierarchy. This makes the language of QBFs a suitable target formalism since decision problems from the polynomial hierarchy can be efficiently represented in terms of QBFs. Secondly, several practicably efficient solvers for QBFs are currently available, and thus can be used as black-box engines in potential implementations of argumentation frameworks. Finally, the definition of suitable QBF modules provides us with a tool box in order to capture a broad range of reasoning tasks associated to formal argumentation.
A QBF-based formalization of abstract argumentation semantics. We introduce a unified logical theory, based on signed theories and Quantified Boolean Formulas (QBFs) that can serve as the basis for representing and computing various argumentation-based decision problems. It is shown that within our framework we are able to model, in a simple and modular way, a wide range of semantics for abstract argumentation theory. This includes complete, grounded, preferred, stable, semi-stable, stage, ideal and eager semantics. Furthermore, our approach is purely logical, making for instance decision problems like skeptical and credulous acceptance of arguments simply a matter of entailment and satisfiability checking. The latter may be verified by off-the-shelf QBF-solvers.
On Computing Belief Change Operations using Quantified Boolean Formulas In this paper, we show how an approach to belief revision and belief contraction can be axiomatized by means of quantified Boolean formulas. Specifically, we consider the approach of belief change scenarios, a general framework that has been introduced for expressing different forms of belief change. The essential idea is that for a belief change scenario (K, R, C), the set of formulas K, representing the knowledge base, is modified so that the sets of formulas R and C are respectively true in, and consistent with the result. By restricting the form of a belief change scenario, one obtains specific belief change operators including belief revision, contraction, update, and merging. For both the general approach and for specific operators, we give a quantified Boolean formula such that satisfying truth assignments to the free variables correspond to belief change extensions in the original approach. Hence, we reduce the problem of determining the results of a belief change operation to that of satisfiability. This approach has several benefits. First, it furnishes an axiomatic specification of belief change with respect to belief change scenarios. This then leads to further insight into the belief change framework. Second, this axiomatization allows us to identify strict complexity bounds for the considered reasoning tasks. Third, we have implemented these different forms of belief change by means of existing solvers for quantified Boolean formulas. As well, it appears that this approach may be straightforwardly applied to other specific approaches to belief change.
Representing paraconsistent reasoning via quantified propositional logic Quantified propositional logic is an extension of classical propositional logic where quantifications over atomic formulas are permitted. As such, quantified propositional logic is a fragment of second-order logic, and its sentences are usually referred to as quantified Boolean formulas (QBFs). The motivation to study quantified propositional logic for paraconsistent reasoning is based on two fundamental observations. Firstly, in recent years, practicably efficient solvers for quantified propositional logic have been presented. Secondly, complexity results imply that there is a wide range of paraconsistent reasoning problems which can be efficiently represented in terms of QBFs. Hence, solvers for QBFs can be used as a core engine in systems prototypically implementing several of such reasoning tasks, most of them lacking concrete realisations. To this end, we show how certain paraconsistent reasoning principles can be naturally formulated or reformulated by means of quantified Boolean formulas. More precisely, we describe polynomial-time constructible encodings providing axiomatisations of the given reasoning tasks. In this way, a whole variety of a priori distinct approaches to paraconsistent reasoning become comparable in a uniform setting.
An Effective QBF Solver for Planning Problems A large number of applications can be represented by quantified Boolean formulas (QBF). Although evaluating QBF is NP-hard and thus very difficult, there has been significant progress in the development of QBF solvers. These solvers require the quantified Boolean formula to be in a standard format. We have encountered a large class of problems whose representation as QBF is not in that standard format. If we apply current state-of-the-art QBF solvers, the required transformation into standard format increases the size of the formula and tends to hide structural properties of the problem class. We suggest a direct attack of the problem. The solution algorithm is based on backtracking search and on a new form of learning clauses. We have tested a first implementation of the algorithm on a class of planning problems. The tests show that the approach is significantly faster than current state-of-the-art QBF solvers.
Applications of circumscription to formalizing common-sense knowledge Abstract We present a new and more symmetric version of the circumscription method of nonmonotonic reasoning rst described in (McCarthy 1980) and some applications to formalizing common,sense knowledge. The applications in this paper are mostly based on minimizing the abnormality of dieren t aspects of various entities. Included are nonmonotonic treatments of is-a hierarchies, the unique names hypothesis, and the frame problem. The new circumscription may be called formula circumscription to distinguish it from the previously dened domain circumscription and predicate circumscription. A still more general formalism called prioritized circumscription is briey explored.
The Downward Refinement Property Using abstraction in planning does not guarantee an im­ provement in search efficiency; it is possible for an ab- stract planner to display worse performance than one that does not use abstraction. Analysis and experiments have shown that good abstraction hierarchies have, or are close to having, the downward refinement property, whereby, given that a concrete-level solution exists, every abstract solution can be refined to a concrete-level solu­ tion without backtracking across abstract levels. Work­ ing within a semantics for ABSTRIPS-style abstraction we provide a characterizati on of the downward refinement property. After discussing its effect on search efficiency, we develop a semantic condition sufficient for guarantee­ ing its presence in an abstraction hierarchy. Using the semantic condition, we then provide a set of sufficient and polynomial-time checkable syntactic conditions that can be used for checking a hierarchy for the downward refinement property,
An Efficient Unification Algorithm
What are the Limitations of the Situation Calculus? The situation calculus [8] is a methodology for expressing facts about action and change in formal languages of mathematical logic. It involves expressions for situations and actions (events), and the function Result that relates them to each other. The possibilities and limitations of this methodology have never been systematically investigated, and some of the commonly accepted views on this subject seem to be inaccurate.
Plan reuse versus plan generation: a theoretical and empirical analysis The ability of a planner to reuse parts of old plans is hypothesized to be a valuabletool for improving efficiency of planning by avoiding the repetition of the sameplanning effort. We test this hypothesis from an analytical and empirical point ofview. A comparative worst-case complexity analysis of generation and reuse underdifferent assumptions reveals that it is not possible to achieve a provable efficiencygain of reuse over generation. Further, assuming &quot;conservative&quot; plan...
Bidding for Storage Space in a Peer-to-Peer Data Preservation System Digital archives protect important data collections from failures by making multiple copies at other archives, so that there are always several good copies of a collection. In a cooperative replication network, sites "trade" space, so that each site contributes storage resources to the system and uses storage resources at other sites. Here, we examine bid trading: a mechanism where sites conduct auctions to determine who to trade with. A local site wishing to make a copy of a collection announces how much remote space is needed, and accepts bids for how much of its own space the local site must "pay" to acquire that remote space. We examine the best policies for determining when to call auctions and how much to bid, as well as the effects of "maverick" sites that attempt to subvert the bidding system. Simulations of auction and trading sessions indicate that bid trading can allowsites to achieve higher reliability than the alternative: a system where sites trade equal amounts of space without bidding.
Towards application/file-level characterization of block references: a case for fine-grained buffer management Two contributions are made in this paper. First, we show that system level characterization of file block references is inadequate for maximizing buffer cache performance. We show that a finer-grained characterization approach is needed. Though application level characterization methods have been proposed, this is the first attempt, to the best of our knowledge, to consider file level characterizations. We propose an Application/File-level Characterization (AFC) scheme where we detect on-line the reference characteristics at the application level and then at the file level, if necessary. The results of this characterization are used to employ appropriate replacement policies in the buffer cache to maximize performance. The second contribution is in proposing an efficient and fair buffer allocation scheme. Application or file level resource management is infeasible unless there exists an allocation scheme that is efficient and fair. We propose the &Dgr;HIT allocation scheme that takes away a block from the application/file where the removal results in the smallest reduction in the number of expected buffer cache hits. Both the AFC and &Dgr;HIT schemes are on-line schemes that detect and allocate as applications execute. Experiments using trace-driven simulations show that substantial performance improvements can be made. For single application executions the hit ratio increased an average of 13 percentage points compared to the LRU policy, with a maximum increase of 59 percentage points, while for multiple application executions, the increase is an average of 12 percentage points, with a maximum of 32 percentage points for the workloads considered.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.071111
0.073333
0.066667
0.04
0.016
0.006667
0.001231
0.000031
0
0
0
0
0
0
A Fuzzy Deep Model Based on Fuzzy Restricted Boltzmann Machines for High-dimensional Data Classification We establish a fuzzy deep model called the fuzzy deep belief net (FDBN) based on fuzzy restricted Boltzmann machines (FRBMs) due to their excellent generative and discriminative properties. The learning procedure of an FDBN is divided into a pretraining phase and a subsequent fine-tuning phase. In the pretraining phase, a group of FRBMs is trained in a greedy layerwise way: the first FRBM is trained by original samples, and the average values of the left and right probabilities produced by its hidden units are treated as the training data for subsequent FRBMs. The resulting FDBN is either a generative or a discriminative model depending on the choice of training a generative or a discriminative type of FRBM on top. Then, a hybrid learning approach is proposed to fine-tune this novel fuzzy deep model: the well pretrained fuzzy parameters are first defuzzified, and the FDBN with defuzzified parameters is fine-tuned by the wake–sleep or stochastic gradient descent algorithm. This hybrid strategy not only avoids learning an intractable fuzzy neural network, but also greatly improves the classification capability of the FDBN. The experimental results on MNIST, NORB, and 15 Scene databases indicate that the FDBN with the hybrid learning approach can handle high-dimensional raw images directly. It inherits the fine nature of the FRBM and outperforms some state-of-the-art discriminative models in classification accuracy. Moreover, it shows better capability of robustness than a deep belief net when encountering noisy data.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Automatic Memory Reductions for RTL Model Verification We present several techniques for automatically reducing memories in RTL designs. This includes a new memory abstraction algorithm that allows us to greatly reduce the size of memories and a technique based on-term rewriting that further improves the abstraction. In contrast to previously proposed methods for abstracting memories of RTL designs, our methods are general---e.g., they allow us to arbitrarily and directly compare memories---and they are sound and complete---e.g., there are no false positives or negatives. In addition, the combination of our techniques allows us to automatically verify RTL pipelined machine designs beyond the reach of current state-of-the-art methods, as our experimental results show.
Integrating linear arithmetic into superposition calculus We present a method of integrating linear rational arithmetic into superposition calculus for first-order logic. One of our main results is completeness of the resulting calculus under some finiteness assumptions.
High capacity and automatic functional extraction tool for industrial VLSI circuit designs In this paper we present an advanced functional extraction tool for automatic generation of high-level RTL from switch-level circuit netlist representation. The tool is called FEV-Extract and is part of a comprehensive Formal Equivalence Verification (FEV) system developed at Intel to verify modern microprocessor designs. FEV-Extract employs a powerful hierarchical analysis procedure, and advanced and generic algorithms for automatic recognition of logical primitives, to cope with variety of circuit design styles and their complexity. Logic equations are then extracted to generate a behavioral RTL model described in industrial standard HDL languages, to be used in the formal equivalence verification, logic simulation, synthesis and testability flows.
Memory modeling in ESL-RTL equivalence checking When designers create RTL models from a system-level specification, arrays in the system-level model are often implemented as memories in the RTL. Knowing the correspondence between ESL arrays and RTL memories can significantly reduce the complexity of a formal equivalence check between the ESL model and the RTL. In practice, however, handling memory mappings in ESL-RTL equivalence checking is non-trivial for the following reasons: First, because of a lack of bit-accurate data-types in the systemlevel language, the information stored in an array location may be stored in a compressed form in the RTL. Second, a single array in the ESL model may be implemented by multiple memories in the RTL and/or corresponding data items may be stored in different locations. And last but not least, due to timing differences between the ESL model and the RTL, the correspondence between arrays and memories may not hold in every clock cycle. In this paper, we propose an approach to ESL-RTL equivalence checking which can deal with all of these difficulties.
Verifying equivalence of memories using a first order logic theorem prover
Complexity Results for Planning I describe several computational complexity results for planning, some of which identify tractable planning problems. The model of planning, called "propositional planning," is simple—conditions within operators are literals with no variables allowed. The different plan­ ning problems are defined by different restric- tions on the preconditions and postconditions of operators. The main results are: Proposi­ tional planning is PSPACE-complete, even if operators are restricted to two positive (non- negated) preconditions and two postconditions, or if operators are restricted to one postcondi­ tion (with any number of preconditions ). It is NP-complete if operators are restricted to positive postconditions, even if operators are restricted to one precondition and one posi­ tive postcondition. It is tractable in a few re­ stricted cases, one of which is if each opera­ tor is restricted to positive preconditions and one postcondition. The blocks-world problem, slightly modified, is a subproblem of this re­ stricted planning problem.
The computational complexity of propositional STRIPS planning I present several computational complexity results for propositional STRIPS planning, i.e.,STRIPS planning restricted to ground formulas. Different planning problems can be definedby restricting the type of formulas, placing limits on the number of pre- and postconditions,by restricting negation in pre- and postconditions, and by requiring optimal plans. For thesetypes of restrictions, I show when planning is tractable (polynomial) and intractable (NPhard). In general, it is...
Histograms of Oriented Gradients for Human Detection We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.
A Simple Weight Decay Can Improve Generalization It has been observed in numerical simulations that a weight decay can im(cid:173) prove generalization in a feed-forward neural network. This paper explains why. It is proven that a weight decay has two effects in a linear network. First, it suppresses any irrelevant components of the weight vector by choosing the smallest vector that solves the learning problem. Second, if the size is chosen right, a weight decay can suppress some of the effects of static noise on the targets, which improves generalization quite a lot. It is then shown how to extend these results to networks with hidden layers and non-linear units. Finally the theory is confirmed by some numerical simulations using the data from NetTalk.
Implementation of Argus Argus is a programming language and system developed to support the construction and execution of distributed programs. This paper describes the implementation of Argus, with particular emphasis on the way we implement atomic actions, because this is where Argus differs most from other implemented systems. The paper also discusses the performance of Argus. The cost of actions is quite reasonable, indicating that action systems like Argus are practical.
Minerva: An automated resource provisioning tool for large-scale storage systems Enterprise-scale storage systems, which can contain hundreds of host computers and storage devices and up to tens of thousands of disks and logical volumes, are difficult to design. The volume of choices that need to be made is massive, and many choices have unforeseen interactions. Storage system design is tedious and complicated to do by hand, usually leading to solutions that are grossly over-provisioned, substantially under-performing or, in the worst case, both.To solve the configuration nightmare, we present minerva: a suite of tools for designing storage systems automatically. Minerva uses declarative specifications of application requirements and device capabilities; constraint-based formulations of the various sub-problems; and optimization techniques to explore the search space of possible solutions.This paper also explores and evaluates the design decisions that went into Minerva, using specialized micro- and macro-benchmarks. We show that Minerva can successfully handle a workload with substantial complexity (a decision-support database benchmark). Minerva created a 16-disk design in only a few minutes that achieved the same performance as a 30-disk system manually designed by human experts. Of equal importance, Minerva was able to predict the resulting system's performance before it was built.
Striping in a RAID level 5 disk array Redundant disk arrays are an increasingly popular way to improve I/O system performance. Past research has studied how to stripe data in non-redundant (RAID Level 0) disk arrays, but none has yet been done on how to stripe data in redundant disk arrays such as RAID Level 5, or on how the choice of striping unit varies with the number of disks. Using synthetic workloads, we derive simple design rules for striping data in RAID Level 5 disk arrays given varying amounts of workload information. We then validate the synthetically derived design rules using real workload traces to show that the design rules apply well to real systems.We find no difference in the optimal striping units for RAID Level 0 and 5 for read-intensive workloads. For write-intensive workloads, in contrast, the overhead of maintaining parity causes full-stripe writes (writes that span the entire error-correction group) to be more efficient than read-modify writes or reconstruct writes. This additional factor causes the optimal striping unit for RAID Level 5 to be four times smaller for write-intensive workloads than for read-intensive workloads.We next investigate how the optimal striping unit varies with the number of disks in an array. We find that the optimal striping unit for reads in a RAID Level 5 varies inversely to the number of disks, but that the optimal striping unit for writes varies with the number of disks. Overall, we find that the optimal striping unit for workloads with an unspecified mix of reads and writes is independent of the number of disks.Together, these trends lead us to recommend (in the absence of specific workload information) that the striping unit over a wide range of RAID Level 5 disk array sizes be equal to 1/2 * average positioning time * disk transfer rate.
Wsben: A Web Services Discovery And Composition Benchmark Toolkit In this article, a novel benchmark toolkit, WSBen, for testing web services discovery and composition algorithms is presented. The WSBen includes: (1) a collection of synthetically generated web services files in WSDL format with diverse data and model characteristics; (2) queries for testing discovery and composition algorithms; (3) auxiliary files to do statistical analysis on the WSDL test sets; (4) converted WSDL test sets that conventional AI planners can read; and (5) a graphical interface to control all these behaviors. Users can fine-tune the generated WSDL test files by varying underlying network models. To illustrate the application of the WSBen, in addition, we present case studies from three domains: (1) web service composition; (2) AI planning; and (3) the laws of networks in Physics community. It is our hope that WSBen will provide useful insights in evaluating the performance of web services discovery and composition algorithms. The WSBen toolkit is available at: http://pike.psu.edu/sw/wsben/.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.052122
0.052542
0.052542
0.051271
0.016944
0
0
0
0
0
0
0
0
0
2Q: A Low Overhead High Performance Buffer Management Replacement Algorithm
OSF/1 Virtual Memory Improvements
Large Block CLOCK (LB-CLOCK): A write caching algorithm for solid state disks Solid State Disks (SSDs) using NAND flash memory are increasingly being adopted in the high-end servers of data- centers to improve performance of the I/O-intensive applications. Compared to the traditional enterprise class hard disks, SSDs provide faster read performance, lower cooling cost, and higher power efficiency. However, write performance of a flash based SSD can be up to an order of magnitude slower than its read performance. Furthermore, frequent write operations degrade the lifetime of flash memory. A nonvolatile cache can greatly help to solve these problems. Although a RAM cache is relative high in cost, it has successfully eliminated the performance gap between fast CPU and slow magnetic disk. Similarly, a nonvolatile cache in an SSD can alleviate the disparity between the flash memory's read and write performance. A small write cache that reduces the number of flash block erase operations, can lead to substantial performance gain for write-intensive applications and can extend the overall lifetime of flash based SSDs. This paper presents a novel write caching algorithm, the Large Block CLOCK (LB-CLOCK) algorithm, which considers 'recency' and 'block space utilization' metrics to make cache management decisions. LB-CLOCK dynamically varies the priority between these two metrics to adapt to changes in workload characteristics. Our simulation based experimental results show that LB-CLOCK outperforms the best known existing flash caching algorithms for a wide range of workloads.
Transforming policies into mechanisms with infokernel We describe an evolutionary path that allows operating systems to be used in a more flexible and appropriate manner by higher-level services. An infokernel exposes key pieces of information about its algorithms and internal state; thus, its default policies become mechanisms, which can be controlled from user-level. We have implemented two prototype infokernels based on the linuxtwofour and netbsdver kernels, called infolinux and infobsd, respectively. The infokernels export key abstractions as well as basic information primitives. Using infolinux, we have implemented four case studies showing that policies within Linux can be manipulated outside of the kernel. Specifically, we show that the default file cache replacement algorithm, file layout policy, disk scheduling algorithm, and TCP congestion control algorithm can each be turned into base mechanisms. For each case study, we have found that infokernel abstractions can be implemented with little code and that the overhead and accuracy of synthesizing policies at user-level is acceptable.
Second-Level Buffer Cache Management Abstract--Buffer caches are commonly used in servers to reduce the number of slow disk accesses or network messages. These buffer caches form a multilevel buffer cache hierarchy. In such a hierarchy, second-level buffer caches have different access patterns from first-level buffer caches because accesses to a second-level are actually misses from a first-level. Therefore, commonly used cache management algorithms such as the Least Recently Used (LRU) replacement algorithm that work well for single-level buffer caches may not work well for second-level. This paper investigates multiple approaches to effectively manage second-level buffer caches. In particular, it reports our research results in 1) second-level buffer cache access pattern characterization, 2) a new local algorithm called Multi-Queue (MQ) that performs better than nine tested alternative algorithms for second-level buffer caches, 3) a set of global algorithms that manage a multilevel buffer cache hierarchy globally and significantly improve second-level buffer cache hit ratios over corresponding local algorithms, and 4) implementation and evaluation of these algorithms in a real storage system connected with commercial database servers (Microsoft SQL Server and Oracle) running industrial-strength online transaction processing benchmarks.
An Algorithm for Optimally Exploiting Spatial and Temporal Locality in Upper Memory Levels In this study, we present an extension of Belady's MIN algorithm that optimally and simultaneously exploits spatial and temporal locality. Thus, this algorithm provides a performance upper bound of upper memory levels. The purpose of this algorithm is to assess current memory optimizations and to evaluate the potential benefits of future optimizations. We formally prove the optimality of this new algorithm with respect to minimizing misses and we show experimentally that the algorithm produces nearly minimum memory traffic on the SPEC95 benchmarks.
Towards application/file-level characterization of block references: a case for fine-grained buffer management Two contributions are made in this paper. First, we show that system level characterization of file block references is inadequate for maximizing buffer cache performance. We show that a finer-grained characterization approach is needed. Though application level characterization methods have been proposed, this is the first attempt, to the best of our knowledge, to consider file level characterizations. We propose an Application/File-level Characterization (AFC) scheme where we detect on-line the reference characteristics at the application level and then at the file level, if necessary. The results of this characterization are used to employ appropriate replacement policies in the buffer cache to maximize performance. The second contribution is in proposing an efficient and fair buffer allocation scheme. Application or file level resource management is infeasible unless there exists an allocation scheme that is efficient and fair. We propose the &Dgr;HIT allocation scheme that takes away a block from the application/file where the removal results in the smallest reduction in the number of expected buffer cache hits. Both the AFC and &Dgr;HIT schemes are on-line schemes that detect and allocate as applications execute. Experiments using trace-driven simulations show that substantial performance improvements can be made. For single application executions the hit ratio increased an average of 13 percentage points compared to the LRU policy, with a maximum increase of 59 percentage points, while for multiple application executions, the increase is an average of 12 percentage points, with a maximum of 32 percentage points for the workloads considered.
TRAP-Array: A Disk Array Architecture Providing Timely Recovery to Any Point-in-time RAID architectures have been used for more than two decades to recover data upon disk failures. Disk failure is just one of the many causes of damaged data. Data can be damaged by virus attacks, user errors, defective software/firmware, hardware faults, and site failures. The risk of these types of data damage is far greater than disk failure with today's mature disk technology and networked information services. It has therefore become increasingly important for today's disk array to be able to recover data to any point in time when such a failure occurs. This paper presents a new disk array architecture that provides Timely Recovery to Any Point-in-time, referred to as TRAP-Array. TRAP-Array stores not only the data stripe upon a write to the array, but also the time-stamped Exclusive-ORs of successive writes to each data block. By leveraging the Exclusive-OR operations that are performed upon each block write in today's RAID4/5 controllers, TRAP does not incur noticeable performance overhead. More importantly, TRAP is able to recover data very quickly to any point-in-time upon data damage by tracing back the sequence and history of Exclusive-ORs resulting from writes. What is interesting is that TRAP architecture is amazingly space-efficient. We have implemented a prototype TRAP architecture using software at block device level and carried out extensive performance measurements using TPC-C benchmark running on Oracle and Postgress databases, TPC-W running on MySQL database, and file system benchmarks running on Linux and Windows systems. Our experiments demonstrated that TRAP is not only able to recover data to any point-in-time very quickly upon a failure but it also uses less storage space than traditional daily differential backup/snapshot. Compared to the state-of-the-art continuous data protection technologies, TRAP saves disk storage space by one to two orders of magnitude with a simple and a fast encoding algorithm. From an architecture point of view, TRAP-Array opens up another dimension for storage arrays. It is orthogonal and complementary to RAID in the sense that RAID protects data in the dimension along an array of physical disks while TRAP protects data in the dimension along the time sequence.
Design tradeoffs for SSD performance Solid-state disks (SSDs) have the potential to revolutionize the storage system landscape. However, there is little published work about their internal organization or the design choices that SSD manufacturers face in pursuit of optimal performance. This paper presents a taxonomy of such design choices and analyzes the likely performance of various configurations using a trace-driven simulator and workload traces extracted from real systems. We find that SSD performance and lifetime is highly workload-sensitive, and that complex systems problems that normally appear higher in the storage stack, or even in distributed systems, are relevant to device firmware.
Generating realistic impressions for file-system benchmarking The performance of file systems and related software depends on characteristics of the underlying file-system image (i.e., file-system metadata and file contents). Unfortunately, rather than benchmarking with realistic file-system images, most system designers and evaluators rely on ad hoc assumptions and (often inaccurate) rules of thumb. Furthermore, the lack of standardization and reproducibility makes file system benchmarking ineffective. To remedy these problems, we develop Impressions, a framework to generate statistically accurate file-system images with realistic metadata and content. Impressions is flexible, supporting user-specified constraints on various file-system parameters using a number of statistical techniques to generate consistent images. In this paper we present the design, implementation and evaluation of Impressions, and demonstrate its utility using desktop search as a case study. We believe Impressionswill prove to be useful for system developers and users alike.
The Mini and Micro Industries First Page of the Article
Acyclic programs We study here a natural subclass of the locally stratified programs which we call acyclic. Acyclic programs enjoy several natural properties. First, they terminate for a large and natural class of general goals, so they could be used as terminating PROLOG programs. Next, their semantics can be defined in several equivalent ways. In particular we show that the immediate consequence operator of an acyclic programP has a unique fixpointM p , which coincides with the perfect model ofP, is the unique Herbrand model of the completion ofP and can be identified with the unique fixpoint of the 3-valued immediate consequence operator associated withP. The completion of an acylic programP is shown to satisfy an even stronger property: addition of a domain closure axiom results in a theory which is complete and decidable with respect to a large class of formulas including the variable-free ones. This implies thatM p is recursive. On the procedural side we show that SLS-resolution and SLDNF-resolution for acyclic programs coincide, are effective, sound and (non-floundering) complete with respect to the declarative semantics. Finally, we show that various forms of temporal reasoning, as exemplified by the so-called Yale Shooting Problem, can be naturally described by means of acyclic programs.
Parallel query processing in shared disk database systems System developments and research on parallel query processing have concentrated either on “Shared Everything” or “Shared Nothing” architectures so far. While there are several commercial DBMS based on the “Shared Disk” alternative, this architecture has received very little attention with respect to parallel query processing. A comparison between Shared Disk and Shared Nothing reveals many potential benefits for Shared Disk with respect to parallel query processing. In particular, Shared Disk supports more flexible control over the communication overhead for intra-transaction parallelism, and a higher potential for dynamic load balancing and efficient processing of mixed OLTP/query workloads. We also sketch necessary extensions for transaction management (concurrency/coherency control, logging/recovery) to support intra-transaction parallelism in the Shared Disk environment.
Learning A Lexical Simplifier Using Wikipedia In this paper we introduce a new lexical simplification approach. We extract over 30K candidate lexical simplifications by identifying aligned words in a sentence-aligned corpus of English Wikipedia with Simple English Wikipedia. To apply these rules, we learn a feature-based ranker using SVMnk trained on a set of labeled simplifications collected using Amazon's Mechanical Turk. Using human simplifications for evaluation, we achieve a precision of 76% with changes in 86% of the examples.
1.002875
0.002757
0.002721
0.002587
0.002331
0.002176
0.001736
0.001038
0.000373
0.000041
0.000001
0
0
0
Genome Rearrangement and Planning: Revisited Evolutionary trees of species can be reconstructed by pairwise comparison of their entire genomes. Such a comparison can be quantified by determining the number of events that change the order of genes in a genome. Earlier Erdem and Tillier formulated the pairwise comparison of entire genomes as the problem of planning rearrangement events that transform one genome to the other. We reformulate this problem as a planning problem to extend its applicability to genomes with multiple copies of genes and with unequal gene content, and illustrate its applicability and effectiveness on three real datasets: mitochondrial genomes of Metazoa, chloroplast genomes of Campanulaceae, chloroplast genomes of various land plants and green algae.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Tag-aware image classification via Nested Deep Belief nets With the rising of internet photos-sharing web sites, the rich aware text information surrounding images on the sites are proved helpful to improve the image classification. This paper presents a novel nested deep learning model called Nested Deep Belief Network(NDBN) for tag-aware image classification. A multi-layer structure of Deep Belief Network(DBN) is established to learn a unified representation of visual feature and tag feature for an image, and an additional Gaussian Restricted Boltzmann Machine is built to capture the tag-tag dependency. Compared with conventional methods, the proposed model can not only find correlations across modalities, but mine the importance for different tags, and also bring about low-rank tag feature representation. We conduct experiments over the MIR Flickr dataset and the results show that the proposed NDBN model outperforms the existing image classification techniques.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Deep Linear Coding for Fast Graph Clustering Clustering has been one of the most critical unsupervised learning techniques that has been widely applied in data mining problems. As one of its branches, graph clustering enjoys its popularity due to its appealing performance and strong theoretical supports. However, the eigen-decomposition problems involved are computationally expensive. In this paper, we propose a deep structure with a linear coder as the building block for fast graph clustering, called Deep Linear Coding (DLC). Different from conventional coding schemes, we jointly learn the feature transform function and discriminative codings, and guarantee that the learned codes are robust in spite of local distortions. In addition, we use the proposed linear coders as the building blocks to formulate a deep structure to further refine features in a layerwise fashion. Extensive experiments on clustering tasks demonstrate that our method performs well in terms of both time complexity and clustering accuracy. On a large-scale benchmark dataset (580K), our method runs 1500 times faster than the original spectral clustering.
Denoising Autoencoder as an Effective Dimensionality Reduction and Clustering of Text Data. Deep learning methods are widely used in vision and face recognition, however there is a real lack of application of such methods in the field of text data. In this context, the data is often represented by a sparse high dimensional document-term matrix. Dealing with such data matrices, we present, in this paper, a new denoising auto-encoder for dimensionality reduction, where each document is not only affected by its own information, but also affected by the information from its neighbors according to the cosine similarity measure. It turns out that the proposed auto-encoder can discover the low dimensional embeddings, and as a result reveal the underlying effective manifold structure. The visual representation of these embeddings suggests the suitability of performing the clustering on the set of documents relying on the Expectation-Maximization algorithm for Gaussian mixture models. On real-world datasets, the relevance of the presented auto-encoder in the visualisation and document clustering field is shown by a comparison with five widely used unsupervised dimensionality reduction methods including the classic auto-encoder.
Large-Scale Deep Belief Nets With MapReduce Deep belief nets (DBNs) with restricted Boltzmann machines (RBMs) as the building block have recently attracted wide attention due to their great performance in various applications. The learning of a DBN starts with pretraining a series of the RBMs followed by fine-tuning the whole net using backpropagation. Generally, the sequential implementation of both RBMs and backpropagation algorithm takes significant amount of computational time to process massive data sets. The emerging big data learning requires distributed computing for the DBNs. In this paper, we present a distributed learning paradigm for the RBMs and the backpropagation algorithm using MapReduce, a popular parallel programming model. Thus, the DBNs can be trained in a distributed way by stacking a series of distributed RBMs for pretraining and a distributed backpropagation for fine-tuning. Through validation on the benchmark data sets of various practical problems, the experimental results demonstrate that the distributed RBMs and DBNs are amenable to large-scale data with a good performance in terms of accuracy and efficiency.
Stacked Progressive Auto-Encoders (SPAE) for Face Recognition Across Poses Identifying subjects with variations caused by poses is one of the most challenging tasks in face recognition, since the difference in appearances caused by poses may be even larger than the difference due to identity. Inspired by the observation that pose variations change non-linearly but smoothly, we propose to learn pose-robust features by modeling the complex non-linear transform from the non-frontal face images to frontal ones through a deep network in a progressive way, termed as stacked progressive auto-encoders (SPAE). Specifically, each shallow progressive auto-encoder of the stacked network is designed to map the face images at large poses to a virtual view at smaller ones, and meanwhile keep those images already at smaller poses unchanged. Then, stacking multiple these shallow auto-encoders can convert non-frontal face images to frontal ones progressively, which means the pose variations are narrowed down to zero step by step. As a result, the outputs of the topmost hidden layers of the stacked network contain very small pose variations, which can be used as the pose-robust features for face recognition. An additional attractiveness of the proposed method is that no pose estimation is needed for the test images. The proposed method is evaluated on two datasets with pose variations, i.e., MultiPIE and FERET datasets, and the experimental results demonstrate the superiority of our method to the existing works, especially to those 2D ones.
Histograms of Oriented Gradients for Human Detection We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
The design of POSTGRES This paper presents the preliminary design of a new database management system, called POSTGRES, that is the successor to the INGRES relational database system. The main design goals of the new system are toprovide better support for complex objects,provide user extendibility for data types, operators and access methods,provide facilities for active databases (i.e., alerters and triggers) and inferencing including forward- and backward-chaining,simplify the DBMS code for crash recovery,produce a design that can take advantage of optical disks, workstations composed of multiple tightly-coupled processors, and custom designed VLSI chips, andmake as few changes as possible (preferably none) to the relational model.The paper describes the query language, programming language interface, system architecture, query processing strategy, and storage system for the new system.
The SPHINX-II Speech Recognition System: An Overview In order for speech recognizers to deal with increased task perplexity, speaker variation, and environment variation, improved speech recognition is critical. Steady progress has been made along these three dimensions at Carnegie Mellon. In this paper, we review the SPHINX-II speech recognition system and summarize our recent efforts on improved speech recognition.
Dependent Fluents We discuss the persistence of the indirect ef­ fects of an action—the question when such ef­ fects are subject to the commonsense law of in­ ertia, and how to describe their evolution in the cases when inertia does not apply. Our model of nonpersistent effects involves the assumption that the value of the fluent in question is deter­ mined by the values of other fluents, although the dependency may be partially or completely unknown. This view leads us to a new high- level action language ARD (for Actions, Ram­ ifications and Dependencies) that is capable of describing both persistent and nonpersistent ef­ fects. Unlike the action languages introduced in the past, ARD is "non-Markovia n," in the sense that the evolution of the fluents described in this language may depend on their history, and not only on their current values.
Serverless network file systems We propose a new paradigm for network file system design: serverless network file systems. While traditional network file systems rely on a central server machine, a serverless system utilizes workstations cooperating as peers to provide all file system services. Any machine in the system can store, cache, or control any block of data. Our approach uses this location independence, in combination with fast local area networks, to provide better performance and scalability than traditional file systems. Furthermore, because any machine in the system can assume the responsibilities of a failed component, our serverless design also provides high availability via redundatn data storage. To demonstrate our approach, we have implemented a prototype serverless network file system called xFS. Preliminary performance measurements suggest that our architecture achieves its goal of scalability. For instance, in a 32-node xFS system with 32 active clients, each client receives nearly as much read or write throughput as it would see if it were the only active client.
Comparative Evaluation of Latency Tolerance Techniques for Software Distributed Shared Memory A key challenge in achieving high performance on software DSMs is overcoming their relatively large communication latencies. In this paper, we consider two techniques which address this problem: prefetching and multithreading. While previous studies have examined each of these techniques in isolation, this paper is the first to evaluate both techniques using a consistent hardware platform and set of applications, thereby allowing direct comparisons. In addition, this is the first study to consider combining prefetching and multithreading in a software DSM. We performed our experiments on real hardware using a full implementation of both techniques. Our experimental results demonstrate that both prefetching and multithreading result in significant performance improvements when applied individually. In addition, we observe that prefetching and multithreading can potentially complement each other by using prefetching to hide memory latency and multithreading to hide synchronization latency.
Optimizing the Embedded Caching and Prefetching Software on a Network-Attached Storage System As the speed gap between memory and disk is so large today, caching and prefetch are critical to enterprise class storage applications, which demands high performance. In this paper, we present our study on performance of a mid-range storage server produced by the Quanta Computer Incorporation. We first analyzed the existing caching mechanism in the server and then developed a fast caching methodology to reduce the cache access latency and processing overhead of the storage controller. In addition, we proposed a new adaptive prefetch scheme reduces the average disk access time seen by the host. Via trace-driven simulation, we evaluated the performance of our new caching and adaptive prefetch schemes. Our results showed the performance improvement for the TPC-C on-line transaction benchmark.
Wsben: A Web Services Discovery And Composition Benchmark Toolkit In this article, a novel benchmark toolkit, WSBen, for testing web services discovery and composition algorithms is presented. The WSBen includes: (1) a collection of synthetically generated web services files in WSDL format with diverse data and model characteristics; (2) queries for testing discovery and composition algorithms; (3) auxiliary files to do statistical analysis on the WSDL test sets; (4) converted WSDL test sets that conventional AI planners can read; and (5) a graphical interface to control all these behaviors. Users can fine-tune the generated WSDL test files by varying underlying network models. To illustrate the application of the WSBen, in addition, we present case studies from three domains: (1) web service composition; (2) AI planning; and (3) the laws of networks in Physics community. It is our hope that WSBen will provide useful insights in evaluating the performance of web services discovery and composition algorithms. The WSBen toolkit is available at: http://pike.psu.edu/sw/wsben/.
Improving Citation Polarity Classification With Product Reviews Recent work classifying citations in scientific literature has shown that it is possible to improve classification results with extensive feature engineering. While this result confirms that citation classification is feasible, there are two drawbacks to this approach: (i) it requires a large annotated corpus for supervised classification, which in the case of scientific literature is quite expensive; and (ii) feature engineering that is too specific to one area of scientific literature may not be portable to other domains, even within scientific literature. In this paper we address these two drawbacks. First, we frame citation classification as a domain adaptation task and leverage the abundant labeled data available in other domains. Then, to avoid over-engineering specific citation features for a particular scientific domain, we explore a deep learning neural network approach that has shown to generalize well across domains using unigram and bigram features. We achieve better citation classification results with this cross-domain approach than using in-domain classification.
1.05
0.05
0.025
0.003333
0.00049
0
0
0
0
0
0
0
0
0
The complexity of unions of disjoint sets This paper is motivated by the open question whether the union of two disjoint NP-complete sets always is NP-complete. We discover that such unions retain much of the complexity of their single components. More precisely, they are complete with respect to more general reducibilities. Moreover, we approach the main question in a more general way: We analyze the scope of the complexity of unions of m-equivalent disjoint sets. Under the hypothesis that NEcoNE, we construct degrees in NP where our main question has a positive answer, i.e., these degrees are closed under unions of disjoint sets.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
A Hint Frequency Based Approach to Enhancing the I/O Performance of Multilevel Cache Storage Systems. With the enormous and increasing user demand, I/O performance is one of the primary considerations to build a data center. Several new technologies in data centers, such as tiered storage, prompt the widespread usage of multilevel cache techniques. In these storage systems, the upper level storage typically serves as a cache for the lower level, which forms a distributed multilevel cache system. However, although many excellent multilevel cache algorithms have been proposed to improve the I/O performance, they still have potential to be enhanced by investigating the history information of hints. To address this challenge, in this paper, we propose a novel hint frequency based approach (HFA), to improve the overall multilevel cache performance of storage systems. The main idea of HFA is using hint frequencies (the total number of demotions/promotions by employing demote/promote hints) to efficiently explore the valuable history information of data blocks among multiple levels. HFA can be applied with several popular multilevel cache algorithms, such as Demote, Promote and Hint-K. Simulation results show that, compared with original multilevel cache algorithms such as Demote, Promote and Hint-K, HFA can improve the I/O performance by up to 20% under different I/O workloads.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Predictive State Recurrent Neural Networks. We present a new model, Predictive State Recurrent Neural Networks (PSRNNs), for filtering and prediction in dynamical systems. PSRNNs draw on insights from both Recurrent Neural Networks (RNNs) and Predictive State Representations (PSRs), and inherit advantages from both types of models. Like many successful RNN architectures, PSRNNs use (potentially deeply composed) bilinear transfer functions to combine information from multiple sources. We show that such bilinear functions arise naturally from state updates in Bayes filters like PSRs, in which observations can be viewed as gating belief states. We also show that PSRNNs can be learned effectively by combining Backpropogation Through Time (BPTT) with an initialization derived from a statistically consistent learning algorithm for PSRs called two-stage regression (2SR). Finally, we show that PSRNNs can be factorized using tensor decomposition, reducing model size and suggesting interesting connections to existing multiplicative architectures such as LSTMs and GRUs. We apply PSRNNs to 4 datasets, and show that we outperform several popular alternative approaches to modeling dynamical systems in all cases.
Action-Conditional Video Prediction using Deep Networks in Atari Games Motivated by vision-based reinforcement learning (RL) problems, in particular Atari games from the recent benchmark Aracade Learning Environment (ALE), we consider spatio-temporal prediction problems where future image-frames depend on control variables or actions as well as previous frames. While not composed of natural scenes, frames in Atari games are high-dimensional in size, can involve tens of objects with one or more objects being controlled by the actions directly and many other objects being influenced indirectly, can involve entry and departure of objects, and can involve deep partial observability. We propose and evaluate two deep neural network architectures that consist of encoding, action-conditional transformation, and decoding layers based on convolutional neural networks and recurrent neural networks. Experimental results show that the proposed architectures are able to generate visually-realistic frames that are also useful for control over approximately 100-step action-conditional futures in some games. To the best of our knowledge, this paper is the first to make and evaluate long-term predictions on high-dimensional video conditioned by control inputs.
Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications. Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.
Deep learning for healthcare: review, opportunities and challenges. Gaining knowledge and actionable insights from complex, high-dimensional and heterogeneous biomedical data remains a key challenge in transforming health care. Various types of data have been emerging in modern biomedical research, including electronic health records, imaging, -omics, sensor data and text, which are complex, heterogeneous, poorly annotated and generally unstructured. Traditional data mining and statistical learning approaches typically need to first perform feature engineering to obtain effective and more robust features from those data, and then build prediction or clustering models on top of them. There are lots of challenges on both steps in a scenario of complicated data and lacking of sufficient domain knowledge. The latest advances in deep learning technologies provide new effective paradigms to obtain end-to-end learning models from complex data. In this article, we review the recent literature on applying deep learning technologies to advance the health care domain. Based on the analyzed work, we suggest that deep learning approaches could be the vehicle for translating big biomedical data into improved human health. However, we also note limitations and needs for improved methods development and applications, especially in terms of ease-of-understanding for domain experts and citizen scientists. We discuss such challenges and suggest developing holistic and meaningful interpretable architectures to bridge deep learning models and human interpretability.
Neural Network Based Transmit Power Control And Interference Cancellation For Mimo Small Cell Networks The random deployment of small cell base stations (BSs) causes the coverage areas of neighboring cells to overlap, which increases intercell interference and degrades the system capacity. This paper proposes a new intercell interference management (IIM) scheme to improve the system capacity in multiple-input multiple-output (MIMO) small cell networks. The proposed IIM scheme consists of both an interference cancellation (IC) technique on the receiver side, and a neural network (NN) based power control algorithm for intercell interference coordination (ICIC) on the transmitter side. In order to improve the system capacity, the NN power control optimizes downlink transmit power while IC eliminates interfering signals from received signals. Computer simulations compare the system capacity of the MIMO network with several ICIC algorithms: the NN, the greedy search, the belief propagation (BP), the distributed pricing (DP), and the maximum power, all of which can be combined with IC reception. Furthermore, this paper investigates the application of a multi-layered NN structure called deep learning and its pre-training scheme, into the mobile communication field. It is shown that the performance of NN is better than that of BP and very close to that of greedy search. The low complexity of the NN algorithm makes it suitable for IIM. It is also demonstrated that combining IC and sectorization of BSs acquires high capacity gain owing to reduced interference.
Deep Learning: Methods and Applications This monograph provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks. The application areas are chosen with the following three criteria in mind: (1) expertise or knowledge of the authors; (2) the application areas that have already been transformed by the successful use of deep learning technology, such as speech recognition and computer vision; and (3) the application areas that have the potential to be impacted significantly by deep learning and that have been experiencing research growth, including natural language and text processing, information retrieval, and multimodal information processing empowered by multi-task deep learning.
Neural decoding with hierarchical generative models Recent research has shown that reconstruction of perceived images based on hemodynamic response as measured with functional magnetic resonance imaging (fMRI) is starting to become feasible. In this letter, we explore reconstruction based on a learned hierarchy of features by employing a hierarchical generative model that consists of conditional restricted Boltzmann machines. In an unsupervised phase, we learn a hierarchy of features from data, and in a supervised phase, we learn how brain activity predicts the states of those features. Reconstruction is achieved by sampling from the model, conditioned on brain activity. We show that by using the hierarchical generative model, we can obtain good-quality reconstructions of visual images of handwritten digits presented during an fMRI scanning session.
Analyzing Drum Patterns Using Conditional Deep Belief Networks.
Deep Generative Stochastic Networks Trainable by Backprop. We introduce a novel training principle for probabilistic models that is an alternative to maximum likelihood. The proposed Generative Stochastic Networks (GSN) framework is based on learning the transition operator of a Markov chain whose stationary distribution estimates the data distribution. The transition distribution of the Markov chain is conditional on the previous state, generally involving a small move, so this conditional distribution has fewer dominant modes, being unimodal in the limit of small moves. Thus, it is easier to learn because it is easier to approximate its partition function, more like learning to perform supervised function approximation, with gradients that can be obtained by backprop. We provide theorems that generalize recent work on the probabilistic interpretation of denoising autoencoders and obtain along the way an interesting justification for dependency networks and generalized pseudolikelihood, along with a definition of an appropriate joint distribution and sampling mechanism even when the conditionals are not consistent. GSNs can be used with missing inputs and can be used to sample subsets of variables given the rest. We validate these theoretical results with experiments on two image datasets using an architecture that mimics the Deep Boltzmann Machine Gibbs sampler but allows training to proceed with simple backprop, without the need for layerwise pretraining.
Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives
Harnessing the wisdom of crowds in wikipedia: quality through coordination Wikipedia's success is often attributed to the large numbers of contributors who improve the accuracy, completeness and clarity of articles while reducing bias. However, because of the coordination needed to write an article collaboratively, adding contributors is costly. We examined how the number of editors in Wikipedia and the coordination methods they use affect article quality. We distinguish between explicit coordination, in which editors plan the article through communication, and implicit coordination, in which a subset of editors structure the work by doing the majority of it. Adding more editors to an article improved article quality only when they used appropriate coordination techniques and was harmful when they did not. Implicit coordination through concentrating the work was more helpful when many editors contributed, but explicit coordination through communication was not. Both types of coordination improved quality more when an article was in a formative stage. These results demonstrate the critical importance of coordination in effectively harnessing the "wisdom of the crowd" in online production environments.
A Correctness Result for Reasoning about One-Dimensional Planning Problems A plan with rich control structures like branches and loops can usually serve as a general solution that solves multiple planning instances in a domain. However, the correctness of such generalized plans is non-trivial to define and verify, especially when it comes to whether or not a plan works for all of the infinitely many instances of the problem. In this paper, we give a precise definition of a generalized plan representation called an FSA plan, with its semantics defined in the situation calculus. Based on this, we identify a class of infinite planning problems, which we call one-dimensional (1d), and prove a correctness result that 1d problems can be verified by finite means. We show that this theoretical result leads to an algorithm that does this verification practically, and a planner based on this verification algorithm efficiently generates provably correct plans for 1d problems.
Failure correction techniques for large disk arrays The ever increasing need for I/O bandwidth will be met with ever larger arrays of disks. These arrays require redundancy to protect against data loss. This paper examines alternative choices for encodings, or codes, that reliably store information in disk arrays. Codes are selected to maximize mean time to data loss or minimize disks containing redundant data, but are all constrained to minimize performance penalties associated with updating information or recovering from catastrophic disk failures. We also codes that give highly reliable data storage with low redundant data overhead for arrays of 1000 information disks.
Computational approaches to finding and measuring inconsistency in arbitrary knowledge bases There is extensive theoretical work on measures of inconsistency for arbitrary formulae in knowledge bases. Many of these are defined in terms of the set of minimal inconsistent subsets (MISes) of the base. However, few have been implemented or experimentally evaluated to support their viability, since computing all MISes is intractable in the worst case. Fortunately, recent work on a related problem of minimal unsatisfiable sets of clauses (MUSes) offers a viable solution in many cases. In this paper, we begin by drawing connections between MISes and MUSes through algorithms based on a MUS generalization approach and a new optimized MUS transformation approach to finding MISes. We implement these algorithms, along with a selection of existing measures for flat and stratified knowledge bases, in a tool called mimus. We then carry out an extensive experimental evaluation of mimus using randomly generated arbitrary knowledge bases. We conclude that these measures are viable for many large and complex random instances. Moreover, they represent a practical and intuitive tool for inconsistency handling.
1.2105
0.0735
0.070167
0.0441
0.01
0.00337
0.001429
0.000236
0.000034
0
0
0
0
0
Virtual computing: the emperor's new clothes? Recently, advances in networks, processors and storages for computer architectures have affected computer organization systems leading to a metamorphose of traditional systems. The increasing demands for well adapted computer infrastructure and different services along with advances in IT industry have motivated researchers to extend the possibilities of virtuality and virtual mechanism in a wide area of computing problems in order to better respond to daily work and business opportunities to produce high quality services and products. Therefore, we call all these processes Virtual Computing (VC). In this paper, a thorough survey of VC is presented including definitions, characteristics, challenges, issues, and novel potentials to enhance organization methods in the field of computer architecture. Exemplarily, we describe two application fields, energy efficiency and cloud security, to demonstrate new ways of optimization of overall system's architectures using virtualization.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Oblique random forest ensemble via Least Square Estimation for time series forecasting. Recent studies in Machine Learning indicates that the classifiers most likely to be the bests are the random forests. As an ensemble classifier, random forest combines multiple decision trees to significant decrease the overall variances. Conventional random forest employs orthogonal decision tree which selects one “optimal” feature to split the data instances within a non-leaf node according to impurity criteria such as Gini impurity, information gain and so on. However, orthogonal decision tree may fail to capture the geometrical structure of the data samples. Motivated by this, we make the first attempt to study the oblique random forest in the context of time series forecasting. In each node of the decision tree, instead of the single “optimal” feature based orthogonal classification algorithms used by standard random forest, a least square classifier is employed to perform partition. The proposed method is advantageous with respect to both efficiency and accuracy. We empirically evaluate the proposed method on eight generic time series datasets and five electricity load demand time series datasets from the Australian Energy Market Operator and compare with several other benchmark methods.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Research and design of deployment framework for blade-based data center For those outsourcing data centers hosting different applications or services, blade server is becoming the most popular solution But the deployment of systems in such data centers will be a time-consuming and cumbersome task Moreover, the service provided by the servers in data center changed frequently, which require a flexible service management system to reduce the burden of the system administrator This paper presents the Bladmin (Blade Admin) system to provide dynamic, flexible and quick service and operation system deployment It can build a Virtual Environment (VE) for each service All the nodes in the VE serves for one certain kind of application and some nodes have to be shift from one VE to another to adopt the varying workloads Experiment results demonstrate that system-level performance has been greatly improved and the running of one Paradigm job also show the efficiency of Bladmin framework.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Scheduling with Contingent Resources and Tasks.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Deep network for visual saliency prediction by encoding image composition. This article will be visual significance into the graphical guidance (the chart is a medium-sized join subgraph) Deep structure, from the level of learning a significant map The original image pixel to the object level graphic (oGL), and further Space level graphics (sGL). In particular, we first sample Super pixels from each image, and they are used as buildings Block of each object. In order to seamlessly describe different objects The number of oGLs is generated by spatial adjacent links The super pixel oGL object response mapping is obtained by obtaining Transfer the semantics of the image tag to oGL. As space The layout of the object plays an important role in the prominence of the object Based on the relevant learning distribution proposed sGL OGL position between. Finally, in order to imitate the” winner of all” Biological vision mechanism, the largest majority of voting programs The sGL of the image is probabilistically combined into a significant graph. Experimental results show that oGLs and sGLs capture the object level well And space-level visual cues, resulting in competitiveness Significant detection accuracy.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
The Design and Performance Evaluation of the RAID 5 Controller using the Load-Balanced Destage Algorithm Write requests are written from the disk cache to the disks by the destage algorithm, and the response time of host read request dominates the performance of the disk. Since RAID is composed of multiple disks, although the performance at the disk level is important to service requests effectively, the performance at the disk array level is more important. In RAID, a host request cannot be completed until all the striped requests are completed and the response time of the host request is dependent on the response time of the disk with the heaviest load. However, existing destage algorithms do not take into consideration the overall performance of all disks in the RAID but destage write requests for optimal performance at each individual disk, and it may eventually lead to overload of a few disks.It makes delay the service of some striped requests, and therefore, the response time of host request increases. This paper suggests new Load-Balanced Destage (LBD) algorithm adopted at the disk array level, and shows that the LBD algorithm has higher performance than existing destage algorithms by evaluating their performance using a simulator.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Graphics processing unit-accelerated techniques for bio-inspired computation in the primary visual cortex The spread of graphics processing unit GPU computing paved the way to the possibility of reaching high-computing performances in the simulation of complex biological systems. In this work, we develop a very efficient GPU-accelerated neural library, which can be employed in real-world contexts. Such a library provides the neural functionalities that are the basis of a wide range of bio-inspired models, and in particular, we show its efficacy in implementing a cortical-like architecture for visual feature coding and estimation. In order to fully exploit the intrinsic parallelism of such neural architectures and to manage the huge amount of data that characterizes the internal representation of distributed neural models, we devise an effective algorithmic solution and an efficient data structure. In particular, we exploit both data parallelism and task parallelism, with the aim of optimally taking advantage from the computational capabilities of modern graphics cards. Moreover, we assess the performances of two different development frameworks, both supplying a wide range of basic signal processing GPU-accelerated functions. A systematic analysis, aiming at comparing different algorithmic solutions, shows the best data structure and parallelization computational scheme to compute features from a distributed population of neural units. Copyright © 2013 John Wiley & Sons, Ltd.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Symbolic Boolean manipulation with ordered binary-decision diagrams Ordered Binary-Decision Diagrams (OBDDs) represent Boolean functions as directed acyclic graphs. They form a canonical representation, making testing of functional properties such as satisfiability and equivalence straightforward. A number of operations on Boolean functions can be implemented as graph algorithms on OBDD data structures. Using OBDDs, a wide variety of problems can be solved through symbolic analysis. First, the possible variations in system parameters and operating conditions are encoded with Boolean variables. Then the system is evaluated for all variations by a sequence of OBDD operations. Researchers have thus solved a number of problems in digital-system design, finite-state system analysis, artificial intelligence, and mathematical logic. This paper describes the OBDD data structure and surveys a number of applications that have been solved by OBDD-based symbolic analysis.
Searching Powerset Automata by Combining Explicit-State and Symbolic Model Checking The ability to analyze a digital system under conditions of uncertainty is important in several application domains. The problem is naturally described in terms of search in the powerset of the automaton representing the system. However, the associated exponential blowup prevents the application of traditional model checking techniques. This work describes a new approach to searching powerset automata, which does not require the explicit powerset construction. We present an efficient representation of the search space based on the combination of symbolic and explicit-state model checking techniques. We describe several search algorithms, based on two different, complementary search paradigms, and we experimentally evaluate the approach.
OBDD-based universal planning for synchronized agents in non-deterministic domains Recently model checking representation and search techniques were shown to be efficiently applicable to planning, in particular to non-deterministic planning. Such planning approaches use Ordered Binary Decision Diagrams (OBDDS) to encode a planning domain as a non-deterministic finite automaton and then apply fast algorithms from model checking to search for a solution. OBDDS can effectively scale and can provide universal plans for complex planning domains. We are particularly interested in addressing the complexities arising in non-deterministic, multi-agent domains. In this article, we present UMOP, a new universal OBDD-based planning framework for non-deterministic, multi-agent domains. We introduce a new planning domain description language, NADL, to specify non-deterministic, multi-agent domains. The language contributes the explicit definition of controllable agents and uncontrollable environment agents. We describe the syntax and semantics of NADL and show how to build an efficient OBDD-based representation of an NADL description. The UMOP planning system uses NADL and different OBDD-based universal planning algorithms. It includes the previously developed strong and strong cyclic planning algorithms. In addition, we introduce our new optimistic planning algorithm that relaxes optimality guarantees and generates plausible universal plans in some domains where no strong nor strong cyclic solution exists. We present empirical results applying UMOP to domains ranging from deterministic and single-agent with no environment actions to non-deterministic and multi-agent with complex environment actions. UMOP is shown to be a rich and efficient planning system.
A generic approach to planning in the presence of incomplete information: Theory and implementation This paper proposes a generic approach to planning in the presence of incomplete information. The approach builds on an abstract notion of a belief state representation, along with an associated set of basic operations. These operations facilitate the development of a sound and complete transition function, for reasoning about effects of actions in the presence of incomplete information, and a set of abstract algorithms for planning. The paper demonstrates how the abstract definitions and algorithms can be instantiated in three concrete representations—minimal-DNF, minimal-CNF, and prime implicates—resulting in three highly competitive conformant planners: Dnf, Cnf, and PIP. The paper relates the notion of a representation to that of ordered binary decision diagrams, a well-known belief state representation employed by many conformant planners, and several target compilation languages that have been presented in the literature. The paper also includes an experimental evaluation of the planners Dnf, Cnf, and PIP and proposes a new set of conformant planning benchmarks that are challenging for state-of-the-art conformant planners.
A heuristic for domain independent planning and its use in an enforced hill-climbing algorithm We present a new heuristic method to evaluate planning states, which is based on solving a relaxation of the planning problem. The solutions to the relaxed problem give a good estimate for the length of a real solution, and they can also be used to guide action selection during planning. Using these informations, we employ a search strategy that combines Hill-climbing with systematic search. The algorithm is complete on what we call deadlock-free domains. Though it does not guarantee the solution plans to be optimal, it does find close to optimal plans in most cases. Often, it solves the problems almost without any search at all. In particular, it outperforms all state-of-the-art planners on a large range of domains.
Improving Performance of Conformant Planners: Static Analysis of Declarative Planning Domain Specifications The paper presents novel techniques to process planning problem specifications, expressed in a declarative description language, which enables the description of planning problems with incomplete knowledge. The outcome is improved performance and scalability of conformant planners. The paper proposes two transformations of a planning problem specification, aimed at reducing the size of the initial belief state and the number of actions to be dealt with. The two transformations have been implemented in a static analyzer and in a companion heuristic search conformant planner (CpA +). The performance of the resulting system is compared with other state-of-the-art conformant planners.
Inferring state constraints for domain-independent planning We describe some new preprocessing techniques that enable faster domain-independent planning. The first set of techniques is aimed at inferring state constraints from the structure of planning operators and the initial state. Our methods consist of generating hypothetical state constraints by inspection of operator effects and preconditions, and checking each hypothesis against all operators and the initial conditions. Another technique extracts (supersets of) predicate domains from sets of ground literals obtained by Graphplan-like forward propagation from the initial state. Our various techniques are implemented in a package called DISCOPLAN. We show preliminary results on the effectiveness of adding computed state constraints and predicate domains to the specification of problems for SAT-based planners such as SATPLAN or MEDIC. The results suggest that large speedups in planning can be obtained by such automated methods, potentially obviating the need for adding hand-coded state constraints.
A machine program for theorem-proving The programming of a proof procedure is discussed in connection with trial runs and possible improvements.
Ignoring Irrelevant Facts and Operators in Plan Generation . It is traditional wisdom that one should start from the goalswhen generating a plan in order to focus the plan generation process onpotentially relevant actions. The graphplan system, however, which isthe most efficient planning system nowadays, builds a &quot;planning graph&quot;in a forward-chaining manner. Although this strategy seems to workwell, it may possibly lead to problems if the planning task descriptioncontains irrelevant information. Although some irrelevant informationcan be ...
A survey of computational complexity results in systems and control The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at the interface between these fields. We begin with a brief introduction to models of computation, the concepts of undecidability, polynomial-time algorithms, NP-completeness, and the implications of intractability results. We then survey a number of problems that arise in systems and control theory, some of them classical, some of them related to current research. We discuss them from the point of view of computational complexity and also point out many open problems. In particular, we consider problems related to stability or stabilizability of linear systems with parametric uncertainty, robust control, time-varying linear systems, nonlinear and hybrid systems, and stochastic optimal control.
The well-founded semantics for general logic programs A general logic program (abbreviated to “program” hereafter) is a set of roles that have both positive and negative subgoals. It is common to view a deductive database as a general logic program consisting of rules (IDB) slttmg above elementary relations (EDB, facts). It is desirable to associate one Herbrand model with a program and think of that model as the “meaning of the program, ” or Its“declarative semantics. ” Ideally, queries directed to the program would be answered in accordance with this model. Recent research indicates that some programs do not have a “satisfactory” total model; for such programs, the question of an appropriate partial model arises. Unfounded sets and well-founded partial models are introduced and the well-founded semantics of a program are defined to be its well-founded partial model. If the well-founded partial model is m fact a total model. it is called the well-founded model. It n shown that the class of programs possessing a total well-founded model properly includes previously studied classes of “stratified” and “locally stratified” programs,The method in this paper is also compared with other proposals in the literature, including Clark’s“program completion, ” Fitting’s and Kunen’s 3-vahred interpretations of it, and the “stable models”of Gelfond and Lifschitz.
The LRU-K page replacement algorithm for database disk buffering This paper introduces a new approach to database disk buffering, called the LRU-K method. The basic idea of LRU-K is to keep track of the times of the last K references to popular database pages, using this information to statistically estimate the interarrival times of references on a page by page basis. Although the LRU-K approach performs optimal statistical inference under relatively standard assumptions, it is fairly simple and incurs little bookkeeping overhead. As we demonstrate with simulation experiments, the LRU-K algorithm surpasses conventional buffering algorithms in discriminating between frequently and infrequently referenced pages. In fact, LRU-K can approach the behavior of buffering algorithms in which page sets with known access frequencies are manually assigned to different buffer pools of specifically tuned sizes. Unlike such customized buffering algorithms however, the LRU-K method is self-tuning, and does not rely on external hints about workload characteristics. Furthermore, the LRU-K algorithm adapts in real time to changing patterns of access.
Operating System I/O Speculation: How Two Invocations Are Faster Than One Abstract: We present an in-kernel disk prefetcher which usesspeculative execution to determine what data an applicationis likely to require in the near future. Byplacing our design within the operating system, weprovide several benets compared to the previousapplication-level design. Not only is our system easierto implement and deploy, but by handling pagefaults as well as traditionalle-access methods weare able to apply speculative execution to swappingapplications, which often spend the...
Exploring Sequence Alignment Algorithms On Fpga-Based Heterogeneous Architectures With the rapid development of DNA sequencer, the rate of data generation is rapidly outpacing the rate at which it can be computationally processed. Traditional sequence alignment based on PC cannot fulfill the increasing demand. Accelerating the algorithm using FPGA provides the better performance compared to the other platforms. This paper will explain and classify the current sequence alignment algorithms. In addition, we analyze the different types of sequence alignment algorithms and present the taxonomy of FPGA-based sequence alignment implementations. This work will conclude the current solutions and provide a reference to further accelerating sequence alignment on a FPGA-based heterogeneous architecture.
1.009471
0.010285
0.009032
0.006452
0.004558
0.003175
0.001805
0.000709
0.000089
0.000027
0.000003
0
0
0
Planning and Change in Graph Structured Data under Description Logics Constraints.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Price Direction Prediction on High Frequency Data Using Deep Belief Networks. This paper presents the use of Deep Belief Networks (DBN) for direction forecasting on financial time series, particularly those associated to the High Frequency Domain. The paper introduces some of the key concepts of the DBN, presents the methodology, results and its discussion. DBNs achieves better performance for particular configurations and training times were acceptable, however if they want to be pursued in real applications, windows sizes should be evaluated.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
A large set of non-Hamiltonian graphs It is proved that the set of not-1-edge-tough graphs (N1ET) is a better approximation for the set of non-Hamiltonian graphs then the previously given sets. The best previous approximation is the set of non-sub-2-factor graphs (NS2F). The main result of the present article is that the set N1ET−NS2F is DP-complete, which suggests that N1ET is essentially larger than NS2F.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Facets of the knapsack polytope Abstract A necessary and sufficient condition is given for an inequality with coefficients 0 or 1 to define a facet of the knapsack polytope, i.e., of the convex hull of 0–1 points satisfying a given linear inequality. A sufficient condition is also established for a larger class of inequalities (with coefficients not restricted to 0 and 1) to define a facet for the same polytope, and a procedure is given for generating all facets in the above two classes. The procedure can be viewed as a way of generating cutting planes for 0–1 programs.
On linear characterizations of combinatorial optimization problems We show that there can be no computationally tractable description by linear inequalities of the polyhedron associated with any NP-complete combinatorial optimization problem unless NP = co-NP -- a very unlikely event. We also apply the ellipsoid method for linear programming to show that a combinatorial optimization problem is solvable in polynomial time if and only if it admits a small generator of violated inequalities.
Critical Cutsets of Graphs and Canonical Facets of Set-Packing Polytopes
Hypohamiltonian and hypotraceable graphs In this note hypohamiltonian and hypotraceable graphs are constructed.
On the complexity of the containment problem for conjunctive queries with built-in predicates
The Three-Color and Two-Color TantrixTM Rotation Puzzle Problems Are NP-Complete Via Parsimonious Reductions Holzer and Holzer [M. Holzer, W. Holzer, Tantrix(TM) rotation puzzles are intractable, Discrete Applied Mathematics 144(3) (2004) 345-358] proved that the Tantrix(TM) rotation puzzle problem with four colors is NP-complete, and they showed that the infinite variant of this problem is undecidable. In this paper, we study the three-color and two-color Tantrix(TM) rotation puzzle problems (3-TRP and 2-TRP) and their variants. Restricting the number of allowed colors to three (respectively, to two) reduces the set of available Tantrix(TM) tiles from 56 to 14 (respectively, to 8). We prove that 3-TRP and 2-TRP are NP-complete, which answers a question raised by Holzer and Holzer [M. Holzer, W. Holzer, Tantrix(TM) rotation puzzles are intractable, Discrete Applied Mathematics 144(3) (2004) 345-358] in the affirmative. Since our reductions are parsimonious, it follows that the problems Unique-3-TRP and Unique-2-TRP are DP-complete under randomized reductions. We also show that the another-solution problems associated with 4-TRP, 3-TRP, and 2-TRP are NP-complete. Finally, we prove that the infinite variants of 3-TRP and 2-TRP are undecidable.
Abduction in Well-Founded Semantics and Generalized Stable Models Abductive logic programming offers a formalism to declaratively express and solve problems in areas such as diagnosis, planning, belief revision and hypothetical reasoning. Tabled logic programming offers a computational mechanism that provides a level of declarativity superior to that of Prolog, and which has supported successful applications in fields such as parsing, program analysis, and model checking. In this paper we show how to use tabled logic programming to evaluate queries to abductive frameworks with integrity constraints when these frameworks contain both default and explicit negation. The result is the ability to compute abduction over well-founded semantics with explicit negation and answer sets. Our approach consists of a transformation and an evaluation method. The transformation adjoins to each objective literal $O$ in a program, an objective literal $not(O)$ along with rules that ensure that $not(O)$ will be true if and only if $O$ is false. We call the resulting program a {\em dual} program. The evaluation method, \wfsmeth, then operates on the dual program. \wfsmeth{} is sound and complete for evaluating queries to abductive frameworks whose entailment method is based on either the well-founded semantics with explicit negation, or on answer sets. Further, \wfsmeth{} is asymptotically as efficient as any known method for either class of problems. In addition, when abduction is not desired, \wfsmeth{} operating on a dual program provides a novel tabling method for evaluating queries to ground extended programs whose complexity and termination properties are similar to those of the best tabling methods for the well-founded semantics. A publicly available meta-interpreter has been developed for \wfsmeth{} using the XSB system.
Connections between the complexity of unique satisfiability and the threshold behavior of randomized reductions The present research is motivated by new results on the complexity of the unique satisfiability problem (USAT). Some new results are obtained, using the concept of randomized reductions. The proofs use only the fact that USAT is complete for DP under randomized reductions, even though the probability bound of these reductions may be low. Furthermore, the results show that the structural complexities of USAT and DP many-one complete sets are very similar, lending support to the argument that even sets complete under `weak' randomized reductions can capture the properties of the many-one complete sets. The authors generalize these results for the Boolean hierarchy and give upper and lower bounds on the thresholds for these classes
MUP: a minimal unsatisfiability prover After establishing the unsatisfiability of a SAT instance encoding a typical design task, there is a practical need to identify its minimal unsatisfiable subsets, which pinpoint the reasons for the infeasibility of the design. Due to the potentially expensive computation, existing tools for the extraction of unsatisfiable subformulas do not guarantee the minimality of the results. This paper describes a practical algorithm that decides the minimal unsatisfiability of any CNF formula through BDD manipulation. This algorithm has a worse-case complexity that is exponential only in the treewidth of the CNF formula. We provide an empirical evaluation of the algorithm, highlighting its efficiency on a set of hard problems as well as its ability to work with existing subformula extraction tools to achieve optimal results.
Logic Programming and Nonmonotonic Reasoning, 5th International Conference, LPNMR'99, El Paso, Texas, USA, December 2-4, 1999, Proceedings
SAT-based planning in complex domains: concurrency, constraints and nondeterminism Planning as satisfiability is a very efficient technique for classical planning, i.e., for planning domains in which both the effects of actions and the initial state are completely specified. In this paper we present C-SAT, a SAT-based procedure capable of dealing with planning domains having incomplete information about the initial state, and whose underlying transition system is specified using the highly expressive action language C. Thus, C-SAT allows for planning in domains involving (i) actions which can be executed concurrently; (ii) (ramification and qualification) constraints affecting the effects of actions; and (iii) nondeterminism in the initial state and in the effects of actions. We first prove the correctness and the completeness of C-SAT, discuss some optimizations, and then we present C-PLAN, a system based on C-SAT. C-PLAN works on any C planning problem, but some optimizations have not been fully implemented yet. Nevertheless, the experimental analysis shows that SAT-based approaches to planning with incomplete information are viable, at least in the case of problems with a high degree of parallelism.
Enhancing disjunctive logic programming systems by SAT checkers Disjunctive logic programming (DLP) with stable model semantics is a powerful nonmonotonic formalism for knowledge representation and reasoning. Reasoning with DLP is harder than with normal (v-free) logic programs, because stable model checking--deciding whether a given model is a stable model of a propositional DLP program--is co-NP-complete, while it is polynomial for normal logic programs.This paper proposes a new transformation ΓM(P), which reduces stable model checking to UNSAT--i.e., to deciding whether a given CNF formula is unsatisfiable. The stability of a model M of a program P thus can be verified by calling a Satisfiability Checker on the CNF formula ΓM(P). The transformation is parsimonious (i.e., no new symbol is added), and efficiently computable, as it runs in logarithmic space (and therefore in polynomial time). Moreover, the size of the generated CNF formula never exceeds the size of the input (and is usually much smaller). We complement this transformation with modular evaluation results, which allow for efficient handling of large real-world reasoning problems.The proposed approach to stable model checking has been implemented in DLV--a state-of-the-art implementation of DLP. A number of experiments and benchmarks have been run using SATZ as Satisfiability checker. The results of the experiments are very positive and confirm the usefulness of our techniques.
VI-attached database storage This work presents a Vl-attached database storage architecture to improve database transaction rates. More specifically, we examine how Vl-based interconnects can be used to improve I/O path performance between a database server and a storage subsystem. To facilitate the interaction between client applications and a Vl-aware storage system, we design and implement a software layer called DSA, that is layered between applications and VI. DSA takes advantage of specific VI features and deals with many of its shortcomings. We provide and evaluate one kernel-level and two user-level implementations of DSA. These implementations trade transparency and generality for performance at different degrees and, unlike research prototypes, are designed to be suitable for real-world deployment. We have also investigated many design trade offs in the storage cluster. We present detailed measurements using a commercial database management system with both microbenchmarks and industrial database workloads on a mid-size, 4 CPU, and a large, 32 CPU, database server. We also compare the effectiveness of Vl-attached storage with an iSCSI configuration, and conclude that storage protocols implemented using DSA over VI have significant performance advantages. More generally, our results show that Vl-based interconnects and user-level communication can improve all aspects of the I/O path between the database system and the storage back-end. We also find that to make effective use of VI in I/O intensive environments, we need to provide substantial additional functionality than what is currently provided by VI. Finally, new storage APIs that help minimize kernel involvement in the I/O path are needed to fully exploit the benefits of Vl-based communication.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.200363
0.200363
0.200363
0.100194
0.066866
0.000804
0.000255
0.000104
0.000028
0.000002
0
0
0
0
Disk Drive Roadmap from the Thermal Perspective: A Case for Dynamic Thermal Management The importance of pushing the performance envelope of disk drives continues to grow, not just in the server market but also in numerous consumer electronics products. One of the most fundamental factors impacting disk drive design is the heat dissipation and its effect on drive reliability, since high temperatures can cause off-track errors, or even head crashes. Until now, drive manufacturers have continued to meet the 40% annual growth target of the internal data rates (IDR) by increasing RPMs, and shrinking platter sizes, both of which have counter-acting effects on the heat dissipation within a drive. As this paper will show, we are getting to a point where it is becoming very difficult to stay on this roadmap. This paper presents an integrated disk drive model that captures the close relationships between capacity, performance and thermal characteristics over time. Using this model, we quantify the drop off in IDR growth rates over the next decade if we are to adhere to the thermal envelope of drive design.We present two mechanisms for buying back some of this IDR loss with Dynamic Thermal Management (DTM). The first DTM technique exploits any available thermal slack, between what the drive was intended to support and the currently lower operating temperature, to ramp up the RPM. The second DTM technique assumes that the drive is only designed for average case behavior, thus allowing higher RPMs than the thermal envelope, and employs dynamic throttling of disk drive activities to remain within this envelope.
SODA: sensitivity based optimization of disk architecture Storage plays a pivotal role in the performance of many applications. Optimizing disk architectures is a design-time as well as a run-time issue and requires balancing between performance, power and capacity. The design space is large and there are many "knobs" that can be used to optimize disk drive behavior. Here we present a sensitivity-based optimization for disk architectures (SODA) which leverages results from digital circuit design. Using detailed models of the electro-mechanical behavior of disk drives and a suite of realistic workloads, we show how SODA can aid in design and runtime optimization.
Intra-disk Parallelism: An Idea Whose Time Has Come Server storage systems use a large number of disks to achieve high performance, thereby consuming a significant amount of power. In this paper, we propose to significantly reduce the power consumed by such storage systems via intra-disk parallelism, wherein disk drives can exploit parallelism in the I/O request stream. Intra-disk parallelism can facilitate replacing a large disk array with a smaller one, using the minimum number of disk drives needed to satisfy the capacity requirements. We show that the design space of intra-disk parallelism is large and present a taxonomy to formulate specific implementations within this space. Using a set of commercial workloads, we perform a limit study to identify the key performance bottlenecks that arise when we replace a storage array that is tuned to provide high performance with a single high-capacity disk drive. We show that it is possible to match, and even surpass, the performance of a storage array for these workloads by using a single disk drive of sufficient capacity that exploits intra-disk parallelism, while significantly reducing the power consumed by the storage system. We evaluate the performance and power consumption of disk arrays composed of intra-disk parallel drives, and discuss engineering and cost issues related to the implementation and deployment of such disk drives.
Freeblock Scheduling Outside of Disk Firmware Freeblock scheduling replaces a disk drive's rotational latency delays with useful background media transfers, potentially allowing background disk I/O to occur with no impact on foreground service times. To do so, a freeblock scheduler must be able to very accurately predict the service time components of any given disk request - the necessary accuracy was not previously considered achievable outside of disk firmware. This paper describes the design and implementation of a working external freeblock scheduler running either as a user-level application atop Linux or inside the FreeBSD kernel. This freeblock scheduler can give 15% of a disk's potential bandwidth (over 3.1MB/s) to a background disk scanning task with almost no impact (less than 2%) on the foreground request response times. This can increase disk bandwidth utilization by over 6 x.
RIMAC: a novel redundancy-based hierarchical cache architecture for energy efficient, high performance storage systems Energy efficiency becomes increasingly important in today's high-performance storage systems. It can be challenging to save energy and improve performance at the same time in conventional (i.e. single-rotation-rate) disk-based storage systems. Most existing solutions compromise performance for energy conservation. In this paper, we propose a redundancy-based, two-level I/O cache architecture called RIMAC to address this problem. The idea of RIMAC is to enable data on the standby disk to be recovered by accessing data in the two-level I/O cache or on currently active/idle disks. At both cache and disk levels, RIMAC dynamically transforms accesses toward standby disks by exploiting parity redundancy in parity-based redundant disk arrays. Because I/O requests that require physical accesses on standby disks involve long waiting time and high power consumption for disk spin-up (tens of seconds for SCSI disks), transforming those requests to accesses in a two-level, collaborative I/O cache or on active disks can significantly improve both energy efficiency and performance.In RIMAC, we developed i) two power-aware read request transformation schemes called Transformable Read in Cache (TRC) and Transformable Read on Disk (TRD), ii) a power-aware write request transformation policy for parity update and iii) a second-chance parity cache replacement algorithm to improve request transformation rate. We evaluated RIMAC by augmenting a validated storage system simulator, disksim. For several real-life server traces including HP's cello 99, TPC-D and SPC's search engine, RIMAC is shown to reduce energy consumption by up to 33% and simultaneously improve the average response time by up to 30%.
Understanding intrinsic characteristics and system implications of flash memory based solid state drives Flash Memory based Solid State Drive (SSD) has been called a "pivotal technology" that could revolutionize data storage systems. Since SSD shares a common interface with the traditional hard disk drive (HDD), both physically and logically, an effective integration of SSD into the storage hierarchy is very important. However, details of SSD hardware implementations tend to be hidden behind such narrow interfaces. In fact, since sophisticated algorithms are usually, of necessity, adopted in SSD controller firmware, more complex performance dynamics are to be expected in SSD than in HDD systems. Most existing literature or product specifications on SSD just provide high-level descriptions and standard performance data, such as bandwidth and latency. In order to gain insight into the unique performance characteristics of SSD, we have conducted intensive experiments and measurements on different types of state-of-the-art SSDs, from low-end to high-end products. We have observed several unexpected performance issues and uncertain behavior of SSDs, which have not been reported in the literature. For example, we found that fragmentation could seriously impact performance -- by a factor of over 14 times on a recently announced SSD. Moreover, contrary to the common belief that accesses to SSD are uncorrelated with access patterns, we found a strong correlation between performance and the randomness of data accesses, for both reads and writes. In the worst case, average latency could increase by a factor of 89 and bandwidth could drop to only 0.025MB/sec. Our study reveals several unanticipated aspects in the performance dynamics of SSD technology that must be addressed by system designers and data-intensive application users in order to effectively place it in the storage hierarchy.
RAID: high-performance, reliable secondary storage Disk arrays were proposed in the 1980s as a way to use parallelism between multiple disks to improve aggregate I/O performance. Today they appear in the product lines of most major computer manufacturers. This article gives a comprehensive overview of disk arrays and provides a framework in which to organize current and future work. First, the article introduces disk technology and reviews the driving forces that have popularized disk arrays: performance and reliability. It discusses the two architectural techniques used in disk arrays: striping across multiple disks to improve performance and redundancy to improve reliability. Next, the article describes seven disk array architectures, called RAID (Redundant Arrays of Inexpensive Disks) levels 0–6 and compares their performance, cost, and reliability. It goes on to discuss advanced research and implementation topics such as refining the basic RAID levels to improve performance and designing algorithms to maintain data consistency. Last, the article describes six disk array prototypes of products and discusses future opportunities for research, with an annotated bibliography disk array-related literature.
I/O reference behavior of production database workloads and the TPC benchmarks—an analysis at the logical level As improvements in processor performance continue to far outpace improvements in storage performance, I/O is increasingly the bottleneck in computer systems, especially in large database systems that manage huge amoungs of data. The key to achieving good I/O performance is to thoroughly understand its characteristics. In this article we present a comprehensive analysis of the logical I/O reference behavior of the peak productiondatabase workloads from ten of the world's largest corporations. In particular, we focus on how these workloads respond to different techniques for caching, prefetching, and write buffering. Our findings include several broadly applicable rules of thumb that describe how effective the various I/O optimization techniques are for the production workloads. For instance, our results indicate that the buffer pool miss ratio tends to be related to the ratio of buffer pool size to data size by an inverse square root rule. A similar fourth root rule relates the write miss ratio and the ration of buffer pool size to data size.In addition, we characterize the reference characteristics of workloads similar to the Transaction Processing Performance Council (TPC) benchmarks C (TPC-C) and D(TPC-D), which are de facto standard performance measures for online transaction processing (OLTP) systems and decision support systems (DSS), respectively. Since benchmarks such as TPC-C and TPC-D can only be used effectively if their strengths and limitations are understood, a major focus of our analysis is to identify aspects of the benchmarks that stress the system differently than the production workloads. We discover that for the most part, the reference behavior of TPC-C and TPC-D fall within the range of behavior exhibited by the production workloads. However, there are some noteworthy exceptions that affect well-known I/O optimization techniques such as caching (LRU is further from the optimal for TPC-C, while there is little sharing of pages between transactions for TPC-D), prefetching (TPC-C exhibits no significant sequentiality), and write buffering (write buffering is lees effective for the TPC benchmarks). While the two TPC benchmarks generally complement one another in reflecting the characteristics of the production workloads, there remain aspects of the real workloads that are not represented by either of the benchmarks.
WorkOut: I/O workload outsourcing for boosting RAID reconstruction performance User I/O intensity can significantly impact the performance of on-line RAID reconstruction due to contention for the shared disk bandwidth. Based on this observation, this paper proposes a novel scheme, called WorkOut (I/O Workload Outsourcing), to significantly boost RAID reconstruction performance. WorkOut effectively outsources all write requests and popular read requests originally targeted at the degraded RAID set to a surrogate RAID set during reconstruction. Our lightweight prototype implementation of WorkOut and extensive trace-driven and benchmark-driven experiments demonstrate that, compared with existing reconstruction approaches, WorkOut significantly speeds up both the total reconstruction time and the average user response time. Importantly, WorkOut is orthogonal to and can be easily incorporated into any existing reconstruction algorithms. Furthermore, it can be extended to improving the performance of other background support RAID tasks, such as re-synchronization and disk scrubbing.
A trace-driven analysis of the UNIX 4.2 BSD file system
Experiments with a New Boosting Algorithm In an earlier paper [9], we introduced a new “boosting” algorithm called AdaBoost which,theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing.We also introduced the related notion of a “pseudo-loss” which is a method for forcing a learning algorithm of multi-label concepts to concentrate on the labels that are hardest to discriminate.In this paper, we describe experiments we carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems.We performed two sets of experiments. The first set compared boosting to Breiman’s [1]“bagging” method when used to aggregate various classifiers (including decision trees and single attribute-value tests). We compared the performance of the two methods on a collection of machine-learning benchmarks. In the second set of experiments, we studied in more detail the performance of boosting using a nearest-neighbor classifier on an OCR problem
Conformant planning via heuristic forward search: a new approach Conformant planning is the task of generating plans given uncertainty about the initial state and action effects, and without any sensing capabilities during plan execution. The plan should be successful regardless of which particular initial world we start from. It is well known that conformant planning can be transformed into a search problem in belief space, the space whose elements are sets of possible worlds. We introduce a new representation of that search space, replacing the need to store sets of possible worlds with a need to reason about the effects of action sequences. The reasoning is done by implication tests on propositional formulas in conjunctive normal form (CNF) that capture the action sequence semantics. Based on this approach, we extend the classical heuristic forward-search planning system FF to the conformant setting. The key to this extension is an appropriate extension of the relaxation that underlies FF's heuristic function, and of FF's machinery for solving relaxed planning problems: the extended machinery includes a stronger form of the CNF implication tests that we use to reason about the effects of action sequences. Our experimental evaluation shows the resulting planning system to be superior to the state-of-the-art conformant planners MBP, KACMBP, and GPT in a variety of benchmark domains.
Using SAT in QBF QBF is the problem of deciding the satisfiability of quantified boolean formulae in which variables can be either universally or existentially quantified. QBF generalizes SAT (SAT is QBF under the restriction all variables are existential) and is in practice much harder to solve than SAT. One of the sources of added complexity in QBF arises from the restrictions quantifier nesting places on the variable orderings that can be utilized during backtracking search. In this paper we present a technique for alleviating some of this complexity by utilizing an order unconstrained SAT solver during QBF solving. The innovation of our paper lies in the integration of SAT and QBF We have developed methods that allow information obtained from each solver to be used to improve the performance of the other. Unlike previous attempts to avoid the ordering constraints imposed by quantifier nesting, our algorithm retains the polynomial space requirements of standard backtracking search. Our empirical results demonstrate that our techniques allow improvements over the current state-of-the-art in QBF solvers.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.039385
0.068912
0.068912
0.008108
0.005056
0.000927
0.000187
0.000043
0.000016
0.000004
0
0
0
0
Hinted caching in the web The World Wide Web, like any practical distributed system, benefits greatly from caching. Many studies have shown relatively poor cache performance, because existing caches depend on temporal locality, and reference patterns in the Web do not have particularly high temporal locality. We can improve Web caching by exploiting spatial locality. This requires protocol changes to allow servers to provide hints to caches, both to support prefetching and to improve allocation and replacement policies.
Detour: Informed Internet Routing and Transport Despite its obvious success, robustness, and scalability, the Internet suffers from a number of end-to-end performance and availability problems. In this paper, we attempt to quantify the Internet's inefficiencies and then we argue that Internet behavior can be improved by spreading intelligent routers at key access and interchange points to actively manage traffic. Our Detour prototype aims to demonstrate practical benefits to end users, without penalizing non-Detour users, by aggregating traffic information across connections and using more efficient routes to improve Internet performance.
NPS: a non-interfering deployable web perfectching system We present NPS, a novel non-intrusive web prefetching system that (1) utilizes only spare resources to avoid interference between prefetch and demand requests at the server as well as in the network , and (2) is deployable without any modifications to servers, browsers, network or the HTTP protocol. NPS's self-tuning architecture eliminates the need for traditional "thresholds" or magic numbers typically used to limit interference caused by prefetching, thereby allowing applications to improve benefits and reduce the risk of aggressive prefetching. NPS avoids interference with demand requests by monitoring the responsiveness of the server and accordingly throttling the prefetch aggressiveness, and by using TCP-Nice, a congestion control protocol suitable for low priority transfers. NPS avoids the need to modify existing infrastructure by modifying HTML pages to include JavascriptTM code that issues prefetch requests and by wrapping the server infrastructure with several simple external modules that require no knowledge of or no modifications to the internals of existing servers. Our measurements of the prototype under a web trace indicate that NPS is both non-interfering and efficient under different network load and server load conditions. For example, in our experiments with a loaded server with little spare capacity, we observe that a threshold-based prefetching scheme causes response times to increase by a factor of 2 due to interference, whereas prefetching using NPS decreases response times by 25%.
Using speculation to reduce server load and service time on the WWW Abstract Speculative service implies that a client''s request for a document is serviced by sending, in addition to the document requested, a number of other documents that the server speculates will be requested by the client in the near future. This speculation is based on statistical information that the server maintains for each document it serves. The notion of speculative service is analogous to prefetching, which is used to improve cache performance in distributed/parallel shared memory systems, with the exception that servers (not clients) control when and what to prefetch. Using trace simulations based on the logs of our departmental HTTP server http://cs-www.bu.edu, we show that both server load and service time could be reduced considerably, if speculative service is used. This is above and beyond what is currently achievable using client-side caching and server-side dissemination. We identify a number of parameters that could be used to fine-tune the level of speculation performed by the server based on the level of lookahead, the state of the network, the tradeoffs between bulk and individual transmission of documents, and the relative popularity of documents, among other factors.
Informed prefetching and caching The underutilization of disk parallelism and file cache buffers by traditional file systems induces I/O stall time that degrades the performance of modern microprocessor-based systems. In this paper, we present aggressive mechanisms that tailor file system resource management to the needs of I/O-intensive applications. In particular, we show how to use application-disclosed access patterns (hints) to expose and exploit I/O parallelism and to allocate dynamically file buffers among three competing demands: prefetching hinted blocks, caching hinted blocks for reuse, and caching recently used data for unhinted accesses. Our approach estimates the impact of alternative buffer allocations on application execution time and applies a cost-benefit analysis to allocate buffers where they will have the greatest impact. We implemented informed prefetching and caching in DEC''s OSF/1 operating system and measured its performance on a 150 MHz Alpha equipped with 15 disks running a range of applications including text search, 3D scientific visualization, relational database queries, speech recognition, and computational chemistry. Informed prefetching reduces the execution time of the first four of these applications by 20% to 87%. Informed caching reduces the execution time of the fifth application by up to 30%.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Evaluating collaborative filtering recommender systems Recommender systems have been evaluated in many, often incomparable, ways. In this article, we review the key decisions in evaluating collaborative filtering recommender systems: the user tasks being evaluated, the types of analysis and datasets being used, the ways in which prediction quality is measured, the evaluation of prediction attributes other than quality, and the user-based evaluation of the system as a whole. In addition to reviewing the evaluation strategies used by prior researchers, we present empirical results from the analysis of various accuracy metrics on one content domain where all the tested metrics collapsed roughly into three equivalence classes. Metrics within each equivalency class were strongly correlated, while metrics from different equivalency classes were uncorrelated.
Practical Issues in Temporal Difference Learning This paper examines whether temporal difference methods for training connectionist networks, such as Sutton's TD(λ) algorithm, can be successfully applied to complex real-world problems. A number of important practical issues are identified and discussed from a general theoretical perspective. These practical issues are then examined in the context of a case study in which TD(λ) is applied to learning the game of backgammon from the outcome of self-play. This is apparently the first application of this algorithm to a complex non-trivial task. It is found that, with zero knowledge built in, the network is able to learn from scratch to play the entire game at a fairly strong intermediate level of performance, which is clearly better than conventional commercial programs, and which in fact surpasses comparable networks trained on a massive human expert data set. This indicates that TD learning may work better in practice than one would expect based on current theory, and it suggests that further analysis of TD methods, as well as applications in other complex domains, may be worth investigating.
The complexity of combinatorial problems with succinct input representation Several languages for the succinct representation of the instances of combinatorial problems are investigated. These languages have been introduced in [20, 2] and [5] where it has been shown that describing the instances by these languages causes a blow-up of the complexities of some problems. In the present paper the descriptional power of these languages is compared by estimating the complexities of some combinatorial problems in terms of completeness in suitable classes of the “counting polynomial-time hierarchy” which is introduced here. It turns out that some of the languages are not comparable, unless P=NP Some problems left open in [2] are solved.
Planning as search: a quantitative approach We present the thesis that planning can be viewed as problem-solving search using subgoals, macro-operators, and abstraction as knowledge sources. Our goal is to quantify problem-solving performance using these sources of knowledge. New results include the identification of subgoal distance as a fundamental measure of problem difficulty, a multiplicative time-space tradeoff for macro-operators, and an analysis of abstraction which concludes that abstraction hierarchies can reduce exponential problems to linear complexity.
Application performance and flexibility on exokernel systems The exokemel operating system architecture safely gives untrusted software efficient control over hardware and software resources by separating management from protection. This paper describes an exokemel system that allows specialized applications to achieve high performance without sacrificing the performance of unmodified UNIX programs. It evaluates the exokemel architecture by measuring end-to-end application performance on Xok, an exokernel for Intel x86-based computers, and by comparing Xok’s performance to the performance of two widely-used 4.4BSD UNIX systems (FreeBSD and OpenBSD). The results show that common unmodified UNIX applications can enjoy the benefits of exokernels: applications either perform comparably on Xok/ExOS and the BSD UNIXes, or perform significantly better. In addition, the results show that customized applications can benefit substantially from control over their resources (e.g., a factor of eight for a Web server). This paper also describes insights about the exokemel approach gained through building three different exokemel systems, and presents novel approaches to resource multiplexing.
iSAM: Incremental Smoothing and Mapping In this paper, we present incremental smoothing and mapping (iSAM), which is a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, thereby recalculating only those matrix entries that actually change. iSAM is efficient even for robot trajectories with many loops as it avoids unnecessary fill-in in the factor matrix by periodic variable reordering. Also, to enable data association in real time, we provide efficient algorithms to access the estimation uncertainties of interest based on the factored information matrix. We systematically evaluate the different components of iSAM as well as the overall algorithm using various simulated and real-world datasets for both landmark and pose-only settings.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.1
0.1
0.1
0.05
0.000469
0
0
0
0
0
0
0
0
0
An optimized approach for storing and accessing small files on cloud storage Hadoop distributed file system (HDFS) is widely adopted to support Internet services. Unfortunately, native HDFS does not perform well for large numbers but small size files, which has attracted significant attention. This paper firstly analyzes and points out the reasons of small file problem of HDFS: (1) large numbers of small files impose heavy burden on NameNode of HDFS; (2) correlations between small files are not considered for data placement; and (3) no optimization mechanism, such as prefetching, is provided to improve I/O performance. Secondly, in the context of HDFS, the clear cut-off point between large and small files is determined through experimentation, which helps determine 'how small is small'. Thirdly, according to file correlation features, files are classified into three types: structurally-related files, logically-related files, and independent files. Finally, based on the above three steps, an optimized approach is designed to improve the storage and access efficiencies of small files on HDFS. File merging and prefetching scheme is applied for structurally-related small files, while file grouping and prefetching scheme is used for managing logically-related small files. Experimental results demonstrate that the proposed schemes effectively improve the storage and access efficiencies of small files, compared with native HDFS and a Hadoop file archiving facility.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Joint residual pyramid for joint image super-resolution. •The joint neural pyramid model efficiently enlarges the receptive filed.•Residual and linear interpolation block improve the performance of neural pyramid.•Joint residual pyramid outperforms previous methods in joint image supper resolution.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Deep Transform: Cocktail Party Source Separation via Probabilistic Re-Synthesis. In cocktail party listening scenarios, the human brain is able to separate competing speech signals. However, the signal processing implemented by the brain to perform cocktail party listening is not well understood. Here, we trained two separate convolutive autoencoder deep neural networks (DNN) to separate monaural and binaural mixtures of two concurrent speech streams. We then used these DNNs as convolutive deep transform (CDT) devices to perform probabilistic re-synthesis. The CDTs operated directly in the time-domain. Our simulations demonstrate that very simple neural networks are capable of exploiting monaural and binaural information available in a cocktail party listening scenario.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Selecting RAID Levels for Disk Arrays Disk arrays have a myriad of configuration parameters that interact in counter-intuitive ways, and those interactions can have significant impacts on cost, performance, and reliability. Even after values for these parameters have been chosen, there are exponentially-many ways to map data onto the disk arrays' logical units. Meanwhile, the importance of correct choices is increasing: storage systems represent an growing fraction of total system cost, they need to respond more rapidly to changing needs, and there is less and less tolerance for mistakes. We believe that automatic design and configuration of storage systems is the only viable solution to these issues. To that end, we present a comparative study of a range of techniques for programmatically choosing the RAID levels to use in a disk array.Our simplest approaches are modeled on existing, manual rules of thumb: they "tag" data with a RAID level before determining the configuration of the array to which it is assigned. Our best approach simultaneously determines the RAID levels for the data, the array configuration, and the layout of data on that array. It operates as an optimization process with the twin goals of minimizing array cost while ensuring that storage workload performance requirements will be met. This approach produces robust solutions with an average cost/performance 14-17% better than the best results for the tagging schemes, and up to 150-200% better than their worst solutions.We believe that this is the first presentation and systematic analysis of a variety of novel, fully-automatic RAID-level selection techniques.
On the road to recovery: restoring data after disasters Restoring data operations after a disaster is a daunting task: how should recovery be performed to minimize data loss and application downtime? Administrators are under considerable pressure to recover quickly, so they lack time to make good scheduling decisions. They schedule recovery based on rules of thumb, or on pre-determined orders that might not be best for the failure occurrence. With multiple workloads and recovery techniques, the number of possibilities is large, so the decision process is not trivial.This paper makes several contributions to the area of data recovery scheduling. First, we formalize the description of potential recovery processes by defining recovery graphs. Recovery graphs explicitly capture alternative approaches for recovering workloads, including their recovery tasks, operational states, timing information and precedence relationships. Second, we formulate the data recovery scheduling problem as an optimization problem, where the goal is to find the schedule that minimizes the financial penalties due to downtime, data loss and vulnerability to subsequent failures. Third, we present several methods for finding optimal or near-optimal solutions, including priority-based, randomized and genetic algorithm-guided ad hoc heuristics. We quantitatively evaluate these methods using realistic storage system designs and workloads, and compare the quality of the algorithms' solutions to optimal solutions provided by a math programming formulation and to the solutions from a simple heuristic that emulates the choices made by human administrators. We find that our heuristics' solutions improve on the administrator heuristic's solutions, often approaching or achieving optimality.
A framework for evaluating storage system dependability Designing storage systems to provide business continuity in the face of failures requires the use of various data protection techniques, such as backup, remote mirroring, point-in-time copies and vaulting, often in concert. Predicting the dependability provided by such compositions of techniques is difficult, yet necessary for dependable system design. We present a framework for evaluating the dependability of data storage systems, including both individual data protection techniques and their compositions. Our models estimate storage system recovery time, data loss, normal mode system utilization and operational costs under a variety of failure scenarios. We demonstrate the effectiveness of these modeling techniques through a case study using real-world storage system designs and workloads.
Minerva: An automated resource provisioning tool for large-scale storage systems Enterprise-scale storage systems, which can contain hundreds of host computers and storage devices and up to tens of thousands of disks and logical volumes, are difficult to design. The volume of choices that need to be made is massive, and many choices have unforeseen interactions. Storage system design is tedious and complicated to do by hand, usually leading to solutions that are grossly over-provisioned, substantially under-performing or, in the worst case, both.To solve the configuration nightmare, we present minerva: a suite of tools for designing storage systems automatically. Minerva uses declarative specifications of application requirements and device capabilities; constraint-based formulations of the various sub-problems; and optimization techniques to explore the search space of possible solutions.This paper also explores and evaluates the design decisions that went into Minerva, using specialized micro- and macro-benchmarks. We show that Minerva can successfully handle a workload with substantial complexity (a decision-support database benchmark). Minerva created a 16-disk design in only a few minutes that achieved the same performance as a 30-disk system manually designed by human experts. Of equal importance, Minerva was able to predict the resulting system's performance before it was built.
Mirrored Disk Organization Reliability Analysis Disk mirroring or RAID level 1 (RAID1) is a popular paradigm to achieve fault tolerance and a higher disk access bandwidth for read requests. We consider four RAID1 organizations: basic mirroring, group rotate declustering, interleaved declustering, and chained declustering, where the last three organizations attain a more balanced load than basic mirroring when disk failures occur. We first obtain the number of configurations, A(n, i), which do not result in data loss when i out of n disks have failed. The probability of no data loss in this case is A(n,i)/{n \choose i}. The reliability of each RAID1 organization is the summation over 1 \leq i \leq n/2 of A(n, i) r^{n-i}(1-r)^{i}, where r denotes the reliability of each disk. A closed-form expression for A(n,i) is obtained easily for the first three organizations. We present a relatively simple derivation of the expression for A(n,i) for the chained declustering method, which includes a correctness proof. We also discuss the routing of read requests to balance disk loads, especially when there are disk failures, to maximize the attainable throughput.
Dynamic file allocation in disk arrays Large arrays of small disks are being considered as a promising approach to high performance 1/0 architectures. In this paper we deal with the problem of data placement in such a disk array. The prevalent approach is to decluster large files across a number of disks so as to minimize the access time to a file and balance the 1/0 load across the disks. The data placement problem entails determining the number of disks and the set of disks across which a file is declustered. Unlike previous work, this paper does not assume that all files are allocated at the same time but rather considers dynamic file creations, This makes the placement problem considerably harder because each placement decision has to take into account the current allocation state and the access frequencies of the disks and the existing files. As a result, file creation may involve partial reorganization on one or more disks. The paper proposes heuristic algorithms for the placement of dynamically created files. The algorithms provide a good compromise between maximizing 1/0 performance of the disk array and minimizing the work invested in partial reorganizations. The paper presents preliminary performance results of various alternative algorithms under a synthetic workload.
SWIFT: USING DISTRIBUTED DISK STRIPING TO PROVIDE HIGH I/O DATA RATES We present an I/O architecture, called Swift, that addresses the problem of data rate mismatches between the requirements of an application, storage devices, and the interconnection medium. The goal of Swift is to support high data rates in general purpose distributed systems. Swift uses a high-speed interconnection medium to provide high data rate transfers by using multiple slower storage devices in parallel. It scales well when using multiple storage devices and interconnections, and can use any appropriate storage technology, including high-performance devices such as disk arrays. To address the problem of partial failures, Swift stores data redundantly. Using the UNIX operating system, we have constructed a simplified prototype of the Swift architecture. The prototype provides data rates that are significantly faster than access to the local SCSI disk, limited by the capacity of a single Ethernet segment, or in the case of multiple Ethernet segments by the ability of the client to drive them. We have constructed a simulation model to demonstrate how the Swift architecture can exploit advances in processor, communication and storage technology. We consider the effects of processor speed, interconnection capacity, and multiple storage agents on the utilization of the components and the data rate of the system. We show that the data rates scale well in the number of storage devices, and that by replacing the most highly stressed components by more powerful ones the data rates of the entire system increase significantly.
Parity logging overcoming the small write problem in redundant disk arrays Parity encoded redundant disk arrays provide highly reliable, cost effective secondary storage with high performance for read accesses and large write accesses. Their performance on small writes, however, is much worse than mirrored disks—the traditional, highly reliable, but expensive organization for secondary storage. Unfortunately, small writes are a substantial portion of the I/O workload of many important, demanding applications such as on-line transaction processing. This paper presents parity logging, a novel solution to the small write problem for redundant disk arrays. Parity logging applies journalling techniques to substantially reduce the cost of small writes. We provide a detailed analysis of parity logging and competing schemes—mirroring, floating storage, and RAID level 5— and verify these models by simulation. Parity logging provides performance competitive with mirroring, the best of the alternative single failure tolerating disk array organizations. However, its overhead cost is close to the minimum offered by RAID level 5. Finally, parity logging can exploit data caching much more effectively than all three alternative approaches.
A fast file system for UNIX
The Tiger Shark file system Tiger Shark is a parallel file system for IBM's AIX operating system. It is designed to support interactive multimedia, particularly large-scale systems such as interactive television (ITV). Tiger Shark scales across the entire RS/6000 product line, from small desktop machines to the SP-2 parallel supercomputer. Tiger Shark's primary features are support for continuous time data, scalability, high availability, and manageability, all of which are crucial in its role in large-scale video servers. Interestingly, most of the features that make Tiger Shark a good video server are important for other large-scale applications such as technical computing, data mining, digital library, and scalable network file servers. This paper briefly describes Tiger Shark: the environment that makes it important, the key technology it embodies, and the efforts to build products based on it.
Gradient-Based Learning Applied to Document Recognition Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper rev...
Conformant planning via heuristic forward search: a new approach Conformant planning is the task of generating plans given uncertainty about the initial state and action effects, and without any sensing capabilities during plan execution. The plan should be successful regardless of which particular initial world we start from. It is well known that conformant planning can be transformed into a search problem in belief space, the space whose elements are sets of possible worlds. We introduce a new representation of that search space, replacing the need to store sets of possible worlds with a need to reason about the effects of action sequences. The reasoning is done by implication tests on propositional formulas in conjunctive normal form (CNF) that capture the action sequence semantics. Based on this approach, we extend the classical heuristic forward-search planning system FF to the conformant setting. The key to this extension is an appropriate extension of the relaxation that underlies FF's heuristic function, and of FF's machinery for solving relaxed planning problems: the extended machinery includes a stronger form of the CNF implication tests that we use to reason about the effects of action sequences. Our experimental evaluation shows the resulting planning system to be superior to the state-of-the-art conformant planners MBP, KACMBP, and GPT in a variety of benchmark domains.
S/390 CMOS server I/O: The continuing evolution IBM has developed a strategy to achieve the high I/O demands of large servers. In a new environment of industry-standard peripheral component interconnect (PCI) attached adapters conforming to open I/O interfaces, S/390® has developed an efficient method of quickly integrating disk storage, communications, and future adapters. Preserving the S/390 I/O programming model and the high level of data integrity expected in S/390 products and reducing development cycle time and resources have further constrained design options. At the same time, S/390 developers have redesigned the traditional I/O components into the latest chip technologies. The developers have also designed a new internal link (STI) to meet the increased I/O bandwidth and connectivity required by the high processor performance of the third and fourth generations of S/390 CMOS servers. This paper describes this strategy and how it has led to systems that retain the differentiating features of S/390 products.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.056432
0.03788
0.03588
0.022984
0.010418
0.003307
0.000719
0.000205
0.000052
0.000004
0
0
0
0
Expressive Equivalence of Formalisms for Planning with Sensing There have been several proposals for expressing planning problems with different forms of uncertainty, including non- determinism and partial observability. In this paper we inves- tigate two questions. First, the restriction to certain normal forms of operators, for example, restricting to operators in which nondeterministic choice must be outside conditional effects, or vice versa. We show that some such restrictions lead to an exponentially less succinct representation of prob- lem instances. Second, we consider the problem of reducing certain features of formalisms for planning problem to other, more basic features. We show that compound observations can be reduced to atomic observations, sensing uncertainty can be reduced to effect uncertainty, dependence of observa- tions on the operator last applied (special sensing actions) can be reduced to the case in which same observations are always possible. We show that these reductions are possible without significantly affecting quantitative properties of problem in- stances. One reduction doubles plan length, and the others do not affect plan length and only increase problem instance size slightly.
Mapping conformant planning into SAT through compilation and projection Conformant planning is a variation of classical AI planning where the initial state is partially known and actions can have non-deterministic effects. While a classical plan must achieve the goal from a given initial state using deterministic actions, a conformant plan must achieve the goal in the presence of uncertainty in the initial state and action effects. Conformant planning is computationally harder than classical planning, and unlike classical planning, cannot be reduced polynomially to SAT (unless P = NP). Current SAT approaches to conformant planning, such as those considered by Giunchiglia and colleagues, thus follow a generate-and-test strategy: the models of the theory are generated one by one using a SAT solver (assuming a given planning horizon), and from each such model, a candidate conformant plan is extracted and tested for validity using another SAT call. This works well when the theory has few candidate plans and models, but otherwise is too inefficient. In this paper we propose a different use of a SAT engine where conformant plans are computed by means of a single SAT call over a transformed theory. This transformed theory is obtained by projecting the original theory over the action variables. This operation, while intractable, can be done efficiently provided that the original theory is compiled into d–DNNF (Darwiche 2001), a form akin to OBDDs (Bryant 1992). The experiments that are reported show that the resulting compile-project-sat planner is competitive with state-of-the-art optimal conformant planners and improves upon a planner recently reported at ICAPS-05.
Pruning Conformant Plans by Counting Models on Compiled d-DNNF Representations Optimal planners in the classical setting are built around two notions: branching and pruning. SAT-based planners for ex- ample branch by trying the values of a selected variable, and prune by propagating constraints and checking consistency. In the conformant setting, a similar branching scheme can be used if restricted to action variables, but the pruning scheme must be modified. Indeed, pruning branches that encode in- consistent partial plans is not sufficient since a partial plan may be consistent and complete (covering all the action vari- ables) and still fail to be a conformant plan. This happens indeed when the plan does not conform to some possible ini- tial state or transition. A remedy to this problem is to use a criterion stronger than consistency for pruning. This is actu- ally what we do in this paper where the consistency-based pruning criterion used in classical planning is replaced by a validity-based criterion suitable for conformant planning. Under the assumption that actions are deterministic, a partial plan can be defined as valid when it is logically consistent with the theory and each possible initial state. A valid partial plan that is complete is guaranteed to encode a conformant plan, and vice versa. Checking validity, however, while use- ful for pruning can be very expensive. We show then that such validity checks can be performed in linear time pro- vided that the theory encoding the problem is transformed into a logically equivalent theory in deterministic decompos- able negation normal form (d-DNNF). In d-DNNF, plan va- lidity checks can be reduced to two linear-time operations: projection (finding the strongest consequence of a formula over some of its variables) and model counting (finding the number of satisfying assignments). We then define and eval- uate a conformant planner that branches on action variables, and prunes invalid partial plans in linear time. The empiri- cal results are encouraging, showing the potential benefits of stronger forms of inference in planning tasks that are not re- ducible to SAT.
Planning with Sensing Actions and Incomplete Information Using Logic Programming We present a logic programming based conditional planner that is capable of generating both conditional plans and conformant plans in the presence of sensing actions and incomplete information. We prove the correctness of our implementation and show that our planner is complete with respect to the 0-approximation of sensing actions and the class of conditional plans considered in this paper. Finally, we present preliminary experimental results and discuss further enhancements to the program.
Diagnostic reasoning with A-Prolog In this paper, we suggest an architecture for a software agent which operates a physical device and is capable of making observations and of testing and repairing the device's components. We present simplified definitions of the notions of symptom, candidate diagnosis, and diagnosis which are based on the theory of action language ${\cal AL}$. The definitions allow one to give a simple account of the agent's behavior in which many of the agent's tasks are reduced to computing stable models of logic programs.
Learning for quantified boolean logic satisfiability Learning, i.e., the ability to record and exploit some information which is unveiled during the search, proved to be a very effective AI technique for problem solving and, in particular, for constraint satisfaction. We introduce learning as a general purpose technique to improve the performances of decision procedures for Quantified Boolean Formulas (QBFs). Since many of the recently proposed decision procedures for QBFs solve the formula using search methods, the addition of learning to such procedures has the potential of reducing useless explorations of the search space. To show the applicability of learning for QBF satisfiability we have implemented it in QUBE, a state-of-the-art QBF solver. While the backjumping engine embedded in QUBE provides a good starting point for our task, the addition of learning required us to devise new data structures and led to the definition and implementation of new pruning strategies. We report some experimental results that witness the effectiveness of learning. Noticeably, QUBE augmented with learning is able to solve instances that were previously out if its reach. To the extent of our knowledge, this is the first time that learning is proposed, implemented and tested for QBFs satisfiability.
Clause/term resolution and learning in the evaluation of quantified Boolean formulas Resolution is the rule of inference at the basis of most procedures for automated reasoning. In these procedures, the input formula is first translated into an equisatisfiable formula in conjunctive normal form (CNF) and then represented as a set of clauses. Deduction starts by inferring new clauses by resolution, and goes on until the empty clause is generated or satisfiability of the set of clauses is proven, e.g., because no new clauses can be generated. In this paper, we restrict our attention to the problem of evaluating Quantified Boolean Formulas (QBFs). In this setting, the above outlined deduction process is known to be sound and complete if given a formula in CNF and if a form of resolution, called "Q-resolution", is used. We introduce Q-resolution on terms, to be used for formulas in disjunctive normal form. We show that the computation performed by most of the available procedures for QBFs -based on the Davis-Logemann-Loveland procedure (DLL) for propositional satisfiability- corresponds to a tree in which Q-resolution on terms and clauses alternate. This poses the theoretical bases for the introduction of learning, corresponding to recording Q-resolution formulas associated with the nodes of the tree. We discuss the problems related to the introduction of learning in DLL based procedures, and present solutions extending state-of-the-art proposals coming from the literature on propositional satisfiability. Finally, we show that our DLL based solver extended with learning, performs significantly better on benchmarks used in the 2003 QBF solvers comparative evaluation.
The Complexity of Policy Evaluation for Finite-Horizon Partially-Observable Markov Decision Processes
Planning as satisfiability
The frame problem and knowledge-producing actions This paper proposes a solution to the frame problem for knowledge-producing actions. An example of a knowledge-producing action is a sense operation performed by a robot to determine whether or not there is an object of a particular shape within its grasp. The work is an extension of Reiter's solution to the frame problem for ordinary actions and Moore's work on knowledge and action. The properties of our specification are that knowledge-producing actions do not affect fluents other than the knowledge fluent, and actions that are not knowledge-producing only affect the knowledge fluent as appropriate. In addition, memory emerges as a side-effect: if something is known in a certain situation, it remains known at successor situations, unless something relevant has changed. Also, it will be shown that a form of regression examined by Reiter for reducing reasoning about future situations to reasoning about the initial situation now also applies to knowledge-producing actions.
Future trends in database systems The author discusses the likely evolution of commercial data managers over the next several years. Topics to be covered include the following: why SQL (structured query language) has become a universal standard; who can benefit from SQL standardization; why the current SQL standard has no chance of lasting; why all database systems can be distributed soon; what new technologies are likely to be commercialized; and why vendor independence may be achievable.
End-to-end data integrity for file systems: a ZFS case study We present a study of the effects of disk and memory corruption on file system data integrity. Our analysis focuses on Sun's ZFS, a modern commercial offering with numerous reliability mechanisms. Through careful and thorough fault injection, we show that ZFS is robust to a wide range of disk faults. We further demonstrate that ZFS is less resilient to memory corruption, which can lead to corrupt data being returned to applications or system crashes. Our analysis reveals the importance of considering both memory and disk in the construction of truly robust file and storage systems.
Detecting Inconsistencies in Large Biological Networks with Answer Set Programming We introduce an approach to detecting inconsistencies in large biological networks by using Answer Set Programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on Answer Set Programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies in the data by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.068571
0.023099
0.011559
0.00842
0.00381
0.003084
0.001454
0.000374
0.000109
0.000017
0
0
0
0
Improving Deep Neural Network Performance by Reusing Features Trained with Transductive Transference.
Using Different Cost Functions to Train Stacked Auto-Encoders Deep neural networks comprise several hidden layers of units, which can be pre-trained one at a time via an unsupervised greedy approach. A whole network can then be trained (fine-tuned) in a supervised fashion. One possible pre-training strategy is to regard each hidden layer in the network as the input layer of an auto-encoder. Since auto-encoders aim to reconstruct their own input, their training must be based on some cost function capable of measuring reconstruction performance. Similarly, the supervised fine-tuning of a deep network needs to be based on some cost function that reflects prediction performance. In this work we compare different combinations of cost functions in terms of their impact on layer-wise reconstruction performance and on supervised classification performance of deep networks. We employed two classic functions, namely the cross-entropy (CE) cost and the sum of squared errors (SSE), as well as the exponential (EXP) cost, inspired by the error entropy concept. Our results were based on a number of artificial and real-world data sets.
Domain adaptation problems: a DASVM classification technique and a circular validation strategy. This paper addresses pattern classification in the framework of domain adaptation by considering methods that solve problems in which training data are assumed to be available only for a source domain different (even if related) from the target domain of (unlabeled) test data. Two main novel contributions are proposed: 1) a domain adaptation support vector machine (DASVM) technique which extends the formulation of support vector machines (SVMs) to the domain adaptation framework and 2) a circular indirect accuracy assessment strategy for validating the learning of domain adaptation classifiers when no true labels for the target--domain instances are available. Experimental results, obtained on a series of two-dimensional toy problems and on two real data sets related to brain computer interface and remote sensing applications, confirmed the effectiveness and the reliability of both the DASVM technique and the proposed circular validation strategy.
Self-taught learning: transfer learning from unlabeled data We present a new machine learning framework called "self-taught learning" for using unlabeled data in supervised classification tasks. We do not assume that the unlabeled data follows the same class labels or generative distribution as the labeled data. Thus, we would like to use a large number of unlabeled images (or audio samples, or text documents) randomly downloaded from the Internet to improve performance on a given image (or audio, or text) classification task. Such unlabeled data is significantly easier to obtain than in typical semi-supervised or transfer learning settings, making self-taught learning widely applicable to many practical learning problems. We describe an approach to self-taught learning that uses sparse coding to construct higher-level features using the unlabeled data. These features form a succinct input representation and significantly improve classification performance. When using an SVM for classification, we further show how a Fisher kernel can be learned for this representation.
A fast learning algorithm for deep belief nets. We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.
The well-founded semantics for general logic programs A general logic program (abbreviated to “program” hereafter) is a set of roles that have both positive and negative subgoals. It is common to view a deductive database as a general logic program consisting of rules (IDB) slttmg above elementary relations (EDB, facts). It is desirable to associate one Herbrand model with a program and think of that model as the “meaning of the program, ” or Its“declarative semantics. ” Ideally, queries directed to the program would be answered in accordance with this model. Recent research indicates that some programs do not have a “satisfactory” total model; for such programs, the question of an appropriate partial model arises. Unfounded sets and well-founded partial models are introduced and the well-founded semantics of a program are defined to be its well-founded partial model. If the well-founded partial model is m fact a total model. it is called the well-founded model. It n shown that the class of programs possessing a total well-founded model properly includes previously studied classes of “stratified” and “locally stratified” programs,The method in this paper is also compared with other proposals in the literature, including Clark’s“program completion, ” Fitting’s and Kunen’s 3-vahred interpretations of it, and the “stable models”of Gelfond and Lifschitz.
Affinity analysis of coded data sets Coded data sets are commonly used as compact representations of real world processes. Such data sets have been studied within various research fields from association mining, data warehousing, knowledge discovery, collaborative filtering to machine learning. However, previous studies on coded data sets have introduced methods for the analysis of rather small data sets. This study proposes applying information retrieval for enabling high performance analysis of data masses that scale beyond traditional approaches. Part of this PHD study focuses on new type of kernel projection functions that can be used to find similarities in spare discrete data spaces. This study presents experimental results how information retrieval indexes scale and outperform two common relational data schemas with a leading commercial DBMS for market basket analysis.
Internet of Things (IoT): A vision, architectural elements, and future directions Ubiquitous sensing enabled by Wireless Sensor Network (WSN) technologies cuts across many areas of modern day living. This offers the ability to measure, infer and understand environmental indicators, from delicate ecologies and natural resources to urban environments. The proliferation of these devices in a communicating-actuating network creates the Internet of Things (IoT), wherein sensors and actuators blend seamlessly with the environment around us, and the information is shared across platforms in order to develop a common operating picture (COP). Fueled by the recent adaptation of a variety of enabling wireless technologies such as RFID tags and embedded sensor and actuator nodes, the IoT has stepped out of its infancy and is the next revolutionary technology in transforming the Internet into a fully integrated Future Internet. As we move from www (static pages web) to web2 (social networking web) to web3 (ubiquitous computing web), the need for data-on-demand using sophisticated intuitive queries increases significantly. This paper presents a Cloud centric vision for worldwide implementation of Internet of Things. The key enabling technologies and application domains that are likely to drive IoT research in the near future are discussed. A Cloud implementation using Aneka, which is based on interaction of private and public Clouds is presented. We conclude our IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.
The complexity of combinatorial problems with succinct input representation Several languages for the succinct representation of the instances of combinatorial problems are investigated. These languages have been introduced in [20, 2] and [5] where it has been shown that describing the instances by these languages causes a blow-up of the complexities of some problems. In the present paper the descriptional power of these languages is compared by estimating the complexities of some combinatorial problems in terms of completeness in suitable classes of the “counting polynomial-time hierarchy” which is introduced here. It turns out that some of the languages are not comparable, unless P=NP Some problems left open in [2] are solved.
Fine-Grained Mobility in the Emerald System (Extended Abstract)
Normal forms for answer sets programming Normal forms for logic programs under stable/answer set semantics are introduced. We argue that these forms can simplify the study of program properties, mainly consistency. The first normal form, called the kernel of the program, is useful for studying existence and number of answer sets. A kernel program is composed of the atoms which are undefined in the Well-founded semantics, which are those that directly affect the existence of answer sets. The body of rules is composed of negative literals only. Thus, the kernel form tends to be significantly more compact than other formulations. Also, it is possible to check consistency of kernel programs in terms of colorings of the Extended Dependency Graph program representation which we previously developed. The second normal form is called 3-kernel. A 3-kernel program is composed of the atoms which are undefined in the Well-founded semantics. Rules in 3-kernel programs have at most two conditions, and each rule either belongs to a cycle, or defines a connection between cycles. 3-kernel programs may have positive conditions. The 3-kernel normal form is very useful for the static analysis of program consistency, i.e. the syntactic characterization of existence of answer sets. This result can be obtained thanks to a novel graph-like representation of programs, called Cycle Graph which presented in the companion article Costantini (2004b).
ARIMA time series modeling and forecasting for adaptive I/O prefetching Bursty application I/O patterns, together with transfer limited storage devices, combine to create a major I/O bottleneck on parallel systems. This paper explores the use of time series models to forecast application I/O request times, then prefetching I/O requests during computation intervals to hide I/O latency. Experimental results with I/O intensive scientific codes show performance improvements compared to standard UNIX prefetching strategies.
When Multivariate Forecasting Meets Unsupervised Feature Learning - Towards a Novel Anomaly Detection Framework for Decision Support. Many organizations adopt information technologies to make intelligent decisions during operations. Time-series data plays a crucial role in supporting such decision making processes. Though current studies on time-series based decision making provide reasonably well results, the anomaly detection essence underling most of the scenarios and the plenitude of unlabeled data are largely overlooked and left unexplored. We argue that by using multivariate forecasting and unsupervised feature learning, these two important research gaps could be filled. We carried out two experiments in this study to testify our approach and the results showed that decision support performance was significantly improved. We also proposed a novel framework to integrate the two methods so that our approach may be generalized to a larger problem domain. We discussed the advantages, the limitations and the future work of our study. Both practical and theoretical contributions were also discussed in the paper. © 2012 by the AIS/ICIS Administrative Office All rights reserved.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.2
0.066667
0.022222
0.003448
0.000259
0
0
0
0
0
0
0
0
0
Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching In this paper, we borrow the idea of the receiver operating characteristic (ROC) from clinical medicine and demonstrate its application to sequence comparison. The ROC includes elements of both sensitivity and specificity, and is a quantitative measure of the usefulness of a diagnostic. The ROC is used in this work to investigate the effects of scoring table and gap penalties on database searches. Studies on three families of proteins, 4Fe-4S ferredoxins, lysR bacterial regulatory proteins, and bacterial RNA polymerase σ-factors lead to the following conclusions: sequence families are quite idiosyncratic, but the best PAM distance for database searches using the Smith-Waterman method is somewhat larger than predicted by theoretical methods, about 200 PAM. The length independent gap penalty (gap initation penalty) is quite important, but shows a broad peak at values of about 20–24. The length dependent gap penalty (gap extension penalty) is almost irrelevant suggesting that successful database searches rely only to a limited degree on gapped alignments. Taken together, these observations lead to the conclusion that the optimal conditions for alignments and database searches are not, and should not be expected to be, the same.
Speeding up subset seed algorithm for intensive protein sequence comparison Abstract—Sequence similarity search is a common and re- peated task in molecular biology. The rapid growth of genomic databases leads to the need of speeding up the treatment of this task. In this paper, we present a subset seed algorithm for intensive protein sequence comparison. We have accelerated this algorithm by using indexing technique and fine grained parallelism of GPU and SIMD instructions. We have implemented two programs: iBLASTP, iTBLASTN. The GPU (SIMD) imple- mentation of the two programs achieves a speed up ranging from 5.5 to 10 (4 to 5.6) compared to the BLASTP and TBLASTN of the BLAST program family, with comparable sensitivity.
The Astral Compendium For Protein Structure And Sequence Analysis The ASTRAL compendium provides several databases and tools to aid in the analysis of protein structures, particularly through the use of their sequences. The SPACI scores included in the system summarize the overall characteristics of a protein structure. A structural alignments database indicates residue equivalencies in superimposed protein domain structures, The PDB sequence-map files provide a linkage between the amino acid sequence of the molecule studied (SEQRES records in a database entry) and the sequence of the atoms experimentally observed in the structure (ATOM records). These maps are combined with information in the SCOP database to provide sequences of protein domains. Selected subsets of the domain database, with varying degrees of similarity measured in several different ways, are also available. ASTRAL may be accessed at http://astral.stanford.edu/.
Striped Smith-Waterman speeds database searches six times over other SIMD implementations. The only algorithm guaranteed to find the optimal local alignment is the Smith-Waterman. It is also one of the slowest due to the number of computations required for the search. To speed up the algorithm, Single-Instruction Multiple-Data (SIMD) instructions have been used to parallelize the algorithm at the instruction level.A faster implementation of the Smith-Waterman algorithm is presented. This algorithm achieved 2-8 times performance improvement over other SIMD based Smith-Waterman implementations. On a 2.0 GHz Xeon Core 2 Duo processor, speeds of >3.0 billion cell updates/s were achieved.http://farrar.michael.googlepages.com/Smith-waterman
Optimizing Data Intensive GPGPU Computations for DNA Sequence Alignment. MUMmerGPU uses highly-parallel commodity graphics processing units (GPU) to accelerate the data-intensive computation of aligning next generation DNA sequence data to a reference sequence for use in diverse applications such as disease genotyping and personal genomics. MUMmerGPU 2.0 features a new stackless depth-first-search print kernel and is 13× faster than the serial CPU version of the alignment code and nearly 4× faster in total computation time than MUMmerGPU 1.0. We exhaustively examined 128 GPU data layout configurations to improve register footprint and running time and conclude higher occupancy has greater impact than reduced latency. MUMmerGPU is available open-source at http://mummergpu.sourceforge.net.
Mercury BLASTP: Accelerating Protein Sequence Alignment Large-scale protein sequence comparison is an important but compute-intensive task in molecular biology. BLASTP is the most popular tool for comparative analysis of protein sequences. In recent years, an exponential increase in the size of protein sequence databases has required either exponentially more running time or a cluster of machines to keep pace. To address this problem, we have designed and built a high-performance FPGA-accelerated version of BLASTP, Mercury BLASTP. In this article, we describe the architecture of the portions of the application that are accelerated in the FPGA, and we also describe the integration of these FPGA-accelerated portions with the existing BLASTP software. We have implemented Mercury BLASTP on a commodity workstation with two Xilinx Virtex-II 6000 FPGAs. We show that the new design runs 11--15 times faster than software BLASTP on a modern CPU while delivering close to 99% identical results.
A Novel Technique to Create Energy-Efficient Contexts for Reconfigurable Logic High power consumption is a constraining factor for the growth of programmable logic devices. We propose two techniques in order to reduce power consumption. The first is a technique for creating contexts. This technique uses data- dependent circuits and wire sharing between contexts. The second is a technique for switching the contexts. In this paper, we evaluate the capability of the two techniques to reduce power consumption using a multi-context logic device. As a result, as compared with the original circuit, our multi-context circuits can reduce the power consumption by 9.1% on an average and by a maximum of 19.0%. Furthermore, applying our resource sharing technique to these circuits, we achieved a reduction of 10.6% on an average and a maximum reduction of 18.8%.
High speed homology search with FPGAs. We will introduce a way how we can achieve high speed homology search by only adding one off-the-shelf PCI board with one Field Programmable Gate Array (FPGA) to a Pentium based computer system in use. FPGA is a reconfigurable device, and any kind of circuits, such as pattern matching program, can be realized in a moment. The performance is almost proportional to the size of FPGA which is used in the system, and FPGAs are becoming larger and larger following Moore's law. We can easily obtain latest/larger FPGAs in the form off-the-shelf PCI boards with FPGAs, at low costs. The result which we obtained is as follows. The performance is most comparable with small to middle class dedicated hardware systems when we use a board with one of the latest FPGAs and the performance can be furthermore accelerated by using more number of FPGA boards. The time for comparing a query sequence of 2,048 elements with a database sequence of 64 million elements by the Smith-Waterman algorithm is about 34 sec, which is about 330 times faster than a desktop computer with a 1 GHz Pentium III. We can also accelerate the performance of a laptop computer using a PC card with one smaller FPGA. The time for comparing a query sequence (1,024) with the database sequence (64 million) is about 185 sec, which is about 30 times faster than the desktop computer.
Histograms of Oriented Gradients for Human Detection We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.
A unified architecture for natural language processing: deep neural networks with multitask learning We describe a single convolutional neural network architecture that, given a sentence, outputs a host of language processing predictions: part-of-speech tags, chunks, named entity tags, semantic roles, semantically similar words and the likelihood that the sentence makes sense (grammatically and semantically) using a language model. The entire network is trained jointly on all these tasks using weight-sharing, an instance of multitask learning. All the tasks use labeled data except the language model which is learnt from unlabeled text and represents a novel form of semi-supervised learning for the shared tasks. We show how both multitask learning and semi-supervised learning improve the generalization of the shared tasks, resulting in state-of-the-art-performance.
Principled design of the modern Web architecture The World Wide Web has succeeded in large part because its software architecture has been designed to meet the needs of an Internet-scale distributed hypermedia application. The modern Web architecture emphasizes scalability of component interactions, generality of interfaces, independent deployment of components, and intermediary components to reduce interaction latency, enforce security, and encapsulate legacy systems. In this article we introduce the Representational State Transfer (REST) architectural style, developed as an abstract model of the Web architecture and used to guide our redesign and definition of the Hypertext Transfer Protocol and Uniform Resource Identifiers. We describe the software engineering principles guiding REST and the interaction constraints chosen to retain those principles, contrasting them to the constraints of other architectural styles. We then compare the abstract model to the currently deployed Web architecture in order to elicit mismatches between the existing protocols and the applications they are intended to support.
Variable minimal unsatisfiability In this paper, we present variable minimal unsatisfiability (VMU), which is a generalization of minimal unsatisfiability (MU). A characterization of a VMU formula F is that every variable of F is used in every resolution refutation of F. We show that the class of VMU formulas is DP-complete. For fixed deficiency (the difference of the number of clauses and the number of variables), the VMU formulas can be solved in polynomial time. Furthermore, we investigate more subclasses of VMU formulas. Although the theoretic results on VMU and MU are similar, some observations are shown that the extraction of VMU may be more practical than MU in some cases.
Two-Layer Multiple Kernel Learning.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.111755
0.134299
0.111755
0.053847
0.027117
0.010254
0.000288
0.000077
0
0
0
0
0
0
Exploratory Visual Analysis and Interactive Pattern Extraction from Semi-Structured Data Semi-structured documents are a common type of data containing free text in natural language (unstructured data) as well as additional information about the document, or meta-data, typically following a schema or controlled vocabulary (structured data). Simultaneous analysis of unstructured and structured data enables the discovery of hidden relationships that cannot be identified from either of these sources when analyzed independently of each other. In this work, we present a visual text analytics tool for semi-structured documents (ViTA-SSD), that aims to support the user in the exploration and finding of insightful patterns in a visual and interactive manner in a semi-structured collection of documents. It achieves this goal by presenting to the user a set of coordinated visualizations that allows the linking of the metadata with interactively generated clusters of documents in such a way that relevant patterns can be easily spotted. The system contains two novel approaches in its back end: a feature-learning method to learn a compact representation of the corpus and a fast-clustering approach that has been redesigned to allow user supervision. These novel contributions make it possible for the user to interact with a large and dynamic document collection and to perform several text analytical tasks more efficiently. Finally, we present two use cases that illustrate the suitability of the system for in-depth interactive exploration of semi-structured document collections, two user studies, and results of several evaluations of our text-mining components.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
An Adaptive Bidding Algorithm For Processes, Clusters and Distributed Groups
A Stable Distributed Scheduling Algorithm
Using Sparse Capabilities in a Distributed Operating System Most distributed operating systems constructed to date have lacked a unifying mechanism for naming and protection. In this paper we discuss a system, Amoeba, that uses capabilities for naming and protecting objects. In contrast to traditional, centralized operating systems, in which capabilities are managed by the operating system kernel, in Amoeba all the capabili- ties are managed directly by user code. To prevent tampering, the capabilities are protected cryptographically. The paper describes a variety of the issues involved, and gives four dif- ferent ways of dealing with the access rights.
Wave Scheduling: Distributed Allocation of Task Forces in Network Computers
The Narrowing Gap Between Language Systems and Operating Systems
A distributed file service based on optimistic concurrency control The design of a layered file service for the Amoeba Distributed System is discussed, on top of which various applications can easily be intplemented. The bottom layer is formed by the Amoeba Block Services, responsible for implementing stable storage and repficated, highly available disk blocks. The next layer is formed by the Amoeba File Service which provides version management and concur~ncy control for tree-structured files. On top of this layer, the appficafions, ranging from databases to source code control systems, determine the structure of the file trees and provide an interface to the users.
Object structure in the Emerald system Emerald is an object-based language for the construction of distributed applications. The principal features of Emerald include a uniform object model appropriate for programming both private local objects and shared remote objects, and a type system that permits multiple user-defined and compiler-defined implementations. Emerald objects are fully mobile and can move from node to node within the network, even during an invocation. This paper discusses the structure, programming, and implementation of Emerald objects, and Emerald's use of abstract types.
The SPLASH-2 programs: characterization and methodological considerations The SPLASH-2 suite of parallel applications has recently been released to facilitate the study of centralized and distributed shared-address-space multiprocessors. In this context, this paper has two goals. One is to quantitatively characterize the SPLASH-2 programs in terms of fundamental properties and architectural interactions that are important to understand them well. The properties we study include the computational load balance, communication to computation ratio and traffic needs, important working set sizes, and issues related to spatial locality, as well as how these properties scale with problem size and the number of processors. The other, related goal is methodological: to assist people who will use the programs in architectural evaluations to prune the space of application and machine parameters in an informed and meaningful way. For example, by characterizing the working sets of the applications, we describe which operating points in terms of cache size and problem size are representative of realistic situations, which are not, and which re redundant. Using SPLASH-2 as an example, we hope to convey the importance of understanding the interplay of problem size, number of processors, and working sets in designing experiments and interpreting their results.
The Tiger Shark file system Tiger Shark is a parallel file system for IBM's AIX operating system. It is designed to support interactive multimedia, particularly large-scale systems such as interactive television (ITV). Tiger Shark scales across the entire RS/6000 product line, from small desktop machines to the SP-2 parallel supercomputer. Tiger Shark's primary features are support for continuous time data, scalability, high availability, and manageability, all of which are crucial in its role in large-scale video servers. Interestingly, most of the features that make Tiger Shark a good video server are important for other large-scale applications such as technical computing, data mining, digital library, and scalable network file servers. This paper briefly describes Tiger Shark: the environment that makes it important, the key technology it embodies, and the efforts to build products based on it.
The emerging paradigm shift in storage system architectures The challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. Currently dominant, large-scale storage architectures, built around central, shared storage systems with CPU-connected devices are reaching economic and technological limitations and no longer meet performance, capacity, and transparency requirements. This paper briefly reviews models of historical scientific and technological paradigm shifts and describes why the authors believe such a paradigm shift is underway in storage system architectures. The paper describes the requirements to be met, important technical problems being investigated, such as network-connected devices, use of storage hierarchies, and system management, and the characteristics of the emerging large-scale, distributed, storage-architecture paradigm, illustrated with actual implementations and with standards work under way in the IEEE Storage System Standards Working Group.
Sparse deep belief net model for visual area V2 Motivated in part by the hierarchical organization of the cortex, a number of al- gorithms have recently been proposed that try to learn hierarchical, or "deep," structure from unlabeled data. While several authors have formally or informally compared their algorithms to computations performed in visual area V1 (and the cochlea), little attempt has been made thus far to evaluate these algorithms in terms of their fidelity for mimicking computations at deeper levels in the cortical hier- archy. This paper presents an unsupervised learning model that faithfully mimics certain properties of visual area V2. Specifically, we develop a sparse variant of the deep belief networks of Hinton et al. (2006). We learn two layers of nodes in the network, and demonstrate that the first layer, similar to prior work on sparse coding and ICA, results in localized, oriented, edge filters, similar to the Gabor functions known to model V1 cell receptive fields. Further, the second layer in our model encodes correlations of the first layer responses in the data. Specifically, it picks up both colinear ("contour") features as well as corners and junctions. More interestingly, in a quantitative comparison, the encoding of these more complex "corner" features matches well with the results from the Ito & Komatsu's study of biological V2 responses. This suggests that our sparse variant of deep belief networks holds promise for modeling more higher-order features.
Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives
Structure and Problem Hardness: Goal Asymmetry and DPLL Proofs in SAT-Based Planning In Verification and in (optimal) AI Planning, a successful method is to formulate the application as boolean satisfiability ( SAT), and solve it with state-of-the-art DPLL-based procedures. There is a lack of understanding of why this works so well. Focussing on the Planning context, we identify a form of problem structure concerned with the symmetrical or asymmetrical nature of the cost of achieving the individual planning goals. We quantify this sort of structure with a simple numeric parameter called AsymRatio, ranging between 0 and 1. We run experiments in 10 benchmark domains from the International Planning Competitions since 2000; we show that AsymRatio is a good indicator of SAT solver performance in 8 of these domains. We then examine carefully crafted synthetic planning domains that allow control of the amount of structure, and that are clean enough for a rigorous analysis of the combinatorial search space. The domains are parameterized by size, and by the amount of structure. The CNFs we examine are unsatisfiable, encoding one planning step less than the length of the optimal plan. We prove upper and lower bounds on the size of the best possible DPLL refutations, under different settings of the amount of structure, as a function of size. We also identify the best possible sets of branching variables (backdoors). With minimum AsymRatio, we prove exponential lower bounds, and identify minimal backdoors of size linear in the number of variables. With maximum AsymRatio, we identify logarithmic DPLL refutations ( and backdoors), showing a doubly exponential gap between the two structural extreme cases. The reasons for this behavior - the proof arguments - illuminate the prototypical patterns of structure causing the empirical behavior observed in the competition benchmarks.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.101648
0.101648
0.101648
0.101648
0.10027
0.068264
0.013272
0.000143
0.000001
0
0
0
0
0
Automatic I/O hint generation through speculative execution Aggressive prefetching is an effective technique for reducing the execution times of disk-bound applications; that is, applications that manipulate data too large or too infrequently used to be found in file or disk caches. While automatic prefetching approaches based on static analysis or historical access patterns are effective for some workloads, they are not as effective as manually-driven (programmer-inserted) prefetching for applications with irregular or input-dependent access patterns. In this paper; we propose to exploit whatever processor cycles are left idle while an application is stalled on I/O by using these cycles to dynamically analyze the application and predict its future I/O accesses. Our approach is to speculatively pre-execute the application's code in order to discover and issue hints for its future read accesses. Coupled with an aggressive hint-driven prefetching system, this automatic approach could be applied to arbitrary applications, and should be particularly effective for those with irregular and, up to a point, input-dependent access patterns.We have designed and implemented a binary modification tool, called "SpecHint", that transforms Digital UNIX application binaries to perform speculative execution and issue hints. TIP [Patterson95], an informed prefetching and caching manager; takes advantage of these application-generated hints to better use the file cache and I/O resources. Ne evaluate our design and implementation with three real-world, disk-bound applications from the TIP benchmark suite. While our techniques are currently unsophisticated, they perform surprisingly well. Without any manual modifications, Ice achieve 29%, 69% and 70% reductions in execution time when the data files are striped over four disks, improving performance by the same amount as manually-hinted prefetching for two of our three applications. We examine the performance of our design in a variety of configurations, explaining the circumstances under which it falls short of that achieved when applications were manually modified to issue hints. Through simulation, Mle also estimate how the performance of our design will be affected by the widening gap between processor and disk speeds.
I/O-Conscious Volume Rendering Most existing volume rendering algorithms assume that data sets are memory-resident and thus ignore the performance overhead of disk I/O. While this assumption may be true for high-performance graphics machines, it does not hold for most desktop personal workstations. To minimize the end-to-end volume rendering time, this work re-examines implementation strategies of the ray casting algorithm, taking into account both computation and I/O overheads. Specifically, we developed a data-driven execution model for ray casting that achieves the maximum overlap between rendering computation and disk I/O. Together with other performance optimizations, on a 300-MHz Pentium-II machine, without directional shading, our implementation is able to render a 128x128 greyscale image from a 128x128x128 data set with an average end-to-end delay of 1 second, which is very close to the memory-resident rendering time. With a little modification, this work can also be extended to do out-of-core visualization as well.
IBM TotalStorage Enterprise Storage Server: A designer's view In this paper, we describe the background, objectives, and major decisions associated with the design of IBM TotalStorageâ聞¢ Enterprise Storage Server脗® (ESS), IBM's high-end disk storage system. We first present a brief history of disk storage development over the past three decades and then describe ESS architecture and basic functions. Next we discuss the goals associated with the design of ESS and the methods used to achieve these goals. We then explore some design decisions that significantly affected ESS architecture and performance, and we conclude with some comments about possible future enhancements.
ParFiSys: a parallel file system for MPP The continuous MPP computing power growth has not been corresponded with an equivalent improvement in I/O bandwidth. As a re- sult, computation, memory and I/O are more un- balanced every year, with more MPP applications being I/O bounded. This paper gives an overview of ParFiSys, a parallel file system developed at the UPM to provide I/O services to the GPMIMD machine, an MPP developed within an ESPRIT project. The main goals of ParFiSys are to pro- vide I/O services to scientific applications requiring high I/O bandwidth, to minimize application port- ing effort and to exploit the parallelism of generic message-passing multicomputers.
Informed prefetching of collective input/output requests
Application level I/O caching on Blue Gene/P systems In this paper, we present an application level aggressive I/O caching and prefetching system to hide I/O access latency experienced by out-of-core applications. Without the application level prefetching and caching capability, users of I/O intensive applications need to rewrite them with asynchronous I/O calls or restructure their code with MPI-IO calls to efficiently use the large scale system resources. Our proposed solution of user controllable aggressive caching and prefetching system maintains a file-IO cache in the user space of the application, analyzes the I/O access patterns, prefetches requests, and performs write-back of dirty data to storage asynchronously. So each time the application needs the data it does not have to pay the full I/O latency penalty in going to the storage and getting the required data. We have implemented this aggressive caching and asynchronous prefetching on the Blue Gene/P (BGP) system. The preliminary experiment evaluates the caching performance using the WRF benchmark. The results on BGP system demonstrate that our method improves application I/O throughput.
Reducing seek overhead with application-directed prefetching An analysis of performance characteristics of modern disks finds that prefetching can improve the performance of nonsequential read access patterns by an order of magnitude or more, far more than demonstrated by prior work. Using this analysis, we design prefetching algorithms that make effective use of primary memory, and can sometimes gain additional speedups by reading unneeded data.We show when additional prefetching memory is most critical for performance. A contention controller automatically adjusts prefetching memory usage, preserving the benefits of prefetching while sharing available memory with other applications. When implemented in a library with some kernel changes, our prefetching system improves performance for some workloads of the GIMP image manipulation program and the SQLite database by factors of 4.9x to 20x.
A buffer cache management scheme exploiting both temporal and spatial localities On-disk sequentiality of requested blocks, or their spatial locality, is critical to real disk performance where the throughput of access to sequentially-placed disk blocks can be an order of magnitude higher than that of access to randomly-placed blocks. Unfortunately, spatial locality of cached blocks is largely ignored, and only temporal locality is considered in current system buffer cache managements. Thus, disk performance for workloads without dominant sequential accesses can be seriously degraded. To address this problem, we propose a scheme called DULO (DUal LOcality) which exploits both temporal and spatial localities in the buffer cache management. Leveraging the filtering effect of the buffer cache, DULO can influence the I/O request stream by making the requests passed to the disk more sequential, thus significantly increasing the effectiveness of I/O scheduling and prefetching for disk performance improvements. We have implemented a prototype of DULO in Linux 2.6.11. The implementation shows that DULO can significantly increases disk I/O throughput for real-world applications such as a Web server, TPC benchmark, file system benchmark, and scientific programs. It reduces their execution times by as much as 53&percnt;.
A cost-intelligent application-specific data layout scheme for parallel file systems I/O data access is a recognized performance bottleneck of high-end computing. Several commercial and research parallel file systems have been developed in recent years to ease the performance bottleneck. These advanced file systems perform well on some applications but may not perform well on others. They have not reached their full potential in mitigating the I/O-wall problem. Data access is application dependent. Based on the application-specific optimization principle, in this study we propose a cost-intelligent data access strategy to improve the performance of parallel file systems. We first present a novel model to estimate data access cost of different data layout policies. Next, we extend the cost model to calculate the overall I/O cost of any given application and choose an appropriate layout policy for the application. A complex application may consist of different data access patterns. Averaging the data access patterns may not be the best solution for those complex applications that do not have a dominant pattern. We then further propose a hybrid data replication strategy for those applications, so that a file can have replications with different layout policies for the best performance. Theoretical analysis and experimental testing have been conducted to verify the newly proposed cost-intelligent layout approach. Analytical and experimental results show that the proposed cost model is effective and the application-specific data layout approach achieved up to 74% performance improvement for data-intensive applications.
CEFT: A cost-effective, fault-tolerant parallel virtual file system The vulnerability of computer nodes due to component failures is a critical issue for cluster-based file systems. This paper studies the development and deployment of mirroring in cluster-based parallel virtual file systems to provide fault tolerance and analyzes the tradeoffs between the performance and the reliability in the mirroring scheme. It presents the design and implementation of CEFT, a scalable RAID-10 style file system based on PVFS, and proposes four novel mirroring protocols depending on whether the mirroring operations are server-driven or client-driven, whether they are asynchronous or synchronous. The comparisons of their write performances, measured in a real cluster, and their reliability and availability, obtained through analytical modeling, show that these protocols strike different tradeoffs between the reliability and performance. Protocols with higher peak write performance are less reliable than those with lower peak write performance, and vice versa. A hybrid protocol is proposed to optimize this tradeoff.
An adaptive partitioning scheme for DRAM-based cache in Solid State Drives Recently, NAND flash-based Solid State Drives (SSDs) have been rapidly adopted in laptops, desktops, and server storage systems because their performance is superior to that of traditional magnetic disks. However, NAND flash memory has some limitations such as out-of-place updates, bulk erase operations, and a limited number of write operations. To alleviate these unfavorable characteristics, various techniques for improving internal software and hardware components have been devised. In particular, the internal device cache of SSDs has a significant impact on the performance. The device cache is used for two main purposes: to absorb frequent read/write requests and to store logical-to-physical address mapping information. In the device cache, we observed that the optimal ratio of the data buffering and the address mapping space changes according to workload characteristics. To achieve optimal performance in SSDs, the device cache should be appropriately partitioned between the two main purposes. In this paper, we propose an adaptive partitioning scheme, which is based on a ghost caching mechanism, to adaptively tune the ratio of the buffering and the mapping space in the device cache according to the workload characteristics. The simulation results demonstrate that the performance of the proposed scheme approximates the best performance.
Logic programs with stable model semantics as a constraint programming paradigm Logic programming with the stable model semantics is put forward as a novel constraint programming paradigm. This paradigm is interesting because it bring advantages of logic programming based knowledge representation techniques to constraint programming and because implementation methods for the stable model semantics for ground (variable&dash;free) programs have advanced significantly in recent years. For a program with variables these methods need a grounding procedure for generating a variable&dash;free program. As a practical approach to handling the grounding problem a subclass of logic programs, domain restricted programs, is proposed. This subclass enables efficient grounding procedures and serves as a basis for integrating built&dash;in predicates and functions often needed in applications. It is shown that the novel paradigm embeds classical logical satisfiability and standard (finite domain) constraint satisfaction problems but seems to provide a more expressive framework from a knowledge representation point of view. The first steps towards a programming methodology for the new paradigm are taken by presenting solutions to standard constraint satisfaction problems, combinatorial graph problems and planning problems. An efficient implementation of the paradigm based on domain restricted programs has been developed. This is an extension of a previous implementation of the stable model semantics, the Smodels system, and is publicly available. It contains, e.g., built&dash;in integer arithmetic integrated to stable model computation. The implementation is described briefly and some test results illustrating the current level of performance are reported.
Strengthening Landmark Heuristics via Hitting Sets The landmark cut heuristic is perhaps the strongest known polytime admissible approximation of the optimal delete relaxation heuristic h+. Equipped with this heuristic, a best-first search was able to optimally solve 40% more benchmark problems than the winners of the sequential optimization track of IPC 2008. We show that this heuristic can be understood as a simple relaxation of a hitting set problem, and that stronger heuristics can be obtained by considering stronger relaxations. Based on these findings, we propose a simple polytime method for obtaining heuristics stronger than landmark cut, and evaluate them over benchmark problems. We also show that hitting sets can be used to characterize h+ and thus provide a fresh and novel insight for better comprehension of the delete relaxation.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.003705
0.005732
0.005476
0.005333
0.003317
0.002933
0.002346
0.001276
0.000667
0.000077
0.000002
0
0
0
Reducing Web latency with hierarchical cache-based prefetching Proxy caches have become a central mechanism for reducing the latency of web document retrieval. While caching alone reduces latency for previously requested documents, web document prefetching could mask latency for previously unseen, but correctly predicted requests. We describe a prefetching algorithm suitable for use in a network of hierarchical web caches; this algorithm observes requests to a cache and its ancestors, and initiates prefetching for predicted future requests if prefetching is likely to reduce the overall latency seen by the cache's clients. We introduce a novel cost-benefit model that allows us to judge the value of any cached or prefetched document, which we use to state a formal prefetching policy. Extensive simulations were run to judge the improvements offered by prefetching, and our approach is quantitatively compared to the method currently in use.
NPS: a non-interfering deployable web perfectching system We present NPS, a novel non-intrusive web prefetching system that (1) utilizes only spare resources to avoid interference between prefetch and demand requests at the server as well as in the network , and (2) is deployable without any modifications to servers, browsers, network or the HTTP protocol. NPS's self-tuning architecture eliminates the need for traditional "thresholds" or magic numbers typically used to limit interference caused by prefetching, thereby allowing applications to improve benefits and reduce the risk of aggressive prefetching. NPS avoids interference with demand requests by monitoring the responsiveness of the server and accordingly throttling the prefetch aggressiveness, and by using TCP-Nice, a congestion control protocol suitable for low priority transfers. NPS avoids the need to modify existing infrastructure by modifying HTML pages to include JavascriptTM code that issues prefetch requests and by wrapping the server infrastructure with several simple external modules that require no knowledge of or no modifications to the internals of existing servers. Our measurements of the prototype under a web trace indicate that NPS is both non-interfering and efficient under different network load and server load conditions. For example, in our experiments with a loaded server with little spare capacity, we observe that a threshold-based prefetching scheme causes response times to increase by a factor of 2 due to interference, whereas prefetching using NPS decreases response times by 25%.
Hinted caching in the web The World Wide Web, like any practical distributed system, benefits greatly from caching. Many studies have shown relatively poor cache performance, because existing caches depend on temporal locality, and reference patterns in the Web do not have particularly high temporal locality. We can improve Web caching by exploiting spatial locality. This requires protocol changes to allow servers to provide hints to caches, both to support prefetching and to improve allocation and replacement policies.
Web prefetching between low-bandwidth clients and proxies: potential and performance The majority of the Internet population access the World Wide Web via dial-up modem connections. Studies have shown that the limited modem bandwidth is the main contributor to latency perceived by users. In this paper, we investigate one approach to reduce latency: prefetching between caching proxies and browsers. The approach relies on the proxy to predict which cached documents a user might reference next, and takes advantage of the idle time between user requests to push or pull the documents to the user. Using traces of modem Web accesses, we evaluate the potential of the technique at reducing client latency, examine the design of prediction algorithms, an’d investigate their performance varying the parameters and implementation concerns. Our results show that prefetching combined with large browser cache and delta-compression can reduce client latency up to 23.4%. The reduction is achieved using the Prediction-by-Partial-Matching (PPM) algorithm, whose accuracy ranges from 40% to 73% depending on its parameters, and which generates 1% to 15% extra trafhc on the modem links. A perfect predictor can increase the latency reduction to 28.50/o, whereas without prefetching, large browser cache and delta-compression can only reduce latency by 14.4%. Depending on the desired properties of the algorithm, several configurations for PPM can be best choices. Among several attractive simplifications of the scheme, some do more harm than others; in particular, it is important for the predictor to observe all accesses made by users, including browser cache hits.
Extended stable semantics for normal and disjunctive programs
A neural probabilistic language model A goal of statistical language modeling is to learn the joint probability function of sequences of words in a language. This is intrinsically difficult because of the curse of dimensionality: a word sequence on which the model will be tested is likely to be different from all the word sequences seen during training. Traditional but very successful approaches based on n-grams obtain generalization by concatenating very short overlapping sequences seen in the training set. We propose to fight the curse of dimensionality by learning a distributed representation for words which allows each training sentence to inform the model about an exponential number of semantically neighboring sentences. The model learns simultaneously (1) a distributed representation for each word along with (2) the probability function for word sequences, expressed in terms of these representations. Generalization is obtained because a sequence of words that has never been seen before gets high probability if it is made of words that are similar (in the sense of having a nearby representation) to words forming an already seen sentence. Training such large models (with millions of parameters) within a reasonable time is itself a significant challenge. We report on experiments using neural networks for the probability function, showing on two text corpora that the proposed approach significantly improves on state-of-the-art n-gram models, and that the proposed approach allows to take advantage of longer contexts.
On the scale and performance of cooperative Web proxy caching Abstract While algorithms for cooperative proxy caching have been widely studied, little is understood about cooperative- caching performance,in the large-scale World Wide Web en- vironment. This paper uses both trace-based analysis and analytic modelling,to show,the potential advantages and drawbacks of inter-proxy cooperation. With our traces, we evaluate quantitatively the performance-improvement po- tential of cooperation between 200 small-organization prox- ies within a university environment, and between two large- organization proxies handling 23,000 and 60,000 clients, re- spectively. With our model, we extend beyond these popula- tions to project cooperative caching behavior in regions with millions of clients. Overall, we demonstrate that cooperative caching has performance,benefits only within limited popu- lation bounds. We also use our model to examine the impli- cations of future trends in Web-access behavior and traffic.
A case for redundant arrays of inexpensive disks (RAID) Increasing performance of CPUs and memories will be squandered if not matched by a similar performance increase in I/O. While the capacity of Single Large Expensive Disks (SLED) has grown rapidly, the performance improvement of SLED has been modest. Redundant Arrays of Inexpensive Disks (RAID), based on the magnetic disk technology developed for personal computers, offers an attractive alternative to SLED, promising improvements of an order of magnitude in performance, reliability, power consumption, and scalability. This paper introduces five levels of RAIDs, giving their relative cost/performance, and compares RAID to an IBM 3380 and a Fujitsu Super Eagle.
The Boolean hierarchy: hardware over NP In this paper, we study the complexity of sets formed by boolean operations $(\bigcup, \bigcap,$ and complementation) on NP sets. These are the sets accepted by trees of hardware with NP predicates as leaves, and together form the boolean hierarchy. We present many results about the boolean hierarchy: separation and immunity results, complete languages, upward separations, connections to sparse oracles for NP, and structural asymmetries between complementary classes. Some results present new ideas and techniques. Others put previous results about NP and $D^{P}$ in a richer perspective. Throughout, we emphasize the structure of the boolean hierarchy and its relations with more common classes.
A Stable Distributed Scheduling Algorithm
Application performance and flexibility on exokernel systems The exokemel operating system architecture safely gives untrusted software efficient control over hardware and software resources by separating management from protection. This paper describes an exokemel system that allows specialized applications to achieve high performance without sacrificing the performance of unmodified UNIX programs. It evaluates the exokemel architecture by measuring end-to-end application performance on Xok, an exokernel for Intel x86-based computers, and by comparing Xok’s performance to the performance of two widely-used 4.4BSD UNIX systems (FreeBSD and OpenBSD). The results show that common unmodified UNIX applications can enjoy the benefits of exokernels: applications either perform comparably on Xok/ExOS and the BSD UNIXes, or perform significantly better. In addition, the results show that customized applications can benefit substantially from control over their resources (e.g., a factor of eight for a Web server). This paper also describes insights about the exokemel approach gained through building three different exokemel systems, and presents novel approaches to resource multiplexing.
iSAM: Incremental Smoothing and Mapping In this paper, we present incremental smoothing and mapping (iSAM), which is a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, thereby recalculating only those matrix entries that actually change. iSAM is efficient even for robot trajectories with many loops as it avoids unnecessary fill-in in the factor matrix by periodic variable reordering. Also, to enable data association in real time, we provide efficient algorithms to access the estimation uncertainties of interest based on the factored information matrix. We systematically evaluate the different components of iSAM as well as the overall algorithm using various simulated and real-world datasets for both landmark and pose-only settings.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.2
0.2
0.1
0.028571
0
0
0
0
0
0
0
0
0
0
The next big thing: position statements This panel is a celebration of artificial intelligence (AI). Basing its claims to interest on the past accomplishments of AI, it highlights some of the new exciting concepts and technologies that compete for the title The Next Big Thing.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Learning ensemble classifiers via restricted Boltzmann machines Recently, restricted Boltzmann machines (RBMs) have attracted considerable interest in machine learning field due to their strong ability to extract features. Given some training data, an RBM or a stack of several RBMs can be used to extract informative features. Meanwhile, ensemble learning is an active research area in machine learning owing to their potential to greatly increase the prediction accuracy of a single classifier. However, RBMs have not been studied to work with ensemble learning so far. In this study, we present several methods for integrating RBMs with bagging to generate diverse and accurate individual classifiers. Taking a classification tree as the base learning algorithm, a thoroughly experimental study conducted on 31 real-world data sets yields some promising conclusions. When using the features extracted by RBMs in ensemble learning, the best way is to perform model combination respectively on the original feature set and the one extracted by a single RBM. However, the prediction performance becomes worse when the features detected by a stack of 2 RBMs are also considered. As for the features detected by RBMs, good classification can be obtained only when they are used together with the original features.
Training restricted boltzmann machines with multi-tempering: harnessing parallelization Restricted Boltzmann Machines (RBM's) are unsupervised probabilistic neural networks that can be stacked to form Deep Belief Networks. Given the recent popularity of RBM's and the increasing availability of parallel computing architectures, it becomes interesting to investigate learning algorithms for RBM's that benefit from parallel computations. In this paper, we look at two extensions of the parallel tempering algorithm, which is a Markov Chain Monte Carlo method to approximate the likelihood gradient. The first extension is directed at a more effective exchange of information among the parallel sampling chains. The second extension estimates gradients by averaging over chains from different temperatures. We investigate the efficiency of the proposed methods and demonstrate their usefulness on the MNIST dataset. Especially the weighted averaging seems to benefit Maximum Likelihood learning.
DISCRIMINATIVE DEEP BELIEF NETWORKS FOR IMAGE CLASSIFICATION This paper presents a novel semi-supervised learning algorithm called Discriminative Deep Belief Networks (DDBN), to address the image classification problem with limited labeled data. We first construct a new deep architecture for classification using a set of Restricted Boltzmann Machines (RBM). The parameter space of the deep architecture is initially determined using labeled data together with abundant of unlabeled data, by greedy layerwise unsupervised learning. Then, we fine-tune the whole deep networks using an exponential loss function to maximize the separability of the labeled data, by gradient-descent based supervised learning. Experiments on the artificial dataset and real image datasets show that DDBN outperforms most semi-supervised algorithm and deep learning techniques, especially for the hard classification tasks.
Training restricted Boltzmann machines: An introduction Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can be interpreted as stochastic neural networks. They have attracted much attention as building blocks for the multi-layer learning systems called deep belief networks, and variants and extensions of RBMs have found application in a wide range of pattern recognition tasks. This tutorial introduces RBMs from the viewpoint of Markov random fields, starting with the required concepts of undirected graphical models. Different learning algorithms for RBMs, including contrastive divergence learning and parallel tempering, are discussed. As sampling from RBMs, and therefore also most of their learning algorithms, are based on Markov chain Monte Carlo (MCMC) methods, an introduction to Markov chains and MCMC techniques is provided. Experiments demonstrate relevant aspects of RBM training.
Using fast weights to improve persistent contrastive divergence The most commonly used learning algorithm for restricted Boltzmann machines is contrastive divergence which starts a Markov chain at a data point and runs the chain for only a few iterations to get a cheap, low variance estimate of the sufficient statistics under the model. Tieleman (2008) showed that better learning can be achieved by estimating the model's statistics using a small set of persistent "fantasy particles" that are not reinitialized to data points after each weight update. With sufficiently small weight updates, the fantasy particles represent the equilibrium distribution accurately but to explain why the method works with much larger weight updates it is necessary to consider the interaction between the weight updates and the Markov chain. We show that the weight updates force the Markov chain to mix fast, and using this insight we develop an even faster mixing chain that uses an auxiliary set of "fast weights" to implement a temporary overlay on the energy landscape. The fast weights learn rapidly but also decay rapidly and do not contribute to the normal energy landscape that defines the model.
Restricted Boltzmann Machines and Deep Belief Networks on multi-core processors Deep learning architecture models by contrast with shallow models draw on the insights of biological inspiration which has been a challenge since the inception of the idea of simulating the brain. In particular their (many) hierarchical levels of composition track the development of parallel implementation in an attempt to become accessibly fast. When it comes to performance enhancement Graphics Processing Units (GPU) have carved their own strength in machine learning. In this paper, we present an approach that relies mainly on three kernels for implementing both the Restricted Boltzmann Machines (RBM) and Deep Belief Networks (DBN) algorithms. Instead of considering the neuron as the smallest unit of computation each thread represents the connection between two (one visible and one hidden) neurons. Although conceptually it may seem weird, the rationale behind is to think of a connection as performing a simple function that multiplies the clamped input by its weight. Thus, we maximize the GPU workload avoiding idle cores. Moreover, we placed great emphasis on the kernels to avoid uncoalesced memory accesses as well as to take advantage of the shared memory to reduce global memory accesses. Additionally, our approach uses a step adaptive learning rate procedure which accelerates convergence. The approach yields very good speedups (up to 46×) as compared with a straightforward implementation when both GPU and CPU implementations are tested on the MINST database.
Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition We present an unsupervised method for learning a hi- erarchy of sparse feature detectors that are invariant to small shifts and distortions. The resulting feature extrac - tor consists of multiple convolution filters, followed by a feature-pooling layer that computes the max of each fil- ter output within adjacent windows, and a point-wise sig- moid non-linearity. A second level of larger and more in- variant features is obtained by training the same algorithm on patches of features from the first level. Training a su- pervised classifier on these features yields 0.64% error on MNIST, and 54% average recognition rate on Caltech 101 with 30 training samples per category. While the result- ing architecture is similar to convolutional networks, the layer-wise unsupervised training procedure alleviates th e over-parameterization problems that plague purely super- vised learning procedures, and yields good performance with very few labeled training samples.
Self Supervised Boosting Boosting algorithms and successful applications thereof abound for clas- sification and regression learning problems, but not for unsupervised learning. We propose a sequential approach to adding features to a ran- dom field model by training them to improve classification performance between the data and an equal-sized sample of "negative examples" gen- erated from the model's current estimate of the data density. Training in each boosting round proceeds in three stages: first we sample negative examples from the model's current Boltzmann distribution. Next, a fea- ture is trained to improve classification performance between data and negative examples. Finally, a coefficient is learned which determines the importance of this feature relative to ones already in the pool. Negative examples only need to be generated once to learn each new feature. The validity of the approach is demonstrated on binary digits and continuous synthetic data.
Input space versus feature space in kernel-based methods. This paper collects some ideas targeted at advancing our understanding of the feature spaces associated with support vector (SV) kernel functions. We first discuss the geometry of feature space. In particular, we review what is known about the shape of the image of input space under the feature space map, and how this influences the capacity of SV methods. Following this, we describe how the metric governing the intrinsic geometry of the mapped surface can be computed in terms of the kernel, using the example of the class of inhomogeneous polynomial kernels, which are often used in SV pattern recognition. We then discuss the connection between feature space and input space by dealing with the question of how one can, given some vector in feature space, find a preimage (exact or approximate) in input space. We describe algorithms to tackle this issue, and show their utility in two applications of kernel methods. First, we use it to reduce the computational complexity of SV decision functions; second, we combine it with the Kernel PCA algorithm, thereby constructing a nonlinear statistical denoising technique which is shown to perform well on real-world data.
The deterministic part of the seventh International Planning Competition The International Planning Competition is organized in the context of the International Conference on Automated Planning and Scheduling (ICAPS) and it is considered a reference source for the planning and scheduling community. The competition is typically organized every two years and deals with relevant issues for the community such as the definition of evaluation standards, the publication of benchmarks and the collection and dissemination of data about state-of-the-art planners. This paper focuses on the deterministic part, the longest-running part of the International Planning Competition. The paper describes its format, the participants, the selection of benchmarks and the generated results accompanied with analysis from different perspectives. The paper also examines the results of a brand new track created to explore the potential of planners that exploit the power of multi-core processors. Overall, the results of the competition indicate significant progress with respect to previous competitions, but they also reveal that some issues remain open and need further research, such as the coverage of temporal planners when concurrency is required and the performance in the multi-core track. As a novelty, all the data and the software generated for running the competition have been made publicly available allowing researchers to reproduce the competition and to carry out different analysis of the results.
A performance evaluation of RAID architectures In today's computer systems, the disk I/O subsystem is often identified as the major bottleneck to system performance. One proposed solution is the so called redundant array of inexpensive disks (RAID). We examine the performance of two of the most promising RAID architectures, the mirrored array and the rotated parity array. First, we propose several scheduling policies for the mirrored array and a new data layout, group-rotate declustering, and compare their performance with each other and in combination with other data layout schemes. We observe that a policy that routes reads to the disk with the smallest number of requests provides the best performance, especially when the load on the I/O system is high. Second, through a combination of simulation and analysis, we compare the performance of this mirrored array architecture to the rotated parity array architecture. This latter study shows that: 1) given the same storage capacity (approximately double the number of disks), the mirrored array considerably outperforms the rotated parity array; and 2) given the same number of disks, the mirrored array still outperforms the rotated parity array in most cases, even for applications where I/O requests are for large amounts of data. The only exception occurs when the I/O size is very large; most of the requests are writes, and most of these writes perform full stripe write operations
Extension and Equivalence Problems for Clause Minimal Formulae Inspired by the notion of minimal unsatisfiable formulae we first introduce and study the class of clause minimal formulae. A CNF formula F is said to be clause minimal if any proper subformula of F is not equivalent to F. We investigate the equivalence and extension problems for clause minimal formulae. The extension problem is the question whether for two formulae F and H there is some formula G such that F+G is equivalent to H. Generally, we show that these problems are intractable. Then we discuss the complexity of these problems restricted by various parameters and constraints. In the last section we ask several open questions in this area.
Generating User Interfaces from Formal Specifications of the Application The generation of the dialogue description from an algebraic specification of the application and its restrictions to different user groups are presented. The idea and motivation for the work is that the development of the application and the UI has to go hand in hand. Moreover, the UI should be generated since the programming of UIs is a time consuming and error-prone task. A formal specification of an ap- plication, characterizing the application in an abstract way, allows the automatic analyses and the generation of specifications, describing the dynamic behaviour of the UI. The generated (dynamic) specification can be used as an input for an exist- ing UI Generator (UIG), called BOSS, which is part of a formal UI development environment, called FUSE.
Learning A Lexical Simplifier Using Wikipedia In this paper we introduce a new lexical simplification approach. We extract over 30K candidate lexical simplifications by identifying aligned words in a sentence-aligned corpus of English Wikipedia with Simple English Wikipedia. To apply these rules, we learn a feature-based ranker using SVMnk trained on a set of labeled simplifications collected using Amazon's Mechanical Turk. Using human simplifications for evaluation, we achieve a precision of 76% with changes in 86% of the examples.
1.1055
0.037053
0.02775
0.006395
0.003206
0.0008
0.000085
0.000013
0.000003
0
0
0
0
0
Reasoning about Actions and Planning in LTL Action Theories In this paper, we study reasoning about actionsand planning with incomplete informationin a setting where the dynamic system isspecified by adopting Linear Temporal Logic(ltl). Specifically, we study: (i) reasoningabout action effects (i.e., projection, historicalqueries, etc.), in such a setting; (ii) whenactions can be legally executed, assuming anon-prescriptive approach, where executingan action is possible in a given situation unlessforbidden by the system...
A Multi-Agent System-driven AI Planning Approach to Biological Pathway Discovery As genomic and proteomic data is collected from high- throughput methods on a daily basis, subcellular com- ponents are identified and their in vitro behavior is char- acterized. However, much less is known of their in vivo activity because of the complex subcellular milieu they operate within. A component's milieu is determined by the biological pathways it participates in, and hence, the mechanisms by which it is regulated. We believe AI planning technology provides a modeling formalism for the task of biological pathway discovery, such that hypothetical pathways can be generated, queried and qualitatively simulated. The task of signal transduction pathway discovery is re-cast as a planning problem, one in which the initial and final states are known and cellu- lar processes captured as abstract operators that mod- ify the cellular environment. Thus, a valid plan that transforms the initial state into a goal state is a hypo- thetical pathway that prescribes the order of signaling events that must occur to effect the goal state. The plan- ner is driven by data that is stored within a knowledge base and retrieved from heterogeneous sources (includ- ing gene expression, protein-protein interaction and lit- erature mining) by a multi-agent information gathering system. We demonstrate the combined technology by translating the well-known EGF pathway into the plan- ning formalism and deploying the Fast-Forward planner to reconstruct the pathway directly from the knowledge base.
Specifying and computing preferred plans In this paper, we address the problem of specifying and computing preferred plans using rich, qualitative, user preferences. We propose a logical language for specifying preferences over the evolution of states and actions associated with a plan. We provide a semantics for our first-order preference language in the situation calculus, and prove that progression of our preference formulae preserves this semantics. This leads to the development of PPlan, a bounded best-first search planner that computes preferred plans. Our preference language is amenable to integration with many existing planners, and beyond planning, can be used to support a diversity of dynamical reasoning tasks that employ preferences.
Linear Time Logic, Conditioned Models, and Planning with Incomplete Knowledge The "planning as satisfiability" paradigm, which reduces solving a planning problem P to the search of a model of a logical description of P, relies on the assumption that the agent has complete knowledge and control over the world. This work faces the problem of planning in the presence of incomplete information and/or exogenous events, still keeping inside the "planning as satisfiability" paradigm, in the context of linear time logic.We give a logical characterization of a "conditioned model", which represents a plan solving a given problem together with a set of "conditions" that guarantee its executability. During execution, conditions have to be checked by means of sensing actions. When a condition turns out to be false, a different "conditioned plan" must be considered. A whole conditional plan is represented by a set of conditioned models. The interest of splitting a conditional plan into significant sub-parts is due to the heavy computational complexity of conditional planning.The paper presents an extension of the standard tableau calculus for linear time logic, allowing one to extract from a single open branch a conditioned model of the initial set of formulae, i.e. a partial description of a model and a set of conditions U guaranteeing its "executability". As can be expected, if U is required to be minimal, the analysis of a single branch is not sufficient. We show how a global view on the whole tableau can be used to prune U from redundant conditions. In any case, if the calculus is to be used with the aim of producing the whole conditional plan off-line, a complete tableau must be built. On the other hand, a single conditioned model can be used when planning and execution (with sensing actions) are intermingled. In that case, the requirement for minimality can reasonably be relaxed.
Reasoning about Continuous Processes Overcoming the disadvantages of equidistant dis- cretization of continuous actions, we introduce an ap- proach that separates time into slices of varying length bordered by certain events. Such events are points in time at which the equations describing the sys- tem's behavior|that is, the equations which specify the ongoing processes|change. Between two events the system's parameters stay continuous. A high-level semantics for drawing logical conclusions about dy- namic systems with continuous processes is presented, and we have developed an adequate calculus to auto- mate this reasoning process. In doing this, we have combined deduction and numerical calculus, ofiering logical reasoning about precise, quantitative system information. The scenario of multiple balls moving in 1-dimensional space interacting with a pendulum serves as demonstration example of our method.
Detecting Inconsistencies in Large Biological Networks with Answer Set Programming We introduce an approach to detecting inconsistencies in large biological networks by using Answer Set Programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on Answer Set Programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies in the data by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions.
Causal theories of action: a computational core We propose a framework for simple causal theories of action, and study the computational complexity in it of various reasoning tasks such as determinism, progression and regression under various assumptions. As it turned out, even the simplest one among them, one-step temporal projection with complete initial state, is intractable. We also briefly consider an extension of the framework to allow truly indeterministic actions, and find that this extension does not increase the complexity of any of the tasks considered here.
Parameterized Complexity Results for Plan Reuse. Planning is a notoriously difficult computational problem of high worst-case complexity. Researchers have been investing significant efforts to develop heuristics or restrictions to make planning practically feasible. Case-based planning is a heuristic approach where one tries to reuse previous experience when solving similar problems in order to avoid some of the planning effort. Plan reuse may offer an interesting alternative to plan generation in some settings. We provide theoretical results that identify situations in which plan reuse is provably tractable. We perform our analysis in the framework of parameterized complexity, which supports a rigorous worst-case complexity analysis that takes structural properties of the input into account in terms of parameters. A central notion of parameterized complexity is fixed-parameter tractability which extends the classical notion of polynomial-time tractability by utilizing the effect of structural properties of the problem input. We draw a detailed map of the parameterized complexity landscape of several variants of problems that arise in the context of case-based planning. In particular, we consider the problem of reusing an existing plan, imposing various restrictions in terms of parameters, such as the number of steps that can be added to the existing plan to turn it into a solution of the planning instance at hand.
Ramification and causality The ramification problem in the context of commonsense reasoning about actions andchange names the challenge to accommodate actions whose execution causes indirecteffects. Not being part of the respective action specification, such effects are consequencesof general laws describing dependencies between components of the world description. Wepresent a general approach to this problem which incorporates causality, formalized bydirected relations between two single effects stating that, under ...
Affinity analysis of coded data sets Coded data sets are commonly used as compact representations of real world processes. Such data sets have been studied within various research fields from association mining, data warehousing, knowledge discovery, collaborative filtering to machine learning. However, previous studies on coded data sets have introduced methods for the analysis of rather small data sets. This study proposes applying information retrieval for enabling high performance analysis of data masses that scale beyond traditional approaches. Part of this PHD study focuses on new type of kernel projection functions that can be used to find similarities in spare discrete data spaces. This study presents experimental results how information retrieval indexes scale and outperform two common relational data schemas with a leading commercial DBMS for market basket analysis.
Feature Extraction and a Database Strategy for Video Fingerprinting This paper presents the concept of video fingerprinting as a tool for video identification. As such, video fingerprinting is an important tool for persistent identification as proposed in MPEG-21. Applications range from video monitoring on broadcast channels to filtering on peer-to-peer networks to meta-data restoration in large digital libraries. We present considerations and a technique for (i) extracting essential perceptual features from moving image sequences and (ii) for identifying any sufficiently long unknown video segment by efficiently matching the fingerprint of the short segment with a large database of pre-computed fingerprints.
A few useful things to know about machine learning Tapping into the \"folk knowledge\" needed to advance machine learning applications.
Dynamic Multi-Resource Load Balancing in Parallel Database Systems
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.038753
0.063492
0.028571
0.028571
0.012698
0.00254
0.000564
0.000179
0.000054
0
0
0
0
0
Towards an efficient storage and retrieval mechanism for large unstructured grids The size of spatial scientific datasets is steadily increasing due to improvements in instruments and availability of computational resources. However, much of the research on efficient storage and access to spatial datasets has focused on large multidimensional arrays. In contrast, unstructured grids consisting of collections of simplices (e.g. triangles or tetrahedra) present special challenges that have received less attention. Data values found at the vertices of the simplices may be dispersed throughout a datafile, producing especially poor disk locality.Our previous work has focused on addressing this locality problem. In this paper, we reorganize the unstructured grid to improve locality of disk access by maintaining the spatial neighborhood relationships inherent in the unstructured grid. This reorganization produces significant gains in performance by reducing the number of accesses made to the data file. We also examine the effects of different chunking configurations on data retrieval performance. A major motivation for reorganizing the unstructured grid is to allow the application of iteration aware prefetching. Applying this prefetching method to unstructured grids produces further performance gains over and above the gains seen from reorganization alone.The work presented in this journal contains at least 40% new material not included in our conference paper (Akande and Rhodes 2013). We dramatically enhance I/O performance with unstructured grids.We improve locality of reference by reorganizing large files of unstructured grids.A prefetching cache takes advantage of prior knowledge of the access pattern.We handle simplices that span chunk boundaries without duplicating data values.
Informed prefetching and caching The underutilization of disk parallelism and file cache buffers by traditional file systems induces I/O stall time that degrades the performance of modern microprocessor-based systems. In this paper, we present aggressive mechanisms that tailor file system resource management to the needs of I/O-intensive applications. In particular, we show how to use application-disclosed access patterns (hints) to expose and exploit I/O parallelism and to allocate dynamically file buffers among three competing demands: prefetching hinted blocks, caching hinted blocks for reuse, and caching recently used data for unhinted accesses. Our approach estimates the impact of alternative buffer allocations on application execution time and applies a cost-benefit analysis to allocate buffers where they will have the greatest impact. We implemented informed prefetching and caching in DEC''s OSF/1 operating system and measured its performance on a 150 MHz Alpha equipped with 15 disks running a range of applications including text search, 3D scientific visualization, relational database queries, speech recognition, and computational chemistry. Informed prefetching reduces the execution time of the first four of these applications by 20% to 87%. Informed caching reduces the execution time of the fifth application by up to 30%.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Logic programs with classical negation
The well-founded semantics for general logic programs A general logic program (abbreviated to “program” hereafter) is a set of roles that have both positive and negative subgoals. It is common to view a deductive database as a general logic program consisting of rules (IDB) slttmg above elementary relations (EDB, facts). It is desirable to associate one Herbrand model with a program and think of that model as the “meaning of the program, ” or Its“declarative semantics. ” Ideally, queries directed to the program would be answered in accordance with this model. Recent research indicates that some programs do not have a “satisfactory” total model; for such programs, the question of an appropriate partial model arises. Unfounded sets and well-founded partial models are introduced and the well-founded semantics of a program are defined to be its well-founded partial model. If the well-founded partial model is m fact a total model. it is called the well-founded model. It n shown that the class of programs possessing a total well-founded model properly includes previously studied classes of “stratified” and “locally stratified” programs,The method in this paper is also compared with other proposals in the literature, including Clark’s“program completion, ” Fitting’s and Kunen’s 3-vahred interpretations of it, and the “stable models”of Gelfond and Lifschitz.
Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas We consider the compilation of different reasoning tasks into the evaluation problem of quantified boolean formulas (QBFs) as an approach to develop prototype reasoning sys- tems useful for, e.g., experimental purposes. Such a method is a natural generalization of a similar technique applied to NP-problems and has been recently proposed by other re- searchers. More specifically, we present translations of sev- eral well-known reasoning tasks from the area of nonmono- tonic reasoning into QBFs, and compare their implementa- tion in the prototype system QUIP with established NMR- provers. The results show reasonable performance, and docu- ment that the QBF approach is an attractive tool for rapid pro- totyping of experimental knowledge-representation systems.
Object Recognition from Local Scale-Invariant Features An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection.These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales.The keys are used as input to a nearest-neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low-residual least-squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially-occluded images with a computation time of under 2 seconds.
Support-Vector Networks The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data.High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Improving the I/O Performance of Real-Time Database Systems with Multiple-Disk Storage Structures
Simultaneous Localization And Mapping With Sparse Extended Information Filters In this paper we describe a scalable algorithm for the simultaneous mapping and localization (SLAM) problem. SLAM is the problem of acquiring a map of a static environment with a mobile robot. The vast majority of SLAM algorithms are based on the extended Kahnan filter (EKF), In this paper we advocate an algorithm that relies on the dual of the EKE the extended information filter (EIF). We show that when represented in the information form, map posteriors are dominated by a small number of links that tie together nearby features in the map. This insight is developed into a sparse variant of the EIF called the sparse extended information filter (SEIF). SEIFs represent maps by graphical networks of features that are locally interconnected, where links represent relative information between pairs of nearby,features, as well as information about the robot's pose relative to the map. We show that all essential update equations in SEIFs can be executed in constant time, irrespective of the size of the map. We also provide empirical results obtained for a benchmark data set collected in an outdoor environment, and using a multi-robot mapping simulation.
A logic programming approach to knowledge-state planning: Semantics and complexity We propose a new declarative planning language, called K, which is based on principles and methods of logic programming. In this language, transitions between states of knowledge can be described, rather than transitions between completely described states of the world, which makes the language well suited for planning under incomplete knowledge. Furthermore, our formalism enables the use of default principles in the planning process by supporting negation as failure. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, which shows that the language is very flexible. As we demonstrate on particular examples, the use of knowledge states may allow for a natural and compact problem representation. We then provide a thorough analysis of the computational complexity of K, and consider different planning problems, including standard planning and secure planning (also known as conformant planning) problems. We show that these problems have different complexities under various restrictions, ranging from NP to NEXPTIME in the propositional case. Our results form the theoretical basis for the DLVk system, which implements the language K on top of the DLV logic programming system.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.2
0.000469
0
0
0
0
0
0
0
0
0
0
0
0
A peer-to-peer approach to collaborative repository for digital libraries Growing amount of precious content digitized in digital libraries (DLs) could cost much digitization, backup, and restoration effort. To meet the requirements in a digital archiving system, several issues must be addressed. First, it usually requires much storage and network bandwidth for each individual DL to maintain its own backup service. Second, the manual effort makes it difficult to maintain. In this paper, we propose a peer-to-peer (P2P) approach to collaborative repository for DLs. Cooperating spiders are utilized to facilitate efficient and scalable archiving without much manual effort. The spidering-based approach can automatically keep the structure of content thus enabling simpler implementation and easier support for cross-archive applications. Preliminary experimental results show the potential of the proposed approach.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
An MLP-based feature subset selection for HIV-1 protease cleavage site analysis. In recent years, several machine learning approaches have been applied to modeling the specificity of the human immunodeficiency virus type 1 (HIV-1) protease cleavage domain. However, the high dimensional domain dataset contains a small number of samples, which could misguide classification modeling and its interpretation. Appropriate feature selection can alleviate the problem by eliminating irrelevant and redundant features, and thus improve prediction performance.We introduce a new feature subset selection method, FS-MLP, that selects relevant features using multi-layered perceptron (MLP) learning. The method includes MLP learning with a training dataset and then feature subset selection using decompositional approach to analyze the trained MLP. Our method is able to select a subset of relevant features in high dimensional, multi-variate and non-linear domains.Using five artificial datasets that represent four data types, we verified the FS-MLP performance with seven other feature selection methods. Experimental results showed that the FS-MLP is superior at high dimensional, multi-variate and non-linear domains. In experiments with HIV-1 protease cleavage dataset, the FS-MLP selected a set of 14 highly relevant features among 160 original features. On a validation set of 131 test instances, classifiers that used the 14 features showed about 95% accuracy which outperformed other seven methods in terms of accuracy and the number of features.Our experimental results indicate that the FS-MLP is effective in analyzing multi-variate, non-linear and high dimensional datasets such as HIV-1 protease cleavage dataset. The 14 relevant features which were selected by the FS-MLP provide us with useful insights into the HIV-1 cleavage site domain as well. The FS-MLP is a useful method for computational sequence analysis in general.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Exposing I/O concurrency with informed prefetching Informed prefetching provides a simple mechanism for I/Q-intensive, cache-ineffective applications to efficiently exploit highly-parallel I/O subsystems such as disk arrays. This mechanism, dynamic disclosure of future accesses, yields substantial benefits over sequential readahead mechanisms found in current file systems for non-sequential workloads. This paper reports the performance of the Transparent Informed Prefetching system (TIP), a minimal prototype implemented in a Mach 3.0 system with up to four disks. We measured reductions by factors of up to 1.9 and 3.7 in the execution time of two example applications: multi-file text search and scientific data visualization.
I/O-Conscious Volume Rendering Most existing volume rendering algorithms assume that data sets are memory-resident and thus ignore the performance overhead of disk I/O. While this assumption may be true for high-performance graphics machines, it does not hold for most desktop personal workstations. To minimize the end-to-end volume rendering time, this work re-examines implementation strategies of the ray casting algorithm, taking into account both computation and I/O overheads. Specifically, we developed a data-driven execution model for ray casting that achieves the maximum overlap between rendering computation and disk I/O. Together with other performance optimizations, on a 300-MHz Pentium-II machine, without directional shading, our implementation is able to render a 128x128 greyscale image from a 128x128x128 data set with an average end-to-end delay of 1 second, which is very close to the memory-resident rendering time. With a little modification, this work can also be extended to do out-of-core visualization as well.
Using dynamic sets to overcome high I/O latencies during search Describes a single unifying abstraction called 'dynamic sets', which can offer substantial benefits to search applications. These benefits include greater opportunity in the I/O subsystem to aggressively exploit prefetching and parallelism, as well as support for associative naming to complement the hierarchical naming in typical file systems. This paper motivates dynamic sets and presents the design of a system that embodies this abstraction.
Prefetching over a network: early experience with CTIP We discuss CTIP, an implementation of a network filesystem extension of the successful TIP informed prefetching and cache management system. Using a modified version of TIP in NFS client machines (and unmodified NFS servers). CTIP takes advantage of application-supplied hints that disclose the application's future read accesses. CTIP uses these hints to aggressively prefetch file data from an NFS file server and to make better local cache replacement decisions. This prefetching hides disk latency and exposes storage parallelism. Preliminary measurements that show CTIP can reduce execution time by a ratio comparable to that obtained with local TIP over a suite of I/O-intensive hinting applications. (For four disks, the reductions in execution time range from 17% to 69%). If local TIP execution requires that data first be loaded from remote storage into a local scratch area, then CTIP execution is significantly faster than the aggregate time for loading the data and executing. Additionally, our measurements show that the benefit of CTIP for hinting applications improves in the face of competition from other clients for server resources. We conclude with an analysis of the remaining problems with using unmodified NFS servers.
Application-specific file prefetching for multimedia programs This paper describes the design, implementation, and evaluation of an automatic application-specific file prefetching mechanism that is designed to improve the I/O performance of multimedia programs with complicated access patterns. The key idea of the proposed approach is to convert an application into two thread- s: a computation thread, which is the original program containing both computation and disk I/O, and a prefetch thread, which con- tains all the instructions in the original program that are related to disk accesses. At run time, the prefetch thread is scheduled to run far ahead of the computation thread, so that disk blocks can be prefetched and put in the file system buffer cache before the computation thread needs them. A source-to-source translator is developed to automatically generate the prefetch and computation thread from a given application program without any user inter- vention. We have successfully implemented a prototype of this automatic application-specific file prefetching mechanism under Linux. The prototype is shown to provide as much as 54% overall performance improvement for real-world multimedia applications.
The Mini and Micro Industries First Page of the Article
ELFSR0: object-oriented extensible file systems High performance scientific data analysis is plagued by chronically inadequate I/O performance.The situation is aggravated by ever improving processor performance. For high performancemulticomputers, such as the Touchstone Delta that possess in excess of 500, 60 megaflops,processor I/O will be the bottleneck for many scientific applications.This report describes ELFS (an ExtensibLe File System). ELFS attacks the problems of 1)providing high bandwidth and low latency I/O to applications...
File system design using large memories It is shown using experimental data that file activity is fairly stable over time, and the implications of this finding for file system design are examined. Several file access patterns and how they may be exploited to improve file system performance are shown. In particular, it is shown that current file temperature can be used to predict future file temperature. The design of the iPcress file system, which uses both a large disk cache and other techniques to improve file system performance is outlined. iPcress has a variety of cache staging algorithms and can choose the one most appropriate for each file. iPcress also stores access histories for each file to guide decisions such as file layout on DASD and caching. Preliminary performance figures for iPcress are presented
Maximizing performance in a striped disk array Improvements in disk speeds have not kept up with improvements in processor and memory speeds. One way to correct the resulting speed mismatch is to stripe data across many disks. The authors address how to stripe data to get maximum performance from the disks. Specifically, they examine how to choose the striping unit, that is, the amount of logically contiguous data on each disk. Rules for determining the best striping unit for a given range of workloads are synthesized. It is shown how the choice of striping unit depends on only two parameters: (1) the number of outstanding requests in the disk system at any given time, and (2) the average positioning time×data transfer rate of the disks. The authors derive an equation for the optimal striping unit as a function of these two parameters; they also show how to choose the striping unit without prior knowledge about the workload
Eviction-based Cache Placement for Storage Caches Abstract Most previous work on buer,cache management uses an access-based placement policy that places a data block into a buer,cache at the block’s access time. This paper presents an eviction-based placement policy for a storage cache that usually sits in the lower level of a multi-level buer,cache hierarchy and thereby has dieren t access patterns from upper levels. The main idea of the eviction-based placement policy is to delay a block’s placement in the cache until it is evicted from the upper level. This paper also presents a method of using a client content tracking table to obtain eviction information from client buer caches, which can avoid modifying client application source code. We,have,evaluated the performance of this eviction-based placement by using both simulations with real-world workloads, and implementations on a storage system connected to a Microsoft SQL server database. Our simulation results show that the eviction-based cache placement has an up to 500% improvement on cache hit ratios over the commonly used access-based placement policy. Our evaluation results using OLTP workloads have demon-
Resource Allocation Using Virtual Clusters We propose a novel approach for sharing cluster resources among competing jobs. The key advantage of our approach over current solutions is that it increases cluster utilization while optimizing a user-centric metric that captures both notions of performance and fairness. We motivate and formalize the corresponding resource allocation problem, determine its complexity, and propose several algorithms to solve it in the case of a static workload that consists of sequential jobs. Via extensive simulation experiments we identify an algorithm that runs quickly, that is always on par with or better than its competitors, and that produces resource allocations that are close to optimal. We find that the extension of our approach to parallel jobs leads to similarly good results. Finally, we explain how to extend our work to dynamic workloads.
Connectionist learning of belief networks Connectionist learning procedures are presented for "sigmoid" and "noisy-OR" varieties of probabilistic belief networks. These networks have previously been seen primarily as a means of representing knowledge derived from experts. Here it is shown that the "Gibbs sampling" simulation procedure for such networks can support maximum-likelihood learning from empirical data through local gradient ascent. This learning procedure resembles that used for "Boltzmann machines", and like it, allows the use of "hidden" variables to model correlations between visible variables. Due to the directed nature of the connections in a belief network, however, the "negative phase" of Boltzmann machine learning is unnecessary. Experimental results show that, as a result, learning in a sigmoid belief network can be faster than in a Boltzmann machine. These networks have other advantages over Boltzmann machines in pattern classification and decision making applications, are naturally applicable to unsupervised learning problems, and provide a link between work on connectionist learning and work on the representation of expert knowledge.
Evaluating the impact of Undetected Disk Errors in RAID systems Despite the reliability of modern disks, recent studies have made it clear that a new class of faults, UndetectedDisk Errors (UDEs) also known as silent data corruption events, become a real challenge as storage capacity scales. While RAID systems have proven effective in protecting data from traditional disk failures, silent data corruption events remain a significant problem unaddressed by RAID. We present a fault model for UDEs, and a hybrid framework for simulating UDEs in large-scale systems. The framework combines a multi-resolution discrete event simulator with numerical solvers. Our implementation enables us to model arbitrary storage systems and workloads and estimate the rate of undetected data corruptions. We present results for several systems and workloads, from gigascale to petascale. These results indicate that corruption from UDEs is a significant problem in the absence of protection schemes and that such schemes dramatically decrease the rate of undetected data corruption.
Learning A Lexical Simplifier Using Wikipedia In this paper we introduce a new lexical simplification approach. We extract over 30K candidate lexical simplifications by identifying aligned words in a sentence-aligned corpus of English Wikipedia with Simple English Wikipedia. To apply these rules, we learn a feature-based ranker using SVMnk trained on a set of labeled simplifications collected using Amazon's Mechanical Turk. Using human simplifications for evaluation, we achieve a precision of 76% with changes in 86% of the examples.
1.007443
0.015247
0.012306
0.00596
0.004686
0.003713
0.002834
0.001572
0.000715
0.000086
0.000005
0
0
0
Gesture Recognition Based on Deep Belief Networks. Analyzing the data acquired from the inertial sensor in mobile phones has been proved to be an effective way in gesture recognition. This research introduces deep belief networks (DBN) to solve the inertial sensor-based gesture recognition problem and obtains a satisfactory result on the BUAA Mobile Gesture Database. The optimal architecture and the hyper parameters of DBN were tuned according to the performance of experiments in order to get a high recognition accuracy within short time. Besides, three state-of-the-art methods were tested on the same database and the comparison of results indicates that the proposed method achieved a much better recognition accuracy, which considerably improves the recognition performance.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches. Face Aging has raised considerable attentions and interest from the computer vision community in recent years. Numerous approaches ranging from purely image processing techniques to deep learning structures have been proposed in literature. In this paper, we aim to give a review of recent developments of modern deep learning based approaches, i.e. Deep Generative Models, for Face Aging task. Their structures, formulation, learning algorithms as well as synthesized results are also provided with systematic discussions. Moreover, the aging databases used in most methods to learn the aging process are also reviewed.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Fast And Robust Content-Based Copy Detection Based On Quadrant Of Luminance Centroid And Adaptive Feature Comparison This paper proposes a fast and robust content-based copy detection scheme. Our proposal consists of a new compact feature, efficient keyframe selection and adaptive mask-based feature comparison. Firstly, a block-level luminance centroid is binarized into a 32-bit quadrant feature for fast and robust feature comparison. Subsequently, a new keyframe selection method is adopted to enhance pairwise independence between unrelated video segments in addition to choosing stable keyframes. Finally, a block-level mask-based feature comparison method is introduced to compare only stable features. Experimental results show our scheme improves recall by 0.1 at the same precision 0.9 and the processing speed in feature comparison of the proposed scheme is about twice as fast as that of conventional schemes.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Extended stable semantics for normal and disjunctive programs
The Stable Model Semantics for Logic Programming We propose a new declarative semantices for logic programs with negation.Its formulation is quite simple;at the same time, it is more general than the iterated fixed point semantics for stratified programs,and is applicable to some useful programs that are not stratified.
Classical Negation in Logic Programs and Disjunctive Databases An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available.Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.
Improvements to the Evaluation of Quantified Boolean Formulae We present a theorem-prover for quantified Boolean formulae and evaluate it on random quantified formulae and formulae that represent problems from automated planning. Even though the notion of quantified Boolean formula is theoretically important, automated reasoning with QBF has not been thoroughly investigated. Universal quantifiers are needed in representing many computational problems that cannot be easily translated to the propositional logic and solved by satisfiability algorithms. Therefore efficient reasoning with QBF is important. The Davis-Putnam procedure can be extended to evaluate quantified Boolean formulae. A straightforward algorithm of this kind is not very efficient. We identify universal quantifiers as the main area where improvements to the basic algorithm can be made. We present a number of techniques for reducing the amount of search that is needed, and evaluate their effectiveness by running the algorithm on a collection of formulae obtained from planning and generated randomly. For the structured problems we consider, the techniques lead to a dramatic speed-up.
Multi-level transaction management for complex objects: implementation, performance, parallelism Multi-level transactions are a variant of open-nested transactions in which the subtransactions correspond to operations at different levels of a layered system architecture. They allow the exploitation of semantics of high-level operations to increase concurrency. As a consequence, undoing a transaction requires compensation of completed subtransactions. In addition, multi-level recovery methods must take into consideration that high-level operations are not necessarily atomic if multiple pages are updated in a single subtransaction. This article presents algorithms for multi-level transaction management that are implemented in the database kernel system (DASDBS). In particular, we show that multi-level recovery can be implemented in an efficient way. We discuss performance measurements using a synthetic benchmark for processing complex objects in a multi-user environment. We show that multi-level transaction management can be extended easily to cope with parallel subtransactions within a single transaction. Performance results are presented with varying degrees of inter- and intratransaction parallelism.
Nonlinear component analysis as a kernel eigenvalue problem A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map-for instance, the space of all possible five-pixel products in 16 x 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.
Performance of a mirrored disk in a real-time transaction system Disk mirroring has found widespread use in computer systems as a method for providing fault tolerance. In addition to increasing reliability, a mirrored disk can also reduce I/O response time by supporting the execution of parallel I/O requests. The improvement in I/O efficiency is extremely important in a real-time system, where each computational entity carries a deadline. In this paper, we present two classes of real-time disk scheduling policies, RT-DMQ and RT-CMQ, for a mirrored disk I/O subsystem and examine their performance in an integrated real-time transaction system. The real-time transaction system model is validated on a real-time database testbed, called RT-CARAT. The performance results show that a mirrored disk I/O subsystem can decrease the fraction of transactions that miss their deadlines over a single disk system by 68%. Our results also reveal the importance of real-time scheduling policies, which can lead up to a 17% performance improvement over non-real-time policies in terms of minimizing the transaction loss ratio.
Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Solving the SLAM (simultaneous localization and mapping) problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. Smoothing approaches have been investigated as a viable alternative to extended Kalman filter (EKF)-based solutions to the problem. In particular, approaches have been looked at that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact; they can be used in either batch or incremental mode; are better equipped to deal with non-linear process and measurement models; and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. This paper presents the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. Both simulation results and actual SLAM experiments in large-scale environments are presented that underscore the potential of these methods as an alternative to EKF-based approaches.
An A Prolog decision support system for the Space Shuttle The goal of this paper is to test if a programming methodology based on the declarative language A-Prolog and the systems for computing answer sets of such programs, can be successfully applied to the development of medium size knowledge-intensive applications. We report on a successful design and development of such a system controlling some of the functions of the Space Shuttle.
Domain adaptation for object recognition: An unsupervised approach Adapting the classifier trained on a source domain to recognize instances from a new target domain is an important problem that is receiving recent attention. In this paper, we present one of the first studies on unsupervised domain adaptation in the context of object recognition, where we have labeled data only from the source domain (and therefore do not have correspondences between object categories across domains). Motivated by incremental learning, we create intermediate representations of data between the two domains by viewing the generative subspaces (of same dimension) created from these domains as points on the Grassmann manifold, and sampling points along the geodesic between them to obtain subspaces that provide a meaningful description of the underlying domain shift. We then obtain the projections of labeled source domain data onto these subspaces, from which a discriminative classifier is learnt to classify projected data from the target domain. We discuss extensions of our approach for semi-supervised adaptation, and for cases with multiple source and target domains, and report competitive results on standard datasets.
An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection. Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised. © 2012 IEEE.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Whispered speech recognition using deep denoising autoencoder. Recently Deep Denoising Autoencoders (DDAE) have shown state-of-the-art performance on various machine learning tasks. In this paper, the authors extended this approach to whispered speech recognition which is one of the most challenging problems in Automatic Speech Recognition (ASR). Namely, due to the profound differences between acoustic characteristics of neutral and whispered speech, the performance of traditional ASR systems trained on neutral speech degrades significantly when whisper is applied. This mismatch between training and testing is successfully alleviated with the new proposed system based on deep learning, where DDAE is applied for generating whisper-robust cepstral features. This system was tested and compared in terms of word recognition accuracy with conventional Hidden Markov Model (HMM) speech recognizer in an isolated word recognition task with a real database of whispered speech (WhiSpe). Three types of cepstral coefficients were used in the experiments: MFCC (Mel-Frequency Cepstral Coefficients), TECC (Teager-Energy Cepstral Coefficients) and TEMFCC (Teager-based Mel-Frequency Cepstral Coefficients). The experimental results showed that the proposed system significantly improves whisper recognition accuracy and outperforms traditional HMM-MFCC baseline, resulting in an absolute 31% improvement of whisper recognition accuracy. The highest word recognition rate of 92.81% in whispered speech was achieved with TECC feature.
Speech feature denoising and dereverberation via deep autoencoders for noisy reverberant speech recognition Denoising autoencoders (DAs) have shown success in generating robust features for images, but there has been limited work in applying DAs for speech. In this paper we present a deep denoising autoencoder (DDA) framework that can produce robust speech features for noisy reverberant speech recognition. The DDA is first pre-trained as restricted Boltzmann machines (RBMs) in an unsupervised fashion. Then it is unrolled to autoencoders, and fine-tuned by corresponding clean speech features to learn a nonlinear mapping from noisy to clean features. Acoustic models are re-trained using the reconstructed features from the DDA, and speech recognition is performed. The proposed approach is evaluated on the CHiME-WSJ0 corpus, and shows a 16-25% absolute improvement on the recognition accuracy under various SNRs.
Comparing multilayer perceptron to Deep Belief Network Tandem features for robust ASR In this paper, we extend the work done on integrating multilayer perceptron (MLP) networks with HMM systems via the Tandem approach. In particular, we explore whether the use of Deep Belief Networks (DBN) adds any substantial gain over MLPs on the Aurora2 speech recognition task under mismatched noise conditions. Our findings suggest that DBNs outperform single layer MLPs under the clean condition, but the gains diminish as the noise level is increased. Furthermore, using MFCCs in conjunction with the posteriors from DBNs outperforms merely using single DBNs in low to moderate noise conditions. MFCCs, however, do not help for the high noise settings.
Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion We explore an original strategy for building deep networks, based on stacking layers of denoising autoencoders which are trained locally to denoise corrupted versions of their inputs. The resulting algorithm is a straightforward variation on the stacking of ordinary autoencoders. It is however shown on a benchmark of classification problems to yield significantly lower classification error, thus bridging the performance gap with deep belief networks (DBN), and in several cases surpassing it. Higher level representations learnt in this purely unsupervised fashion also help boost the performance of subsequent SVM classifiers. Qualitative experiments show that, contrary to ordinary autoencoders, denoising autoencoders are able to learn Gabor-like edge detectors from natural image patches and larger stroke detectors from digit images. This work clearly establishes the value of using a denoising criterion as a tractable unsupervised objective to guide the learning of useful higher level representations.
A logic for default reasoning The need to make default assumptions is frequently encountered in reasoning'about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occurring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Empirical Analysis of Predictive Algorithms for Collaborative Filtering Collaborative filtering or recommender systemsuse a database about user preferences topredict additional topics or products a newuser might like. In this paper we describe several algorithms designed for this task, including techniques based on correlation coefficients,vector-based similarity calculations,and statistical Bayesian methods. We comparethe predictive accuracy of the various methods in a set of representative problemdomains. We use two basic classes of evaluation...
Predicting individual disease risk based on medical history The monumental cost of health care, especially for chronic disease treatment, is quickly becoming unmanageable. This crisis has motivated the drive towards preventative medicine, where the primary concern is recognizing disease risk and taking action at the earliest signs. However, universal testing is neither time nor cost efficient. We propose CARE, a Collaborative Assessment and Recommendation Engine, which relies only on a patient's medical history using ICD-9-CM codes in order to predict future diseases risks. CARE uses collaborative filtering to predict each patient's greatest disease risks based on their own medical history and that of similar patients. We also describe an Iterative version, ICARE, which incorporates ensemble concepts for improved performance. These novel systems require no specialized information and provide predictions for medical conditions of all kinds in a single run. We present experimental results on a Medicare dataset, demonstrating that CARE and ICARE perform well at capturing future disease risks.
Real-time multimedia systems The expansion of multimedia networks and systems depends on real-time support for media streams and interactive multimedia services. Multimedia data are essentially continuous, heterogeneous, and isochronous, three characteristics with strong real-time implications when combined. At the same time, some multimedia services, like video-on-demand or distributed simulation, are real-time applications with sophisticated temporal functionalities in their user interface. We analyze the main problems in building such real-time multimedia systems, and we discuss-under an architectural prospect-some technological solutions especially those regarding determinism and efficient synchronization in the storage, processing, and communication of audio and video data
NP is as easy as detecting unique solutions For all known NP-complete problems the number of solutions in instances having solutions may vary over an exponentially large range. Furthermore, most of the well-known ones, such as satisfiability, are parsimoniously interreducible, and these can have any number of solutions between zero and an exponentially large number. It is natural to ask whether the inherent intractability of NP-complete problems is caused by this wide variation. In this paper we give a negative answer to this using randomized reductions. We show that the problems of distinguishing between instances of SAT having zero or one solution, or finding solutions to instances of SAT having unique solutions, are as hard as SAT itself. Several corollaries about the difficulty of specific problems follow. For example if the parity of the number of solutions of SAT can be computed in RP then NP = RP. Some further problems can be shown to be hard for NP or DP via randomized reductions.
Fine-Grained Mobility in the Emerald System (Extended Abstract)
Normal forms for answer sets programming Normal forms for logic programs under stable/answer set semantics are introduced. We argue that these forms can simplify the study of program properties, mainly consistency. The first normal form, called the kernel of the program, is useful for studying existence and number of answer sets. A kernel program is composed of the atoms which are undefined in the Well-founded semantics, which are those that directly affect the existence of answer sets. The body of rules is composed of negative literals only. Thus, the kernel form tends to be significantly more compact than other formulations. Also, it is possible to check consistency of kernel programs in terms of colorings of the Extended Dependency Graph program representation which we previously developed. The second normal form is called 3-kernel. A 3-kernel program is composed of the atoms which are undefined in the Well-founded semantics. Rules in 3-kernel programs have at most two conditions, and each rule either belongs to a cycle, or defines a connection between cycles. 3-kernel programs may have positive conditions. The 3-kernel normal form is very useful for the static analysis of program consistency, i.e. the syntactic characterization of existence of answer sets. This result can be obtained thanks to a novel graph-like representation of programs, called Cycle Graph which presented in the companion article Costantini (2004b).
A cost-benefit scheme for high performance predictive prefetching
Representing the Process Semantics in the Event Calculus In this paper we shall present a translation of the process semantics [5] to the event calculus. The aim is to realize a method of integrating high-level semantics with logical calculi to reason about continuous change. The general translation rules and the soundness and completeness theorem of the event calculus with respect to the process semantics are main technical results of this paper.
Learning Topic Representation For Smt With Neural Networks Statistical Machine Translation (SMT) usually utilizes contextual information to disambiguate translation candidates. However, it is often limited to contexts within sentence boundaries, hence broader topical information cannot be leveraged. In this paper, we propose a novel approach to learning topic representation for parallel data using a neural network architecture, where abundant topical contexts are embedded via topic relevant monolingual data. By associating each translation rule with the topic representation, topic relevant rules are selected according to the distributional similarity with the source text during SMT decoding. Experimental results show that our method significantly improves translation accuracy in the NIST Chinese-to-English translation task compared to a state-of-the-art baseline.
1.2
0.066667
0.028571
0.00084
0
0
0
0
0
0
0
0
0
0
Modeling Biological Networks by Action Languages via Answer Set Programming We describe an approach to modeling biological networks by action languages via answer set programming. To this end, we propose an action language for modeling biological networks, building on previous work by Baral et al. We introduce its syntax and semantics along with a translation into answer set programming, an efficient Boolean Constraint Programming Paradigm. Finally, we describe one of its applications, namely, the sulfur starvation response-pathway of the model plant Arabidopsis thaliana and sketch the functionality of our system and its usage.
Hypothesizing about signaling networks The current knowledge about signaling networks is largely incomplete. Thus biologists constantly need to revise or extend existing knowledge. The revision and/or extension is first formulated as theoretical hypotheses, then verified experimentally. Many computer-aided systems have been developed to assist biologists in undertaking this challenge. The majority of the systems help in finding “patterns” in data and leave the reasoning to biologists. A few systems have tried to automate the reasoning process of hypothesis formation. These systems generate hypotheses from a knowledge base and given observations. A main drawback of these knowledge-based systems is the knowledge representation formalism they use. These formalisms are mostly monotonic and are now known to be not quite suitable for knowledge representation, especially in dealing with the inherently incomplete knowledge about signaling networks. We propose an action language based framework for hypothesis formation for signaling networks. We show that the hypothesis formation problem can be translated into an abduction problem. This translation facilitates the complexity analysis and an efficient implementation of our system. We illustrate the applicability of our system with an example of hypothesis formation in the signaling network of the p53 protein.
Detecting Inconsistencies in Large Biological Networks with Answer Set Programming We introduce an approach to detecting inconsistencies in large biological networks by using Answer Set Programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on Answer Set Programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies in the data by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions.
Reasoning about non-immediate triggers in biological networks Modeling molecular interactions in signalling networks is important from various perspectives such as predicting side effects of drugs, explaining unusual cellular behavior and drug and therapy design. Various formal languages have been proposed for representing and reasoning about molecular interactions. The interactions are modeled as triggered events in most of the approaches. The triggering of events is assumed to be immediate: once an interaction is triggered, it should occur immediately. Although working well for engineering systems, this assumption poses a serious problem in modeling biological systems. Our knowledge about biological systems is inherently incomplete, thus molecular interactions are constantly elaborated and refined at different granularity of abstraction. The model of immediate triggers can not consistently deal with this refinement. In this paper we propose an action language to address this problem. We show that the language allows for refinements of biological knowledge, although at a higher cost in terms of complexity.
Dependent Fluents We discuss the persistence of the indirect ef­ fects of an action—the question when such ef­ fects are subject to the commonsense law of in­ ertia, and how to describe their evolution in the cases when inertia does not apply. Our model of nonpersistent effects involves the assumption that the value of the fluent in question is deter­ mined by the values of other fluents, although the dependency may be partially or completely unknown. This view leads us to a new high- level action language ARD (for Actions, Ram­ ifications and Dependencies) that is capable of describing both persistent and nonpersistent ef­ fects. Unlike the action languages introduced in the past, ARD is "non-Markovia n," in the sense that the evolution of the fluents described in this language may depend on their history, and not only on their current values.
Nonmonotonic causal theories The nonmonotonic causal logic defined in this paper can be used to represent properties of actions, including actions with conditional and indirect effects, nondeterministic actions, and concurrently executed actions. It has been applied to several challenge problems in the theory of commonsense knowledge. We study the relationship between this formalism and other work on nonmonotonic reasoning and knowledge representation, and discuss its implementation, called the Causal Calculator.
From theory to practice: the UTEP robot in the AAAI 96 and AAAI 97 robot contests In this paper we describe the control aspects of Diablo, theUTEP mobile robot participant in two AAAI robot competitions.In the first competition, event one of the AAAI 96robot contest, Diablo consistently scored 2851out of a totalof 295 points. In the second competition, our robot wonthe first place in the event &quot;Tidy Up&quot; of the home vacuumcontest. The main goal in this paper will be to show howthe agent theories - based on action theories -- developed atUTEP and by Saffiotti et...
Default Theory for Well Founded Semantics with Explicit Negation One aim of this paper is to define a default theory for Well Founded Semantics of logic programs which have been extended with explicit negation, such that the models of a program correspond exactly to the extensions of the default theory corresponding to the program.
The Logic of Persistence A recent paper (Hanks19851 examines temporal rea- soning as an example of default reasoning. They conclude that all current systems of default reasoning, including non-monotonic logic, default logic, and circumscription, are inadequate for reasoning about persistence. I present a way of representing persistence in a framework based on a generalization of circumscription, which captures Hanks and McDermott's procedural representation. 1. Persistence
Planning in a hierarchy of abstraction spaces Additive AND/OR graphs are defined as AND/ OR graphs without circuits, which can be considered as folded AND/OR trees; i. e. the cost of a common subproblem is added to the cost as many times as the subproblem occurs, but it is computed only once. Additive ...
The Parameterized Complexity of Counting Problems We develop a parameterized complexity theory for counting problems. As the basis of this theory, we introduce a hierarchy of parameterized counting complexity classes #W$[t]$, for $t\ge 1$, that corresponds to Downey and Fellows's W-hierarchy [R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag, New York, 1999] and we show that a few central W-completeness results for decision problems translate to \#W-completeness results for the corresponding counting problems. Counting complexity gets interesting with problems whose decision version is tractable, but whose counting version is hard. Our main result states that counting cycles and paths of length k in both directed and undirected graphs, parameterized by k, is #W$[1]-complete. This makes it highly unlikely that these problems are fixed-parameter tractable, even though their decision versions are fixed-parameter tractable. More explicitly, our result shows that most likely there is no $f(k) \cdot n^c$-algorithm for counting cycles or paths of length k in a graph of size n for any computable function $f: \mathbb{N} \to \mathbb{N}$ and constant c, even though there is a $2^{O(k)} \cdot n^{2.376}$ algorithm for finding a cycle or path of length k [N. Alon, R. Yuster, and U. Zwick, J. ACM, 42 (1995), pp. 844--856].
WSCLOCK—a simple and effective algorithm for virtual memory management A new virtual memory management algorithm WSCLOCK has been synthesized from the local working set (WS) algorithm, the global CLOCK algorithm, and a new load control mechanism for auxiliary memory access. The new algorithm combines the most useful feature of WS—a natural and effective load control that prevents thrashing—with the simplicity and efficiency of CLOCK. Studies are presented to show that the performance of WS and WSCLOCK are equivalent, even if the savings in overhead are ignored.
On the Complexity of Plan Adaptation by Derivational Analogy in a Universal Classical Planning Framework In this paper we present an algorithm called DerUCP, which can be regarded as a general model for plan adaptation using Derivational Analogy. Using DerUCP, we show that previous results on the complexity of plan adaptation do not apply to Derivational Analogy. We also show that Derivational Analogy can potentially produce exponential reductions in the size of the search space generated by a planning system.
Protecting RAID Arrays against Unexpectedly High Disk Failure Rates Disk failure rates vary so widely among different makes and models that designing storage solutions for the worst case scenario is a losing proposition. The approach we propose here is to design our storage solutions for the most probable case while incorporating in our design the option of adding extra redundancy when we find out that its disks are less reliable than expected. To illustrate our proposal, we show how to increase the reliability of existing two-dimensional disk arrays with n^2 data elements and 2n parity elements by adding n additional parity elements that will mirror the contents of half the existing parity elements. Our approach offers the three advantages of being easy to deploy, not affecting the complexity of parity calculations, and providing a five-year reliability of 99.999 percent in the face of catastrophic levels of data loss where the array would lose up to a quarter of its storage capacity in a year.
1.046939
0.057143
0.040952
0.038095
0.012804
0.005637
0.00127
0.000074
0.000014
0
0
0
0
0
The bag-of-repeats representation of documents n-gram representations of documents may improve over a simple bag-of-word representation by relaxing the independence assumption of word and introducing context. However, this comes at a cost of adding features which are non-descriptive, and increasing the dimension of the vector space model exponentially. We present new representations that avoid both pitfalls. They are based on sound theoretical notions of stringology, and can be computed in optimal asymptotic time with algorithms using data structures from the suffix family. While maximal repeats have been used in the past for similar tasks, we show how another equivalence class of repeats -- largest-maximal repeats -- obtain similar or better results, with only a fraction of the features. This class acts as a minimal generative basis of all repeated substrings. We also report their use for topic modeling, showing easier to interpret models.
A Semi-Supervised Bayesian Network Model for Microblog Topic Classification. Microblogging services have brought users to a new era of knowledge dissemination and information seeking. However, the large volume and multi-aspect of messages hinder the ability of users to conveniently locate the specific messages that they are interested in. While many researchers wish to employ traditional text classification approaches to effectively understand messages on microblogging services, the limited length of the messages prevents these approaches from being employed to their full potential. To tackle this problem, we propose a novel semi-supervised learning scheme to seamlessly integrate the external web resources to compensate for the limited message length. Our approach first trains a classifier based on the available labeled data as well as some auxiliary cues mined from the web, and probabilistically predicts the categories for all unlabeled data. It then trains a new classifier using the labels for all messages and the auxiliary cues, and iterates the process to convergence. Our approach not only greatly reduces the time-consuming and labor-intensive labeling process, but also deeply exploits the hidden information from unlabeled data and related text resources. We conducted extensive experiments on two real-world microblogging datasets. The results demonstrate the effectiveness of the proposed approaches which produce promising performance as compared to state-of-the-art methods. © 2012 The COLING.
A framework for mining signatures from event sequences and its applications in healthcare data. This paper proposes a novel temporal knowledge representation and learning framework to perform large-scale temporal signature mining of longitudinal heterogeneous event data. The framework enables the representation, extraction, and mining of high-order latent event structure and relationships within single and multiple event sequences. The proposed knowledge representation maps the heterogeneous event sequences to a geometric image by encoding events as a structured spatial-temporal shape process. We present a doubly constrained convolutional sparse coding framework that learns interpretable and shift-invariant latent temporal event signatures. We show how to cope with the sparsity in the data as well as in the latent factor model by inducing a double sparsity constraint on the β-divergence to learn an overcomplete sparse latent factor model. A novel stochastic optimization scheme performs large-scale incremental learning of group-specific temporal event signatures. We validate the framework on synthetic data and on an electronic health record dataset.
Cengage Learning at TREC 2011 Medical Track.
Using decision tree for diagnosing heart disease patients Heart disease is the leading cause of death in the world over the past 10 years. Researchers have been using several data mining techniques to help health care professionals in the diagnosis of heart disease. Decision Tree is one of the successful data mining techniques used. However, most research has applied J4.8 Decision Tree, based on Gain Ratio and binary discretization. Gini Index and Information Gain are two other successful types of Decision Trees that are less used in the diagnosis of heart disease. Also other discretization techniques, voting method, and reduced error pruning are known to produce more accurate Decision Trees. This research investigates applying a range of techniques to different types of Decision Trees seeking better performance in heart disease diagnosis. A widely used benchmark data set is used in this research. To evaluate the performance of the alternative Decision Trees the sensitivity, specificity, and accuracy are calculated. The research proposes a model that outperforms J4.8 Decision Tree and Bagging algorithm in the diagnosis of heart disease patients.
Studies of the onset and persistence of medical concerns in search logs The Web provides a wealth of information about medical symptoms and disorders. Although this content is often valuable to consumers, studies have found that interaction with Web content may heighten anxiety and stimulate healthcare utilization. We present a longitudinal log-based study of medical search and browsing behavior on the Web. We characterize how users focus on particular medical concerns and how concerns persist and influence future behavior, including changes in focus of attention in searching and browsing for health information. We build and evaluate models that predict transitions from searches on symptoms to searches on health conditions, and escalations from symptoms to serious illnesses. We study the influence that the prior onset of concerns may have on future behavior, including sudden shifts back to searching on the concern amidst other searches. Our findings have implications for refining Web search and retrieval to support people pursuing diagnostic information.
Predicting individual disease risk based on medical history The monumental cost of health care, especially for chronic disease treatment, is quickly becoming unmanageable. This crisis has motivated the drive towards preventative medicine, where the primary concern is recognizing disease risk and taking action at the earliest signs. However, universal testing is neither time nor cost efficient. We propose CARE, a Collaborative Assessment and Recommendation Engine, which relies only on a patient's medical history using ICD-9-CM codes in order to predict future diseases risks. CARE uses collaborative filtering to predict each patient's greatest disease risks based on their own medical history and that of similar patients. We also describe an Iterative version, ICARE, which incorporates ensemble concepts for improved performance. These novel systems require no specialized information and provide predictions for medical conditions of all kinds in a single run. We present experimental results on a Medicare dataset, demonstrating that CARE and ICARE perform well at capturing future disease risks.
The Curse of Highly Variable Functions for Local Kernel Machines We present a series of theoretical arguments supporting the claim that a large class of modern learning algorithms that rely solely on the smooth- ness prior - with similarity between examples expressed with a local kernel - are sensitive to the curse of dimensionality, or more precisely to the variability of the target. Our discussion covers supervised, semi- supervised and unsupervised learning algorithms. These algorithms are found to be local in the sense that crucial properties of the learned func- tion at x depend mostly on the neighbors of x in the training set. This makes them sensitive to the curse of dimensionality, well studied for classical non-parametric statistical learning. We show in the case of the Gaussian kernel that when the function to be learned has many variations, these algorithms require a number of training examples proportional to the number of variations, which could be large even though there may ex- ist short descriptions of the target function, i.e. their Kolmogorov com- plexity may be low. This suggests that there exist non-local learning algorithms that at least have the potential to learn about such structured but apparently complex functions (because locally they have many vari- ations), while not using very specific prior domain knowledge.
Links between perceptrons, MLPs and SVMs We propose to study links between three important classification algorithms: Perceptrons, Multi-Layer Perceptrons (MLPs) and Support Vector Machines (SVMs). We first study ways to control the capacity of Perceptrons (mainly regularization parameters and early stopping), using the margin idea introduced with SVMs. After showing that under simple conditions a Perceptron is equivalent to an SVM, we show it can be computationally expensive in time to train an SVM (and thus a Perceptron) with stochastic gradient descent, mainly because of the margin maximization term in the cost function. We then show that if we remove this margin maximization term, the learning rate or the use of early stopping can still control the margin. These ideas are extended afterward to the case of MLPs. Moreover, under some assumptions it also appears that MLPs are a kind of mixture of SVMs, maximizing the margin in the hidden layer space. Finally, we present a very simple MLP based on the previous findings, which yields better performances in generalization and speed than the other models.
Regularized Auto-Encoders Estimate Local Statistics
Complexity of Power Default Reasoning This paper derives a new and surprisingly low complexity result for inference in a new form of Reiter's propositional default logic. The problem studied here is the "default inference problem" whose fundamental importance was pointed out by Kraus, Lehmann, and Magidor. We prove that ``normal'' default inference, in propositional logic, is a problem complete for co-NP(3), the third level of the so-called Boolean hierarchy. Our result (by changing the underlying semantics) contrasts favorably with a similar result of Gottlob, who proves that standard default inference is complete for the second level of the polynomial hierarchy. Our inference relation also obeys all of the laws for preferential consequence relations set forth by Kraus, Lehmann, and Magidor. In particular, we get the property of being able to reason by cases and the law of cautious monotony. Both of these laws fail for standard propositional default logic.The key technique for our results is the use of Scott's domain theory to integrate defaults into partial model theory of the logic, instead of keeping defaults as quasi-proof rules in the syntax. In particular, reasoning disjunctively entails using the Smyth powerdomain.
Meta-ViPIOS: Harness Distributed I/O Resources with ViPIOS Two factors strongly inuenced the research in high performancecomputing in the last few years, the I/O bottleneckand cluster systems. Firstly, for many supercomputing applicationsthe limiting factor is not the number of availableCPUs anymore, but the bandwidth of the disk I/O system.Secondly, a shift from the classical, costly supercomputersystems to aordable clusters of workstations is apparent,which allows problem solutions to a much lower price.As a result we present in this paper...
P-Selectivity, immunity, and the power of one bit We prove that P-sel, the class of all P-selective sets, is EXP-immune, but is not EXP/1-immune. That is, we prove that some infinite P-selective set has no infinite EXP-time subset, but we also prove that every infinite P-selective set has some infinite subset in EXP/1. Informally put, the immunity of P-sel is so fragile that it is pierced by a single bit of information. The above claims follow from broader results that we obtain about the immunity of the P-selective sets. In particular, we prove that for every recursive function f, P-sel is DTIME(f)-immune. Yet we also prove that P-sel is not ${\it \Pi}^{p}_{2}$/1-immune.
"The sum of all human knowledge": A systematic review of scholarly research on the content of Wikipedia AbstractWikipedia may be the best-developed attempt thus far to gather all human knowledge in one place. Its accomplishments in this regard have made it a point of inquiry for researchers from different fields of knowledge. A decade of research has thrown light on many aspects of the Wikipedia community, its processes, and its content. However, due to the variety of fields inquiring about Wikipedia and the limited synthesis of the extensive research, there is little consensus on many aspects of Wikipedia's content as an encyclopedic collection of human knowledge. This study addresses the issue by systematically reviewing 110 peer-reviewed publications on Wikipedia content, summarizing the current findings, and highlighting the major research trends. Two major streams of research are identified: the quality of Wikipedia content including comprehensiveness, currency, readability, and reliability and the size of Wikipedia. Moreover, we present the key research trends in terms of the domains of inquiry, research design, data source, and data gathering methods. This review synthesizes scholarly understanding of Wikipedia content and paves the way for future studies.
1.20077
0.20077
0.20077
0.20077
0.20077
0.100385
0.006084
0.000034
0.000003
0
0
0
0
0
Extreme learning machines: new trends and applications. Extreme learning machine (ELM), as a new learning framework, draws increasing attractions in the areas of large-scale computing, high-speed signal processing, artificial intelligence, and so on. ELM aims to break the barriers between the conventional artificial learning techniques and biological learning mechanism and represents a suite of machine learning techniques in which hidden neurons need not to be tuned. ELM theories and algorithms argue that “random hidden neurons” capture the essence of some brain learning mechanisms as well as the intuitive sense that the efficiency of brain learning need not rely on computing power of neurons. Thus, compared with traditional neural networks and support vector machine, ELM offers significant advantages such as fast learning speed, ease of implementation, and minimal human intervention. Due to its remarkable generalization performance and implementation efficiency, ELM has been applied in various applications. In this paper, we first provide an overview of newly derived ELM theories and approaches. On the other hand, with the ongoing development of multilayer feature representation, some new trends on ELM-based hierarchical learning are discussed. Moreover, we also present several interesting ELM applications to showcase the practical advances on this subject.
Semi-supervised deep extreme learning machine for Wi-Fi based localization Along with the proliferation of mobile devices and wireless signal coverage, indoor localization based on Wi-Fi gets great popularity. Fingerprint based method is the mainstream approach for Wi-Fi indoor localization, for it can achieve high localization performance as long as labeled data are sufficient. However, the number of labeled data is always limited due to the high cost of data acquisition. Nowadays, crowd sourcing becomes an effective approach to gather large number of data; meanwhile, most of them are unlabeled. Therefore, it is worth studying the use of unlabeled data to improve localization performance. To achieve this goal, a novel algorithm Semi-supervised Deep Extreme Learning Machine (SDELM) is proposed, which takes the advantages of semi-supervised learning, Deep Leaning (DL), and Extreme Learning Machine (ELM), so that the localization performance can be improved both in the feature extraction procedure and in the classifier. The experimental results in real indoor environments show that the proposed SDELM not only outperforms other compared methods but also reduces the calibration effort with the help of unlabeled data.
Dimension Reduction With Extreme Learning Machine. Data may often contain noise or irrelevant information, which negatively affect the generalization capability of machine learning algorithms. The objective of dimension reduction algorithms, such as principal component analysis (PCA), non-negative matrix factorization (NMF), random projection (RP), and auto-encoder (AE), is to reduce the noise or irrelevant information of the data. The features of...
Hypergraph regularized autoencoder for image-based 3D human pose recovery Image-based human pose recovery is usually conducted by retrieving relevant poses with image features. However, semantic gap exists for current feature extractors, which limits recovery performance. In this paper, we propose a novel feature extractor with deep learning. It is based on denoising autoencoder and improves traditional methods by adopting locality preserved restriction. To impose this restriction, we introduce manifold regularization with hypergraph Laplacian. Hypergraph Laplacian matrix is constructed with patch alignment framework. In this way, an automatic feature extractor for silhouettes is achieved. Experimental results on two datasets show that the recovery error has been reduced by 10% to 20%, which demonstrates the effectiveness of the proposed method. HighlightsPose recovery with autoencoder is imposed locality reservation with Laplacian matrix.The construction of Laplacian matrix is improved by using hypergraph optimization.
Multimodal Deep Autoencoder for Human Pose Recovery Video-based human pose recovery is usually conducted by retrieving relevant poses using image features. In the retrieving process, the mapping between 2D images and 3D poses is assumed to be linear in most of the traditional methods. However, their relationships are inherently non-linear, which limits recovery performance of these methods. In this paper, we propose a novel pose recovery method usi...
Logic programs with classical negation
On implementing MPI-IO portably and with high performance We discuss the issues involved in implementing MPI-IO portably on multiple machines and file systems and also achieving high per- formance. One way to implement MPI-IO portably is to implement it on top of the basic Unix I/O functions (open, lseek, read, write, and close), which are themselves portable. We argue that this approach has limitations in both functionality and perfor- mance. We instead advocate an implementation approach that com- bines a large portion of portable code and a small portion of code that is optimized separately for different machines and file systems. We have used such an approach to develop a high-performance, portable MPI-IO implementation, called ROMIO. In addition to basic I/O functionality, we consider the issues of supporting other MPI-IO features, such as 64-bit file sizes, non- contiguous accesses, collective I/O, asynchronous I/O, consistency and atomicity semantics, user-supplied hints, shared file pointers, portable data representation, and file preallocation. We describe how we implemented each of these features on various machines and file systems. The machines we consider are the HP Exemplar, IBM SP, Intel Paragon, NEC SX-4, SGI Origin2000, and networks of workstations; and the file systems we consider are HP HFS, IBM PIOFS, Intel PFS, NEC SFS, SGI XFS, NFS, and any general Unix file system (UFS). We also present our thoughts on how a file system can be de- signed to better support MPI-IO. We provide a list of features de- sired from a file system that would help in implementing MPI-IO correctly and with high performance.
Creating optimal cloud storage systems Effortless data storage ''in the cloud'' is gaining popularity for personal, enterprise and institutional data backups and synchronisation as well as for highly scalable access from software applications running on attached compute servers. The data is usually access-protected, encrypted and replicated depending on the security and scalability needs. Despite the advances in technology, the practical usefulness and longevity of cloud storage is limited in today's systems, which severely impacts the acceptance and adoption rates. Therefore, we introduce a novel cloud storage management system which optimally combines storage resources from multiple providers so that redundancy, security and other non-functional properties can be adjusted adequately to the needs of the storage service consumer. The system covers the entire storage service lifecycle from the consumer perspective. Hence, a definition of optimality is first contributed which is bound to both the architecture and the lifecycle phases. Next, an ontology for cloud storage services is presented as a prerequisite for optimality. Furthermore, we present NubiSave, a user-friendly storage controller implementation with adaptable overhead which runs on and integrates into typical consumer environments as a central part of an overall storage system. Its optimality claims are validated in real-world scenarios with several commercial online and cloud storage providers.
Representing action and change by logic programs We represent properties of actions in a logic programming language that uses both classical negation and negation as failure. The method is applicable to temporal projection problems with incomplete information, as well as to reasoning about the past. It is proved to be sound relative to a semantics of action based on states and transition functions.
Serverless network file systems We propose a new paradigm for network file system design: serverless network file systems. While traditional network file systems rely on a central server machine, a serverless system utilizes workstations cooperating as peers to provide all file system services. Any machine in the system can store, cache, or control any block of data. Our approach uses this location independence, in combination with fast local area networks, to provide better performance and scalability than traditional file systems. Furthermore, because any machine in the system can assume the responsibilities of a failed component, our serverless design also provides high availability via redundatn data storage. To demonstrate our approach, we have implemented a prototype serverless network file system called xFS. Preliminary performance measurements suggest that our architecture achieves its goal of scalability. For instance, in a 32-node xFS system with 32 active clients, each client receives nearly as much read or write throughput as it would see if it were the only active client.
Comparative Evaluation of Latency Tolerance Techniques for Software Distributed Shared Memory A key challenge in achieving high performance on software DSMs is overcoming their relatively large communication latencies. In this paper, we consider two techniques which address this problem: prefetching and multithreading. While previous studies have examined each of these techniques in isolation, this paper is the first to evaluate both techniques using a consistent hardware platform and set of applications, thereby allowing direct comparisons. In addition, this is the first study to consider combining prefetching and multithreading in a software DSM. We performed our experiments on real hardware using a full implementation of both techniques. Our experimental results demonstrate that both prefetching and multithreading result in significant performance improvements when applied individually. In addition, we observe that prefetching and multithreading can potentially complement each other by using prefetching to hide memory latency and multithreading to hide synchronization latency.
Phoenix: a safe in-memory file system Phoenix contains two timestamped versions of the in-memory file system allowing for a reserve version that ensures safety for diskless computers with battery-powered memeory.
MAXSAT Heuristics for Cost Optimal Planning.
Exploring Sequence Alignment Algorithms On Fpga-Based Heterogeneous Architectures With the rapid development of DNA sequencer, the rate of data generation is rapidly outpacing the rate at which it can be computationally processed. Traditional sequence alignment based on PC cannot fulfill the increasing demand. Accelerating the algorithm using FPGA provides the better performance compared to the other platforms. This paper will explain and classify the current sequence alignment algorithms. In addition, we analyze the different types of sequence alignment algorithms and present the taxonomy of FPGA-based sequence alignment implementations. This work will conclude the current solutions and provide a reference to further accelerating sequence alignment on a FPGA-based heterogeneous architecture.
1.2
0.2
0.1
0.066667
0.018182
0
0
0
0
0
0
0
0
0