Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Italian
Libraries:
Datasets
pandas
License:
giuliagru commited on
Commit
93765c5
1 Parent(s): b533a1f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -7
README.md CHANGED
@@ -20,19 +20,35 @@ The objective of the first task is to classify each argumentative component as p
20
  ### Dataset Structure
21
 
22
  The dataset consists of the following columns:
23
- Text: the text of the argumentative component
24
- Document: the document it belongs to
25
- Component: if it is a premise (prem) or a conclusion (conc)
26
- Type: a list value representing the type of a premise; the list contains F for a Factual premise and L for a Legal one.
27
- Scheme: a list value representing the argumentative schemes of a legal premise. The values are: Rule, Prec, Class, Itpr and Princ.
28
- Chain_id: univocal for each document, it specifies the argumentative chain the component belongs to (e.g. A1, A2,..., B1, B2,...)
29
- Id: an univocal numerical id
30
 
31
 
32
  ## Citation
33
 
34
  **BibTeX:**
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
 
38
 
 
20
  ### Dataset Structure
21
 
22
  The dataset consists of the following columns:
23
+ - Text: the text of the argumentative component
24
+ - Document: the document it belongs to
25
+ - Component: if it is a premise (prem) or a conclusion (conc)
26
+ - Type: a list value representing the type of a premise; the list contains F for a Factual premise and L for a Legal one.
27
+ - Scheme: a list value representing the argumentative schemes of a legal premise. The values are: Rule, Prec, Class, Itpr and Princ.
28
+ - Chain_id: univocal for each document, it specifies the argumentative chain the component belongs to (e.g. A1, A2,..., B1, B2,...)
29
+ - Id: an univocal numerical id
30
 
31
 
32
  ## Citation
33
 
34
  **BibTeX:**
35
 
36
+ @inproceedings{
37
+ author = {Giulia Grundler and
38
+ Andrea Galassi and
39
+ Piera Santin and
40
+ Alessia Fidangeli and
41
+ Federico Galli and
42
+ Elena Palmieri and
43
+ Francesca Lagioia and
44
+ Giovanni Sartor and
45
+ Paolo Torroni},
46
+ title = {AMELIA - Argument Mining Evaluation on Legal documents in ItAlian: A CALAMITA Challenge},
47
+ booktitle = {Proceedings of CLiC-it 2024: Tenth Italian Conference on Computational Linguistics},
48
+ year = {},
49
+ doi = {},
50
+ }
51
+
52
 
53
 
54