Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Italian
Libraries:
Datasets
pandas
License:
giuliagru commited on
Commit
b533a1f
1 Parent(s): 2e158ab

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -3
README.md CHANGED
@@ -1,3 +1,39 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - it
7
+ ---
8
+ # Dataset Card for AMELIA - Argument Mining Evaluation on Legal documents in ItAlian: A CALAMITA Challenge
9
+
10
+ This dataset consists of argumentative components extracted from 225 Italian decisions on Value Added Tax, annotated to identify and categorize argumentative text.
11
+ The proposed tasks consists of three classifications, in the context of argument mining in the legal domain.
12
+ The objective of the first task is to classify each argumentative component as premise or conclusion, while the second and third tasks aim at classifying the type of premise: legal vs factual, and its corresponding argumentation scheme.
13
+
14
+ ## Dataset Details
15
+
16
+ ### Dataset Source
17
+
18
+ - **Repository:** https://github.com/adele-project/AMELIA/
19
+
20
+ ### Dataset Structure
21
+
22
+ The dataset consists of the following columns:
23
+ • Text: the text of the argumentative component
24
+ • Document: the document it belongs to
25
+ • Component: if it is a premise (prem) or a conclusion (conc)
26
+ • Type: a list value representing the type of a premise; the list contains F for a Factual premise and L for a Legal one.
27
+ • Scheme: a list value representing the argumentative schemes of a legal premise. The values are: Rule, Prec, Class, Itpr and Princ.
28
+ • Chain_id: univocal for each document, it specifies the argumentative chain the component belongs to (e.g. A1, A2,..., B1, B2,...)
29
+ • Id: an univocal numerical id
30
+
31
+
32
+ ## Citation
33
+
34
+ **BibTeX:**
35
+
36
+
37
+
38
+
39
+