|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
|
|
import datasets |
|
from dataclasses import dataclass |
|
|
|
_CITATION = ''' |
|
@article{mrtydi, |
|
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, |
|
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, |
|
year={2021}, |
|
journal={arXiv:2108.08787}, |
|
} |
|
''' |
|
|
|
languages = [ |
|
'arabic', |
|
'bengali', |
|
'english', |
|
'indonesian', |
|
'finnish', |
|
'korean', |
|
'russian', |
|
'swahili', |
|
'telugu', |
|
'thai', |
|
'japanese', |
|
'combined', |
|
] |
|
|
|
_DESCRIPTION = 'dataset load script for Mr. TyDi' |
|
|
|
_DATASET_URLS = { |
|
lang: { |
|
|
|
'train': f'https://huggingface.co./datasets/crystina-z/mrtydi-mContriever-mmarco-HN/resolve/main/mrtydi-HN-{lang}/train.jsonl.gz', |
|
'dev': f'https://huggingface.co./datasets/castorini/mr-tydi/resolve/main/mrtydi-v1.1-{lang}/dev.jsonl.gz', |
|
'test': f'https://huggingface.co./datasets/castorini/mr-tydi/resolve/main/mrtydi-v1.1-{lang}/test.jsonl.gz', |
|
} for lang in languages |
|
} |
|
|
|
_DATASET_URLS['combined'] = { |
|
'train': "https://huggingface.co./datasets/crystina-z/mrtydi-mContriever-mmarco-HN/resolve/main/mrtydi-HN-combined/train.jsonl.gz" |
|
} |
|
|
|
|
|
class MrTyDiHN(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [datasets.BuilderConfig( |
|
version=datasets.Version('1.1.0'), |
|
name=lang, description=f'Mr TyDi HN training set in language {lang}.' |
|
) for lang in languages |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
'query_id': datasets.Value('string'), |
|
'query': datasets.Value('string'), |
|
|
|
'positive_passages': [{ |
|
'docid': datasets.Value('string'), |
|
'text': datasets.Value('string'), 'title': datasets.Value('string') |
|
}], |
|
'negative_passages': [{ |
|
'docid': datasets.Value('string'), |
|
'text': datasets.Value('string'), 'title': datasets.Value('string'), |
|
}], |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage='https://github.com/castorini/mr.tydi', |
|
|
|
license='', |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
lang = self.config.name |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang]) |
|
|
|
if lang != "combined": |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name='train', |
|
gen_kwargs={ |
|
'filepath': downloaded_files['train'], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name='dev', |
|
gen_kwargs={ |
|
'filepath': downloaded_files['dev'], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name='test', |
|
gen_kwargs={ |
|
'filepath': downloaded_files['test'], |
|
}, |
|
), |
|
] |
|
else: |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name='train', |
|
gen_kwargs={ |
|
'filepath': downloaded_files['train'], |
|
}, |
|
), |
|
] |
|
return splits |
|
|
|
def _generate_examples(self, filepath): |
|
lang = self.config.name |
|
with open(filepath, encoding="utf-8") as f: |
|
for i, line in enumerate(f): |
|
data = json.loads(line) |
|
qid = data['query_id'] if lang != 'combined' else f'fake-{i}' |
|
for feature in ['negative_passages', 'positive_passages']: |
|
if data.get(feature) is None: |
|
data[feature] = [] |
|
|
|
for j in range(len(data[feature])): |
|
if "docid" not in data[feature][j]: |
|
data[feature][j]["docid"] = "" |
|
|
|
yield qid, data |
|
|
|
|