File size: 5,126 Bytes
b2c14fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e38a07
 
b2c14fc
 
 
 
 
 
0ce7e91
b2c14fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a25ff2c
b2c14fc
 
 
a25ff2c
b2c14fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a25ff2c
 
 
 
b2c14fc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3

import json

import datasets
from dataclasses import dataclass

_CITATION = '''
@article{mrtydi,
      title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, 
      author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
      year={2021},
      journal={arXiv:2108.08787},
}
'''

languages = [
    'arabic',
    'bengali',
    'english',
    'indonesian',
    'finnish',
    'korean',
    'russian',
    'swahili',
    'telugu',
    'thai',
    'japanese',
    'combined',
]

_DESCRIPTION = 'dataset load script for Mr. TyDi'

_DATASET_URLS = {
    lang: {
        # mrtydi-HN-korean
        'train': f'https://huggingface.co./datasets/crystina-z/mrtydi-mContriever-mmarco-HN/resolve/main/mrtydi-HN-{lang}/train.jsonl.gz',
        'dev': f'https://huggingface.co./datasets/castorini/mr-tydi/resolve/main/mrtydi-v1.1-{lang}/dev.jsonl.gz',
        'test': f'https://huggingface.co./datasets/castorini/mr-tydi/resolve/main/mrtydi-v1.1-{lang}/test.jsonl.gz',
    } for lang in languages
}

_DATASET_URLS['combined'] = {
    'train': "https://huggingface.co./datasets/crystina-z/mrtydi-mContriever-mmarco-HN/resolve/main/mrtydi-HN-combined/train.jsonl.gz"
}


class MrTyDiHN(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [datasets.BuilderConfig(
            version=datasets.Version('1.1.0'),
            name=lang, description=f'Mr TyDi HN training set in language {lang}.'
        ) for lang in languages
    ]

    def _info(self):
        features = datasets.Features({
            'query_id': datasets.Value('string'),
            'query': datasets.Value('string'),

            'positive_passages': [{
                'docid': datasets.Value('string'),
                'text': datasets.Value('string'), 'title': datasets.Value('string')
            }],
            'negative_passages': [{
                'docid': datasets.Value('string'),
                'text': datasets.Value('string'), 'title': datasets.Value('string'),
            }],
        })

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage='https://github.com/castorini/mr.tydi',
            # License for the dataset if available
            license='',
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        lang = self.config.name
        downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang])

        if lang != "combined":
            splits = [
                datasets.SplitGenerator(
                    name='train',
                    gen_kwargs={
                        'filepath': downloaded_files['train'],
                    },
                ),
                datasets.SplitGenerator(
                    name='dev',
                    gen_kwargs={
                        'filepath': downloaded_files['dev'],
                    },
                ),
                datasets.SplitGenerator(
                    name='test',
                    gen_kwargs={
                        'filepath': downloaded_files['test'],
                    },
                ),
            ]
        else:
            splits = [
                datasets.SplitGenerator(
                    name='train',
                    gen_kwargs={
                        'filepath': downloaded_files['train'],
                    },
                ),
            ]
        return splits

    def _generate_examples(self, filepath):
        lang = self.config.name
        with open(filepath, encoding="utf-8") as f:
            for i, line in enumerate(f):
                data = json.loads(line)
                qid = data['query_id'] if lang != 'combined' else f'fake-{i}'
                for feature in ['negative_passages', 'positive_passages']:
                    if data.get(feature) is None:
                        data[feature] = []

                    for j in range(len(data[feature])):
                        if "docid" not in data[feature][j]:
                            data[feature][j]["docid"] = ""

                yield qid, data