# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import json import datasets from dataclasses import dataclass _CITATION = ''' @article{mrtydi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } ''' languages = [ 'arabic', 'bengali', 'english', 'indonesian', 'finnish', 'korean', 'russian', 'swahili', 'telugu', 'thai', 'japanese', 'combined', ] _DESCRIPTION = 'dataset load script for Mr. TyDi' _DATASET_URLS = { lang: { # mrtydi-HN-korean 'train': f'https://huggingface.co./datasets/crystina-z/mrtydi-mContriever-mmarco-HN/resolve/main/mrtydi-HN-{lang}/train.jsonl.gz', 'dev': f'https://huggingface.co./datasets/castorini/mr-tydi/resolve/main/mrtydi-v1.1-{lang}/dev.jsonl.gz', 'test': f'https://huggingface.co./datasets/castorini/mr-tydi/resolve/main/mrtydi-v1.1-{lang}/test.jsonl.gz', } for lang in languages } _DATASET_URLS['combined'] = { 'train': "https://huggingface.co./datasets/crystina-z/mrtydi-mContriever-mmarco-HN/resolve/main/mrtydi-HN-combined/train.jsonl.gz" } class MrTyDiHN(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [datasets.BuilderConfig( version=datasets.Version('1.1.0'), name=lang, description=f'Mr TyDi HN training set in language {lang}.' ) for lang in languages ] def _info(self): features = datasets.Features({ 'query_id': datasets.Value('string'), 'query': datasets.Value('string'), 'positive_passages': [{ 'docid': datasets.Value('string'), 'text': datasets.Value('string'), 'title': datasets.Value('string') }], 'negative_passages': [{ 'docid': datasets.Value('string'), 'text': datasets.Value('string'), 'title': datasets.Value('string'), }], }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage='https://github.com/castorini/mr.tydi', # License for the dataset if available license='', # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): lang = self.config.name downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang]) if lang != "combined": splits = [ datasets.SplitGenerator( name='train', gen_kwargs={ 'filepath': downloaded_files['train'], }, ), datasets.SplitGenerator( name='dev', gen_kwargs={ 'filepath': downloaded_files['dev'], }, ), datasets.SplitGenerator( name='test', gen_kwargs={ 'filepath': downloaded_files['test'], }, ), ] else: splits = [ datasets.SplitGenerator( name='train', gen_kwargs={ 'filepath': downloaded_files['train'], }, ), ] return splits def _generate_examples(self, filepath): lang = self.config.name with open(filepath, encoding="utf-8") as f: for i, line in enumerate(f): data = json.loads(line) qid = data['query_id'] if lang != 'combined' else f'fake-{i}' for feature in ['negative_passages', 'positive_passages']: if data.get(feature) is None: data[feature] = [] for j in range(len(data[feature])): if "docid" not in data[feature][j]: data[feature][j]["docid"] = "" yield qid, data