CINIC10 / README.md
alexey-zhavoronkin's picture
Update README.md
56a2d5d verified
|
raw
history blame
1.42 kB
---
task_categories:
- image-classification
size_categories:
- 100K<n<1M
---
[CINIC10](https://github.com/BayesWatch/cinic-10) dataset with interface of [CIFAR10](https://github.com/pytorch/vision/blob/main/torchvision/datasets/cifar.py).
It is faster than the common CINIC10 due to the fact that all images are loaded into RAM while initing dataset instance.
You should save file `cinic10.py` from this repo in local directory. And then import the CINIC10 class from it:
```
import torchvision
import torch
from torchvision transforms
from cinic10 import CINIC10
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.Resize(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(data_mean, data_std),
])
transform_test = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize(data_mean, data_std),
])
batch_size = 64
num_workers = 4
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
```