File size: 1,423 Bytes
77c8f95
 
 
 
 
9777360
 
c481ade
a142f18
a2be8e4
9a36bfc
 
56a2d5d
a2be8e4
 
 
 
 
 
 
 
65cede8
 
 
 
 
a2be8e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
task_categories:
- image-classification
size_categories:
- 100K<n<1M
---

[CINIC10](https://github.com/BayesWatch/cinic-10) dataset with interface of [CIFAR10](https://github.com/pytorch/vision/blob/main/torchvision/datasets/cifar.py).

It is faster than the common CINIC10 due to the fact that all images are loaded into RAM while initing dataset instance.


You should save file `cinic10.py` from this repo in local directory. And then import the CINIC10 class from it:

```
import torchvision
import torch
from torchvision transforms
from cinic10 import CINIC10

transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.Resize(32),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(data_mean, data_std),
])

transform_test = transforms.Compose([
    transforms.Resize(32),
    transforms.ToTensor(),
    transforms.Normalize(data_mean, data_std),
])

batch_size = 64
num_workers = 4

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=num_workers)

```