Datasets:
alexey-zhavoronkin
commited on
Commit
•
a2be8e4
1
Parent(s):
9a36bfc
Update README.md
Browse files
README.md
CHANGED
@@ -7,9 +7,41 @@ size_categories:
|
|
7 |
|
8 |
[CINIC10](https://github.com/BayesWatch/cinic-10) dataset with interface of [CIFAR10](https://github.com/pytorch/vision/blob/main/torchvision/datasets/cifar.py).
|
9 |
|
10 |
-
|
11 |
|
12 |
-
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6603fa9907e0b8a75b819c61/LcEiSYmYFtC3D2wpG2uuB.png)
|
13 |
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
[CINIC10](https://github.com/BayesWatch/cinic-10) dataset with interface of [CIFAR10](https://github.com/pytorch/vision/blob/main/torchvision/datasets/cifar.py).
|
9 |
|
10 |
+
It is faster than the common CINIC10 due to the fact that all images are loaded into RAM while initing dataset instance.
|
11 |
|
|
|
12 |
|
13 |
|
14 |
+
The simplest way to use CINIC-10 is with a PyTorch data loader, as follows:
|
15 |
+
|
16 |
+
```
|
17 |
+
import torchvision
|
18 |
+
import torch
|
19 |
+
from torchvision transforms
|
20 |
+
from cinic10 import CINIC10
|
21 |
+
|
22 |
+
transform_train = transforms.Compose([
|
23 |
+
transforms.RandomCrop(32, padding=4),
|
24 |
+
transforms.Resize(32),
|
25 |
+
transforms.RandomHorizontalFlip(),
|
26 |
+
transforms.ToTensor(),
|
27 |
+
transforms.Normalize(data_mean, data_std),
|
28 |
+
])
|
29 |
+
|
30 |
+
transform_test = transforms.Compose([
|
31 |
+
transforms.Resize(32),
|
32 |
+
transforms.ToTensor(),
|
33 |
+
transforms.Normalize(data_mean, data_std),
|
34 |
+
])
|
35 |
+
|
36 |
+
batch_size = 64
|
37 |
+
num_workers = 4
|
38 |
+
|
39 |
+
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
|
40 |
+
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
|
41 |
+
|
42 |
+
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
|
43 |
+
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
|
44 |
+
|
45 |
+
```
|
46 |
+
|
47 |
+
|