|
--- |
|
license: mit |
|
size_categories: |
|
- 10K<n<100K |
|
task_categories: |
|
- image-segmentation |
|
dataset_info: |
|
- config_name: default |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: image |
|
splits: |
|
- name: train |
|
num_bytes: 20624104160.0 |
|
num_examples: 40000 |
|
- name: test |
|
num_bytes: 5112305610.0 |
|
num_examples: 10000 |
|
download_size: 25802886510 |
|
dataset_size: 25736409770.0 |
|
- config_name: default-tiny |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: image |
|
splits: |
|
- name: train |
|
num_bytes: 5141667600.0 |
|
num_examples: 10000 |
|
- name: test |
|
num_bytes: 1287848481.0 |
|
num_examples: 2500 |
|
download_size: 6434219116 |
|
dataset_size: 6429516081.0 |
|
- config_name: human-plant |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: image |
|
splits: |
|
- name: train |
|
num_bytes: 20529582920 |
|
num_examples: 40000 |
|
- name: test |
|
num_bytes: 5084631770 |
|
num_examples: 10000 |
|
download_size: 25675082023 |
|
dataset_size: 25614214690 |
|
- config_name: human-plant-tiny |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: image |
|
splits: |
|
- name: train |
|
num_bytes: 5117076360 |
|
num_examples: 10000 |
|
- name: test |
|
num_bytes: 1280707488.5 |
|
num_examples: 2500 |
|
download_size: 6400701649 |
|
dataset_size: 6397783848.5 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
- config_name: default-tiny |
|
data_files: |
|
- split: train |
|
path: default-tiny/train-* |
|
- split: test |
|
path: default-tiny/test-* |
|
- config_name: human-plant |
|
data_files: |
|
- split: train |
|
path: human-plant/train-* |
|
- split: test |
|
path: human-plant/test-* |
|
- config_name: human-plant-tiny |
|
data_files: |
|
- split: train |
|
path: human-plant-tiny/train-* |
|
- split: test |
|
path: human-plant-tiny/test-* |
|
--- |
|
|
|
|
|
# AgroSegNet |
|
|
|
This dataset comprises synthetic images captured from a top-down perspective, featuring two distinct annotations: one for direct sunlight and another for human and plant segmentation. |
|
|
|
# Example loader |
|
|
|
## Install Hugging Face datasets package |
|
|
|
```sh |
|
pip install datasets |
|
``` |
|
|
|
|
|
## Download the dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("Menchen/AgroSegNet","default") # Change "default" to "default-tiny" to preview and test |
|
|
|
``` |
|
|
|
## Load the data |
|
|
|
Images and masks are stored as PIL, for example: |
|
|
|
```python |
|
|
|
dataset["train"][1]["image"] # PIL image to rendered image |
|
|
|
dataset["train"][1]["label"] # PIL image to mask |
|
|
|
``` |
|
|
|
|
|
|