Datasets:
metadata
license: mit
size_categories:
- 10K<n<100K
task_categories:
- image-segmentation
dataset_info:
- config_name: default
features:
- name: image
dtype: image
- name: label
dtype: image
splits:
- name: train
num_bytes: 20624104160
num_examples: 40000
- name: test
num_bytes: 5112305610
num_examples: 10000
download_size: 25802886510
dataset_size: 25736409770
- config_name: default-tiny
features:
- name: image
dtype: image
- name: label
dtype: image
splits:
- name: train
num_bytes: 5141667600
num_examples: 10000
- name: test
num_bytes: 1287848481
num_examples: 2500
download_size: 6434219116
dataset_size: 6429516081
- config_name: human-plant
features:
- name: image
dtype: image
- name: label
dtype: image
splits:
- name: train
num_bytes: 20529582920
num_examples: 40000
- name: test
num_bytes: 5084631770
num_examples: 10000
download_size: 25675082023
dataset_size: 25614214690
- config_name: human-plant-tiny
features:
- name: image
dtype: image
- name: label
dtype: image
splits:
- name: train
num_bytes: 5117076360
num_examples: 10000
- name: test
num_bytes: 1280707488.5
num_examples: 2500
download_size: 6400701649
dataset_size: 6397783848.5
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: default-tiny
data_files:
- split: train
path: default-tiny/train-*
- split: test
path: default-tiny/test-*
- config_name: human-plant
data_files:
- split: train
path: human-plant/train-*
- split: test
path: human-plant/test-*
- config_name: human-plant-tiny
data_files:
- split: train
path: human-plant-tiny/train-*
- split: test
path: human-plant-tiny/test-*
AgroSegNet
This dataset comprises synthetic images captured from a top-down perspective, featuring two distinct annotations: one for direct sunlight and another for human and plant segmentation.
Example loader
Install Hugging Face datasets package
pip install datasets
Download the dataset
from datasets import load_dataset
dataset = load_dataset("Menchen/AgroSegNet","default") # Change "default" to "default-tiny" to preview and test
Load the data
Images and masks are stored as PIL, for example:
dataset["train"][1]["image"] # PIL image to rendered image
dataset["train"][1]["label"] # PIL image to mask