TeX
stringlengths 1
269k
⌀ |
---|
H_{0}:\xi=0 |
x_{min}=\min\{x_{1},\ldots,x_{n}\} |
\xi_{n}(\vec{x},\vec{y})=1-\frac{n\sum_{i=1}^{n-1}|r_{i+1}-r_{i}|}{2\sum_{i=1}%
^{n}l_{i}(n-l_{i})} |
\xi_{n}(\vec{y},\vec{y}) |
\displaystyle\geq\sum_{k=i}^{j-1}|x_{k+1}-x_{k}|\geq x_{max}-x_{min} |
\displaystyle\quad+\underbrace{\sum_{k=i^{\prime}}^{j^{\prime}-1}|x_{k+1}-x_{k%
}|}_{\geq\;x_{i^{\prime}}-x_{j^{\prime}}}+\underbrace{\sum_{k=j^{\prime}}^{j-1%
}|x_{k+1}-x_{k}|}_{\geq\;x_{max}-x_{j^{\prime}}} |
(a,b,n) |
\vec{y} |
Y\sim\mbox{binom}(m^{\prime},p^{\prime}) |
\displaystyle P(Y\geq 0|X\!=\!x) |
X\sim\mbox{equal}(a,b,n) |
Y\sim XY |
q(\alpha/2) |
50\leq n\leq 5000 |
\xi(X,Y)=6\int\!\!\!\int\!P(Y\!\geq\!t|X\!=\!x)^{2}d\lambda(x)\,d\mu(t)-2 |
f(x)\geq t |
x_{i^{\prime}}>x_{j^{\prime}} |
\xi_{n}(\vec{x},\vec{y})\leq\xi_{n}(\vec{y},\vec{y}) |
\varphi(z)=e^{-z^{2}/2}/\sqrt{2\pi} |
\displaystyle\quad+(x_{i-1}-x_{i-2})\ldots+(x_{j+1}-x_{j})| |
\tau_{m}(\xi_{m}^{*}-\xi_{n}) |
\displaystyle\frac{\int\!\Big{(}\!\int\!P(Y\!\geq\!t|X\!=\!x)^{2}d\lambda(x)-P%
(Y\!\geq\!t)^{2}\Big{)}d\mu(t)}{\int P(Y\!\geq\!t)\Big{(}1-P(Y\!\geq\!t)\Big{)%
}\,d\mu(t)} |
\boldsymbol{Y=f(X)+\varepsilon} |
\displaystyle=\int\limits_{t}^{\infty}\frac{1}{\sigma}\,\varphi\left(\frac{y-x%
}{\sigma}\right)dy |
\left[\xi_{n}-\frac{q(1-\alpha/2)}{\tau_{n}},\;\xi_{n}-\frac{q(\alpha/2)}{\tau%
_{n}}\right] |
\sum_{k=1}^{n-1}|x_{k+1}-x_{k}|\geq x_{max}-x_{min} |
E(1_{\{Y\geq t\}}|X) |
X,Y\sim\operatorname{unif}(-1,1) |
m=c\cdot n^{\alpha} |
500\leq n\leq 5000 |
m^{\prime}=6,p^{\prime}=0.3 |
\frac{1}{b-a}\int\limits_{a}^{b}P(Y\!\geq\!t|X\!=\!x)^{2}dx=\frac{\sigma}{b-a}%
\bigg{[}z\Phi(z)^{2}\\
+2\Phi(z)\varphi(z)-\frac{1}{\sqrt{\pi}}\Phi(z\sqrt{2})\bigg{]}_{\frac{a-t}{%
\sigma}}^{\frac{b-t}{\sigma}} |
x_{max}-x_{min} |
\operatorname{Var}(\xi_{n}) |
\displaystyle\leq\sum_{k=j}^{i-1}|x_{k+1}-x_{k}|\leq\sum_{k=1}^{n-1}|x_{k+1}-x%
_{k}| |
\displaystyle=\Phi\left(\frac{x-t}{\sigma}\right) |
\displaystyle\quad\mbox{for }x=0 |
\boldsymbol{Y=X+\varepsilon} |
\vec{y}=(y_{1},\ldots,y_{n}) |
\tau_{n}^{2}\operatorname{Var}(\xi_{n}) |
\tau_{n}=\sqrt{n} |
i\leq i^{\prime}<j^{\prime}\leq j |
X\sim\mbox{binom}(m,p) |
(\vec{x},\vec{y})^{*} |
x_{j}=x_{j+1}=\ldots=x_{n} |
j>j |
d\lambda(x)=\mbox{dunif}(a,b)(x)\,dx |
\alpha\in\{1/2,2/3,3/4\} |
r_{max}-r_{min}=n-r_{min} |
i^{\prime},j^{\prime} |
(n-2)/(n+1) |
\xi^{\prime}_{n} |
\mbox{dunif}(a,b)(x)=1/(b-a) |
P(Y=1)=pp^{\prime}\quad\mbox{and}\quad P(Y=0)=1-pp^{\prime} |
\boldsymbol{Y=X^{2}+\varepsilon} |
Y\sim\sin(2\pi X)+\varepsilon |
X\sim\mbox{unif}(a,b) |
\displaystyle x_{min}=\sum_{k=i}^{j-1}|x_{k+1}-x_{k}|=\underbrace{\sum_{k=i}^{%
i^{\prime}-1}|x_{k+1}-x_{k}|}_{\geq\;x_{i^{\prime}}-x_{min}} |
X\sim\mbox{equal}(m,-1,1) |
m^{\prime}=2 |
k\to n-k |
\displaystyle\int P(Y\!\geq\!t)^{2}d\mu(t) |
\xi=\frac{(1-p)p^{\prime}}{1-pp^{\prime}} |
\xi_{n}(\vec{y},\vec{y})=1-\frac{n(n-r_{min})}{2\sum_{i=1}^{n}l_{i}(n-l_{i})} |
Y\sim X+\varepsilon |
\boldsymbol{Y,X} |
X\sim\mbox{bernoulli}(p) |
\displaystyle P(Y\geq t|X\!=\!x) |
\displaystyle=-\frac{1}{2}P(Y\!\geq\!t)^{2}\Big{|}_{-\infty}^{\infty}=\frac{1}%
{2} |
\xi_{n}^{\prime} |
\varepsilon\sim-\sigma\sqrt{m}+\frac{2\sigma}{\sqrt{m}}\mbox{binom}(m,0.5) |
\displaystyle x_{min}=|x_{i}-x_{j}|=|(x_{i}-x_{i-1}) |
\boldsymbol{Y=\sin(2\pi X)+\varepsilon} |
\displaystyle=\int\limits_{t}^{\infty}\frac{1}{\sigma}\,\varphi\left(\frac{y-f%
(x)}{\sigma}\right)dy |
\displaystyle=\frac{1}{b-a}\left(\Phi\left(\frac{y-a}{\sigma}\right)-\Phi\left%
(\frac{y-b}{\sigma}\right)\right) |
Z\sim\mbox{bernoulli}(p^{\prime}) |
x_{j}=x_{max} |
\operatorname{Var}(\xi_{n})\sim n^{-1} |
P(Y\geq t) |
\xi(X,Y)=\frac{\int\operatorname{Var}\Big{(}E(1_{\{Y\geq t\}}|X)\Big{)}d\mu(t)%
}{\int\operatorname{Var}\Big{(}1_{\{Y\geq t\}}\Big{)}d\mu(t)} |
\xi_{n}(\vec{x},\vec{y}) |
n(n^{2}-1)/3 |
\displaystyle x_{max}- |
\displaystyle=\sum_{k=1}^{n-1}|x_{k+1}-x_{k}| |
\sum_{i}|r_{i+1}-r_{i}| |
x_{max}=\max\{x_{1},\ldots,x_{n}\} |
1_{\{Y\geq t\}}=\left\{\begin{array}[]{ll}1&\mbox{ with probability }P(Y\geq t%
)\\
0&\mbox{ with probability }1-P(Y\geq t)\end{array}\right. |
P(Y\geq t)=\int P(Y\geq t\mid X=x)\,d\lambda(x) |
X\sim\mbox{unif}(-1,1) |
P(Y\geq t|X=x) |
\displaystyle(X,Y)= |
\displaystyle\quad\mbox{for both }x |
2/5\sqrt{n} |
P(Y\!\geq\!t|X=x)^{2} |
\varepsilon\sim-\sigma\sqrt{m^{\prime}}+\frac{2\sigma}{\sqrt{m^{\prime}}}\mbox%
{binom}(m^{\prime},0.5) |
Z\sim\mbox{binom}(1,p^{\prime}) |
\displaystyle\geq x_{max}-x_{min}+2(x_{i^{\prime}}-x_{j^{\prime}}) |
\displaystyle=p^{\prime} |
p^{\prime}=0.5 |
x_{j}=x_{min} |