TeX
stringlengths 1
269k
⌀ |
---|
\Lambda_{\cal C} |
{\cal Q}_{1n} |
\sum^{n}_{i=1}\frac{\delta_{i}}{G_{0}(Y_{i})}g_{\tau}(\varepsilon_{i})\mathbf{%
X}^{\top}_{{\cal A}^{c},i}\textrm{$\mathbf{\beta}$}^{(2)}_{{\cal A}^{c}}\frac{%
1}{n}\sum^{n}_{j=1}\int^{B}_{0}1\!\!1_{Y_{i}\geq s}\frac{dM_{j}^{\cal C}(s)}{y%
(s)}=O_{\mathbb{P}}(1). |
(Y_{i},\delta_{i})_{1\leqslant i\leqslant n} |
\textrm{$\mathbf{\omega}$}^{0}_{\cal A}\equiv\lim_{n\rightarrow\infty}\widehat%
{\textrm{$\mathbf{\omega}$}}_{n,{\cal A}}=|\textrm{$\mathbf{\beta}$}^{0}_{\cal
A%
}|^{-\gamma} |
\mathbf{{u}}=-(\textbf{W}_{1}+\textbf{W}_{2})\mathbb{E}^{-1}_{\varepsilon}\big%
{[}h_{\tau}(\varepsilon)\big{]}\mathbb{E}_{\mathbf{X}}[\mathbf{X}\mathbf{X}^{%
\top}]^{-1} |
\frac{1}{n}\sum^{n}_{i=1}\frac{\delta_{i}}{G_{0}(Y_{i})}g_{\tau}(\varepsilon_{%
i})\mathbf{X}^{\top}_{{\cal A}^{c},i}1\!\!1_{Y_{i}\geq s}=O_{\mathbb{P}}(1)%
\overset{\mathbb{P}}{\underset{n\rightarrow\infty}{\longrightarrow}}\textrm{$%
\mathbf{\kappa}$}_{{\cal A}^{c}}(s). |
{\cal W}(0,1) |
\displaystyle=\sum^{n}_{i=1}\delta_{i}\bigg{(}\frac{1}{\widehat{G}_{n}(Y_{i})}%
-\frac{1}{G_{0}(Y_{i})}\bigg{)}\big{(}\rho_{\tau}(\varepsilon_{i}-n^{1/2}%
\mathbf{X}^{\top}_{i}\mathbf{{u}})-\rho_{\tau}(\varepsilon_{i})\big{)} |
n^{-1/2}\lambda_{n}=O_{\mathbb{P}}(1) |
\textbf{W}_{2}\sim{\cal N}_{p}(\textrm{$\mathbf{0}$}_{p},\textbf{S}_{2}) |
t=n^{-1/2}\mathbf{X}_{i}^{\top}\mathbf{{u}} |
\textbf{S}_{1} |
\widetilde{\textrm{$\mathbf{\beta}$}}_{n} |
\widehat{\textrm{$\mathbf{\beta}$}}_{n}\equiv\mathop{\mathrm{arg\,min}}_{%
\textrm{$\mathbf{\beta}$}\in\mathbb{R}^{p}}\bigg{(}\sum^{n}_{i=1}\frac{\delta_%
{i}}{\widehat{G}_{n}(Y_{i})}\rho_{\tau}(\log(Y_{i})-\mathbf{X}_{i}^{\top}%
\textrm{$\mathbf{\beta}$})+\lambda_{n}\sum^{p}_{j=1}\widehat{\omega}_{n,j}|%
\beta_{j}|\bigg{)}, |
\widehat{\textrm{$\mathbf{\beta}$}}_{n,{\cal A}} |
{\cal C}_{i}\sim{\cal U}[0,c_{1}] |
\mathbb{P}[\widehat{\textrm{$\mathbf{\beta}$}}_{n}\in{\cal W}_{n}]{\underset{n%
\rightarrow\infty}{\longrightarrow}}0 |
n\geq 2500 |
{\cal R}_{n}(\widehat{G}_{n},\textrm{$\mathbf{\beta}$}) |
\mathbb{P}[\widehat{\cal A}_{n}\subseteq{\cal A}]{\underset{n\rightarrow\infty%
}{\longrightarrow}}1 |
\textrm{$\mathbf{\beta}$}^{(2)}\equiv\big{(}\textrm{$\mathbf{\beta}$}^{(2)}_{%
\cal A},\textrm{$\mathbf{\beta}$}^{(2)}_{{\cal A}^{c}}\big{)}\in{\cal W}_{n} |
\lambda_{n}=(150k)^{1/2-0.1} |
\mathbb{E}_{\varepsilon}[\varepsilon]=0 |
\|\mathbf{{u}}\|=c<\infty |
{\cal T}_{n}(G,\textrm{$\mathbf{\beta}$})\equiv Q_{n}(G,\textrm{$\mathbf{\beta%
}$})-Q_{n}(G,\textrm{$\mathbf{\beta}^{0}$})+\lambda_{n}\sum^{p}_{j=1}\widehat{%
\omega}_{n,j}\big{(}|\beta_{j}|-|\beta^{0}_{j}|\big{)}. |
\textrm{$\mathbf{\beta}$}^{(2)} |
{\cal T}_{n}(\widehat{G}_{n},\textrm{$\mathbf{\beta}$}^{(2)})-{\cal T}_{n}(%
\widehat{G}_{n},\textrm{$\mathbf{\beta}$}^{(1)})=Q_{n}(\widehat{G}_{n},\textrm%
{$\mathbf{\beta}$}^{(2)})-Q_{n}(\widehat{G}_{n},\textrm{$\mathbf{\beta}$}^{(1)%
})+\lambda_{n}\sum^{p}_{j=1}\widehat{\omega}_{n,j}\big{(}|\beta^{(2)}_{j}|-|%
\beta^{(1)}_{j}|\big{)}. |
\mathbb{P}[\widehat{\textrm{$\mathbf{\beta}$}}_{n}\in{\cal A}^{c}\cap\widehat{%
\cal A}_{n}]{\underset{n\rightarrow\infty}{\longrightarrow}}0 |
\widehat{\mathbf{{u}}}_{n,{\cal A}}\equiv\sqrt{n}\big{(}\widehat{\textrm{$%
\mathbf{\beta}$}}_{n,{\cal A}}-\textrm{$\mathbf{\beta}$}^{0}_{\cal A}\big{)}%
\overset{\cal L}{\underset{n\rightarrow\infty}{\longrightarrow}}{\cal N}_{|{%
\cal A}|}\bigg{(}-\mathbb{E}^{-1}_{\varepsilon}[h_{\tau}(\varepsilon)]l_{0}{%
\textrm{$\mathbf{\omega}$}^{0}_{\cal A}}^{\top}{\mathrm{sgn}}(\textrm{$\mathbf%
{\beta}$}^{0}_{\cal A})\mathbb{E}_{\mathbf{X}}[\mathbf{X}_{{\cal A}}\mathbf{X}%
^{\top}_{{\cal A}}]^{-1},\textrm{$\mathbf{\Xi}$}\bigg{)} |
\textrm{$\mathbf{\beta}$}=\textrm{$\mathbf{\beta}^{0}$}+n^{-1/2}\mathbf{{u}} |
\textrm{$\mathbf{\kappa}$}(s)\equiv\lim_{n\rightarrow\infty}\frac{1}{n}\sum^{n%
}_{i=1}\frac{\delta_{i}}{G_{0}(Y_{i})}1\!\!1_{Y_{i}\geq s}\mathbf{X}_{i}g_{%
\tau}(\varepsilon_{i}), |
\textrm{$\mathbf{\kappa}$}(s) |
\mathbb{E}_{\varepsilon}[h_{\tau}(\varepsilon)] |
\mathbb{E}_{\mathbf{X}}\bigg{[}\mathbb{E}_{\varepsilon}\bigg{[}\mathbb{E}_{%
\cal C}\bigg{[}\frac{\delta_{i}}{G_{0}(Y_{i})}g_{\tau}(\varepsilon_{i})\mathbf%
{X}_{i}^{\top}\mathbf{{u}}|\varepsilon_{i},\mathbf{X}_{i}\bigg{]}|\mathbf{X}_{%
i}\bigg{]}\bigg{]}=\mathbb{E}_{\mathbf{X}}\big{[}\mathbb{E}_{\varepsilon}\big{%
[}g_{\tau}(\varepsilon_{i})\mathbf{X}_{i}^{\top}\mathbf{{u}}|\mathbf{X}_{i}%
\big{]}\big{]}=0. |
\mathbf{{u}}^{\top}(\textbf{W}_{1}+\textbf{W}_{2}) |
\displaystyle\qquad+\frac{\mathbf{{u}}^{\top}_{\cal A}}{\sqrt{n}}\sum^{n}_{j=1%
}\int^{B}_{0}\frac{\textrm{$\mathbf{\kappa}$}_{\cal A}(s)}{y(s)}dM^{\cal C}_{j%
}(s)+\lambda_{n}\sum^{q}_{j=1}\widehat{\omega}_{n,j}\frac{{\mathrm{sgn}}(\beta%
^{0}_{j})u_{j}}{\sqrt{n}}+o_{\mathbb{P}}(1) |
\lim_{n\rightarrow\infty}\mathbb{P}\big{[}\widehat{\cal A}_{n}={\cal A}\big{]}=1 |
\beta_{0}^{0}=0 |
\displaystyle\quad+\left\{Q_{n}(\widehat{G}_{n},\textrm{$\mathbf{\beta}^{0}$}+%
n^{-1/2}\mathbf{{u}})-Q_{n}(G_{0},\textrm{$\mathbf{\beta}^{0}$}+n^{-1/2}%
\mathbf{{u}})\right\} |
{\cal V}(\textrm{$\mathbf{\beta}^{0}$})\equiv\big{\{}\textrm{$\mathbf{\beta}$}%
;\|\textrm{$\mathbf{\beta}$}-\textrm{$\mathbf{\beta}^{0}$}\|\leq cn^{-1/2}\big%
{\}} |
n^{-1/2}\sum^{n}_{i=1}\frac{\delta_{i}}{G_{0}(Y_{i})}g_{\tau}(\varepsilon_{i})%
\mathbf{X}_{{\cal A}^{c},i}\overset{\cal L}{\underset{n\rightarrow\infty}{%
\longrightarrow}}{\cal N}_{|{\cal A}^{c}|}(\textrm{$\mathbf{0}$}_{q},\textbf{S%
}_{1,{\cal A}^{c}}), |
\mathbb{E}_{\mathbf{X}}[\mathbf{X}\mathbf{X}^{\top}] |
{1}/{\widehat{G}_{n}(Y_{i})}-{1}/{G_{0}(Y_{i})} |
\overset{\cal L}{\underset{n\rightarrow\infty}{\longrightarrow}} |
n>2000 |
\beta^{0}_{0}=0 |
sd\equiv sd(\widetilde{\textrm{$\mathbf{\beta}$}}_{n}-\textrm{$\mathbf{\beta}^%
{0}$}) |
\beta^{0}_{j}=0 |
{\cal Q}_{1n}=\sum^{n}_{i=1}\frac{\delta_{i}}{G_{0}(Y_{i})}\bigg{(}g_{\tau}(%
\varepsilon_{i})\frac{\mathbf{X}_{i}^{\top}\mathbf{{u}}}{\sqrt{n}}+\frac{1}{2}%
h_{\tau}(\varepsilon_{i})\bigg{(}\frac{\mathbf{X}_{i}^{\top}\mathbf{{u}}}{%
\sqrt{n}}\bigg{)}^{2}+o_{\mathbb{P}}(n^{-1})\bigg{)}. |
\mathbb{E}_{\varepsilon}[h_{\tau}(\varepsilon)]>0 |
\varepsilon\sim{\cal U}[-1,2]-1/6 |
X_{ji}\sim{\cal N}(1,1) |
{\cal U}[-1,2]-1/6 |
\mathbb{P}[t\leq T\leq{\cal C}]\geq\zeta_{0}>0 |
\mathbb{S}_{1}=O_{\mathbb{P}}(1) |
{\cal A}\equiv\{j\in\{1,\cdots,p\};\;\beta^{0}_{j}\neq 0\}. |
\displaystyle-\bigg{(}g_{\tau}(\varepsilon_{i})\mathbf{X}^{\top}_{{\cal A},i}%
\big{(}\textrm{$\mathbf{\beta}$}^{(2)}-\textrm{$\mathbf{\beta}^{0}$}\big{)}_{%
\cal A}+\frac{h_{\tau}(\varepsilon_{i})}{2}\big{(}\mathbf{X}^{\top}_{{\cal A},%
i}\big{(}\textrm{$\mathbf{\beta}$}^{(2)}-\textrm{$\mathbf{\beta}^{0}$}\big{)}_%
{\cal A}\big{)}^{2}+o_{\mathbb{P}}\big{(}\mathbf{X}^{\top}_{{\cal A},i}\big{(}%
\textrm{$\mathbf{\beta}$}^{(2)}-\textrm{$\mathbf{\beta}^{0}$}\big{)}_{\cal A}%
\big{)}^{2}\bigg{)}\bigg{\}} |
Q_{n}(\widehat{G}_{n},\textrm{$\mathbf{\beta}^{0}$}+n^{-1/2}\mathbf{{u}})-Q_{n%
}(\widehat{G}_{n},\textrm{$\mathbf{\beta}^{0}$})=\frac{\mathbb{E}_{\varepsilon%
}[h_{\tau}(\varepsilon)]}{2}\mathbf{{u}}^{\top}\mathbb{E}_{\mathbf{X}}[\mathbf%
{X}\mathbf{X}^{\top}]\mathbf{{u}}\big{(}1+o_{\mathbb{P}}(1)\big{)}. |
j\in\{1,\cdots,q\} |
\displaystyle+\sum^{n}_{i=1}\frac{\delta_{i}}{G_{0}(Y_{i})}\bigg{\{}\bigg{(}g_%
{\tau}(\varepsilon_{i})\mathbf{X}^{\top}_{i,{\cal A}^{c}}\textrm{$\mathbf{%
\beta}$}^{(2)}_{{\cal A}^{c}}+\frac{h_{\tau}(\varepsilon_{i})}{2}\big{(}%
\mathbf{X}^{\top}_{i}\big{(}\textrm{$\mathbf{\beta}$}^{(2)}_{{\cal A}}-\textrm%
{$\mathbf{\beta}^{0}$}_{\cal A},\textrm{$\mathbf{\beta}$}^{(2)}_{{\cal A}^{c}}%
\big{)}\big{)}^{2}+o_{\mathbb{P}}\big{(}\mathbf{X}^{\top}_{i}\big{(}\textrm{$%
\mathbf{\beta}$}^{(2)}_{{\cal A}}-\textrm{$\mathbf{\beta}^{0}$}_{\cal A},%
\textrm{$\mathbf{\beta}$}^{(2)}_{{\cal A}^{c}}\big{)}\big{)}^{2}\bigg{)} |
{\cal Q}_{2n} |
\textbf{S}_{3}\equiv\mathbb{E}_{\varepsilon}\big{[}h_{\tau}(\varepsilon)\big{]%
}\mathbb{E}_{\mathbf{X}}[\mathbf{X}\mathbf{X}^{\top}] |
l_{0}\equiv\lim_{n\rightarrow\infty}n^{-1/2}\lambda_{n} |
{\cal W}_{n}\equiv\big{\{}\textrm{$\mathbf{\beta}$}\in{\cal V}(\textrm{$%
\mathbf{\beta}^{0}$});\|\textrm{$\mathbf{\beta}$}_{{\cal A}^{c}}\|>0\big{\}} |
S_{21} |
\beta^{0}_{0}=2 |
j=1,\cdots p |
\varepsilon_{i}\sim{\cal G}(0,1) |
\{M_{j}^{\cal C}(t)\} |
\beta_{1}^{0}=1/\log k-1/k |
\mathbf{{u}}\in\mathbb{R}^{p} |
\mathbb{E}_{\mathbf{X}}[\mathbf{X}_{{\cal A}}\mathbf{X}^{\top}_{{\cal A}}] |
\displaystyle=\sum^{n}_{i=1}\frac{\delta_{i}}{\widehat{G}_{n}(Y_{i})}\bigg{\{}%
\bigg{(}g_{\tau}(\varepsilon_{i})\mathbf{X}^{\top}_{i}\big{(}\textrm{$\mathbf{%
\beta}$}^{(2)}_{{\cal A}}-\textrm{$\mathbf{\beta}^{0}$}_{\cal A},\textrm{$%
\mathbf{\beta}$}^{(2)}_{{\cal A}^{c}}\big{)}+\frac{h_{\tau}(\varepsilon_{i})}{%
2}\big{(}\mathbf{X}^{\top}_{i}\big{(}\textrm{$\mathbf{\beta}$}^{(2)}_{{\cal A}%
}-\textrm{$\mathbf{\beta}^{0}$}_{\cal A},\textrm{$\mathbf{\beta}$}^{(2)}_{{%
\cal A}^{c}}\big{)}\big{)}^{2} |
n\in\{400,600,\cdots,2000\} |
\textrm{$\mathbf{\beta}$}^{(1)}_{{\cal A}^{c}}=\textrm{$\mathbf{0}$}_{|{\cal A%
}^{c}|} |
\widehat{\textrm{$\mathbf{\beta}$}}_{n} |
\displaystyle=\mathbb{E}_{\mathbf{X}}\bigg{[}\mathbb{E}_{\varepsilon}\bigg{[}%
\frac{g^{2}_{\tau}(\varepsilon_{i})}{G_{0}(Y_{i})}\frac{\mathbf{{u}}\mathbf{X}%
_{i}\mathbf{X}_{i}^{\top}\mathbf{{u}}}{n}|\mathbf{X}_{i}\bigg{]}\bigg{]} |
\textrm{$\mathbf{\beta}$}_{\cal A} |
{\cal Q}_{1n}=\sum^{n}_{i=1}\frac{\delta_{i}}{G_{0}(Y_{i})}\big{(}\rho_{\tau}(%
\varepsilon_{i}-n^{-1/2}\mathbf{X}_{i}^{\top}\mathbf{{u}})-\rho_{\tau}(%
\varepsilon_{i})\big{)}, |
n^{(\gamma-1)/2}\lambda_{n}\rightarrow\infty |
\textrm{$\mathbf{\beta}$}\in\mathbb{R}^{p} |
\begin{split}\sqrt{n}\bigg{(}\frac{1}{\widehat{G}_{n}(Y_{i})}-\frac{1}{G_{0}(Y%
_{i})}\bigg{)}&=-\frac{\sqrt{n}\big{(}\widehat{G}_{n}(Y_{i})-G_{0}(Y_{i})\big{%
)}}{G^{2}_{0}(Y_{i})}\big{(}1+o_{\mathbb{P}}(1)\big{)}\\
&=\frac{1}{G_{0}(Y_{i})}\frac{1}{\sqrt{n}}\sum^{n}_{j=1}\int^{B}_{0}1\!\!1_{Y_%
{i}\geq s}\frac{dM_{j}^{\cal C}(s)}{y(s)}\big{(}1+o_{\mathbb{P}}(1)\big{)}.%
\end{split} |
\displaystyle-\bigg{(}\frac{h_{\tau}(\varepsilon_{i})}{2}\big{(}\mathbf{X}^{%
\top}_{{\cal A},i}\big{(}\textrm{$\mathbf{\beta}$}^{(2)}-\textrm{$\mathbf{%
\beta}^{0}$}\big{)}_{\cal A}\big{)}^{2}+o_{\mathbb{P}}\big{(}\mathbf{X}^{\top}%
_{{\cal A},i}\big{(}\textrm{$\mathbf{\beta}$}^{(2)}-\textrm{$\mathbf{\beta}^{0%
}$}\big{)}_{\cal A}\big{)}\bigg{)}\bigg{\}}\frac{1}{n}\sum^{n}_{j=1}\int^{B}_{%
0}1\!\!1_{Y_{i}\geq s}\frac{dM_{j}^{\cal C}(s)}{y(s)}\big{(}1+o_{\mathbb{P}}(1%
)\big{)} |
n>2500 |
{\cal R}_{n}(\widehat{G}_{n},\textrm{$\mathbf{\beta}$})=Q_{n}(\widehat{G}_{n},%
\textrm{$\mathbf{\beta}$})-Q_{n}(\widehat{G}_{n},\textrm{$\mathbf{\beta}^{0}$}) |
t=\mathbf{X}^{\top}_{i}(\textrm{$\mathbf{\beta}$}^{(2)}-\textrm{$\mathbf{\beta%
}^{0}$}) |
\mathbb{E}_{\varepsilon}[h_{\tau}(\varepsilon)]\mathbb{E}_{\mathbf{X}}[\mathbf%
{X}_{{\cal A}}\mathbf{X}^{\top}_{{\cal A}}]\mathbf{{u}}_{\cal A}+\textbf{W}_{3%
}+l_{0}\widehat{\textrm{$\mathbf{\omega}$}}_{n,{\cal A}}{\mathrm{sgn}}(\textrm%
{$\mathbf{\beta}$}^{0}_{\cal A})=\textrm{$\mathbf{0}$}_{|{\cal A}|}, |
\|\widehat{\textrm{$\mathbf{\beta}$}}_{n}-\textrm{$\mathbf{\beta}$}^{0}\| |
(\varepsilon_{i})_{1\leqslant i\leqslant n} |
\frac{\partial{\cal T}_{n}(\widehat{G}_{n},\textrm{$\mathbf{\beta}^{0}$}+n^{-1%
/2}\mathbf{{u}})}{\partial\mathbf{{u}}_{\cal A}}=\textrm{$\mathbf{0}$}_{|{\cal
A%
}|}, |
\textrm{sgn}(x) |
\displaystyle{\cal Q}_{3n}-{\cal Q}_{2n} |
1\!\!1_{E} |
\beta^{0}_{1}=\log(n) |
\mathbb{E}_{\cal C}[\delta_{i}]=\mathbb{E}_{\cal C}[1\!\!1_{T_{i}\leq{\cal C}_%
{i}}]=\mathbb{P}_{\cal C}[{\cal C}_{i}\geq T_{i}]=G_{0}(Y_{i}) |
e=\varepsilon_{i} |
\widehat{\textrm{$\mathbf{\beta}$}}_{n,{\cal A}}\overset{\mathbb{P}}{\underset%
{n\rightarrow\infty}{\longrightarrow}}\textrm{$\mathbf{\beta}$}^{0}_{\cal A}%
\neq\textrm{$\mathbf{0}$}_{|{\cal A}|} |
P(Y\geq t|X) |
\displaystyle x_{max}-x_{min} |