name
stringlengths
7
15
uuid
stringlengths
36
36
split
stringclasses
1 value
lean4_statement
stringlengths
75
2.06k
full_text_no_abbrv
stringlengths
223
2.05k
full_text
stringlengths
226
2.1k
lean4_proof
stringclasses
1 value
informal_statement
stringlengths
4
898
informal_solution
stringlengths
4
282
tags
sequencelengths
0
3
coq_statement
stringclasses
1 value
isabelle_statement
stringclasses
1 value
putnam_1977_a3
1c0300c4-24bf-544a-9243-ff1c9f1674af
train
abbrev putnam_1977_a3_solution : (ℝ β†’ ℝ) β†’ (ℝ β†’ ℝ) β†’ (ℝ β†’ ℝ) := sorry -- fun f g x ↦ g x - f (x - 3) + f (x - 1) + f (x + 1) - f (x + 3) /-- Let $f, g, h$ be functions $\mathbb{R} \to \mathbb{R}$. Find an expression for $h(x)$ in terms of $f$ and $g$ such that $f(x) = \frac{h(x + 1) + h(x - 1)}{2}$ and $g(x) = \frac{h(x + 4) + h(x - 4)}{2}$. -/ theorem putnam_1977_a3 (f g h : ℝ β†’ ℝ) (hf : βˆ€ x, f x = (h (x + 1) + h (x - 1)) / 2) (hg : βˆ€ x, g x = (h (x + 4) + h (x - 4)) / 2) : h = putnam_1977_a3_solution f g := sorry
import Mathlib -- fun f g x ↦ g x - f (x - 3) + f (x - 1) + f (x + 1) - f (x + 3) /-- Let $f, g, h$ be functions $\mathbb{R} \to \mathbb{R}$. Find an expression for $h(x)$ in terms of $f$ and $g$ such that $f(x) = \frac{h(x + 1) + h(x - 1)}{2}$ and $g(x) = \frac{h(x + 4) + h(x - 4)}{2}$. -/ theorem putnam_1977_a3 (f g h : ℝ β†’ ℝ) (hf : βˆ€ x, f x = (h (x + 1) + h (x - 1)) / 2) (hg : βˆ€ x, g x = (h (x + 4) + h (x - 4)) / 2) : h = putnam_1977_a3_solution f g := by
import Mathlib abbrev putnam_1977_a3_solution : (ℝ β†’ ℝ) β†’ (ℝ β†’ ℝ) β†’ (ℝ β†’ ℝ) := sorry -- fun f g x ↦ g x - f (x - 3) + f (x - 1) + f (x + 1) - f (x + 3) /-- Let $f, g, h$ be functions $\mathbb{R} \to \mathbb{R}$. Find an expression for $h(x)$ in terms of $f$ and $g$ such that $f(x) = \frac{h(x + 1) + h(x - 1)}{2}$ and $g(x) = \frac{h(x + 4) + h(x - 4)}{2}$. -/ theorem putnam_1977_a3 (f g h : ℝ β†’ ℝ) (hf : βˆ€ x, f x = (h (x + 1) + h (x - 1)) / 2) (hg : βˆ€ x, g x = (h (x + 4) + h (x - 4)) / 2) : h = putnam_1977_a3_solution f g := sorry
Let $f, g, h$ be functions $\mathbb{R} \to \mathbb{R}$. Find an expression for $h(x)$ in terms of $f$ and $g$ such that $f(x) = \frac{h(x + 1) + h(x - 1)}{2}$ and $g(x) = \frac{h(x + 4) + h(x - 4)}{2}$.
Prove that $h(x) = g(x) - f(x - 3) + f(x - 1) + f(x + 1) - f(x + 3)$ suffices.
[ "algebra" ]
null
null
putnam_2022_a1
317edd54-89b3-5843-9616-a2fe11e4d52b
train
abbrev putnam_2022_a1_solution : Set (ℝ Γ— ℝ) := sorry -- {(a, b) | (a = 0 ∧ b = 0) ∨ 1 ≀ |a| ∨ (0 < |a| ∧ |a| < 1 ∧ letI rm := (1 - √(1 - a ^ 2)) / a; letI rp := (1 + √(1 - a ^ 2)) / a; (b < Real.log (1 + rm ^ 2) - a * rm ∨ b > Real.log (1 + rp ^ 2) - a * rp))} /-- Determine all ordered pairs of real numbers $(a,b)$ such that the line $y = ax+b$ intersects the curve $y = \ln(1+x^2)$ in exactly one point. -/ theorem putnam_2022_a1 : {(a, b) | βˆƒ! x : ℝ, a * x + b = Real.log (1 + x^2)} = putnam_2022_a1_solution := sorry
import Mathlib open Polynomial -- {(a, b) | (a = 0 ∧ b = 0) ∨ 1 ≀ |a| ∨ (0 < |a| ∧ |a| < 1 ∧ letI rm := (1 - √(1 - a ^ 2)) / a; letI rp := (1 + √(1 - a ^ 2)) / a; (b < Real.log (1 + rm ^ 2) - a * rm ∨ b > Real.log (1 + rp ^ 2) - a * rp))} /-- Determine all ordered pairs of real numbers $(a,b)$ such that the line $y = ax+b$ intersects the curve $y = \ln(1+x^2)$ in exactly one point. -/ theorem putnam_2022_a1 : {(a, b) | βˆƒ! x : ℝ, a * x + b = Real.log (1 + x^2)} = putnam_2022_a1_solution := by
import Mathlib open Polynomial abbrev putnam_2022_a1_solution : Set (ℝ Γ— ℝ) := sorry -- {(a, b) | (a = 0 ∧ b = 0) ∨ 1 ≀ |a| ∨ (0 < |a| ∧ |a| < 1 ∧ letI rm := (1 - √(1 - a ^ 2)) / a; letI rp := (1 + √(1 - a ^ 2)) / a; (b < Real.log (1 + rm ^ 2) - a * rm ∨ b > Real.log (1 + rp ^ 2) - a * rp))} /-- Determine all ordered pairs of real numbers $(a,b)$ such that the line $y = ax+b$ intersects the curve $y = \ln(1+x^2)$ in exactly one point. -/ theorem putnam_2022_a1 : {(a, b) | βˆƒ! x : ℝ, a * x + b = Real.log (1 + x^2)} = putnam_2022_a1_solution := sorry
Determine all ordered pairs of real numbers $(a,b)$ such that the line $y = ax+b$ intersects the curve $y = \ln(1+x^2)$ in exactly one point.
Show that the solution is the set of ordered pairs $(a,b)$ which satisfy at least one of (1) $a = b = 0$, (2) $|a| \geq 1$, and (3) $0 < |a| < 1$ and $b < \log(1 + r_{-}^2) - ar_{-}$ or $b > \log(1 + r_{+}^2) - ar_{+}$ where $r_{\pm} = \frac{1 \pm \sqrt{1 - a^2}}{a}$.
[ "algebra" ]
null
null
putnam_1997_b1
bae6fe1e-8ee0-52f8-be0e-88bf1be911ff
train
abbrev putnam_1997_b1_solution : β„• β†’ ℝ := sorry -- fun n => n noncomputable def dist_to_int : ℝ β†’ ℝ := fun r => |r - round r| /-- Let $\{x\}$ denote the distance between the real number $x$ and the nearest integer. For each positive integer $n$, evaluate \[F_n=\sum_{m=1}^{6n-1} \min(\{\frac{m}{6n}\},\{\frac{m}{3n}\}).\] (Here $\min(a,b)$ denotes the minimum of $a$ and $b$.) -/ theorem putnam_1997_b1 (F : β„• β†’ ℝ) (hF : F = fun (n : β„•) => βˆ‘ m in Finset.Icc 1 (6 * n - 1), min (dist_to_int (m/(6*n)) ) (dist_to_int (m/(3*n)))) : βˆ€ n, n > 0 β†’ F n = putnam_1997_b1_solution n := sorry
import Mathlib open Filter Topology -- fun n => n noncomputable def dist_to_int : ℝ β†’ ℝ := fun r => |r - round r| /-- Let $\{x\}$ denote the distance between the real number $x$ and the nearest integer. For each positive integer $n$, evaluate \[F_n=\sum_{m=1}^{6n-1} \min(\{\frac{m}{6n}\},\{\frac{m}{3n}\}).\] (Here $\min(a,b)$ denotes the minimum of $a$ and $b$.) -/ theorem putnam_1997_b1 (F : β„• β†’ ℝ) (hF : F = fun (n : β„•) => βˆ‘ m in Finset.Icc 1 (6 * n - 1), min (dist_to_int (m/(6*n)) ) (dist_to_int (m/(3*n)))) : βˆ€ n, n > 0 β†’ F n = putnam_1997_b1_solution n := by
import Mathlib open Filter Topology abbrev putnam_1997_b1_solution : β„• β†’ ℝ := sorry -- fun n => n noncomputable def dist_to_int : ℝ β†’ ℝ := fun r => |r - round r| /-- Let $\{x\}$ denote the distance between the real number $x$ and the nearest integer. For each positive integer $n$, evaluate \[F_n=\sum_{m=1}^{6n-1} \min(\{\frac{m}{6n}\},\{\frac{m}{3n}\}).\] (Here $\min(a,b)$ denotes the minimum of $a$ and $b$.) -/ theorem putnam_1997_b1 (F : β„• β†’ ℝ) (hF : F = fun (n : β„•) => βˆ‘ m in Finset.Icc 1 (6 * n - 1), min (dist_to_int (m/(6*n)) ) (dist_to_int (m/(3*n)))) : βˆ€ n, n > 0 β†’ F n = putnam_1997_b1_solution n := sorry
Let $\{x\}$ denote the distance between the real number $x$ and the nearest integer. For each positive integer $n$, evaluate \[F_n=\sum_{m=1}^{6n-1} \min(\{\frac{m}{6n}\},\{\frac{m}{3n}\}).\] (Here $\min(a,b)$ denotes the minimum of $a$ and $b$.)
Show that the solution is $n$.
[ "algebra" ]
null
null
putnam_1983_b2
b79e1f31-50e1-5fcb-af9c-351e5e833cea
train
abbrev putnam_1983_b2_solution : Prop := sorry -- True /-- Let $f(n)$ be the number of ways of representing $n$ as a sum of powers of $2$ with no power being used more than $3$ times. For example, $f(7) = 4$ (the representations are $4 + 2 + 1$, $4 + 1 + 1 + 1$, $2 + 2 + 2 + 1$, $2 + 2 + 1 + 1 + 1$). Can we find a real polynomial $p(x)$ such that $f(n) = [p(n)]$, where $[u]$ denotes the greatest integer less than or equal to $u$? -/ theorem putnam_1983_b2 (f : β„•+ β†’ β„•) (hf : f = fun (n : β„•+) ↦ Set.ncard {M : Multiset β„• | (βˆ€ m ∈ M, βˆƒ k : β„•, m = (2 ^ k : β„€)) ∧ (βˆ€ m ∈ M, M.count m ≀ 3) ∧ (M.sum : β„€) = n}) : putnam_1983_b2_solution ↔ (βˆƒ p : Polynomial ℝ, βˆ€ n : β„•+, ⌊p.eval (n : ℝ)βŒ‹ = f n) := sorry
import Mathlib open Nat Filter Topology Real -- True /-- Let $f(n)$ be the number of ways of representing $n$ as a sum of powers of $2$ with no power being used more than $3$ times. For example, $f(7) = 4$ (the representations are $4 + 2 + 1$, $4 + 1 + 1 + 1$, $2 + 2 + 2 + 1$, $2 + 2 + 1 + 1 + 1$). Can we find a real polynomial $p(x)$ such that $f(n) = [p(n)]$, where $[u]$ denotes the greatest integer less than or equal to $u$? -/ theorem putnam_1983_b2 (f : β„•+ β†’ β„•) (hf : f = fun (n : β„•+) ↦ Set.ncard {M : Multiset β„• | (βˆ€ m ∈ M, βˆƒ k : β„•, m = (2 ^ k : β„€)) ∧ (βˆ€ m ∈ M, M.count m ≀ 3) ∧ (M.sum : β„€) = n}) : putnam_1983_b2_solution ↔ (βˆƒ p : Polynomial ℝ, βˆ€ n : β„•+, ⌊p.eval (n : ℝ)βŒ‹ = f n) := by
import Mathlib open Nat Filter Topology Real abbrev putnam_1983_b2_solution : Prop := sorry -- True /-- Let $f(n)$ be the number of ways of representing $n$ as a sum of powers of $2$ with no power being used more than $3$ times. For example, $f(7) = 4$ (the representations are $4 + 2 + 1$, $4 + 1 + 1 + 1$, $2 + 2 + 2 + 1$, $2 + 2 + 1 + 1 + 1$). Can we find a real polynomial $p(x)$ such that $f(n) = [p(n)]$, where $[u]$ denotes the greatest integer less than or equal to $u$? -/ theorem putnam_1983_b2 (f : β„•+ β†’ β„•) (hf : f = fun (n : β„•+) ↦ Set.ncard {M : Multiset β„• | (βˆ€ m ∈ M, βˆƒ k : β„•, m = (2 ^ k : β„€)) ∧ (βˆ€ m ∈ M, M.count m ≀ 3) ∧ (M.sum : β„€) = n}) : putnam_1983_b2_solution ↔ (βˆƒ p : Polynomial ℝ, βˆ€ n : β„•+, ⌊p.eval (n : ℝ)βŒ‹ = f n) := sorry
Let $f(n)$ be the number of ways of representing $n$ as a sum of powers of $2$ with no power being used more than $3$ times. For example, $f(7) = 4$ (the representations are $4 + 2 + 1$, $4 + 1 + 1 + 1$, $2 + 2 + 2 + 1$, $2 + 2 + 1 + 1 + 1$). Can we find a real polynomial $p(x)$ such that $f(n) = [p(n)]$, where $[u]$ denotes the greatest integer less than or equal to $u$?
Prove that such a polynomial exists.
[ "algebra" ]
null
null
putnam_1982_a6
6e3545c1-ae5d-5a39-9b78-b35fc16f4bfb
train
abbrev putnam_1982_a6_solution : Prop := sorry -- False /-- Let $b$ be a bijection from the positive integers to the positive integers. Also, let $x_1, x_2, x_3, \dots$ be an infinite sequence of real numbers with the following properties: \begin{enumerate} \item $|x_n|$ is a strictly decreasing function of $n$; \item $\lim_{n \rightarrow \infty} |b(n) - n| \cdot |x_n| = 0$; \item $\lim_{n \rightarrow \infty}\sum_{k = 1}^{n} x_k = 1$. \end{enumerate} Prove or disprove: these conditions imply that $$\lim_{n \rightarrow \infty} \sum_{k = 1}^{n} x_{b(k)} = 1.$$ -/ theorem putnam_1982_a6 : (βˆ€ b : β„• β†’ β„•, βˆ€ x : β„• β†’ ℝ, BijOn b (Ici 1) (Ici 1) β†’ StrictAntiOn (fun n : β„• => |x n|) (Ici 1) β†’ Tendsto (fun n : β„• => |b n - (n : β„€)| * |x n|) atTop (𝓝 0) β†’ Tendsto (fun n : β„• => βˆ‘ k in Finset.Icc 1 n, x k) atTop (𝓝 1) β†’ Tendsto (fun n : β„• => βˆ‘ k in Finset.Icc 1 n, x (b k)) atTop (𝓝 1)) ↔ putnam_1982_a6_solution := sorry
import Mathlib open Set Function Filter Topology Polynomial Real -- False /-- Let $b$ be a bijection from the positive integers to the positive integers. Also, let $x_1, x_2, x_3, \dots$ be an infinite sequence of real numbers with the following properties: \begin{enumerate} \item $|x_n|$ is a strictly decreasing function of $n$; \item $\lim_{n \rightarrow \infty} |b(n) - n| \cdot |x_n| = 0$; \item $\lim_{n \rightarrow \infty}\sum_{k = 1}^{n} x_k = 1$. \end{enumerate} Prove or disprove: these conditions imply that $$\lim_{n \rightarrow \infty} \sum_{k = 1}^{n} x_{b(k)} = 1.$$ -/ theorem putnam_1982_a6 : (βˆ€ b : β„• β†’ β„•, βˆ€ x : β„• β†’ ℝ, BijOn b (Ici 1) (Ici 1) β†’ StrictAntiOn (fun n : β„• => |x n|) (Ici 1) β†’ Tendsto (fun n : β„• => |b n - (n : β„€)| * |x n|) atTop (𝓝 0) β†’ Tendsto (fun n : β„• => βˆ‘ k in Finset.Icc 1 n, x k) atTop (𝓝 1) β†’ Tendsto (fun n : β„• => βˆ‘ k in Finset.Icc 1 n, x (b k)) atTop (𝓝 1)) ↔ putnam_1982_a6_solution := by
import Mathlib open Set Function Filter Topology Polynomial Real abbrev putnam_1982_a6_solution : Prop := sorry -- False /-- Let $b$ be a bijection from the positive integers to the positive integers. Also, let $x_1, x_2, x_3, \dots$ be an infinite sequence of real numbers with the following properties: \begin{enumerate} \item $|x_n|$ is a strictly decreasing function of $n$; \item $\lim_{n \rightarrow \infty} |b(n) - n| \cdot |x_n| = 0$; \item $\lim_{n \rightarrow \infty}\sum_{k = 1}^{n} x_k = 1$. \end{enumerate} Prove or disprove: these conditions imply that $$\lim_{n \rightarrow \infty} \sum_{k = 1}^{n} x_{b(k)} = 1.$$ -/ theorem putnam_1982_a6 : (βˆ€ b : β„• β†’ β„•, βˆ€ x : β„• β†’ ℝ, BijOn b (Ici 1) (Ici 1) β†’ StrictAntiOn (fun n : β„• => |x n|) (Ici 1) β†’ Tendsto (fun n : β„• => |b n - (n : β„€)| * |x n|) atTop (𝓝 0) β†’ Tendsto (fun n : β„• => βˆ‘ k in Finset.Icc 1 n, x k) atTop (𝓝 1) β†’ Tendsto (fun n : β„• => βˆ‘ k in Finset.Icc 1 n, x (b k)) atTop (𝓝 1)) ↔ putnam_1982_a6_solution := sorry
Let $b$ be a bijection from the positive integers to the positive integers. Also, let $x_1, x_2, x_3, \dots$ be an infinite sequence of real numbers with the following properties: \begin{enumerate} \item $|x_n|$ is a strictly decreasing function of $n$; \item $\lim_{n \rightarrow \infty} |b(n) - n| \cdot |x_n| = 0$; \item $\lim_{n \rightarrow \infty}\sum_{k = 1}^{n} x_k = 1$. \end{enumerate} Prove or disprove: these conditions imply that $$\lim_{n \rightarrow \infty} \sum_{k = 1}^{n} x_{b(k)} = 1.$$
The limit need not equal $1$.
[ "analysis" ]
null
null
putnam_1963_a2
b6f17719-3084-5ceb-926b-9cc24bd74aa4
train
theorem putnam_1963_a2 (f : β„• β†’ β„•) (hfpos : βˆ€ n, f n > 0) (hfinc : StrictMonoOn f (Set.Ici 1)) (hf2 : f 2 = 2) (hfmn : βˆ€ m n, m > 0 β†’ n > 0 β†’ IsRelPrime m n β†’ f (m * n) = f m * f n) : βˆ€ n > 0, f n = n := sorry
import Mathlib open Topology Filter /-- Let $\{f(n)\}$ be a strictly increasing sequence of positive integers such that $f(2)=2$ and $f(mn)=f(m)f(n)$ for every relatively prime pair of positive integers $m$ and $n$ (the greatest common divisor of $m$ and $n$ is equal to $1$). Prove that $f(n)=n$ for every positive integer $n$. -/ theorem putnam_1963_a2 (f : β„• β†’ β„•) (hfpos : βˆ€ n, f n > 0) (hfinc : StrictMonoOn f (Set.Ici 1)) (hf2 : f 2 = 2) (hfmn : βˆ€ m n, m > 0 β†’ n > 0 β†’ IsRelPrime m n β†’ f (m * n) = f m * f n) : βˆ€ n > 0, f n = n := by
import Mathlib open Topology Filter /-- Let $\{f(n)\}$ be a strictly increasing sequence of positive integers such that $f(2)=2$ and $f(mn)=f(m)f(n)$ for every relatively prime pair of positive integers $m$ and $n$ (the greatest common divisor of $m$ and $n$ is equal to $1$). Prove that $f(n)=n$ for every positive integer $n$. -/ theorem putnam_1963_a2 (f : β„• β†’ β„•) (hfpos : βˆ€ n, f n > 0) (hfinc : StrictMonoOn f (Set.Ici 1)) (hf2 : f 2 = 2) (hfmn : βˆ€ m n, m > 0 β†’ n > 0 β†’ IsRelPrime m n β†’ f (m * n) = f m * f n) : βˆ€ n > 0, f n = n := sorry
Let $\{f(n)\}$ be a strictly increasing sequence of positive integers such that $f(2)=2$ and $f(mn)=f(m)f(n)$ for every relatively prime pair of positive integers $m$ and $n$ (the greatest common divisor of $m$ and $n$ is equal to $1$). Prove that $f(n)=n$ for every positive integer $n$.
null
[ "number_theory", "algebra" ]
null
null
putnam_1994_a4
7b6d4468-3987-59a5-abf7-079b63ea6dc8
train
theorem putnam_1994_a4 (A B : Matrix (Fin 2) (Fin 2) β„€) (ABinv : Nonempty (Invertible A) ∧ Nonempty (Invertible (A + B)) ∧ Nonempty (Invertible (A + 2 * B)) ∧ Nonempty (Invertible (A + 3 * B)) ∧ Nonempty (Invertible (A + 4 * B))) : Nonempty (Invertible (A + 5 * B)) := sorry
import Mathlib open Filter Topology /-- Let $A$ and $B$ be $2 \times 2$ matrices with integer entries such that $A$, $A+B$, $A+2B$, $A+3B$, and $A+4B$ are all invertible matrices whose inverses have integer entries. Show that $A+5B$ is invertible and that its inverse has integer entries. -/ theorem putnam_1994_a4 (A B : Matrix (Fin 2) (Fin 2) β„€) (ABinv : Nonempty (Invertible A) ∧ Nonempty (Invertible (A + B)) ∧ Nonempty (Invertible (A + 2 * B)) ∧ Nonempty (Invertible (A + 3 * B)) ∧ Nonempty (Invertible (A + 4 * B))) : Nonempty (Invertible (A + 5 * B)) := by
import Mathlib open Filter Topology /-- Let $A$ and $B$ be $2 \times 2$ matrices with integer entries such that $A$, $A+B$, $A+2B$, $A+3B$, and $A+4B$ are all invertible matrices whose inverses have integer entries. Show that $A+5B$ is invertible and that its inverse has integer entries. -/ theorem putnam_1994_a4 (A B : Matrix (Fin 2) (Fin 2) β„€) (ABinv : Nonempty (Invertible A) ∧ Nonempty (Invertible (A + B)) ∧ Nonempty (Invertible (A + 2 * B)) ∧ Nonempty (Invertible (A + 3 * B)) ∧ Nonempty (Invertible (A + 4 * B))) : Nonempty (Invertible (A + 5 * B)) := sorry
Let $A$ and $B$ be $2 \times 2$ matrices with integer entries such that $A$, $A+B$, $A+2B$, $A+3B$, and $A+4B$ are all invertible matrices whose inverses have integer entries. Show that $A+5B$ is invertible and that its inverse has integer entries.
null
[ "linear_algebra" ]
null
null
putnam_1970_a1
5b2aff58-ea8a-5268-8b65-c814edc2abbc
train
theorem putnam_1970_a1 (a b : ℝ) (ha : a > 0) (hb : b > 0) (f : ℝ β†’ ℝ) (f_def : f = fun x : ℝ => Real.exp (a*x) * Real.cos (b*x)) (p : β„• β†’ ℝ) (hp : βˆƒ c : ℝ, c > 0 ∧ βˆ€ x ∈ ball 0 c, βˆ‘' n : β„•, (p n)*x^n = f x) (S : Set β„•) (S_def : S = {n : β„• | p n = 0}) : S = βˆ… ∨ Β¬Finite S := sorry
import Mathlib open Metric Set EuclideanGeometry /-- Prove that, for all $a > 0$ and $b > 0$, the power series of $e^{ax} \cos (bx)$ with respect to $x$ has either zero or infinitely many zero coefficients. -/ theorem putnam_1970_a1 (a b : ℝ) (ha : a > 0) (hb : b > 0) (f : ℝ β†’ ℝ) (f_def : f = fun x : ℝ => Real.exp (a*x) * Real.cos (b*x)) (p : β„• β†’ ℝ) (hp : βˆƒ c : ℝ, c > 0 ∧ βˆ€ x ∈ ball 0 c, βˆ‘' n : β„•, (p n)*x^n = f x) (S : Set β„•) (S_def : S = {n : β„• | p n = 0}) : S = βˆ… ∨ Β¬Finite S := by
import Mathlib open Metric Set EuclideanGeometry /-- Prove that, for all $a > 0$ and $b > 0$, the power series of $e^{ax} \cos (bx)$ with respect to $x$ has either zero or infinitely many zero coefficients. -/ theorem putnam_1970_a1 (a b : ℝ) (ha : a > 0) (hb : b > 0) (f : ℝ β†’ ℝ) (f_def : f = fun x : ℝ => Real.exp (a*x) * Real.cos (b*x)) (p : β„• β†’ ℝ) (hp : βˆƒ c : ℝ, c > 0 ∧ βˆ€ x ∈ ball 0 c, βˆ‘' n : β„•, (p n)*x^n = f x) (S : Set β„•) (S_def : S = {n : β„• | p n = 0}) : S = βˆ… ∨ Β¬Finite S := sorry
Prove that, for all $a > 0$ and $b > 0$, the power series of $e^{ax} \cos (bx)$ with respect to $x$ has either zero or infinitely many zero coefficients.
null
[ "analysis" ]
null
null
putnam_1983_a5
ae4cfbca-68db-58ef-ac02-938642808ad5
train
abbrev putnam_1983_a5_solution : Prop := sorry -- True /-- Prove or disprove that there exists a positive real number $\alpha$ such that $[\alpha_n] - n$ is even for all integers $n > 0$. (Here $[x]$ denotes the greatest integer less than or equal to $x$.) -/ theorem putnam_1983_a5 : (βˆƒ Ξ± : ℝ, Ξ± > 0 ∧ βˆ€ n : β„•, n > 0 β†’ Even (⌊α ^ nβŒ‹ - n)) ↔ putnam_1983_a5_solution := sorry
import Mathlib open Nat -- True /-- Prove or disprove that there exists a positive real number $\alpha$ such that $[\alpha_n] - n$ is even for all integers $n > 0$. (Here $[x]$ denotes the greatest integer less than or equal to $x$.) -/ theorem putnam_1983_a5 : (βˆƒ Ξ± : ℝ, Ξ± > 0 ∧ βˆ€ n : β„•, n > 0 β†’ Even (⌊α ^ nβŒ‹ - n)) ↔ putnam_1983_a5_solution := by
import Mathlib open Nat abbrev putnam_1983_a5_solution : Prop := sorry -- True /-- Prove or disprove that there exists a positive real number $\alpha$ such that $[\alpha_n] - n$ is even for all integers $n > 0$. (Here $[x]$ denotes the greatest integer less than or equal to $x$.) -/ theorem putnam_1983_a5 : (βˆƒ Ξ± : ℝ, Ξ± > 0 ∧ βˆ€ n : β„•, n > 0 β†’ Even (⌊α ^ nβŒ‹ - n)) ↔ putnam_1983_a5_solution := sorry
Prove or disprove that there exists a positive real number $\alpha$ such that $[\alpha_n] - n$ is even for all integers $n > 0$. (Here $[x]$ denotes the greatest integer less than or equal to $x$.)
Prove that such an $\alpha$ exists.
[ "analysis" ]
null
null
putnam_2011_b5
e2d56f7d-915f-5743-8d29-954127694d2a
train
theorem putnam_2011_b5 (a : β„• β†’ ℝ) (h : βˆƒ A : ℝ, βˆ€ n : β„•, ∫ x : ℝ, ((βˆ‘ i : Finset.range n, 1 / (1 + (x - a i) ^ 2)) ^ 2) ≀ A * n) : βˆƒ B : ℝ, B > 0 ∧ βˆ€ n : β„•, βˆ‘' i : Finset.range n, βˆ‘' j : Finset.range n, (1 + (a i - a j) ^ 2) β‰₯ B * n ^ 3 := sorry
import Mathlib open Topology Filter Matrix /-- Let $a_1, a_2, \dots$ be real numbers. Suppose that there is a constant $A$ such that for all $n$, \[ \int_{-\infty}^\infty \left( \sum_{i=1}^n \frac{1}{1 + (x-a_i)^2} \right)^2\,dx \leq An. \] Prove there is a constant $B>0$ such that for all $n$, \[ \sum_{i,j=1}^n (1 + (a_i - a_j)^2) \geq Bn^3. \] -/ theorem putnam_2011_b5 (a : β„• β†’ ℝ) (h : βˆƒ A : ℝ, βˆ€ n : β„•, ∫ x : ℝ, ((βˆ‘ i : Finset.range n, 1 / (1 + (x - a i) ^ 2)) ^ 2) ≀ A * n) : βˆƒ B : ℝ, B > 0 ∧ βˆ€ n : β„•, βˆ‘' i : Finset.range n, βˆ‘' j : Finset.range n, (1 + (a i - a j) ^ 2) β‰₯ B * n ^ 3 := by
import Mathlib open Topology Filter Matrix /-- Let $a_1, a_2, \dots$ be real numbers. Suppose that there is a constant $A$ such that for all $n$, \[ \int_{-\infty}^\infty \left( \sum_{i=1}^n \frac{1}{1 + (x-a_i)^2} \right)^2\,dx \leq An. \] Prove there is a constant $B>0$ such that for all $n$, \[ \sum_{i,j=1}^n (1 + (a_i - a_j)^2) \geq Bn^3. \] -/ theorem putnam_2011_b5 (a : β„• β†’ ℝ) (h : βˆƒ A : ℝ, βˆ€ n : β„•, ∫ x : ℝ, ((βˆ‘ i : Finset.range n, 1 / (1 + (x - a i) ^ 2)) ^ 2) ≀ A * n) : βˆƒ B : ℝ, B > 0 ∧ βˆ€ n : β„•, βˆ‘' i : Finset.range n, βˆ‘' j : Finset.range n, (1 + (a i - a j) ^ 2) β‰₯ B * n ^ 3 := sorry
Let $a_1, a_2, \dots$ be real numbers. Suppose that there is a constant $A$ such that for all $n$, \[ \int_{-\infty}^\infty \left( \sum_{i=1}^n \frac{1}{1 + (x-a_i)^2} \right)^2\,dx \leq An. \] Prove there is a constant $B>0$ such that for all $n$, \[ \sum_{i,j=1}^n (1 + (a_i - a_j)^2) \geq Bn^3. \]
null
[ "analysis" ]
null
null
putnam_2002_a6
d9ad13e0-717a-5c7a-8231-aee0b0362717
train
abbrev putnam_2002_a6_solution : Set β„• := sorry -- {2} /-- Fix an integer $b \geq 2$. Let $f(1) = 1$, $f(2) = 2$, and for each $n \geq 3$, define $f(n) = n f(d)$, where $d$ is the number of base-$b$ digits of $n$. For which values of $b$ does \[ \sum_{n=1}^\infty \frac{1}{f(n)} \] converge? -/ theorem putnam_2002_a6 (f : β„• β†’ β„• β†’ ℝ) (hf : βˆ€ b : β„•, f b 1 = 1 ∧ f b 2 = 2 ∧ βˆ€ n ∈ Ici 3, f b n = n * f b (Nat.digits b n).length) : {b ∈ Ici 2 | βˆƒ L : ℝ, Tendsto (fun m : β„• => βˆ‘ n in Finset.Icc 1 m, 1/(f b n)) atTop (𝓝 L)} = putnam_2002_a6_solution := sorry
import Mathlib open Nat Set Topology Filter -- {2} /-- Fix an integer $b \geq 2$. Let $f(1) = 1$, $f(2) = 2$, and for each $n \geq 3$, define $f(n) = n f(d)$, where $d$ is the number of base-$b$ digits of $n$. For which values of $b$ does \[ \sum_{n=1}^\infty \frac{1}{f(n)} \] converge? -/ theorem putnam_2002_a6 (f : β„• β†’ β„• β†’ ℝ) (hf : βˆ€ b : β„•, f b 1 = 1 ∧ f b 2 = 2 ∧ βˆ€ n ∈ Ici 3, f b n = n * f b (Nat.digits b n).length) : {b ∈ Ici 2 | βˆƒ L : ℝ, Tendsto (fun m : β„• => βˆ‘ n in Finset.Icc 1 m, 1/(f b n)) atTop (𝓝 L)} = putnam_2002_a6_solution := by
import Mathlib open Nat Set Topology Filter abbrev putnam_2002_a6_solution : Set β„• := sorry -- {2} /-- Fix an integer $b \geq 2$. Let $f(1) = 1$, $f(2) = 2$, and for each $n \geq 3$, define $f(n) = n f(d)$, where $d$ is the number of base-$b$ digits of $n$. For which values of $b$ does \[ \sum_{n=1}^\infty \frac{1}{f(n)} \] converge? -/ theorem putnam_2002_a6 (f : β„• β†’ β„• β†’ ℝ) (hf : βˆ€ b : β„•, f b 1 = 1 ∧ f b 2 = 2 ∧ βˆ€ n ∈ Ici 3, f b n = n * f b (Nat.digits b n).length) : {b ∈ Ici 2 | βˆƒ L : ℝ, Tendsto (fun m : β„• => βˆ‘ n in Finset.Icc 1 m, 1/(f b n)) atTop (𝓝 L)} = putnam_2002_a6_solution := sorry
Fix an integer $b \geq 2$. Let $f(1) = 1$, $f(2) = 2$, and for each $n \geq 3$, define $f(n) = n f(d)$, where $d$ is the number of base-$b$ digits of $n$. For which values of $b$ does \[ \sum_{n=1}^\infty \frac{1}{f(n)} \] converge?
The sum converges for $b=2$ and diverges for $b \geq 3$.
[ "analysis", "number_theory" ]
null
null
putnam_2021_b2
c1e2980d-2157-5e0d-9a1f-03395a5e0652
train
abbrev putnam_2021_b2_solution : ℝ := sorry -- 2 / 3 /-- Determine the maximum value of the sum $S = \sum_{n=1}^\infty \frac{n}{2^n}(a_1a_2 \dots a_n)^{1/n}$ over all sequences $a_1,a_2,a_3,\dots$ of nonnegative real numbers satisfying $\sum_{k=1}^\infty a_k=1$. -/ theorem putnam_2021_b2 : IsGreatest {S | βˆƒ a : β„•+ β†’ ℝ, (βˆ‘' k, a k = 1) ∧ (βˆ€ k, 0 ≀ a k) ∧ S = βˆ‘' n : β„•+, n / 2 ^ (n : β„•) * (∏ k in Finset.Icc 1 n, a k) ^ (1 / n : ℝ)} putnam_2021_b2_solution := sorry
import Mathlib open Filter Topology -- 2 / 3 /-- Determine the maximum value of the sum $S = \sum_{n=1}^\infty \frac{n}{2^n}(a_1a_2 \dots a_n)^{1/n}$ over all sequences $a_1,a_2,a_3,\dots$ of nonnegative real numbers satisfying $\sum_{k=1}^\infty a_k=1$. -/ theorem putnam_2021_b2 : IsGreatest {S | βˆƒ a : β„•+ β†’ ℝ, (βˆ‘' k, a k = 1) ∧ (βˆ€ k, 0 ≀ a k) ∧ S = βˆ‘' n : β„•+, n / 2 ^ (n : β„•) * (∏ k in Finset.Icc 1 n, a k) ^ (1 / n : ℝ)} putnam_2021_b2_solution := by
import Mathlib open Filter Topology noncomputable abbrev putnam_2021_b2_solution : ℝ := sorry -- 2 / 3 /-- Determine the maximum value of the sum $S = \sum_{n=1}^\infty \frac{n}{2^n}(a_1a_2 \dots a_n)^{1/n}$ over all sequences $a_1,a_2,a_3,\dots$ of nonnegative real numbers satisfying $\sum_{k=1}^\infty a_k=1$. -/ theorem putnam_2021_b2 : IsGreatest {S | βˆƒ a : β„•+ β†’ ℝ, (βˆ‘' k, a k = 1) ∧ (βˆ€ k, 0 ≀ a k) ∧ S = βˆ‘' n : β„•+, n / 2 ^ (n : β„•) * (∏ k in Finset.Icc 1 n, a k) ^ (1 / n : ℝ)} putnam_2021_b2_solution := sorry
Determine the maximum value of the sum $S = \sum_{n=1}^\infty \frac{n}{2^n}(a_1a_2 \dots a_n)^{1/n}$ over all sequences $a_1,a_2,a_3,\dots$ of nonnegative real numbers satisfying $\sum_{k=1}^\infty a_k=1$.
Show that the answer is $2/3$.
[ "analysis" ]
null
null
putnam_1995_b1
d04afa50-b58c-56be-bd9a-06391ac9fa0b
train
theorem putnam_1995_b1 (Pi : Finpartition (Finset.range 9) β†’ (Finset.range 9) β†’ β„•) (Pi_def : βˆ€ partition k, Pi partition k = (Exists.choose (Finpartition.exists_mem partition k.2)).card) : βˆ€ Pt1 Pt2, βˆƒ x y : Finset.range 9, x β‰  y ∧ Pi Pt1 x = Pi Pt1 y ∧ Pi Pt2 x = Pi Pt2 y := sorry
import Mathlib open Filter Topology Real Nat /-- For a partition $\pi$ of $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, let $\pi(x)$ be the number of elements in the part containing $x$. Prove that for any two partitions $\pi$ and $\pi'$, there are two distinct numbers $x$ and $y$ in $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ such that $\pi(x) = \pi(y)$ and $\pi'(x) = \pi'(y)$. [A {\em partition} of a set $S$ is a collection of disjoint subsets (parts) whose union is $S$.] -/ theorem putnam_1995_b1 (Pi : Finpartition (Finset.range 9) β†’ (Finset.range 9) β†’ β„•) (Pi_def : βˆ€ partition k, Pi partition k = (Exists.choose (Finpartition.exists_mem partition k.2)).card) : βˆ€ Pt1 Pt2, βˆƒ x y : Finset.range 9, x β‰  y ∧ Pi Pt1 x = Pi Pt1 y ∧ Pi Pt2 x = Pi Pt2 y := by
import Mathlib open Filter Topology Real Nat /-- For a partition $\pi$ of $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, let $\pi(x)$ be the number of elements in the part containing $x$. Prove that for any two partitions $\pi$ and $\pi'$, there are two distinct numbers $x$ and $y$ in $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ such that $\pi(x) = \pi(y)$ and $\pi'(x) = \pi'(y)$. [A {\em partition} of a set $S$ is a collection of disjoint subsets (parts) whose union is $S$.] -/ theorem putnam_1995_b1 (Pi : Finpartition (Finset.range 9) β†’ (Finset.range 9) β†’ β„•) (Pi_def : βˆ€ partition k, Pi partition k = (Exists.choose (Finpartition.exists_mem partition k.2)).card) : βˆ€ Pt1 Pt2, βˆƒ x y : Finset.range 9, x β‰  y ∧ Pi Pt1 x = Pi Pt1 y ∧ Pi Pt2 x = Pi Pt2 y := sorry
For a partition $\pi$ of $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, let $\pi(x)$ be the number of elements in the part containing $x$. Prove that for any two partitions $\pi$ and $\pi'$, there are two distinct numbers $x$ and $y$ in $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ such that $\pi(x) = \pi(y)$ and $\pi'(x) = \pi'(y)$. [A {\em partition} of a set $S$ is a collection of disjoint subsets (parts) whose union is $S$.]
null
[ "combinatorics" ]
null
null
putnam_1994_b2
a58db2b1-3a4b-5016-b434-c5aa7e5950e2
train
abbrev putnam_1994_b2_solution : Set ℝ := sorry -- {c : ℝ | c < 243 / 8} /-- For which real numbers $c$ is there a straight line that intersects the curve $x^4+9x^3+cx^2+9x+4$ in four distinct points? -/ theorem putnam_1994_b2 (c : ℝ) : (βˆƒ m b : ℝ, {x : ℝ | m * x + b = x ^ 4 + 9 * x ^ 3 + c * x ^ 2 + 9 * x + 4}.encard = 4) ↔ c ∈ putnam_1994_b2_solution := sorry
import Mathlib open Filter Topology -- {c : ℝ | c < 243 / 8} /-- For which real numbers $c$ is there a straight line that intersects the curve $x^4+9x^3+cx^2+9x+4$ in four distinct points? -/ theorem putnam_1994_b2 (c : ℝ) : (βˆƒ m b : ℝ, {x : ℝ | m * x + b = x ^ 4 + 9 * x ^ 3 + c * x ^ 2 + 9 * x + 4}.encard = 4) ↔ c ∈ putnam_1994_b2_solution := by
import Mathlib open Filter Topology abbrev putnam_1994_b2_solution : Set ℝ := sorry -- {c : ℝ | c < 243 / 8} /-- For which real numbers $c$ is there a straight line that intersects the curve $x^4+9x^3+cx^2+9x+4$ in four distinct points? -/ theorem putnam_1994_b2 (c : ℝ) : (βˆƒ m b : ℝ, {x : ℝ | m * x + b = x ^ 4 + 9 * x ^ 3 + c * x ^ 2 + 9 * x + 4}.encard = 4) ↔ c ∈ putnam_1994_b2_solution := sorry
For which real numbers $c$ is there a straight line that intersects the curve $x^4+9x^3+cx^2+9x+4$ in four distinct points?
Show that there exists such a line if and only if $c<243/8$.
[ "geometry", "algebra" ]
null
null
putnam_1963_b6
cfe39dfb-97ad-53e7-bf5e-a605b6ace96a
train
theorem putnam_1963_b6 (d : β„•) (S : Set (Fin d β†’ ℝ) β†’ Set (Fin d β†’ ℝ)) (hS : S = fun A : Set (Fin d β†’ ℝ) => ⋃ p ∈ A, ⋃ q ∈ A, segment ℝ p q) (A : β„• β†’ Set (Fin d β†’ ℝ)) (ddim : 1 ≀ d ∧ d ≀ 3) (hA0 : Nonempty (A 0)) (hAn : βˆ€ n β‰₯ 1, A n = S (A (n - 1))) : βˆ€ n β‰₯ 2, A n = A (n + 1) := sorry
import Mathlib open Topology Filter Polynomial /-- Let $E$ be a Euclidean space of at most three dimensions. If $A$ is a nonempty subset of $E$, define $S(A)$ to be the set of all points that lie on closed segments joining pairs of points of $A$. For a given nonempty set $A_0$, define $A_n=S(A_{n-1})$ for $n=1,2,\dots$. Prove that $A_2=A_3=\cdots$. (A one-point set should be considered to be a special case of a closed segment.) -/ theorem putnam_1963_b6 (d : β„•) (S : Set (Fin d β†’ ℝ) β†’ Set (Fin d β†’ ℝ)) (hS : S = fun A : Set (Fin d β†’ ℝ) => ⋃ p ∈ A, ⋃ q ∈ A, segment ℝ p q) (A : β„• β†’ Set (Fin d β†’ ℝ)) (ddim : 1 ≀ d ∧ d ≀ 3) (hA0 : Nonempty (A 0)) (hAn : βˆ€ n β‰₯ 1, A n = S (A (n - 1))) : βˆ€ n β‰₯ 2, A n = A (n + 1) := by
import Mathlib open Topology Filter Polynomial /-- Let $E$ be a Euclidean space of at most three dimensions. If $A$ is a nonempty subset of $E$, define $S(A)$ to be the set of all points that lie on closed segments joining pairs of points of $A$. For a given nonempty set $A_0$, define $A_n=S(A_{n-1})$ for $n=1,2,\dots$. Prove that $A_2=A_3=\cdots$. (A one-point set should be considered to be a special case of a closed segment.) -/ theorem putnam_1963_b6 (d : β„•) (S : Set (Fin d β†’ ℝ) β†’ Set (Fin d β†’ ℝ)) (hS : S = fun A : Set (Fin d β†’ ℝ) => ⋃ p ∈ A, ⋃ q ∈ A, segment ℝ p q) (A : β„• β†’ Set (Fin d β†’ ℝ)) (ddim : 1 ≀ d ∧ d ≀ 3) (hA0 : Nonempty (A 0)) (hAn : βˆ€ n β‰₯ 1, A n = S (A (n - 1))) : βˆ€ n β‰₯ 2, A n = A (n + 1) := sorry
Let $E$ be a Euclidean space of at most three dimensions. If $A$ is a nonempty subset of $E$, define $S(A)$ to be the set of all points that lie on closed segments joining pairs of points of $A$. For a given nonempty set $A_0$, define $A_n=S(A_{n-1})$ for $n=1,2,\dots$. Prove that $A_2=A_3=\cdots$. (A one-point set should be considered to be a special case of a closed segment.)
null
[ "geometry", "linear_algebra" ]
null
null
putnam_2000_a1
2e635d87-7d56-516c-9fac-9a605c97a089
train
abbrev putnam_2000_a1_solution : ℝ β†’ Set ℝ := sorry -- (fun A : ℝ => Set.Ioo 0 (A ^ 2)) /-- Let $A$ be a positive real number. What are the possible values of $\sum_{j=0}^\infty x_j^2$, given that $x_0,x_1,\ldots$ are positive numbers for which $\sum_{j=0}^\infty x_j=A$? -/ theorem putnam_2000_a1 (A : ℝ) (Apos : A > 0) : {S : ℝ | βˆƒ x : β„• β†’ ℝ, (βˆ€ j : β„•, x j > 0) ∧ (βˆ‘' j : β„•, x j) = A ∧ (βˆ‘' j : β„•, (x j) ^ 2) = S} = putnam_2000_a1_solution A := sorry
import Mathlib open Topology Filter -- (fun A : ℝ => Set.Ioo 0 (A ^ 2)) /-- Let $A$ be a positive real number. What are the possible values of $\sum_{j=0}^\infty x_j^2$, given that $x_0,x_1,\ldots$ are positive numbers for which $\sum_{j=0}^\infty x_j=A$? -/ theorem putnam_2000_a1 (A : ℝ) (Apos : A > 0) : {S : ℝ | βˆƒ x : β„• β†’ ℝ, (βˆ€ j : β„•, x j > 0) ∧ (βˆ‘' j : β„•, x j) = A ∧ (βˆ‘' j : β„•, (x j) ^ 2) = S} = putnam_2000_a1_solution A := by
import Mathlib open Topology Filter abbrev putnam_2000_a1_solution : ℝ β†’ Set ℝ := sorry -- (fun A : ℝ => Set.Ioo 0 (A ^ 2)) /-- Let $A$ be a positive real number. What are the possible values of $\sum_{j=0}^\infty x_j^2$, given that $x_0,x_1,\ldots$ are positive numbers for which $\sum_{j=0}^\infty x_j=A$? -/ theorem putnam_2000_a1 (A : ℝ) (Apos : A > 0) : {S : ℝ | βˆƒ x : β„• β†’ ℝ, (βˆ€ j : β„•, x j > 0) ∧ (βˆ‘' j : β„•, x j) = A ∧ (βˆ‘' j : β„•, (x j) ^ 2) = S} = putnam_2000_a1_solution A := sorry
Let $A$ be a positive real number. What are the possible values of $\sum_{j=0}^\infty x_j^2$, given that $x_0,x_1,\ldots$ are positive numbers for which $\sum_{j=0}^\infty x_j=A$?
Show that the possible values comprise the interval $(0,A^2)$.
[ "analysis" ]
null
null
putnam_2004_b1
84c75ff2-7140-5dbf-9415-41f12bcdf0c4
train
theorem putnam_2004_b1 (n : β„•) (P : Polynomial β„€) (r : β„š) (Pdeg : P.degree = n) (Preq0 : Polynomial.aeval r P = 0) : βˆ€ i ∈ Finset.range n, βˆƒ m : β„€, m = βˆ‘ j in Finset.range (i + 1), (P.coeff (n - j) * r ^ (i + 1 - j)) := sorry
import Mathlib open Nat Topology Filter /-- Let $P(x)=c_nx^n+c_{n-1}x^{n-1}+\cdots+c_0$ be a polynomial with integer coefficients. Suppose that $r$ is a rational number such that $P(r)=0$. Show that the $n$ numbers $c_nr,\,c_nr^2+c_{n-1}r,\,c_nr^3+c_{n-1}r^2+c_{n-2}r,\dots,\,c_nr^n+c_{n-1}r^{n-1}+\cdots+c_1r$ are integers. -/ theorem putnam_2004_b1 (n : β„•) (P : Polynomial β„€) (r : β„š) (Pdeg : P.degree = n) (Preq0 : Polynomial.aeval r P = 0) : βˆ€ i ∈ Finset.range n, βˆƒ m : β„€, m = βˆ‘ j in Finset.range (i + 1), (P.coeff (n - j) * r ^ (i + 1 - j)) := by
import Mathlib open Nat Topology Filter /-- Let $P(x)=c_nx^n+c_{n-1}x^{n-1}+\cdots+c_0$ be a polynomial with integer coefficients. Suppose that $r$ is a rational number such that $P(r)=0$. Show that the $n$ numbers $c_nr,\,c_nr^2+c_{n-1}r,\,c_nr^3+c_{n-1}r^2+c_{n-2}r,\dots,\,c_nr^n+c_{n-1}r^{n-1}+\cdots+c_1r$ are integers. -/ theorem putnam_2004_b1 (n : β„•) (P : Polynomial β„€) (r : β„š) (Pdeg : P.degree = n) (Preq0 : Polynomial.aeval r P = 0) : βˆ€ i ∈ Finset.range n, βˆƒ m : β„€, m = βˆ‘ j in Finset.range (i + 1), (P.coeff (n - j) * r ^ (i + 1 - j)) := sorry
Let $P(x)=c_nx^n+c_{n-1}x^{n-1}+\cdots+c_0$ be a polynomial with integer coefficients. Suppose that $r$ is a rational number such that $P(r)=0$. Show that the $n$ numbers $c_nr,\,c_nr^2+c_{n-1}r,\,c_nr^3+c_{n-1}r^2+c_{n-2}r,\dots,\,c_nr^n+c_{n-1}r^{n-1}+\cdots+c_1r$ are integers.
null
[ "algebra" ]
null
null
putnam_1962_a6
df2d9bfb-812c-53d8-9051-7876ec60f149
train
theorem putnam_1962_a6 (S : Set β„š) (hSadd : βˆ€ a ∈ S, βˆ€ b ∈ S, a + b ∈ S) (hSprod : βˆ€ a ∈ S, βˆ€ b ∈ S, a * b ∈ S) (hScond : βˆ€ r : β„š, (r ∈ S ∨ -r ∈ S ∨ r = 0) ∧ Β¬(r ∈ S ∧ -r ∈ S) ∧ Β¬(r ∈ S ∧ r = 0) ∧ Β¬(-r ∈ S ∧ r = 0)) : S = { r : β„š | r > 0 } := sorry
import Mathlib /-- Let $S$ be a set of rational numbers such that whenever $a$ and $b$ are members of $S$, so are $a+b$ and $ab$, and having the property that for every rational number $r$ exactly one of the following three statements is true: \[ r \in S, -r \in S, r = 0. \] Prove that $S$ is the set of all positive rational numbers. -/ theorem putnam_1962_a6 (S : Set β„š) (hSadd : βˆ€ a ∈ S, βˆ€ b ∈ S, a + b ∈ S) (hSprod : βˆ€ a ∈ S, βˆ€ b ∈ S, a * b ∈ S) (hScond : βˆ€ r : β„š, (r ∈ S ∨ -r ∈ S ∨ r = 0) ∧ Β¬(r ∈ S ∧ -r ∈ S) ∧ Β¬(r ∈ S ∧ r = 0) ∧ Β¬(-r ∈ S ∧ r = 0)) : S = { r : β„š | r > 0 } := by
import Mathlib /-- Let $S$ be a set of rational numbers such that whenever $a$ and $b$ are members of $S$, so are $a+b$ and $ab$, and having the property that for every rational number $r$ exactly one of the following three statements is true: \[ r \in S, -r \in S, r = 0. \] Prove that $S$ is the set of all positive rational numbers. -/ theorem putnam_1962_a6 (S : Set β„š) (hSadd : βˆ€ a ∈ S, βˆ€ b ∈ S, a + b ∈ S) (hSprod : βˆ€ a ∈ S, βˆ€ b ∈ S, a * b ∈ S) (hScond : βˆ€ r : β„š, (r ∈ S ∨ -r ∈ S ∨ r = 0) ∧ Β¬(r ∈ S ∧ -r ∈ S) ∧ Β¬(r ∈ S ∧ r = 0) ∧ Β¬(-r ∈ S ∧ r = 0)) : S = { r : β„š | r > 0 } := sorry
Let $S$ be a set of rational numbers such that whenever $a$ and $b$ are members of $S$, so are $a+b$ and $ab$, and having the property that for every rational number $r$ exactly one of the following three statements is true: \[ r \in S, -r \in S, r = 0. \] Prove that $S$ is the set of all positive rational numbers.
null
[ "algebra" ]
null
null
putnam_2000_b1
3db986a5-d754-5c7e-a914-79210230855f
train
theorem putnam_2000_b1 (N : β„•) (a b c : Fin N β†’ β„€) (Nge1 : N β‰₯ 1) (hodd : βˆ€ j : Fin N, Odd (a j) ∨ Odd (b j) ∨ Odd (c j)) : (βˆƒ r s t : β„€, {j : Fin N | Odd (r * a j + s * b j + t * c j)}.ncard β‰₯ (4 * N : ℝ) / 7) := sorry
import Mathlib open Topology Filter /-- Let $a_j,b_j,c_j$ be integers for $1\leq j\leq N$. Assume for each $j$, at least one of $a_j,b_j,c_j$ is odd. Show that there exist integers $r$, $s$, $t$ such that $ra_j+sb_j+tc_j$ is odd for at least $4N/7$ values of $j$, $1\leq j\leq N$. -/ theorem putnam_2000_b1 (N : β„•) (a b c : Fin N β†’ β„€) (Nge1 : N β‰₯ 1) (hodd : βˆ€ j : Fin N, Odd (a j) ∨ Odd (b j) ∨ Odd (c j)) : (βˆƒ r s t : β„€, {j : Fin N | Odd (r * a j + s * b j + t * c j)}.ncard β‰₯ (4 * N : ℝ) / 7) := by
import Mathlib open Topology Filter /-- Let $a_j,b_j,c_j$ be integers for $1\leq j\leq N$. Assume for each $j$, at least one of $a_j,b_j,c_j$ is odd. Show that there exist integers $r$, $s$, $t$ such that $ra_j+sb_j+tc_j$ is odd for at least $4N/7$ values of $j$, $1\leq j\leq N$. -/ theorem putnam_2000_b1 (N : β„•) (a b c : Fin N β†’ β„€) (Nge1 : N β‰₯ 1) (hodd : βˆ€ j : Fin N, Odd (a j) ∨ Odd (b j) ∨ Odd (c j)) : (βˆƒ r s t : β„€, {j : Fin N | Odd (r * a j + s * b j + t * c j)}.ncard β‰₯ (4 * N : ℝ) / 7) := sorry
Let $a_j,b_j,c_j$ be integers for $1\leq j\leq N$. Assume for each $j$, at least one of $a_j,b_j,c_j$ is odd. Show that there exist integers $r$, $s$, $t$ such that $ra_j+sb_j+tc_j$ is odd for at least $4N/7$ values of $j$, $1\leq j\leq N$.
null
[ "algebra" ]
null
null
putnam_2020_a2
601f4365-f4ff-5e22-ac12-a75935a94cd6
train
abbrev putnam_2020_a2_solution : β„• β†’ β„• := sorry -- fun k ↦ 4 ^ k /-- Let $k$ be a nonnegative integer. Evaluate \[ \sum_{j=0}^k 2^{k-j} \binom{k+j}{j}. \] -/ theorem putnam_2020_a2 (k : β„•) : (βˆ‘ j in Finset.Icc 0 k, 2 ^ (k - j) * Nat.choose (k + j) j = putnam_2020_a2_solution k) := sorry
import Mathlib -- fun k ↦ 4 ^ k /-- Let $k$ be a nonnegative integer. Evaluate \[ \sum_{j=0}^k 2^{k-j} \binom{k+j}{j}. \] -/ theorem putnam_2020_a2 (k : β„•) : (βˆ‘ j in Finset.Icc 0 k, 2 ^ (k - j) * Nat.choose (k + j) j = putnam_2020_a2_solution k) := by
import Mathlib abbrev putnam_2020_a2_solution : β„• β†’ β„• := sorry -- fun k ↦ 4 ^ k /-- Let $k$ be a nonnegative integer. Evaluate \[ \sum_{j=0}^k 2^{k-j} \binom{k+j}{j}. \] -/ theorem putnam_2020_a2 (k : β„•) : (βˆ‘ j in Finset.Icc 0 k, 2 ^ (k - j) * Nat.choose (k + j) j = putnam_2020_a2_solution k) := sorry
Let $k$ be a nonnegative integer. Evaluate \[ \sum_{j=0}^k 2^{k-j} \binom{k+j}{j}. \]
Show that the answer is $4^k$.
[ "algebra" ]
null
null
putnam_1965_b3
4dc33823-1fc8-5886-8108-6139091a67a9
train
theorem putnam_1965_b3 : {(a, b, c) : β„€ Γ— β„€ Γ— β„€ | a > 0 ∧ a ≀ b ∧ c > 0 ∧ a^2 + b^2 = c^2 ∧ a*b/(2 : β„š) = 2*(a + b + c)}.ncard = 3 := sorry
import Mathlib open EuclideanGeometry Topology Filter Complex /-- Prove that there are exactly three right triangles (up to orientation and translation) with integer side lengths and area equal to twice their perimeter. -/ theorem putnam_1965_b3 : {(a, b, c) : β„€ Γ— β„€ Γ— β„€ | a > 0 ∧ a ≀ b ∧ c > 0 ∧ a^2 + b^2 = c^2 ∧ a*b/(2 : β„š) = 2*(a + b + c)}.ncard = 3 := by
import Mathlib open EuclideanGeometry Topology Filter Complex /-- Prove that there are exactly three right triangles (up to orientation and translation) with integer side lengths and area equal to twice their perimeter. -/ theorem putnam_1965_b3 : {(a, b, c) : β„€ Γ— β„€ Γ— β„€ | a > 0 ∧ a ≀ b ∧ c > 0 ∧ a^2 + b^2 = c^2 ∧ a*b/(2 : β„š) = 2*(a + b + c)}.ncard = 3 := sorry
Prove that there are exactly three right triangles (up to orientation and translation) with integer side lengths and area equal to twice their perimeter.
null
[ "algebra", "geometry" ]
null
null
putnam_2017_a1
81ef171f-e8fe-5b8f-a242-1abecaf85a9e
train
abbrev putnam_2017_a1_solution : Set β„€ := sorry -- {x : β„€ | x > 0 ∧ (x = 1 ∨ 5 ∣ x)} /-- Let $S$ be the smallest set of positive integers such that (a) $2$ is in $S$, (b) $n$ is in $S$ whenever $n^2$ is in $S$, and (c) $(n+5)^2$ is in $S$ whenever $n$ is in $S$. Which positive integers are not in $S$?. -/ theorem putnam_2017_a1 (IsQualifying : Set β„€ β†’ Prop) (IsQualifying_def : βˆ€ S, IsQualifying S ↔ (βˆ€ n ∈ S, 0 < n) ∧ 2 ∈ S ∧ (βˆ€ n > 0, n ^ 2 ∈ S β†’ n ∈ S) ∧ (βˆ€ n ∈ S, (n + 5) ^ 2 ∈ S)) (S : Set β„€) (hS : IsLeast IsQualifying S) : Sᢜ ∩ {n | 0 < n} = putnam_2017_a1_solution := sorry
import Mathlib -- {x : β„€ | x > 0 ∧ (x = 1 ∨ 5 ∣ x)} /-- Let $S$ be the smallest set of positive integers such that (a) $2$ is in $S$, (b) $n$ is in $S$ whenever $n^2$ is in $S$, and (c) $(n+5)^2$ is in $S$ whenever $n$ is in $S$. Which positive integers are not in $S$?. -/ theorem putnam_2017_a1 (IsQualifying : Set β„€ β†’ Prop) (IsQualifying_def : βˆ€ S, IsQualifying S ↔ (βˆ€ n ∈ S, 0 < n) ∧ 2 ∈ S ∧ (βˆ€ n > 0, n ^ 2 ∈ S β†’ n ∈ S) ∧ (βˆ€ n ∈ S, (n + 5) ^ 2 ∈ S)) (S : Set β„€) (hS : IsLeast IsQualifying S) : Sᢜ ∩ {n | 0 < n} = putnam_2017_a1_solution := by
import Mathlib abbrev putnam_2017_a1_solution : Set β„€ := sorry -- {x : β„€ | x > 0 ∧ (x = 1 ∨ 5 ∣ x)} /-- Let $S$ be the smallest set of positive integers such that (a) $2$ is in $S$, (b) $n$ is in $S$ whenever $n^2$ is in $S$, and (c) $(n+5)^2$ is in $S$ whenever $n$ is in $S$. Which positive integers are not in $S$?. -/ theorem putnam_2017_a1 (IsQualifying : Set β„€ β†’ Prop) (IsQualifying_def : βˆ€ S, IsQualifying S ↔ (βˆ€ n ∈ S, 0 < n) ∧ 2 ∈ S ∧ (βˆ€ n > 0, n ^ 2 ∈ S β†’ n ∈ S) ∧ (βˆ€ n ∈ S, (n + 5) ^ 2 ∈ S)) (S : Set β„€) (hS : IsLeast IsQualifying S) : Sᢜ ∩ {n | 0 < n} = putnam_2017_a1_solution := sorry
Let $S$ be the smallest set of positive integers such that (a) $2$ is in $S$, (b) $n$ is in $S$ whenever $n^2$ is in $S$, and (c) $(n+5)^2$ is in $S$ whenever $n$ is in $S$. Which positive integers are not in $S$?.
Show that all solutions are in the set $\{x \in \mathbb{Z}\, |\, x > 0 \land (x = 1 \lor 5 \mid x)\}
[ "number_theory" ]
null
null
putnam_1980_b5
510e170d-737f-528f-9ece-d536e10a9a0a
train
abbrev putnam_1980_b5_solution : ℝ β†’ Prop := sorry -- fun t : ℝ => 1 β‰₯ t /-- A function $f$ is convex on $[0, 1]$ if and only if $$f(su + (1-s)v) \le sf(u) + (1 - s)f(v)$$ for all $s \in [0, 1]$. Let $S_t$ denote the set of all nonnegative increasing convex continuous functions $f : [0, 1] \rightarrow \mathbb{R}$ such that $$f(1) - 2f\left(\frac{2}{3}\right) + f\left(\frac{1}{3}\right) \ge t\left(f\left(\frac{2}{3}\right) - 2f\left(\frac{1}{3}\right) + f(0)\right).$$ For which real numbers $t \ge 0$ is $S_t$ closed under multiplication? -/ theorem putnam_1980_b5 (T : Set ℝ) (hT : T = Icc 0 1) (P : ℝ β†’ (ℝ β†’ ℝ) β†’ Prop) (IsConvex : (ℝ β†’ ℝ) β†’ Prop) (S : ℝ β†’ Set (ℝ β†’ ℝ)) (P_def : βˆ€ t f, P t f ↔ f 1 - 2*f (2/3) + f (1/3) β‰₯ t*(f (2/3) - 2*f (1/3) + f 0)) (IsConvex_def : βˆ€ f, IsConvex f ↔ βˆ€ u ∈ T, βˆ€ v ∈ T, βˆ€ s ∈ T, f (s*u + (1 - s)*v) ≀ s*(f u) + (1 - s)*(f v)) (hS : S = fun t : ℝ => {f : ℝ β†’ ℝ | (βˆ€ x ∈ T, f x β‰₯ 0) ∧ StrictMonoOn f T ∧ IsConvex f ∧ ContinuousOn f T ∧ P t f}) (t : ℝ) (ht : t β‰₯ 0) : putnam_1980_b5_solution t ↔ (βˆ€ f ∈ S t, βˆ€ g ∈ S t, f * g ∈ S t) := sorry
import Mathlib open Set -- fun t : ℝ => 1 β‰₯ t /-- A function $f$ is convex on $[0, 1]$ if and only if $$f(su + (1-s)v) \le sf(u) + (1 - s)f(v)$$ for all $s \in [0, 1]$. Let $S_t$ denote the set of all nonnegative increasing convex continuous functions $f : [0, 1] \rightarrow \mathbb{R}$ such that $$f(1) - 2f\left(\frac{2}{3}\right) + f\left(\frac{1}{3}\right) \ge t\left(f\left(\frac{2}{3}\right) - 2f\left(\frac{1}{3}\right) + f(0)\right).$$ For which real numbers $t \ge 0$ is $S_t$ closed under multiplication? -/ theorem putnam_1980_b5 (T : Set ℝ) (hT : T = Icc 0 1) (P : ℝ β†’ (ℝ β†’ ℝ) β†’ Prop) (IsConvex : (ℝ β†’ ℝ) β†’ Prop) (S : ℝ β†’ Set (ℝ β†’ ℝ)) (P_def : βˆ€ t f, P t f ↔ f 1 - 2*f (2/3) + f (1/3) β‰₯ t*(f (2/3) - 2*f (1/3) + f 0)) (IsConvex_def : βˆ€ f, IsConvex f ↔ βˆ€ u ∈ T, βˆ€ v ∈ T, βˆ€ s ∈ T, f (s*u + (1 - s)*v) ≀ s*(f u) + (1 - s)*(f v)) (hS : S = fun t : ℝ => {f : ℝ β†’ ℝ | (βˆ€ x ∈ T, f x β‰₯ 0) ∧ StrictMonoOn f T ∧ IsConvex f ∧ ContinuousOn f T ∧ P t f}) (t : ℝ) (ht : t β‰₯ 0) : putnam_1980_b5_solution t ↔ (βˆ€ f ∈ S t, βˆ€ g ∈ S t, f * g ∈ S t) := by
import Mathlib open Set abbrev putnam_1980_b5_solution : ℝ β†’ Prop := sorry -- fun t : ℝ => 1 β‰₯ t /-- A function $f$ is convex on $[0, 1]$ if and only if $$f(su + (1-s)v) \le sf(u) + (1 - s)f(v)$$ for all $s \in [0, 1]$. Let $S_t$ denote the set of all nonnegative increasing convex continuous functions $f : [0, 1] \rightarrow \mathbb{R}$ such that $$f(1) - 2f\left(\frac{2}{3}\right) + f\left(\frac{1}{3}\right) \ge t\left(f\left(\frac{2}{3}\right) - 2f\left(\frac{1}{3}\right) + f(0)\right).$$ For which real numbers $t \ge 0$ is $S_t$ closed under multiplication? -/ theorem putnam_1980_b5 (T : Set ℝ) (hT : T = Icc 0 1) (P : ℝ β†’ (ℝ β†’ ℝ) β†’ Prop) (IsConvex : (ℝ β†’ ℝ) β†’ Prop) (S : ℝ β†’ Set (ℝ β†’ ℝ)) (P_def : βˆ€ t f, P t f ↔ f 1 - 2*f (2/3) + f (1/3) β‰₯ t*(f (2/3) - 2*f (1/3) + f 0)) (IsConvex_def : βˆ€ f, IsConvex f ↔ βˆ€ u ∈ T, βˆ€ v ∈ T, βˆ€ s ∈ T, f (s*u + (1 - s)*v) ≀ s*(f u) + (1 - s)*(f v)) (hS : S = fun t : ℝ => {f : ℝ β†’ ℝ | (βˆ€ x ∈ T, f x β‰₯ 0) ∧ StrictMonoOn f T ∧ IsConvex f ∧ ContinuousOn f T ∧ P t f}) (t : ℝ) (ht : t β‰₯ 0) : putnam_1980_b5_solution t ↔ (βˆ€ f ∈ S t, βˆ€ g ∈ S t, f * g ∈ S t) := sorry
A function $f$ is convex on $[0, 1]$ if and only if $$f(su + (1-s)v) \le sf(u) + (1 - s)f(v)$$ for all $s \in [0, 1]$. Let $S_t$ denote the set of all nonnegative increasing convex continuous functions $f : [0, 1] \rightarrow \mathbb{R}$ such that $$f(1) - 2f\left(\frac{2}{3}\right) + f\left(\frac{1}{3}\right) \ge t\left(f\left(\frac{2}{3}\right) - 2f\left(\frac{1}{3}\right) + f(0)\right).$$ For which real numbers $t \ge 0$ is $S_t$ closed under multiplication?
$S_t$ is closed under multiplication if and only if $1 \ge t$.
[ "analysis", "algebra" ]
null
null
putnam_1976_a6
32e255db-22ce-5516-a3f1-c1ff63b680cc
train
theorem putnam_1976_a6 (f : ℝ β†’ ℝ) (hfdiff : ContDiff ℝ 2 f) (hfbd : βˆ€ x : ℝ, |f x| ≀ 1) (hf0 : (f 0)^2 + (deriv f 0)^2 = 4) : βˆƒ y : ℝ, (f y) + (iteratedDeriv 2 f y) = 0 := sorry
import Mathlib open Polynomial /-- Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a twice continuously differentiable function such that $|f(x)| \le 1$ for all real $x$ and $(f(0))^2 + (f'(0))^2 = 4$. Prove that $f(y) + f''(y) = 0$ for some real number $y$. -/ theorem putnam_1976_a6 (f : ℝ β†’ ℝ) (hfdiff : ContDiff ℝ 2 f) (hfbd : βˆ€ x : ℝ, |f x| ≀ 1) (hf0 : (f 0)^2 + (deriv f 0)^2 = 4) : βˆƒ y : ℝ, (f y) + (iteratedDeriv 2 f y) = 0 := by
import Mathlib open Polynomial /-- Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a twice continuously differentiable function such that $|f(x)| \le 1$ for all real $x$ and $(f(0))^2 + (f'(0))^2 = 4$. Prove that $f(y) + f''(y) = 0$ for some real number $y$. -/ theorem putnam_1976_a6 (f : ℝ β†’ ℝ) (hfdiff : ContDiff ℝ 2 f) (hfbd : βˆ€ x : ℝ, |f x| ≀ 1) (hf0 : (f 0)^2 + (deriv f 0)^2 = 4) : βˆƒ y : ℝ, (f y) + (iteratedDeriv 2 f y) = 0 := sorry
Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a twice continuously differentiable function such that $|f(x)| \le 1$ for all real $x$ and $(f(0))^2 + (f'(0))^2 = 4$. Prove that $f(y) + f''(y) = 0$ for some real number $y$.
null
[ "analysis", "algebra" ]
null
null
putnam_2013_b2
e566f72b-2158-57ec-a9a3-915630438fae
train
abbrev putnam_2013_b2_solution : ℝ := sorry -- 3 /-- Let $C = \bigcup_{N=1}^\infty C_N$, where $C_N$ denotes the set of those `cosine polynomials' of the form \[ f(x) = 1 + \sum_{n=1}^N a_n \cos(2 \pi n x) \] for which: \begin{enumerate} \item[(i)] $f(x) \geq 0$ for all real $x$, and \item[(ii)] $a_n = 0$ whenever $n$ is a multiple of $3$. \end{enumerate} Determine the maximum value of $f(0)$ as $f$ ranges through $C$, and prove that this maximum is attained. -/ theorem putnam_2013_b2 (CN : β„• β†’ Set (ℝ β†’ ℝ)) (hCN : βˆ€ N : β„•, CN N = {f : ℝ β†’ ℝ | (βˆ€ x : ℝ, f x β‰₯ 0) ∧ βˆƒ a : List ℝ, a.length = N + 1 ∧ (βˆ€ n : Fin (N + 1), 3 ∣ (n : β„•) β†’ a[n]! = 0) ∧ βˆ€ x : ℝ, f x = 1 + βˆ‘ n in Finset.Icc 1 N, a[(n : β„•)]! * Real.cos (2*Real.pi*n*x)}) : IsGreatest {f 0 | f ∈ ⋃ N ∈ Ici 1, CN N} putnam_2013_b2_solution := sorry
import Mathlib open Function Set -- 3 /-- Let $C = \bigcup_{N=1}^\infty C_N$, where $C_N$ denotes the set of those `cosine polynomials' of the form \[ f(x) = 1 + \sum_{n=1}^N a_n \cos(2 \pi n x) \] for which: \begin{enumerate} \item[(i)] $f(x) \geq 0$ for all real $x$, and \item[(ii)] $a_n = 0$ whenever $n$ is a multiple of $3$. \end{enumerate} Determine the maximum value of $f(0)$ as $f$ ranges through $C$, and prove that this maximum is attained. -/ theorem putnam_2013_b2 (CN : β„• β†’ Set (ℝ β†’ ℝ)) (hCN : βˆ€ N : β„•, CN N = {f : ℝ β†’ ℝ | (βˆ€ x : ℝ, f x β‰₯ 0) ∧ βˆƒ a : List ℝ, a.length = N + 1 ∧ (βˆ€ n : Fin (N + 1), 3 ∣ (n : β„•) β†’ a[n]! = 0) ∧ βˆ€ x : ℝ, f x = 1 + βˆ‘ n in Finset.Icc 1 N, a[(n : β„•)]! * Real.cos (2*Real.pi*n*x)}) : IsGreatest {f 0 | f ∈ ⋃ N ∈ Ici 1, CN N} putnam_2013_b2_solution := by
import Mathlib open Function Set abbrev putnam_2013_b2_solution : ℝ := sorry -- 3 /-- Let $C = \bigcup_{N=1}^\infty C_N$, where $C_N$ denotes the set of those `cosine polynomials' of the form \[ f(x) = 1 + \sum_{n=1}^N a_n \cos(2 \pi n x) \] for which: \begin{enumerate} \item[(i)] $f(x) \geq 0$ for all real $x$, and \item[(ii)] $a_n = 0$ whenever $n$ is a multiple of $3$. \end{enumerate} Determine the maximum value of $f(0)$ as $f$ ranges through $C$, and prove that this maximum is attained. -/ theorem putnam_2013_b2 (CN : β„• β†’ Set (ℝ β†’ ℝ)) (hCN : βˆ€ N : β„•, CN N = {f : ℝ β†’ ℝ | (βˆ€ x : ℝ, f x β‰₯ 0) ∧ βˆƒ a : List ℝ, a.length = N + 1 ∧ (βˆ€ n : Fin (N + 1), 3 ∣ (n : β„•) β†’ a[n]! = 0) ∧ βˆ€ x : ℝ, f x = 1 + βˆ‘ n in Finset.Icc 1 N, a[(n : β„•)]! * Real.cos (2*Real.pi*n*x)}) : IsGreatest {f 0 | f ∈ ⋃ N ∈ Ici 1, CN N} putnam_2013_b2_solution := sorry
Let $C = \bigcup_{N=1}^\infty C_N$, where $C_N$ denotes the set of those `cosine polynomials' of the form \[ f(x) = 1 + \sum_{n=1}^N a_n \cos(2 \pi n x) \] for which: \begin{enumerate} \item[(i)] $f(x) \geq 0$ for all real $x$, and \item[(ii)] $a_n = 0$ whenever $n$ is a multiple of $3$. \end{enumerate} Determine the maximum value of $f(0)$ as $f$ ranges through $C$, and prove that this maximum is attained.
The maximum value of $f(0)$ is $3$.
[ "algebra" ]
null
null
putnam_1994_a6
c79ab4fb-c3c6-5511-850f-4a9df3ee4ee9
train
theorem putnam_1994_a6 (f : Fin 10 β†’ Equiv.Perm β„€) (mijcomp : β„• β†’ (β„• β†’ Fin 10) β†’ β„• β†’ (β„€ β†’ β„€)) (F : Finset (β„€ β†’ β„€)) (hf: βˆ€ n : β„€, βˆƒ m : β„•, βˆƒ i : β„• β†’ Fin 10, m β‰₯ 1 ∧ (mijcomp m i 0) 0 = n) (hmijcomp : βˆ€ m β‰₯ 1, βˆ€ (i : β„• β†’ Fin 10) (j : Fin m), mijcomp m i j = if (j = m - 1) then (f (i j) : β„€ β†’ β„€) else (f (i j) ∘ mijcomp m i (j + 1))) (hF : F = {g : β„€ β†’ β„€ | βˆƒ e : Fin 10 β†’ Fin 2, g = (f 0)^[e 0] ∘ (f 1)^[e 1] ∘ (f 2)^[e 2] ∘ (f 3)^[e 3] ∘ (f 4)^[e 4] ∘ (f 5)^[e 5] ∘ (f 6)^[e 6] ∘ (f 7)^[e 7] ∘ (f 8)^[e 8] ∘ (f 9)^[e 9]}) : βˆ€ A : Finset β„€, A.Nonempty β†’ {g ∈ F | g '' A = A}.card ≀ 512 := sorry
import Mathlib open Classical Filter Topology -- Note: uses (β„• β†’ Fin 10) instead of (Fin m β†’ Fin 10) /-- Let $f_1,\dots,f_{10}$ be bijections of the set of integers such that for each integer $n$, there is some composition $f_{i_1} \circ f_{i_2} \circ \cdots \circ f_{i_m}$ of these functions (allowing repetitions) which maps 0 to $n$. Consider the set of $1024$ functions $\mathcal{F}=\{f_1^{e_1} \circ f_2^{e_2} \circ \cdots \circ f_{10}^{e_{10}}\}$, $e_i=0$ or $1$ for $1 \leq i \leq 10$. ($f_i^0$ is the identity function and $f_i^1=f_i$.) Show that if $A$ is any nonempty finite set of integers, then at most $512$ of the functions in $\mathcal{F}$ map $A$ to itself. -/ theorem putnam_1994_a6 (f : Fin 10 β†’ Equiv.Perm β„€) (mijcomp : β„• β†’ (β„• β†’ Fin 10) β†’ β„• β†’ (β„€ β†’ β„€)) (F : Finset (β„€ β†’ β„€)) (hf: βˆ€ n : β„€, βˆƒ m : β„•, βˆƒ i : β„• β†’ Fin 10, m β‰₯ 1 ∧ (mijcomp m i 0) 0 = n) (hmijcomp : βˆ€ m β‰₯ 1, βˆ€ (i : β„• β†’ Fin 10) (j : Fin m), mijcomp m i j = if (j = m - 1) then (f (i j) : β„€ β†’ β„€) else (f (i j) ∘ mijcomp m i (j + 1))) (hF : F = {g : β„€ β†’ β„€ | βˆƒ e : Fin 10 β†’ Fin 2, g = (f 0)^[e 0] ∘ (f 1)^[e 1] ∘ (f 2)^[e 2] ∘ (f 3)^[e 3] ∘ (f 4)^[e 4] ∘ (f 5)^[e 5] ∘ (f 6)^[e 6] ∘ (f 7)^[e 7] ∘ (f 8)^[e 8] ∘ (f 9)^[e 9]}) : βˆ€ A : Finset β„€, A.Nonempty β†’ {g ∈ F | g '' A = A}.card ≀ 512 := by
import Mathlib open Classical Filter Topology -- Note: uses (β„• β†’ Fin 10) instead of (Fin m β†’ Fin 10) /-- Let $f_1,\dots,f_{10}$ be bijections of the set of integers such that for each integer $n$, there is some composition $f_{i_1} \circ f_{i_2} \circ \cdots \circ f_{i_m}$ of these functions (allowing repetitions) which maps 0 to $n$. Consider the set of $1024$ functions $\mathcal{F}=\{f_1^{e_1} \circ f_2^{e_2} \circ \cdots \circ f_{10}^{e_{10}}\}$, $e_i=0$ or $1$ for $1 \leq i \leq 10$. ($f_i^0$ is the identity function and $f_i^1=f_i$.) Show that if $A$ is any nonempty finite set of integers, then at most $512$ of the functions in $\mathcal{F}$ map $A$ to itself. -/ theorem putnam_1994_a6 (f : Fin 10 β†’ Equiv.Perm β„€) (mijcomp : β„• β†’ (β„• β†’ Fin 10) β†’ β„• β†’ (β„€ β†’ β„€)) (F : Finset (β„€ β†’ β„€)) (hf: βˆ€ n : β„€, βˆƒ m : β„•, βˆƒ i : β„• β†’ Fin 10, m β‰₯ 1 ∧ (mijcomp m i 0) 0 = n) (hmijcomp : βˆ€ m β‰₯ 1, βˆ€ (i : β„• β†’ Fin 10) (j : Fin m), mijcomp m i j = if (j = m - 1) then (f (i j) : β„€ β†’ β„€) else (f (i j) ∘ mijcomp m i (j + 1))) (hF : F = {g : β„€ β†’ β„€ | βˆƒ e : Fin 10 β†’ Fin 2, g = (f 0)^[e 0] ∘ (f 1)^[e 1] ∘ (f 2)^[e 2] ∘ (f 3)^[e 3] ∘ (f 4)^[e 4] ∘ (f 5)^[e 5] ∘ (f 6)^[e 6] ∘ (f 7)^[e 7] ∘ (f 8)^[e 8] ∘ (f 9)^[e 9]}) : βˆ€ A : Finset β„€, A.Nonempty β†’ {g ∈ F | g '' A = A}.card ≀ 512 := sorry
Let $f_1,\dots,f_{10}$ be bijections of the set of integers such that for each integer $n$, there is some composition $f_{i_1} \circ f_{i_2} \circ \cdots \circ f_{i_m}$ of these functions (allowing repetitions) which maps 0 to $n$. Consider the set of $1024$ functions $\mathcal{F}=\{f_1^{e_1} \circ f_2^{e_2} \circ \cdots \circ f_{10}^{e_{10}}\}$, $e_i=0$ or $1$ for $1 \leq i \leq 10$. ($f_i^0$ is the identity function and $f_i^1=f_i$.) Show that if $A$ is any nonempty finite set of integers, then at most $512$ of the functions in $\mathcal{F}$ map $A$ to itself.
null
[ "algebra" ]
null
null
putnam_1994_a5
b4ccaf2b-0086-58af-b1cf-98b373e105bd
train
theorem putnam_1994_a5 (r : β„• β†’ ℝ) (S : Set ℝ) (rpos : βˆ€ n, r n > 0) (rlim : Tendsto r atTop (𝓝 0)) (hS : S = {x | βˆƒ i : Fin 1994 β†’ β„•, (βˆ€ j k : Fin 1994, j < k β†’ i j < i k) ∧ (x = βˆ‘ j : Fin 1994, r (i j))}) : βˆ€ a b : ℝ, a < b β†’ (βˆƒ c d : ℝ, a ≀ c ∧ c < d ∧ d ≀ b ∧ (Set.Ioo c d) ∩ S = βˆ…) := sorry
import Mathlib open Filter Topology /-- Let $(r_n)_{n \geq 0}$ be a sequence of positive real numbers such that $\lim_{n \to \infty} r_n=0$. Let $S$ be the set of numbers representable as a sum $r_{i_1}+r_{i_2}+\cdots+r_{i_{1994}}$, with $i_1<i_2<\cdots<i_{1994}$. Show that every nonempty interval $(a,b)$ contains a nonempty subinterval $(c,d)$ that does not intersect $S$. -/ theorem putnam_1994_a5 (r : β„• β†’ ℝ) (S : Set ℝ) (rpos : βˆ€ n, r n > 0) (rlim : Tendsto r atTop (𝓝 0)) (hS : S = {x | βˆƒ i : Fin 1994 β†’ β„•, (βˆ€ j k : Fin 1994, j < k β†’ i j < i k) ∧ (x = βˆ‘ j : Fin 1994, r (i j))}) : βˆ€ a b : ℝ, a < b β†’ (βˆƒ c d : ℝ, a ≀ c ∧ c < d ∧ d ≀ b ∧ (Set.Ioo c d) ∩ S = βˆ…) := by
import Mathlib open Filter Topology /-- Let $(r_n)_{n \geq 0}$ be a sequence of positive real numbers such that $\lim_{n \to \infty} r_n=0$. Let $S$ be the set of numbers representable as a sum $r_{i_1}+r_{i_2}+\cdots+r_{i_{1994}}$, with $i_1<i_2<\cdots<i_{1994}$. Show that every nonempty interval $(a,b)$ contains a nonempty subinterval $(c,d)$ that does not intersect $S$. -/ theorem putnam_1994_a5 (r : β„• β†’ ℝ) (S : Set ℝ) (rpos : βˆ€ n, r n > 0) (rlim : Tendsto r atTop (𝓝 0)) (hS : S = {x | βˆƒ i : Fin 1994 β†’ β„•, (βˆ€ j k : Fin 1994, j < k β†’ i j < i k) ∧ (x = βˆ‘ j : Fin 1994, r (i j))}) : βˆ€ a b : ℝ, a < b β†’ (βˆƒ c d : ℝ, a ≀ c ∧ c < d ∧ d ≀ b ∧ (Set.Ioo c d) ∩ S = βˆ…) := sorry
Let $(r_n)_{n \geq 0}$ be a sequence of positive real numbers such that $\lim_{n \to \infty} r_n=0$. Let $S$ be the set of numbers representable as a sum $r_{i_1}+r_{i_2}+\cdots+r_{i_{1994}}$, with $i_1<i_2<\cdots<i_{1994}$. Show that every nonempty interval $(a,b)$ contains a nonempty subinterval $(c,d)$ that does not intersect $S$.
null
[ "analysis" ]
null
null
putnam_2021_a3
72446904-edc4-59aa-8e80-4f458505874a
train
abbrev putnam_2021_a3_solution : Set β„• := sorry -- {3 * m ^ 2 | m > 0} /-- Determine all positive integers $N$ for which the sphere $x^2+y^2+z^2=N$ has an inscribed regular tetrahedron whose vertices have integer coordinates. -/ theorem putnam_2021_a3 (N : β„•) (Nsphere : Set (EuclideanSpace ℝ (Fin 3))) (hNsphere : Nsphere = {p | (p 0) ^ 2 + (p 1) ^ 2 + (p 2) ^ 2 = (N : ℝ)}) (intcoords : (EuclideanSpace ℝ (Fin 3)) β†’ Prop) (intcoords_def : βˆ€ p, intcoords p ↔ βˆ€ i : Fin 3, p i = round (p i)) : (0 < N ∧ βˆƒ A B C D : EuclideanSpace ℝ (Fin 3), A ∈ Nsphere ∧ B ∈ Nsphere ∧ C ∈ Nsphere ∧ D ∈ Nsphere ∧ intcoords A ∧ intcoords B ∧ intcoords C ∧ intcoords D ∧ (βˆƒ s > 0, dist A B = s ∧ dist A C = s ∧ dist A D = s ∧ dist B C = s ∧ dist B D = s ∧ dist C D = s)) ↔ N ∈ putnam_2021_a3_solution := sorry
import Mathlib open Filter Topology -- {3 * m ^ 2 | m > 0} /-- Determine all positive integers $N$ for which the sphere $x^2+y^2+z^2=N$ has an inscribed regular tetrahedron whose vertices have integer coordinates. -/ theorem putnam_2021_a3 (N : β„•) (Nsphere : Set (EuclideanSpace ℝ (Fin 3))) (hNsphere : Nsphere = {p | (p 0) ^ 2 + (p 1) ^ 2 + (p 2) ^ 2 = (N : ℝ)}) (intcoords : (EuclideanSpace ℝ (Fin 3)) β†’ Prop) (intcoords_def : βˆ€ p, intcoords p ↔ βˆ€ i : Fin 3, p i = round (p i)) : (0 < N ∧ βˆƒ A B C D : EuclideanSpace ℝ (Fin 3), A ∈ Nsphere ∧ B ∈ Nsphere ∧ C ∈ Nsphere ∧ D ∈ Nsphere ∧ intcoords A ∧ intcoords B ∧ intcoords C ∧ intcoords D ∧ (βˆƒ s > 0, dist A B = s ∧ dist A C = s ∧ dist A D = s ∧ dist B C = s ∧ dist B D = s ∧ dist C D = s)) ↔ N ∈ putnam_2021_a3_solution := by
import Mathlib open Filter Topology abbrev putnam_2021_a3_solution : Set β„• := sorry -- {3 * m ^ 2 | m > 0} /-- Determine all positive integers $N$ for which the sphere $x^2+y^2+z^2=N$ has an inscribed regular tetrahedron whose vertices have integer coordinates. -/ theorem putnam_2021_a3 (N : β„•) (Nsphere : Set (EuclideanSpace ℝ (Fin 3))) (hNsphere : Nsphere = {p | (p 0) ^ 2 + (p 1) ^ 2 + (p 2) ^ 2 = (N : ℝ)}) (intcoords : (EuclideanSpace ℝ (Fin 3)) β†’ Prop) (intcoords_def : βˆ€ p, intcoords p ↔ βˆ€ i : Fin 3, p i = round (p i)) : (0 < N ∧ βˆƒ A B C D : EuclideanSpace ℝ (Fin 3), A ∈ Nsphere ∧ B ∈ Nsphere ∧ C ∈ Nsphere ∧ D ∈ Nsphere ∧ intcoords A ∧ intcoords B ∧ intcoords C ∧ intcoords D ∧ (βˆƒ s > 0, dist A B = s ∧ dist A C = s ∧ dist A D = s ∧ dist B C = s ∧ dist B D = s ∧ dist C D = s)) ↔ N ∈ putnam_2021_a3_solution := sorry
Determine all positive integers $N$ for which the sphere $x^2+y^2+z^2=N$ has an inscribed regular tetrahedron whose vertices have integer coordinates.
Show that the integers $N$ with this property are those of the form $3m^2$ for some positive integer $m$.
[ "geometry" ]
null
null
putnam_2018_b5
5ca74870-acdd-5d88-885c-91fb94e3ba0c
train
theorem putnam_2018_b5 (f : (Fin 2 β†’ ℝ) β†’ (Fin 2 β†’ ℝ)) (h₁ : ContDiff ℝ 1 f) (hβ‚‚ : βˆ€ x i j, 0 < fderiv ℝ f x (Pi.single i 1) j) (h₃ : βˆ€ x, 0 < fderiv ℝ f x ![1, 0] 0 * fderiv ℝ f x ![0, 1] 1 - (1 / 4) * (fderiv ℝ f x ![1, 0] 1 + fderiv ℝ f x ![0, 1] 0) ^ 2) : Injective f := sorry
import Mathlib open Function /-- Let $f=(f_1,f_2)$ be a function from $\mathbb{R}^2$ to $\mathbb{R}^2$ with continuous partial derivatives $\frac{\partial f_i}{\partial x_j}$ that are positive everywhere. Suppose that $\frac{\partial f_1}{\partial x_1} \frac{\partial f_2}{\partial x_2}-\frac{1}{4}\left(\frac{\partial f_1}{\partial x_2}+\frac{\partial f_2}{\partial x_1}\right)^2>0$ everywhere. Prove that $f$ is one-to-one. -/ theorem putnam_2018_b5 (f : (Fin 2 β†’ ℝ) β†’ (Fin 2 β†’ ℝ)) (h₁ : ContDiff ℝ 1 f) (hβ‚‚ : βˆ€ x i j, 0 < fderiv ℝ f x (Pi.single i 1) j) (h₃ : βˆ€ x, 0 < fderiv ℝ f x ![1, 0] 0 * fderiv ℝ f x ![0, 1] 1 - (1 / 4) * (fderiv ℝ f x ![1, 0] 1 + fderiv ℝ f x ![0, 1] 0) ^ 2) : Injective f := by
import Mathlib open Function /-- Let $f=(f_1,f_2)$ be a function from $\mathbb{R}^2$ to $\mathbb{R}^2$ with continuous partial derivatives $\frac{\partial f_i}{\partial x_j}$ that are positive everywhere. Suppose that $\frac{\partial f_1}{\partial x_1} \frac{\partial f_2}{\partial x_2}-\frac{1}{4}\left(\frac{\partial f_1}{\partial x_2}+\frac{\partial f_2}{\partial x_1}\right)^2>0$ everywhere. Prove that $f$ is one-to-one. -/ theorem putnam_2018_b5 (f : (Fin 2 β†’ ℝ) β†’ (Fin 2 β†’ ℝ)) (h₁ : ContDiff ℝ 1 f) (hβ‚‚ : βˆ€ x i j, 0 < fderiv ℝ f x (Pi.single i 1) j) (h₃ : βˆ€ x, 0 < fderiv ℝ f x ![1, 0] 0 * fderiv ℝ f x ![0, 1] 1 - (1 / 4) * (fderiv ℝ f x ![1, 0] 1 + fderiv ℝ f x ![0, 1] 0) ^ 2) : Injective f := sorry
Let $f=(f_1,f_2)$ be a function from $\mathbb{R}^2$ to $\mathbb{R}^2$ with continuous partial derivatives $\frac{\partial f_i}{\partial x_j}$ that are positive everywhere. Suppose that $\frac{\partial f_1}{\partial x_1} \frac{\partial f_2}{\partial x_2}-\frac{1}{4}\left(\frac{\partial f_1}{\partial x_2}+\frac{\partial f_2}{\partial x_1}\right)^2>0$ everywhere. Prove that $f$ is one-to-one.
null
[ "analysis" ]
null
null
putnam_1989_b2
d61fa2a5-0cfa-57b2-a83c-ea18440e2081
train
abbrev putnam_1989_b2_solution : Prop := sorry -- True /-- Let $S$ be a non-empty set with an associative operation that is left and right cancellative ($xy=xz$ implies $y=z$, and $yx=zx$ implies $y=z$). Assume that for every $a$ in $S$ the set $\{a^n:\,n=1, 2, 3, \ldots\}$ is finite. Must $S$ be a group? -/ theorem putnam_1989_b2 : (βˆ€ (S : Type) [Nonempty S] [Semigroup S] [IsCancelMul S] (h_fin : βˆ€ a : S, {(a * Β·)^[n] a | n : β„•}.Finite), βˆƒ e : S, βˆ€ x, e * x = x ∧ x * e = x ∧ βˆƒ y, x * y = e ∧ y * x = e) ↔ putnam_1989_b2_solution := sorry
import Mathlib open Nat -- Note: This formalization uses "Type" rather than "Type*" as the underlying structure for a semigroup. -- True /-- Let $S$ be a non-empty set with an associative operation that is left and right cancellative ($xy=xz$ implies $y=z$, and $yx=zx$ implies $y=z$). Assume that for every $a$ in $S$ the set $\{a^n:\,n=1, 2, 3, \ldots\}$ is finite. Must $S$ be a group? -/ theorem putnam_1989_b2 : (βˆ€ (S : Type) [Nonempty S] [Semigroup S] [IsCancelMul S] (h_fin : βˆ€ a : S, {(a * Β·)^[n] a | n : β„•}.Finite), βˆƒ e : S, βˆ€ x, e * x = x ∧ x * e = x ∧ βˆƒ y, x * y = e ∧ y * x = e) ↔ putnam_1989_b2_solution := by
import Mathlib open Nat -- Note: This formalization uses "Type" rather than "Type*" as the underlying structure for a semigroup. abbrev putnam_1989_b2_solution : Prop := sorry -- True /-- Let $S$ be a non-empty set with an associative operation that is left and right cancellative ($xy=xz$ implies $y=z$, and $yx=zx$ implies $y=z$). Assume that for every $a$ in $S$ the set $\{a^n:\,n=1, 2, 3, \ldots\}$ is finite. Must $S$ be a group? -/ theorem putnam_1989_b2 : (βˆ€ (S : Type) [Nonempty S] [Semigroup S] [IsCancelMul S] (h_fin : βˆ€ a : S, {(a * Β·)^[n] a | n : β„•}.Finite), βˆƒ e : S, βˆ€ x, e * x = x ∧ x * e = x ∧ βˆƒ y, x * y = e ∧ y * x = e) ↔ putnam_1989_b2_solution := sorry
Let $S$ be a non-empty set with an associative operation that is left and right cancellative ($xy=xz$ implies $y=z$, and $yx=zx$ implies $y=z$). Assume that for every $a$ in $S$ the set $\{a^n:\,n=1, 2, 3, \ldots\}$ is finite. Must $S$ be a group?
Prove that $S$ must be a group.
[ "abstract_algebra" ]
null
null
putnam_1965_a2
d535878c-0dbc-56c9-be7e-54c156f6c28b
train
theorem putnam_1965_a2 : βˆ€ n > 0, βˆ‘ r in Finset.Icc 0 ((n - 1)/2), ((n - 2*r) * Nat.choose n r / (n : β„š))^2 = (Nat.choose (2*n - 2) (n - 1))/(n : β„š) := sorry
import Mathlib open EuclideanGeometry /-- Prove that $$\sum_{r=0}^{\lfloor\frac{n-1}{2}\rfloor} \left(\frac{n - 2r}{n} {n \choose r}\right)^2 = \frac{1}{n} {{2n - 2} \choose {n - 1}}$$ for every positive integer $n$. -/ theorem putnam_1965_a2 : βˆ€ n > 0, βˆ‘ r in Finset.Icc 0 ((n - 1)/2), ((n - 2*r) * Nat.choose n r / (n : β„š))^2 = (Nat.choose (2*n - 2) (n - 1))/(n : β„š) := by
import Mathlib open EuclideanGeometry /-- Prove that $$\sum_{r=0}^{\lfloor\frac{n-1}{2}\rfloor} \left(\frac{n - 2r}{n} {n \choose r}\right)^2 = \frac{1}{n} {{2n - 2} \choose {n - 1}}$$ for every positive integer $n$. -/ theorem putnam_1965_a2 : βˆ€ n > 0, βˆ‘ r in Finset.Icc 0 ((n - 1)/2), ((n - 2*r) * Nat.choose n r / (n : β„š))^2 = (Nat.choose (2*n - 2) (n - 1))/(n : β„š) := sorry
Prove that $$\sum_{r=0}^{\lfloor\frac{n-1}{2}\rfloor} \left(\frac{n - 2r}{n} {n \choose r}\right)^2 = \frac{1}{n} {{2n - 2} \choose {n - 1}}$$ for every positive integer $n$.
null
[ "algebra" ]
null
null
putnam_1975_a5
3d4c6d5c-5bc0-54a1-bfd9-f414854b14d3
train
theorem putnam_1975_a5 (I : Interval ℝ) (f y1 y2 : ℝ β†’ ℝ) (hfcont : Continuous f) (hycdiff : ContDiff ℝ 2 y1 ∧ ContDiff ℝ 2 y2) (hy1sol : βˆ€ x : ℝ, iteratedDeriv 2 y1 x = (f x) * (y1 x)) (hy2sol : βˆ€ x : ℝ, iteratedDeriv 2 y2 x = (f x) * (y2 x)) (hylinindep : βˆ€ c1 c2 : ℝ, (βˆ€ x : ℝ, c1 * y1 x + c2 * y2 x = 0) β†’ (c1 = 0 ∧ c2 = 0)) (hyI : βˆ€ x ∈ I, y1 x > 0 ∧ y2 x > 0) : βˆƒ c : ℝ, c > 0 ∧ (let z : ℝ β†’ ℝ := fun x => c * Real.sqrt ((y1 x) * (y2 x)); βˆ€ x ∈ I, iteratedDeriv 2 z x + 1/(z x)^3 = (f x) * (z x)) := sorry
import Mathlib open Polynomial Real Complex -- Note: Only the part showing a constant exists /-- On some interval $I$ of the real line, let $y_1(x), y_2(x)$ be linearly independent solutions of the differential equation \[y'' = f(x)y\], where $f(x)$ is a continuous real-valued function. Suppose that $y_1(x) > 0$ and $y_2(x) > 0$ on $I$. Show that there exists a positive constant $c$ such that, on $I$, the function \[z(x) = c \sqrt{y_1(x)y_2(x)}\] satisfies the equation \[z'' + 1/z^3 = f(x)z.\] -/ theorem putnam_1975_a5 (I : Interval ℝ) (f y1 y2 : ℝ β†’ ℝ) (hfcont : Continuous f) (hycdiff : ContDiff ℝ 2 y1 ∧ ContDiff ℝ 2 y2) (hy1sol : βˆ€ x : ℝ, iteratedDeriv 2 y1 x = (f x) * (y1 x)) (hy2sol : βˆ€ x : ℝ, iteratedDeriv 2 y2 x = (f x) * (y2 x)) (hylinindep : βˆ€ c1 c2 : ℝ, (βˆ€ x : ℝ, c1 * y1 x + c2 * y2 x = 0) β†’ (c1 = 0 ∧ c2 = 0)) (hyI : βˆ€ x ∈ I, y1 x > 0 ∧ y2 x > 0) : βˆƒ c : ℝ, c > 0 ∧ (let z : ℝ β†’ ℝ := fun x => c * Real.sqrt ((y1 x) * (y2 x)); βˆ€ x ∈ I, iteratedDeriv 2 z x + 1/(z x)^3 = (f x) * (z x)) := by
import Mathlib open Polynomial Real Complex -- Note: Only the part showing a constant exists /-- On some interval $I$ of the real line, let $y_1(x), y_2(x)$ be linearly independent solutions of the differential equation \[y'' = f(x)y\], where $f(x)$ is a continuous real-valued function. Suppose that $y_1(x) > 0$ and $y_2(x) > 0$ on $I$. Show that there exists a positive constant $c$ such that, on $I$, the function \[z(x) = c \sqrt{y_1(x)y_2(x)}\] satisfies the equation \[z'' + 1/z^3 = f(x)z.\] -/ theorem putnam_1975_a5 (I : Interval ℝ) (f y1 y2 : ℝ β†’ ℝ) (hfcont : Continuous f) (hycdiff : ContDiff ℝ 2 y1 ∧ ContDiff ℝ 2 y2) (hy1sol : βˆ€ x : ℝ, iteratedDeriv 2 y1 x = (f x) * (y1 x)) (hy2sol : βˆ€ x : ℝ, iteratedDeriv 2 y2 x = (f x) * (y2 x)) (hylinindep : βˆ€ c1 c2 : ℝ, (βˆ€ x : ℝ, c1 * y1 x + c2 * y2 x = 0) β†’ (c1 = 0 ∧ c2 = 0)) (hyI : βˆ€ x ∈ I, y1 x > 0 ∧ y2 x > 0) : βˆƒ c : ℝ, c > 0 ∧ (let z : ℝ β†’ ℝ := fun x => c * Real.sqrt ((y1 x) * (y2 x)); βˆ€ x ∈ I, iteratedDeriv 2 z x + 1/(z x)^3 = (f x) * (z x)) := sorry
On some interval $I$ of the real line, let $y_1(x), y_2(x)$ be linearly independent solutions of the differential equation \[y'' = f(x)y\], where $f(x)$ is a continuous real-valued function. Suppose that $y_1(x) > 0$ and $y_2(x) > 0$ on $I$. Show that there exists a positive constant $c$ such that, on $I$, the function \[z(x) = c \sqrt{y_1(x)y_2(x)}\] satisfies the equation \[z'' + 1/z^3 = f(x)z.\]
null
[ "analysis" ]
null
null
putnam_2017_b2
014874b9-023b-58bc-84c1-ef8efda78333
train
abbrev putnam_2017_b2_solution : β„• := sorry -- 16 /-- Suppose that a positive integer $N$ can be expressed as the sum of $k$ consecutive positive integers \[ N = a + (a+1) +(a+2) + \cdots + (a+k-1) \] for $k=2017$ but for no other values of $k>1$. Considering all positive integers $N$ with this property, what is the smallest positive integer $a$ that occurs in any of these expressions? -/ theorem putnam_2017_b2 (S : β„€ β†’ β„• β†’ β„€) (p : β„€ β†’ β„• β†’ Prop) (q : β„€ β†’ Prop) (hS : S = fun (a : β„€) k ↦ βˆ‘ i in Finset.range k, (a + i)) (hp : βˆ€ N k, p N k ↔ βˆƒ a > 0, S a k = N) (hq : βˆ€ N, q N ↔ p N 2017 ∧ βˆ€ k : β„•, k > 1 β†’ k β‰  2017 β†’ Β¬p N k) : IsLeast {a : β„€ | q (S a 2017)} putnam_2017_b2_solution := sorry
import Mathlib open Topology Filter -- 16 /-- Suppose that a positive integer $N$ can be expressed as the sum of $k$ consecutive positive integers \[ N = a + (a+1) +(a+2) + \cdots + (a+k-1) \] for $k=2017$ but for no other values of $k>1$. Considering all positive integers $N$ with this property, what is the smallest positive integer $a$ that occurs in any of these expressions? -/ theorem putnam_2017_b2 (S : β„€ β†’ β„• β†’ β„€) (p : β„€ β†’ β„• β†’ Prop) (q : β„€ β†’ Prop) (hS : S = fun (a : β„€) k ↦ βˆ‘ i in Finset.range k, (a + i)) (hp : βˆ€ N k, p N k ↔ βˆƒ a > 0, S a k = N) (hq : βˆ€ N, q N ↔ p N 2017 ∧ βˆ€ k : β„•, k > 1 β†’ k β‰  2017 β†’ Β¬p N k) : IsLeast {a : β„€ | q (S a 2017)} putnam_2017_b2_solution := by
import Mathlib open Topology Filter abbrev putnam_2017_b2_solution : β„• := sorry -- 16 /-- Suppose that a positive integer $N$ can be expressed as the sum of $k$ consecutive positive integers \[ N = a + (a+1) +(a+2) + \cdots + (a+k-1) \] for $k=2017$ but for no other values of $k>1$. Considering all positive integers $N$ with this property, what is the smallest positive integer $a$ that occurs in any of these expressions? -/ theorem putnam_2017_b2 (S : β„€ β†’ β„• β†’ β„€) (p : β„€ β†’ β„• β†’ Prop) (q : β„€ β†’ Prop) (hS : S = fun (a : β„€) k ↦ βˆ‘ i in Finset.range k, (a + i)) (hp : βˆ€ N k, p N k ↔ βˆƒ a > 0, S a k = N) (hq : βˆ€ N, q N ↔ p N 2017 ∧ βˆ€ k : β„•, k > 1 β†’ k β‰  2017 β†’ Β¬p N k) : IsLeast {a : β„€ | q (S a 2017)} putnam_2017_b2_solution := sorry
Suppose that a positive integer $N$ can be expressed as the sum of $k$ consecutive positive integers \[ N = a + (a+1) +(a+2) + \cdots + (a+k-1) \] for $k=2017$ but for no other values of $k>1$. Considering all positive integers $N$ with this property, what is the smallest positive integer $a$ that occurs in any of these expressions?
Prove that the smallest value of $a$ is $16$.
[ "algebra" ]
null
null
putnam_1994_b5
b42ddbf1-bc61-5c19-b3d0-898a77dba00c
train
theorem putnam_1994_b5 (n : β„•) (hn : n > 0) (f : ℝ β†’ β„€ β†’ β„€) (hf : βˆ€ (Ξ± : ℝ) (x : β„€), f Ξ± x = Int.floor (Ξ± * x)) : βˆƒ Ξ± : ℝ, βˆ€ k ∈ Set.Icc 1 n, ((f Ξ±)^[k] (n ^ 2) = n ^ 2 - k) ∧ (f (Ξ± ^ k) (n ^ 2) = n ^ 2 - k) := sorry
import Mathlib open Filter Topology /-- For any real number $\alpha$, define the function $f_\alpha(x)=\lfloor \alpha x \rfloor$. Let $n$ be a positive integer. Show that there exists an $\alpha$ such that for $1 \leq k \leq n$, $f_\alpha^k(n^2)=n^2-k=f_{\alpha^k}(n^2)$. -/ theorem putnam_1994_b5 (n : β„•) (hn : n > 0) (f : ℝ β†’ β„€ β†’ β„€) (hf : βˆ€ (Ξ± : ℝ) (x : β„€), f Ξ± x = Int.floor (Ξ± * x)) : βˆƒ Ξ± : ℝ, βˆ€ k ∈ Set.Icc 1 n, ((f Ξ±)^[k] (n ^ 2) = n ^ 2 - k) ∧ (f (Ξ± ^ k) (n ^ 2) = n ^ 2 - k) := by
import Mathlib open Filter Topology /-- For any real number $\alpha$, define the function $f_\alpha(x)=\lfloor \alpha x \rfloor$. Let $n$ be a positive integer. Show that there exists an $\alpha$ such that for $1 \leq k \leq n$, $f_\alpha^k(n^2)=n^2-k=f_{\alpha^k}(n^2)$. -/ theorem putnam_1994_b5 (n : β„•) (hn : n > 0) (f : ℝ β†’ β„€ β†’ β„€) (hf : βˆ€ (Ξ± : ℝ) (x : β„€), f Ξ± x = Int.floor (Ξ± * x)) : βˆƒ Ξ± : ℝ, βˆ€ k ∈ Set.Icc 1 n, ((f Ξ±)^[k] (n ^ 2) = n ^ 2 - k) ∧ (f (Ξ± ^ k) (n ^ 2) = n ^ 2 - k) := sorry
For any real number $\alpha$, define the function $f_\alpha(x)=\lfloor \alpha x \rfloor$. Let $n$ be a positive integer. Show that there exists an $\alpha$ such that for $1 \leq k \leq n$, $f_\alpha^k(n^2)=n^2-k=f_{\alpha^k}(n^2)$.
null
[ "algebra" ]
null
null
putnam_2000_a2
716a6cae-3df1-5300-a762-d7a5fbffb941
train
theorem putnam_2000_a2 : βˆ€ n : β„•, βˆƒ N : β„€, βˆƒ i : Fin 6 β†’ β„•, N > n ∧ N = (i 0)^2 + (i 1)^2 ∧ N + 1 = (i 2)^2 + (i 3)^2 ∧ N + 2 = (i 4)^2 + (i 5)^2 := sorry
import Mathlib open Topology Filter /-- Prove that there exist infinitely many integers $n$ such that $n,n+1,n+2$ are each the sum of the squares of two integers. -/ theorem putnam_2000_a2 : βˆ€ n : β„•, βˆƒ N : β„€, βˆƒ i : Fin 6 β†’ β„•, N > n ∧ N = (i 0)^2 + (i 1)^2 ∧ N + 1 = (i 2)^2 + (i 3)^2 ∧ N + 2 = (i 4)^2 + (i 5)^2 := by
import Mathlib open Topology Filter /-- Prove that there exist infinitely many integers $n$ such that $n,n+1,n+2$ are each the sum of the squares of two integers. -/ theorem putnam_2000_a2 : βˆ€ n : β„•, βˆƒ N : β„€, βˆƒ i : Fin 6 β†’ β„•, N > n ∧ N = (i 0)^2 + (i 1)^2 ∧ N + 1 = (i 2)^2 + (i 3)^2 ∧ N + 2 = (i 4)^2 + (i 5)^2 := sorry
Prove that there exist infinitely many integers $n$ such that $n,n+1,n+2$ are each the sum of the squares of two integers.
null
[ "number_theory" ]
null
null
putnam_1994_b1
ae5e2d32-9510-52ea-8fb2-1f88fb3abaad
train
abbrev putnam_1994_b1_solution : Set β„€ := sorry -- {n : β„€ | (315 ≀ n ∧ n ≀ 325) ∨ (332 ≀ n ∧ n ≀ 350)} /-- Find all positive integers $n$ that are within $250$ of exactly $15$ perfect squares. -/ theorem putnam_1994_b1 (n : β„€) : n ∈ putnam_1994_b1_solution ↔ (0 < n ∧ {m : β„• | |n - m ^ 2| ≀ 250}.encard = 15) := sorry
import Mathlib open Filter Topology -- {n : β„€ | (315 ≀ n ∧ n ≀ 325) ∨ (332 ≀ n ∧ n ≀ 350)} /-- Find all positive integers $n$ that are within $250$ of exactly $15$ perfect squares. -/ theorem putnam_1994_b1 (n : β„€) : n ∈ putnam_1994_b1_solution ↔ (0 < n ∧ {m : β„• | |n - m ^ 2| ≀ 250}.encard = 15) := by
import Mathlib open Filter Topology abbrev putnam_1994_b1_solution : Set β„€ := sorry -- {n : β„€ | (315 ≀ n ∧ n ≀ 325) ∨ (332 ≀ n ∧ n ≀ 350)} /-- Find all positive integers $n$ that are within $250$ of exactly $15$ perfect squares. -/ theorem putnam_1994_b1 (n : β„€) : n ∈ putnam_1994_b1_solution ↔ (0 < n ∧ {m : β„• | |n - m ^ 2| ≀ 250}.encard = 15) := sorry
Find all positive integers $n$ that are within $250$ of exactly $15$ perfect squares.
Show that an integer $n$ is within $250$ of exactly $15$ perfect squares if and only if either $315 \leq n \leq 325$ or $332 \leq n \leq 350$.
[ "algebra" ]
null
null
putnam_2003_a5
adc92473-9211-50ab-8bfb-b31f7f0544c0
train
theorem putnam_2003_a5 (n : β„•) (npos : n > 0) (dyckpath : (m : β„•) β†’ Set ((Fin (2 * m)) β†’ β„€)) (hdyckpath : dyckpath = fun m ↦ {p | range p βŠ† {-1, 1} ∧ βˆ‘ k, p k = 0 ∧ βˆ€ j, βˆ‘ k, ite (k ≀ j) (p k) 0 β‰₯ 0}) (noevenreturn : (m : β„•) β†’ Set ((Fin (2 * m)) β†’ β„€)) (hnoevenreturn : noevenreturn = fun m ↦ {p | Β¬βˆƒ i j, i < j ∧ p i = 1 ∧ (βˆ€ k ∈ Ioc i j, p i = -1) ∧ Even (j.1 - i.1) ∧ βˆ‘ k, ite (k ≀ j) (p k) 0 = 0}) : βˆƒ f : ((Fin (2 * n)) β†’ β„€) β†’ (Fin (2 * (n - 1)) β†’ β„€), βˆ€ y ∈ dyckpath (n - 1), βˆƒ! x, x ∈ dyckpath n ∩ noevenreturn n ∧ f x = y := sorry
import Mathlib open MvPolynomial Set /-- A Dyck $n$-path is a lattice path of $n$ upsteps $(1,1)$ and $n$ downsteps $(1,-1)$ that starts at the origin $O$ and never dips below the $x$-axis. A return is a maximal sequence of contiguous downsteps that terminates on the $x$-axis. Show that there is a one-to-one correspondence between the Dyck $n$-paths with no return of even length and the Dyck $(n-1)$-paths. -/ theorem putnam_2003_a5 (n : β„•) (npos : n > 0) (dyckpath : (m : β„•) β†’ Set ((Fin (2 * m)) β†’ β„€)) (hdyckpath : dyckpath = fun m ↦ {p | range p βŠ† {-1, 1} ∧ βˆ‘ k, p k = 0 ∧ βˆ€ j, βˆ‘ k, ite (k ≀ j) (p k) 0 β‰₯ 0}) (noevenreturn : (m : β„•) β†’ Set ((Fin (2 * m)) β†’ β„€)) (hnoevenreturn : noevenreturn = fun m ↦ {p | Β¬βˆƒ i j, i < j ∧ p i = 1 ∧ (βˆ€ k ∈ Ioc i j, p i = -1) ∧ Even (j.1 - i.1) ∧ βˆ‘ k, ite (k ≀ j) (p k) 0 = 0}) : βˆƒ f : ((Fin (2 * n)) β†’ β„€) β†’ (Fin (2 * (n - 1)) β†’ β„€), βˆ€ y ∈ dyckpath (n - 1), βˆƒ! x, x ∈ dyckpath n ∩ noevenreturn n ∧ f x = y := by
import Mathlib open MvPolynomial Set /-- A Dyck $n$-path is a lattice path of $n$ upsteps $(1,1)$ and $n$ downsteps $(1,-1)$ that starts at the origin $O$ and never dips below the $x$-axis. A return is a maximal sequence of contiguous downsteps that terminates on the $x$-axis. Show that there is a one-to-one correspondence between the Dyck $n$-paths with no return of even length and the Dyck $(n-1)$-paths. -/ theorem putnam_2003_a5 (n : β„•) (npos : n > 0) (dyckpath : (m : β„•) β†’ Set ((Fin (2 * m)) β†’ β„€)) (hdyckpath : dyckpath = fun m ↦ {p | range p βŠ† {-1, 1} ∧ βˆ‘ k, p k = 0 ∧ βˆ€ j, βˆ‘ k, ite (k ≀ j) (p k) 0 β‰₯ 0}) (noevenreturn : (m : β„•) β†’ Set ((Fin (2 * m)) β†’ β„€)) (hnoevenreturn : noevenreturn = fun m ↦ {p | Β¬βˆƒ i j, i < j ∧ p i = 1 ∧ (βˆ€ k ∈ Ioc i j, p i = -1) ∧ Even (j.1 - i.1) ∧ βˆ‘ k, ite (k ≀ j) (p k) 0 = 0}) : βˆƒ f : ((Fin (2 * n)) β†’ β„€) β†’ (Fin (2 * (n - 1)) β†’ β„€), βˆ€ y ∈ dyckpath (n - 1), βˆƒ! x, x ∈ dyckpath n ∩ noevenreturn n ∧ f x = y := sorry
A Dyck $n$-path is a lattice path of $n$ upsteps $(1,1)$ and $n$ downsteps $(1,-1)$ that starts at the origin $O$ and never dips below the $x$-axis. A return is a maximal sequence of contiguous downsteps that terminates on the $x$-axis. Show that there is a one-to-one correspondence between the Dyck $n$-paths with no return of even length and the Dyck $(n-1)$-paths.
null
[ "combinatorics" ]
null
null
putnam_1987_a4
9694ad1e-b55e-511c-97d2-b9f3d9a183be
train
abbrev putnam_1987_a4_solution : β„‚ := sorry -- (5 / 3) * sqrt 30 /-- Let $P$ be a polynomial, with real coefficients, in three variables and $F$ be a function of two variables such that \[ P(ux, uy, uz) = u^2 F(y-x,z-x) \quad \mbox{for all real $x,y,z,u$}, \] and such that $P(1,0,0)=4$, $P(0,1,0)=5$, and $P(0,0,1)=6$. Also let $A,B,C$ be complex numbers with $P(A,B,C)=0$ and $|B-A|=10$. Find $|C-A|$. -/ theorem putnam_1987_a4 (P : MvPolynomial (Fin 3) β„‚) (hPreal : βˆ€ i : Fin 3 β†’β‚€ β„•, (coeff i P).im = 0) (F : ℝ β†’ ℝ β†’ ℝ) (vars : β„‚ β†’ β„‚ β†’ β„‚ β†’ (Fin 3 β†’ β„‚)) (hvars : vars = fun a b c ↦ fun i ↦ ite (i = 0) a (ite (i = 1) b c)) (h : βˆ€ x y z u : ℝ, eval (vars (u * x) (u * y) (u * z)) P = u ^ 2 * F (y - x) (z - x)) (hPval : eval (vars 1 0 0) P = 4 ∧ eval (vars 0 1 0) P = 5 ∧ eval (vars 0 0 1) P = 6) (A B C : β„‚) (hPABC : eval (vars A B C) P = 0) (habs : β€–B - Aβ€– = 10) : (β€–C - Aβ€– = putnam_1987_a4_solution) := sorry
import Mathlib open MvPolynomial Real -- (5 / 3) * sqrt 30 /-- Let $P$ be a polynomial, with real coefficients, in three variables and $F$ be a function of two variables such that \[ P(ux, uy, uz) = u^2 F(y-x,z-x) \quad \mbox{for all real $x,y,z,u$}, \] and such that $P(1,0,0)=4$, $P(0,1,0)=5$, and $P(0,0,1)=6$. Also let $A,B,C$ be complex numbers with $P(A,B,C)=0$ and $|B-A|=10$. Find $|C-A|$. -/ theorem putnam_1987_a4 (P : MvPolynomial (Fin 3) β„‚) (hPreal : βˆ€ i : Fin 3 β†’β‚€ β„•, (coeff i P).im = 0) (F : ℝ β†’ ℝ β†’ ℝ) (vars : β„‚ β†’ β„‚ β†’ β„‚ β†’ (Fin 3 β†’ β„‚)) (hvars : vars = fun a b c ↦ fun i ↦ ite (i = 0) a (ite (i = 1) b c)) (h : βˆ€ x y z u : ℝ, eval (vars (u * x) (u * y) (u * z)) P = u ^ 2 * F (y - x) (z - x)) (hPval : eval (vars 1 0 0) P = 4 ∧ eval (vars 0 1 0) P = 5 ∧ eval (vars 0 0 1) P = 6) (A B C : β„‚) (hPABC : eval (vars A B C) P = 0) (habs : β€–B - Aβ€– = 10) : (β€–C - Aβ€– = putnam_1987_a4_solution) := by
import Mathlib open MvPolynomial Real noncomputable abbrev putnam_1987_a4_solution : β„‚ := sorry -- (5 / 3) * sqrt 30 /-- Let $P$ be a polynomial, with real coefficients, in three variables and $F$ be a function of two variables such that \[ P(ux, uy, uz) = u^2 F(y-x,z-x) \quad \mbox{for all real $x,y,z,u$}, \] and such that $P(1,0,0)=4$, $P(0,1,0)=5$, and $P(0,0,1)=6$. Also let $A,B,C$ be complex numbers with $P(A,B,C)=0$ and $|B-A|=10$. Find $|C-A|$. -/ theorem putnam_1987_a4 (P : MvPolynomial (Fin 3) β„‚) (hPreal : βˆ€ i : Fin 3 β†’β‚€ β„•, (coeff i P).im = 0) (F : ℝ β†’ ℝ β†’ ℝ) (vars : β„‚ β†’ β„‚ β†’ β„‚ β†’ (Fin 3 β†’ β„‚)) (hvars : vars = fun a b c ↦ fun i ↦ ite (i = 0) a (ite (i = 1) b c)) (h : βˆ€ x y z u : ℝ, eval (vars (u * x) (u * y) (u * z)) P = u ^ 2 * F (y - x) (z - x)) (hPval : eval (vars 1 0 0) P = 4 ∧ eval (vars 0 1 0) P = 5 ∧ eval (vars 0 0 1) P = 6) (A B C : β„‚) (hPABC : eval (vars A B C) P = 0) (habs : β€–B - Aβ€– = 10) : (β€–C - Aβ€– = putnam_1987_a4_solution) := sorry
Let $P$ be a polynomial, with real coefficients, in three variables and $F$ be a function of two variables such that \[ P(ux, uy, uz) = u^2 F(y-x,z-x) \quad \mbox{for all real $x,y,z,u$}, \] and such that $P(1,0,0)=4$, $P(0,1,0)=5$, and $P(0,0,1)=6$. Also let $A,B,C$ be complex numbers with $P(A,B,C)=0$ and $|B-A|=10$. Find $|C-A|$.
Prove that $|C - A| = \frac{5}{3}\sqrt{30}$.
[ "algebra" ]
null
null
putnam_2003_b2
3c4da28e-d7e7-5606-a3d6-a3313c2b48e1
train
theorem putnam_2003_b2 (n : β„•) (hn : n > 0) (seq : β„• β†’ β„• β†’ β„š) (hinit : βˆ€ j ∈ Icc 1 n, seq 0 j = 1 / j) (havg : βˆ€α΅‰ (k ∈ Icc 1 (n - 1)) (j ∈ Icc 1 (n - k)), seq k j = (seq (k - 1) j + seq (k - 1) (j + 1)) / 2) : (seq (n - 1) 1 < 2 / n) := sorry
import Mathlib open MvPolynomial Set -- uses (β„• β†’ β„• β†’ β„š) instead of (Fin n β†’ Icc 1 n β†’ β„š) /-- Let $n$ be a positive integer. Starting with the sequence $$1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n},$$ form a new sequence of $n-1$ entries $$\frac{3}{4}, \frac{5}{12}, \dots, \frac{2n-1}{2n(n-1)}$$ by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of $n-2$ entries, and continue until the final sequence produced consists of a single number $x_n$. Show that $x_n < 2/n$. -/ theorem putnam_2003_b2 (n : β„•) (hn : n > 0) (seq : β„• β†’ β„• β†’ β„š) (hinit : βˆ€ j ∈ Icc 1 n, seq 0 j = 1 / j) (havg : βˆ€α΅‰ (k ∈ Icc 1 (n - 1)) (j ∈ Icc 1 (n - k)), seq k j = (seq (k - 1) j + seq (k - 1) (j + 1)) / 2) : (seq (n - 1) 1 < 2 / n) := by
import Mathlib open MvPolynomial Set -- uses (β„• β†’ β„• β†’ β„š) instead of (Fin n β†’ Icc 1 n β†’ β„š) /-- Let $n$ be a positive integer. Starting with the sequence $$1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n},$$ form a new sequence of $n-1$ entries $$\frac{3}{4}, \frac{5}{12}, \dots, \frac{2n-1}{2n(n-1)}$$ by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of $n-2$ entries, and continue until the final sequence produced consists of a single number $x_n$. Show that $x_n < 2/n$. -/ theorem putnam_2003_b2 (n : β„•) (hn : n > 0) (seq : β„• β†’ β„• β†’ β„š) (hinit : βˆ€ j ∈ Icc 1 n, seq 0 j = 1 / j) (havg : βˆ€α΅‰ (k ∈ Icc 1 (n - 1)) (j ∈ Icc 1 (n - k)), seq k j = (seq (k - 1) j + seq (k - 1) (j + 1)) / 2) : (seq (n - 1) 1 < 2 / n) := sorry
Let $n$ be a positive integer. Starting with the sequence $$1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n},$$ form a new sequence of $n-1$ entries $$\frac{3}{4}, \frac{5}{12}, \dots, \frac{2n-1}{2n(n-1)}$$ by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of $n-2$ entries, and continue until the final sequence produced consists of a single number $x_n$. Show that $x_n < 2/n$.
null
[ "algebra" ]
null
null
putnam_1976_b6
52ff0ebf-c11c-558a-b920-c07b0d28b341
train
theorem putnam_1976_b6 (Οƒ : β„• β†’ β„€) (hΟƒ : Οƒ = fun N : β„• => βˆ‘ d in Nat.divisors N, (d : β„€)) (quasiperfect : β„• β†’ Prop) (quasiperfect_def : βˆ€ N, quasiperfect N ↔ Οƒ N = 2*N + 1) : βˆ€ N : β„•, quasiperfect N β†’ βˆƒ m : β„€, Odd m ∧ m^2 = N := sorry
import Mathlib open Polynomial Filter Topology ProbabilityTheory MeasureTheory /-- Let $\sigma(N)$ denote the sum of all positive integer divisors of $N$, including $1$ and $N$. Call a positive integer $N$ \textit{quasiperfect} if $\sigma(N) = 2N + 1$. Prove that every quasiperfect number is the square of an odd integer. -/ theorem putnam_1976_b6 (Οƒ : β„• β†’ β„€) (hΟƒ : Οƒ = fun N : β„• => βˆ‘ d in Nat.divisors N, (d : β„€)) (quasiperfect : β„• β†’ Prop) (quasiperfect_def : βˆ€ N, quasiperfect N ↔ Οƒ N = 2*N + 1) : βˆ€ N : β„•, quasiperfect N β†’ βˆƒ m : β„€, Odd m ∧ m^2 = N := by
import Mathlib open Polynomial Filter Topology ProbabilityTheory MeasureTheory /-- Let $\sigma(N)$ denote the sum of all positive integer divisors of $N$, including $1$ and $N$. Call a positive integer $N$ \textit{quasiperfect} if $\sigma(N) = 2N + 1$. Prove that every quasiperfect number is the square of an odd integer. -/ theorem putnam_1976_b6 (Οƒ : β„• β†’ β„€) (hΟƒ : Οƒ = fun N : β„• => βˆ‘ d in Nat.divisors N, (d : β„€)) (quasiperfect : β„• β†’ Prop) (quasiperfect_def : βˆ€ N, quasiperfect N ↔ Οƒ N = 2*N + 1) : βˆ€ N : β„•, quasiperfect N β†’ βˆƒ m : β„€, Odd m ∧ m^2 = N := sorry
Let $\sigma(N)$ denote the sum of all positive integer divisors of $N$, including $1$ and $N$. Call a positive integer $N$ \textit{quasiperfect} if $\sigma(N) = 2N + 1$. Prove that every quasiperfect number is the square of an odd integer.
null
[ "number_theory" ]
null
null
putnam_1993_b1
209b3777-7622-5169-a58a-e98f6de2a62d
train
abbrev putnam_1993_b1_solution : β„• := sorry -- 3987 /-- Find the smallest positive integer $n$ such that for every integer $m$ with $0<m<1993$, there exists an integer $k$ for which $\frac{m}{1993}<\frac{k}{n}<\frac{m+1}{1994}$. -/ theorem putnam_1993_b1 : IsLeast {n : β„• | 0 < n ∧ βˆ€ m ∈ Set.Ioo (0 : β„€) (1993), βˆƒ k : β„€, (m / 1993 < (k : ℝ) / n) ∧ ((k : ℝ) / n < (m + 1) / 1994) } putnam_1993_b1_solution := sorry
import Mathlib -- 3987 /-- Find the smallest positive integer $n$ such that for every integer $m$ with $0<m<1993$, there exists an integer $k$ for which $\frac{m}{1993}<\frac{k}{n}<\frac{m+1}{1994}$. -/ theorem putnam_1993_b1 : IsLeast {n : β„• | 0 < n ∧ βˆ€ m ∈ Set.Ioo (0 : β„€) (1993), βˆƒ k : β„€, (m / 1993 < (k : ℝ) / n) ∧ ((k : ℝ) / n < (m + 1) / 1994) } putnam_1993_b1_solution := by
import Mathlib abbrev putnam_1993_b1_solution : β„• := sorry -- 3987 /-- Find the smallest positive integer $n$ such that for every integer $m$ with $0<m<1993$, there exists an integer $k$ for which $\frac{m}{1993}<\frac{k}{n}<\frac{m+1}{1994}$. -/ theorem putnam_1993_b1 : IsLeast {n : β„• | 0 < n ∧ βˆ€ m ∈ Set.Ioo (0 : β„€) (1993), βˆƒ k : β„€, (m / 1993 < (k : ℝ) / n) ∧ ((k : ℝ) / n < (m + 1) / 1994) } putnam_1993_b1_solution := sorry
Find the smallest positive integer $n$ such that for every integer $m$ with $0<m<1993$, there exists an integer $k$ for which $\frac{m}{1993}<\frac{k}{n}<\frac{m+1}{1994}$.
Show that the smallest positive integer $n$ satisfying the condition is $n=3987$.
[ "algebra" ]
null
null
putnam_1976_b1
ff1bc99c-639b-5273-9d22-c5ec9d651e21
train
abbrev putnam_1976_b1_solution : β„• Γ— β„• := sorry -- (4, 1) /-- Find $$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\left\lfloor \frac{2n}{k} \right\rfloor - 2\left\lfloor \frac{n}{k} \right\rfloor\right).$$ Your answer should be in the form $\ln(a) - b$, where $a$ and $b$ are positive integers. -/ theorem putnam_1976_b1 : Tendsto (fun n : β„• => ((1 : ℝ)/n)*βˆ‘ k in Finset.Icc (1 : β„€) n, (Int.floor ((2*n)/k) - 2*Int.floor (n/k))) atTop (𝓝 (Real.log putnam_1976_b1_solution.1 - putnam_1976_b1_solution.2)) := sorry
import Mathlib open Polynomial Filter Topology -- (4, 1) /-- Find $$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\left\lfloor \frac{2n}{k} \right\rfloor - 2\left\lfloor \frac{n}{k} \right\rfloor\right).$$ Your answer should be in the form $\ln(a) - b$, where $a$ and $b$ are positive integers. -/ theorem putnam_1976_b1 : Tendsto (fun n : β„• => ((1 : ℝ)/n)*βˆ‘ k in Finset.Icc (1 : β„€) n, (Int.floor ((2*n)/k) - 2*Int.floor (n/k))) atTop (𝓝 (Real.log putnam_1976_b1_solution.1 - putnam_1976_b1_solution.2)) := by
import Mathlib open Polynomial Filter Topology abbrev putnam_1976_b1_solution : β„• Γ— β„• := sorry -- (4, 1) /-- Find $$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\left\lfloor \frac{2n}{k} \right\rfloor - 2\left\lfloor \frac{n}{k} \right\rfloor\right).$$ Your answer should be in the form $\ln(a) - b$, where $a$ and $b$ are positive integers. -/ theorem putnam_1976_b1 : Tendsto (fun n : β„• => ((1 : ℝ)/n)*βˆ‘ k in Finset.Icc (1 : β„€) n, (Int.floor ((2*n)/k) - 2*Int.floor (n/k))) atTop (𝓝 (Real.log putnam_1976_b1_solution.1 - putnam_1976_b1_solution.2)) := sorry
Find $$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\left\lfloor \frac{2n}{k} \right\rfloor - 2\left\lfloor \frac{n}{k} \right\rfloor\right).$$ Your answer should be in the form $\ln(a) - b$, where $a$ and $b$ are positive integers.
The limit equals $\ln(4) - 1$, so $a = 4$ and $b = 1$.
[ "analysis" ]
null
null
putnam_1995_a4
867b7765-c326-5ed7-ba7b-be8ab8327665
train
theorem putnam_1995_a4 (n : β„•) (hn : n > 0) (necklace : Fin n β†’ β„€) (hnecklacesum : βˆ‘ i : Fin n, necklace i = n - 1) : βˆƒ cut, βˆ€ k, βˆ‘ i : {j : Fin n | j.1 ≀ k}, necklace (cut + i) ≀ k := sorry
import Mathlib open Filter Topology Real /-- Suppose we have a necklace of $n$ beads. Each bead is labeled with an integer and the sum of all these labels is $n-1$. Prove that we can cut the necklace to form a string whose consecutive labels $x_{1},x\_{2},\dots,x_{n}$ satisfy \[\sum_{i=1}^{k} x_{i} \leq k-1 \qquad \mbox{for} \quad k=1,2,\dots,n.\] -/ theorem putnam_1995_a4 (n : β„•) (hn : n > 0) (necklace : Fin n β†’ β„€) (hnecklacesum : βˆ‘ i : Fin n, necklace i = n - 1) : βˆƒ cut, βˆ€ k, βˆ‘ i : {j : Fin n | j.1 ≀ k}, necklace (cut + i) ≀ k := by
import Mathlib open Filter Topology Real /-- Suppose we have a necklace of $n$ beads. Each bead is labeled with an integer and the sum of all these labels is $n-1$. Prove that we can cut the necklace to form a string whose consecutive labels $x_{1},x\_{2},\dots,x_{n}$ satisfy \[\sum_{i=1}^{k} x_{i} \leq k-1 \qquad \mbox{for} \quad k=1,2,\dots,n.\] -/ theorem putnam_1995_a4 (n : β„•) (hn : n > 0) (necklace : Fin n β†’ β„€) (hnecklacesum : βˆ‘ i : Fin n, necklace i = n - 1) : βˆƒ cut, βˆ€ k, βˆ‘ i : {j : Fin n | j.1 ≀ k}, necklace (cut + i) ≀ k := sorry
Suppose we have a necklace of $n$ beads. Each bead is labeled with an integer and the sum of all these labels is $n-1$. Prove that we can cut the necklace to form a string whose consecutive labels $x_{1},x\_{2},\dots,x_{n}$ satisfy \[\sum_{i=1}^{k} x_{i} \leq k-1 \qquad \mbox{for} \quad k=1,2,\dots,n.\]
null
[ "combinatorics" ]
null
null
putnam_1962_b1
10e25587-ee1f-5eae-b59c-ae5bd6ce2cec
train
theorem putnam_1962_b1 (p : β„• β†’ ℝ β†’ ℝ) (x y : ℝ) (n : β„•) (h0 : p 0 = fun x : ℝ => 1) (hp : βˆ€ n > 0, p n = fun x : ℝ => ∏ i in Finset.range n, (x - i)) : p n (x+y) = βˆ‘ k in Finset.range (n+1), Nat.choose n k * (p k x) * (p (n - k) y) := sorry
import Mathlib /-- Let $x^{(n)} = x(x-1)\cdots(x-n+1)$ for $n$ a positive integer and let $x^{(0)} = 1.$ Prove that \[ (x+y)^{(n)} = \sum_{k=0}^n {n \choose k} x^{(k)} y^{(n-k)}. \] -/ theorem putnam_1962_b1 (p : β„• β†’ ℝ β†’ ℝ) (x y : ℝ) (n : β„•) (h0 : p 0 = fun x : ℝ => 1) (hp : βˆ€ n > 0, p n = fun x : ℝ => ∏ i in Finset.range n, (x - i)) : p n (x+y) = βˆ‘ k in Finset.range (n+1), Nat.choose n k * (p k x) * (p (n - k) y) := by
import Mathlib /-- Let $x^{(n)} = x(x-1)\cdots(x-n+1)$ for $n$ a positive integer and let $x^{(0)} = 1.$ Prove that \[ (x+y)^{(n)} = \sum_{k=0}^n {n \choose k} x^{(k)} y^{(n-k)}. \] -/ theorem putnam_1962_b1 (p : β„• β†’ ℝ β†’ ℝ) (x y : ℝ) (n : β„•) (h0 : p 0 = fun x : ℝ => 1) (hp : βˆ€ n > 0, p n = fun x : ℝ => ∏ i in Finset.range n, (x - i)) : p n (x+y) = βˆ‘ k in Finset.range (n+1), Nat.choose n k * (p k x) * (p (n - k) y) := sorry
Let $x^{(n)} = x(x-1)\cdots(x-n+1)$ for $n$ a positive integer and let $x^{(0)} = 1.$ Prove that \[ (x+y)^{(n)} = \sum_{k=0}^n {n \choose k} x^{(k)} y^{(n-k)}. \]
null
[ "algebra", "combinatorics" ]
null
null
putnam_2009_b4
79d709a8-73fe-5871-92f2-b864c4f9160a
train
abbrev putnam_2009_b4_solution : β„• := sorry -- 2020050 /-- Say that a polynomial with real coefficients in two variables, $x,y$, is \emph{balanced} if the average value of the polynomial on each circle centered at the origin is $0$. The balanced polynomials of degree at most $2009$ form a vector space $V$ over $\mathbb{R}$. Find the dimension of $V$. -/ theorem putnam_2009_b4 (IsBalanced : MvPolynomial (Fin 2) ℝ β†’ Prop) (IsBalanced_def : βˆ€ P, IsBalanced P ↔ βˆ€ r > 0, (∫ t in (0 : ℝ)..(2 * Ο€), eval ![r * cos t, r * sin t] P) / (2 * Ο€ * r) = 0) (V : Submodule ℝ (MvPolynomial (Fin 2) ℝ)) (V_def : βˆ€ P, P ∈ V ↔ IsBalanced P ∧ P.totalDegree ≀ 2009) : Module.rank ℝ V = putnam_2009_b4_solution := sorry
import Mathlib open intervalIntegral MvPolynomial Real -- 2020050 /-- Say that a polynomial with real coefficients in two variables, $x,y$, is \emph{balanced} if the average value of the polynomial on each circle centered at the origin is $0$. The balanced polynomials of degree at most $2009$ form a vector space $V$ over $\mathbb{R}$. Find the dimension of $V$. -/ theorem putnam_2009_b4 (IsBalanced : MvPolynomial (Fin 2) ℝ β†’ Prop) (IsBalanced_def : βˆ€ P, IsBalanced P ↔ βˆ€ r > 0, (∫ t in (0 : ℝ)..(2 * Ο€), eval ![r * cos t, r * sin t] P) / (2 * Ο€ * r) = 0) (V : Submodule ℝ (MvPolynomial (Fin 2) ℝ)) (V_def : βˆ€ P, P ∈ V ↔ IsBalanced P ∧ P.totalDegree ≀ 2009) : Module.rank ℝ V = putnam_2009_b4_solution := by
import Mathlib open intervalIntegral MvPolynomial Real abbrev putnam_2009_b4_solution : β„• := sorry -- 2020050 /-- Say that a polynomial with real coefficients in two variables, $x,y$, is \emph{balanced} if the average value of the polynomial on each circle centered at the origin is $0$. The balanced polynomials of degree at most $2009$ form a vector space $V$ over $\mathbb{R}$. Find the dimension of $V$. -/ theorem putnam_2009_b4 (IsBalanced : MvPolynomial (Fin 2) ℝ β†’ Prop) (IsBalanced_def : βˆ€ P, IsBalanced P ↔ βˆ€ r > 0, (∫ t in (0 : ℝ)..(2 * Ο€), eval ![r * cos t, r * sin t] P) / (2 * Ο€ * r) = 0) (V : Submodule ℝ (MvPolynomial (Fin 2) ℝ)) (V_def : βˆ€ P, P ∈ V ↔ IsBalanced P ∧ P.totalDegree ≀ 2009) : Module.rank ℝ V = putnam_2009_b4_solution := sorry
Say that a polynomial with real coefficients in two variables, $x,y$, is \emph{balanced} if the average value of the polynomial on each circle centered at the origin is $0$. The balanced polynomials of degree at most $2009$ form a vector space $V$ over $\mathbb{R}$. Find the dimension of $V$.
Prove that the dimension of $V$ is $2020050$.
[ "algebra", "linear_algebra" ]
null
null
putnam_2009_a1
176cf516-6159-5111-a70e-a0d8141c1fab
train
abbrev putnam_2009_a1_solution : Prop := sorry -- True /-- Let $f$ be a real-valued function on the plane such that for every square $ABCD$ in the plane, $f(A)+f(B)+f(C)+f(D)=0$. Does it follow that $f(P)=0$ for all points $P$ in the plane? -/ theorem putnam_2009_a1 : ((βˆ€ f : (ℝ Γ— ℝ) β†’ ℝ, (βˆ€ O v : ℝ Γ— ℝ, v β‰  (0, 0) β†’ f (O.1, O.2) + f (O.1 + v.1, O.2 + v.2) + f (O.1 + v.1 - v.2, O.2 + v.2 + v.1) + f (O.1 - v.2, O.2 + v.1) = 0) β†’ βˆ€ P : ℝ Γ— ℝ, f P = 0) ↔ putnam_2009_a1_solution) := sorry
import Mathlib open Topology MvPolynomial Filter -- True /-- Let $f$ be a real-valued function on the plane such that for every square $ABCD$ in the plane, $f(A)+f(B)+f(C)+f(D)=0$. Does it follow that $f(P)=0$ for all points $P$ in the plane? -/ theorem putnam_2009_a1 : ((βˆ€ f : (ℝ Γ— ℝ) β†’ ℝ, (βˆ€ O v : ℝ Γ— ℝ, v β‰  (0, 0) β†’ f (O.1, O.2) + f (O.1 + v.1, O.2 + v.2) + f (O.1 + v.1 - v.2, O.2 + v.2 + v.1) + f (O.1 - v.2, O.2 + v.1) = 0) β†’ βˆ€ P : ℝ Γ— ℝ, f P = 0) ↔ putnam_2009_a1_solution) := by
import Mathlib open Topology MvPolynomial Filter abbrev putnam_2009_a1_solution : Prop := sorry -- True /-- Let $f$ be a real-valued function on the plane such that for every square $ABCD$ in the plane, $f(A)+f(B)+f(C)+f(D)=0$. Does it follow that $f(P)=0$ for all points $P$ in the plane? -/ theorem putnam_2009_a1 : ((βˆ€ f : (ℝ Γ— ℝ) β†’ ℝ, (βˆ€ O v : ℝ Γ— ℝ, v β‰  (0, 0) β†’ f (O.1, O.2) + f (O.1 + v.1, O.2 + v.2) + f (O.1 + v.1 - v.2, O.2 + v.2 + v.1) + f (O.1 - v.2, O.2 + v.1) = 0) β†’ βˆ€ P : ℝ Γ— ℝ, f P = 0) ↔ putnam_2009_a1_solution) := sorry
Let $f$ be a real-valued function on the plane such that for every square $ABCD$ in the plane, $f(A)+f(B)+f(C)+f(D)=0$. Does it follow that $f(P)=0$ for all points $P$ in the plane?
Prove that $f$ is identically $0$.
[ "geometry", "algebra" ]
null
null
putnam_2004_b5
c06547e1-185a-5326-97df-7bf303253ce7
train
abbrev putnam_2004_b5_solution : ℝ := sorry -- 2 / Real.exp 1 /-- Evaluate $\lim_{x \to 1^-} \prod_{n=0}^\infty \left(\frac{1+x^{n+1}}{1+x^n}\right)^{x^n}$. -/ theorem putnam_2004_b5 (xprod : ℝ β†’ ℝ) (hxprod : βˆ€ x ∈ Set.Ioo 0 1, Tendsto (fun N ↦ ∏ n in Finset.range N, ((1 + x ^ (n + 1)) / (1 + x ^ n)) ^ (x ^ n)) atTop (𝓝 (xprod x))) : Tendsto xprod (𝓝[<] 1) (𝓝 putnam_2004_b5_solution) := sorry
import Mathlib open Nat Topology Filter -- 2 / Real.exp 1 /-- Evaluate $\lim_{x \to 1^-} \prod_{n=0}^\infty \left(\frac{1+x^{n+1}}{1+x^n}\right)^{x^n}$. -/ theorem putnam_2004_b5 (xprod : ℝ β†’ ℝ) (hxprod : βˆ€ x ∈ Set.Ioo 0 1, Tendsto (fun N ↦ ∏ n in Finset.range N, ((1 + x ^ (n + 1)) / (1 + x ^ n)) ^ (x ^ n)) atTop (𝓝 (xprod x))) : Tendsto xprod (𝓝[<] 1) (𝓝 putnam_2004_b5_solution) := by
import Mathlib open Nat Topology Filter abbrev putnam_2004_b5_solution : ℝ := sorry -- 2 / Real.exp 1 /-- Evaluate $\lim_{x \to 1^-} \prod_{n=0}^\infty \left(\frac{1+x^{n+1}}{1+x^n}\right)^{x^n}$. -/ theorem putnam_2004_b5 (xprod : ℝ β†’ ℝ) (hxprod : βˆ€ x ∈ Set.Ioo 0 1, Tendsto (fun N ↦ ∏ n in Finset.range N, ((1 + x ^ (n + 1)) / (1 + x ^ n)) ^ (x ^ n)) atTop (𝓝 (xprod x))) : Tendsto xprod (𝓝[<] 1) (𝓝 putnam_2004_b5_solution) := sorry
Evaluate $\lim_{x \to 1^-} \prod_{n=0}^\infty \left(\frac{1+x^{n+1}}{1+x^n}\right)^{x^n}$.
Show that the desired limit is $2/e$.
[ "analysis" ]
null
null
putnam_1990_a4
30cd724f-8850-5a3d-b682-b9496965c134
train
abbrev putnam_1990_a4_solution : β„• := sorry -- 3 /-- Consider a paper punch that can be centered at any point of the plane and that, when operated, removes from the plane precisely those points whose distance from the center is irrational. How many punches are needed to remove every point? -/ theorem putnam_1990_a4 : sInf {n : β„• | βˆƒ S : Set (EuclideanSpace ℝ (Fin 2)), S.encard = n ∧ βˆ€ Q : EuclideanSpace ℝ (Fin 2), βˆƒ P ∈ S, Irrational (dist P Q)} = putnam_1990_a4_solution := sorry
import Mathlib open Filter Topology Nat -- 3 /-- Consider a paper punch that can be centered at any point of the plane and that, when operated, removes from the plane precisely those points whose distance from the center is irrational. How many punches are needed to remove every point? -/ theorem putnam_1990_a4 : sInf {n : β„• | βˆƒ S : Set (EuclideanSpace ℝ (Fin 2)), S.encard = n ∧ βˆ€ Q : EuclideanSpace ℝ (Fin 2), βˆƒ P ∈ S, Irrational (dist P Q)} = putnam_1990_a4_solution := by
import Mathlib open Filter Topology Nat abbrev putnam_1990_a4_solution : β„• := sorry -- 3 /-- Consider a paper punch that can be centered at any point of the plane and that, when operated, removes from the plane precisely those points whose distance from the center is irrational. How many punches are needed to remove every point? -/ theorem putnam_1990_a4 : sInf {n : β„• | βˆƒ S : Set (EuclideanSpace ℝ (Fin 2)), S.encard = n ∧ βˆ€ Q : EuclideanSpace ℝ (Fin 2), βˆƒ P ∈ S, Irrational (dist P Q)} = putnam_1990_a4_solution := sorry
Consider a paper punch that can be centered at any point of the plane and that, when operated, removes from the plane precisely those points whose distance from the center is irrational. How many punches are needed to remove every point?
Show that three punches are needed.
[ "set_theory", "number_theory" ]
null
null
putnam_2009_a3
264121ff-30a2-56b2-b0dd-d007caa02263
train
abbrev putnam_2009_a3_solution : ℝ := sorry -- 0 /-- Let $d_n$ be the determinant of the $n \times n$ matrix whose entries, from left to right and then from top to bottom, are $\cos 1, \cos 2, \dots, \cos n^2$. (For example,\[ d_3 = \left|\begin{matrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 4 & \cos 5 & \cos 6 \\ \cos 7 & \cos 8 & \cos 9 \end{matrix} \right|. \]The argument of $\cos$ is always in radians, not degrees.) Evaluate $\lim_{n\to\infty} d_n$. -/ theorem putnam_2009_a3 (cos_matrix : (n : β„•) β†’ Matrix (Fin n) (Fin n) ℝ) (hM : βˆ€ n : β„•, βˆ€ i j : Fin n, (cos_matrix n) i j = Real.cos (1 + n * i + j)) : Tendsto (fun n => (cos_matrix n).det) atTop (𝓝 putnam_2009_a3_solution) := sorry
import Mathlib open Topology MvPolynomial Filter Set -- 0 /-- Let $d_n$ be the determinant of the $n \times n$ matrix whose entries, from left to right and then from top to bottom, are $\cos 1, \cos 2, \dots, \cos n^2$. (For example,\[ d_3 = \left|\begin{matrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 4 & \cos 5 & \cos 6 \\ \cos 7 & \cos 8 & \cos 9 \end{matrix} \right|. \]The argument of $\cos$ is always in radians, not degrees.) Evaluate $\lim_{n\to\infty} d_n$. -/ theorem putnam_2009_a3 (cos_matrix : (n : β„•) β†’ Matrix (Fin n) (Fin n) ℝ) (hM : βˆ€ n : β„•, βˆ€ i j : Fin n, (cos_matrix n) i j = Real.cos (1 + n * i + j)) : Tendsto (fun n => (cos_matrix n).det) atTop (𝓝 putnam_2009_a3_solution) := by
import Mathlib open Topology MvPolynomial Filter Set abbrev putnam_2009_a3_solution : ℝ := sorry -- 0 /-- Let $d_n$ be the determinant of the $n \times n$ matrix whose entries, from left to right and then from top to bottom, are $\cos 1, \cos 2, \dots, \cos n^2$. (For example,\[ d_3 = \left|\begin{matrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 4 & \cos 5 & \cos 6 \\ \cos 7 & \cos 8 & \cos 9 \end{matrix} \right|. \]The argument of $\cos$ is always in radians, not degrees.) Evaluate $\lim_{n\to\infty} d_n$. -/ theorem putnam_2009_a3 (cos_matrix : (n : β„•) β†’ Matrix (Fin n) (Fin n) ℝ) (hM : βˆ€ n : β„•, βˆ€ i j : Fin n, (cos_matrix n) i j = Real.cos (1 + n * i + j)) : Tendsto (fun n => (cos_matrix n).det) atTop (𝓝 putnam_2009_a3_solution) := sorry
Let $d_n$ be the determinant of the $n \times n$ matrix whose entries, from left to right and then from top to bottom, are $\cos 1, \cos 2, \dots, \cos n^2$. (For example,\[ d_3 = \left|\begin{matrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 4 & \cos 5 & \cos 6 \\ \cos 7 & \cos 8 & \cos 9 \end{matrix} \right|. \]The argument of $\cos$ is always in radians, not degrees.) Evaluate $\lim_{n\to\infty} d_n$.
Show that the limit is 0.
[ "linear_algebra", "analysis" ]
null
null
putnam_2023_a2
0e22f201-2a7c-52e5-968c-fd8c3bb8a5f3
train
abbrev putnam_2023_a2_solution : β„• β†’ Set ℝ := sorry -- fun n => {(1 : ℝ)/(factorial n), -(1 : ℝ)/(factorial n)} /-- Let $n$ be an even positive integer. Let $p$ be a monic, real polynomial of degree $2n$; that is to say, $p(x) = x^{2n} + a_{2n-1} x^{2n-1} + \cdots + a_1 x + a_0$ for some real coefficients $a_0, \dots, a_{2n-1}$. Suppose that $p(1/k) = k^2$ for all integers $k$ such that $1 \leq |k| \leq n$. Find all other real numbers $x$ for which $p(1/x) = x^2$. -/ theorem putnam_2023_a2 (n : β„•) (hn : n > 0 ∧ Even n) (p : Polynomial ℝ) (hp : Polynomial.Monic p ∧ p.degree = 2*n) (S : Set ℝ) (hS : S = {x : ℝ | βˆƒ k : β„€, x = k ∧ 1 ≀ |k| ∧ |k| ≀ n}) (hpinv : βˆ€ k ∈ S, p.eval (1/k) = k^2) : {x : ℝ | p.eval (1/x) = x^2} \ S = putnam_2023_a2_solution n := sorry
import Mathlib open Nat -- fun n => {(1 : ℝ)/(factorial n), -(1 : ℝ)/(factorial n)} /-- Let $n$ be an even positive integer. Let $p$ be a monic, real polynomial of degree $2n$; that is to say, $p(x) = x^{2n} + a_{2n-1} x^{2n-1} + \cdots + a_1 x + a_0$ for some real coefficients $a_0, \dots, a_{2n-1}$. Suppose that $p(1/k) = k^2$ for all integers $k$ such that $1 \leq |k| \leq n$. Find all other real numbers $x$ for which $p(1/x) = x^2$. -/ theorem putnam_2023_a2 (n : β„•) (hn : n > 0 ∧ Even n) (p : Polynomial ℝ) (hp : Polynomial.Monic p ∧ p.degree = 2*n) (S : Set ℝ) (hS : S = {x : ℝ | βˆƒ k : β„€, x = k ∧ 1 ≀ |k| ∧ |k| ≀ n}) (hpinv : βˆ€ k ∈ S, p.eval (1/k) = k^2) : {x : ℝ | p.eval (1/x) = x^2} \ S = putnam_2023_a2_solution n := by
import Mathlib open Nat abbrev putnam_2023_a2_solution : β„• β†’ Set ℝ := sorry -- fun n => {(1 : ℝ)/(factorial n), -(1 : ℝ)/(factorial n)} /-- Let $n$ be an even positive integer. Let $p$ be a monic, real polynomial of degree $2n$; that is to say, $p(x) = x^{2n} + a_{2n-1} x^{2n-1} + \cdots + a_1 x + a_0$ for some real coefficients $a_0, \dots, a_{2n-1}$. Suppose that $p(1/k) = k^2$ for all integers $k$ such that $1 \leq |k| \leq n$. Find all other real numbers $x$ for which $p(1/x) = x^2$. -/ theorem putnam_2023_a2 (n : β„•) (hn : n > 0 ∧ Even n) (p : Polynomial ℝ) (hp : Polynomial.Monic p ∧ p.degree = 2*n) (S : Set ℝ) (hS : S = {x : ℝ | βˆƒ k : β„€, x = k ∧ 1 ≀ |k| ∧ |k| ≀ n}) (hpinv : βˆ€ k ∈ S, p.eval (1/k) = k^2) : {x : ℝ | p.eval (1/x) = x^2} \ S = putnam_2023_a2_solution n := sorry
Let $n$ be an even positive integer. Let $p$ be a monic, real polynomial of degree $2n$; that is to say, $p(x) = x^{2n} + a_{2n-1} x^{2n-1} + \cdots + a_1 x + a_0$ for some real coefficients $a_0, \dots, a_{2n-1}$. Suppose that $p(1/k) = k^2$ for all integers $k$ such that $1 \leq |k| \leq n$. Find all other real numbers $x$ for which $p(1/x) = x^2$.
Show that the other real numbers satisfying $p(1/x) = x^2$ are $\pm \frac{1}{n!}.$
[ "algebra" ]
null
null
putnam_1967_a3
48c563a8-d844-5032-b38c-e312319ca2ba
train
abbrev putnam_1967_a3_solution : β„• := sorry -- 5 /-- Consider polynomial forms $ax^2-bx+c$ with integer coefficients which have two distinct zeros in the open interval $0<x<1$. Exhibit with a proof the least positive integer value of $a$ for which such a polynomial exists. -/ theorem putnam_1967_a3 : IsLeast {a | βˆƒ P : Polynomial β„€, P.degree = 2 ∧ (βˆƒ z1 z2 : Set.Ioo (0 : ℝ) 1, z1 β‰  z2 ∧ aeval (z1 : ℝ) P = 0 ∧ aeval (z2 : ℝ) P = 0) ∧ P.coeff 2 = a ∧ a > 0} putnam_1967_a3_solution := sorry
import Mathlib open Polynomial -- 5 /-- Consider polynomial forms $ax^2-bx+c$ with integer coefficients which have two distinct zeros in the open interval $0<x<1$. Exhibit with a proof the least positive integer value of $a$ for which such a polynomial exists. -/ theorem putnam_1967_a3 : IsLeast {a | βˆƒ P : Polynomial β„€, P.degree = 2 ∧ (βˆƒ z1 z2 : Set.Ioo (0 : ℝ) 1, z1 β‰  z2 ∧ aeval (z1 : ℝ) P = 0 ∧ aeval (z2 : ℝ) P = 0) ∧ P.coeff 2 = a ∧ a > 0} putnam_1967_a3_solution := by
import Mathlib open Polynomial abbrev putnam_1967_a3_solution : β„• := sorry -- 5 /-- Consider polynomial forms $ax^2-bx+c$ with integer coefficients which have two distinct zeros in the open interval $0<x<1$. Exhibit with a proof the least positive integer value of $a$ for which such a polynomial exists. -/ theorem putnam_1967_a3 : IsLeast {a | βˆƒ P : Polynomial β„€, P.degree = 2 ∧ (βˆƒ z1 z2 : Set.Ioo (0 : ℝ) 1, z1 β‰  z2 ∧ aeval (z1 : ℝ) P = 0 ∧ aeval (z2 : ℝ) P = 0) ∧ P.coeff 2 = a ∧ a > 0} putnam_1967_a3_solution := sorry
Consider polynomial forms $ax^2-bx+c$ with integer coefficients which have two distinct zeros in the open interval $0<x<1$. Exhibit with a proof the least positive integer value of $a$ for which such a polynomial exists.
Show that the minimum possible value for $a$ is $5$.
[ "algebra" ]
null
null
putnam_2017_a2
ce793b5b-1fa0-5d36-96d8-b558e05a6f02
train
theorem putnam_2017_a2 (Q : β„• β†’ RatFunc β„š) (hQbase : Q 0 = 1 ∧ Q 1 = (X : β„š[X])) (hQn : βˆ€ n, Q (n + 2) = (Q (n + 1) ^ 2 - 1) / Q n) (n : β„•) (hn : 0 < n) : βˆƒ P : β„€[X], Q n = P.map (Int.castRingHom β„š) := sorry
import Mathlib open Polynomial /-- Let $Q_0(x)=1$, $Q_1(x)=x$, and $Q_n(x)=\frac{(Q_{n-1}(x))^2-1}{Q_{n-2}(x)}$ for all $n \geq 2$. Show that, whenever $n$ is a positive integer, $Q_n(x)$ is equal to a polynomial with integer coefficients. -/ theorem putnam_2017_a2 (Q : β„• β†’ RatFunc β„š) (hQbase : Q 0 = 1 ∧ Q 1 = (X : β„š[X])) (hQn : βˆ€ n, Q (n + 2) = (Q (n + 1) ^ 2 - 1) / Q n) (n : β„•) (hn : 0 < n) : βˆƒ P : β„€[X], Q n = P.map (Int.castRingHom β„š) := by
import Mathlib open Polynomial /-- Let $Q_0(x)=1$, $Q_1(x)=x$, and $Q_n(x)=\frac{(Q_{n-1}(x))^2-1}{Q_{n-2}(x)}$ for all $n \geq 2$. Show that, whenever $n$ is a positive integer, $Q_n(x)$ is equal to a polynomial with integer coefficients. -/ theorem putnam_2017_a2 (Q : β„• β†’ RatFunc β„š) (hQbase : Q 0 = 1 ∧ Q 1 = (X : β„š[X])) (hQn : βˆ€ n, Q (n + 2) = (Q (n + 1) ^ 2 - 1) / Q n) (n : β„•) (hn : 0 < n) : βˆƒ P : β„€[X], Q n = P.map (Int.castRingHom β„š) := sorry
Let $Q_0(x)=1$, $Q_1(x)=x$, and $Q_n(x)=\frac{(Q_{n-1}(x))^2-1}{Q_{n-2}(x)}$ for all $n \geq 2$. Show that, whenever $n$ is a positive integer, $Q_n(x)$ is equal to a polynomial with integer coefficients.
null
[ "algebra" ]
null
null
putnam_1985_a4
a1ff1e68-5fae-547a-9d50-c717a50f78c6
train
abbrev putnam_1985_a4_solution : Set (Fin 100) := sorry -- {87} /-- Define a sequence $\{a_i\}$ by $a_1=3$ and $a_{i+1}=3^{a_i}$ for $i \geq 1$. Which integers between $00$ and $99$ inclusive occur as the last two digits in the decimal expansion of infinitely many $a_i$? -/ theorem putnam_1985_a4 (a : β„• β†’ β„•) (ha1 : a 1 = 3) (ha : βˆ€ i β‰₯ 1, a (i + 1) = 3 ^ a i) : {k : Fin 100 | βˆ€ N : β„•, βˆƒ i β‰₯ N, a i % 100 = k} = putnam_1985_a4_solution := sorry
import Mathlib open Set Filter Topology Real -- {87} /-- Define a sequence $\{a_i\}$ by $a_1=3$ and $a_{i+1}=3^{a_i}$ for $i \geq 1$. Which integers between $00$ and $99$ inclusive occur as the last two digits in the decimal expansion of infinitely many $a_i$? -/ theorem putnam_1985_a4 (a : β„• β†’ β„•) (ha1 : a 1 = 3) (ha : βˆ€ i β‰₯ 1, a (i + 1) = 3 ^ a i) : {k : Fin 100 | βˆ€ N : β„•, βˆƒ i β‰₯ N, a i % 100 = k} = putnam_1985_a4_solution := by
import Mathlib open Set Filter Topology Real abbrev putnam_1985_a4_solution : Set (Fin 100) := sorry -- {87} /-- Define a sequence $\{a_i\}$ by $a_1=3$ and $a_{i+1}=3^{a_i}$ for $i \geq 1$. Which integers between $00$ and $99$ inclusive occur as the last two digits in the decimal expansion of infinitely many $a_i$? -/ theorem putnam_1985_a4 (a : β„• β†’ β„•) (ha1 : a 1 = 3) (ha : βˆ€ i β‰₯ 1, a (i + 1) = 3 ^ a i) : {k : Fin 100 | βˆ€ N : β„•, βˆƒ i β‰₯ N, a i % 100 = k} = putnam_1985_a4_solution := sorry
Define a sequence $\{a_i\}$ by $a_1=3$ and $a_{i+1}=3^{a_i}$ for $i \geq 1$. Which integers between $00$ and $99$ inclusive occur as the last two digits in the decimal expansion of infinitely many $a_i$?
Prove that the only number that occurs infinitely often is $87$.
[ "number_theory" ]
null
null
putnam_1987_b1
fdfad460-2c51-56b4-b538-1469dfec4945
train
abbrev putnam_1987_b1_solution : ℝ := sorry -- 1 /-- Evaluate \[ \int_2^4 \frac{\sqrt{\ln(9-x)}\,dx}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}. \] -/ theorem putnam_1987_b1 : (∫ x in (2)..4, sqrt (log (9 - x)) / (sqrt (log (9 - x)) + sqrt (log (x + 3))) = putnam_1987_b1_solution) := sorry
import Mathlib open MvPolynomial Real Nat -- 1 /-- Evaluate \[ \int_2^4 \frac{\sqrt{\ln(9-x)}\,dx}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}. \] -/ theorem putnam_1987_b1 : (∫ x in (2)..4, sqrt (log (9 - x)) / (sqrt (log (9 - x)) + sqrt (log (x + 3))) = putnam_1987_b1_solution) := by
import Mathlib open MvPolynomial Real Nat abbrev putnam_1987_b1_solution : ℝ := sorry -- 1 /-- Evaluate \[ \int_2^4 \frac{\sqrt{\ln(9-x)}\,dx}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}. \] -/ theorem putnam_1987_b1 : (∫ x in (2)..4, sqrt (log (9 - x)) / (sqrt (log (9 - x)) + sqrt (log (x + 3))) = putnam_1987_b1_solution) := sorry
Evaluate \[ \int_2^4 \frac{\sqrt{\ln(9-x)}\,dx}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}. \]
Prove that the integral evaluates to $1$.
[ "analysis" ]
null
null
putnam_1993_a1
93921199-8b22-528c-af3e-dd302d85b1b9
train
abbrev putnam_1993_a1_solution : ℝ := sorry -- 4 / 9 /-- The horizontal line $y=c$ intersects the curve $y=2x-3x^3$ in the first quadrant as in the figure. Find $c$ so that the areas of the two shaded regions are equal. [Figure not included. The first region is bounded by the $y$-axis, the line $y=c$ and the curve; the other lies under the curve and above the line $y=c$ between their two points of intersection.] -/ theorem putnam_1993_a1 : 0 < putnam_1993_a1_solution ∧ putnam_1993_a1_solution < (4 * Real.sqrt 2) / 9 ∧ (∫ x in Set.Ioo 0 ((Real.sqrt 2) / 3), max (putnam_1993_a1_solution - (2 * x - 3 * x ^ 3)) 0) = (∫ x in Set.Ioo 0 ((Real.sqrt 6) / 3), max ((2 * x - 3 * x ^ 3) - putnam_1993_a1_solution) 0) := sorry
import Mathlib -- 4 / 9 /-- The horizontal line $y=c$ intersects the curve $y=2x-3x^3$ in the first quadrant as in the figure. Find $c$ so that the areas of the two shaded regions are equal. [Figure not included. The first region is bounded by the $y$-axis, the line $y=c$ and the curve; the other lies under the curve and above the line $y=c$ between their two points of intersection.] -/ theorem putnam_1993_a1 : 0 < putnam_1993_a1_solution ∧ putnam_1993_a1_solution < (4 * Real.sqrt 2) / 9 ∧ (∫ x in Set.Ioo 0 ((Real.sqrt 2) / 3), max (putnam_1993_a1_solution - (2 * x - 3 * x ^ 3)) 0) = (∫ x in Set.Ioo 0 ((Real.sqrt 6) / 3), max ((2 * x - 3 * x ^ 3) - putnam_1993_a1_solution) 0) := by
import Mathlib noncomputable abbrev putnam_1993_a1_solution : ℝ := sorry -- 4 / 9 /-- The horizontal line $y=c$ intersects the curve $y=2x-3x^3$ in the first quadrant as in the figure. Find $c$ so that the areas of the two shaded regions are equal. [Figure not included. The first region is bounded by the $y$-axis, the line $y=c$ and the curve; the other lies under the curve and above the line $y=c$ between their two points of intersection.] -/ theorem putnam_1993_a1 : 0 < putnam_1993_a1_solution ∧ putnam_1993_a1_solution < (4 * Real.sqrt 2) / 9 ∧ (∫ x in Set.Ioo 0 ((Real.sqrt 2) / 3), max (putnam_1993_a1_solution - (2 * x - 3 * x ^ 3)) 0) = (∫ x in Set.Ioo 0 ((Real.sqrt 6) / 3), max ((2 * x - 3 * x ^ 3) - putnam_1993_a1_solution) 0) := sorry
The horizontal line $y=c$ intersects the curve $y=2x-3x^3$ in the first quadrant as in the figure. Find $c$ so that the areas of the two shaded regions are equal. [Figure not included. The first region is bounded by the $y$-axis, the line $y=c$ and the curve; the other lies under the curve and above the line $y=c$ between their two points of intersection.]
Show that the area of the two regions are equal when $c=4/9$.
[ "analysis", "algebra" ]
null
null
putnam_2022_a3
5888ca0b-823e-5132-8cb8-2c8f171ec9c5
train
theorem putnam_2022_a3 (p f : β„•) (hp : Nat.Prime p ∧ p > 5) (hf : f = {a : β„• β†’ (ZMod p) | βˆ€ n : β„•, a n β‰  0 ∧ a n * a (n + 2) = 1 + a (n + 1)}.ncard) : f ≑ 0 [MOD 5] ∨ f ≑ 2 [MOD 5] := sorry
import Mathlib open Polynomial /-- Let $p$ be a prime number greater than 5. Let $f(p)$ denote the number of infinite sequences $a_1, a_2, a_3, \dots$ such that $a_n \in \{1, 2, \dots, p-1\}$ and $a_n a_{n+2} \equiv 1 + a_{n+1} \pmod{p}$ for all $n \geq 1$. Prove that $f(p)$ is congruent to 0 or 2 $\pmod{5}$. -/ theorem putnam_2022_a3 (p f : β„•) (hp : Nat.Prime p ∧ p > 5) (hf : f = {a : β„• β†’ (ZMod p) | βˆ€ n : β„•, a n β‰  0 ∧ a n * a (n + 2) = 1 + a (n + 1)}.ncard) : f ≑ 0 [MOD 5] ∨ f ≑ 2 [MOD 5] := by
import Mathlib open Polynomial /-- Let $p$ be a prime number greater than 5. Let $f(p)$ denote the number of infinite sequences $a_1, a_2, a_3, \dots$ such that $a_n \in \{1, 2, \dots, p-1\}$ and $a_n a_{n+2} \equiv 1 + a_{n+1} \pmod{p}$ for all $n \geq 1$. Prove that $f(p)$ is congruent to 0 or 2 $\pmod{5}$. -/ theorem putnam_2022_a3 (p f : β„•) (hp : Nat.Prime p ∧ p > 5) (hf : f = {a : β„• β†’ (ZMod p) | βˆ€ n : β„•, a n β‰  0 ∧ a n * a (n + 2) = 1 + a (n + 1)}.ncard) : f ≑ 0 [MOD 5] ∨ f ≑ 2 [MOD 5] := sorry
Let $p$ be a prime number greater than 5. Let $f(p)$ denote the number of infinite sequences $a_1, a_2, a_3, \dots$ such that $a_n \in \{1, 2, \dots, p-1\}$ and $a_n a_{n+2} \equiv 1 + a_{n+1} \pmod{p}$ for all $n \geq 1$. Prove that $f(p)$ is congruent to 0 or 2 $\pmod{5}$.
null
[ "number_theory" ]
null
null
putnam_2018_a5
6cb66dc8-8296-58de-86f9-22e9d854dc74
train
theorem putnam_2018_a5 (f : ℝ β†’ ℝ) (h0 : f 0 = 0) (h1 : f 1 = 1) (hpos : βˆ€ x : ℝ, f x β‰₯ 0) (hf : ContDiff ℝ ⊀ f) : βˆƒ n > 0, βˆƒ x : ℝ, iteratedDeriv n f x < 0 := sorry
import Mathlib /-- Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function satisfying $f(0) = 0$, $f(1)= 1$, and $f(x) \geq 0$ for all $x \in \mathbb{R}$. Show that there exist a positive integer $n$ and a real number $x$ such that $f^{(n)}(x) < 0$. -/ theorem putnam_2018_a5 (f : ℝ β†’ ℝ) (h0 : f 0 = 0) (h1 : f 1 = 1) (hpos : βˆ€ x : ℝ, f x β‰₯ 0) (hf : ContDiff ℝ ⊀ f) : βˆƒ n > 0, βˆƒ x : ℝ, iteratedDeriv n f x < 0 := by
import Mathlib /-- Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function satisfying $f(0) = 0$, $f(1)= 1$, and $f(x) \geq 0$ for all $x \in \mathbb{R}$. Show that there exist a positive integer $n$ and a real number $x$ such that $f^{(n)}(x) < 0$. -/ theorem putnam_2018_a5 (f : ℝ β†’ ℝ) (h0 : f 0 = 0) (h1 : f 1 = 1) (hpos : βˆ€ x : ℝ, f x β‰₯ 0) (hf : ContDiff ℝ ⊀ f) : βˆƒ n > 0, βˆƒ x : ℝ, iteratedDeriv n f x < 0 := sorry
Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function satisfying $f(0) = 0$, $f(1)= 1$, and $f(x) \geq 0$ for all $x \in \mathbb{R}$. Show that there exist a positive integer $n$ and a real number $x$ such that $f^{(n)}(x) < 0$.
null
[ "analysis" ]
null
null
putnam_1996_b4
37936eda-c1e3-59a2-b626-7b29da1a9117
train
abbrev putnam_1996_b4_solution : Prop := sorry -- False /-- For any square matrix $A$, we can define $\sin A$ by the usual power series: $\sin A=\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}A^{2n+1}$. Prove or disprove: there exists a $2 \times 2$ matrix $A$ with real entries such that $\sin A=\begin{pmatrix} 1 & 1996 \\ 0 & 1 \end{pmatrix}$. -/ theorem putnam_1996_b4 (matsin : Matrix (Fin 2) (Fin 2) ℝ β†’ Matrix (Fin 2) (Fin 2) ℝ) (mat1996 : Matrix (Fin 2) (Fin 2) ℝ) (hmatsin : βˆ€ A, matsin A = βˆ‘' n : β„•, ((-(1 : ℝ)) ^ n / (2 * n + 1)!) β€’ A ^ (2 * n + 1)) (hmat1996 : mat1996 0 0 = 1 ∧ mat1996 0 1 = 1996 ∧ mat1996 1 0 = 0 ∧ mat1996 1 1 = 1) : (βˆƒ A, matsin A = mat1996) ↔ putnam_1996_b4_solution := sorry
import Mathlib open Function Nat -- False /-- For any square matrix $A$, we can define $\sin A$ by the usual power series: $\sin A=\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}A^{2n+1}$. Prove or disprove: there exists a $2 \times 2$ matrix $A$ with real entries such that $\sin A=\begin{pmatrix} 1 & 1996 \\ 0 & 1 \end{pmatrix}$. -/ theorem putnam_1996_b4 (matsin : Matrix (Fin 2) (Fin 2) ℝ β†’ Matrix (Fin 2) (Fin 2) ℝ) (mat1996 : Matrix (Fin 2) (Fin 2) ℝ) (hmatsin : βˆ€ A, matsin A = βˆ‘' n : β„•, ((-(1 : ℝ)) ^ n / (2 * n + 1)!) β€’ A ^ (2 * n + 1)) (hmat1996 : mat1996 0 0 = 1 ∧ mat1996 0 1 = 1996 ∧ mat1996 1 0 = 0 ∧ mat1996 1 1 = 1) : (βˆƒ A, matsin A = mat1996) ↔ putnam_1996_b4_solution := by
import Mathlib open Function Nat abbrev putnam_1996_b4_solution : Prop := sorry -- False /-- For any square matrix $A$, we can define $\sin A$ by the usual power series: $\sin A=\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}A^{2n+1}$. Prove or disprove: there exists a $2 \times 2$ matrix $A$ with real entries such that $\sin A=\begin{pmatrix} 1 & 1996 \\ 0 & 1 \end{pmatrix}$. -/ theorem putnam_1996_b4 (matsin : Matrix (Fin 2) (Fin 2) ℝ β†’ Matrix (Fin 2) (Fin 2) ℝ) (mat1996 : Matrix (Fin 2) (Fin 2) ℝ) (hmatsin : βˆ€ A, matsin A = βˆ‘' n : β„•, ((-(1 : ℝ)) ^ n / (2 * n + 1)!) β€’ A ^ (2 * n + 1)) (hmat1996 : mat1996 0 0 = 1 ∧ mat1996 0 1 = 1996 ∧ mat1996 1 0 = 0 ∧ mat1996 1 1 = 1) : (βˆƒ A, matsin A = mat1996) ↔ putnam_1996_b4_solution := sorry
For any square matrix $A$, we can define $\sin A$ by the usual power series: $\sin A=\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}A^{2n+1}$. Prove or disprove: there exists a $2 \times 2$ matrix $A$ with real entries such that $\sin A=\begin{pmatrix} 1 & 1996 \\ 0 & 1 \end{pmatrix}$.
Show that there does not exist such a matrix $A$.
[ "linear_algebra" ]
null
null
putnam_2009_b6
e8a0abf9-a237-519c-aa8b-e4148ed98f2b
train
theorem putnam_2009_b6 (n : β„•) (npos : n > 0) : (βˆƒ a : β„• β†’ β„€, a 0 = 0 ∧ a 2009 = n ∧ βˆ€ i : Icc 1 2009, ((βˆƒ j k : β„•, j < i ∧ a i = a j + 2 ^ k) ∨ βˆƒ b c : β„•, b < i ∧ c < i ∧ a b > 0 ∧ a c > 0 ∧ a i = (a b) % (a c))) := sorry
import Mathlib open Topology MvPolynomial Filter Set Metric /-- Prove that for every positive integer $n$, there is a sequence of integers $a_0, a_1, \dots, a_{2009}$ with $a_0 = 0$ and $a_{2009} = n$ such that each term after $a_0$ is either an earlier term plus $2^k$ for some nonnegative integer $k$, or of the form $b\,\mathrm{mod}\,c$ for some earlier positive terms $b$ and $c$. [Here $b\,\mathrm{mod}\,c$ denotes the remainder when $b$ is divided by $c$, so $0 \leq (b\,\mathrm{mod}\,c) < c$.] -/ theorem putnam_2009_b6 (n : β„•) (npos : n > 0) : (βˆƒ a : β„• β†’ β„€, a 0 = 0 ∧ a 2009 = n ∧ βˆ€ i : Icc 1 2009, ((βˆƒ j k : β„•, j < i ∧ a i = a j + 2 ^ k) ∨ βˆƒ b c : β„•, b < i ∧ c < i ∧ a b > 0 ∧ a c > 0 ∧ a i = (a b) % (a c))) := by
import Mathlib open Topology MvPolynomial Filter Set Metric /-- Prove that for every positive integer $n$, there is a sequence of integers $a_0, a_1, \dots, a_{2009}$ with $a_0 = 0$ and $a_{2009} = n$ such that each term after $a_0$ is either an earlier term plus $2^k$ for some nonnegative integer $k$, or of the form $b\,\mathrm{mod}\,c$ for some earlier positive terms $b$ and $c$. [Here $b\,\mathrm{mod}\,c$ denotes the remainder when $b$ is divided by $c$, so $0 \leq (b\,\mathrm{mod}\,c) < c$.] -/ theorem putnam_2009_b6 (n : β„•) (npos : n > 0) : (βˆƒ a : β„• β†’ β„€, a 0 = 0 ∧ a 2009 = n ∧ βˆ€ i : Icc 1 2009, ((βˆƒ j k : β„•, j < i ∧ a i = a j + 2 ^ k) ∨ βˆƒ b c : β„•, b < i ∧ c < i ∧ a b > 0 ∧ a c > 0 ∧ a i = (a b) % (a c))) := sorry
Prove that for every positive integer $n$, there is a sequence of integers $a_0, a_1, \dots, a_{2009}$ with $a_0 = 0$ and $a_{2009} = n$ such that each term after $a_0$ is either an earlier term plus $2^k$ for some nonnegative integer $k$, or of the form $b\,\mathrm{mod}\,c$ for some earlier positive terms $b$ and $c$. [Here $b\,\mathrm{mod}\,c$ denotes the remainder when $b$ is divided by $c$, so $0 \leq (b\,\mathrm{mod}\,c) < c$.]
null
[ "number_theory" ]
null
null
putnam_1996_b2
a15cc369-900e-5ef0-9418-17899cb380f6
train
theorem putnam_1996_b2 (n : β„•) (prododd : ℝ) (npos : n > 0) (hprododd : prododd = ∏ i in Finset.range (2 * n), if Odd i then i else 1) : ((2 * n - 1 : ℝ) / Real.exp 1) ^ ((2 * n - 1 : ℝ) / 2) < prododd ∧ prododd < ((2 * n + 1 : ℝ) / Real.exp 1) ^ ((2 * n + 1 : ℝ) / 2) := sorry
import Mathlib open Function /-- Show that for every positive integer $n$, $(\frac{2n-1}{e})^{\frac{2n-1}{2}}<1 \cdot 3 \cdot 5 \cdots (2n-1)<(\frac{2n+1}{e})^{\frac{2n+1}{2}}$. -/ theorem putnam_1996_b2 (n : β„•) (prododd : ℝ) (npos : n > 0) (hprododd : prododd = ∏ i in Finset.range (2 * n), if Odd i then i else 1) : ((2 * n - 1 : ℝ) / Real.exp 1) ^ ((2 * n - 1 : ℝ) / 2) < prododd ∧ prododd < ((2 * n + 1 : ℝ) / Real.exp 1) ^ ((2 * n + 1 : ℝ) / 2) := by
import Mathlib open Function /-- Show that for every positive integer $n$, $(\frac{2n-1}{e})^{\frac{2n-1}{2}}<1 \cdot 3 \cdot 5 \cdots (2n-1)<(\frac{2n+1}{e})^{\frac{2n+1}{2}}$. -/ theorem putnam_1996_b2 (n : β„•) (prododd : ℝ) (npos : n > 0) (hprododd : prododd = ∏ i in Finset.range (2 * n), if Odd i then i else 1) : ((2 * n - 1 : ℝ) / Real.exp 1) ^ ((2 * n - 1 : ℝ) / 2) < prododd ∧ prododd < ((2 * n + 1 : ℝ) / Real.exp 1) ^ ((2 * n + 1 : ℝ) / 2) := sorry
Show that for every positive integer $n$, $(\frac{2n-1}{e})^{\frac{2n-1}{2}}<1 \cdot 3 \cdot 5 \cdots (2n-1)<(\frac{2n+1}{e})^{\frac{2n+1}{2}}$.
null
[ "analysis" ]
null
null
putnam_2012_b5
ca3eb972-f6a7-52bf-b3a6-c33ca06be2ee
train
theorem putnam_2012_b5 (g1 g2 : ℝ β†’ ℝ) (hgim : βˆ€ x : ℝ, g1 x β‰₯ 1 ∧ g2 x β‰₯ 1) (hgbd : βˆƒ B1 B2 : ℝ, βˆ€ x : ℝ, g1 x ≀ B1 ∧ g2 x ≀ B2) : βˆƒ h1 h2 : ℝ β†’ ℝ, βˆ€ x : ℝ, sSup {((g1 s)^x * (g2 s)) | s : ℝ} = sSup {(x * (h1 t) + h2 t) | t : ℝ} := sorry
import Mathlib open Matrix Function Real Topology Filter /-- Prove that, for any two bounded functions $g_1, g_2: \RR \to [1, \infty)$, there exist functions $h_1, h_2: \RR \to \RR$ such that, for every $x \in \RR$, \[ \sup_{s \in \RR} (g_1(s)^x g_2(s)) = \max_{t \in \RR} (x h_1(t) + h_2(t)).\] -/ theorem putnam_2012_b5 (g1 g2 : ℝ β†’ ℝ) (hgim : βˆ€ x : ℝ, g1 x β‰₯ 1 ∧ g2 x β‰₯ 1) (hgbd : βˆƒ B1 B2 : ℝ, βˆ€ x : ℝ, g1 x ≀ B1 ∧ g2 x ≀ B2) : βˆƒ h1 h2 : ℝ β†’ ℝ, βˆ€ x : ℝ, sSup {((g1 s)^x * (g2 s)) | s : ℝ} = sSup {(x * (h1 t) + h2 t) | t : ℝ} := by
import Mathlib open Matrix Function Real Topology Filter /-- Prove that, for any two bounded functions $g_1, g_2: \RR \to [1, \infty)$, there exist functions $h_1, h_2: \RR \to \RR$ such that, for every $x \in \RR$, \[ \sup_{s \in \RR} (g_1(s)^x g_2(s)) = \max_{t \in \RR} (x h_1(t) + h_2(t)).\] -/ theorem putnam_2012_b5 (g1 g2 : ℝ β†’ ℝ) (hgim : βˆ€ x : ℝ, g1 x β‰₯ 1 ∧ g2 x β‰₯ 1) (hgbd : βˆƒ B1 B2 : ℝ, βˆ€ x : ℝ, g1 x ≀ B1 ∧ g2 x ≀ B2) : βˆƒ h1 h2 : ℝ β†’ ℝ, βˆ€ x : ℝ, sSup {((g1 s)^x * (g2 s)) | s : ℝ} = sSup {(x * (h1 t) + h2 t) | t : ℝ} := sorry
Prove that, for any two bounded functions $g_1, g_2: \RR \to [1, \infty)$, there exist functions $h_1, h_2: \RR \to \RR$ such that, for every $x \in \RR$, \[ \sup_{s \in \RR} (g_1(s)^x g_2(s)) = \max_{t \in \RR} (x h_1(t) + h_2(t)).\]
null
[ "analysis" ]
null
null
putnam_1999_a2
2f78f9f8-d714-559e-80ef-1064cdf8cfc7
train
theorem putnam_1999_a2 (p : Polynomial ℝ) (hp : βˆ€ x, p.eval x β‰₯ 0) : βˆƒα΅‰ (k) (f : Fin k β†’ Polynomial ℝ), k > 0 ∧ βˆ€ x : ℝ, p.eval x = βˆ‘ j : Fin k, ((f j).eval x) ^ 2 := sorry
import Mathlib /-- Let $p(x)$ be a polynomial that is nonnegative for all real $x$. Prove that for some $k$, there are polynomials $f_1(x),\dots,f_k(x$) such that \[p(x) = \sum_{j=1}^k (f_j(x))^2.\] -/ theorem putnam_1999_a2 (p : Polynomial ℝ) (hp : βˆ€ x, p.eval x β‰₯ 0) : βˆƒα΅‰ (k) (f : Fin k β†’ Polynomial ℝ), k > 0 ∧ βˆ€ x : ℝ, p.eval x = βˆ‘ j : Fin k, ((f j).eval x) ^ 2 := by
import Mathlib /-- Let $p(x)$ be a polynomial that is nonnegative for all real $x$. Prove that for some $k$, there are polynomials $f_1(x),\dots,f_k(x$) such that \[p(x) = \sum_{j=1}^k (f_j(x))^2.\] -/ theorem putnam_1999_a2 (p : Polynomial ℝ) (hp : βˆ€ x, p.eval x β‰₯ 0) : βˆƒα΅‰ (k) (f : Fin k β†’ Polynomial ℝ), k > 0 ∧ βˆ€ x : ℝ, p.eval x = βˆ‘ j : Fin k, ((f j).eval x) ^ 2 := sorry
Let $p(x)$ be a polynomial that is nonnegative for all real $x$. Prove that for some $k$, there are polynomials $f_1(x),\dots,f_k(x$) such that \[p(x) = \sum_{j=1}^k (f_j(x))^2.\]
null
[ "algebra" ]
null
null
putnam_2016_a5
0c948bdf-2ca5-5d9f-8e78-cb7fc554c28d
train
theorem putnam_2016_a5 (G : Type*) [Group G] (Gfin : Fintype G) (g h : G) (ghgen : Group.closure {g, h} = G ∧ Β¬Group.closure {g} = G ∧ Β¬Group.closure {h} = G) (godd : Odd (orderOf g)) (S : Set G) (hS : S = {g * h, g⁻¹ * h, g * h⁻¹, g⁻¹ * h⁻¹}) : (βˆ€ x : G, βˆƒ mn : List G, 1 ≀ mn.length ∧ mn.length ≀ Gfin.card ∧ βˆ€ i : Fin mn.length, mn.get i ∈ S ∧ x = List.prod mn) := sorry
import Mathlib open Polynomial Filter Topology Real Set Nat List /-- Suppose that $G$ is a finite group generated by the two elements $g$ and $h$, where the order of $g$ is odd. Show that every element of $G$ can be written in the form \[ g^{m_1} h^{n_1} g^{m_2} h^{n_2} \cdots g^{m_r} h^{n_r} \] with $1 \leq r \leq |G|$ and $m_1, n_1, m_2, n_2, \ldots, m_r, n_r \in \{-1, 1\}$. (Here $|G|$ is the number of elements of $G$.) -/ theorem putnam_2016_a5 (G : Type*) [Group G] (Gfin : Fintype G) (g h : G) (ghgen : Group.closure {g, h} = G ∧ Β¬Group.closure {g} = G ∧ Β¬Group.closure {h} = G) (godd : Odd (orderOf g)) (S : Set G) (hS : S = {g * h, g⁻¹ * h, g * h⁻¹, g⁻¹ * h⁻¹}) : (βˆ€ x : G, βˆƒ mn : List G, 1 ≀ mn.length ∧ mn.length ≀ Gfin.card ∧ βˆ€ i : Fin mn.length, mn.get i ∈ S ∧ x = List.prod mn) := by
import Mathlib open Polynomial Filter Topology Real Set Nat List /-- Suppose that $G$ is a finite group generated by the two elements $g$ and $h$, where the order of $g$ is odd. Show that every element of $G$ can be written in the form \[ g^{m_1} h^{n_1} g^{m_2} h^{n_2} \cdots g^{m_r} h^{n_r} \] with $1 \leq r \leq |G|$ and $m_1, n_1, m_2, n_2, \ldots, m_r, n_r \in \{-1, 1\}$. (Here $|G|$ is the number of elements of $G$.) -/ theorem putnam_2016_a5 (G : Type*) [Group G] (Gfin : Fintype G) (g h : G) (ghgen : Group.closure {g, h} = G ∧ Β¬Group.closure {g} = G ∧ Β¬Group.closure {h} = G) (godd : Odd (orderOf g)) (S : Set G) (hS : S = {g * h, g⁻¹ * h, g * h⁻¹, g⁻¹ * h⁻¹}) : (βˆ€ x : G, βˆƒ mn : List G, 1 ≀ mn.length ∧ mn.length ≀ Gfin.card ∧ βˆ€ i : Fin mn.length, mn.get i ∈ S ∧ x = List.prod mn) := sorry
Suppose that $G$ is a finite group generated by the two elements $g$ and $h$, where the order of $g$ is odd. Show that every element of $G$ can be written in the form \[ g^{m_1} h^{n_1} g^{m_2} h^{n_2} \cdots g^{m_r} h^{n_r} \] with $1 \leq r \leq |G|$ and $m_1, n_1, m_2, n_2, \ldots, m_r, n_r \in \{-1, 1\}$. (Here $|G|$ is the number of elements of $G$.)
null
[ "abstract_algebra" ]
null
null
putnam_1997_a6
7b85c311-a4ff-5854-b6e5-e99afc5ef7fb
train
abbrev putnam_1997_a6_solution : β„€ β†’ β„€ β†’ ℝ := sorry -- fun n k => Nat.choose (n.toNat-1) (k.toNat-1) /-- For a positive integer $n$ and any real number $c$, define $x_k$ recursively by $x_0=0$, $x_1=1$, and for $k\geq 0$, \[x_{k+2}=\frac{cx_{k+1}-(n-k)x_k}{k+1}.\] Fix $n$ and then take $c$ to be the largest value for which $x_{n+1}=0$. Find $x_k$ in terms of $n$ and $k$, $1\leq k\leq n$. -/ theorem putnam_1997_a6 (n : β„€) (hn : n > 0) (x : ℝ β†’ (β„€ β†’ ℝ)) (hx0 : βˆ€ c, x c 0 = 0) (hx1 : βˆ€ c, x c 1 = 1) (hxk : βˆ€ c, βˆ€ k β‰₯ 0, x c (k + 2) = (c*(x c (k + 1)) - (n - k)*(x c k))/(k + 1)) (S : Set ℝ) (hS : S = {c : ℝ | x c (n + 1) = 0}) : βˆ€ k : Set.Icc 1 n, x (sSup S) k = putnam_1997_a6_solution n k := sorry
import Mathlib open Filter Topology -- fun n k => Nat.choose (n.toNat-1) (k.toNat-1) /-- For a positive integer $n$ and any real number $c$, define $x_k$ recursively by $x_0=0$, $x_1=1$, and for $k\geq 0$, \[x_{k+2}=\frac{cx_{k+1}-(n-k)x_k}{k+1}.\] Fix $n$ and then take $c$ to be the largest value for which $x_{n+1}=0$. Find $x_k$ in terms of $n$ and $k$, $1\leq k\leq n$. -/ theorem putnam_1997_a6 (n : β„€) (hn : n > 0) (x : ℝ β†’ (β„€ β†’ ℝ)) (hx0 : βˆ€ c, x c 0 = 0) (hx1 : βˆ€ c, x c 1 = 1) (hxk : βˆ€ c, βˆ€ k β‰₯ 0, x c (k + 2) = (c*(x c (k + 1)) - (n - k)*(x c k))/(k + 1)) (S : Set ℝ) (hS : S = {c : ℝ | x c (n + 1) = 0}) : βˆ€ k : Set.Icc 1 n, x (sSup S) k = putnam_1997_a6_solution n k := by
import Mathlib open Filter Topology abbrev putnam_1997_a6_solution : β„€ β†’ β„€ β†’ ℝ := sorry -- fun n k => Nat.choose (n.toNat-1) (k.toNat-1) /-- For a positive integer $n$ and any real number $c$, define $x_k$ recursively by $x_0=0$, $x_1=1$, and for $k\geq 0$, \[x_{k+2}=\frac{cx_{k+1}-(n-k)x_k}{k+1}.\] Fix $n$ and then take $c$ to be the largest value for which $x_{n+1}=0$. Find $x_k$ in terms of $n$ and $k$, $1\leq k\leq n$. -/ theorem putnam_1997_a6 (n : β„€) (hn : n > 0) (x : ℝ β†’ (β„€ β†’ ℝ)) (hx0 : βˆ€ c, x c 0 = 0) (hx1 : βˆ€ c, x c 1 = 1) (hxk : βˆ€ c, βˆ€ k β‰₯ 0, x c (k + 2) = (c*(x c (k + 1)) - (n - k)*(x c k))/(k + 1)) (S : Set ℝ) (hS : S = {c : ℝ | x c (n + 1) = 0}) : βˆ€ k : Set.Icc 1 n, x (sSup S) k = putnam_1997_a6_solution n k := sorry
For a positive integer $n$ and any real number $c$, define $x_k$ recursively by $x_0=0$, $x_1=1$, and for $k\geq 0$, \[x_{k+2}=\frac{cx_{k+1}-(n-k)x_k}{k+1}.\] Fix $n$ and then take $c$ to be the largest value for which $x_{n+1}=0$. Find $x_k$ in terms of $n$ and $k$, $1\leq k\leq n$.
Show that the solution is that $x_k = {n - 1 \choose k - 1}$.
[ "algebra" ]
null
null
putnam_1992_b6
d43f1421-71e8-5f65-a1e0-10850b1a488d
train
theorem putnam_1992_b6 (n : β„•) (npos : 0 < n) (M : Set (Matrix (Fin n) (Fin n) ℝ)) (h1 : 1 ∈ M) (h2 : βˆ€ A ∈ M, βˆ€ B ∈ M, Xor' (A * B ∈ M) (-A * B ∈ M)) (h3 : βˆ€ A ∈ M, βˆ€ B ∈ M, (A * B = B * A) ∨ (A * B = -B * A)) (h4 : βˆ€ A ∈ M, A β‰  1 β†’ βˆƒ B ∈ M, A * B = -B * A) : M.encard ≀ n ^ 2 := sorry
import Mathlib open Topology Filter Nat Function Polynomial /-- Let $M$ be a set of real $n \times n$ matrices such that \begin{itemize} \item[(i)] $I \in M$, where $I$ is the $n \times n$ identity matrix; \item[(ii)] if $A \in M$ and $B \in M$, then either $AB \in M$ or $-AB \in M$, but not both; \item[(iii)] if $A \in M$ and $B \in M$, then either $AB = BA$ or $AB = -BA$; \item[(iv)] if $A \in M$ and $A \neq I$, there is at least one $B \in M$ such that $AB = -BA$. \end{itemize} Prove that $M$ contains at most $n^2$ matrices. -/ theorem putnam_1992_b6 (n : β„•) (npos : 0 < n) (M : Set (Matrix (Fin n) (Fin n) ℝ)) (h1 : 1 ∈ M) (h2 : βˆ€ A ∈ M, βˆ€ B ∈ M, Xor' (A * B ∈ M) (-A * B ∈ M)) (h3 : βˆ€ A ∈ M, βˆ€ B ∈ M, (A * B = B * A) ∨ (A * B = -B * A)) (h4 : βˆ€ A ∈ M, A β‰  1 β†’ βˆƒ B ∈ M, A * B = -B * A) : M.encard ≀ n ^ 2 := by
import Mathlib open Topology Filter Nat Function Polynomial /-- Let $M$ be a set of real $n \times n$ matrices such that \begin{itemize} \item[(i)] $I \in M$, where $I$ is the $n \times n$ identity matrix; \item[(ii)] if $A \in M$ and $B \in M$, then either $AB \in M$ or $-AB \in M$, but not both; \item[(iii)] if $A \in M$ and $B \in M$, then either $AB = BA$ or $AB = -BA$; \item[(iv)] if $A \in M$ and $A \neq I$, there is at least one $B \in M$ such that $AB = -BA$. \end{itemize} Prove that $M$ contains at most $n^2$ matrices. -/ theorem putnam_1992_b6 (n : β„•) (npos : 0 < n) (M : Set (Matrix (Fin n) (Fin n) ℝ)) (h1 : 1 ∈ M) (h2 : βˆ€ A ∈ M, βˆ€ B ∈ M, Xor' (A * B ∈ M) (-A * B ∈ M)) (h3 : βˆ€ A ∈ M, βˆ€ B ∈ M, (A * B = B * A) ∨ (A * B = -B * A)) (h4 : βˆ€ A ∈ M, A β‰  1 β†’ βˆƒ B ∈ M, A * B = -B * A) : M.encard ≀ n ^ 2 := sorry
Let $M$ be a set of real $n \times n$ matrices such that \begin{itemize} \item[(i)] $I \in M$, where $I$ is the $n \times n$ identity matrix; \item[(ii)] if $A \in M$ and $B \in M$, then either $AB \in M$ or $-AB \in M$, but not both; \item[(iii)] if $A \in M$ and $B \in M$, then either $AB = BA$ or $AB = -BA$; \item[(iv)] if $A \in M$ and $A \neq I$, there is at least one $B \in M$ such that $AB = -BA$. \end{itemize} Prove that $M$ contains at most $n^2$ matrices.
null
[ "linear_algebra" ]
null
null
putnam_1962_a5
af498095-2197-562b-8abc-adef92ef34bc
train
abbrev putnam_1962_a5_solution : β„• β†’ β„• := sorry -- fun n : β„• => n * (n + 1) * 2^(n - 2) /-- Evaluate in closed form \[ \sum_{k=1}^n {n \choose k} k^2. \] -/ theorem putnam_1962_a5 : βˆ€ n β‰₯ 2, putnam_1962_a5_solution n = βˆ‘ k in Finset.Icc 1 n, Nat.choose n k * k^2 := sorry
import Mathlib -- fun n : β„• => n * (n + 1) * 2^(n - 2) /-- Evaluate in closed form \[ \sum_{k=1}^n {n \choose k} k^2. \] -/ theorem putnam_1962_a5 : βˆ€ n β‰₯ 2, putnam_1962_a5_solution n = βˆ‘ k in Finset.Icc 1 n, Nat.choose n k * k^2 := by
import Mathlib abbrev putnam_1962_a5_solution : β„• β†’ β„• := sorry -- fun n : β„• => n * (n + 1) * 2^(n - 2) /-- Evaluate in closed form \[ \sum_{k=1}^n {n \choose k} k^2. \] -/ theorem putnam_1962_a5 : βˆ€ n β‰₯ 2, putnam_1962_a5_solution n = βˆ‘ k in Finset.Icc 1 n, Nat.choose n k * k^2 := sorry
Evaluate in closed form \[ \sum_{k=1}^n {n \choose k} k^2. \]
Show that the expression equals $n(n+1)2^{n-2}$.
[ "algebra", "combinatorics" ]
null
null
putnam_2012_a4
db715975-6bf7-53f3-a76a-b838a2c45046
train
theorem putnam_2012_a4 (q r : β„€) (A B : Fin 2 β†’ ℝ) (T : Set ℝ) (S : Set β„€) (qpos : q > 0) (ABlt : A 0 < A 1 ∧ B 0 < B 1) (hT : T = {x : ℝ | βˆƒ b m : β„€, ((b : ℝ) ∈ Set.Icc (B 0) (B 1)) ∧ (x = b + m * q)}) (hS : S = {a : β„€ | ((a : ℝ) ∈ Set.Icc (A 0) (A 1)) ∧ (βˆƒ t ∈ T, r * a = t)}) : ((A 1 - A 0) * (B 1 - B 0) < q) β†’ (βˆƒ n : β„•, βˆƒ a1 d : ℝ, n > 2 ∧ {s : ℝ | s = round s ∧ round s ∈ S} = (Set.Icc (A 0) (A 1)) ∩ {x : ℝ | βˆƒ i : Fin n, x = a1 + i * d}) := sorry
import Mathlib open Matrix Function /-- Let $q$ and $r$ be integers with $q>0$, and let $A$ and $B$ be intervals on the real line. Let $T$ be the set of all $b+mq$ where $b$ and $m$ are integers with $b$ in $B$, and let $S$ be the set of all integers $a$ in $A$ such that $ra$ is in $T$. Show that if the product of the lengths of $A$ and $B$ is less than $q$, then $S$ is the intersection of $A$ with some arithmetic progression. -/ theorem putnam_2012_a4 (q r : β„€) (A B : Fin 2 β†’ ℝ) (T : Set ℝ) (S : Set β„€) (qpos : q > 0) (ABlt : A 0 < A 1 ∧ B 0 < B 1) (hT : T = {x : ℝ | βˆƒ b m : β„€, ((b : ℝ) ∈ Set.Icc (B 0) (B 1)) ∧ (x = b + m * q)}) (hS : S = {a : β„€ | ((a : ℝ) ∈ Set.Icc (A 0) (A 1)) ∧ (βˆƒ t ∈ T, r * a = t)}) : ((A 1 - A 0) * (B 1 - B 0) < q) β†’ (βˆƒ n : β„•, βˆƒ a1 d : ℝ, n > 2 ∧ {s : ℝ | s = round s ∧ round s ∈ S} = (Set.Icc (A 0) (A 1)) ∩ {x : ℝ | βˆƒ i : Fin n, x = a1 + i * d}) := by
import Mathlib open Matrix Function /-- Let $q$ and $r$ be integers with $q>0$, and let $A$ and $B$ be intervals on the real line. Let $T$ be the set of all $b+mq$ where $b$ and $m$ are integers with $b$ in $B$, and let $S$ be the set of all integers $a$ in $A$ such that $ra$ is in $T$. Show that if the product of the lengths of $A$ and $B$ is less than $q$, then $S$ is the intersection of $A$ with some arithmetic progression. -/ theorem putnam_2012_a4 (q r : β„€) (A B : Fin 2 β†’ ℝ) (T : Set ℝ) (S : Set β„€) (qpos : q > 0) (ABlt : A 0 < A 1 ∧ B 0 < B 1) (hT : T = {x : ℝ | βˆƒ b m : β„€, ((b : ℝ) ∈ Set.Icc (B 0) (B 1)) ∧ (x = b + m * q)}) (hS : S = {a : β„€ | ((a : ℝ) ∈ Set.Icc (A 0) (A 1)) ∧ (βˆƒ t ∈ T, r * a = t)}) : ((A 1 - A 0) * (B 1 - B 0) < q) β†’ (βˆƒ n : β„•, βˆƒ a1 d : ℝ, n > 2 ∧ {s : ℝ | s = round s ∧ round s ∈ S} = (Set.Icc (A 0) (A 1)) ∩ {x : ℝ | βˆƒ i : Fin n, x = a1 + i * d}) := sorry
Let $q$ and $r$ be integers with $q>0$, and let $A$ and $B$ be intervals on the real line. Let $T$ be the set of all $b+mq$ where $b$ and $m$ are integers with $b$ in $B$, and let $S$ be the set of all integers $a$ in $A$ such that $ra$ is in $T$. Show that if the product of the lengths of $A$ and $B$ is less than $q$, then $S$ is the intersection of $A$ with some arithmetic progression.
null
[ "algebra" ]
null
null
putnam_1976_a4
dbdd51d0-cbf8-59e0-ac9b-9d5c5b891ec6
train
abbrev putnam_1976_a4_solution : (ℝ β†’ ℝ) Γ— (ℝ β†’ ℝ) := sorry -- (fun r : ℝ => -1/(r + 1), fun r : ℝ => -(r + 1)/r) /-- Let $r$ be a real root of $P(x) = x^3 + ax^2 + bx - 1$, where $a$ and $b$ are integers and $P$ is irreducible over the rationals. Suppose that $r + 1$ is a root of $x^3 + cx^2 + dx + 1$, where $c$ and $d$ are also integers. Express another root $s$ of $P$ as a function of $r$ that does not depend on the values of $a$, $b$, $c$, or $d$. -/ theorem putnam_1976_a4 (a b c d : β„€) (r : ℝ) (P Q: Polynomial β„š) (hP : P = X^3 + (C (a : β„š))*X^2 + (C (b : β„š))*X - (C 1) ∧ aeval r P = 0 ∧ Irreducible P) (hQ : Q = X^3 + (C (c : β„š))*X^2 + (C (d : β„š))*X + (C 1) ∧ aeval (r + 1) Q = 0) : βˆƒ s : ℝ, aeval s P = 0 ∧ (s = putnam_1976_a4_solution.1 r ∨ s = putnam_1976_a4_solution.2 r) := sorry
import Mathlib open Polynomial -- (fun r : ℝ => -1/(r + 1), fun r : ℝ => -(r + 1)/r) /-- Let $r$ be a real root of $P(x) = x^3 + ax^2 + bx - 1$, where $a$ and $b$ are integers and $P$ is irreducible over the rationals. Suppose that $r + 1$ is a root of $x^3 + cx^2 + dx + 1$, where $c$ and $d$ are also integers. Express another root $s$ of $P$ as a function of $r$ that does not depend on the values of $a$, $b$, $c$, or $d$. -/ theorem putnam_1976_a4 (a b c d : β„€) (r : ℝ) (P Q: Polynomial β„š) (hP : P = X^3 + (C (a : β„š))*X^2 + (C (b : β„š))*X - (C 1) ∧ aeval r P = 0 ∧ Irreducible P) (hQ : Q = X^3 + (C (c : β„š))*X^2 + (C (d : β„š))*X + (C 1) ∧ aeval (r + 1) Q = 0) : βˆƒ s : ℝ, aeval s P = 0 ∧ (s = putnam_1976_a4_solution.1 r ∨ s = putnam_1976_a4_solution.2 r) := by
import Mathlib open Polynomial noncomputable abbrev putnam_1976_a4_solution : (ℝ β†’ ℝ) Γ— (ℝ β†’ ℝ) := sorry -- (fun r : ℝ => -1/(r + 1), fun r : ℝ => -(r + 1)/r) /-- Let $r$ be a real root of $P(x) = x^3 + ax^2 + bx - 1$, where $a$ and $b$ are integers and $P$ is irreducible over the rationals. Suppose that $r + 1$ is a root of $x^3 + cx^2 + dx + 1$, where $c$ and $d$ are also integers. Express another root $s$ of $P$ as a function of $r$ that does not depend on the values of $a$, $b$, $c$, or $d$. -/ theorem putnam_1976_a4 (a b c d : β„€) (r : ℝ) (P Q: Polynomial β„š) (hP : P = X^3 + (C (a : β„š))*X^2 + (C (b : β„š))*X - (C 1) ∧ aeval r P = 0 ∧ Irreducible P) (hQ : Q = X^3 + (C (c : β„š))*X^2 + (C (d : β„š))*X + (C 1) ∧ aeval (r + 1) Q = 0) : βˆƒ s : ℝ, aeval s P = 0 ∧ (s = putnam_1976_a4_solution.1 r ∨ s = putnam_1976_a4_solution.2 r) := sorry
Let $r$ be a real root of $P(x) = x^3 + ax^2 + bx - 1$, where $a$ and $b$ are integers and $P$ is irreducible over the rationals. Suppose that $r + 1$ is a root of $x^3 + cx^2 + dx + 1$, where $c$ and $d$ are also integers. Express another root $s$ of $P$ as a function of $r$ that does not depend on the values of $a$, $b$, $c$, or $d$.
The possible answers are $s = -\frac{1}{r + 1}$ and $s = -\frac{r + 1}{r}$.
[ "algebra" ]
null
null
putnam_1985_b1
636964ba-b29f-5ef2-b24a-86603db3e126
train
abbrev putnam_1985_b1_solution : Fin 5 β†’ β„€ := sorry -- fun i ↦ i - 2 /-- Let $k$ be the smallest positive integer for which there exist distinct integers $m_1, m_2, m_3, m_4, m_5$ such that the polynomial \[ p(x) = (x-m_1)(x-m_2)(x-m_3)(x-m_4)(x-m_5) \] has exactly $k$ nonzero coefficients. Find, with proof, a set of integers $m_1, m_2, m_3, m_4, m_5$ for which this minimum $k$ is achieved. -/ theorem putnam_1985_b1 (p : (Fin 5 β†’ β„€) β†’ (Polynomial ℝ)) (hp : p = fun m ↦ ∏ i : Fin 5, ((X : Polynomial ℝ) - m i)) (numnzcoeff : Polynomial ℝ β†’ β„•) (hnumnzcoeff : numnzcoeff = fun p ↦ {j ∈ Finset.range (p.natDegree + 1) | coeff p j β‰  0}.card) : (Injective putnam_1985_b1_solution ∧ βˆ€ m : Fin 5 β†’ β„€, Injective m β†’ numnzcoeff (p putnam_1985_b1_solution) ≀ numnzcoeff (p m)) := sorry
import Mathlib open Set Filter Topology Real Polynomial Function -- fun i ↦ i - 2 /-- Let $k$ be the smallest positive integer for which there exist distinct integers $m_1, m_2, m_3, m_4, m_5$ such that the polynomial \[ p(x) = (x-m_1)(x-m_2)(x-m_3)(x-m_4)(x-m_5) \] has exactly $k$ nonzero coefficients. Find, with proof, a set of integers $m_1, m_2, m_3, m_4, m_5$ for which this minimum $k$ is achieved. -/ theorem putnam_1985_b1 (p : (Fin 5 β†’ β„€) β†’ (Polynomial ℝ)) (hp : p = fun m ↦ ∏ i : Fin 5, ((X : Polynomial ℝ) - m i)) (numnzcoeff : Polynomial ℝ β†’ β„•) (hnumnzcoeff : numnzcoeff = fun p ↦ {j ∈ Finset.range (p.natDegree + 1) | coeff p j β‰  0}.card) : (Injective putnam_1985_b1_solution ∧ βˆ€ m : Fin 5 β†’ β„€, Injective m β†’ numnzcoeff (p putnam_1985_b1_solution) ≀ numnzcoeff (p m)) := by
import Mathlib open Set Filter Topology Real Polynomial Function abbrev putnam_1985_b1_solution : Fin 5 β†’ β„€ := sorry -- fun i ↦ i - 2 /-- Let $k$ be the smallest positive integer for which there exist distinct integers $m_1, m_2, m_3, m_4, m_5$ such that the polynomial \[ p(x) = (x-m_1)(x-m_2)(x-m_3)(x-m_4)(x-m_5) \] has exactly $k$ nonzero coefficients. Find, with proof, a set of integers $m_1, m_2, m_3, m_4, m_5$ for which this minimum $k$ is achieved. -/ theorem putnam_1985_b1 (p : (Fin 5 β†’ β„€) β†’ (Polynomial ℝ)) (hp : p = fun m ↦ ∏ i : Fin 5, ((X : Polynomial ℝ) - m i)) (numnzcoeff : Polynomial ℝ β†’ β„•) (hnumnzcoeff : numnzcoeff = fun p ↦ {j ∈ Finset.range (p.natDegree + 1) | coeff p j β‰  0}.card) : (Injective putnam_1985_b1_solution ∧ βˆ€ m : Fin 5 β†’ β„€, Injective m β†’ numnzcoeff (p putnam_1985_b1_solution) ≀ numnzcoeff (p m)) := sorry
Let $k$ be the smallest positive integer for which there exist distinct integers $m_1, m_2, m_3, m_4, m_5$ such that the polynomial \[ p(x) = (x-m_1)(x-m_2)(x-m_3)(x-m_4)(x-m_5) \] has exactly $k$ nonzero coefficients. Find, with proof, a set of integers $m_1, m_2, m_3, m_4, m_5$ for which this minimum $k$ is achieved.
Show that the minimum $k = 3$ is obtained for $\{m_1, m_2, m_3, m_4, m_5\} = \{-2, -1, 0, 1, 2\}$.
[ "algebra" ]
null
null
putnam_1989_a1
62b77870-657f-5f4c-a9d9-b0d6f484d294
train
abbrev putnam_1989_a1_solution : β„•βˆž := sorry -- 1 /-- How many primes among the positive integers, written as usual in base $10$, are alternating $1$'s and $0$'s, beginning and ending with $1$? -/ theorem putnam_1989_a1 (pdigalt : List β„• β†’ Prop) (hpdigalt : βˆ€ l, pdigalt l ↔ Odd l.length ∧ (βˆ€ i, l.get i = if Even (i : β„•) then 1 else 0)) : {p : β„• | p.Prime ∧ pdigalt (Nat.digits 10 p)}.encard = putnam_1989_a1_solution := sorry
import Mathlib -- 1 /-- How many primes among the positive integers, written as usual in base $10$, are alternating $1$'s and $0$'s, beginning and ending with $1$? -/ theorem putnam_1989_a1 (pdigalt : List β„• β†’ Prop) (hpdigalt : βˆ€ l, pdigalt l ↔ Odd l.length ∧ (βˆ€ i, l.get i = if Even (i : β„•) then 1 else 0)) : {p : β„• | p.Prime ∧ pdigalt (Nat.digits 10 p)}.encard = putnam_1989_a1_solution := by
import Mathlib abbrev putnam_1989_a1_solution : β„•βˆž := sorry -- 1 /-- How many primes among the positive integers, written as usual in base $10$, are alternating $1$'s and $0$'s, beginning and ending with $1$? -/ theorem putnam_1989_a1 (pdigalt : List β„• β†’ Prop) (hpdigalt : βˆ€ l, pdigalt l ↔ Odd l.length ∧ (βˆ€ i, l.get i = if Even (i : β„•) then 1 else 0)) : {p : β„• | p.Prime ∧ pdigalt (Nat.digits 10 p)}.encard = putnam_1989_a1_solution := sorry
How many primes among the positive integers, written as usual in base $10$, are alternating $1$'s and $0$'s, beginning and ending with $1$?
Show that there is only one such prime.
[ "algebra", "number_theory" ]
null
null
putnam_2012_a1
aeda67c9-ad8e-58da-9b42-db9f4aa0b907
train
theorem putnam_2012_a1 (d : Fin 12 β†’ ℝ) (hd : βˆ€ i, d i ∈ Set.Ioo 1 12) : βˆƒ i j k, i β‰  j ∧ i β‰  k ∧ j β‰  k ∧ d k β‰₯ d i ∧ d k β‰₯ d j ∧ (d i) ^ 2 + (d j) ^ 2 > (d k) ^ 2 := sorry
import Mathlib open Matrix -- Note: This proof statement strays a bit from the problem statement since it manually checks a condition for acuteness based on side lengths. /-- Let $d_1,d_2,\dots,d_{12}$ be real numbers in the open interval $(1,12)$. Show that there exist distinct indices $i,j,k$ such that $d_i,d_j,d_k$ are the side lengths of an acute triangle. -/ theorem putnam_2012_a1 (d : Fin 12 β†’ ℝ) (hd : βˆ€ i, d i ∈ Set.Ioo 1 12) : βˆƒ i j k, i β‰  j ∧ i β‰  k ∧ j β‰  k ∧ d k β‰₯ d i ∧ d k β‰₯ d j ∧ (d i) ^ 2 + (d j) ^ 2 > (d k) ^ 2 := by
import Mathlib open Matrix -- Note: This proof statement strays a bit from the problem statement since it manually checks a condition for acuteness based on side lengths. /-- Let $d_1,d_2,\dots,d_{12}$ be real numbers in the open interval $(1,12)$. Show that there exist distinct indices $i,j,k$ such that $d_i,d_j,d_k$ are the side lengths of an acute triangle. -/ theorem putnam_2012_a1 (d : Fin 12 β†’ ℝ) (hd : βˆ€ i, d i ∈ Set.Ioo 1 12) : βˆƒ i j k, i β‰  j ∧ i β‰  k ∧ j β‰  k ∧ d k β‰₯ d i ∧ d k β‰₯ d j ∧ (d i) ^ 2 + (d j) ^ 2 > (d k) ^ 2 := sorry
Let $d_1,d_2,\dots,d_{12}$ be real numbers in the open interval $(1,12)$. Show that there exist distinct indices $i,j,k$ such that $d_i,d_j,d_k$ are the side lengths of an acute triangle.
null
[ "geometry", "algebra" ]
null
null
putnam_1976_a2
b587a7a8-d190-5bf0-a590-6f7221d4e32f
train
theorem putnam_1976_a2 (P Q : MvPolynomial (Fin 2) β„€) (hP : P = X 0 ^ 2 * X 1 + X 0 * X 1 ^ 2) (hQ : Q = X 0 ^ 2 + X 0 * X 1 + X 1 ^ 2) (F G : β„• β†’ MvPolynomial (Fin 2) β„€) (hF : βˆ€ n, F n = (X 0 + X 1) ^ n - X 0 ^ n - X 1 ^ n) (hG : βˆ€ n, G n = (X 0 + X 1) ^ n + X 0 ^ n + X 1 ^ n) (n : β„•) (hn : 0 < n) : βˆƒ A : MvPolynomial (Fin 2) β„€, F n = aeval ![P, Q] A ∨ G n = aeval ![P, Q] A := sorry
import Mathlib open MvPolynomial /-- Let $P(x, y) = x^2y + xy^2$, $Q(x, y) = x^2 + xy + y^2$, $F_n(x, y) = (x + y)^n - x^n - y^n$, and $G_n(x, y) = (x + y)^n + x^n + y^n$. Prove that for all positive integers $n$, either $F_n$ or $G_n$ can be represented as a polynomial in $P$ and $Q$ with integer coefficients. -/ theorem putnam_1976_a2 (P Q : MvPolynomial (Fin 2) β„€) (hP : P = X 0 ^ 2 * X 1 + X 0 * X 1 ^ 2) (hQ : Q = X 0 ^ 2 + X 0 * X 1 + X 1 ^ 2) (F G : β„• β†’ MvPolynomial (Fin 2) β„€) (hF : βˆ€ n, F n = (X 0 + X 1) ^ n - X 0 ^ n - X 1 ^ n) (hG : βˆ€ n, G n = (X 0 + X 1) ^ n + X 0 ^ n + X 1 ^ n) (n : β„•) (hn : 0 < n) : βˆƒ A : MvPolynomial (Fin 2) β„€, F n = aeval ![P, Q] A ∨ G n = aeval ![P, Q] A := by
import Mathlib open MvPolynomial /-- Let $P(x, y) = x^2y + xy^2$, $Q(x, y) = x^2 + xy + y^2$, $F_n(x, y) = (x + y)^n - x^n - y^n$, and $G_n(x, y) = (x + y)^n + x^n + y^n$. Prove that for all positive integers $n$, either $F_n$ or $G_n$ can be represented as a polynomial in $P$ and $Q$ with integer coefficients. -/ theorem putnam_1976_a2 (P Q : MvPolynomial (Fin 2) β„€) (hP : P = X 0 ^ 2 * X 1 + X 0 * X 1 ^ 2) (hQ : Q = X 0 ^ 2 + X 0 * X 1 + X 1 ^ 2) (F G : β„• β†’ MvPolynomial (Fin 2) β„€) (hF : βˆ€ n, F n = (X 0 + X 1) ^ n - X 0 ^ n - X 1 ^ n) (hG : βˆ€ n, G n = (X 0 + X 1) ^ n + X 0 ^ n + X 1 ^ n) (n : β„•) (hn : 0 < n) : βˆƒ A : MvPolynomial (Fin 2) β„€, F n = aeval ![P, Q] A ∨ G n = aeval ![P, Q] A := sorry
Let $P(x, y) = x^2y + xy^2$, $Q(x, y) = x^2 + xy + y^2$, $F_n(x, y) = (x + y)^n - x^n - y^n$, and $G_n(x, y) = (x + y)^n + x^n + y^n$. Prove that for all positive integers $n$, either $F_n$ or $G_n$ can be represented as a polynomial in $P$ and $Q$ with integer coefficients.
null
[ "algebra" ]
null
null
putnam_2006_a3
d93eee95-de7e-56fc-be15-c32fb434756e
train
theorem putnam_2006_a3 (x : β„€ β†’ β„€) (hxlo : βˆ€ k : β„€, 0 ≀ k ∧ k ≀ 2006 β†’ x k = k) (hxhi : βˆ€ k : β„€, k β‰₯ 2006 β†’ x (k + 1) = x k + x (k - 2005)) : (βˆƒ i : β„•, i > 0 ∧ βˆ€ j : Finset.range 2005, 2006 ∣ x (i + j)) := sorry
import Mathlib /-- Let $1, 2, 3, \dots, 2005, 2006, 2007, 2009, 2012, 2016, \dots$ be a sequence defined by $x_k = k$ for $k=1, 2, \dots, 2006$ and $x_{k+1} = x_k + x_{k-2005}$ for $k \geq 2006$. Show that the sequence has $2005$ consecutive terms each divisible by $2006$. -/ theorem putnam_2006_a3 (x : β„€ β†’ β„€) (hxlo : βˆ€ k : β„€, 0 ≀ k ∧ k ≀ 2006 β†’ x k = k) (hxhi : βˆ€ k : β„€, k β‰₯ 2006 β†’ x (k + 1) = x k + x (k - 2005)) : (βˆƒ i : β„•, i > 0 ∧ βˆ€ j : Finset.range 2005, 2006 ∣ x (i + j)) := by
import Mathlib /-- Let $1, 2, 3, \dots, 2005, 2006, 2007, 2009, 2012, 2016, \dots$ be a sequence defined by $x_k = k$ for $k=1, 2, \dots, 2006$ and $x_{k+1} = x_k + x_{k-2005}$ for $k \geq 2006$. Show that the sequence has $2005$ consecutive terms each divisible by $2006$. -/ theorem putnam_2006_a3 (x : β„€ β†’ β„€) (hxlo : βˆ€ k : β„€, 0 ≀ k ∧ k ≀ 2006 β†’ x k = k) (hxhi : βˆ€ k : β„€, k β‰₯ 2006 β†’ x (k + 1) = x k + x (k - 2005)) : (βˆƒ i : β„•, i > 0 ∧ βˆ€ j : Finset.range 2005, 2006 ∣ x (i + j)) := sorry
Let $1, 2, 3, \dots, 2005, 2006, 2007, 2009, 2012, 2016, \dots$ be a sequence defined by $x_k = k$ for $k=1, 2, \dots, 2006$ and $x_{k+1} = x_k + x_{k-2005}$ for $k \geq 2006$. Show that the sequence has $2005$ consecutive terms each divisible by $2006$.
null
[ "algebra" ]
null
null
putnam_2016_b4
420f9c74-a107-5cb8-b6f0-cc88482e6b59
train
abbrev putnam_2016_b4_solution : β„• β†’ ℝ := sorry -- (fun n : β„• => (2 * n)! / (4 ^ n * (n)!)) /-- Let $A$ be a $2n \times 2n$ matrix, with entries chosen independently at random. Every entry is chosen to be $0$ or $1$, each with probability $1/2$. Find the expected value of $\det(A-A^t)$ (as a function of $n$), where $A^t$ is the transpose of $A$. -/ theorem putnam_2016_b4 (n : β„•) (npos : n β‰₯ 1) (mats01 : Set (Matrix (Fin (2 * n)) (Fin (2 * n)) ℝ)) (hmats01 : mats01 = {A | βˆ€ i j : Fin (2 * n), A i j = 0 ∨ A i j = 1}) : (βˆ‘' A : mats01, (A.1 - (Matrix.transpose A)).det) / mats01.ncard = putnam_2016_b4_solution n := sorry
import Mathlib open Real Set Nat -- (fun n : β„• => (2 * n)! / (4 ^ n * (n)!)) /-- Let $A$ be a $2n \times 2n$ matrix, with entries chosen independently at random. Every entry is chosen to be $0$ or $1$, each with probability $1/2$. Find the expected value of $\det(A-A^t)$ (as a function of $n$), where $A^t$ is the transpose of $A$. -/ theorem putnam_2016_b4 (n : β„•) (npos : n β‰₯ 1) (mats01 : Set (Matrix (Fin (2 * n)) (Fin (2 * n)) ℝ)) (hmats01 : mats01 = {A | βˆ€ i j : Fin (2 * n), A i j = 0 ∨ A i j = 1}) : (βˆ‘' A : mats01, (A.1 - (Matrix.transpose A)).det) / mats01.ncard = putnam_2016_b4_solution n := by
import Mathlib open Real Set Nat noncomputable abbrev putnam_2016_b4_solution : β„• β†’ ℝ := sorry -- (fun n : β„• => (2 * n)! / (4 ^ n * (n)!)) /-- Let $A$ be a $2n \times 2n$ matrix, with entries chosen independently at random. Every entry is chosen to be $0$ or $1$, each with probability $1/2$. Find the expected value of $\det(A-A^t)$ (as a function of $n$), where $A^t$ is the transpose of $A$. -/ theorem putnam_2016_b4 (n : β„•) (npos : n β‰₯ 1) (mats01 : Set (Matrix (Fin (2 * n)) (Fin (2 * n)) ℝ)) (hmats01 : mats01 = {A | βˆ€ i j : Fin (2 * n), A i j = 0 ∨ A i j = 1}) : (βˆ‘' A : mats01, (A.1 - (Matrix.transpose A)).det) / mats01.ncard = putnam_2016_b4_solution n := sorry
Let $A$ be a $2n \times 2n$ matrix, with entries chosen independently at random. Every entry is chosen to be $0$ or $1$, each with probability $1/2$. Find the expected value of $\det(A-A^t)$ (as a function of $n$), where $A^t$ is the transpose of $A$.
Show that the expected value equals $\frac{(2n)!}{4^nn!}$.
[ "linear_algebra", "probability" ]
null
null
putnam_2001_b3
453dc01a-6bff-5349-9567-39f62810f3a7
train
abbrev putnam_2001_b3_solution : ℝ := sorry -- 3 /-- For any positive integer $n$, let $\langle n \rangle$ denote the closest integer to $\sqrt{n}$. Evaluate $\sum_{n=1}^\infty \frac{2^{\langle n \rangle}+2^{-\langle n \rangle}}{2^n}$. -/ theorem putnam_2001_b3 : βˆ‘' n : Set.Ici 1, ((2 : ℝ) ^ (round (Real.sqrt n)) + (2 : ℝ) ^ (-round (Real.sqrt n))) / 2 ^ (n : ℝ) = putnam_2001_b3_solution := sorry
import Mathlib open Topology Filter Polynomial Set -- 3 /-- For any positive integer $n$, let $\langle n \rangle$ denote the closest integer to $\sqrt{n}$. Evaluate $\sum_{n=1}^\infty \frac{2^{\langle n \rangle}+2^{-\langle n \rangle}}{2^n}$. -/ theorem putnam_2001_b3 : βˆ‘' n : Set.Ici 1, ((2 : ℝ) ^ (round (Real.sqrt n)) + (2 : ℝ) ^ (-round (Real.sqrt n))) / 2 ^ (n : ℝ) = putnam_2001_b3_solution := by
import Mathlib open Topology Filter Polynomial Set abbrev putnam_2001_b3_solution : ℝ := sorry -- 3 /-- For any positive integer $n$, let $\langle n \rangle$ denote the closest integer to $\sqrt{n}$. Evaluate $\sum_{n=1}^\infty \frac{2^{\langle n \rangle}+2^{-\langle n \rangle}}{2^n}$. -/ theorem putnam_2001_b3 : βˆ‘' n : Set.Ici 1, ((2 : ℝ) ^ (round (Real.sqrt n)) + (2 : ℝ) ^ (-round (Real.sqrt n))) / 2 ^ (n : ℝ) = putnam_2001_b3_solution := sorry
For any positive integer $n$, let $\langle n \rangle$ denote the closest integer to $\sqrt{n}$. Evaluate $\sum_{n=1}^\infty \frac{2^{\langle n \rangle}+2^{-\langle n \rangle}}{2^n}$.
Show that the sum is $3$.
[ "analysis" ]
null
null
putnam_1968_a5
8c711c8b-97c0-5c73-90a9-95add2098e0a
train
abbrev putnam_1968_a5_solution : ℝ := sorry -- 8 /-- Let $V$ be the set of all quadratic polynomials with real coefficients such that $|P(x)| \le 1$ for all $x \in [0, 1]$. Find the supremum of $|P'(0)|$ across all $P \in V$. -/ theorem putnam_1968_a5 (V : Set ℝ[X]) (V_def : V = {P : ℝ[X] | P.degree = 2 ∧ βˆ€ x ∈ Set.Icc 0 1, |P.eval x| ≀ 1}) : sSup {|(derivative P).eval 0| | P ∈ V} = putnam_1968_a5_solution := sorry
import Mathlib open Finset Polynomial -- 8 /-- Let $V$ be the set of all quadratic polynomials with real coefficients such that $|P(x)| \le 1$ for all $x \in [0, 1]$. Find the supremum of $|P'(0)|$ across all $P \in V$. -/ theorem putnam_1968_a5 (V : Set ℝ[X]) (V_def : V = {P : ℝ[X] | P.degree = 2 ∧ βˆ€ x ∈ Set.Icc 0 1, |P.eval x| ≀ 1}) : sSup {|(derivative P).eval 0| | P ∈ V} = putnam_1968_a5_solution := by
import Mathlib open Finset Polynomial abbrev putnam_1968_a5_solution : ℝ := sorry -- 8 /-- Let $V$ be the set of all quadratic polynomials with real coefficients such that $|P(x)| \le 1$ for all $x \in [0, 1]$. Find the supremum of $|P'(0)|$ across all $P \in V$. -/ theorem putnam_1968_a5 (V : Set ℝ[X]) (V_def : V = {P : ℝ[X] | P.degree = 2 ∧ βˆ€ x ∈ Set.Icc 0 1, |P.eval x| ≀ 1}) : sSup {|(derivative P).eval 0| | P ∈ V} = putnam_1968_a5_solution := sorry
Let $V$ be the set of all quadratic polynomials with real coefficients such that $|P(x)| \le 1$ for all $x \in [0, 1]$. Find the supremum of $|P'(0)|$ across all $P \in V$.
The supremum is $8$.
[ "algebra" ]
null
null
putnam_1966_a6
8b4943c3-e687-5849-9ab8-03a22dcf3a08
train
theorem putnam_1966_a6 (a : β„• β†’ (β„• β†’ ℝ)) (ha : βˆ€ n β‰₯ 1, a n n = n ∧ βˆ€ m β‰₯ 1, m < n β†’ a n m = m * Real.sqrt (1 + a n (m + 1))) : Tendsto (fun n => a n 1) atTop (𝓝 3) := sorry
import Mathlib open Topology Filter /-- Prove that $$\sqrt {1 + 2 \sqrt {1 + 3 \sqrt {1 + 4 \sqrt {1 + 5 \sqrt {\dots}}}}} = 3.$$ -/ theorem putnam_1966_a6 (a : β„• β†’ (β„• β†’ ℝ)) (ha : βˆ€ n β‰₯ 1, a n n = n ∧ βˆ€ m β‰₯ 1, m < n β†’ a n m = m * Real.sqrt (1 + a n (m + 1))) : Tendsto (fun n => a n 1) atTop (𝓝 3) := by
import Mathlib open Topology Filter /-- Prove that $$\sqrt {1 + 2 \sqrt {1 + 3 \sqrt {1 + 4 \sqrt {1 + 5 \sqrt {\dots}}}}} = 3.$$ -/ theorem putnam_1966_a6 (a : β„• β†’ (β„• β†’ ℝ)) (ha : βˆ€ n β‰₯ 1, a n n = n ∧ βˆ€ m β‰₯ 1, m < n β†’ a n m = m * Real.sqrt (1 + a n (m + 1))) : Tendsto (fun n => a n 1) atTop (𝓝 3) := sorry
Prove that $$\sqrt {1 + 2 \sqrt {1 + 3 \sqrt {1 + 4 \sqrt {1 + 5 \sqrt {\dots}}}}} = 3.$$
null
[ "analysis" ]
null
null
putnam_2007_b6
0aca389b-b967-58e6-92e5-f0b074583fac
train
theorem putnam_2007_b6 (f : β„• β†’ β„•) (hf : f = fun n ↦ {M : Multiset β„• | M.sum = (n)! ∧ βˆ€ m ∈ M, βˆƒ k ∈ Icc 1 n, m = (k)!}.ncard) : (βˆƒ C : ℝ, βˆ€ n : β„•, n β‰₯ 2 β†’ n ^ (n ^ 2 / 2 - C * n) * Real.exp (-(n ^ 2) / 4) ≀ f n ∧ f n ≀ n ^ (n ^ 2 / 2 + C * n) * Real.exp (-(n ^ 2) / 4)) := sorry
import Mathlib open Set Nat Function /-- For each positive integer $n$, let $f(n)$ be the number of ways to make $n!$ cents using an unordered collection of coins, each worth $k!$ cents for some $k$, $1 \leq k \leq n$. Prove that for some constant $C$, independent of $n$, \[ n^{n^2/2 - Cn} e^{-n^2/4} \leq f(n) \leq n^{n^2/2 + Cn}e^{-n^2/4}. \] -/ theorem putnam_2007_b6 (f : β„• β†’ β„•) (hf : f = fun n ↦ {M : Multiset β„• | M.sum = (n)! ∧ βˆ€ m ∈ M, βˆƒ k ∈ Icc 1 n, m = (k)!}.ncard) : (βˆƒ C : ℝ, βˆ€ n : β„•, n β‰₯ 2 β†’ n ^ (n ^ 2 / 2 - C * n) * Real.exp (-(n ^ 2) / 4) ≀ f n ∧ f n ≀ n ^ (n ^ 2 / 2 + C * n) * Real.exp (-(n ^ 2) / 4)) := by
import Mathlib open Set Nat Function /-- For each positive integer $n$, let $f(n)$ be the number of ways to make $n!$ cents using an unordered collection of coins, each worth $k!$ cents for some $k$, $1 \leq k \leq n$. Prove that for some constant $C$, independent of $n$, \[ n^{n^2/2 - Cn} e^{-n^2/4} \leq f(n) \leq n^{n^2/2 + Cn}e^{-n^2/4}. \] -/ theorem putnam_2007_b6 (f : β„• β†’ β„•) (hf : f = fun n ↦ {M : Multiset β„• | M.sum = (n)! ∧ βˆ€ m ∈ M, βˆƒ k ∈ Icc 1 n, m = (k)!}.ncard) : (βˆƒ C : ℝ, βˆ€ n : β„•, n β‰₯ 2 β†’ n ^ (n ^ 2 / 2 - C * n) * Real.exp (-(n ^ 2) / 4) ≀ f n ∧ f n ≀ n ^ (n ^ 2 / 2 + C * n) * Real.exp (-(n ^ 2) / 4)) := sorry
For each positive integer $n$, let $f(n)$ be the number of ways to make $n!$ cents using an unordered collection of coins, each worth $k!$ cents for some $k$, $1 \leq k \leq n$. Prove that for some constant $C$, independent of $n$, \[ n^{n^2/2 - Cn} e^{-n^2/4} \leq f(n) \leq n^{n^2/2 + Cn}e^{-n^2/4}. \]
null
[ "combinatorics", "analysis" ]
null
null
putnam_1973_b3
7656da08-00ea-57cf-916a-5c7cf2a5e77b
train
theorem putnam_1973_b3 (p : β„•) (pgt1 : p > 1) (hprime : βˆ€ x ∈ Set.Ico 0 p, Nat.Prime (x^2 - x + p)) : βˆƒ! triple : β„€ Γ— β„€ Γ— β„€, let (a,b,c) := triple; b^2 - 4*a*c = 1 - 4*p ∧ 0 < a ∧ a ≀ c ∧ -a ≀ b ∧ b < a := sorry
import Mathlib open Nat Set MeasureTheory Topology Filter /-- Let $p > 1$ be an integer with the property that $x^2 - x + p$ is prime for all $x$ in the range $0 < x < p$. Show there exists exactly one triple of integers $a,b,c$ satisfying $b^2 - 4ac = 1 - 4p$, $0 < a \leq c$, and $-a \leq b < a$. -/ theorem putnam_1973_b3 (p : β„•) (pgt1 : p > 1) (hprime : βˆ€ x ∈ Set.Ico 0 p, Nat.Prime (x^2 - x + p)) : βˆƒ! triple : β„€ Γ— β„€ Γ— β„€, let (a,b,c) := triple; b^2 - 4*a*c = 1 - 4*p ∧ 0 < a ∧ a ≀ c ∧ -a ≀ b ∧ b < a := by
import Mathlib open Nat Set MeasureTheory Topology Filter /-- Let $p > 1$ be an integer with the property that $x^2 - x + p$ is prime for all $x$ in the range $0 < x < p$. Show there exists exactly one triple of integers $a,b,c$ satisfying $b^2 - 4ac = 1 - 4p$, $0 < a \leq c$, and $-a \leq b < a$. -/ theorem putnam_1973_b3 (p : β„•) (pgt1 : p > 1) (hprime : βˆ€ x ∈ Set.Ico 0 p, Nat.Prime (x^2 - x + p)) : βˆƒ! triple : β„€ Γ— β„€ Γ— β„€, let (a,b,c) := triple; b^2 - 4*a*c = 1 - 4*p ∧ 0 < a ∧ a ≀ c ∧ -a ≀ b ∧ b < a := sorry
Let $p > 1$ be an integer with the property that $x^2 - x + p$ is prime for all $x$ in the range $0 < x < p$. Show there exists exactly one triple of integers $a,b,c$ satisfying $b^2 - 4ac = 1 - 4p$, $0 < a \leq c$, and $-a \leq b < a$.
null
[ "number_theory", "algebra" ]
null
null
putnam_1970_a3
38d7ec32-1545-578e-8b6e-f79a236c379e
train
abbrev putnam_1970_a3_solution : β„• Γ— β„• := sorry -- (3, 1444) /-- Find the length of the longest possible sequence of equal nonzero digits (in base 10) in which a perfect square can terminate. Also, find the smallest square that attains this length. -/ theorem putnam_1970_a3 (L : β„• β†’ β„•) (hL : βˆ€ n : β„•, L n ≀ (Nat.digits 10 n).length ∧ (βˆ€ k : β„•, k < L n β†’ (Nat.digits 10 n)[k]! = (Nat.digits 10 n)[0]!) ∧ (L n β‰  (Nat.digits 10 n).length β†’ (Nat.digits 10 n)[L n]! β‰  (Nat.digits 10 n)[0]!)) : (βˆƒ n : β„•, (Nat.digits 10 (n^2))[0]! β‰  0 ∧ L (n^2) = putnam_1970_a3_solution.1) ∧ (βˆ€ n : β„•, (Nat.digits 10 (n^2))[0]! β‰  0 β†’ L (n^2) ≀ putnam_1970_a3_solution.1) ∧ (βˆƒ m : β„•, m^2 = putnam_1970_a3_solution.2) ∧ L (putnam_1970_a3_solution.2) = putnam_1970_a3_solution.1 ∧ (Nat.digits 10 putnam_1970_a3_solution.2)[0]! β‰  0 ∧ βˆ€ n : β„•, (Nat.digits 10 (n^2))[0]! β‰  0 ∧ L (n^2) = putnam_1970_a3_solution.1 β†’ n^2 β‰₯ putnam_1970_a3_solution.2 := sorry
import Mathlib open Metric Set EuclideanGeometry -- (3, 1444) /-- Find the length of the longest possible sequence of equal nonzero digits (in base 10) in which a perfect square can terminate. Also, find the smallest square that attains this length. -/ theorem putnam_1970_a3 (L : β„• β†’ β„•) (hL : βˆ€ n : β„•, L n ≀ (Nat.digits 10 n).length ∧ (βˆ€ k : β„•, k < L n β†’ (Nat.digits 10 n)[k]! = (Nat.digits 10 n)[0]!) ∧ (L n β‰  (Nat.digits 10 n).length β†’ (Nat.digits 10 n)[L n]! β‰  (Nat.digits 10 n)[0]!)) : (βˆƒ n : β„•, (Nat.digits 10 (n^2))[0]! β‰  0 ∧ L (n^2) = putnam_1970_a3_solution.1) ∧ (βˆ€ n : β„•, (Nat.digits 10 (n^2))[0]! β‰  0 β†’ L (n^2) ≀ putnam_1970_a3_solution.1) ∧ (βˆƒ m : β„•, m^2 = putnam_1970_a3_solution.2) ∧ L (putnam_1970_a3_solution.2) = putnam_1970_a3_solution.1 ∧ (Nat.digits 10 putnam_1970_a3_solution.2)[0]! β‰  0 ∧ βˆ€ n : β„•, (Nat.digits 10 (n^2))[0]! β‰  0 ∧ L (n^2) = putnam_1970_a3_solution.1 β†’ n^2 β‰₯ putnam_1970_a3_solution.2 := by
import Mathlib open Metric Set EuclideanGeometry abbrev putnam_1970_a3_solution : β„• Γ— β„• := sorry -- (3, 1444) /-- Find the length of the longest possible sequence of equal nonzero digits (in base 10) in which a perfect square can terminate. Also, find the smallest square that attains this length. -/ theorem putnam_1970_a3 (L : β„• β†’ β„•) (hL : βˆ€ n : β„•, L n ≀ (Nat.digits 10 n).length ∧ (βˆ€ k : β„•, k < L n β†’ (Nat.digits 10 n)[k]! = (Nat.digits 10 n)[0]!) ∧ (L n β‰  (Nat.digits 10 n).length β†’ (Nat.digits 10 n)[L n]! β‰  (Nat.digits 10 n)[0]!)) : (βˆƒ n : β„•, (Nat.digits 10 (n^2))[0]! β‰  0 ∧ L (n^2) = putnam_1970_a3_solution.1) ∧ (βˆ€ n : β„•, (Nat.digits 10 (n^2))[0]! β‰  0 β†’ L (n^2) ≀ putnam_1970_a3_solution.1) ∧ (βˆƒ m : β„•, m^2 = putnam_1970_a3_solution.2) ∧ L (putnam_1970_a3_solution.2) = putnam_1970_a3_solution.1 ∧ (Nat.digits 10 putnam_1970_a3_solution.2)[0]! β‰  0 ∧ βˆ€ n : β„•, (Nat.digits 10 (n^2))[0]! β‰  0 ∧ L (n^2) = putnam_1970_a3_solution.1 β†’ n^2 β‰₯ putnam_1970_a3_solution.2 := sorry
Find the length of the longest possible sequence of equal nonzero digits (in base 10) in which a perfect square can terminate. Also, find the smallest square that attains this length.
The maximum attainable length is $3$; the smallest such square is $38^2 = 1444$.
[ "number_theory" ]
null
null
putnam_2003_b6
6d4fcfe3-4a9d-5b0e-b4d4-2ff7eb5efa6f
train
theorem putnam_2003_b6 (f : ℝ β†’ ℝ) (hf : Continuous f) : (∫ x in (0 : ℝ)..1, (∫ y in (0 : ℝ)..1, |f x + f y|)) β‰₯ (∫ x in (0 : ℝ)..1, |f x|) := sorry
import Mathlib open MvPolynomial Set Nat /-- Let $f(x)$ be a continuous real-valued function defined on the interval $[0,1]$. Show that \[ \int_0^1 \int_0^1 | f(x) + f(y) |\,dx\,dy \geq \int_0^1 |f(x)|\,dx. \] -/ theorem putnam_2003_b6 (f : ℝ β†’ ℝ) (hf : Continuous f) : (∫ x in (0 : ℝ)..1, (∫ y in (0 : ℝ)..1, |f x + f y|)) β‰₯ (∫ x in (0 : ℝ)..1, |f x|) := by
import Mathlib open MvPolynomial Set Nat /-- Let $f(x)$ be a continuous real-valued function defined on the interval $[0,1]$. Show that \[ \int_0^1 \int_0^1 | f(x) + f(y) |\,dx\,dy \geq \int_0^1 |f(x)|\,dx. \] -/ theorem putnam_2003_b6 (f : ℝ β†’ ℝ) (hf : Continuous f) : (∫ x in (0 : ℝ)..1, (∫ y in (0 : ℝ)..1, |f x + f y|)) β‰₯ (∫ x in (0 : ℝ)..1, |f x|) := sorry
Let $f(x)$ be a continuous real-valued function defined on the interval $[0,1]$. Show that \[ \int_0^1 \int_0^1 | f(x) + f(y) |\,dx\,dy \geq \int_0^1 |f(x)|\,dx. \]
null
[ "analysis" ]
null
null
putnam_2010_a6
352ed91e-4818-59f5-b6b4-e2b5b8931b37
train
theorem putnam_2010_a6 (f : ℝ β†’ ℝ) (hf : (StrictAntiOn f (Ici 0) ∧ ContinuousOn f (Ici 0) ∧ Tendsto f atTop (𝓝 0))) : Β¬βˆƒ y : ℝ, Tendsto (fun z : ℝ => ∫ x in Ico 0 z, ((f x) - f (x + 1))/(f x)) atTop (𝓝 y) := sorry
import Mathlib open Filter Topology Set -- Note: uses (ℝ β†’ ℝ) instead of (Ici 0 β†’ ℝ) /-- Let $f:[0,\infty)\to \mathbb{R}$ be a strictly decreasing continuous function such that $\lim_{x\to\infty} f(x) = 0$. Prove that $\int_0^\infty \frac{f(x)-f(x+1)}{f(x)}\,dx$ diverges. -/ theorem putnam_2010_a6 (f : ℝ β†’ ℝ) (hf : (StrictAntiOn f (Ici 0) ∧ ContinuousOn f (Ici 0) ∧ Tendsto f atTop (𝓝 0))) : Β¬βˆƒ y : ℝ, Tendsto (fun z : ℝ => ∫ x in Ico 0 z, ((f x) - f (x + 1))/(f x)) atTop (𝓝 y) := by
import Mathlib open Filter Topology Set -- Note: uses (ℝ β†’ ℝ) instead of (Ici 0 β†’ ℝ) /-- Let $f:[0,\infty)\to \mathbb{R}$ be a strictly decreasing continuous function such that $\lim_{x\to\infty} f(x) = 0$. Prove that $\int_0^\infty \frac{f(x)-f(x+1)}{f(x)}\,dx$ diverges. -/ theorem putnam_2010_a6 (f : ℝ β†’ ℝ) (hf : (StrictAntiOn f (Ici 0) ∧ ContinuousOn f (Ici 0) ∧ Tendsto f atTop (𝓝 0))) : Β¬βˆƒ y : ℝ, Tendsto (fun z : ℝ => ∫ x in Ico 0 z, ((f x) - f (x + 1))/(f x)) atTop (𝓝 y) := sorry
Let $f:[0,\infty)\to \mathbb{R}$ be a strictly decreasing continuous function such that $\lim_{x\to\infty} f(x) = 0$. Prove that $\int_0^\infty \frac{f(x)-f(x+1)}{f(x)}\,dx$ diverges.
null
[ "analysis" ]
null
null
putnam_1986_a1
1aed03bd-28ff-5e12-8f56-272a95070bd8
train
abbrev putnam_1986_a1_solution : ℝ := sorry -- 18 /-- Find, with explanation, the maximum value of $f(x)=x^3-3x$ on the set of all real numbers $x$ satisfying $x^4+36 \leq 13x^2$. -/ theorem putnam_1986_a1 (S : Set ℝ) (f : ℝ β†’ ℝ) (hS : S = {x : ℝ | x ^ 4 + 36 ≀ 13 * x ^ 2}) (hf : f = fun x ↦ x ^ 3 - 3 * x) : IsGreatest {f x | x ∈ S} putnam_1986_a1_solution := sorry
import Mathlib -- 18 /-- Find, with explanation, the maximum value of $f(x)=x^3-3x$ on the set of all real numbers $x$ satisfying $x^4+36 \leq 13x^2$. -/ theorem putnam_1986_a1 (S : Set ℝ) (f : ℝ β†’ ℝ) (hS : S = {x : ℝ | x ^ 4 + 36 ≀ 13 * x ^ 2}) (hf : f = fun x ↦ x ^ 3 - 3 * x) : IsGreatest {f x | x ∈ S} putnam_1986_a1_solution := by
import Mathlib abbrev putnam_1986_a1_solution : ℝ := sorry -- 18 /-- Find, with explanation, the maximum value of $f(x)=x^3-3x$ on the set of all real numbers $x$ satisfying $x^4+36 \leq 13x^2$. -/ theorem putnam_1986_a1 (S : Set ℝ) (f : ℝ β†’ ℝ) (hS : S = {x : ℝ | x ^ 4 + 36 ≀ 13 * x ^ 2}) (hf : f = fun x ↦ x ^ 3 - 3 * x) : IsGreatest {f x | x ∈ S} putnam_1986_a1_solution := sorry
Find, with explanation, the maximum value of $f(x)=x^3-3x$ on the set of all real numbers $x$ satisfying $x^4+36 \leq 13x^2$.
Show that the maximum value is $18$.
[ "algebra", "analysis" ]
null
null
putnam_2013_a6
f5da2363-6022-5ce5-b611-042c210263d1
train
theorem putnam_2013_a6 (w : β„€ β†’ β„€ β†’ β„€) (A : Finset (β„€ Γ— β„€) β†’ β„€) (hwn1 : w (-2) (-2) = -1 ∧ w 2 (-2) = -1 ∧ w (-2) 2 = -1 ∧ w 2 2 = -1) (hwn2 : w (-1) (-2) = -2 ∧ w 1 (-2) = -2 ∧ w (-2) (-1) = -2 ∧ w 2 (-1) = -2 ∧ w (-2) 1 = -2 ∧ w 2 1 = -2 ∧ w (-1) 2 = -2 ∧ w 1 2 = -2) (hw2 : w 0 (-2) = 2 ∧ w (-2) 0 = 2 ∧ w 2 0 = 2 ∧ w 0 2 = 2) (hw4 : w (-1) (-1) = 4 ∧ w 1 (-1) = 4 ∧ w (-1) 1 = 4 ∧ w 1 1 = 4) (hwn4 : w 0 (-1) = -4 ∧ w (-1) 0 = -4 ∧ w 1 0 = -4 ∧ w 0 1 = -4) (hw12 : w 0 0 = 12) (hw0 : βˆ€ a b : β„€, (|a| > 2 ∨ |b| > 2) β†’ w a b = 0) (hA : βˆ€ S, A S = βˆ‘ s in S, βˆ‘ s' in S, w (s - s').1 (s - s').2) : βˆ€ S : Finset (β„€ Γ— β„€), Nonempty S β†’ A S > 0 := sorry
import Mathlib open Function Set /-- Define a function $w:\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ as follows. For $|a|,|b| \leq 2$, let $w(a,b)$ be as in the table shown; otherwise, let $w(a,b)=0$. \begin{center} \begin{tabular}{|cc|r|r|r|r|r|} \hline \multicolumn{2}{|c|}{\multirow{2}{*}{$w(a,b)$}} & \multicolumn{5}{|c|}{$b$} \\ & & -2 & -1 & 0 & 1 & 2 \\ \hline & -2 & -1 & -2 & 2 & -2 & -1 \\ & -1 & -2 & 4 & -4 & 4 & -2 \\ $a$ & 0 & 2 & -4 & 12 & -4 & 2 \\ & 1 & -2 & 4 & -4 & 4 & -2 \\ & 2 & -1 & -2 & 2 & -2 & -1 \\ \hline \end{tabular} \end{center} For every finite subset $S$ of $\mathbb{Z} \times \mathbb{Z}$, define $A(S)=\sum_{(\mathbf{s},\mathbf{s}') \in S \times S} w(\mathbf{s}-\mathbf{s}')$. Prove that if $S$ is any finite nonempty subset of $\mathbb{Z} \times \mathbb{Z}$, then $A(S)>0$. (For example, if $S=\{(0,1),(0,2),(2,0),(3,1)\}$, then the terms in $A(S)$ are $12,12,12,12,4,4,0,0,0,0,-1,-1,-2,-2,-4,-4$.) -/ theorem putnam_2013_a6 (w : β„€ β†’ β„€ β†’ β„€) (A : Finset (β„€ Γ— β„€) β†’ β„€) (hwn1 : w (-2) (-2) = -1 ∧ w 2 (-2) = -1 ∧ w (-2) 2 = -1 ∧ w 2 2 = -1) (hwn2 : w (-1) (-2) = -2 ∧ w 1 (-2) = -2 ∧ w (-2) (-1) = -2 ∧ w 2 (-1) = -2 ∧ w (-2) 1 = -2 ∧ w 2 1 = -2 ∧ w (-1) 2 = -2 ∧ w 1 2 = -2) (hw2 : w 0 (-2) = 2 ∧ w (-2) 0 = 2 ∧ w 2 0 = 2 ∧ w 0 2 = 2) (hw4 : w (-1) (-1) = 4 ∧ w 1 (-1) = 4 ∧ w (-1) 1 = 4 ∧ w 1 1 = 4) (hwn4 : w 0 (-1) = -4 ∧ w (-1) 0 = -4 ∧ w 1 0 = -4 ∧ w 0 1 = -4) (hw12 : w 0 0 = 12) (hw0 : βˆ€ a b : β„€, (|a| > 2 ∨ |b| > 2) β†’ w a b = 0) (hA : βˆ€ S, A S = βˆ‘ s in S, βˆ‘ s' in S, w (s - s').1 (s - s').2) : βˆ€ S : Finset (β„€ Γ— β„€), Nonempty S β†’ A S > 0 := by
import Mathlib open Function Set /-- Define a function $w:\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ as follows. For $|a|,|b| \leq 2$, let $w(a,b)$ be as in the table shown; otherwise, let $w(a,b)=0$. \begin{center} \begin{tabular}{|cc|r|r|r|r|r|} \hline \multicolumn{2}{|c|}{\multirow{2}{*}{$w(a,b)$}} & \multicolumn{5}{|c|}{$b$} \\ & & -2 & -1 & 0 & 1 & 2 \\ \hline & -2 & -1 & -2 & 2 & -2 & -1 \\ & -1 & -2 & 4 & -4 & 4 & -2 \\ $a$ & 0 & 2 & -4 & 12 & -4 & 2 \\ & 1 & -2 & 4 & -4 & 4 & -2 \\ & 2 & -1 & -2 & 2 & -2 & -1 \\ \hline \end{tabular} \end{center} For every finite subset $S$ of $\mathbb{Z} \times \mathbb{Z}$, define $A(S)=\sum_{(\mathbf{s},\mathbf{s}') \in S \times S} w(\mathbf{s}-\mathbf{s}')$. Prove that if $S$ is any finite nonempty subset of $\mathbb{Z} \times \mathbb{Z}$, then $A(S)>0$. (For example, if $S=\{(0,1),(0,2),(2,0),(3,1)\}$, then the terms in $A(S)$ are $12,12,12,12,4,4,0,0,0,0,-1,-1,-2,-2,-4,-4$.) -/ theorem putnam_2013_a6 (w : β„€ β†’ β„€ β†’ β„€) (A : Finset (β„€ Γ— β„€) β†’ β„€) (hwn1 : w (-2) (-2) = -1 ∧ w 2 (-2) = -1 ∧ w (-2) 2 = -1 ∧ w 2 2 = -1) (hwn2 : w (-1) (-2) = -2 ∧ w 1 (-2) = -2 ∧ w (-2) (-1) = -2 ∧ w 2 (-1) = -2 ∧ w (-2) 1 = -2 ∧ w 2 1 = -2 ∧ w (-1) 2 = -2 ∧ w 1 2 = -2) (hw2 : w 0 (-2) = 2 ∧ w (-2) 0 = 2 ∧ w 2 0 = 2 ∧ w 0 2 = 2) (hw4 : w (-1) (-1) = 4 ∧ w 1 (-1) = 4 ∧ w (-1) 1 = 4 ∧ w 1 1 = 4) (hwn4 : w 0 (-1) = -4 ∧ w (-1) 0 = -4 ∧ w 1 0 = -4 ∧ w 0 1 = -4) (hw12 : w 0 0 = 12) (hw0 : βˆ€ a b : β„€, (|a| > 2 ∨ |b| > 2) β†’ w a b = 0) (hA : βˆ€ S, A S = βˆ‘ s in S, βˆ‘ s' in S, w (s - s').1 (s - s').2) : βˆ€ S : Finset (β„€ Γ— β„€), Nonempty S β†’ A S > 0 := sorry
Define a function $w:\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ as follows. For $|a|,|b| \leq 2$, let $w(a,b)$ be as in the table shown; otherwise, let $w(a,b)=0$. \begin{center} \begin{tabular}{|cc|r|r|r|r|r|} \hline \multicolumn{2}{|c|}{\multirow{2}{*}{$w(a,b)$}} & \multicolumn{5}{|c|}{$b$} \\ & & -2 & -1 & 0 & 1 & 2 \\ \hline & -2 & -1 & -2 & 2 & -2 & -1 \\ & -1 & -2 & 4 & -4 & 4 & -2 \\ $a$ & 0 & 2 & -4 & 12 & -4 & 2 \\ & 1 & -2 & 4 & -4 & 4 & -2 \\ & 2 & -1 & -2 & 2 & -2 & -1 \\ \hline \end{tabular} \end{center} For every finite subset $S$ of $\mathbb{Z} \times \mathbb{Z}$, define $A(S)=\sum_{(\mathbf{s},\mathbf{s}') \in S \times S} w(\mathbf{s}-\mathbf{s}')$. Prove that if $S$ is any finite nonempty subset of $\mathbb{Z} \times \mathbb{Z}$, then $A(S)>0$. (For example, if $S=\{(0,1),(0,2),(2,0),(3,1)\}$, then the terms in $A(S)$ are $12,12,12,12,4,4,0,0,0,0,-1,-1,-2,-2,-4,-4$.)
null
[ "algebra" ]
null
null
putnam_2011_b1
9061b5ef-cd70-5bb6-b47a-f81cb8a30901
train
theorem putnam_2011_b1 (h k : β„€) (hkpos : h > 0 ∧ k > 0) : βˆ€ Ξ΅ > 0, βˆƒ m n : β„€, m > 0 ∧ n > 0 ∧ Ξ΅ < |h * Real.sqrt m - k * Real.sqrt n| ∧ |h * Real.sqrt m - k * Real.sqrt n| < 2 * Ξ΅ := sorry
import Mathlib open Topology Filter Matrix /-- Let $h$ and $k$ be positive integers. Prove that for every $\epsilon>0$, there are positive integers $m$ and $n$ such that $\epsilon<|h\sqrt{m}-k\sqrt{n}|<2\epsilon$. -/ theorem putnam_2011_b1 (h k : β„€) (hkpos : h > 0 ∧ k > 0) : βˆ€ Ξ΅ > 0, βˆƒ m n : β„€, m > 0 ∧ n > 0 ∧ Ξ΅ < |h * Real.sqrt m - k * Real.sqrt n| ∧ |h * Real.sqrt m - k * Real.sqrt n| < 2 * Ξ΅ := by
import Mathlib open Topology Filter Matrix /-- Let $h$ and $k$ be positive integers. Prove that for every $\epsilon>0$, there are positive integers $m$ and $n$ such that $\epsilon<|h\sqrt{m}-k\sqrt{n}|<2\epsilon$. -/ theorem putnam_2011_b1 (h k : β„€) (hkpos : h > 0 ∧ k > 0) : βˆ€ Ξ΅ > 0, βˆƒ m n : β„€, m > 0 ∧ n > 0 ∧ Ξ΅ < |h * Real.sqrt m - k * Real.sqrt n| ∧ |h * Real.sqrt m - k * Real.sqrt n| < 2 * Ξ΅ := sorry
Let $h$ and $k$ be positive integers. Prove that for every $\epsilon>0$, there are positive integers $m$ and $n$ such that $\epsilon<|h\sqrt{m}-k\sqrt{n}|<2\epsilon$.
null
[ "algebra" ]
null
null
putnam_2020_a6
6de361fe-8e94-502a-8e10-f9a87200f9e9
train
abbrev putnam_2020_a6_solution : ℝ := sorry -- Real.pi / 4 /-- For a positive integer $N$, let $f_N$ be the function defined by \[ f_N(x) = \sum_{n=0}^N \frac{N+1/2-n}{(N+1)(2n+1)} \sin((2n+1)x). \] Determine the smallest constant $M$ such that $f_N(x) \leq M$ for all $N$ and all real $x$. -/ theorem putnam_2020_a6 (f : β„€ β†’ (ℝ β†’ ℝ)) (hf : f = fun N : β„€ => fun x : ℝ => βˆ‘ n in Finset.Icc 0 N, (N + 1/2 - n)/((N + 1)*(2*n + 1)) * Real.sin ((2*n + 1)*x)) : putnam_2020_a6_solution = sSup {y | βˆƒα΅‰ (N > 0) (x : ℝ), y = f N x} := sorry
import Mathlib open Filter Topology Set -- Real.pi / 4 /-- For a positive integer $N$, let $f_N$ be the function defined by \[ f_N(x) = \sum_{n=0}^N \frac{N+1/2-n}{(N+1)(2n+1)} \sin((2n+1)x). \] Determine the smallest constant $M$ such that $f_N(x) \leq M$ for all $N$ and all real $x$. -/ theorem putnam_2020_a6 (f : β„€ β†’ (ℝ β†’ ℝ)) (hf : f = fun N : β„€ => fun x : ℝ => βˆ‘ n in Finset.Icc 0 N, (N + 1/2 - n)/((N + 1)*(2*n + 1)) * Real.sin ((2*n + 1)*x)) : putnam_2020_a6_solution = sSup {y | βˆƒα΅‰ (N > 0) (x : ℝ), y = f N x} := by
import Mathlib open Filter Topology Set noncomputable abbrev putnam_2020_a6_solution : ℝ := sorry -- Real.pi / 4 /-- For a positive integer $N$, let $f_N$ be the function defined by \[ f_N(x) = \sum_{n=0}^N \frac{N+1/2-n}{(N+1)(2n+1)} \sin((2n+1)x). \] Determine the smallest constant $M$ such that $f_N(x) \leq M$ for all $N$ and all real $x$. -/ theorem putnam_2020_a6 (f : β„€ β†’ (ℝ β†’ ℝ)) (hf : f = fun N : β„€ => fun x : ℝ => βˆ‘ n in Finset.Icc 0 N, (N + 1/2 - n)/((N + 1)*(2*n + 1)) * Real.sin ((2*n + 1)*x)) : putnam_2020_a6_solution = sSup {y | βˆƒα΅‰ (N > 0) (x : ℝ), y = f N x} := sorry
For a positive integer $N$, let $f_N$ be the function defined by \[ f_N(x) = \sum_{n=0}^N \frac{N+1/2-n}{(N+1)(2n+1)} \sin((2n+1)x). \] Determine the smallest constant $M$ such that $f_N(x) \leq M$ for all $N$ and all real $x$.
The smallest constant $M$ is $\pi/4$.
[ "algebra" ]
null
null
putnam_1999_a1
a46cf9d2-0644-5937-8568-ece643ac8375
train
abbrev putnam_1999_a1_solution : Prop := sorry -- True /-- Find polynomials $f(x)$,$g(x)$, and $h(x)$, if they exist, such that for all $x$, \[|f(x)|-|g(x)|+h(x) = \begin{cases} -1 & \mbox{if $x<-1$} \\3x+2 & \mbox{if $-1 \leq x \leq 0$} \\-2x+2 & \mbox{if $x>0$.}\end{cases}\]? -/ theorem putnam_1999_a1 : putnam_1999_a1_solution ↔ βˆƒ f g h : Polynomial ℝ, βˆ€ x : ℝ, |f.eval x| - |g.eval x| + h.eval x = if x < -1 then -1 else (if (x ≀ 0) then 3 * x + 2 else -2 * x + 2) := sorry
import Mathlib -- Note: The actual problem asks to "find" such polynomials as well - but the solution does not give a set of all possible solutions. Hence, we would need to do the analysis ourselves, the following formalization should work. -- True /-- Find polynomials $f(x)$,$g(x)$, and $h(x)$, if they exist, such that for all $x$, \[|f(x)|-|g(x)|+h(x) = \begin{cases} -1 & \mbox{if $x<-1$} \\3x+2 & \mbox{if $-1 \leq x \leq 0$} \\-2x+2 & \mbox{if $x>0$.}\end{cases}\]? -/ theorem putnam_1999_a1 : putnam_1999_a1_solution ↔ βˆƒ f g h : Polynomial ℝ, βˆ€ x : ℝ, |f.eval x| - |g.eval x| + h.eval x = if x < -1 then -1 else (if (x ≀ 0) then 3 * x + 2 else -2 * x + 2) := by
import Mathlib -- Note: The actual problem asks to "find" such polynomials as well - but the solution does not give a set of all possible solutions. Hence, we would need to do the analysis ourselves, the following formalization should work. abbrev putnam_1999_a1_solution : Prop := sorry -- True /-- Find polynomials $f(x)$,$g(x)$, and $h(x)$, if they exist, such that for all $x$, \[|f(x)|-|g(x)|+h(x) = \begin{cases} -1 & \mbox{if $x<-1$} \\3x+2 & \mbox{if $-1 \leq x \leq 0$} \\-2x+2 & \mbox{if $x>0$.}\end{cases}\]? -/ theorem putnam_1999_a1 : putnam_1999_a1_solution ↔ βˆƒ f g h : Polynomial ℝ, βˆ€ x : ℝ, |f.eval x| - |g.eval x| + h.eval x = if x < -1 then -1 else (if (x ≀ 0) then 3 * x + 2 else -2 * x + 2) := sorry
Find polynomials $f(x)$,$g(x)$, and $h(x)$, if they exist, such that for all $x$, \[|f(x)|-|g(x)|+h(x) = \begin{cases} -1 & \mbox{if $x<-1$} \\3x+2 & \mbox{if $-1 \leq x \leq 0$} \\-2x+2 & \mbox{if $x>0$.}\end{cases}\]?
Show that the answer is such functions do exist.
[ "algebra" ]
null
null
putnam_1994_a1
1fb96b60-adf3-587b-b94b-c0944031c32b
train
theorem putnam_1994_a1 (a : β„• β†’ ℝ) (ha : βˆ€ n β‰₯ 1, 0 < a n ∧ a n ≀ a (2 * n) + a (2 * n + 1)) : Tendsto (fun N : β„• => βˆ‘ n : Set.Icc 1 N, a n) atTop atTop := sorry
import Mathlib open Filter Topology /-- Suppose that a sequence $a_1,a_2,a_3,\dots$ satisfies $0<a_n \leq a_{2n}+a_{2n+1}$ for all $n \geq 1$. Prove that the series $\sum_{n=1}^\infty a_n$ diverges. -/ theorem putnam_1994_a1 (a : β„• β†’ ℝ) (ha : βˆ€ n β‰₯ 1, 0 < a n ∧ a n ≀ a (2 * n) + a (2 * n + 1)) : Tendsto (fun N : β„• => βˆ‘ n : Set.Icc 1 N, a n) atTop atTop := by
import Mathlib open Filter Topology /-- Suppose that a sequence $a_1,a_2,a_3,\dots$ satisfies $0<a_n \leq a_{2n}+a_{2n+1}$ for all $n \geq 1$. Prove that the series $\sum_{n=1}^\infty a_n$ diverges. -/ theorem putnam_1994_a1 (a : β„• β†’ ℝ) (ha : βˆ€ n β‰₯ 1, 0 < a n ∧ a n ≀ a (2 * n) + a (2 * n + 1)) : Tendsto (fun N : β„• => βˆ‘ n : Set.Icc 1 N, a n) atTop atTop := sorry
Suppose that a sequence $a_1,a_2,a_3,\dots$ satisfies $0<a_n \leq a_{2n}+a_{2n+1}$ for all $n \geq 1$. Prove that the series $\sum_{n=1}^\infty a_n$ diverges.
null
[ "analysis" ]
null
null
putnam_2001_b6
e4e0768c-ff79-5f03-86b0-3e04b549e84a
train
abbrev putnam_2001_b6_solution : Prop := sorry -- True /-- Assume that $(a_n)_{n \geq 1}$ is an increasing sequence of positive real numbers such that $\lim a_n/n=0$. Must there exist infinitely many positive integers $n$ such that $a_{n-i}+a_{n+i}<2a_n$ for $i=1,2,\ldots,n-1$? -/ theorem putnam_2001_b6 : (βˆ€ a : β„€ β†’ ℝ, (βˆ€ n β‰₯ 1, a n > 0 ∧ a n < a (n + 1)) β†’ (Tendsto (fun n : β„€ => a (n + 1) / (n + 1)) atTop (𝓝 0)) β†’ {n : β„€ | n > 0 ∧ (βˆ€ i ∈ Set.Icc 1 (n - 1), a (n - i) + a (n + i) < 2 * a n)}.Infinite) ↔ putnam_2001_b6_solution := sorry
import Mathlib open Topology Filter Polynomial Set -- Note: uses (β„€ β†’ ℝ) instead of (Set.Ici 1 β†’ ℝ) -- True /-- Assume that $(a_n)_{n \geq 1}$ is an increasing sequence of positive real numbers such that $\lim a_n/n=0$. Must there exist infinitely many positive integers $n$ such that $a_{n-i}+a_{n+i}<2a_n$ for $i=1,2,\ldots,n-1$? -/ theorem putnam_2001_b6 : (βˆ€ a : β„€ β†’ ℝ, (βˆ€ n β‰₯ 1, a n > 0 ∧ a n < a (n + 1)) β†’ (Tendsto (fun n : β„€ => a (n + 1) / (n + 1)) atTop (𝓝 0)) β†’ {n : β„€ | n > 0 ∧ (βˆ€ i ∈ Set.Icc 1 (n - 1), a (n - i) + a (n + i) < 2 * a n)}.Infinite) ↔ putnam_2001_b6_solution := by
import Mathlib open Topology Filter Polynomial Set -- Note: uses (β„€ β†’ ℝ) instead of (Set.Ici 1 β†’ ℝ) abbrev putnam_2001_b6_solution : Prop := sorry -- True /-- Assume that $(a_n)_{n \geq 1}$ is an increasing sequence of positive real numbers such that $\lim a_n/n=0$. Must there exist infinitely many positive integers $n$ such that $a_{n-i}+a_{n+i}<2a_n$ for $i=1,2,\ldots,n-1$? -/ theorem putnam_2001_b6 : (βˆ€ a : β„€ β†’ ℝ, (βˆ€ n β‰₯ 1, a n > 0 ∧ a n < a (n + 1)) β†’ (Tendsto (fun n : β„€ => a (n + 1) / (n + 1)) atTop (𝓝 0)) β†’ {n : β„€ | n > 0 ∧ (βˆ€ i ∈ Set.Icc 1 (n - 1), a (n - i) + a (n + i) < 2 * a n)}.Infinite) ↔ putnam_2001_b6_solution := sorry
Assume that $(a_n)_{n \geq 1}$ is an increasing sequence of positive real numbers such that $\lim a_n/n=0$. Must there exist infinitely many positive integers $n$ such that $a_{n-i}+a_{n+i}<2a_n$ for $i=1,2,\ldots,n-1$?
Show that the answer is yes, there must exist infinitely many such $n$.
[ "analysis" ]
null
null
putnam_1986_a3
a0b055ec-7576-54d1-bc5d-148c26307f97
train
abbrev putnam_1986_a3_solution : ℝ := sorry -- Real.pi / 2 /-- Evaluate $\sum_{n=0}^\infty \mathrm{Arccot}(n^2+n+1)$, where $\mathrm{Arccot}\,t$ for $t \geq 0$ denotes the number $\theta$ in the interval $0 < \theta \leq \pi/2$ with $\cot \theta = t$. -/ theorem putnam_1986_a3 (cot : ℝ β†’ ℝ) (fcot : cot = fun ΞΈ ↦ cos ΞΈ / sin ΞΈ) (arccot : ℝ β†’ ℝ) (harccot : βˆ€ t : ℝ, t β‰₯ 0 β†’ arccot t ∈ Set.Ioc 0 (Real.pi / 2) ∧ cot (arccot t) = t) : (βˆ‘' n : β„•, arccot (n ^ 2 + n + 1) = putnam_1986_a3_solution) := sorry
import Mathlib open Real -- Real.pi / 2 /-- Evaluate $\sum_{n=0}^\infty \mathrm{Arccot}(n^2+n+1)$, where $\mathrm{Arccot}\,t$ for $t \geq 0$ denotes the number $\theta$ in the interval $0 < \theta \leq \pi/2$ with $\cot \theta = t$. -/ theorem putnam_1986_a3 (cot : ℝ β†’ ℝ) (fcot : cot = fun ΞΈ ↦ cos ΞΈ / sin ΞΈ) (arccot : ℝ β†’ ℝ) (harccot : βˆ€ t : ℝ, t β‰₯ 0 β†’ arccot t ∈ Set.Ioc 0 (Real.pi / 2) ∧ cot (arccot t) = t) : (βˆ‘' n : β„•, arccot (n ^ 2 + n + 1) = putnam_1986_a3_solution) := by
import Mathlib open Real noncomputable abbrev putnam_1986_a3_solution : ℝ := sorry -- Real.pi / 2 /-- Evaluate $\sum_{n=0}^\infty \mathrm{Arccot}(n^2+n+1)$, where $\mathrm{Arccot}\,t$ for $t \geq 0$ denotes the number $\theta$ in the interval $0 < \theta \leq \pi/2$ with $\cot \theta = t$. -/ theorem putnam_1986_a3 (cot : ℝ β†’ ℝ) (fcot : cot = fun ΞΈ ↦ cos ΞΈ / sin ΞΈ) (arccot : ℝ β†’ ℝ) (harccot : βˆ€ t : ℝ, t β‰₯ 0 β†’ arccot t ∈ Set.Ioc 0 (Real.pi / 2) ∧ cot (arccot t) = t) : (βˆ‘' n : β„•, arccot (n ^ 2 + n + 1) = putnam_1986_a3_solution) := sorry
Evaluate $\sum_{n=0}^\infty \mathrm{Arccot}(n^2+n+1)$, where $\mathrm{Arccot}\,t$ for $t \geq 0$ denotes the number $\theta$ in the interval $0 < \theta \leq \pi/2$ with $\cot \theta = t$.
Show that the sum equals $\pi/2$.
[ "analysis" ]
null
null
putnam_1972_b5
b8cf64b5-9ab2-5578-b9ff-9fae8a34266e
train
theorem putnam_1972_b5 (A B C D : EuclideanSpace ℝ (Fin 3)) (hnonplanar : Β¬Coplanar ℝ {A, B, C, D}) (hangles : ∠ A B C = ∠ C D A ∧ ∠ B C D = ∠ D A B) : dist A B = dist C D ∧ dist B C = dist D A := sorry
import Mathlib open EuclideanGeometry Set Metric /-- Let $ABCD$ be a skew (non-planar) quadrilateral. Prove that if $\angle ABC = \angle CDA$ and $\angle BCD = \angle DAB$, then $AB = CD$ and $AD = BC$. -/ theorem putnam_1972_b5 (A B C D : EuclideanSpace ℝ (Fin 3)) (hnonplanar : Β¬Coplanar ℝ {A, B, C, D}) (hangles : ∠ A B C = ∠ C D A ∧ ∠ B C D = ∠ D A B) : dist A B = dist C D ∧ dist B C = dist D A := by
import Mathlib open EuclideanGeometry Set Metric /-- Let $ABCD$ be a skew (non-planar) quadrilateral. Prove that if $\angle ABC = \angle CDA$ and $\angle BCD = \angle DAB$, then $AB = CD$ and $AD = BC$. -/ theorem putnam_1972_b5 (A B C D : EuclideanSpace ℝ (Fin 3)) (hnonplanar : Β¬Coplanar ℝ {A, B, C, D}) (hangles : ∠ A B C = ∠ C D A ∧ ∠ B C D = ∠ D A B) : dist A B = dist C D ∧ dist B C = dist D A := sorry
Let $ABCD$ be a skew (non-planar) quadrilateral. Prove that if $\angle ABC = \angle CDA$ and $\angle BCD = \angle DAB$, then $AB = CD$ and $AD = BC$.
null
[ "geometry" ]
null
null
putnam_1998_a2
d564c555-f360-5a7e-8b46-9f7ac1cf6f27
train
theorem putnam_1998_a2 (quadrant : (EuclideanSpace ℝ (Fin 2)) β†’ Prop) (isarc : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ Prop) (hquadrant : βˆ€ P, quadrant P ↔ P 0 > 0 ∧ P 1 > 0 ∧ dist 0 P = 1) (hisarc : βˆ€ P Q, isarc P Q ↔ quadrant P ∧ quadrant Q ∧ P 0 > Q 0) (arc : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ Set (EuclideanSpace ℝ (Fin 2))) (harc : arc = fun P Q ↦ {R : EuclideanSpace ℝ (Fin 2) | quadrant R ∧ P 0 > R 0 ∧ R 0 > Q 0}) (A B : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ ℝ) (hA : A = fun P Q ↦ (MeasureTheory.volume {S : EuclideanSpace ℝ (Fin 2) | βˆƒ R ∈ arc P Q, R 0 = S 0 ∧ R 1 > S 1 ∧ S 1 > 0}).toReal) (hB : B = fun P Q ↦ (MeasureTheory.volume {S : EuclideanSpace ℝ (Fin 2) | βˆƒ R ∈ arc P Q, R 1 = S 1 ∧ R 0 > S 0 ∧ S 0 > 0}).toReal) : (βˆƒ f : ℝ β†’ ℝ, βˆ€ P Q : EuclideanSpace ℝ (Fin 2), isarc P Q β†’ A P Q + B P Q = f (InnerProductGeometry.angle P Q)) := sorry
import Mathlib /-- Let $s$ be any arc of the unit circle lying entirely in the first quadrant. Let $A$ be the area of the region lying below $s$ and above the $x$-axis and let $B$ be the area of the region lying to the right of the $y$-axis and to the left of $s$. Prove that $A+B$ depends only on the arc length, and not on the position, of $s$. -/ theorem putnam_1998_a2 (quadrant : (EuclideanSpace ℝ (Fin 2)) β†’ Prop) (isarc : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ Prop) (hquadrant : βˆ€ P, quadrant P ↔ P 0 > 0 ∧ P 1 > 0 ∧ dist 0 P = 1) (hisarc : βˆ€ P Q, isarc P Q ↔ quadrant P ∧ quadrant Q ∧ P 0 > Q 0) (arc : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ Set (EuclideanSpace ℝ (Fin 2))) (harc : arc = fun P Q ↦ {R : EuclideanSpace ℝ (Fin 2) | quadrant R ∧ P 0 > R 0 ∧ R 0 > Q 0}) (A B : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ ℝ) (hA : A = fun P Q ↦ (MeasureTheory.volume {S : EuclideanSpace ℝ (Fin 2) | βˆƒ R ∈ arc P Q, R 0 = S 0 ∧ R 1 > S 1 ∧ S 1 > 0}).toReal) (hB : B = fun P Q ↦ (MeasureTheory.volume {S : EuclideanSpace ℝ (Fin 2) | βˆƒ R ∈ arc P Q, R 1 = S 1 ∧ R 0 > S 0 ∧ S 0 > 0}).toReal) : (βˆƒ f : ℝ β†’ ℝ, βˆ€ P Q : EuclideanSpace ℝ (Fin 2), isarc P Q β†’ A P Q + B P Q = f (InnerProductGeometry.angle P Q)) := by
import Mathlib /-- Let $s$ be any arc of the unit circle lying entirely in the first quadrant. Let $A$ be the area of the region lying below $s$ and above the $x$-axis and let $B$ be the area of the region lying to the right of the $y$-axis and to the left of $s$. Prove that $A+B$ depends only on the arc length, and not on the position, of $s$. -/ theorem putnam_1998_a2 (quadrant : (EuclideanSpace ℝ (Fin 2)) β†’ Prop) (isarc : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ Prop) (hquadrant : βˆ€ P, quadrant P ↔ P 0 > 0 ∧ P 1 > 0 ∧ dist 0 P = 1) (hisarc : βˆ€ P Q, isarc P Q ↔ quadrant P ∧ quadrant Q ∧ P 0 > Q 0) (arc : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ Set (EuclideanSpace ℝ (Fin 2))) (harc : arc = fun P Q ↦ {R : EuclideanSpace ℝ (Fin 2) | quadrant R ∧ P 0 > R 0 ∧ R 0 > Q 0}) (A B : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ ℝ) (hA : A = fun P Q ↦ (MeasureTheory.volume {S : EuclideanSpace ℝ (Fin 2) | βˆƒ R ∈ arc P Q, R 0 = S 0 ∧ R 1 > S 1 ∧ S 1 > 0}).toReal) (hB : B = fun P Q ↦ (MeasureTheory.volume {S : EuclideanSpace ℝ (Fin 2) | βˆƒ R ∈ arc P Q, R 1 = S 1 ∧ R 0 > S 0 ∧ S 0 > 0}).toReal) : (βˆƒ f : ℝ β†’ ℝ, βˆ€ P Q : EuclideanSpace ℝ (Fin 2), isarc P Q β†’ A P Q + B P Q = f (InnerProductGeometry.angle P Q)) := sorry
Let $s$ be any arc of the unit circle lying entirely in the first quadrant. Let $A$ be the area of the region lying below $s$ and above the $x$-axis and let $B$ be the area of the region lying to the right of the $y$-axis and to the left of $s$. Prove that $A+B$ depends only on the arc length, and not on the position, of $s$.
null
[ "geometry" ]
null
null
putnam_1970_a2
0ddafeb3-2554-53ad-baed-46702ff99461
train
theorem putnam_1970_a2 (A B C D E F G : ℝ) (hle : B^2 - 4*A*C < 0) : βˆƒ Ξ΄ > 0, Β¬βˆƒ x y : ℝ, x^2 + y^2 ∈ Set.Ioo 0 (Ξ΄^2) ∧ A*x^2 + B*x*y + C*y^2 + D*x^3 + E*x^2*y + F*x*y^2 + G*y^3 = 0 := sorry
import Mathlib open Metric Set EuclideanGeometry /-- Let $A$, $B$, $C$, $D$, $E$, $F$, and $G$ be real numbers satisfying $B^2 - 4AC < 0$. Prove that there exists some $\delta > 0$ such that no points $(x, y)$ in the punctured disk $0 < x^2 + y^2 < \delta$ satisfy $$Ax^2 + Bxy + Cy^2 + Dx^3 + Ex^2y + Fxy^2 + Gy^3 = 0.$$ -/ theorem putnam_1970_a2 (A B C D E F G : ℝ) (hle : B^2 - 4*A*C < 0) : βˆƒ Ξ΄ > 0, Β¬βˆƒ x y : ℝ, x^2 + y^2 ∈ Set.Ioo 0 (Ξ΄^2) ∧ A*x^2 + B*x*y + C*y^2 + D*x^3 + E*x^2*y + F*x*y^2 + G*y^3 = 0 := by
import Mathlib open Metric Set EuclideanGeometry /-- Let $A$, $B$, $C$, $D$, $E$, $F$, and $G$ be real numbers satisfying $B^2 - 4AC < 0$. Prove that there exists some $\delta > 0$ such that no points $(x, y)$ in the punctured disk $0 < x^2 + y^2 < \delta$ satisfy $$Ax^2 + Bxy + Cy^2 + Dx^3 + Ex^2y + Fxy^2 + Gy^3 = 0.$$ -/ theorem putnam_1970_a2 (A B C D E F G : ℝ) (hle : B^2 - 4*A*C < 0) : βˆƒ Ξ΄ > 0, Β¬βˆƒ x y : ℝ, x^2 + y^2 ∈ Set.Ioo 0 (Ξ΄^2) ∧ A*x^2 + B*x*y + C*y^2 + D*x^3 + E*x^2*y + F*x*y^2 + G*y^3 = 0 := sorry
Let $A$, $B$, $C$, $D$, $E$, $F$, and $G$ be real numbers satisfying $B^2 - 4AC < 0$. Prove that there exists some $\delta > 0$ such that no points $(x, y)$ in the punctured disk $0 < x^2 + y^2 < \delta$ satisfy $$Ax^2 + Bxy + Cy^2 + Dx^3 + Ex^2y + Fxy^2 + Gy^3 = 0.$$
null
[ "analysis", "algebra" ]
null
null
putnam_1982_a2
00b73bd0-fcab-576b-98a7-b004695f369c
train
abbrev putnam_1982_a2_solution : Prop := sorry -- True /-- Let $B_n(x) = 1^x + 2^x + \dots + n^x$ and let $f(n) = \frac{B_n(\log_n 2)}{(n \log_2 n)^2}$. Does $f(2) + f(3) + f(4) + \dots$ converge? -/ theorem putnam_1982_a2 (B : β„• β†’ ℝ β†’ ℝ) (hB : B = fun (n : β„•) (x : ℝ) ↦ βˆ‘ k in Finset.Icc 1 n, (k : ℝ) ^ x) (f : β„• β†’ ℝ) (hf : f = fun n ↦ B n (logb n 2) / (n * logb 2 n) ^ 2) : (βˆƒ L : ℝ, Tendsto (fun N ↦ βˆ‘ j in Finset.Icc 2 N, f j) atTop (𝓝 L)) ↔ putnam_1982_a2_solution := sorry
import Mathlib open Set Function Filter Topology Polynomial Real -- True /-- Let $B_n(x) = 1^x + 2^x + \dots + n^x$ and let $f(n) = \frac{B_n(\log_n 2)}{(n \log_2 n)^2}$. Does $f(2) + f(3) + f(4) + \dots$ converge? -/ theorem putnam_1982_a2 (B : β„• β†’ ℝ β†’ ℝ) (hB : B = fun (n : β„•) (x : ℝ) ↦ βˆ‘ k in Finset.Icc 1 n, (k : ℝ) ^ x) (f : β„• β†’ ℝ) (hf : f = fun n ↦ B n (logb n 2) / (n * logb 2 n) ^ 2) : (βˆƒ L : ℝ, Tendsto (fun N ↦ βˆ‘ j in Finset.Icc 2 N, f j) atTop (𝓝 L)) ↔ putnam_1982_a2_solution := by
import Mathlib open Set Function Filter Topology Polynomial Real abbrev putnam_1982_a2_solution : Prop := sorry -- True /-- Let $B_n(x) = 1^x + 2^x + \dots + n^x$ and let $f(n) = \frac{B_n(\log_n 2)}{(n \log_2 n)^2}$. Does $f(2) + f(3) + f(4) + \dots$ converge? -/ theorem putnam_1982_a2 (B : β„• β†’ ℝ β†’ ℝ) (hB : B = fun (n : β„•) (x : ℝ) ↦ βˆ‘ k in Finset.Icc 1 n, (k : ℝ) ^ x) (f : β„• β†’ ℝ) (hf : f = fun n ↦ B n (logb n 2) / (n * logb 2 n) ^ 2) : (βˆƒ L : ℝ, Tendsto (fun N ↦ βˆ‘ j in Finset.Icc 2 N, f j) atTop (𝓝 L)) ↔ putnam_1982_a2_solution := sorry
Let $B_n(x) = 1^x + 2^x + \dots + n^x$ and let $f(n) = \frac{B_n(\log_n 2)}{(n \log_2 n)^2}$. Does $f(2) + f(3) + f(4) + \dots$ converge?
Prove that the series converges.
[ "algebra" ]
null
null
putnam_1993_a5
b2503ca3-5680-595c-ab88-539f4750df04
train
theorem putnam_1993_a5 : ¬Irrational ((∫ x in Set.Ioo (-100) (-10), (((x ^ 2 - x) / (x ^ 3 - 3 * x + 1)) ^ 2)) + (∫ x in Set.Ioo (1 / 101) (1 / 11), (((x ^ 2 - x) / (x ^ 3 - 3 * x + 1)) ^ 2)) + (∫ x in Set.Ioo (101 / 100) (11 / 10), (((x ^ 2 - x) / (x ^ 3 - 3 * x + 1)) ^ 2))) := sorry
import Mathlib /-- Show that $\int_{-100}^{-10} (\frac{x^2-x}{x^3-3x+1})^2\,dx+\int_{\frac{1}{101}}^{\frac{1}{11}} (\frac{x^2-x}{x^3-3x+1})^2\,dx+\int_{\frac{101}{100}}^{\frac{11}{10}} (\frac{x^2-x}{x^3-3x+1})^2\,dx$ is a rational number. -/ theorem putnam_1993_a5 : ¬Irrational ((∫ x in Set.Ioo (-100) (-10), (((x ^ 2 - x) / (x ^ 3 - 3 * x + 1)) ^ 2)) + (∫ x in Set.Ioo (1 / 101) (1 / 11), (((x ^ 2 - x) / (x ^ 3 - 3 * x + 1)) ^ 2)) + (∫ x in Set.Ioo (101 / 100) (11 / 10), (((x ^ 2 - x) / (x ^ 3 - 3 * x + 1)) ^ 2))) := by
import Mathlib /-- Show that $\int_{-100}^{-10} (\frac{x^2-x}{x^3-3x+1})^2\,dx+\int_{\frac{1}{101}}^{\frac{1}{11}} (\frac{x^2-x}{x^3-3x+1})^2\,dx+\int_{\frac{101}{100}}^{\frac{11}{10}} (\frac{x^2-x}{x^3-3x+1})^2\,dx$ is a rational number. -/ theorem putnam_1993_a5 : ¬Irrational ((∫ x in Set.Ioo (-100) (-10), (((x ^ 2 - x) / (x ^ 3 - 3 * x + 1)) ^ 2)) + (∫ x in Set.Ioo (1 / 101) (1 / 11), (((x ^ 2 - x) / (x ^ 3 - 3 * x + 1)) ^ 2)) + (∫ x in Set.Ioo (101 / 100) (11 / 10), (((x ^ 2 - x) / (x ^ 3 - 3 * x + 1)) ^ 2))) := sorry
Show that $\int_{-100}^{-10} (\frac{x^2-x}{x^3-3x+1})^2\,dx+\int_{\frac{1}{101}}^{\frac{1}{11}} (\frac{x^2-x}{x^3-3x+1})^2\,dx+\int_{\frac{101}{100}}^{\frac{11}{10}} (\frac{x^2-x}{x^3-3x+1})^2\,dx$ is a rational number.
null
[ "analysis" ]
null
null
putnam_1987_b6
268391ba-acb3-536d-b97e-f1bfc1ce45bc
train
theorem putnam_1987_b6 (p : β„•) (F : Type*) [Field F] [Fintype F] (S : Set F) (hp : Odd p ∧ Nat.Prime p) (Fcard : Fintype.card F = p ^ 2) (Snz : βˆ€ x ∈ S, x β‰  0) (Scard : S.ncard = ((p : β„€) ^ 2 - 1) / 2) (hS : βˆ€ a : F, a β‰  0 β†’ Xor' (a ∈ S) (-a ∈ S)) : (Even ((S ∩ {x | βˆƒ a ∈ S, x = 2 * a}).ncard)) := sorry
import Mathlib open MvPolynomial Real Nat Filter Topology /-- Let $F$ be the field of $p^2$ elements, where $p$ is an odd prime. Suppose $S$ is a set of $(p^2-1)/2$ distinct nonzero elements of $F$ with the property that for each $a\neq 0$ in $F$, exactly one of $a$ and $-a$ is in $S$. Let $N$ be the number of elements in the intersection $S \cap \{2a: a \in S\}$. Prove that $N$ is even. -/ theorem putnam_1987_b6 (p : β„•) (F : Type*) [Field F] [Fintype F] (S : Set F) (hp : Odd p ∧ Nat.Prime p) (Fcard : Fintype.card F = p ^ 2) (Snz : βˆ€ x ∈ S, x β‰  0) (Scard : S.ncard = ((p : β„€) ^ 2 - 1) / 2) (hS : βˆ€ a : F, a β‰  0 β†’ Xor' (a ∈ S) (-a ∈ S)) : (Even ((S ∩ {x | βˆƒ a ∈ S, x = 2 * a}).ncard)) := by
import Mathlib open MvPolynomial Real Nat Filter Topology /-- Let $F$ be the field of $p^2$ elements, where $p$ is an odd prime. Suppose $S$ is a set of $(p^2-1)/2$ distinct nonzero elements of $F$ with the property that for each $a\neq 0$ in $F$, exactly one of $a$ and $-a$ is in $S$. Let $N$ be the number of elements in the intersection $S \cap \{2a: a \in S\}$. Prove that $N$ is even. -/ theorem putnam_1987_b6 (p : β„•) (F : Type*) [Field F] [Fintype F] (S : Set F) (hp : Odd p ∧ Nat.Prime p) (Fcard : Fintype.card F = p ^ 2) (Snz : βˆ€ x ∈ S, x β‰  0) (Scard : S.ncard = ((p : β„€) ^ 2 - 1) / 2) (hS : βˆ€ a : F, a β‰  0 β†’ Xor' (a ∈ S) (-a ∈ S)) : (Even ((S ∩ {x | βˆƒ a ∈ S, x = 2 * a}).ncard)) := sorry
Let $F$ be the field of $p^2$ elements, where $p$ is an odd prime. Suppose $S$ is a set of $(p^2-1)/2$ distinct nonzero elements of $F$ with the property that for each $a\neq 0$ in $F$, exactly one of $a$ and $-a$ is in $S$. Let $N$ be the number of elements in the intersection $S \cap \{2a: a \in S\}$. Prove that $N$ is even.
null
[ "abstract_algebra" ]
null
null
putnam_2022_b2
87d17693-cac3-5990-aff5-daf99a0869c3
train
abbrev putnam_2022_b2_solution : Set β„• := sorry -- {1, 7} /-- Let $\times$ represent the cross product in $\mathbb{R}^3$. For what positive integers $n$ does there exist a set $S \subset \mathbb{R}^3$ with exactly $n$ elements such that $S=\{v \times w:v,w \in S\}$? -/ theorem putnam_2022_b2 (n : β„•) (P : Finset (Fin 3 β†’ ℝ) β†’ Prop) (P_def : βˆ€ S : Finset (Fin 3 β†’ ℝ), P S ↔ (S = {u : Fin 3 β†’ ℝ | βˆƒ v w : S, u = crossProduct v w})) : (0 < n ∧ βˆƒ S : Finset (Fin 3 β†’ ℝ), S.card = n ∧ P S) ↔ n ∈ putnam_2022_b2_solution := sorry
import Mathlib open Polynomial -- {1, 7} /-- Let $\times$ represent the cross product in $\mathbb{R}^3$. For what positive integers $n$ does there exist a set $S \subset \mathbb{R}^3$ with exactly $n$ elements such that $S=\{v \times w:v,w \in S\}$? -/ theorem putnam_2022_b2 (n : β„•) (P : Finset (Fin 3 β†’ ℝ) β†’ Prop) (P_def : βˆ€ S : Finset (Fin 3 β†’ ℝ), P S ↔ (S = {u : Fin 3 β†’ ℝ | βˆƒ v w : S, u = crossProduct v w})) : (0 < n ∧ βˆƒ S : Finset (Fin 3 β†’ ℝ), S.card = n ∧ P S) ↔ n ∈ putnam_2022_b2_solution := by
import Mathlib open Polynomial abbrev putnam_2022_b2_solution : Set β„• := sorry -- {1, 7} /-- Let $\times$ represent the cross product in $\mathbb{R}^3$. For what positive integers $n$ does there exist a set $S \subset \mathbb{R}^3$ with exactly $n$ elements such that $S=\{v \times w:v,w \in S\}$? -/ theorem putnam_2022_b2 (n : β„•) (P : Finset (Fin 3 β†’ ℝ) β†’ Prop) (P_def : βˆ€ S : Finset (Fin 3 β†’ ℝ), P S ↔ (S = {u : Fin 3 β†’ ℝ | βˆƒ v w : S, u = crossProduct v w})) : (0 < n ∧ βˆƒ S : Finset (Fin 3 β†’ ℝ), S.card = n ∧ P S) ↔ n ∈ putnam_2022_b2_solution := sorry
Let $\times$ represent the cross product in $\mathbb{R}^3$. For what positive integers $n$ does there exist a set $S \subset \mathbb{R}^3$ with exactly $n$ elements such that $S=\{v \times w:v,w \in S\}$?
Show that the possible values of $n$ are $1$ and $7$.
[ "algebra" ]
null
null
putnam_1968_a4
c49c3f88-80fc-5cee-85a8-f6e221b4af65
train
theorem putnam_1968_a4 (n : β„•) (S : Fin n β†’ (EuclideanSpace ℝ (Fin 3))) (hS : βˆ€ i : Fin n, dist 0 (S i) = 1) : βˆ‘ i : Fin n, βˆ‘ j : Fin n, (if i < j then (dist (S i) (S j))^2 else (0 : ℝ)) ≀ n^2 := sorry
import Mathlib open Finset /-- Prove that the sum of the squares of the distances between any $n$ points on the unit sphere $\{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ is at most $n^2$. -/ theorem putnam_1968_a4 (n : β„•) (S : Fin n β†’ (EuclideanSpace ℝ (Fin 3))) (hS : βˆ€ i : Fin n, dist 0 (S i) = 1) : βˆ‘ i : Fin n, βˆ‘ j : Fin n, (if i < j then (dist (S i) (S j))^2 else (0 : ℝ)) ≀ n^2 := by
import Mathlib open Finset /-- Prove that the sum of the squares of the distances between any $n$ points on the unit sphere $\{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ is at most $n^2$. -/ theorem putnam_1968_a4 (n : β„•) (S : Fin n β†’ (EuclideanSpace ℝ (Fin 3))) (hS : βˆ€ i : Fin n, dist 0 (S i) = 1) : βˆ‘ i : Fin n, βˆ‘ j : Fin n, (if i < j then (dist (S i) (S j))^2 else (0 : ℝ)) ≀ n^2 := sorry
Prove that the sum of the squares of the distances between any $n$ points on the unit sphere $\{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ is at most $n^2$.
null
[ "geometry", "algebra" ]
null
null
putnam_1986_a2
ccfc0deb-3741-5142-8537-552e38712b97
train
abbrev putnam_1986_a2_solution : β„• := sorry -- 3 /-- What is the units (i.e., rightmost) digit of \[ \left\lfloor \frac{10^{20000}}{10^{100}+3}\right\rfloor ? \] -/ theorem putnam_1986_a2 : (Nat.floor ((10 ^ 20000 : ℝ) / (10 ^ 100 + 3)) % 10 = putnam_1986_a2_solution) := sorry
import Mathlib -- 3 /-- What is the units (i.e., rightmost) digit of \[ \left\lfloor \frac{10^{20000}}{10^{100}+3}\right\rfloor ? \] -/ theorem putnam_1986_a2 : (Nat.floor ((10 ^ 20000 : ℝ) / (10 ^ 100 + 3)) % 10 = putnam_1986_a2_solution) := by
import Mathlib abbrev putnam_1986_a2_solution : β„• := sorry -- 3 /-- What is the units (i.e., rightmost) digit of \[ \left\lfloor \frac{10^{20000}}{10^{100}+3}\right\rfloor ? \] -/ theorem putnam_1986_a2 : (Nat.floor ((10 ^ 20000 : ℝ) / (10 ^ 100 + 3)) % 10 = putnam_1986_a2_solution) := sorry
What is the units (i.e., rightmost) digit of \[ \left\lfloor \frac{10^{20000}}{10^{100}+3}\right\rfloor ? \]
Show that the answer is $3$.
[ "algebra" ]
null
null
putnam_1978_b6
9cce7deb-47fb-525e-9d59-b0e6bc92ef7d
train
theorem putnam_1978_b6 (a : β„• β†’ β„• β†’ ℝ) (ha : βˆ€ i j, a i j ∈ Icc 0 1) (m n : β„•) (mnpos : m > 0 ∧ n > 0) : ((βˆ‘ i in Finset.Icc 1 n, βˆ‘ j in Finset.Icc 1 (m * i), a i j / i) ^ 2 ≀ 2 * m * βˆ‘ i in Finset.Icc 1 n, βˆ‘ j in Finset.Icc 1 (m * i), a i j) := sorry
import Mathlib open Set Real Filter Topology Polynomial /-- Let $a_{ij}$ be real numbers in $[0, 1]$. Show that \[ \left( \sum_{i=1}^n \sum_{j=1}^{mi} \frac{a_{ij}}{i} \right) ^2 \leq 2m \sum_{i=1}^n \sum_{j=1}^{mi} a_{ij}. \] -/ theorem putnam_1978_b6 (a : β„• β†’ β„• β†’ ℝ) (ha : βˆ€ i j, a i j ∈ Icc 0 1) (m n : β„•) (mnpos : m > 0 ∧ n > 0) : ((βˆ‘ i in Finset.Icc 1 n, βˆ‘ j in Finset.Icc 1 (m * i), a i j / i) ^ 2 ≀ 2 * m * βˆ‘ i in Finset.Icc 1 n, βˆ‘ j in Finset.Icc 1 (m * i), a i j) := by
import Mathlib open Set Real Filter Topology Polynomial /-- Let $a_{ij}$ be real numbers in $[0, 1]$. Show that \[ \left( \sum_{i=1}^n \sum_{j=1}^{mi} \frac{a_{ij}}{i} \right) ^2 \leq 2m \sum_{i=1}^n \sum_{j=1}^{mi} a_{ij}. \] -/ theorem putnam_1978_b6 (a : β„• β†’ β„• β†’ ℝ) (ha : βˆ€ i j, a i j ∈ Icc 0 1) (m n : β„•) (mnpos : m > 0 ∧ n > 0) : ((βˆ‘ i in Finset.Icc 1 n, βˆ‘ j in Finset.Icc 1 (m * i), a i j / i) ^ 2 ≀ 2 * m * βˆ‘ i in Finset.Icc 1 n, βˆ‘ j in Finset.Icc 1 (m * i), a i j) := sorry
Let $a_{ij}$ be real numbers in $[0, 1]$. Show that \[ \left( \sum_{i=1}^n \sum_{j=1}^{mi} \frac{a_{ij}}{i} \right) ^2 \leq 2m \sum_{i=1}^n \sum_{j=1}^{mi} a_{ij}. \]
null
[ "algebra" ]
null
null