name
stringlengths 7
15
| uuid
stringlengths 36
36
| split
stringclasses 1
value | lean4_statement
stringlengths 75
2.06k
| full_text_no_abbrv
stringlengths 223
2.05k
| full_text
stringlengths 226
2.1k
| lean4_proof
stringclasses 1
value | informal_statement
stringlengths 4
898
| informal_solution
stringlengths 4
282
| tags
sequencelengths 0
3
| coq_statement
stringclasses 1
value | isabelle_statement
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|
putnam_1968_a6 | 06c7b830-8ee5-503a-b0d6-27772b0df79b | train | abbrev putnam_1968_a6_solution : Set β[X] := sorry
-- {X - 1, -(X - 1), X + 1, -(X + 1), X^2 + X - 1, -(X^2 + X - 1), X^2 - X - 1, -(X^2 - X - 1), X^3 + X^2 - X - 1, -(X^3 + X^2 - X - 1), X^3 - X^2 - X + 1, -(X^3 - X^2 - X + 1)}
/--
Find all polynomials of the form $\sum_{0}^{n} a_{i} x^{n-i}$ with $n \ge 1$ and $a_i = \pm 1$ for all $0 \le i \le n$ whose roots are all real.
-/
theorem putnam_1968_a6
: {P : β[X] | P.natDegree β₯ 1 β§ (β k β Set.Icc 0 P.natDegree, P.coeff k = 1 β¨ P.coeff k = -1) β§
β z : β, P.eval z = 0 β β r : β, r = z} = putnam_1968_a6_solution :=
sorry | import Mathlib
open Finset Polynomial
-- {X - 1, -(X - 1), X + 1, -(X + 1), X^2 + X - 1, -(X^2 + X - 1), X^2 - X - 1, -(X^2 - X - 1), X^3 + X^2 - X - 1, -(X^3 + X^2 - X - 1), X^3 - X^2 - X + 1, -(X^3 - X^2 - X + 1)}
/--
Find all polynomials of the form $\sum_{0}^{n} a_{i} x^{n-i}$ with $n \ge 1$ and $a_i = \pm 1$ for all $0 \le i \le n$ whose roots are all real.
-/
theorem putnam_1968_a6
: {P : β[X] | P.natDegree β₯ 1 β§ (β k β Set.Icc 0 P.natDegree, P.coeff k = 1 β¨ P.coeff k = -1) β§
β z : β, P.eval z = 0 β β r : β, r = z} = putnam_1968_a6_solution := by
| import Mathlib
open Finset Polynomial
abbrev putnam_1968_a6_solution : Set β[X] := sorry
-- {X - 1, -(X - 1), X + 1, -(X + 1), X^2 + X - 1, -(X^2 + X - 1), X^2 - X - 1, -(X^2 - X - 1), X^3 + X^2 - X - 1, -(X^3 + X^2 - X - 1), X^3 - X^2 - X + 1, -(X^3 - X^2 - X + 1)}
/--
Find all polynomials of the form $\sum_{0}^{n} a_{i} x^{n-i}$ with $n \ge 1$ and $a_i = \pm 1$ for all $0 \le i \le n$ whose roots are all real.
-/
theorem putnam_1968_a6
: {P : β[X] | P.natDegree β₯ 1 β§ (β k β Set.Icc 0 P.natDegree, P.coeff k = 1 β¨ P.coeff k = -1) β§
β z : β, P.eval z = 0 β β r : β, r = z} = putnam_1968_a6_solution :=
sorry
| Find all polynomials of the form $\sum_{0}^{n} a_{i} x^{n-i}$ with $n \ge 1$ and $a_i = \pm 1$ for all $0 \le i \le n$ whose roots are all real. | The set of such polynomials is $$\{\pm (x - 1), \pm (x + 1), \pm (x^2 + x - 1), \pm (x^2 - x - 1), \pm (x^3 + x^2 - x - 1), \pm (x^3 - x^2 - x + 1)\}.$$ | [
"algebra"
] | null | null |
|
putnam_1965_b2 | b381a727-228d-5e52-b689-93fbbddddaf7 | train | theorem putnam_1965_b2
(n : β)
(hn : n > 1)
(won : Fin n β Fin n β Bool)
(hirrefl : β i : Fin n, won i i = False)
(hantisymm : β i j : Fin n, i β j β won i j = Β¬won j i)
(w l : Fin n β β€)
(hw : w = fun r : Fin n => β j : Fin n, (if won r j then 1 else 0))
(hl : l = fun r : Fin n => n - 1 - w r)
: β r : Fin n, (w r)^2 = β r : Fin n, (l r)^2 :=
sorry | import Mathlib
open EuclideanGeometry Topology Filter Complex
/--
A round-robin tournament has $n > 1$ players $P_1, P_2, \dots, P_n$, who each play one game with each other player. Each game results in a win for one player and a loss for the other. If $w_r$ and $l_r$ denote the number of games won and lost, respectively, by $P_r$, prove that $$\sum_{r=1}^{n} w_r^2 = \sum_{r=1}^{n} l_r^2.$$
-/
theorem putnam_1965_b2
(n : β)
(hn : n > 1)
(won : Fin n β Fin n β Bool)
(hirrefl : β i : Fin n, won i i = False)
(hantisymm : β i j : Fin n, i β j β won i j = Β¬won j i)
(w l : Fin n β β€)
(hw : w = fun r : Fin n => β j : Fin n, (if won r j then 1 else 0))
(hl : l = fun r : Fin n => n - 1 - w r)
: β r : Fin n, (w r)^2 = β r : Fin n, (l r)^2 := by
| import Mathlib
open EuclideanGeometry Topology Filter Complex
/--
A round-robin tournament has $n > 1$ players $P_1, P_2, \dots, P_n$, who each play one game with each other player. Each game results in a win for one player and a loss for the other. If $w_r$ and $l_r$ denote the number of games won and lost, respectively, by $P_r$, prove that $$\sum_{r=1}^{n} w_r^2 = \sum_{r=1}^{n} l_r^2.$$
-/
theorem putnam_1965_b2
(n : β)
(hn : n > 1)
(won : Fin n β Fin n β Bool)
(hirrefl : β i : Fin n, won i i = False)
(hantisymm : β i j : Fin n, i β j β won i j = Β¬won j i)
(w l : Fin n β β€)
(hw : w = fun r : Fin n => β j : Fin n, (if won r j then 1 else 0))
(hl : l = fun r : Fin n => n - 1 - w r)
: β r : Fin n, (w r)^2 = β r : Fin n, (l r)^2 :=
sorry
| A round-robin tournament has $n > 1$ players $P_1, P_2, \dots, P_n$, who each play one game with each other player. Each game results in a win for one player and a loss for the other. If $w_r$ and $l_r$ denote the number of games won and lost, respectively, by $P_r$, prove that $$\sum_{r=1}^{n} w_r^2 = \sum_{r=1}^{n} l_r^2.$$ | null | [
"combinatorics"
] | null | null |
|
putnam_2015_b4 | c6a52c88-1670-5132-9030-66d4415245d8 | train | abbrev putnam_2015_b4_solution : β€ Γ β := sorry
-- (17, 21)
/--
Let $T$ be the set of all triples $(a,b,c)$ of positive integers for which there exist triangles with side lengths $a,b,c$. Express
\[
\sum_{(a,b,c) \in T} \frac{2^a}{3^b 5^c}
\]
as a rational number in lowest terms.
-/
theorem putnam_2015_b4
(quotientof : β β (β€ Γ β))
(hquotientof : β q : β, quotientof q = (q.num, q.den))
: quotientof (β' t : (Fin 3 β β€), if (β n : Fin 3, t n > 0) β§ t 0 < t 1 + t 2 β§ t 1 < t 2 + t 0 β§ t 2 < t 0 + t 1
then 2^(t 0)/(3^(t 1)*5^(t 2)) else 0) = putnam_2015_b4_solution :=
sorry | import Mathlib
-- (17, 21)
/--
Let $T$ be the set of all triples $(a,b,c)$ of positive integers for which there exist triangles with side lengths $a,b,c$. Express
\[
\sum_{(a,b,c) \in T} \frac{2^a}{3^b 5^c}
\]
as a rational number in lowest terms.
-/
theorem putnam_2015_b4
(quotientof : β β (β€ Γ β))
(hquotientof : β q : β, quotientof q = (q.num, q.den))
: quotientof (β' t : (Fin 3 β β€), if (β n : Fin 3, t n > 0) β§ t 0 < t 1 + t 2 β§ t 1 < t 2 + t 0 β§ t 2 < t 0 + t 1
then 2^(t 0)/(3^(t 1)*5^(t 2)) else 0) = putnam_2015_b4_solution := by
| import Mathlib
abbrev putnam_2015_b4_solution : β€ Γ β := sorry
-- (17, 21)
/--
Let $T$ be the set of all triples $(a,b,c)$ of positive integers for which there exist triangles with side lengths $a,b,c$. Express
\[
\sum_{(a,b,c) \in T} \frac{2^a}{3^b 5^c}
\]
as a rational number in lowest terms.
-/
theorem putnam_2015_b4
(quotientof : β β (β€ Γ β))
(hquotientof : β q : β, quotientof q = (q.num, q.den))
: quotientof (β' t : (Fin 3 β β€), if (β n : Fin 3, t n > 0) β§ t 0 < t 1 + t 2 β§ t 1 < t 2 + t 0 β§ t 2 < t 0 + t 1
then 2^(t 0)/(3^(t 1)*5^(t 2)) else 0) = putnam_2015_b4_solution :=
sorry
| Let $T$ be the set of all triples $(a,b,c)$ of positive integers for which there exist triangles with side lengths $a,b,c$. Express
\[
\sum_{(a,b,c) \in T} \frac{2^a}{3^b 5^c}
\]
as a rational number in lowest terms. | The answer is $17/21$. | [
"algebra"
] | null | null |
|
putnam_1964_a5 | de47b863-34aa-5aef-ae6b-c27bd207b590 | train | theorem putnam_1964_a5
(pa : (β β β) β Prop)
(hpa : β a, pa a β (β n : β, a n > 0) β§ β L : β, Tendsto (fun N β¦ β n in Finset.range N, 1 / a n) atTop (π L)) :
β k : β, β a : β β β, pa a β
β' n : β, (n + 1) / (β i in Finset.range (n + 1), a i) β€ k * β' n : β, 1 / a n :=
sorry | import Mathlib
open Set Function Filter Topology
/--
Prove that there exists a constant $k$ such that for any sequence $a_i$ of positive numbers,
\[
\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 + \dots + a_n} \leq k \sum_{n=1}^{\infty}\frac{1}{a_n}.
\]
-/
theorem putnam_1964_a5
(pa : (β β β) β Prop)
(hpa : β a, pa a β (β n : β, a n > 0) β§ β L : β, Tendsto (fun N β¦ β n in Finset.range N, 1 / a n) atTop (π L)) :
β k : β, β a : β β β, pa a β
β' n : β, (n + 1) / (β i in Finset.range (n + 1), a i) β€ k * β' n : β, 1 / a n := by
| import Mathlib
open Set Function Filter Topology
/--
Prove that there exists a constant $k$ such that for any sequence $a_i$ of positive numbers,
\[
\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 + \dots + a_n} \leq k \sum_{n=1}^{\infty}\frac{1}{a_n}.
\]
-/
theorem putnam_1964_a5
(pa : (β β β) β Prop)
(hpa : β a, pa a β (β n : β, a n > 0) β§ β L : β, Tendsto (fun N β¦ β n in Finset.range N, 1 / a n) atTop (π L)) :
β k : β, β a : β β β, pa a β
β' n : β, (n + 1) / (β i in Finset.range (n + 1), a i) β€ k * β' n : β, 1 / a n :=
sorry
| Prove that there exists a constant $k$ such that for any sequence $a_i$ of positive numbers,
\[
\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 + \dots + a_n} \leq k \sum_{n=1}^{\infty}\frac{1}{a_n}.
\] | null | [
"analysis"
] | null | null |
|
putnam_1997_b4 | a33136b4-52a4-5806-bfd2-425b2899e397 | train | theorem putnam_1997_b4
(a : β β β β β€)
(ha : β m n, a m n = coeff ((1 + X + X ^ 2) ^ m) n)
(k : β) :
(β i in Finset.Iic β2 * (k : β) / 3ββ, (-1) ^ i * a (k - i) i) β Icc 0 1 :=
sorry | import Mathlib
open Filter Topology Bornology Set Polynomial
/--
Let $a_{m,n}$ denote the coefficient of $x^n$ in the expansion of $(1+x+x^2)^m$. Prove that for all [integers] $k\geq 0$, \[0\leq \sum_{i=0}^{\lfloor \frac{2k}{3}\rfloor} (-1)^i a_{k-i,i}\leq 1.\]
-/
theorem putnam_1997_b4
(a : β β β β β€)
(ha : β m n, a m n = coeff ((1 + X + X ^ 2) ^ m) n)
(k : β) :
(β i in Finset.Iic β2 * (k : β) / 3ββ, (-1) ^ i * a (k - i) i) β Icc 0 1 := by
| import Mathlib
open Filter Topology Bornology Set Polynomial
/--
Let $a_{m,n}$ denote the coefficient of $x^n$ in the expansion of $(1+x+x^2)^m$. Prove that for all [integers] $k\geq 0$, \[0\leq \sum_{i=0}^{\lfloor \frac{2k}{3}\rfloor} (-1)^i a_{k-i,i}\leq 1.\]
-/
theorem putnam_1997_b4
(a : β β β β β€)
(ha : β m n, a m n = coeff ((1 + X + X ^ 2) ^ m) n)
(k : β) :
(β i in Finset.Iic β2 * (k : β) / 3ββ, (-1) ^ i * a (k - i) i) β Icc 0 1 :=
sorry
| Let $a_{m,n}$ denote the coefficient of $x^n$ in the expansion of $(1+x+x^2)^m$. Prove that for all [integers] $k\geq 0$, \[0\leq \sum_{i=0}^{\lfloor \frac{2k}{3}\rfloor} (-1)^i a_{k-i,i}\leq 1.\] | null | [
"algebra"
] | null | null |
|
putnam_2022_a6 | ee1ff704-ae01-5c9d-bee3-38df204c2965 | train | abbrev putnam_2022_a6_solution : β β β := sorry
-- (fun n : β => n)
/--
Let $n$ be a positive integer. Determine, in terms of $n$, the largest integer $m$ with the following property: There exist real numbers $x_1,\dots,x_{2n}$ with $-1<x_1<x_2<\cdots<x_{2n}<1$ such that the sum of the lengths of the $n$ intervals $[x_1^{2k-1},x_2^{2k-1}],[x_3^{2k-1},x_4^{2k-1}],\dots,[x_{2n-1}^{2k-1},x_{2n}^{2k-1}]$ is equal to $1$ for all integers $k$ with $1 \leq k \leq m$.
-/
theorem putnam_2022_a6
(n : β) (hn : 0 < n) :
IsGreatest
{m : β | β x : β β β,
StrictMono x β§ -1 < x 1 β§ x (2 * n) < 1 β§
β k β Icc 1 m, β i in Finset.Icc 1 n, ((x (2 * i - 1) : β) ^ (2 * k - 1) - (x (2 * i)) ^ (2 * k - 1)) = 1}
(putnam_2022_a6_solution n) :=
sorry | import Mathlib
open Set
-- Note: uses (β β β) instead of (Fin (2 * n) β β)
-- (fun n : β => n)
/--
Let $n$ be a positive integer. Determine, in terms of $n$, the largest integer $m$ with the following property: There exist real numbers $x_1,\dots,x_{2n}$ with $-1<x_1<x_2<\cdots<x_{2n}<1$ such that the sum of the lengths of the $n$ intervals $[x_1^{2k-1},x_2^{2k-1}],[x_3^{2k-1},x_4^{2k-1}],\dots,[x_{2n-1}^{2k-1},x_{2n}^{2k-1}]$ is equal to $1$ for all integers $k$ with $1 \leq k \leq m$.
-/
theorem putnam_2022_a6
(n : β) (hn : 0 < n) :
IsGreatest
{m : β | β x : β β β,
StrictMono x β§ -1 < x 1 β§ x (2 * n) < 1 β§
β k β Icc 1 m, β i in Finset.Icc 1 n, ((x (2 * i - 1) : β) ^ (2 * k - 1) - (x (2 * i)) ^ (2 * k - 1)) = 1}
(putnam_2022_a6_solution n) := by
| import Mathlib
open Set
-- Note: uses (β β β) instead of (Fin (2 * n) β β)
abbrev putnam_2022_a6_solution : β β β := sorry
-- (fun n : β => n)
/--
Let $n$ be a positive integer. Determine, in terms of $n$, the largest integer $m$ with the following property: There exist real numbers $x_1,\dots,x_{2n}$ with $-1<x_1<x_2<\cdots<x_{2n}<1$ such that the sum of the lengths of the $n$ intervals $[x_1^{2k-1},x_2^{2k-1}],[x_3^{2k-1},x_4^{2k-1}],\dots,[x_{2n-1}^{2k-1},x_{2n}^{2k-1}]$ is equal to $1$ for all integers $k$ with $1 \leq k \leq m$.
-/
theorem putnam_2022_a6
(n : β) (hn : 0 < n) :
IsGreatest
{m : β | β x : β β β,
StrictMono x β§ -1 < x 1 β§ x (2 * n) < 1 β§
β k β Icc 1 m, β i in Finset.Icc 1 n, ((x (2 * i - 1) : β) ^ (2 * k - 1) - (x (2 * i)) ^ (2 * k - 1)) = 1}
(putnam_2022_a6_solution n) :=
sorry
| Let $n$ be a positive integer. Determine, in terms of $n$, the largest integer $m$ with the following property: There exist real numbers $x_1,\dots,x_{2n}$ with $-1<x_1<x_2<\cdots<x_{2n}<1$ such that the sum of the lengths of the $n$ intervals $[x_1^{2k-1},x_2^{2k-1}],[x_3^{2k-1},x_4^{2k-1}],\dots,[x_{2n-1}^{2k-1},x_{2n}^{2k-1}]$ is equal to $1$ for all integers $k$ with $1 \leq k \leq m$. | Show that the largest such $m$ is $n$. | [
"algebra"
] | null | null |
|
putnam_1986_a4 | 22e7dab7-c5db-5be2-a5a5-6e96ff6b35b3 | train | abbrev putnam_1986_a4_solution : β Γ β Γ β Γ β Γ β Γ β Γ β := sorry
-- (1, 4, 2, 3, -4, 2, 1)
/--
A \emph{transversal} of an $n\times n$ matrix $A$ consists of $n$ entries of $A$, no two in the same row or column. Let $f(n)$ be the number of $n \times n$ matrices $A$ satisfying the following two conditions:
\begin{enumerate}
\item[(a)] Each entry $\alpha_{i,j}$ of $A$ is in the set
$\{-1,0,1\}$.
\item[(b)] The sum of the $n$ entries of a transversal is the same for all transversals of $A$.
\end{enumerate}
An example of such a matrix $A$ is
\[
A = \left( \begin{array}{ccc} -1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0
\end{array}
\right).
\]
Determine with proof a formula for $f(n)$ of the form
\[
f(n) = a_1 b_1^n + a_2 b_2^n + a_3 b_3^n + a_4,
\]
where the $a_i$'s and $b_i$'s are rational numbers.
-/
theorem putnam_1986_a4
(f : β β β)
(hf : f = fun n β¦
Set.ncard {A : Matrix (Fin n) (Fin n) β€ |
(β i j : Fin n, A i j β ({-1, 0, 1} : Set β€)) β§
β S : β€, β Ο : Perm (Fin n), β i : Fin n, A i (Ο i) = S}) :
let (a1, b1, a2, b2, a3, b3, a4) := putnam_1986_a4_solution;
(β n > 0, f n = a1 * b1 ^ n + a2 * b2 ^ n + a3 * b3 ^ n + a4) :=
sorry | import Mathlib
open Real Equiv
-- (1, 4, 2, 3, -4, 2, 1)
/--
A \emph{transversal} of an $n\times n$ matrix $A$ consists of $n$ entries of $A$, no two in the same row or column. Let $f(n)$ be the number of $n \times n$ matrices $A$ satisfying the following two conditions:
\begin{enumerate}
\item[(a)] Each entry $\alpha_{i,j}$ of $A$ is in the set
$\{-1,0,1\}$.
\item[(b)] The sum of the $n$ entries of a transversal is the same for all transversals of $A$.
\end{enumerate}
An example of such a matrix $A$ is
\[
A = \left( \begin{array}{ccc} -1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0
\end{array}
\right).
\]
Determine with proof a formula for $f(n)$ of the form
\[
f(n) = a_1 b_1^n + a_2 b_2^n + a_3 b_3^n + a_4,
\]
where the $a_i$'s and $b_i$'s are rational numbers.
-/
theorem putnam_1986_a4
(f : β β β)
(hf : f = fun n β¦
Set.ncard {A : Matrix (Fin n) (Fin n) β€ |
(β i j : Fin n, A i j β ({-1, 0, 1} : Set β€)) β§
β S : β€, β Ο : Perm (Fin n), β i : Fin n, A i (Ο i) = S}) :
let (a1, b1, a2, b2, a3, b3, a4) := putnam_1986_a4_solution;
(β n > 0, f n = a1 * b1 ^ n + a2 * b2 ^ n + a3 * b3 ^ n + a4) := by
| import Mathlib
open Real Equiv
abbrev putnam_1986_a4_solution : β Γ β Γ β Γ β Γ β Γ β Γ β := sorry
-- (1, 4, 2, 3, -4, 2, 1)
/--
A \emph{transversal} of an $n\times n$ matrix $A$ consists of $n$ entries of $A$, no two in the same row or column. Let $f(n)$ be the number of $n \times n$ matrices $A$ satisfying the following two conditions:
\begin{enumerate}
\item[(a)] Each entry $\alpha_{i,j}$ of $A$ is in the set
$\{-1,0,1\}$.
\item[(b)] The sum of the $n$ entries of a transversal is the same for all transversals of $A$.
\end{enumerate}
An example of such a matrix $A$ is
\[
A = \left( \begin{array}{ccc} -1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0
\end{array}
\right).
\]
Determine with proof a formula for $f(n)$ of the form
\[
f(n) = a_1 b_1^n + a_2 b_2^n + a_3 b_3^n + a_4,
\]
where the $a_i$'s and $b_i$'s are rational numbers.
-/
theorem putnam_1986_a4
(f : β β β)
(hf : f = fun n β¦
Set.ncard {A : Matrix (Fin n) (Fin n) β€ |
(β i j : Fin n, A i j β ({-1, 0, 1} : Set β€)) β§
β S : β€, β Ο : Perm (Fin n), β i : Fin n, A i (Ο i) = S}) :
let (a1, b1, a2, b2, a3, b3, a4) := putnam_1986_a4_solution;
(β n > 0, f n = a1 * b1 ^ n + a2 * b2 ^ n + a3 * b3 ^ n + a4) :=
sorry
| A \emph{transversal} of an $n\times n$ matrix $A$ consists of $n$ entries of $A$, no two in the same row or column. Let $f(n)$ be the number of $n \times n$ matrices $A$ satisfying the following two conditions:
\begin{enumerate}
\item[(a)] Each entry $\alpha_{i,j}$ of $A$ is in the set
$\{-1,0,1\}$.
\item[(b)] The sum of the $n$ entries of a transversal is the same for all transversals of $A$.
\end{enumerate}
An example of such a matrix $A$ is
\[
A = \left( \begin{array}{ccc} -1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0
\end{array}
\right).
\]
Determine with proof a formula for $f(n)$ of the form
\[
f(n) = a_1 b_1^n + a_2 b_2^n + a_3 b_3^n + a_4,
\]
where the $a_i$'s and $b_i$'s are rational numbers. | Prove that $f(n) = 4^n + 2 \cdot 3^n - 4 \cdot 2^n + 1$. | [
"linear_algebra"
] | null | null |
|
putnam_2016_a1 | c5355cd5-045b-5b02-80d7-3f222e222d3e | train | abbrev putnam_2016_a1_solution : β := sorry
-- 8
/--
Find the smallest positive integer $j$ such that for every polynomial $p(x)$ with integer coefficients and for every integer $k$, the integer \[ p^{(j)}(k) = \left. \frac{d^j}{dx^j} p(x) \right|_{x=k} \] (the $j$-th derivative of $p(x)$ at $k$) is divisible by 2016.
-/
theorem putnam_2016_a1 :
IsLeast {j : β | 0 < j β§ β P : β€[X], β k : β€, 2016 β£ (derivative^[j] P).eval k} putnam_2016_a1_solution :=
sorry | import Mathlib
open Polynomial Filter Topology Real Set Nat
-- 8
/--
Find the smallest positive integer $j$ such that for every polynomial $p(x)$ with integer coefficients and for every integer $k$, the integer \[ p^{(j)}(k) = \left. \frac{d^j}{dx^j} p(x) \right|_{x=k} \] (the $j$-th derivative of $p(x)$ at $k$) is divisible by 2016.
-/
theorem putnam_2016_a1 :
IsLeast {j : β | 0 < j β§ β P : β€[X], β k : β€, 2016 β£ (derivative^[j] P).eval k} putnam_2016_a1_solution := by
| import Mathlib
open Polynomial Filter Topology Real Set Nat
abbrev putnam_2016_a1_solution : β := sorry
-- 8
/--
Find the smallest positive integer $j$ such that for every polynomial $p(x)$ with integer coefficients and for every integer $k$, the integer \[ p^{(j)}(k) = \left. \frac{d^j}{dx^j} p(x) \right|_{x=k} \] (the $j$-th derivative of $p(x)$ at $k$) is divisible by 2016.
-/
theorem putnam_2016_a1 :
IsLeast {j : β | 0 < j β§ β P : β€[X], β k : β€, 2016 β£ (derivative^[j] P).eval k} putnam_2016_a1_solution :=
sorry
| Find the smallest positive integer $j$ such that for every polynomial $p(x)$ with integer coefficients and for every integer $k$, the integer \[ p^{(j)}(k) = \left. \frac{d^j}{dx^j} p(x) \right|_{x=k} \] (the $j$-th derivative of $p(x)$ at $k$) is divisible by 2016. | Show that the solution is $8$. | [
"algebra",
"number_theory"
] | null | null |
|
putnam_1998_b4 | 7cbe19ee-ea3b-56f6-9b75-876a6d64af1c | train | abbrev putnam_1998_b4_solution : Set (β Γ β) := sorry
-- {nm | let β¨n,mβ© := nm; multiplicity 2 n β multiplicity 2 m}
/--
Find necessary and sufficient conditions on positive integers $m$ and $n$ so that \[\sum_{i=0}^{mn-1} (-1)^{\lfloor i/m \rfloor +\lfloor i/n\rfloor}=0.\]
-/
theorem putnam_1998_b4
(quantity : β β β β β€)
(hquantity : quantity = fun n m => β i in Finset.range (m * n), (-1)^(i/m + i/n))
(n m : β)
(hnm : n > 0 β§ m > 0) :
quantity n m = 0 β β¨n, mβ© β putnam_1998_b4_solution :=
sorry | import Mathlib
open Set Function Metric
-- {nm | let β¨n,mβ© := nm; multiplicity 2 n β multiplicity 2 m}
/--
Find necessary and sufficient conditions on positive integers $m$ and $n$ so that \[\sum_{i=0}^{mn-1} (-1)^{\lfloor i/m \rfloor +\lfloor i/n\rfloor}=0.\]
-/
theorem putnam_1998_b4
(quantity : β β β β β€)
(hquantity : quantity = fun n m => β i in Finset.range (m * n), (-1)^(i/m + i/n))
(n m : β)
(hnm : n > 0 β§ m > 0) :
quantity n m = 0 β β¨n, mβ© β putnam_1998_b4_solution := by
| import Mathlib
open Set Function Metric
abbrev putnam_1998_b4_solution : Set (β Γ β) := sorry
-- {nm | let β¨n,mβ© := nm; multiplicity 2 n β multiplicity 2 m}
/--
Find necessary and sufficient conditions on positive integers $m$ and $n$ so that \[\sum_{i=0}^{mn-1} (-1)^{\lfloor i/m \rfloor +\lfloor i/n\rfloor}=0.\]
-/
theorem putnam_1998_b4
(quantity : β β β β β€)
(hquantity : quantity = fun n m => β i in Finset.range (m * n), (-1)^(i/m + i/n))
(n m : β)
(hnm : n > 0 β§ m > 0) :
quantity n m = 0 β β¨n, mβ© β putnam_1998_b4_solution :=
sorry
| Find necessary and sufficient conditions on positive integers $m$ and $n$ so that \[\sum_{i=0}^{mn-1} (-1)^{\lfloor i/m \rfloor +\lfloor i/n\rfloor}=0.\] | Show that the sum is 0 if and only if the largest powers of $2$ dividing $m$ and $n$ are different. | [
"number_theory"
] | null | null |
|
putnam_1999_a5 | 9605e236-8f05-5568-a72d-1c5ca28ae330 | train | theorem putnam_1999_a5
: β C : β, β p : Polynomial β, p.degree = 1999 β βp.eval 0β β€ C * β« x in (-1)..1, βp.eval xβ :=
sorry | import Mathlib
open Filter Topology Metric
/--
Prove that there is a constant $C$ such that, if $p(x)$ is a polynomial of degree 1999, then \[|p(0)|\leq C \int_{-1}^1 |p(x)|\,dx.\]
-/
theorem putnam_1999_a5
: β C : β, β p : Polynomial β, p.degree = 1999 β βp.eval 0β β€ C * β« x in (-1)..1, βp.eval xβ := by
| import Mathlib
open Filter Topology Metric
/--
Prove that there is a constant $C$ such that, if $p(x)$ is a polynomial of degree 1999, then \[|p(0)|\leq C \int_{-1}^1 |p(x)|\,dx.\]
-/
theorem putnam_1999_a5
: β C : β, β p : Polynomial β, p.degree = 1999 β βp.eval 0β β€ C * β« x in (-1)..1, βp.eval xβ :=
sorry
| Prove that there is a constant $C$ such that, if $p(x)$ is a polynomial of degree 1999, then \[|p(0)|\leq C \int_{-1}^1 |p(x)|\,dx.\] | null | [
"analysis"
] | null | null |
|
putnam_2017_a3 | 6b470f67-a2f8-5cb2-b769-41b2fb797c84 | train | theorem putnam_2017_a3
(a b : β)
(f g : β β β)
(I : β β β)
(altb : a < b)
(fgcont : ContinuousOn f (Set.Icc a b) β§ ContinuousOn g (Set.Icc a b))
(fgimg : f '' (Set.Icc a b) β Set.Ioi 0 β§ g '' (Set.Icc a b) β Set.Ioi 0)
(fgint : β« x in Set.Ioo a b, f x = β« x in Set.Ioo a b, g x)
(fneg : β x : Set.Icc a b, f x β g x)
(hI : β n > 0, I n = β« x in Set.Ioo a b, ((f x) ^ (n + 1)) / ((g x) ^ n))
: (β n > 0, I (n + 1) > I n) β§ Tendsto I atTop atTop :=
sorry | import Mathlib
open Topology Filter
-- Note: uses (β β β) instead of (Set.Icc a b β Set.Ioi (0 : β))
/--
Let $a$ and $b$ be real numbers with $a<b$, and let $f$ and $g$ be continuous functions from $[a,b]$ to $(0,\infty)$ such that $\int_a^b f(x)\,dx=\int_a^b g(x)\,dx$ but $f \neq g$. For every positive integer $n$, define $I_n=\int_a^b \frac{(f(x))^{n+1}}{(g(x))^n}\,dx$. Show that $I_1,I_2,I_3,\dots$ is an increasing sequence with $\lim_{n \to \infty} I_n=\infty$.
-/
theorem putnam_2017_a3
(a b : β)
(f g : β β β)
(I : β β β)
(altb : a < b)
(fgcont : ContinuousOn f (Set.Icc a b) β§ ContinuousOn g (Set.Icc a b))
(fgimg : f '' (Set.Icc a b) β Set.Ioi 0 β§ g '' (Set.Icc a b) β Set.Ioi 0)
(fgint : β« x in Set.Ioo a b, f x = β« x in Set.Ioo a b, g x)
(fneg : β x : Set.Icc a b, f x β g x)
(hI : β n > 0, I n = β« x in Set.Ioo a b, ((f x) ^ (n + 1)) / ((g x) ^ n))
: (β n > 0, I (n + 1) > I n) β§ Tendsto I atTop atTop := by
| import Mathlib
open Topology Filter
-- Note: uses (β β β) instead of (Set.Icc a b β Set.Ioi (0 : β))
/--
Let $a$ and $b$ be real numbers with $a<b$, and let $f$ and $g$ be continuous functions from $[a,b]$ to $(0,\infty)$ such that $\int_a^b f(x)\,dx=\int_a^b g(x)\,dx$ but $f \neq g$. For every positive integer $n$, define $I_n=\int_a^b \frac{(f(x))^{n+1}}{(g(x))^n}\,dx$. Show that $I_1,I_2,I_3,\dots$ is an increasing sequence with $\lim_{n \to \infty} I_n=\infty$.
-/
theorem putnam_2017_a3
(a b : β)
(f g : β β β)
(I : β β β)
(altb : a < b)
(fgcont : ContinuousOn f (Set.Icc a b) β§ ContinuousOn g (Set.Icc a b))
(fgimg : f '' (Set.Icc a b) β Set.Ioi 0 β§ g '' (Set.Icc a b) β Set.Ioi 0)
(fgint : β« x in Set.Ioo a b, f x = β« x in Set.Ioo a b, g x)
(fneg : β x : Set.Icc a b, f x β g x)
(hI : β n > 0, I n = β« x in Set.Ioo a b, ((f x) ^ (n + 1)) / ((g x) ^ n))
: (β n > 0, I (n + 1) > I n) β§ Tendsto I atTop atTop :=
sorry
| Let $a$ and $b$ be real numbers with $a<b$, and let $f$ and $g$ be continuous functions from $[a,b]$ to $(0,\infty)$ such that $\int_a^b f(x)\,dx=\int_a^b g(x)\,dx$ but $f \neq g$. For every positive integer $n$, define $I_n=\int_a^b \frac{(f(x))^{n+1}}{(g(x))^n}\,dx$. Show that $I_1,I_2,I_3,\dots$ is an increasing sequence with $\lim_{n \to \infty} I_n=\infty$. | null | [
"analysis"
] | null | null |
|
putnam_2014_a5 | 4d6a88ac-be73-5416-829a-689656138fe8 | train | theorem putnam_2014_a5
(P : β β Polynomial β)
(hP : β n, P n = β i in Finset.Icc 1 n, i * Polynomial.X ^ (i - 1))
: β (j k : β), (j > 0 β§ k > 0) β j β k β IsCoprime (P j) (P k) :=
sorry | import Mathlib
open Topology Filter Nat
/--
Let \[ P_n(x) = 1 + 2 x + 3 x^2 + \cdots + n x^{n-1}.\] Prove that the polynomials $P_j(x)$ and $P_k(x)$ are relatively prime for all positive integers $j$ and $k$ with $j \neq k$.
-/
theorem putnam_2014_a5
(P : β β Polynomial β)
(hP : β n, P n = β i in Finset.Icc 1 n, i * Polynomial.X ^ (i - 1))
: β (j k : β), (j > 0 β§ k > 0) β j β k β IsCoprime (P j) (P k) := by
| import Mathlib
open Topology Filter Nat
/--
Let \[ P_n(x) = 1 + 2 x + 3 x^2 + \cdots + n x^{n-1}.\] Prove that the polynomials $P_j(x)$ and $P_k(x)$ are relatively prime for all positive integers $j$ and $k$ with $j \neq k$.
-/
theorem putnam_2014_a5
(P : β β Polynomial β)
(hP : β n, P n = β i in Finset.Icc 1 n, i * Polynomial.X ^ (i - 1))
: β (j k : β), (j > 0 β§ k > 0) β j β k β IsCoprime (P j) (P k) :=
sorry
| Let \[ P_n(x) = 1 + 2 x + 3 x^2 + \cdots + n x^{n-1}.\] Prove that the polynomials $P_j(x)$ and $P_k(x)$ are relatively prime for all positive integers $j$ and $k$ with $j \neq k$. | null | [
"algebra"
] | null | null |
|
putnam_1987_a5 | 808d80bc-b1a4-52d5-9030-359341581f75 | train | abbrev putnam_1987_a5_solution : Prop := sorry
-- False
/--
Let $\vec{G}(x,y)=\left(\frac{-y}{x^2+4y^2},\frac{x}{x^2+4y^2},0\right)$. Prove or disprove that there is a vector-valued function $\vec{F}(x,y,z)=(M(x,y,z),N(x,y,z),P(x,y,z))$ with the following properties:
\begin{enumerate}
\item[(i)] $M$, $N$, $P$ have continuous partial derivatives for all $(x,y,z) \neq (0,0,0)$;
\item[(ii)] $\text{Curl}\,\vec{F}=\vec{0}$ for all $(x,y,z) \neq (0,0,0)$;
\item[(iii)] $\vec{F}(x,y,0)=\vec{G}(x,y)$.
\end{enumerate}
-/
theorem putnam_1987_a5
(vec2 : β β β β (Fin 2 β β))
(vec3 : β β β β β β (Fin 3 β β))
(G : (Fin 2 β β) β (Fin 3 β β))
(hG : G = (fun v : Fin 2 β β => vec3 (-v 1 / ((v 0) ^ 2 + 4 * (v 1) ^ 2)) (v 0 / ((v 0) ^ 2 + 4 * (v 1) ^ 2)) 0))
(vrepl : (Fin 3 β β) β Fin 3 β β β (Fin 3 β β))
(hvrepl : vrepl = (fun (v : Fin 3 β β) (i : Fin 3) (vi : β) => (fun j : Fin 3 => if j = i then vi else v j)))
(contdiffv : ((Fin 3 β β) β β) β Fin 3 β (Fin 3 β β) β Prop)
(hcontdiffv : contdiffv = (fun (Fi : (Fin 3 β β) β β) (j : Fin 3) (v : Fin 3 β β) => ContDiffAt β 1 (fun vj : β => Fi (vrepl v j vj)) (v j)))
(partderiv : ((Fin 3 β β) β β) β Fin 3 β ((Fin 3 β β) β β))
(hpartderiv : partderiv = (fun (Fi : (Fin 3 β β) β β) (j : Fin 3) => (fun v : Fin 3 β β => deriv (fun vj : β => Fi (vrepl v j vj)) (v j))))
(Fprop1 Fprop2 Fprop3 : (Fin 3 β ((Fin 3 β β) β β)) β Prop)
(hFprop1 : Fprop1 = (fun F : Fin 3 β ((Fin 3 β β) β β) => β i : Fin 3, β j : Fin 3, β v β 0, contdiffv (F i) j v))
(hFprop2 : Fprop2 = (fun F : Fin 3 β ((Fin 3 β β) β β) => β v β 0, vec3 ((partderiv (F 2) 1 - partderiv (F 1) 2) v) ((partderiv (F 0) 2 - partderiv (F 2) 0) v) ((partderiv (F 1) 0 - partderiv (F 0) 1) v) = 0))
(hFprop3 : Fprop3 = (fun F : Fin 3 β ((Fin 3 β β) β β) => β x y : β, (fun i : Fin 3 => (F i) (vec3 x y 0)) = G (vec2 x y)))
(hvec2 : β x y : β, (vec2 x y) 0 = x β§ (vec2 x y) 1 = y)
(hvec3 : β x y z : β, (vec3 x y z) 0 = x β§ (vec3 x y z) 1 = y β§ (vec3 x y z) 2 = z)
: (β F : Fin 3 β ((Fin 3 β β) β β), Fprop1 F β§ Fprop2 F β§ Fprop3 F) β putnam_1987_a5_solution :=
sorry | import Mathlib
open MvPolynomial Real
-- False
/--
Let $\vec{G}(x,y)=\left(\frac{-y}{x^2+4y^2},\frac{x}{x^2+4y^2},0\right)$. Prove or disprove that there is a vector-valued function $\vec{F}(x,y,z)=(M(x,y,z),N(x,y,z),P(x,y,z))$ with the following properties:
\begin{enumerate}
\item[(i)] $M$, $N$, $P$ have continuous partial derivatives for all $(x,y,z) \neq (0,0,0)$;
\item[(ii)] $\text{Curl}\,\vec{F}=\vec{0}$ for all $(x,y,z) \neq (0,0,0)$;
\item[(iii)] $\vec{F}(x,y,0)=\vec{G}(x,y)$.
\end{enumerate}
-/
theorem putnam_1987_a5
(vec2 : β β β β (Fin 2 β β))
(vec3 : β β β β β β (Fin 3 β β))
(G : (Fin 2 β β) β (Fin 3 β β))
(hG : G = (fun v : Fin 2 β β => vec3 (-v 1 / ((v 0) ^ 2 + 4 * (v 1) ^ 2)) (v 0 / ((v 0) ^ 2 + 4 * (v 1) ^ 2)) 0))
(vrepl : (Fin 3 β β) β Fin 3 β β β (Fin 3 β β))
(hvrepl : vrepl = (fun (v : Fin 3 β β) (i : Fin 3) (vi : β) => (fun j : Fin 3 => if j = i then vi else v j)))
(contdiffv : ((Fin 3 β β) β β) β Fin 3 β (Fin 3 β β) β Prop)
(hcontdiffv : contdiffv = (fun (Fi : (Fin 3 β β) β β) (j : Fin 3) (v : Fin 3 β β) => ContDiffAt β 1 (fun vj : β => Fi (vrepl v j vj)) (v j)))
(partderiv : ((Fin 3 β β) β β) β Fin 3 β ((Fin 3 β β) β β))
(hpartderiv : partderiv = (fun (Fi : (Fin 3 β β) β β) (j : Fin 3) => (fun v : Fin 3 β β => deriv (fun vj : β => Fi (vrepl v j vj)) (v j))))
(Fprop1 Fprop2 Fprop3 : (Fin 3 β ((Fin 3 β β) β β)) β Prop)
(hFprop1 : Fprop1 = (fun F : Fin 3 β ((Fin 3 β β) β β) => β i : Fin 3, β j : Fin 3, β v β 0, contdiffv (F i) j v))
(hFprop2 : Fprop2 = (fun F : Fin 3 β ((Fin 3 β β) β β) => β v β 0, vec3 ((partderiv (F 2) 1 - partderiv (F 1) 2) v) ((partderiv (F 0) 2 - partderiv (F 2) 0) v) ((partderiv (F 1) 0 - partderiv (F 0) 1) v) = 0))
(hFprop3 : Fprop3 = (fun F : Fin 3 β ((Fin 3 β β) β β) => β x y : β, (fun i : Fin 3 => (F i) (vec3 x y 0)) = G (vec2 x y)))
(hvec2 : β x y : β, (vec2 x y) 0 = x β§ (vec2 x y) 1 = y)
(hvec3 : β x y z : β, (vec3 x y z) 0 = x β§ (vec3 x y z) 1 = y β§ (vec3 x y z) 2 = z)
: (β F : Fin 3 β ((Fin 3 β β) β β), Fprop1 F β§ Fprop2 F β§ Fprop3 F) β putnam_1987_a5_solution := by
| import Mathlib
open MvPolynomial Real
abbrev putnam_1987_a5_solution : Prop := sorry
-- False
/--
Let $\vec{G}(x,y)=\left(\frac{-y}{x^2+4y^2},\frac{x}{x^2+4y^2},0\right)$. Prove or disprove that there is a vector-valued function $\vec{F}(x,y,z)=(M(x,y,z),N(x,y,z),P(x,y,z))$ with the following properties:
\begin{enumerate}
\item[(i)] $M$, $N$, $P$ have continuous partial derivatives for all $(x,y,z) \neq (0,0,0)$;
\item[(ii)] $\text{Curl}\,\vec{F}=\vec{0}$ for all $(x,y,z) \neq (0,0,0)$;
\item[(iii)] $\vec{F}(x,y,0)=\vec{G}(x,y)$.
\end{enumerate}
-/
theorem putnam_1987_a5
(vec2 : β β β β (Fin 2 β β))
(vec3 : β β β β β β (Fin 3 β β))
(G : (Fin 2 β β) β (Fin 3 β β))
(hG : G = (fun v : Fin 2 β β => vec3 (-v 1 / ((v 0) ^ 2 + 4 * (v 1) ^ 2)) (v 0 / ((v 0) ^ 2 + 4 * (v 1) ^ 2)) 0))
(vrepl : (Fin 3 β β) β Fin 3 β β β (Fin 3 β β))
(hvrepl : vrepl = (fun (v : Fin 3 β β) (i : Fin 3) (vi : β) => (fun j : Fin 3 => if j = i then vi else v j)))
(contdiffv : ((Fin 3 β β) β β) β Fin 3 β (Fin 3 β β) β Prop)
(hcontdiffv : contdiffv = (fun (Fi : (Fin 3 β β) β β) (j : Fin 3) (v : Fin 3 β β) => ContDiffAt β 1 (fun vj : β => Fi (vrepl v j vj)) (v j)))
(partderiv : ((Fin 3 β β) β β) β Fin 3 β ((Fin 3 β β) β β))
(hpartderiv : partderiv = (fun (Fi : (Fin 3 β β) β β) (j : Fin 3) => (fun v : Fin 3 β β => deriv (fun vj : β => Fi (vrepl v j vj)) (v j))))
(Fprop1 Fprop2 Fprop3 : (Fin 3 β ((Fin 3 β β) β β)) β Prop)
(hFprop1 : Fprop1 = (fun F : Fin 3 β ((Fin 3 β β) β β) => β i : Fin 3, β j : Fin 3, β v β 0, contdiffv (F i) j v))
(hFprop2 : Fprop2 = (fun F : Fin 3 β ((Fin 3 β β) β β) => β v β 0, vec3 ((partderiv (F 2) 1 - partderiv (F 1) 2) v) ((partderiv (F 0) 2 - partderiv (F 2) 0) v) ((partderiv (F 1) 0 - partderiv (F 0) 1) v) = 0))
(hFprop3 : Fprop3 = (fun F : Fin 3 β ((Fin 3 β β) β β) => β x y : β, (fun i : Fin 3 => (F i) (vec3 x y 0)) = G (vec2 x y)))
(hvec2 : β x y : β, (vec2 x y) 0 = x β§ (vec2 x y) 1 = y)
(hvec3 : β x y z : β, (vec3 x y z) 0 = x β§ (vec3 x y z) 1 = y β§ (vec3 x y z) 2 = z)
: (β F : Fin 3 β ((Fin 3 β β) β β), Fprop1 F β§ Fprop2 F β§ Fprop3 F) β putnam_1987_a5_solution :=
sorry
| Let $\vec{G}(x,y)=\left(\frac{-y}{x^2+4y^2},\frac{x}{x^2+4y^2},0\right)$. Prove or disprove that there is a vector-valued function $\vec{F}(x,y,z)=(M(x,y,z),N(x,y,z),P(x,y,z))$ with the following properties:
\begin{enumerate}
\item[(i)] $M$, $N$, $P$ have continuous partial derivatives for all $(x,y,z) \neq (0,0,0)$;
\item[(ii)] $\text{Curl}\,\vec{F}=\vec{0}$ for all $(x,y,z) \neq (0,0,0)$;
\item[(iii)] $\vec{F}(x,y,0)=\vec{G}(x,y)$.
\end{enumerate} | Show that there is no such $\vec{F}$. | [
"analysis"
] | null | null |
|
putnam_1962_a2 | 740a818e-6239-502a-9c58-5bdbe2447344 | train | abbrev putnam_1962_a2_solution : Set (β β β) := sorry
-- {f : β β β | β a c : β, a β₯ 0 β§ f = fun x β¦ a / (1 - c * x) ^ 2}
/--
Find every real-valued function $f$ whose domain is an interval $I$ (finite or infinite) having 0 as a left-hand endpoint, such that for every positive member $x$ of $I$ the average of $f$ over the closed interval $[0, x]$ is equal to the geometric mean of the numbers $f(0)$ and $f(x)$.
-/
theorem putnam_1962_a2
(P : Set β β (β β β) β Prop)
(P_def : β s f, P s f β 0 β€ f β§ β x β s, β¨ t in Ico 0 x, f t = β(f 0 * f x)) :
(β f,
(P (Ioi 0) f β β g β putnam_1962_a2_solution, EqOn f g (Ici 0)) β§
(β e > 0, P (Ioo 0 e) f β β g β putnam_1962_a2_solution, EqOn f g (Ico 0 e))) β§
β f β putnam_1962_a2_solution, P (Ioi 0) f β¨ (β e > 0, P (Ioo 0 e) f) :=
sorry | import Mathlib
open MeasureTheory Set
-- {f : β β β | β a c : β, a β₯ 0 β§ f = fun x β¦ a / (1 - c * x) ^ 2}
/--
Find every real-valued function $f$ whose domain is an interval $I$ (finite or infinite) having 0 as a left-hand endpoint, such that for every positive member $x$ of $I$ the average of $f$ over the closed interval $[0, x]$ is equal to the geometric mean of the numbers $f(0)$ and $f(x)$.
-/
theorem putnam_1962_a2
(P : Set β β (β β β) β Prop)
(P_def : β s f, P s f β 0 β€ f β§ β x β s, β¨ t in Ico 0 x, f t = β(f 0 * f x)) :
(β f,
(P (Ioi 0) f β β g β putnam_1962_a2_solution, EqOn f g (Ici 0)) β§
(β e > 0, P (Ioo 0 e) f β β g β putnam_1962_a2_solution, EqOn f g (Ico 0 e))) β§
β f β putnam_1962_a2_solution, P (Ioi 0) f β¨ (β e > 0, P (Ioo 0 e) f) := by
| import Mathlib
open MeasureTheory Set
abbrev putnam_1962_a2_solution : Set (β β β) := sorry
-- {f : β β β | β a c : β, a β₯ 0 β§ f = fun x β¦ a / (1 - c * x) ^ 2}
/--
Find every real-valued function $f$ whose domain is an interval $I$ (finite or infinite) having 0 as a left-hand endpoint, such that for every positive member $x$ of $I$ the average of $f$ over the closed interval $[0, x]$ is equal to the geometric mean of the numbers $f(0)$ and $f(x)$.
-/
theorem putnam_1962_a2
(P : Set β β (β β β) β Prop)
(P_def : β s f, P s f β 0 β€ f β§ β x β s, β¨ t in Ico 0 x, f t = β(f 0 * f x)) :
(β f,
(P (Ioi 0) f β β g β putnam_1962_a2_solution, EqOn f g (Ici 0)) β§
(β e > 0, P (Ioo 0 e) f β β g β putnam_1962_a2_solution, EqOn f g (Ico 0 e))) β§
β f β putnam_1962_a2_solution, P (Ioi 0) f β¨ (β e > 0, P (Ioo 0 e) f) :=
sorry
| Find every real-valued function $f$ whose domain is an interval $I$ (finite or infinite) having 0 as a left-hand endpoint, such that for every positive member $x$ of $I$ the average of $f$ over the closed interval $[0, x]$ is equal to the geometric mean of the numbers $f(0)$ and $f(x)$. | Show that \[ f(x) = \frac{a}{(1 - cx)^2} \begin{cases} \text{for } 0 \le x < \frac{1}{c}, & \text{if } c > 0\\ \text{for } 0 \le x < \infty, & \text{if } c \le 0, \end{cases} \] where $a > 0$. | [
"analysis"
] | null | null |
|
putnam_1973_a6 | 02e2d94a-1bec-5eff-a4a5-af8aa634e28d | train | theorem putnam_1973_a6
(nint : β β (Fin 7 β (β Γ β)) β β)
(h_nint : nint = fun n lines => {p : β Γ β | β! S : Set (Fin 7), S.ncard = n β§ p β β i β S, {pts | pts.2 = (lines i).1 * pts.1 + (lines i).2}}.ncard)
: Β¬ β lines : Fin 7 β (β Γ β), (β i j : Fin 7, i β j β lines i β lines j) β§ nint 3 lines β₯ 6 β§ nint 2 lines β₯ 4 :=
sorry | import Mathlib
open Nat Set MeasureTheory Topology Filter
-- Note: Uses the slope/intercept formulation of line in the plane
/--
Prove that it is impossible for seven distinct straight lines to be situated in the Euclidean plane so as to have at least six points where exactly three of these lines intersect and at least four points where exactly two of these lines interest.
-/
theorem putnam_1973_a6
(nint : β β (Fin 7 β (β Γ β)) β β)
(h_nint : nint = fun n lines => {p : β Γ β | β! S : Set (Fin 7), S.ncard = n β§ p β β i β S, {pts | pts.2 = (lines i).1 * pts.1 + (lines i).2}}.ncard)
: Β¬ β lines : Fin 7 β (β Γ β), (β i j : Fin 7, i β j β lines i β lines j) β§ nint 3 lines β₯ 6 β§ nint 2 lines β₯ 4 := by
| import Mathlib
open Nat Set MeasureTheory Topology Filter
-- Note: Uses the slope/intercept formulation of line in the plane
/--
Prove that it is impossible for seven distinct straight lines to be situated in the Euclidean plane so as to have at least six points where exactly three of these lines intersect and at least four points where exactly two of these lines interest.
-/
theorem putnam_1973_a6
(nint : β β (Fin 7 β (β Γ β)) β β)
(h_nint : nint = fun n lines => {p : β Γ β | β! S : Set (Fin 7), S.ncard = n β§ p β β i β S, {pts | pts.2 = (lines i).1 * pts.1 + (lines i).2}}.ncard)
: Β¬ β lines : Fin 7 β (β Γ β), (β i j : Fin 7, i β j β lines i β lines j) β§ nint 3 lines β₯ 6 β§ nint 2 lines β₯ 4 :=
sorry
| Prove that it is impossible for seven distinct straight lines to be situated in the Euclidean plane so as to have at least six points where exactly three of these lines intersect and at least four points where exactly two of these lines interest. | null | [
"geometry"
] | null | null |
|
putnam_1962_b6 | bb5e07c3-18ca-5065-9c2c-6eb897b24ebe | train | theorem putnam_1962_b6
(n : β)
(a b : β β β)
(xs : Set β)
(f : β β β)
(hf : f = fun x : β => β k in Finset.Icc 0 n, ((a k) * Real.sin (k * x) + (b k) * Real.cos (k * x)))
(hf1 : β x β Set.Icc 0 (2 * Ο), |f x| β€ 1)
(hxs : xs.ncard = 2 * n β§ xs β Set.Ico 0 (2 * Ο))
(hfxs : β x β xs, |f x| = 1)
: (Β¬β c : β, f = fun x : β => c) β β a : β, f = fun x : β => Real.cos (n * x + a) :=
sorry | import Mathlib
open Real
/--
Let \[ f(x) = \sum_{k=0}^n a_k \sin kx + b_k \cos kx, \] where $a_k$ and $b_k$ are constants. Show that, if $\lvert f(x) \rvert \le 1$ for $0 \le x \le 2 \pi$ and $\lvert f(x_i) \rvert = 1$ for $0 \le x_1 < x_2 < \cdots < x_{2n} < 2 \pi$, then $f(x) = \cos (nx + a)$ for some constant $a$.
-/
theorem putnam_1962_b6
(n : β)
(a b : β β β)
(xs : Set β)
(f : β β β)
(hf : f = fun x : β => β k in Finset.Icc 0 n, ((a k) * Real.sin (k * x) + (b k) * Real.cos (k * x)))
(hf1 : β x β Set.Icc 0 (2 * Ο), |f x| β€ 1)
(hxs : xs.ncard = 2 * n β§ xs β Set.Ico 0 (2 * Ο))
(hfxs : β x β xs, |f x| = 1)
: (Β¬β c : β, f = fun x : β => c) β β a : β, f = fun x : β => Real.cos (n * x + a) := by
| import Mathlib
open Real
/--
Let \[ f(x) = \sum_{k=0}^n a_k \sin kx + b_k \cos kx, \] where $a_k$ and $b_k$ are constants. Show that, if $\lvert f(x) \rvert \le 1$ for $0 \le x \le 2 \pi$ and $\lvert f(x_i) \rvert = 1$ for $0 \le x_1 < x_2 < \cdots < x_{2n} < 2 \pi$, then $f(x) = \cos (nx + a)$ for some constant $a$.
-/
theorem putnam_1962_b6
(n : β)
(a b : β β β)
(xs : Set β)
(f : β β β)
(hf : f = fun x : β => β k in Finset.Icc 0 n, ((a k) * Real.sin (k * x) + (b k) * Real.cos (k * x)))
(hf1 : β x β Set.Icc 0 (2 * Ο), |f x| β€ 1)
(hxs : xs.ncard = 2 * n β§ xs β Set.Ico 0 (2 * Ο))
(hfxs : β x β xs, |f x| = 1)
: (Β¬β c : β, f = fun x : β => c) β β a : β, f = fun x : β => Real.cos (n * x + a) :=
sorry
| Let \[ f(x) = \sum_{k=0}^n a_k \sin kx + b_k \cos kx, \] where $a_k$ and $b_k$ are constants. Show that, if $\lvert f(x) \rvert \le 1$ for $0 \le x \le 2 \pi$ and $\lvert f(x_i) \rvert = 1$ for $0 \le x_1 < x_2 < \cdots < x_{2n} < 2 \pi$, then $f(x) = \cos (nx + a)$ for some constant $a$. | null | [
"analysis"
] | null | null |
|
putnam_1991_b5 | be5e8196-144c-5e33-902d-f0b44ab18171 | train | abbrev putnam_1991_b5_solution : β β β := sorry
-- (fun p : β => Nat.ceil ((p : β) / 4))
/--
Let $p$ be an odd prime and let $\mathbb{Z}_p$ denote (the field of) integers modulo $p$. How many elements are in the set $\{x^2:x \in \mathbb{Z}_p\} \cap \{y^2+1:y \in \mathbb{Z}_p\}$?
-/
theorem putnam_1991_b5
(p : β)
(podd : Odd p)
(pprime : Prime p)
: ({z : ZMod p | β x : ZMod p, z = x ^ 2} β© {z : ZMod p | β y : ZMod p, z = y ^ 2 + 1}).encard = putnam_1991_b5_solution p :=
sorry | import Mathlib
open Filter Topology
-- (fun p : β => Nat.ceil ((p : β) / 4))
/--
Let $p$ be an odd prime and let $\mathbb{Z}_p$ denote (the field of) integers modulo $p$. How many elements are in the set $\{x^2:x \in \mathbb{Z}_p\} \cap \{y^2+1:y \in \mathbb{Z}_p\}$?
-/
theorem putnam_1991_b5
(p : β)
(podd : Odd p)
(pprime : Prime p)
: ({z : ZMod p | β x : ZMod p, z = x ^ 2} β© {z : ZMod p | β y : ZMod p, z = y ^ 2 + 1}).encard = putnam_1991_b5_solution p := by
| import Mathlib
open Filter Topology
abbrev putnam_1991_b5_solution : β β β := sorry
-- (fun p : β => Nat.ceil ((p : β) / 4))
/--
Let $p$ be an odd prime and let $\mathbb{Z}_p$ denote (the field of) integers modulo $p$. How many elements are in the set $\{x^2:x \in \mathbb{Z}_p\} \cap \{y^2+1:y \in \mathbb{Z}_p\}$?
-/
theorem putnam_1991_b5
(p : β)
(podd : Odd p)
(pprime : Prime p)
: ({z : ZMod p | β x : ZMod p, z = x ^ 2} β© {z : ZMod p | β y : ZMod p, z = y ^ 2 + 1}).encard = putnam_1991_b5_solution p :=
sorry
| Let $p$ be an odd prime and let $\mathbb{Z}_p$ denote (the field of) integers modulo $p$. How many elements are in the set $\{x^2:x \in \mathbb{Z}_p\} \cap \{y^2+1:y \in \mathbb{Z}_p\}$? | Show that the number of elements in the intersection is $\lceil p/4 \rceil$. | [
"number_theory"
] | null | null |
|
putnam_1967_a6 | 125c33f8-dcc9-5169-8523-e74c478e6831 | train | abbrev putnam_1967_a6_solution : β := sorry
-- 8
/--
Given real numbers $\{a_i\}$ and $\{b_i\}$, ($i=1,2,3,4$), such that $a_1b_2-a_2b_1 \neq 0$. Consider the set of all solutions $(x_1,x_2,x_3,x_4)$ of the simultaneous equations $a_1x_1+a_2x_2+a_3x_3+a_4x_4=0$ and $b_1x_1+b_2x_2+b_3x_3+b_4x_4=0$, for which no $x_i$ ($i=1,2,3,4$) is zero. Each such solution generates a $4$-tuple of plus and minus signs $(\text{signum }x_1,\text{signum }x_2,\text{signum }x_3,\text{signum }x_4)$. Determine, with a proof, the maximum number of distinct $4$-tuples possible.
-/
theorem putnam_1967_a6
(abneq0 : (Fin 4 β β) β (Fin 4 β β) β Prop)
(habneq0 : abneq0 = (fun a b : Fin 4 β β => a 0 * b 1 - a 1 * b 0 β 0))
(numtuples : (Fin 4 β β) β (Fin 4 β β) β β)
(hnumtuples : β a b : Fin 4 β β, numtuples a b = {s : Fin 4 β β | β x : Fin 4 β β, (β i : Fin 4, x i β 0) β§ (β i : Fin 4, a i * x i) = 0 β§ (β i : Fin 4, b i * x i) = 0 β§ (β i : Fin 4, s i = Real.sign (x i))}.encard)
: (β a b : Fin 4 β β, abneq0 a b β§ numtuples a b = putnam_1967_a6_solution) β§ (β a b : Fin 4 β β, abneq0 a b β numtuples a b β€ putnam_1967_a6_solution) :=
sorry | import Mathlib
open Nat Topology Filter
-- 8
/--
Given real numbers $\{a_i\}$ and $\{b_i\}$, ($i=1,2,3,4$), such that $a_1b_2-a_2b_1 \neq 0$. Consider the set of all solutions $(x_1,x_2,x_3,x_4)$ of the simultaneous equations $a_1x_1+a_2x_2+a_3x_3+a_4x_4=0$ and $b_1x_1+b_2x_2+b_3x_3+b_4x_4=0$, for which no $x_i$ ($i=1,2,3,4$) is zero. Each such solution generates a $4$-tuple of plus and minus signs $(\text{signum }x_1,\text{signum }x_2,\text{signum }x_3,\text{signum }x_4)$. Determine, with a proof, the maximum number of distinct $4$-tuples possible.
-/
theorem putnam_1967_a6
(abneq0 : (Fin 4 β β) β (Fin 4 β β) β Prop)
(habneq0 : abneq0 = (fun a b : Fin 4 β β => a 0 * b 1 - a 1 * b 0 β 0))
(numtuples : (Fin 4 β β) β (Fin 4 β β) β β)
(hnumtuples : β a b : Fin 4 β β, numtuples a b = {s : Fin 4 β β | β x : Fin 4 β β, (β i : Fin 4, x i β 0) β§ (β i : Fin 4, a i * x i) = 0 β§ (β i : Fin 4, b i * x i) = 0 β§ (β i : Fin 4, s i = Real.sign (x i))}.encard)
: (β a b : Fin 4 β β, abneq0 a b β§ numtuples a b = putnam_1967_a6_solution) β§ (β a b : Fin 4 β β, abneq0 a b β numtuples a b β€ putnam_1967_a6_solution) := by
| import Mathlib
open Nat Topology Filter
abbrev putnam_1967_a6_solution : β := sorry
-- 8
/--
Given real numbers $\{a_i\}$ and $\{b_i\}$, ($i=1,2,3,4$), such that $a_1b_2-a_2b_1 \neq 0$. Consider the set of all solutions $(x_1,x_2,x_3,x_4)$ of the simultaneous equations $a_1x_1+a_2x_2+a_3x_3+a_4x_4=0$ and $b_1x_1+b_2x_2+b_3x_3+b_4x_4=0$, for which no $x_i$ ($i=1,2,3,4$) is zero. Each such solution generates a $4$-tuple of plus and minus signs $(\text{signum }x_1,\text{signum }x_2,\text{signum }x_3,\text{signum }x_4)$. Determine, with a proof, the maximum number of distinct $4$-tuples possible.
-/
theorem putnam_1967_a6
(abneq0 : (Fin 4 β β) β (Fin 4 β β) β Prop)
(habneq0 : abneq0 = (fun a b : Fin 4 β β => a 0 * b 1 - a 1 * b 0 β 0))
(numtuples : (Fin 4 β β) β (Fin 4 β β) β β)
(hnumtuples : β a b : Fin 4 β β, numtuples a b = {s : Fin 4 β β | β x : Fin 4 β β, (β i : Fin 4, x i β 0) β§ (β i : Fin 4, a i * x i) = 0 β§ (β i : Fin 4, b i * x i) = 0 β§ (β i : Fin 4, s i = Real.sign (x i))}.encard)
: (β a b : Fin 4 β β, abneq0 a b β§ numtuples a b = putnam_1967_a6_solution) β§ (β a b : Fin 4 β β, abneq0 a b β numtuples a b β€ putnam_1967_a6_solution) :=
sorry
| Given real numbers $\{a_i\}$ and $\{b_i\}$, ($i=1,2,3,4$), such that $a_1b_2-a_2b_1 \neq 0$. Consider the set of all solutions $(x_1,x_2,x_3,x_4)$ of the simultaneous equations $a_1x_1+a_2x_2+a_3x_3+a_4x_4=0$ and $b_1x_1+b_2x_2+b_3x_3+b_4x_4=0$, for which no $x_i$ ($i=1,2,3,4$) is zero. Each such solution generates a $4$-tuple of plus and minus signs $(\text{signum }x_1,\text{signum }x_2,\text{signum }x_3,\text{signum }x_4)$. Determine, with a proof, the maximum number of distinct $4$-tuples possible. | Show that the maximum number of distinct $4$-tuples is eight. | [
"algebra",
"geometry"
] | null | null |
|
putnam_2008_b3 | e56bc766-7b73-5a3d-beec-2f9f7208c438 | train | abbrev putnam_2008_b3_solution : β := sorry
-- Real.sqrt 2 / 2
/--
What is the largest possible radius of a circle contained in a $4$-dimensional hypercube of side length $1$?
-/
theorem putnam_2008_b3
(H : Set (EuclideanSpace β (Fin 4)))
(H_def : H = {P : Fin 4 β β | β i : Fin 4, |P i| β€ 1 / 2})
(contains : β β Prop)
(contains_def : β r, contains r β
βα΅ (A : AffineSubspace β (EuclideanSpace β (Fin 4))) (C β A),
finrank β A.direction = 2 β§
sphere C r β© A β H) :
IsGreatest contains putnam_2008_b3_solution :=
sorry | import Mathlib
open FiniteDimensional Metric Filter Topology Set Nat
-- Real.sqrt 2 / 2
/--
What is the largest possible radius of a circle contained in a $4$-dimensional hypercube of side length $1$?
-/
theorem putnam_2008_b3
(H : Set (EuclideanSpace β (Fin 4)))
(H_def : H = {P : Fin 4 β β | β i : Fin 4, |P i| β€ 1 / 2})
(contains : β β Prop)
(contains_def : β r, contains r β
βα΅ (A : AffineSubspace β (EuclideanSpace β (Fin 4))) (C β A),
finrank β A.direction = 2 β§
sphere C r β© A β H) :
IsGreatest contains putnam_2008_b3_solution := by
| import Mathlib
open FiniteDimensional Metric Filter Topology Set Nat
noncomputable abbrev putnam_2008_b3_solution : β := sorry
-- Real.sqrt 2 / 2
/--
What is the largest possible radius of a circle contained in a $4$-dimensional hypercube of side length $1$?
-/
theorem putnam_2008_b3
(H : Set (EuclideanSpace β (Fin 4)))
(H_def : H = {P : Fin 4 β β | β i : Fin 4, |P i| β€ 1 / 2})
(contains : β β Prop)
(contains_def : β r, contains r β
βα΅ (A : AffineSubspace β (EuclideanSpace β (Fin 4))) (C β A),
finrank β A.direction = 2 β§
sphere C r β© A β H) :
IsGreatest contains putnam_2008_b3_solution :=
sorry
| What is the largest possible radius of a circle contained in a $4$-dimensional hypercube of side length $1$? | Show that the answer is $\frac{\sqrt 2}{2}$. | [
"geometry"
] | null | null |
|
putnam_2012_b6 | d99af2ae-1fef-5396-9496-2bda1c6b307a | train | theorem putnam_2012_b6
(p : β)
(hpodd : Odd p)
(hpprime : Nat.Prime p)
(hpmod3 : p β‘ 2 [MOD 3])
(P : Equiv.Perm (Fin p))
(hP : β i : Fin p, P i = (i * i * i))
: Equiv.Perm.signAux P = 1 β (p β‘ 3 [MOD 4]) :=
sorry | import Mathlib
open Matrix Function Real Topology Filter
/--
Let $p$ be an odd prime number such that $p \equiv 2 \pmod{3}$. Define a permutation $\pi$ of the residue classes modulo $p$ by $\pi(x) \equiv x^3 \pmod{p}$. Show that $\pi$ is an even permutation if and only if $p \equiv 3 \pmod{4}$.
-/
theorem putnam_2012_b6
(p : β)
(hpodd : Odd p)
(hpprime : Nat.Prime p)
(hpmod3 : p β‘ 2 [MOD 3])
(P : Equiv.Perm (Fin p))
(hP : β i : Fin p, P i = (i * i * i))
: Equiv.Perm.signAux P = 1 β (p β‘ 3 [MOD 4]) := by
| import Mathlib
open Matrix Function Real Topology Filter
/--
Let $p$ be an odd prime number such that $p \equiv 2 \pmod{3}$. Define a permutation $\pi$ of the residue classes modulo $p$ by $\pi(x) \equiv x^3 \pmod{p}$. Show that $\pi$ is an even permutation if and only if $p \equiv 3 \pmod{4}$.
-/
theorem putnam_2012_b6
(p : β)
(hpodd : Odd p)
(hpprime : Nat.Prime p)
(hpmod3 : p β‘ 2 [MOD 3])
(P : Equiv.Perm (Fin p))
(hP : β i : Fin p, P i = (i * i * i))
: Equiv.Perm.signAux P = 1 β (p β‘ 3 [MOD 4]) :=
sorry
| Let $p$ be an odd prime number such that $p \equiv 2 \pmod{3}$. Define a permutation $\pi$ of the residue classes modulo $p$ by $\pi(x) \equiv x^3 \pmod{p}$. Show that $\pi$ is an even permutation if and only if $p \equiv 3 \pmod{4}$. | null | [
"number_theory"
] | null | null |
|
putnam_1988_b1 | 181bfe70-150e-54a2-8a2e-b39d40eac33a | train | theorem putnam_1988_b1
: β a β₯ 2, β b β₯ 2, β x y z : β€, x > 0 β§ y > 0 β§ z > 0 β§ a * b = x * y + x * z + y * z + 1 :=
sorry | import Mathlib
open Set Filter Topology
/--
A \emph{composite} (positive integer) is a product $ab$ with $a$ and $b$ not necessarily distinct integers in $\{2,3,4,\dots\}$. Show that every composite is expressible as $xy+xz+yz+1$, with $x,y,z$ positive integers.
-/
theorem putnam_1988_b1
: β a β₯ 2, β b β₯ 2, β x y z : β€, x > 0 β§ y > 0 β§ z > 0 β§ a * b = x * y + x * z + y * z + 1 := by
| import Mathlib
open Set Filter Topology
/--
A \emph{composite} (positive integer) is a product $ab$ with $a$ and $b$ not necessarily distinct integers in $\{2,3,4,\dots\}$. Show that every composite is expressible as $xy+xz+yz+1$, with $x,y,z$ positive integers.
-/
theorem putnam_1988_b1
: β a β₯ 2, β b β₯ 2, β x y z : β€, x > 0 β§ y > 0 β§ z > 0 β§ a * b = x * y + x * z + y * z + 1 :=
sorry
| A \emph{composite} (positive integer) is a product $ab$ with $a$ and $b$ not necessarily distinct integers in $\{2,3,4,\dots\}$. Show that every composite is expressible as $xy+xz+yz+1$, with $x,y,z$ positive integers. | null | [
"number_theory",
"algebra"
] | null | null |
|
putnam_1962_a4 | f6f50cbb-346b-54fb-99f4-bd8ee8a84373 | train | theorem putnam_1962_a4
(f : β β β)
(a b : β)
(hdiff : Differentiable β f β§ (Differentiable β (deriv f)))
(hfabs : β x β Set.Icc a b, |f x| β€ 1)
(hfppabs : β x β Set.Icc a b, |(iteratedDeriv 2 f) x| β€ 1)
(hlen2 : b - a β₯ 2)
: β x β Set.Icc a b, |(iteratedDeriv 1 f) x| β€ 2 :=
sorry | import Mathlib
/--
Assume that $\lvert f(x) \rvert \le 1$ and $\lvert f''(x) \rvert \le 1$ for all $x$ on an interval of length at least 2. Show that $\lvert f'(x) \rvert \le 2$ on the interval.
-/
theorem putnam_1962_a4
(f : β β β)
(a b : β)
(hdiff : Differentiable β f β§ (Differentiable β (deriv f)))
(hfabs : β x β Set.Icc a b, |f x| β€ 1)
(hfppabs : β x β Set.Icc a b, |(iteratedDeriv 2 f) x| β€ 1)
(hlen2 : b - a β₯ 2)
: β x β Set.Icc a b, |(iteratedDeriv 1 f) x| β€ 2 := by
| import Mathlib
/--
Assume that $\lvert f(x) \rvert \le 1$ and $\lvert f''(x) \rvert \le 1$ for all $x$ on an interval of length at least 2. Show that $\lvert f'(x) \rvert \le 2$ on the interval.
-/
theorem putnam_1962_a4
(f : β β β)
(a b : β)
(hdiff : Differentiable β f β§ (Differentiable β (deriv f)))
(hfabs : β x β Set.Icc a b, |f x| β€ 1)
(hfppabs : β x β Set.Icc a b, |(iteratedDeriv 2 f) x| β€ 1)
(hlen2 : b - a β₯ 2)
: β x β Set.Icc a b, |(iteratedDeriv 1 f) x| β€ 2 :=
sorry
| Assume that $\lvert f(x) \rvert \le 1$ and $\lvert f''(x) \rvert \le 1$ for all $x$ on an interval of length at least 2. Show that $\lvert f'(x) \rvert \le 2$ on the interval. | null | [
"analysis"
] | null | null |
|
putnam_1962_b2 | 76db9f4f-c767-54b4-bcf3-631b9b10edff | train | theorem putnam_1962_b2
: β f : β β Set β+, β a b : β, a < b β f a β f b :=
sorry | import Mathlib
open MeasureTheory
--Note: The original problem requires a function to be exhibited, but in the official archives the solution depends on an enumeration of the rationals, so we modify the problem to be an existential statement.
/--
Let $\mathbb{S}$ be the set of all subsets of the natural numbers. Prove the existence of a function $f : \mathbb{R} \to \mathbb{S}$ such that $f(a) \subset f(b)$ whenever $a < b$.
-/
theorem putnam_1962_b2
: β f : β β Set β+, β a b : β, a < b β f a β f b := by
| import Mathlib
open MeasureTheory
--Note: The original problem requires a function to be exhibited, but in the official archives the solution depends on an enumeration of the rationals, so we modify the problem to be an existential statement.
/--
Let $\mathbb{S}$ be the set of all subsets of the natural numbers. Prove the existence of a function $f : \mathbb{R} \to \mathbb{S}$ such that $f(a) \subset f(b)$ whenever $a < b$.
-/
theorem putnam_1962_b2
: β f : β β Set β+, β a b : β, a < b β f a β f b :=
sorry
| Let $\mathbb{S}$ be the set of all subsets of the natural numbers. Prove the existence of a function $f : \mathbb{R} \to \mathbb{S}$ such that $f(a) \subset f(b)$ whenever $a < b$. | null | [
"set_theory"
] | null | null |
|
putnam_1987_b4 | 33d78d2e-529d-594e-ae7d-439ce713895a | train | abbrev putnam_1987_b4_solution : Prop Γ β Γ Prop Γ β := sorry
-- (True, -1, True, 0)
/--
Let $(x_1,y_1) = (0.8, 0.6)$ and let $x_{n+1} = x_n \cos y_n - y_n \sin y_n$ and $y_{n+1}= x_n \sin y_n + y_n \cos y_n$ for $n=1,2,3,\dots$. For each of $\lim_{n\to \infty} x_n$ and $\lim_{n \to \infty} y_n$, prove that the limit exists and find it or prove that the limit does not exist.
-/
theorem putnam_1987_b4
(x y : β β β)
(hxy1 : (x 1, y 1) = (0.8, 0.6))
(hx : β n β₯ 1, x (n + 1) = (x n) * cos (y n) - (y n) * sin (y n))
(hy : β n β₯ 1, y (n + 1) = (x n) * sin (y n) + (y n) * cos (y n)) :
let (existsx, limx, existsy, limy) := putnam_1987_b4_solution
((β c : β, Tendsto x atTop (π c)) β existsx) β§
(existsx β Tendsto x atTop (π limx)) β§
((β c : β, Tendsto y atTop (π c)) β existsy) β§
(existsy β Tendsto y atTop (π limy)) :=
sorry | import Mathlib
open MvPolynomial Real Nat Filter Topology
-- (True, -1, True, 0)
/--
Let $(x_1,y_1) = (0.8, 0.6)$ and let $x_{n+1} = x_n \cos y_n - y_n \sin y_n$ and $y_{n+1}= x_n \sin y_n + y_n \cos y_n$ for $n=1,2,3,\dots$. For each of $\lim_{n\to \infty} x_n$ and $\lim_{n \to \infty} y_n$, prove that the limit exists and find it or prove that the limit does not exist.
-/
theorem putnam_1987_b4
(x y : β β β)
(hxy1 : (x 1, y 1) = (0.8, 0.6))
(hx : β n β₯ 1, x (n + 1) = (x n) * cos (y n) - (y n) * sin (y n))
(hy : β n β₯ 1, y (n + 1) = (x n) * sin (y n) + (y n) * cos (y n)) :
let (existsx, limx, existsy, limy) := putnam_1987_b4_solution
((β c : β, Tendsto x atTop (π c)) β existsx) β§
(existsx β Tendsto x atTop (π limx)) β§
((β c : β, Tendsto y atTop (π c)) β existsy) β§
(existsy β Tendsto y atTop (π limy)) := by
| import Mathlib
open MvPolynomial Real Nat Filter Topology
abbrev putnam_1987_b4_solution : Prop Γ β Γ Prop Γ β := sorry
-- (True, -1, True, 0)
/--
Let $(x_1,y_1) = (0.8, 0.6)$ and let $x_{n+1} = x_n \cos y_n - y_n \sin y_n$ and $y_{n+1}= x_n \sin y_n + y_n \cos y_n$ for $n=1,2,3,\dots$. For each of $\lim_{n\to \infty} x_n$ and $\lim_{n \to \infty} y_n$, prove that the limit exists and find it or prove that the limit does not exist.
-/
theorem putnam_1987_b4
(x y : β β β)
(hxy1 : (x 1, y 1) = (0.8, 0.6))
(hx : β n β₯ 1, x (n + 1) = (x n) * cos (y n) - (y n) * sin (y n))
(hy : β n β₯ 1, y (n + 1) = (x n) * sin (y n) + (y n) * cos (y n)) :
let (existsx, limx, existsy, limy) := putnam_1987_b4_solution
((β c : β, Tendsto x atTop (π c)) β existsx) β§
(existsx β Tendsto x atTop (π limx)) β§
((β c : β, Tendsto y atTop (π c)) β existsy) β§
(existsy β Tendsto y atTop (π limy)) :=
sorry
| Let $(x_1,y_1) = (0.8, 0.6)$ and let $x_{n+1} = x_n \cos y_n - y_n \sin y_n$ and $y_{n+1}= x_n \sin y_n + y_n \cos y_n$ for $n=1,2,3,\dots$. For each of $\lim_{n\to \infty} x_n$ and $\lim_{n \to \infty} y_n$, prove that the limit exists and find it or prove that the limit does not exist. | Show that $\lim_{n \to \infty} x_n = -1$ and $\lim_{n \to \infty} y_n = 0$. | [
"analysis"
] | null | null |
|
putnam_2016_a3 | 9645e221-af47-564d-927f-bc97fea312c9 | train | abbrev putnam_2016_a3_solution : β := sorry
-- 3 * Real.pi / 8
/--
Suppose that $f$ is a function from $\mathbb{R}$ to $\mathbb{R}$ such that
\[
f(x) + f\left( 1 - \frac{1}{x} \right) = \arctan x
\]
for all real $x \neq 0$. (As usual, $y = \arctan x$ means $-\pi/2 < y < \pi/2$ and $\tan y = x$.) Find
\[
\int_0^1 f(x)\,dx.
\]
-/
theorem putnam_2016_a3
(f : β β β)
(hf : β x : β, x β 0 β f x + f (1 - 1 / x) = arctan x)
: (β« x in (0)..1, f x = putnam_2016_a3_solution) :=
sorry | import Mathlib
open Polynomial Filter Topology Real Set Nat
-- 3 * Real.pi / 8
/--
Suppose that $f$ is a function from $\mathbb{R}$ to $\mathbb{R}$ such that
\[
f(x) + f\left( 1 - \frac{1}{x} \right) = \arctan x
\]
for all real $x \neq 0$. (As usual, $y = \arctan x$ means $-\pi/2 < y < \pi/2$ and $\tan y = x$.) Find
\[
\int_0^1 f(x)\,dx.
\]
-/
theorem putnam_2016_a3
(f : β β β)
(hf : β x : β, x β 0 β f x + f (1 - 1 / x) = arctan x)
: (β« x in (0)..1, f x = putnam_2016_a3_solution) := by
| import Mathlib
open Polynomial Filter Topology Real Set Nat
noncomputable abbrev putnam_2016_a3_solution : β := sorry
-- 3 * Real.pi / 8
/--
Suppose that $f$ is a function from $\mathbb{R}$ to $\mathbb{R}$ such that
\[
f(x) + f\left( 1 - \frac{1}{x} \right) = \arctan x
\]
for all real $x \neq 0$. (As usual, $y = \arctan x$ means $-\pi/2 < y < \pi/2$ and $\tan y = x$.) Find
\[
\int_0^1 f(x)\,dx.
\]
-/
theorem putnam_2016_a3
(f : β β β)
(hf : β x : β, x β 0 β f x + f (1 - 1 / x) = arctan x)
: (β« x in (0)..1, f x = putnam_2016_a3_solution) :=
sorry
| Suppose that $f$ is a function from $\mathbb{R}$ to $\mathbb{R}$ such that
\[
f(x) + f\left( 1 - \frac{1}{x} \right) = \arctan x
\]
for all real $x \neq 0$. (As usual, $y = \arctan x$ means $-\pi/2 < y < \pi/2$ and $\tan y = x$.) Find
\[
\int_0^1 f(x)\,dx.
\] | Prove that the answer is $\frac{3\pi}{8}$. | [
"analysis"
] | null | null |
|
putnam_1991_b4 | 4cbe3a2d-2adb-51d1-83fc-0595084fd5c6 | train | theorem putnam_1991_b4
(p : β)
(podd : Odd p)
(pprime : Prime p)
: (β j : Fin (p + 1), (p.choose j) * ((p + j).choose j)) β‘ (2 ^ p + 1) [MOD (p ^ 2)] :=
sorry | import Mathlib
open Filter Topology
/--
Suppose $p$ is an odd prime. Prove that $\sum_{j=0}^p \binom{p}{j}\binom{p+j}{j} \equiv 2^p+1 \pmod{p^2}$.
-/
theorem putnam_1991_b4
(p : β)
(podd : Odd p)
(pprime : Prime p)
: (β j : Fin (p + 1), (p.choose j) * ((p + j).choose j)) β‘ (2 ^ p + 1) [MOD (p ^ 2)] := by
| import Mathlib
open Filter Topology
/--
Suppose $p$ is an odd prime. Prove that $\sum_{j=0}^p \binom{p}{j}\binom{p+j}{j} \equiv 2^p+1 \pmod{p^2}$.
-/
theorem putnam_1991_b4
(p : β)
(podd : Odd p)
(pprime : Prime p)
: (β j : Fin (p + 1), (p.choose j) * ((p + j).choose j)) β‘ (2 ^ p + 1) [MOD (p ^ 2)] :=
sorry
| Suppose $p$ is an odd prime. Prove that $\sum_{j=0}^p \binom{p}{j}\binom{p+j}{j} \equiv 2^p+1 \pmod{p^2}$. | null | [
"number_theory",
"algebra"
] | null | null |
|
putnam_1962_b3 | 6603e5a2-c97d-5cdc-8aef-8c7a9a7a18db | train | theorem putnam_1962_b3
(S : Set (EuclideanSpace β (Fin 2)))
(hS : Convex β S β§ 0 β S)
(htopo : (0 β interior S) β¨ IsClosed S)
(hray : β P : EuclideanSpace β (Fin 2), P β 0 β β Q : EuclideanSpace β (Fin 2), SameRay β P Q β§ Q β S)
: Bornology.IsBounded S :=
sorry | import Mathlib
open MeasureTheory
/--
Let $S$ be a convex region in the Euclidean plane, containing the origin, for which every ray from the origin has at least one point outside $S$. Assuming that either the origin is an interior point of $S$ or $S$ is topologically closed, prove that $S$ is bounded.
-/
theorem putnam_1962_b3
(S : Set (EuclideanSpace β (Fin 2)))
(hS : Convex β S β§ 0 β S)
(htopo : (0 β interior S) β¨ IsClosed S)
(hray : β P : EuclideanSpace β (Fin 2), P β 0 β β Q : EuclideanSpace β (Fin 2), SameRay β P Q β§ Q β S)
: Bornology.IsBounded S := by
| import Mathlib
open MeasureTheory
/--
Let $S$ be a convex region in the Euclidean plane, containing the origin, for which every ray from the origin has at least one point outside $S$. Assuming that either the origin is an interior point of $S$ or $S$ is topologically closed, prove that $S$ is bounded.
-/
theorem putnam_1962_b3
(S : Set (EuclideanSpace β (Fin 2)))
(hS : Convex β S β§ 0 β S)
(htopo : (0 β interior S) β¨ IsClosed S)
(hray : β P : EuclideanSpace β (Fin 2), P β 0 β β Q : EuclideanSpace β (Fin 2), SameRay β P Q β§ Q β S)
: Bornology.IsBounded S :=
sorry
| Let $S$ be a convex region in the Euclidean plane, containing the origin, for which every ray from the origin has at least one point outside $S$. Assuming that either the origin is an interior point of $S$ or $S$ is topologically closed, prove that $S$ is bounded. | null | [
"analysis"
] | null | null |
|
putnam_2003_a2 | 09af79fe-b1fb-510c-af61-525cb99a7e4b | train | theorem putnam_2003_a2
(n : β)
(hn : 0 < n)
(a b : Fin n β β)
(abnneg : β i, a i β₯ 0 β§ b i β₯ 0) :
(β i, a i) ^ ((1 : β) / n) +
(β i, b i) ^ ((1 : β) / n) β€
(β i, (a i + b i)) ^ ((1 : β) / n) :=
sorry | import Mathlib
open MvPolynomial
/--
Let $a_1,a_2,\dots,a_n$ and $b_1,b_2,\dots,b_n$ be nonnegative real numbers. Show that $(a_1a_2 \cdots a_n)^{1/n}+(b_1b_2 \cdots b_n)^{1/n} \leq [(a_1+b_1)(a_2+b_2) \cdots (a_n+b_n)]^{1/n}$.
-/
theorem putnam_2003_a2
(n : β)
(hn : 0 < n)
(a b : Fin n β β)
(abnneg : β i, a i β₯ 0 β§ b i β₯ 0) :
(β i, a i) ^ ((1 : β) / n) +
(β i, b i) ^ ((1 : β) / n) β€
(β i, (a i + b i)) ^ ((1 : β) / n) := by
| import Mathlib
open MvPolynomial
/--
Let $a_1,a_2,\dots,a_n$ and $b_1,b_2,\dots,b_n$ be nonnegative real numbers. Show that $(a_1a_2 \cdots a_n)^{1/n}+(b_1b_2 \cdots b_n)^{1/n} \leq [(a_1+b_1)(a_2+b_2) \cdots (a_n+b_n)]^{1/n}$.
-/
theorem putnam_2003_a2
(n : β)
(hn : 0 < n)
(a b : Fin n β β)
(abnneg : β i, a i β₯ 0 β§ b i β₯ 0) :
(β i, a i) ^ ((1 : β) / n) +
(β i, b i) ^ ((1 : β) / n) β€
(β i, (a i + b i)) ^ ((1 : β) / n) :=
sorry
| Let $a_1,a_2,\dots,a_n$ and $b_1,b_2,\dots,b_n$ be nonnegative real numbers. Show that $(a_1a_2 \cdots a_n)^{1/n}+(b_1b_2 \cdots b_n)^{1/n} \leq [(a_1+b_1)(a_2+b_2) \cdots (a_n+b_n)]^{1/n}$. | null | [
"algebra"
] | null | null |
|
putnam_2020_a3 | 3c4e5623-5726-5488-8f15-9db836f6de97 | train | abbrev putnam_2020_a3_solution : Prop := sorry
-- False
/--
Let $a_0 = \pi/2$, and let $a_n = \sin(a_{n-1})$ for $n \geq 1$. Determine whether
\[
\sum_{n=1}^\infty a_n^2
\]
converges.
-/
theorem putnam_2020_a3
(a : β β β)
(ha0 : a 0 = Real.pi / 2)
(ha : β n, a (n+1) = Real.sin (a n)) :
(β L, Tendsto (fun m : β => β n in Finset.Icc 1 m, (a n)^2) atTop (π L)) β putnam_2020_a3_solution :=
sorry | import Mathlib
open Filter Topology Set
-- False
/--
Let $a_0 = \pi/2$, and let $a_n = \sin(a_{n-1})$ for $n \geq 1$. Determine whether
\[
\sum_{n=1}^\infty a_n^2
\]
converges.
-/
theorem putnam_2020_a3
(a : β β β)
(ha0 : a 0 = Real.pi / 2)
(ha : β n, a (n+1) = Real.sin (a n)) :
(β L, Tendsto (fun m : β => β n in Finset.Icc 1 m, (a n)^2) atTop (π L)) β putnam_2020_a3_solution := by
| import Mathlib
open Filter Topology Set
abbrev putnam_2020_a3_solution : Prop := sorry
-- False
/--
Let $a_0 = \pi/2$, and let $a_n = \sin(a_{n-1})$ for $n \geq 1$. Determine whether
\[
\sum_{n=1}^\infty a_n^2
\]
converges.
-/
theorem putnam_2020_a3
(a : β β β)
(ha0 : a 0 = Real.pi / 2)
(ha : β n, a (n+1) = Real.sin (a n)) :
(β L, Tendsto (fun m : β => β n in Finset.Icc 1 m, (a n)^2) atTop (π L)) β putnam_2020_a3_solution :=
sorry
| Let $a_0 = \pi/2$, and let $a_n = \sin(a_{n-1})$ for $n \geq 1$. Determine whether
\[
\sum_{n=1}^\infty a_n^2
\]
converges. | The series diverges. | [
"analysis"
] | null | null |
|
putnam_2013_b5 | a8af350b-5216-5491-9d5c-ee512a2f31ba | train | theorem putnam_2013_b5
(n : β) (hn : n β₯ 1)
(k : Set.Icc 1 n)
(fiter : (Set.Icc 1 n β Set.Icc 1 n) β Prop)
(hfiter : β f, fiter f β β x : Set.Icc 1 n, β j : β, f^[j] x β€ k) :
{f | fiter f}.encard = k * n ^ (n - 1) :=
sorry | import Mathlib
open Function Set
/--
Let $X=\{1,2,\dots,n\}$, and let $k \in X$. Show that there are exactly $k \cdot n^{n-1}$ functions $f:X \to X$ such that for every $x \in X$ there is a $j \geq 0$ such that $f^{(j)}(x) \leq k$. [Here $f^{(j)}$ denotes the $j$\textsuperscript{th} iterate of $f$, so that $f^{(0)}(x)=x$ and $f^{(j+1)}(x)=f(f^{(j)}(x))$.]
-/
theorem putnam_2013_b5
(n : β) (hn : n β₯ 1)
(k : Set.Icc 1 n)
(fiter : (Set.Icc 1 n β Set.Icc 1 n) β Prop)
(hfiter : β f, fiter f β β x : Set.Icc 1 n, β j : β, f^[j] x β€ k) :
{f | fiter f}.encard = k * n ^ (n - 1) := by
| import Mathlib
open Function Set
/--
Let $X=\{1,2,\dots,n\}$, and let $k \in X$. Show that there are exactly $k \cdot n^{n-1}$ functions $f:X \to X$ such that for every $x \in X$ there is a $j \geq 0$ such that $f^{(j)}(x) \leq k$. [Here $f^{(j)}$ denotes the $j$\textsuperscript{th} iterate of $f$, so that $f^{(0)}(x)=x$ and $f^{(j+1)}(x)=f(f^{(j)}(x))$.]
-/
theorem putnam_2013_b5
(n : β) (hn : n β₯ 1)
(k : Set.Icc 1 n)
(fiter : (Set.Icc 1 n β Set.Icc 1 n) β Prop)
(hfiter : β f, fiter f β β x : Set.Icc 1 n, β j : β, f^[j] x β€ k) :
{f | fiter f}.encard = k * n ^ (n - 1) :=
sorry
| Let $X=\{1,2,\dots,n\}$, and let $k \in X$. Show that there are exactly $k \cdot n^{n-1}$ functions $f:X \to X$ such that for every $x \in X$ there is a $j \geq 0$ such that $f^{(j)}(x) \leq k$. [Here $f^{(j)}$ denotes the $j$\textsuperscript{th} iterate of $f$, so that $f^{(0)}(x)=x$ and $f^{(j+1)}(x)=f(f^{(j)}(x))$.] | null | [
"algebra"
] | null | null |
|
putnam_1980_a5 | 28628dc3-93cf-50cc-8a31-1aaf308a32e3 | train | theorem putnam_1980_a5
(P : Polynomial β)
(Pnonconst : P.degree > 0) :
Set.Finite {x : β |
0 = (β« t in (0)..x, P.eval t * Real.sin t) β§
0 = (β« t in (0)..x, P.eval t * Real.cos t)} :=
sorry | import Mathlib
/--
Let $P(t)$ be a nonconstant polynomial with real coefficients. Prove that the system of simultaneous equations $0=\int_0^xP(t)\sin t\,dt=\int_0^xP(t)\cos t\,dt$ has only finitely many real solutions $x$.
-/
theorem putnam_1980_a5
(P : Polynomial β)
(Pnonconst : P.degree > 0) :
Set.Finite {x : β |
0 = (β« t in (0)..x, P.eval t * Real.sin t) β§
0 = (β« t in (0)..x, P.eval t * Real.cos t)} := by
| import Mathlib
/--
Let $P(t)$ be a nonconstant polynomial with real coefficients. Prove that the system of simultaneous equations $0=\int_0^xP(t)\sin t\,dt=\int_0^xP(t)\cos t\,dt$ has only finitely many real solutions $x$.
-/
theorem putnam_1980_a5
(P : Polynomial β)
(Pnonconst : P.degree > 0) :
Set.Finite {x : β |
0 = (β« t in (0)..x, P.eval t * Real.sin t) β§
0 = (β« t in (0)..x, P.eval t * Real.cos t)} :=
sorry
| Let $P(t)$ be a nonconstant polynomial with real coefficients. Prove that the system of simultaneous equations $0=\int_0^xP(t)\sin t\,dt=\int_0^xP(t)\cos t\,dt$ has only finitely many real solutions $x$. | null | [
"analysis"
] | null | null |
|
putnam_2010_b3 | b882d8a9-96de-57e9-81df-af88dd12cff0 | train | abbrev putnam_2010_b3_solution : Set β := sorry
-- Ici 1005
/--
There are $2010$ boxes labeled $B_1, B_2, \dots, B_{2010}$, and $2010n$ balls have been distributed among them, for some positive integer $n$. You may redistribute the balls by a sequence of moves, each of which consists of choosing an $i$ and moving \emph{exactly} $i$ balls from box $B_i$ into any one other box. For which values of $n$ is it possible to reach the distribution with exactly $n$ balls in each box, regardless of the initial distribution of balls?
-/
theorem putnam_2010_b3
(n : β) (hn : n > 0)
(trans : (β β Fin 2010 β β) β β β Prop)
(htrans : β P T, trans P T β β t : β, t < T β β i j,
i β j β§
P t i β₯ i.1 + 1 β§ P (t + 1) i = P t i - (i.1 + 1) β§ P (t + 1) j = P t j + (i.1 + 1) β§
β k : Fin 2010, k β i β k β j β P (t + 1) k = P t k) :
(β B, β i, B i = 2010 * n β βα΅ (P) (T), P 0 = B β§ trans P T β§ β i, P T i = n)
β n β putnam_2010_b3_solution :=
sorry | import Mathlib
open Filter Topology Set
-- Ici 1005
/--
There are $2010$ boxes labeled $B_1, B_2, \dots, B_{2010}$, and $2010n$ balls have been distributed among them, for some positive integer $n$. You may redistribute the balls by a sequence of moves, each of which consists of choosing an $i$ and moving \emph{exactly} $i$ balls from box $B_i$ into any one other box. For which values of $n$ is it possible to reach the distribution with exactly $n$ balls in each box, regardless of the initial distribution of balls?
-/
theorem putnam_2010_b3
(n : β) (hn : n > 0)
(trans : (β β Fin 2010 β β) β β β Prop)
(htrans : β P T, trans P T β β t : β, t < T β β i j,
i β j β§
P t i β₯ i.1 + 1 β§ P (t + 1) i = P t i - (i.1 + 1) β§ P (t + 1) j = P t j + (i.1 + 1) β§
β k : Fin 2010, k β i β k β j β P (t + 1) k = P t k) :
(β B, β i, B i = 2010 * n β βα΅ (P) (T), P 0 = B β§ trans P T β§ β i, P T i = n)
β n β putnam_2010_b3_solution := by
| import Mathlib
open Filter Topology Set
abbrev putnam_2010_b3_solution : Set β := sorry
-- Ici 1005
/--
There are $2010$ boxes labeled $B_1, B_2, \dots, B_{2010}$, and $2010n$ balls have been distributed among them, for some positive integer $n$. You may redistribute the balls by a sequence of moves, each of which consists of choosing an $i$ and moving \emph{exactly} $i$ balls from box $B_i$ into any one other box. For which values of $n$ is it possible to reach the distribution with exactly $n$ balls in each box, regardless of the initial distribution of balls?
-/
theorem putnam_2010_b3
(n : β) (hn : n > 0)
(trans : (β β Fin 2010 β β) β β β Prop)
(htrans : β P T, trans P T β β t : β, t < T β β i j,
i β j β§
P t i β₯ i.1 + 1 β§ P (t + 1) i = P t i - (i.1 + 1) β§ P (t + 1) j = P t j + (i.1 + 1) β§
β k : Fin 2010, k β i β k β j β P (t + 1) k = P t k) :
(β B, β i, B i = 2010 * n β βα΅ (P) (T), P 0 = B β§ trans P T β§ β i, P T i = n)
β n β putnam_2010_b3_solution :=
sorry
| There are $2010$ boxes labeled $B_1, B_2, \dots, B_{2010}$, and $2010n$ balls have been distributed among them, for some positive integer $n$. You may redistribute the balls by a sequence of moves, each of which consists of choosing an $i$ and moving \emph{exactly} $i$ balls from box $B_i$ into any one other box. For which values of $n$ is it possible to reach the distribution with exactly $n$ balls in each box, regardless of the initial distribution of balls? | Prove that it is possible if and only if $n \geq 1005$. | [
"analysis"
] | null | null |
|
putnam_1969_b6 | 73a47890-44f5-5603-8cf3-98dd932dd723 | train | theorem putnam_1969_b6
(A : Matrix (Fin 3) (Fin 2) β)
(B : Matrix (Fin 2) (Fin 3) β)
(p : Fin 3 β Fin 3 β β)
(hp : p 0 0 = 8 β§ p 0 1 = 2 β§ p 0 2 = -2 β§
p 1 0 = 2 β§ p 1 1 = 5 β§ p 1 2 = 4 β§
p 2 0 = -2 β§ p 2 1 = 4 β§ p 2 2 = 5)
(hAB : A * B = Matrix.of p)
: B * A = 9 * (1 : Matrix (Fin 2) (Fin 2) β) :=
sorry | import Mathlib
open Matrix Filter Topology Set Nat
/--
Let $A$ be a $3 \times 2$ matrix and $B$ be a $2 \times 3$ matrix such that $$AB =
\begin{pmatrix}
8 & 2 & -2 \\
2 & 5 & 4 \\
-2 & 4 & 5
\end{pmatrix}.
$$ Prove that $$BA =
\begin{pmatrix}
9 & 0 \\
0 & 9
\end{pmatrix}.$$
-/
theorem putnam_1969_b6
(A : Matrix (Fin 3) (Fin 2) β)
(B : Matrix (Fin 2) (Fin 3) β)
(p : Fin 3 β Fin 3 β β)
(hp : p 0 0 = 8 β§ p 0 1 = 2 β§ p 0 2 = -2 β§
p 1 0 = 2 β§ p 1 1 = 5 β§ p 1 2 = 4 β§
p 2 0 = -2 β§ p 2 1 = 4 β§ p 2 2 = 5)
(hAB : A * B = Matrix.of p)
: B * A = 9 * (1 : Matrix (Fin 2) (Fin 2) β) := by
| import Mathlib
open Matrix Filter Topology Set Nat
/--
Let $A$ be a $3 \times 2$ matrix and $B$ be a $2 \times 3$ matrix such that $$AB =
\begin{pmatrix}
8 & 2 & -2 \\
2 & 5 & 4 \\
-2 & 4 & 5
\end{pmatrix}.
$$ Prove that $$BA =
\begin{pmatrix}
9 & 0 \\
0 & 9
\end{pmatrix}.$$
-/
theorem putnam_1969_b6
(A : Matrix (Fin 3) (Fin 2) β)
(B : Matrix (Fin 2) (Fin 3) β)
(p : Fin 3 β Fin 3 β β)
(hp : p 0 0 = 8 β§ p 0 1 = 2 β§ p 0 2 = -2 β§
p 1 0 = 2 β§ p 1 1 = 5 β§ p 1 2 = 4 β§
p 2 0 = -2 β§ p 2 1 = 4 β§ p 2 2 = 5)
(hAB : A * B = Matrix.of p)
: B * A = 9 * (1 : Matrix (Fin 2) (Fin 2) β) :=
sorry
| Let $A$ be a $3 \times 2$ matrix and $B$ be a $2 \times 3$ matrix such that $$AB =
\begin{pmatrix}
8 & 2 & -2 \\
2 & 5 & 4 \\
-2 & 4 & 5
\end{pmatrix}.
$$ Prove that $$BA =
\begin{pmatrix}
9 & 0 \\
0 & 9
\end{pmatrix}.$$ | null | [
"linear_algebra"
] | null | null |
|
putnam_1985_a6 | 8c5f7f24-cdf8-5c14-83f3-f9b40823f290 | train | abbrev putnam_1985_a6_solution : Polynomial β := sorry
-- 6 * X ^ 2 + 5 * X + 1
/--
If $p(x)= a_0 + a_1 x + \cdots + a_m x^m$ is a polynomial with real coefficients $a_i$, then set
\[
\Gamma(p(x)) = a_0^2 + a_1^2 + \cdots + a_m^2.
\]
Let $F(x) = 3x^2+7x+2$. Find, with proof, a polynomial $g(x)$ with real coefficients such that
\begin{enumerate}
\item[(i)] $g(0)=1$, and
\item[(ii)] $\Gamma(f(x)^n) = \Gamma(g(x)^n)$
\end{enumerate}
for every integer $n \geq 1$.
-/
theorem putnam_1985_a6
(Ξ : Polynomial β β β)
(f : Polynomial β)
(hΞ : Ξ = fun p β¦ β k in Finset.range (p.natDegree + 1), coeff p k ^ 2)
(hf : f = 3 * X ^ 2 + 7 * X + 2) :
let g := putnam_1985_a6_solution;
g.eval 0 = 1 β§ β n : β, n β₯ 1 β Ξ (f ^ n) = Ξ (g ^ n) :=
sorry | import Mathlib
open Set Filter Topology Real Polynomial
-- 6 * X ^ 2 + 5 * X + 1
/--
If $p(x)= a_0 + a_1 x + \cdots + a_m x^m$ is a polynomial with real coefficients $a_i$, then set
\[
\Gamma(p(x)) = a_0^2 + a_1^2 + \cdots + a_m^2.
\]
Let $F(x) = 3x^2+7x+2$. Find, with proof, a polynomial $g(x)$ with real coefficients such that
\begin{enumerate}
\item[(i)] $g(0)=1$, and
\item[(ii)] $\Gamma(f(x)^n) = \Gamma(g(x)^n)$
\end{enumerate}
for every integer $n \geq 1$.
-/
theorem putnam_1985_a6
(Ξ : Polynomial β β β)
(f : Polynomial β)
(hΞ : Ξ = fun p β¦ β k in Finset.range (p.natDegree + 1), coeff p k ^ 2)
(hf : f = 3 * X ^ 2 + 7 * X + 2) :
let g := putnam_1985_a6_solution;
g.eval 0 = 1 β§ β n : β, n β₯ 1 β Ξ (f ^ n) = Ξ (g ^ n) := by
| import Mathlib
open Set Filter Topology Real Polynomial
noncomputable abbrev putnam_1985_a6_solution : Polynomial β := sorry
-- 6 * X ^ 2 + 5 * X + 1
/--
If $p(x)= a_0 + a_1 x + \cdots + a_m x^m$ is a polynomial with real coefficients $a_i$, then set
\[
\Gamma(p(x)) = a_0^2 + a_1^2 + \cdots + a_m^2.
\]
Let $F(x) = 3x^2+7x+2$. Find, with proof, a polynomial $g(x)$ with real coefficients such that
\begin{enumerate}
\item[(i)] $g(0)=1$, and
\item[(ii)] $\Gamma(f(x)^n) = \Gamma(g(x)^n)$
\end{enumerate}
for every integer $n \geq 1$.
-/
theorem putnam_1985_a6
(Ξ : Polynomial β β β)
(f : Polynomial β)
(hΞ : Ξ = fun p β¦ β k in Finset.range (p.natDegree + 1), coeff p k ^ 2)
(hf : f = 3 * X ^ 2 + 7 * X + 2) :
let g := putnam_1985_a6_solution;
g.eval 0 = 1 β§ β n : β, n β₯ 1 β Ξ (f ^ n) = Ξ (g ^ n) :=
sorry
| If $p(x)= a_0 + a_1 x + \cdots + a_m x^m$ is a polynomial with real coefficients $a_i$, then set
\[
\Gamma(p(x)) = a_0^2 + a_1^2 + \cdots + a_m^2.
\]
Let $F(x) = 3x^2+7x+2$. Find, with proof, a polynomial $g(x)$ with real coefficients such that
\begin{enumerate}
\item[(i)] $g(0)=1$, and
\item[(ii)] $\Gamma(f(x)^n) = \Gamma(g(x)^n)$
\end{enumerate}
for every integer $n \geq 1$. | Show that $g(x) = 6x^2 + 5x + 1$ satisfies the conditions. | [
"algebra"
] | null | null |
|
putnam_1972_b3 | cec7b313-51bf-57ce-bfb3-0db26a2ad2f1 | train | theorem putnam_1972_b3
(G : Type*) [Group G]
(A B : G)
(hab : A * B * A = B * A^2 * B β§ A^3 = 1 β§ (β n : β€, n > 0 β§ B^(2*n - 1) = 1))
: B = 1 :=
sorry | import Mathlib
open EuclideanGeometry Filter Topology Set MeasureTheory Metric
/--
Let $A$ and $B$ be two elements in a group such that $ABA = BA^2B$, $A^3 = 1$, and $B^{2n-1} = 1$ for some positive integer $n$. Prove that $B = 1$.
-/
theorem putnam_1972_b3
(G : Type*) [Group G]
(A B : G)
(hab : A * B * A = B * A^2 * B β§ A^3 = 1 β§ (β n : β€, n > 0 β§ B^(2*n - 1) = 1))
: B = 1 := by
| import Mathlib
open EuclideanGeometry Filter Topology Set MeasureTheory Metric
/--
Let $A$ and $B$ be two elements in a group such that $ABA = BA^2B$, $A^3 = 1$, and $B^{2n-1} = 1$ for some positive integer $n$. Prove that $B = 1$.
-/
theorem putnam_1972_b3
(G : Type*) [Group G]
(A B : G)
(hab : A * B * A = B * A^2 * B β§ A^3 = 1 β§ (β n : β€, n > 0 β§ B^(2*n - 1) = 1))
: B = 1 :=
sorry
| Let $A$ and $B$ be two elements in a group such that $ABA = BA^2B$, $A^3 = 1$, and $B^{2n-1} = 1$ for some positive integer $n$. Prove that $B = 1$. | null | [
"abstract_algebra"
] | null | null |
|
asserts | abbdd2c3-e248-5a27-bc97-d8877416eb82 | train | abbrev putnam_1974_a3_solution : (Set β) Γ (Set β) := sorry
-- ({p : β | p.Prime β§ p β‘ 1 [MOD 8]}, {p : β | p.Prime β§ p β‘ 5 [MOD 8]})
/--
A well-known theorem asserts that a prime $p > 2$ can be written as the sum of two perfect squres if and only if $p \equiv 1 \bmod 4$. Find which primes $p > 2$ can be written in each of the following forms, using (not necessarily positive) integers $x$ and $y$: (a) $x^2 + 16y^2$, (b) $4x^2 + 4xy + 5y^2$.
-/
theorem putnam_1974_a3
(assmption : β p : β, p.Prime β§ p > 2 β ((β m n : β€, p = m^2 + n^2) β p β‘ 1 [MOD 4]))
: β p : β, ((p.Prime β§ p > 2 β§ (β x y : β€, p = x^2 + 16*y^2)) β p β putnam_1974_a3_solution.1) β§ ((p.Prime β§ p > 2 β§ (β x y : β€, p = 4*x^2 + 4*x*y + 5*y^2)) β p β putnam_1974_a3_solution.2) :=
sorry | import Mathlib
open Set
-- ({p : β | p.Prime β§ p β‘ 1 [MOD 8]}, {p : β | p.Prime β§ p β‘ 5 [MOD 8]})
/--
A well-known theorem asserts that a prime $p > 2$ can be written as the sum of two perfect squres if and only if $p \equiv 1 \bmod 4$. Find which primes $p > 2$ can be written in each of the following forms, using (not necessarily positive) integers $x$ and $y$: (a) $x^2 + 16y^2$, (b) $4x^2 + 4xy + 5y^2$.
-/
theorem putnam_1974_a3
(assmption : β p : β, p.Prime β§ p > 2 β ((β m n : β€, p = m^2 + n^2) β p β‘ 1 [MOD 4]))
: β p : β, ((p.Prime β§ p > 2 β§ (β x y : β€, p = x^2 + 16*y^2)) β p β putnam_1974_a3_solution.1) β§ ((p.Prime β§ p > 2 β§ (β x y : β€, p = 4*x^2 + 4*x*y + 5*y^2)) β p β putnam_1974_a3_solution.2) := by
| import Mathlib
open Set
abbrev putnam_1974_a3_solution : (Set β) Γ (Set β) := sorry
-- ({p : β | p.Prime β§ p β‘ 1 [MOD 8]}, {p : β | p.Prime β§ p β‘ 5 [MOD 8]})
/--
A well-known theorem asserts that a prime $p > 2$ can be written as the sum of two perfect squres if and only if $p \equiv 1 \bmod 4$. Find which primes $p > 2$ can be written in each of the following forms, using (not necessarily positive) integers $x$ and $y$: (a) $x^2 + 16y^2$, (b) $4x^2 + 4xy + 5y^2$.
-/
theorem putnam_1974_a3
(assmption : β p : β, p.Prime β§ p > 2 β ((β m n : β€, p = m^2 + n^2) β p β‘ 1 [MOD 4]))
: β p : β, ((p.Prime β§ p > 2 β§ (β x y : β€, p = x^2 + 16*y^2)) β p β putnam_1974_a3_solution.1) β§ ((p.Prime β§ p > 2 β§ (β x y : β€, p = 4*x^2 + 4*x*y + 5*y^2)) β p β putnam_1974_a3_solution.2) :=
sorry
| null | null | [] | null | null |
|
putnam_1993_a6 | c94411c9-0b0b-5755-ba7b-c5d24209ed90 | train | theorem putnam_1993_a6
(seq : β β β€)
(hseq23 : β n, seq n = 2 β¨ seq n = 3)
(hseq2inds : β n, seq n = 2 β (β N : β, n = β i : Fin N, (seq i + 1)))
: β r : β, β n, seq n = 2 β (β m : β€, n + 1 = 1 + Int.floor (r * m)) :=
sorry | import Mathlib
/--
The infinite sequence of $2$'s and $3$'s $2,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2,\dots$ has the property that, if one forms a second sequence that records the number of $3$'s between successive $2$'s, the result is identical to the given sequence. Show that there exists a real number $r$ such that, for any $n$, the $n$th term of the sequence is $2$ if and only if $n=1+\lfloor rm \rfloor$ for some nonnegative integer $m$. (Note: $\lfloor x \rfloor$ denotes the largest integer less than or equal to $x$.)
-/
theorem putnam_1993_a6
(seq : β β β€)
(hseq23 : β n, seq n = 2 β¨ seq n = 3)
(hseq2inds : β n, seq n = 2 β (β N : β, n = β i : Fin N, (seq i + 1)))
: β r : β, β n, seq n = 2 β (β m : β€, n + 1 = 1 + Int.floor (r * m)) := by
| import Mathlib
/--
The infinite sequence of $2$'s and $3$'s $2,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2,\dots$ has the property that, if one forms a second sequence that records the number of $3$'s between successive $2$'s, the result is identical to the given sequence. Show that there exists a real number $r$ such that, for any $n$, the $n$th term of the sequence is $2$ if and only if $n=1+\lfloor rm \rfloor$ for some nonnegative integer $m$. (Note: $\lfloor x \rfloor$ denotes the largest integer less than or equal to $x$.)
-/
theorem putnam_1993_a6
(seq : β β β€)
(hseq23 : β n, seq n = 2 β¨ seq n = 3)
(hseq2inds : β n, seq n = 2 β (β N : β, n = β i : Fin N, (seq i + 1)))
: β r : β, β n, seq n = 2 β (β m : β€, n + 1 = 1 + Int.floor (r * m)) :=
sorry
| The infinite sequence of $2$'s and $3$'s $2,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2,\dots$ has the property that, if one forms a second sequence that records the number of $3$'s between successive $2$'s, the result is identical to the given sequence. Show that there exists a real number $r$ such that, for any $n$, the $n$th term of the sequence is $2$ if and only if $n=1+\lfloor rm \rfloor$ for some nonnegative integer $m$. (Note: $\lfloor x \rfloor$ denotes the largest integer less than or equal to $x$.) | null | [
"algebra"
] | null | null |
|
putnam_2023_b4 | 3f71d765-2886-5eba-9286-ba281327dd7e | train | abbrev putnam_2023_b4_solution : β := sorry
-- 29
/--
For a nonnegative integer $n$ and a strictly increasing sequence of real numbers $t_0,t_1,\dots,t_n$, let $f(t)$ be the corresponding real-valued function defined for $t \geq t_0$ by the following properties:
\begin{enumerate}
\item[(a)] $f(t)$ is continuous for $t \geq t_0$, and is twice differentiable for all $t>t_0$ other than $t_1,\dots,t_n$;
\item[(b)] $f(t_0)=1/2$;
\item[(c)] $\lim_{t \to t_k^+} f'(t)=0$ for $0 \leq k \leq n$;
\item[(d)] For $0 \leq k \leq n-1$, we have $f''(t)=k+1$ when $t_k<t<t_{k+1}$, and $f''(t)=n+1$ when $t>t_n$.
\end{enumerate}
Considering all choices of $n$ and $t_0,t_1,\dots,t_n$ such that $t_k \geq t_{k-1}+1$ for $1 \leq k \leq n$, what is the least possible value of $T$ for which $f(t_0+T)=2023$?
-/
theorem putnam_2023_b4
(tne : β β (β β β) β Set β)
(htne : β n ts, tne n ts = {t | t > ts 0 β§ β i : Fin n, t β ts (i.1 + 1)}) :
IsLeast
{(T : β) | 0 β€ T β§ β (n : β) (ts : β β β) (f : β β β),
β k : Fin n, ts (k.1 + 1) β₯ ts k.1 + 1 β§
ContinuousOn f (Set.Ici (ts 0)) β§
ContDiffOn β 1 f (tne n ts) β§
DifferentiableOn β (derivWithin f (tne n ts)) (tne n ts) β§
f (ts 0) = 0.5 β§
(β k : Fin (n + 1),
Tendsto (derivWithin f (tne n ts)) (π[>] (ts k.1)) (π 0)) β§
(β k : Fin n,
β t β Set.Ioo (ts k.1) (ts (k.1 + 1)),
iteratedDerivWithin 2 f (tne n ts) t = k.1 + 1) β§
(β t > ts n,
iteratedDerivWithin 2 f (tne n ts) t = n + 1) β§
f (ts 0 + T) = 2023}
putnam_2023_b4_solution :=
sorry | import Mathlib
open Nat Topology Filter
-- Note: uses (β β β) instead of (Fin (n + 1) β β) and (β β β) instead of (tall ts β β)
-- 29
/--
For a nonnegative integer $n$ and a strictly increasing sequence of real numbers $t_0,t_1,\dots,t_n$, let $f(t)$ be the corresponding real-valued function defined for $t \geq t_0$ by the following properties:
\begin{enumerate}
\item[(a)] $f(t)$ is continuous for $t \geq t_0$, and is twice differentiable for all $t>t_0$ other than $t_1,\dots,t_n$;
\item[(b)] $f(t_0)=1/2$;
\item[(c)] $\lim_{t \to t_k^+} f'(t)=0$ for $0 \leq k \leq n$;
\item[(d)] For $0 \leq k \leq n-1$, we have $f''(t)=k+1$ when $t_k<t<t_{k+1}$, and $f''(t)=n+1$ when $t>t_n$.
\end{enumerate}
Considering all choices of $n$ and $t_0,t_1,\dots,t_n$ such that $t_k \geq t_{k-1}+1$ for $1 \leq k \leq n$, what is the least possible value of $T$ for which $f(t_0+T)=2023$?
-/
theorem putnam_2023_b4
(tne : β β (β β β) β Set β)
(htne : β n ts, tne n ts = {t | t > ts 0 β§ β i : Fin n, t β ts (i.1 + 1)}) :
IsLeast
{(T : β) | 0 β€ T β§ β (n : β) (ts : β β β) (f : β β β),
β k : Fin n, ts (k.1 + 1) β₯ ts k.1 + 1 β§
ContinuousOn f (Set.Ici (ts 0)) β§
ContDiffOn β 1 f (tne n ts) β§
DifferentiableOn β (derivWithin f (tne n ts)) (tne n ts) β§
f (ts 0) = 0.5 β§
(β k : Fin (n + 1),
Tendsto (derivWithin f (tne n ts)) (π[>] (ts k.1)) (π 0)) β§
(β k : Fin n,
β t β Set.Ioo (ts k.1) (ts (k.1 + 1)),
iteratedDerivWithin 2 f (tne n ts) t = k.1 + 1) β§
(β t > ts n,
iteratedDerivWithin 2 f (tne n ts) t = n + 1) β§
f (ts 0 + T) = 2023}
putnam_2023_b4_solution := by
| import Mathlib
open Nat Topology Filter
-- Note: uses (β β β) instead of (Fin (n + 1) β β) and (β β β) instead of (tall ts β β)
abbrev putnam_2023_b4_solution : β := sorry
-- 29
/--
For a nonnegative integer $n$ and a strictly increasing sequence of real numbers $t_0,t_1,\dots,t_n$, let $f(t)$ be the corresponding real-valued function defined for $t \geq t_0$ by the following properties:
\begin{enumerate}
\item[(a)] $f(t)$ is continuous for $t \geq t_0$, and is twice differentiable for all $t>t_0$ other than $t_1,\dots,t_n$;
\item[(b)] $f(t_0)=1/2$;
\item[(c)] $\lim_{t \to t_k^+} f'(t)=0$ for $0 \leq k \leq n$;
\item[(d)] For $0 \leq k \leq n-1$, we have $f''(t)=k+1$ when $t_k<t<t_{k+1}$, and $f''(t)=n+1$ when $t>t_n$.
\end{enumerate}
Considering all choices of $n$ and $t_0,t_1,\dots,t_n$ such that $t_k \geq t_{k-1}+1$ for $1 \leq k \leq n$, what is the least possible value of $T$ for which $f(t_0+T)=2023$?
-/
theorem putnam_2023_b4
(tne : β β (β β β) β Set β)
(htne : β n ts, tne n ts = {t | t > ts 0 β§ β i : Fin n, t β ts (i.1 + 1)}) :
IsLeast
{(T : β) | 0 β€ T β§ β (n : β) (ts : β β β) (f : β β β),
β k : Fin n, ts (k.1 + 1) β₯ ts k.1 + 1 β§
ContinuousOn f (Set.Ici (ts 0)) β§
ContDiffOn β 1 f (tne n ts) β§
DifferentiableOn β (derivWithin f (tne n ts)) (tne n ts) β§
f (ts 0) = 0.5 β§
(β k : Fin (n + 1),
Tendsto (derivWithin f (tne n ts)) (π[>] (ts k.1)) (π 0)) β§
(β k : Fin n,
β t β Set.Ioo (ts k.1) (ts (k.1 + 1)),
iteratedDerivWithin 2 f (tne n ts) t = k.1 + 1) β§
(β t > ts n,
iteratedDerivWithin 2 f (tne n ts) t = n + 1) β§
f (ts 0 + T) = 2023}
putnam_2023_b4_solution :=
sorry
| For a nonnegative integer $n$ and a strictly increasing sequence of real numbers $t_0,t_1,\dots,t_n$, let $f(t)$ be the corresponding real-valued function defined for $t \geq t_0$ by the following properties:
\begin{enumerate}
\item[(a)] $f(t)$ is continuous for $t \geq t_0$, and is twice differentiable for all $t>t_0$ other than $t_1,\dots,t_n$;
\item[(b)] $f(t_0)=1/2$;
\item[(c)] $\lim_{t \to t_k^+} f'(t)=0$ for $0 \leq k \leq n$;
\item[(d)] For $0 \leq k \leq n-1$, we have $f''(t)=k+1$ when $t_k<t<t_{k+1}$, and $f''(t)=n+1$ when $t>t_n$.
\end{enumerate}
Considering all choices of $n$ and $t_0,t_1,\dots,t_n$ such that $t_k \geq t_{k-1}+1$ for $1 \leq k \leq n$, what is the least possible value of $T$ for which $f(t_0+T)=2023$? | Show that the minimum value of $T$ is $29$. | [
"analysis"
] | null | null |
|
putnam_2003_b1 | 6c8282b2-ad6c-59b9-8386-bcb43b956a9d | train | abbrev putnam_2003_b1_solution : Prop := sorry
-- False
/--
Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that \[ 1 + xy + x^2y^2 = a(x)c(y) + b(x)d(y)\] holds identically?
-/
theorem putnam_2003_b1
: (β a b c d : Polynomial β, (β x y : β, 1 + x * y + x ^ 2 * y ^ 2 = a.eval x * c.eval y + b.eval x * d.eval y)) β putnam_2003_b1_solution :=
sorry | import Mathlib
open MvPolynomial Set
-- False
/--
Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that \[ 1 + xy + x^2y^2 = a(x)c(y) + b(x)d(y)\] holds identically?
-/
theorem putnam_2003_b1
: (β a b c d : Polynomial β, (β x y : β, 1 + x * y + x ^ 2 * y ^ 2 = a.eval x * c.eval y + b.eval x * d.eval y)) β putnam_2003_b1_solution := by
| import Mathlib
open MvPolynomial Set
abbrev putnam_2003_b1_solution : Prop := sorry
-- False
/--
Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that \[ 1 + xy + x^2y^2 = a(x)c(y) + b(x)d(y)\] holds identically?
-/
theorem putnam_2003_b1
: (β a b c d : Polynomial β, (β x y : β, 1 + x * y + x ^ 2 * y ^ 2 = a.eval x * c.eval y + b.eval x * d.eval y)) β putnam_2003_b1_solution :=
sorry
| Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that \[ 1 + xy + x^2y^2 = a(x)c(y) + b(x)d(y)\] holds identically? | Show that no such polynomials exist. | [
"linear_algebra",
"algebra"
] | null | null |
|
putnam_2013_a3 | fb268e6e-426e-5f3f-af7d-df56d9923f0a | train | theorem putnam_2013_a3
(n : β)
(a : Set.Icc 0 n β β)
(x : β)
(hx : 0 < x β§ x < 1)
(hsum : (β i : Set.Icc 0 n, a i / (1 - x ^ (i.1 + 1))) = 0)
: β y : β, 0 < y β§ y < 1 β§ (β i : Set.Icc 0 n, a i * y ^ i.1) = 0 :=
sorry | import Mathlib
open Function Set
/--
Suppose that the real numbers \( a_0, a_1, \ldots, a_n \) and \( x \), with \( 0 < x < 1 \), satisfy $ \frac{a_0}{1-x} + \frac{a_1}{(1-x)^2} + \cdots + \frac{a_n}{(1-x)^{n+1}} = 0. $ Prove that there exists a real number \( y \) with \( 0 < y < 1 \) such that $ a_0 + a_1y + \cdots + a_ny^n = 0. $.
-/
theorem putnam_2013_a3
(n : β)
(a : Set.Icc 0 n β β)
(x : β)
(hx : 0 < x β§ x < 1)
(hsum : (β i : Set.Icc 0 n, a i / (1 - x ^ (i.1 + 1))) = 0)
: β y : β, 0 < y β§ y < 1 β§ (β i : Set.Icc 0 n, a i * y ^ i.1) = 0 := by
| import Mathlib
open Function Set
/--
Suppose that the real numbers \( a_0, a_1, \ldots, a_n \) and \( x \), with \( 0 < x < 1 \), satisfy $ \frac{a_0}{1-x} + \frac{a_1}{(1-x)^2} + \cdots + \frac{a_n}{(1-x)^{n+1}} = 0. $ Prove that there exists a real number \( y \) with \( 0 < y < 1 \) such that $ a_0 + a_1y + \cdots + a_ny^n = 0. $.
-/
theorem putnam_2013_a3
(n : β)
(a : Set.Icc 0 n β β)
(x : β)
(hx : 0 < x β§ x < 1)
(hsum : (β i : Set.Icc 0 n, a i / (1 - x ^ (i.1 + 1))) = 0)
: β y : β, 0 < y β§ y < 1 β§ (β i : Set.Icc 0 n, a i * y ^ i.1) = 0 :=
sorry
| Suppose that the real numbers \( a_0, a_1, \ldots, a_n \) and \( x \), with \( 0 < x < 1 \), satisfy $ \frac{a_0}{1-x} + \frac{a_1}{(1-x)^2} + \cdots + \frac{a_n}{(1-x)^{n+1}} = 0. $ Prove that there exists a real number \( y \) with \( 0 < y < 1 \) such that $ a_0 + a_1y + \cdots + a_ny^n = 0. $. | null | [
"analysis"
] | null | null |
|
putnam_2006_a5 | 89218bb3-7854-5c7e-9ccc-491c88252f48 | train | abbrev putnam_2006_a5_solution : β β β€ := sorry
-- (fun n : β => if (n β‘ 1 [MOD 4]) then n else -n)
/--
Let $n$ be a positive odd integer and let $\theta$ be a real number such that $\theta/\pi$ is irrational. Set $a_k=\tan(\theta+k\pi/n)$, $k=1,2,\dots,n$. Prove that $\frac{a_1+a_2+\cdots+a_n}{a_1a_2 \cdots a_n}$ is an integer, and determine its value.
-/
theorem putnam_2006_a5
(n : β)
(theta : β)
(a : Set.Icc 1 n β β)
(nodd : Odd n)
(thetairr : Irrational (theta / Real.pi))
(ha : β k : Set.Icc 1 n, a k = Real.tan (theta + (k * Real.pi) / n))
: (β k : Set.Icc 1 n, a k) / (β k : Set.Icc 1 n, a k) = putnam_2006_a5_solution n :=
sorry | import Mathlib
-- (fun n : β => if (n β‘ 1 [MOD 4]) then n else -n)
/--
Let $n$ be a positive odd integer and let $\theta$ be a real number such that $\theta/\pi$ is irrational. Set $a_k=\tan(\theta+k\pi/n)$, $k=1,2,\dots,n$. Prove that $\frac{a_1+a_2+\cdots+a_n}{a_1a_2 \cdots a_n}$ is an integer, and determine its value.
-/
theorem putnam_2006_a5
(n : β)
(theta : β)
(a : Set.Icc 1 n β β)
(nodd : Odd n)
(thetairr : Irrational (theta / Real.pi))
(ha : β k : Set.Icc 1 n, a k = Real.tan (theta + (k * Real.pi) / n))
: (β k : Set.Icc 1 n, a k) / (β k : Set.Icc 1 n, a k) = putnam_2006_a5_solution n := by
| import Mathlib
abbrev putnam_2006_a5_solution : β β β€ := sorry
-- (fun n : β => if (n β‘ 1 [MOD 4]) then n else -n)
/--
Let $n$ be a positive odd integer and let $\theta$ be a real number such that $\theta/\pi$ is irrational. Set $a_k=\tan(\theta+k\pi/n)$, $k=1,2,\dots,n$. Prove that $\frac{a_1+a_2+\cdots+a_n}{a_1a_2 \cdots a_n}$ is an integer, and determine its value.
-/
theorem putnam_2006_a5
(n : β)
(theta : β)
(a : Set.Icc 1 n β β)
(nodd : Odd n)
(thetairr : Irrational (theta / Real.pi))
(ha : β k : Set.Icc 1 n, a k = Real.tan (theta + (k * Real.pi) / n))
: (β k : Set.Icc 1 n, a k) / (β k : Set.Icc 1 n, a k) = putnam_2006_a5_solution n :=
sorry
| Let $n$ be a positive odd integer and let $\theta$ be a real number such that $\theta/\pi$ is irrational. Set $a_k=\tan(\theta+k\pi/n)$, $k=1,2,\dots,n$. Prove that $\frac{a_1+a_2+\cdots+a_n}{a_1a_2 \cdots a_n}$ is an integer, and determine its value. | Show that $\frac{a_1+\cdots+a_n}{a_1 \cdots a_n}=\begin{cases} n & n \equiv 1 \pmod{4} \\ -n & n \equiv 3 \pmod{4}. \end{cases}$ | [
"algebra"
] | null | null |
|
putnam_2009_a2 | 794e2d1d-34a4-53f5-b226-c663ecc30fd7 | train | abbrev putnam_2009_a2_solution : β β β := sorry
-- fun x β¦ 2 ^ (-(1 : β) / 12) * (Real.sin (6 * x + Real.pi / 4) / (Real.cos (6 * x + Real.pi / 4)) ^ 2) ^ ((1 : β) / 6)
/--
Functions $f,g,h$ are differentiable on some open interval around $0$
and satisfy the equations and initial conditions
\begin{gather*}
f' = 2f^2gh+\frac{1}{gh},\quad f(0)=1, \\
g'=fg^2h+\frac{4}{fh}, \quad g(0)=1, \\
h'=3fgh^2+\frac{1}{fg}, \quad h(0)=1.
\end{gather*}
Find an explicit formula for $f(x)$, valid in some open interval around $0$.
-/
theorem putnam_2009_a2
(f g h : β β β)
(a b : β)
(hab : 0 β Ioo a b)
(hdiff : DifferentiableOn β f (Ioo a b) β§ DifferentiableOn β g (Ioo a b) β§ DifferentiableOn β h (Ioo a b))
(hf : (β x β Ioo a b, deriv f x = 2 * (f x)^2 * (g x) * (h x) + 1 / ((g x) * (h x))) β§ f 0 = 1)
(hg : (β x β Ioo a b, deriv g x = (f x) * (g x)^2 * (h x) + 4 / ((f x) * (h x))) β§ g 0 = 1)
(hh : (β x β Ioo a b, deriv h x = 3 * (f x) * (g x) * (h x)^2 + 1 / ((f x) * (g x))) β§ h 0 = 1)
: (β c d : β, 0 β Ioo c d β§ β x β Ioo c d, f x = putnam_2009_a2_solution x) :=
sorry | import Mathlib
open Topology MvPolynomial Filter Set
-- fun x β¦ 2 ^ (-(1 : β) / 12) * (Real.sin (6 * x + Real.pi / 4) / (Real.cos (6 * x + Real.pi / 4)) ^ 2) ^ ((1 : β) / 6)
/--
Functions $f,g,h$ are differentiable on some open interval around $0$
and satisfy the equations and initial conditions
\begin{gather*}
f' = 2f^2gh+\frac{1}{gh},\quad f(0)=1, \\
g'=fg^2h+\frac{4}{fh}, \quad g(0)=1, \\
h'=3fgh^2+\frac{1}{fg}, \quad h(0)=1.
\end{gather*}
Find an explicit formula for $f(x)$, valid in some open interval around $0$.
-/
theorem putnam_2009_a2
(f g h : β β β)
(a b : β)
(hab : 0 β Ioo a b)
(hdiff : DifferentiableOn β f (Ioo a b) β§ DifferentiableOn β g (Ioo a b) β§ DifferentiableOn β h (Ioo a b))
(hf : (β x β Ioo a b, deriv f x = 2 * (f x)^2 * (g x) * (h x) + 1 / ((g x) * (h x))) β§ f 0 = 1)
(hg : (β x β Ioo a b, deriv g x = (f x) * (g x)^2 * (h x) + 4 / ((f x) * (h x))) β§ g 0 = 1)
(hh : (β x β Ioo a b, deriv h x = 3 * (f x) * (g x) * (h x)^2 + 1 / ((f x) * (g x))) β§ h 0 = 1)
: (β c d : β, 0 β Ioo c d β§ β x β Ioo c d, f x = putnam_2009_a2_solution x) := by
| import Mathlib
open Topology MvPolynomial Filter Set
noncomputable abbrev putnam_2009_a2_solution : β β β := sorry
-- fun x β¦ 2 ^ (-(1 : β) / 12) * (Real.sin (6 * x + Real.pi / 4) / (Real.cos (6 * x + Real.pi / 4)) ^ 2) ^ ((1 : β) / 6)
/--
Functions $f,g,h$ are differentiable on some open interval around $0$
and satisfy the equations and initial conditions
\begin{gather*}
f' = 2f^2gh+\frac{1}{gh},\quad f(0)=1, \\
g'=fg^2h+\frac{4}{fh}, \quad g(0)=1, \\
h'=3fgh^2+\frac{1}{fg}, \quad h(0)=1.
\end{gather*}
Find an explicit formula for $f(x)$, valid in some open interval around $0$.
-/
theorem putnam_2009_a2
(f g h : β β β)
(a b : β)
(hab : 0 β Ioo a b)
(hdiff : DifferentiableOn β f (Ioo a b) β§ DifferentiableOn β g (Ioo a b) β§ DifferentiableOn β h (Ioo a b))
(hf : (β x β Ioo a b, deriv f x = 2 * (f x)^2 * (g x) * (h x) + 1 / ((g x) * (h x))) β§ f 0 = 1)
(hg : (β x β Ioo a b, deriv g x = (f x) * (g x)^2 * (h x) + 4 / ((f x) * (h x))) β§ g 0 = 1)
(hh : (β x β Ioo a b, deriv h x = 3 * (f x) * (g x) * (h x)^2 + 1 / ((f x) * (g x))) β§ h 0 = 1)
: (β c d : β, 0 β Ioo c d β§ β x β Ioo c d, f x = putnam_2009_a2_solution x) :=
sorry
| Functions $f,g,h$ are differentiable on some open interval around $0$
and satisfy the equations and initial conditions
\begin{gather*}
f' = 2f^2gh+\frac{1}{gh},\quad f(0)=1, \\
g'=fg^2h+\frac{4}{fh}, \quad g(0)=1, \\
h'=3fgh^2+\frac{1}{fg}, \quad h(0)=1.
\end{gather*}
Find an explicit formula for $f(x)$, valid in some open interval around $0$. | Prove that the formula is
\[
f(x) = 2^{-1/12} \left(\frac{\sin(6x+\pi/4)}{\cos^2(6x+\pi/4)}\right)^{1/6}.
\] | [
"analysis"
] | null | null |
|
putnam_2013_b1 | 66fde5e6-e1d1-5beb-b4f0-e2a4fb694e20 | train | abbrev putnam_2013_b1_solution : β€ := sorry
-- -1
/--
For positive integers $n$, let the numbers $c(n)$ be determined by the rules $c(1)=1$, $c(2n)=c(n)$, and $c(2n+1)=(-1)^nc(n)$. Find the value of $\sum_{n=1}^{2013} c(n)c(n+2)$.
-/
theorem putnam_2013_b1
(c : β β β€)
(hc1 : c 1 = 1)
(hceven : β n : β, n > 0 β c (2 * n) = c n)
(hcodd : β n : β, n > 0 β c (2 * n + 1) = (-1) ^ n * c n)
: (β n : Set.Icc 1 2013, c n * c (n.1 + 2)) = putnam_2013_b1_solution :=
sorry | import Mathlib
open Function Set
-- -1
/--
For positive integers $n$, let the numbers $c(n)$ be determined by the rules $c(1)=1$, $c(2n)=c(n)$, and $c(2n+1)=(-1)^nc(n)$. Find the value of $\sum_{n=1}^{2013} c(n)c(n+2)$.
-/
theorem putnam_2013_b1
(c : β β β€)
(hc1 : c 1 = 1)
(hceven : β n : β, n > 0 β c (2 * n) = c n)
(hcodd : β n : β, n > 0 β c (2 * n + 1) = (-1) ^ n * c n)
: (β n : Set.Icc 1 2013, c n * c (n.1 + 2)) = putnam_2013_b1_solution := by
| import Mathlib
open Function Set
abbrev putnam_2013_b1_solution : β€ := sorry
-- -1
/--
For positive integers $n$, let the numbers $c(n)$ be determined by the rules $c(1)=1$, $c(2n)=c(n)$, and $c(2n+1)=(-1)^nc(n)$. Find the value of $\sum_{n=1}^{2013} c(n)c(n+2)$.
-/
theorem putnam_2013_b1
(c : β β β€)
(hc1 : c 1 = 1)
(hceven : β n : β, n > 0 β c (2 * n) = c n)
(hcodd : β n : β, n > 0 β c (2 * n + 1) = (-1) ^ n * c n)
: (β n : Set.Icc 1 2013, c n * c (n.1 + 2)) = putnam_2013_b1_solution :=
sorry
| For positive integers $n$, let the numbers $c(n)$ be determined by the rules $c(1)=1$, $c(2n)=c(n)$, and $c(2n+1)=(-1)^nc(n)$. Find the value of $\sum_{n=1}^{2013} c(n)c(n+2)$. | Show that the desired sum is $-1$. | [
"algebra"
] | null | null |
|
putnam_2021_b5 | 087eed4b-9aef-5d83-aec3-ad5e0f337993 | train | theorem putnam_2021_b5
(n : β)
(npos : n β₯ 1)
(veryodd : Matrix (Fin n) (Fin n) β€ β Prop)
(hveryodd : β A, veryodd A β β m β Set.Icc 1 n, β reind : Fin m β Fin n, Function.Injective reind β Odd (A.submatrix reind reind).det)
: β A, veryodd A β (β k β₯ 1, veryodd (A ^ k)) :=
sorry | import Mathlib
open Filter Topology
/--
Say that an $n$-by-$n$ matrix $A=(a_{ij})_{1 \leq i,j \leq n}$ with integer entries is \emph{very odd} if, for every nonempty subset $S$ of $\{1,2,\dots,n\}$, the $|S|$-by-$|S|$ submatrix $(a_{ij})_{i,j \in S}$ has odd determinant. Prove that if $A$ is very odd, then $A^k$ is very odd for every $k \geq 1$.
-/
theorem putnam_2021_b5
(n : β)
(npos : n β₯ 1)
(veryodd : Matrix (Fin n) (Fin n) β€ β Prop)
(hveryodd : β A, veryodd A β β m β Set.Icc 1 n, β reind : Fin m β Fin n, Function.Injective reind β Odd (A.submatrix reind reind).det)
: β A, veryodd A β (β k β₯ 1, veryodd (A ^ k)) := by
| import Mathlib
open Filter Topology
/--
Say that an $n$-by-$n$ matrix $A=(a_{ij})_{1 \leq i,j \leq n}$ with integer entries is \emph{very odd} if, for every nonempty subset $S$ of $\{1,2,\dots,n\}$, the $|S|$-by-$|S|$ submatrix $(a_{ij})_{i,j \in S}$ has odd determinant. Prove that if $A$ is very odd, then $A^k$ is very odd for every $k \geq 1$.
-/
theorem putnam_2021_b5
(n : β)
(npos : n β₯ 1)
(veryodd : Matrix (Fin n) (Fin n) β€ β Prop)
(hveryodd : β A, veryodd A β β m β Set.Icc 1 n, β reind : Fin m β Fin n, Function.Injective reind β Odd (A.submatrix reind reind).det)
: β A, veryodd A β (β k β₯ 1, veryodd (A ^ k)) :=
sorry
| Say that an $n$-by-$n$ matrix $A=(a_{ij})_{1 \leq i,j \leq n}$ with integer entries is \emph{very odd} if, for every nonempty subset $S$ of $\{1,2,\dots,n\}$, the $|S|$-by-$|S|$ submatrix $(a_{ij})_{i,j \in S}$ has odd determinant. Prove that if $A$ is very odd, then $A^k$ is very odd for every $k \geq 1$. | null | [
"linear_algebra",
"number_theory"
] | null | null |
|
putnam_2006_b5 | 53c59f37-e942-53ab-88e9-b296cb246eb5 | train | abbrev putnam_2006_b5_solution : β := sorry
-- 1 / 16
/--
For each continuous function $f: [0,1] \to \mathbb{R}$, let $I(f) = \int_0^1 x^2 f(x)\,dx$ and $J(x) = \int_0^1 x \left(f(x)\right)^2\,dx$. Find the maximum value of $I(f) - J(f)$ over all such functions $f$.
-/
theorem putnam_2006_b5
(I J : (β β β) β β)
(hI : I = fun f β¦ β« x in (0)..1, x ^ 2 * (f x))
(hJ : J = fun f β¦ β« x in (0)..1, x * (f x) ^ 2) :
IsGreatest
{y | β f : β β β, ContinuousOn f (Icc 0 1) β§ I f - J f = y}
putnam_2006_b5_solution :=
sorry | import Mathlib
open Set
-- 1 / 16
/--
For each continuous function $f: [0,1] \to \mathbb{R}$, let $I(f) = \int_0^1 x^2 f(x)\,dx$ and $J(x) = \int_0^1 x \left(f(x)\right)^2\,dx$. Find the maximum value of $I(f) - J(f)$ over all such functions $f$.
-/
theorem putnam_2006_b5
(I J : (β β β) β β)
(hI : I = fun f β¦ β« x in (0)..1, x ^ 2 * (f x))
(hJ : J = fun f β¦ β« x in (0)..1, x * (f x) ^ 2) :
IsGreatest
{y | β f : β β β, ContinuousOn f (Icc 0 1) β§ I f - J f = y}
putnam_2006_b5_solution := by
| import Mathlib
open Set
noncomputable abbrev putnam_2006_b5_solution : β := sorry
-- 1 / 16
/--
For each continuous function $f: [0,1] \to \mathbb{R}$, let $I(f) = \int_0^1 x^2 f(x)\,dx$ and $J(x) = \int_0^1 x \left(f(x)\right)^2\,dx$. Find the maximum value of $I(f) - J(f)$ over all such functions $f$.
-/
theorem putnam_2006_b5
(I J : (β β β) β β)
(hI : I = fun f β¦ β« x in (0)..1, x ^ 2 * (f x))
(hJ : J = fun f β¦ β« x in (0)..1, x * (f x) ^ 2) :
IsGreatest
{y | β f : β β β, ContinuousOn f (Icc 0 1) β§ I f - J f = y}
putnam_2006_b5_solution :=
sorry
| For each continuous function $f: [0,1] \to \mathbb{R}$, let $I(f) = \int_0^1 x^2 f(x)\,dx$ and $J(x) = \int_0^1 x \left(f(x)\right)^2\,dx$. Find the maximum value of $I(f) - J(f)$ over all such functions $f$. | Show that the answer is \frac{1}{16}. | [
"analysis",
"algebra"
] | null | null |
|
putnam_1989_b4 | 5b04d205-8876-551e-92fc-397a22f1f652 | train | abbrev putnam_1989_b4_solution : Prop := sorry
-- True
/--
Can a countably infinite set have an uncountable collection of non-empty subsets such that the intersection of any two of them is finite?
-/
theorem putnam_1989_b4 :
(β S : Type,
Countable S β§ Infinite S β§
β C : Set (Set S),
Β¬Countable C β§
(β R β C, R β β
) β§
(β A β C, β B β C, A β B β (A β© B).Finite)
) β putnam_1989_b4_solution :=
sorry | import Mathlib
open Nat Filter Topology Set
-- True
/--
Can a countably infinite set have an uncountable collection of non-empty subsets such that the intersection of any two of them is finite?
-/
theorem putnam_1989_b4 :
(β S : Type,
Countable S β§ Infinite S β§
β C : Set (Set S),
Β¬Countable C β§
(β R β C, R β β
) β§
(β A β C, β B β C, A β B β (A β© B).Finite)
) β putnam_1989_b4_solution := by
| import Mathlib
open Nat Filter Topology Set
abbrev putnam_1989_b4_solution : Prop := sorry
-- True
/--
Can a countably infinite set have an uncountable collection of non-empty subsets such that the intersection of any two of them is finite?
-/
theorem putnam_1989_b4 :
(β S : Type,
Countable S β§ Infinite S β§
β C : Set (Set S),
Β¬Countable C β§
(β R β C, R β β
) β§
(β A β C, β B β C, A β B β (A β© B).Finite)
) β putnam_1989_b4_solution :=
sorry
| Can a countably infinite set have an uncountable collection of non-empty subsets such that the intersection of any two of them is finite? | Prove that such a collection exists. | [
"set_theory"
] | null | null |
|
putnam_2000_b5 | c3700b7b-4b18-5fdc-ab8d-5240b5f4b0fe | train | theorem putnam_2000_b5
(S : β β Set β€)
(hSfin : β n, Set.Finite (S n))
(hSpos : β n, β s β S n, s > 0)
(hSdef : β n, β a, a β S (n + 1) β Xor' (a - 1 β S n) (a β S n))
: (β n, β N β₯ n, S N = S 0 βͺ {M : β€ | M - N β S 0}) :=
sorry | import Mathlib
open Topology Filter Nat Set Function
/--
Let $S_0$ be a finite set of positive integers. We define finite sets $S_1,S_2,\ldots$ of positive integers as follows: the integer $a$ is in $S_{n+1}$ if and only if exactly one of $a-1$ or $a$ is in $S_n$. Show that there exist infinitely many integers $N$ for which $S_N=S_0\cup\{N+a: a\in S_0\}$.
-/
theorem putnam_2000_b5
(S : β β Set β€)
(hSfin : β n, Set.Finite (S n))
(hSpos : β n, β s β S n, s > 0)
(hSdef : β n, β a, a β S (n + 1) β Xor' (a - 1 β S n) (a β S n))
: (β n, β N β₯ n, S N = S 0 βͺ {M : β€ | M - N β S 0}) := by
| import Mathlib
open Topology Filter Nat Set Function
/--
Let $S_0$ be a finite set of positive integers. We define finite sets $S_1,S_2,\ldots$ of positive integers as follows: the integer $a$ is in $S_{n+1}$ if and only if exactly one of $a-1$ or $a$ is in $S_n$. Show that there exist infinitely many integers $N$ for which $S_N=S_0\cup\{N+a: a\in S_0\}$.
-/
theorem putnam_2000_b5
(S : β β Set β€)
(hSfin : β n, Set.Finite (S n))
(hSpos : β n, β s β S n, s > 0)
(hSdef : β n, β a, a β S (n + 1) β Xor' (a - 1 β S n) (a β S n))
: (β n, β N β₯ n, S N = S 0 βͺ {M : β€ | M - N β S 0}) :=
sorry
| Let $S_0$ be a finite set of positive integers. We define finite sets $S_1,S_2,\ldots$ of positive integers as follows: the integer $a$ is in $S_{n+1}$ if and only if exactly one of $a-1$ or $a$ is in $S_n$. Show that there exist infinitely many integers $N$ for which $S_N=S_0\cup\{N+a: a\in S_0\}$. | null | [
"algebra"
] | null | null |
|
putnam_1967_b1 | 81ce6308-c0b8-5316-b30a-c84b1c57cb39 | train | theorem putnam_1967_b1
(r : β)
(L : ZMod 6 β (EuclideanSpace β (Fin 2)))
(P Q R: EuclideanSpace β (Fin 2))
(hP : P = midpoint β (L 1) (L 2))
(hQ : Q = midpoint β (L 3) (L 4))
(hR : R = midpoint β (L 5) (L 0))
(hr : r > 0)
(hcyclic : β (O : EuclideanSpace β (Fin 2)), β i : ZMod 6, dist O (L i) = r)
(horder : β i j : ZMod 6, i β j β i + 1 = j β¨ i = j + 1 β¨ segment β (L i) (L j) β© interior (convexHull β {L k | k : ZMod 6}) β β
)
(hlens : dist (L 0) (L 1) = r β§ dist (L 2) (L 3) = r β§ dist (L 4) (L 5) = r)
(hdist : L 1 β L 2 β§ L 3 β L 4 β§ L 5 β L 0)
: dist P Q = dist R P β§ dist Q R = dist P Q :=
sorry | import Mathlib
open Nat Topology Filter
/--
Let $\hexagon ABCDEF$ be a hexagon inscribed in a circle of radius $r$. If $AB = CD = EF = r$, prove that the midpoints of $\overline{BC}$, $\overline{DE}$, and $\overline{FA}$ form the vertices of an equilateral triangle.
-/
theorem putnam_1967_b1
(r : β)
(L : ZMod 6 β (EuclideanSpace β (Fin 2)))
(P Q R: EuclideanSpace β (Fin 2))
(hP : P = midpoint β (L 1) (L 2))
(hQ : Q = midpoint β (L 3) (L 4))
(hR : R = midpoint β (L 5) (L 0))
(hr : r > 0)
(hcyclic : β (O : EuclideanSpace β (Fin 2)), β i : ZMod 6, dist O (L i) = r)
(horder : β i j : ZMod 6, i β j β i + 1 = j β¨ i = j + 1 β¨ segment β (L i) (L j) β© interior (convexHull β {L k | k : ZMod 6}) β β
)
(hlens : dist (L 0) (L 1) = r β§ dist (L 2) (L 3) = r β§ dist (L 4) (L 5) = r)
(hdist : L 1 β L 2 β§ L 3 β L 4 β§ L 5 β L 0)
: dist P Q = dist R P β§ dist Q R = dist P Q := by
| import Mathlib
open Nat Topology Filter
/--
Let $\hexagon ABCDEF$ be a hexagon inscribed in a circle of radius $r$. If $AB = CD = EF = r$, prove that the midpoints of $\overline{BC}$, $\overline{DE}$, and $\overline{FA}$ form the vertices of an equilateral triangle.
-/
theorem putnam_1967_b1
(r : β)
(L : ZMod 6 β (EuclideanSpace β (Fin 2)))
(P Q R: EuclideanSpace β (Fin 2))
(hP : P = midpoint β (L 1) (L 2))
(hQ : Q = midpoint β (L 3) (L 4))
(hR : R = midpoint β (L 5) (L 0))
(hr : r > 0)
(hcyclic : β (O : EuclideanSpace β (Fin 2)), β i : ZMod 6, dist O (L i) = r)
(horder : β i j : ZMod 6, i β j β i + 1 = j β¨ i = j + 1 β¨ segment β (L i) (L j) β© interior (convexHull β {L k | k : ZMod 6}) β β
)
(hlens : dist (L 0) (L 1) = r β§ dist (L 2) (L 3) = r β§ dist (L 4) (L 5) = r)
(hdist : L 1 β L 2 β§ L 3 β L 4 β§ L 5 β L 0)
: dist P Q = dist R P β§ dist Q R = dist P Q :=
sorry
| Let $\hexagon ABCDEF$ be a hexagon inscribed in a circle of radius $r$. If $AB = CD = EF = r$, prove that the midpoints of $\overline{BC}$, $\overline{DE}$, and $\overline{FA}$ form the vertices of an equilateral triangle. | null | [
"geometry"
] | null | null |
|
putnam_1979_a5 | bad4b78e-f430-5547-9b52-019f533fc44b | train | theorem putnam_1979_a5
(S : β β β β β€)
(hS : S = fun x : β => fun n : β => Int.floor (n*x))
(P : β β Prop)
(hP : β x, P x β x^3 - 10*x^2 + 29*x - 25 = 0)
: β Ξ± Ξ² : β, Ξ± β Ξ² β§ P Ξ± β§ P Ξ² β§ β n : β, β m : β€, m > n β§ β c d : β, S Ξ± c = m β§ S Ξ² d = m :=
sorry | import Mathlib
open Set
/--
Let $S(x)$ denote the sequence $\lfloor 0 \rfloor, \lfloor x \rfloor, \lfloor 2x \rfloor, \lfloor 3x \rfloor, \dots$, where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$. Prove that there exist distinct real roots $\alpha$ and $\beta$ of $x^3 - 10x^2 + 29x - 25$ such that infinitely many positive integers appear in both $S(\alpha)$ and $S(\beta)$.
-/
theorem putnam_1979_a5
(S : β β β β β€)
(hS : S = fun x : β => fun n : β => Int.floor (n*x))
(P : β β Prop)
(hP : β x, P x β x^3 - 10*x^2 + 29*x - 25 = 0)
: β Ξ± Ξ² : β, Ξ± β Ξ² β§ P Ξ± β§ P Ξ² β§ β n : β, β m : β€, m > n β§ β c d : β, S Ξ± c = m β§ S Ξ² d = m := by
| import Mathlib
open Set
/--
Let $S(x)$ denote the sequence $\lfloor 0 \rfloor, \lfloor x \rfloor, \lfloor 2x \rfloor, \lfloor 3x \rfloor, \dots$, where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$. Prove that there exist distinct real roots $\alpha$ and $\beta$ of $x^3 - 10x^2 + 29x - 25$ such that infinitely many positive integers appear in both $S(\alpha)$ and $S(\beta)$.
-/
theorem putnam_1979_a5
(S : β β β β β€)
(hS : S = fun x : β => fun n : β => Int.floor (n*x))
(P : β β Prop)
(hP : β x, P x β x^3 - 10*x^2 + 29*x - 25 = 0)
: β Ξ± Ξ² : β, Ξ± β Ξ² β§ P Ξ± β§ P Ξ² β§ β n : β, β m : β€, m > n β§ β c d : β, S Ξ± c = m β§ S Ξ² d = m :=
sorry
| Let $S(x)$ denote the sequence $\lfloor 0 \rfloor, \lfloor x \rfloor, \lfloor 2x \rfloor, \lfloor 3x \rfloor, \dots$, where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$. Prove that there exist distinct real roots $\alpha$ and $\beta$ of $x^3 - 10x^2 + 29x - 25$ such that infinitely many positive integers appear in both $S(\alpha)$ and $S(\beta)$. | null | [
"algebra"
] | null | null |
|
putnam_1988_b5 | 93f91c1e-391e-59e4-a36c-52653e531aa8 | train | abbrev putnam_1988_b5_solution : β β β := sorry
-- (fun n : β => 2 * n)
/--
For positive integers $n$, let $M_n$ be the $2n+1$ by $2n+1$ skew-symmetric matrix for which each entry in the first $n$ subdiagonals below the main diagonal is $1$ and each of the remaining entries below the main diagonal is $-1$. Find, with proof, the rank of $M_n$. (According to one definition, the rank of a matrix is the largest $k$ such that there is a $k \times k$ submatrix with nonzero determinant.) One may note that
\begin{align*}
M_1&=\begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix} \\
M_2&=\begin{pmatrix} 0 & -1 & -1 & 1 & 1 \\ 1 & 0 & -1 & -1 & 1 \\ 1 & 1 & 0 & -1 & -1 \\ -1 & 1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 1 & 0 \end{pmatrix}.
\end{align*}
-/
theorem putnam_1988_b5
(n : β) (hn : n > 0)
(Mn : Matrix (Fin (2 * n + 1)) (Fin (2 * n + 1)) β)
(Mnskewsymm : β i j, Mn i j = -(Mn j i))
(hMn1 : β i j, (1 β€ (i.1 : β€) - j.1 β§ (i.1 : β€) - j.1 β€ n) β Mn i j = 1)
(hMnn1 : β i j, (i.1 : β€) - j.1 > n β Mn i j = -1) :
Mn.rank = putnam_1988_b5_solution n :=
sorry | import Mathlib
open Set Filter Topology
-- (fun n : β => 2 * n)
/--
For positive integers $n$, let $M_n$ be the $2n+1$ by $2n+1$ skew-symmetric matrix for which each entry in the first $n$ subdiagonals below the main diagonal is $1$ and each of the remaining entries below the main diagonal is $-1$. Find, with proof, the rank of $M_n$. (According to one definition, the rank of a matrix is the largest $k$ such that there is a $k \times k$ submatrix with nonzero determinant.) One may note that
\begin{align*}
M_1&=\begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix} \\
M_2&=\begin{pmatrix} 0 & -1 & -1 & 1 & 1 \\ 1 & 0 & -1 & -1 & 1 \\ 1 & 1 & 0 & -1 & -1 \\ -1 & 1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 1 & 0 \end{pmatrix}.
\end{align*}
-/
theorem putnam_1988_b5
(n : β) (hn : n > 0)
(Mn : Matrix (Fin (2 * n + 1)) (Fin (2 * n + 1)) β)
(Mnskewsymm : β i j, Mn i j = -(Mn j i))
(hMn1 : β i j, (1 β€ (i.1 : β€) - j.1 β§ (i.1 : β€) - j.1 β€ n) β Mn i j = 1)
(hMnn1 : β i j, (i.1 : β€) - j.1 > n β Mn i j = -1) :
Mn.rank = putnam_1988_b5_solution n := by
| import Mathlib
open Set Filter Topology
abbrev putnam_1988_b5_solution : β β β := sorry
-- (fun n : β => 2 * n)
/--
For positive integers $n$, let $M_n$ be the $2n+1$ by $2n+1$ skew-symmetric matrix for which each entry in the first $n$ subdiagonals below the main diagonal is $1$ and each of the remaining entries below the main diagonal is $-1$. Find, with proof, the rank of $M_n$. (According to one definition, the rank of a matrix is the largest $k$ such that there is a $k \times k$ submatrix with nonzero determinant.) One may note that
\begin{align*}
M_1&=\begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix} \\
M_2&=\begin{pmatrix} 0 & -1 & -1 & 1 & 1 \\ 1 & 0 & -1 & -1 & 1 \\ 1 & 1 & 0 & -1 & -1 \\ -1 & 1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 1 & 0 \end{pmatrix}.
\end{align*}
-/
theorem putnam_1988_b5
(n : β) (hn : n > 0)
(Mn : Matrix (Fin (2 * n + 1)) (Fin (2 * n + 1)) β)
(Mnskewsymm : β i j, Mn i j = -(Mn j i))
(hMn1 : β i j, (1 β€ (i.1 : β€) - j.1 β§ (i.1 : β€) - j.1 β€ n) β Mn i j = 1)
(hMnn1 : β i j, (i.1 : β€) - j.1 > n β Mn i j = -1) :
Mn.rank = putnam_1988_b5_solution n :=
sorry
| For positive integers $n$, let $M_n$ be the $2n+1$ by $2n+1$ skew-symmetric matrix for which each entry in the first $n$ subdiagonals below the main diagonal is $1$ and each of the remaining entries below the main diagonal is $-1$. Find, with proof, the rank of $M_n$. (According to one definition, the rank of a matrix is the largest $k$ such that there is a $k \times k$ submatrix with nonzero determinant.) One may note that
\begin{align*}
M_1&=\begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix} \\
M_2&=\begin{pmatrix} 0 & -1 & -1 & 1 & 1 \\ 1 & 0 & -1 & -1 & 1 \\ 1 & 1 & 0 & -1 & -1 \\ -1 & 1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 1 & 0 \end{pmatrix}.
\end{align*} | Show that the rank of $M_n$ equals $2n$. | [
"linear_algebra"
] | null | null |
|
putnam_2011_b2 | fde1c109-41de-55cd-a9ab-f079e7552377 | train | abbrev putnam_2011_b2_solution : Set β := sorry
-- {2, 5}
/--
Let $S$ be the set of all ordered triples $(p,q,r)$ of prime numbers for which at least one rational number $x$ satisfies $px^2+qx+r=0$. Which primes appear in seven or more elements of $S$?
-/
theorem putnam_2011_b2
(S : Set (Fin 3 β β))
(t : β)
(hS : S = {s : Fin 3 β β | (s 0).Prime β§ (s 1).Prime β§ (s 2).Prime β§ β x : β, (s 0) * x ^ 2 + (s 1) * x + (s 2) = 0}) :
(t.Prime β§ ({s β S | β i : Fin 3, s i = t}.encard β₯ 7))
β t β putnam_2011_b2_solution :=
sorry | import Mathlib
open Topology Filter Matrix
-- {2, 5}
/--
Let $S$ be the set of all ordered triples $(p,q,r)$ of prime numbers for which at least one rational number $x$ satisfies $px^2+qx+r=0$. Which primes appear in seven or more elements of $S$?
-/
theorem putnam_2011_b2
(S : Set (Fin 3 β β))
(t : β)
(hS : S = {s : Fin 3 β β | (s 0).Prime β§ (s 1).Prime β§ (s 2).Prime β§ β x : β, (s 0) * x ^ 2 + (s 1) * x + (s 2) = 0}) :
(t.Prime β§ ({s β S | β i : Fin 3, s i = t}.encard β₯ 7))
β t β putnam_2011_b2_solution := by
| import Mathlib
open Topology Filter Matrix
abbrev putnam_2011_b2_solution : Set β := sorry
-- {2, 5}
/--
Let $S$ be the set of all ordered triples $(p,q,r)$ of prime numbers for which at least one rational number $x$ satisfies $px^2+qx+r=0$. Which primes appear in seven or more elements of $S$?
-/
theorem putnam_2011_b2
(S : Set (Fin 3 β β))
(t : β)
(hS : S = {s : Fin 3 β β | (s 0).Prime β§ (s 1).Prime β§ (s 2).Prime β§ β x : β, (s 0) * x ^ 2 + (s 1) * x + (s 2) = 0}) :
(t.Prime β§ ({s β S | β i : Fin 3, s i = t}.encard β₯ 7))
β t β putnam_2011_b2_solution :=
sorry
| Let $S$ be the set of all ordered triples $(p,q,r)$ of prime numbers for which at least one rational number $x$ satisfies $px^2+qx+r=0$. Which primes appear in seven or more elements of $S$? | Show that only the primes $2$ and $5$ appear seven or more times. | [
"number_theory"
] | null | null |
|
putnam_2018_a6 | 3e92f78a-a11d-541c-b664-6a1c20bfd567 | train | theorem putnam_2018_a6
(A B C D : EuclideanSpace β (Fin 2))
(PPprops : (EuclideanSpace β (Fin 2)) β (EuclideanSpace β (Fin 2)) β Prop)
(hPPprops : β P1 P2, PPprops P1 P2 β P1 β P2 β§ (β q : β, (dist P1 P2) ^ 2 = q))
(ABCDnoline : Β¬Collinear β {A, B, C} β§ Β¬Collinear β {A, B, D} β§ Β¬Collinear β {A, C, D} β§ Β¬Collinear β {B, C, D})
(ABCDsqrrat : PPprops A B β§ PPprops A C β§ PPprops A D β§ PPprops B C β§ PPprops B D β§ PPprops C D) :
β q : β, (MeasureTheory.volume (convexHull β {A, B, C}) / MeasureTheory.volume (convexHull β {A, B, D})).toReal = q :=
sorry | import Mathlib
/--
Suppose that $A$, $B$, $C$, and $D$ are distinct points, no three of which lie on a line, in the Euclidean plane. Show that if the squares of the lengths of the line segments $AB$, $AC$, $AD$, $BC$, $BD$, and $CD$ are rational numbers, then the quotient $\frac{\text{area}(\triangle ABC)}{\text{area}(\triangle ABD)}$ is a rational number.
-/
theorem putnam_2018_a6
(A B C D : EuclideanSpace β (Fin 2))
(PPprops : (EuclideanSpace β (Fin 2)) β (EuclideanSpace β (Fin 2)) β Prop)
(hPPprops : β P1 P2, PPprops P1 P2 β P1 β P2 β§ (β q : β, (dist P1 P2) ^ 2 = q))
(ABCDnoline : Β¬Collinear β {A, B, C} β§ Β¬Collinear β {A, B, D} β§ Β¬Collinear β {A, C, D} β§ Β¬Collinear β {B, C, D})
(ABCDsqrrat : PPprops A B β§ PPprops A C β§ PPprops A D β§ PPprops B C β§ PPprops B D β§ PPprops C D) :
β q : β, (MeasureTheory.volume (convexHull β {A, B, C}) / MeasureTheory.volume (convexHull β {A, B, D})).toReal = q := by
| import Mathlib
/--
Suppose that $A$, $B$, $C$, and $D$ are distinct points, no three of which lie on a line, in the Euclidean plane. Show that if the squares of the lengths of the line segments $AB$, $AC$, $AD$, $BC$, $BD$, and $CD$ are rational numbers, then the quotient $\frac{\text{area}(\triangle ABC)}{\text{area}(\triangle ABD)}$ is a rational number.
-/
theorem putnam_2018_a6
(A B C D : EuclideanSpace β (Fin 2))
(PPprops : (EuclideanSpace β (Fin 2)) β (EuclideanSpace β (Fin 2)) β Prop)
(hPPprops : β P1 P2, PPprops P1 P2 β P1 β P2 β§ (β q : β, (dist P1 P2) ^ 2 = q))
(ABCDnoline : Β¬Collinear β {A, B, C} β§ Β¬Collinear β {A, B, D} β§ Β¬Collinear β {A, C, D} β§ Β¬Collinear β {B, C, D})
(ABCDsqrrat : PPprops A B β§ PPprops A C β§ PPprops A D β§ PPprops B C β§ PPprops B D β§ PPprops C D) :
β q : β, (MeasureTheory.volume (convexHull β {A, B, C}) / MeasureTheory.volume (convexHull β {A, B, D})).toReal = q :=
sorry
| Suppose that $A$, $B$, $C$, and $D$ are distinct points, no three of which lie on a line, in the Euclidean plane. Show that if the squares of the lengths of the line segments $AB$, $AC$, $AD$, $BC$, $BD$, and $CD$ are rational numbers, then the quotient $\frac{\text{area}(\triangle ABC)}{\text{area}(\triangle ABD)}$ is a rational number. | null | [
"geometry",
"algebra"
] | null | null |
|
putnam_1962_a1 | 7ddfe2e3-cf89-507d-9940-643d813f0375 | train | theorem putnam_1962_a1
(S : Set (β Γ β))
(hS : S.ncard = 5)
(hnoncol : β s β S, s.ncard = 3 β Β¬Collinear β s)
: β T β S, T.ncard = 4 β§ Β¬β t β T, t β convexHull β (T \ {t}) :=
sorry | import Mathlib
open MeasureTheory
/--
Given five points in a plane, no three of which lie on a straight line, show that some four of these points form the vertices of a convex quadrilateral.
-/
theorem putnam_1962_a1
(S : Set (β Γ β))
(hS : S.ncard = 5)
(hnoncol : β s β S, s.ncard = 3 β Β¬Collinear β s)
: β T β S, T.ncard = 4 β§ Β¬β t β T, t β convexHull β (T \ {t}) := by
| import Mathlib
open MeasureTheory
/--
Given five points in a plane, no three of which lie on a straight line, show that some four of these points form the vertices of a convex quadrilateral.
-/
theorem putnam_1962_a1
(S : Set (β Γ β))
(hS : S.ncard = 5)
(hnoncol : β s β S, s.ncard = 3 β Β¬Collinear β s)
: β T β S, T.ncard = 4 β§ Β¬β t β T, t β convexHull β (T \ {t}) :=
sorry
| Given five points in a plane, no three of which lie on a straight line, show that some four of these points form the vertices of a convex quadrilateral. | null | [
"geometry"
] | null | null |
|
putnam_1983_b4 | 15238836-fdd3-576f-b239-da95b1ca5f51 | train | theorem putnam_1983_b4
(f : β β β€)
(a : β β β)
(hf : f = fun (n : β) β¦ n + Int.floor (βn))
(ha0 : a 0 > 0)
(han : β n : β, a (n + 1) = f (a n)) :
(β i : β, β s : β€, a i = s ^ 2) :=
sorry | import Mathlib
open Nat Real
/--
Let $f(n) = n + [\sqrt n]$, where $[x]$ denotes the greatest integer less than or equal to $x$. Define the sequence $a_i$ by $a_0 = m$, $a_{n+1} = f(a_n)$. Prove that it contains at least one square.
-/
theorem putnam_1983_b4
(f : β β β€)
(a : β β β)
(hf : f = fun (n : β) β¦ n + Int.floor (βn))
(ha0 : a 0 > 0)
(han : β n : β, a (n + 1) = f (a n)) :
(β i : β, β s : β€, a i = s ^ 2) := by
| import Mathlib
open Nat Real
/--
Let $f(n) = n + [\sqrt n]$, where $[x]$ denotes the greatest integer less than or equal to $x$. Define the sequence $a_i$ by $a_0 = m$, $a_{n+1} = f(a_n)$. Prove that it contains at least one square.
-/
theorem putnam_1983_b4
(f : β β β€)
(a : β β β)
(hf : f = fun (n : β) β¦ n + Int.floor (βn))
(ha0 : a 0 > 0)
(han : β n : β, a (n + 1) = f (a n)) :
(β i : β, β s : β€, a i = s ^ 2) :=
sorry
| Let $f(n) = n + [\sqrt n]$, where $[x]$ denotes the greatest integer less than or equal to $x$. Define the sequence $a_i$ by $a_0 = m$, $a_{n+1} = f(a_n)$. Prove that it contains at least one square. | null | [
"algebra"
] | null | null |
|
putnam_2009_b3 | b3773863-65db-5862-8a21-ce5797605717 | train | abbrev putnam_2009_b3_solution : Set β€ := sorry
-- {n : β€ | β k β₯ 1, n = 2 ^ k - 1}
/--
Call a subset $S$ of $\{1, 2, \dots, n\}$ \emph{mediocre} if it has the following property: Whenever $a$ and $b$ are elements of $S$ whose average is an integer, that average is also an element of $S$. Let $A(n)$ be the number of mediocre subsets of $\{1,2,\dots,n\}$. [For instance, every subset of $\{1,2,3\}$ except $\{1,3\}$ is mediocre, so $A(3) = 7$.] Find all positive integers $n$ such that $A(n+2) - 2A(n+1) + A(n) = 1$.
-/
theorem putnam_2009_b3
(mediocre : β€ β Set β€ β Prop)
(hmediocre : β n S, mediocre n S β (S β Icc 1 n) β§ β a β S, β b β S, 2 β£ a + b β (a + b) / 2 β S)
(A : β€ β β€)
(hA : A = fun n β¦ ({S : Set β€ | mediocre n S}.ncard : β€))
: ({n : β€ | n > 0 β§ A (n + 2) - 2 * A (n + 1) + A n = 1} = putnam_2009_b3_solution) :=
sorry | import Mathlib
open Topology MvPolynomial Filter Set
-- {n : β€ | β k β₯ 1, n = 2 ^ k - 1}
/--
Call a subset $S$ of $\{1, 2, \dots, n\}$ \emph{mediocre} if it has the following property: Whenever $a$ and $b$ are elements of $S$ whose average is an integer, that average is also an element of $S$. Let $A(n)$ be the number of mediocre subsets of $\{1,2,\dots,n\}$. [For instance, every subset of $\{1,2,3\}$ except $\{1,3\}$ is mediocre, so $A(3) = 7$.] Find all positive integers $n$ such that $A(n+2) - 2A(n+1) + A(n) = 1$.
-/
theorem putnam_2009_b3
(mediocre : β€ β Set β€ β Prop)
(hmediocre : β n S, mediocre n S β (S β Icc 1 n) β§ β a β S, β b β S, 2 β£ a + b β (a + b) / 2 β S)
(A : β€ β β€)
(hA : A = fun n β¦ ({S : Set β€ | mediocre n S}.ncard : β€))
: ({n : β€ | n > 0 β§ A (n + 2) - 2 * A (n + 1) + A n = 1} = putnam_2009_b3_solution) := by
| import Mathlib
open Topology MvPolynomial Filter Set
abbrev putnam_2009_b3_solution : Set β€ := sorry
-- {n : β€ | β k β₯ 1, n = 2 ^ k - 1}
/--
Call a subset $S$ of $\{1, 2, \dots, n\}$ \emph{mediocre} if it has the following property: Whenever $a$ and $b$ are elements of $S$ whose average is an integer, that average is also an element of $S$. Let $A(n)$ be the number of mediocre subsets of $\{1,2,\dots,n\}$. [For instance, every subset of $\{1,2,3\}$ except $\{1,3\}$ is mediocre, so $A(3) = 7$.] Find all positive integers $n$ such that $A(n+2) - 2A(n+1) + A(n) = 1$.
-/
theorem putnam_2009_b3
(mediocre : β€ β Set β€ β Prop)
(hmediocre : β n S, mediocre n S β (S β Icc 1 n) β§ β a β S, β b β S, 2 β£ a + b β (a + b) / 2 β S)
(A : β€ β β€)
(hA : A = fun n β¦ ({S : Set β€ | mediocre n S}.ncard : β€))
: ({n : β€ | n > 0 β§ A (n + 2) - 2 * A (n + 1) + A n = 1} = putnam_2009_b3_solution) :=
sorry
| Call a subset $S$ of $\{1, 2, \dots, n\}$ \emph{mediocre} if it has the following property: Whenever $a$ and $b$ are elements of $S$ whose average is an integer, that average is also an element of $S$. Let $A(n)$ be the number of mediocre subsets of $\{1,2,\dots,n\}$. [For instance, every subset of $\{1,2,3\}$ except $\{1,3\}$ is mediocre, so $A(3) = 7$.] Find all positive integers $n$ such that $A(n+2) - 2A(n+1) + A(n) = 1$. | Show that the answer is $n = 2^k - 1$ for some integer $k$. | [
"number_theory"
] | null | null |
|
putnam_2013_a4 | e9641824-65e9-516f-b9f6-a617d28fcc4f | train | theorem putnam_2013_a4
(n k : β)
(circle : Fin n β Fin 2)
(Z N : Fin n Γ Fin (n + 1) β β€)
(ws : Fin k β Fin n Γ Fin (n + 1))
(Zsum Nsum : β€)
(npos : n β₯ 1) (kpos : k β₯ 1)
(hZ : β w, Z w = β l : {x : Fin n | x < w.2}, if (circle (w.1 + l) = 0) then 1 else 0)
(hN : β w, N w = β l : {x : Fin n | x < w.2}, if (circle (w.1 + l) = 1) then 1 else 0)
(Zle1 : β w w', w.2 = w'.2 β |(Z w : β€) - Z w'| β€ 1)
(hZsum : Zsum = ((1 : β) / k) * β j : Fin k, Z (ws j))
(hNsum : Nsum = ((1 : β) / k) * β j : Fin k, N (ws j)) :
β w, Z w = Zsum β§ N w = Nsum :=
sorry | import Mathlib
open Function Set
/--
A finite collection of digits $0$ and $1$ is written around a circle. An \emph{arc} of length $L \geq 0$ consists of $L$ consecutive digits around the circle. For each arc $w$, let $Z(w)$ and $N(w)$ denote the number of $0$'s in $w$ and the number of $1$'s in $w$, respectively. Assume that $|Z(w)-Z(w')| \leq 1$ for any two arcs $w,w'$ of the same length. Suppose that some arcs $w_1,\dots,w_k$ have the property that $Z=\frac{1}{k}\sum_{j=1}^k Z(w_j)$ and $N=\frac{1}{k}\sum_{j=1}^k N(w_j)$ are both integers. Prove that there exists an arc $w$ with $Z(w)=Z$ and $N(w)=N$.
-/
theorem putnam_2013_a4
(n k : β)
(circle : Fin n β Fin 2)
(Z N : Fin n Γ Fin (n + 1) β β€)
(ws : Fin k β Fin n Γ Fin (n + 1))
(Zsum Nsum : β€)
(npos : n β₯ 1) (kpos : k β₯ 1)
(hZ : β w, Z w = β l : {x : Fin n | x < w.2}, if (circle (w.1 + l) = 0) then 1 else 0)
(hN : β w, N w = β l : {x : Fin n | x < w.2}, if (circle (w.1 + l) = 1) then 1 else 0)
(Zle1 : β w w', w.2 = w'.2 β |(Z w : β€) - Z w'| β€ 1)
(hZsum : Zsum = ((1 : β) / k) * β j : Fin k, Z (ws j))
(hNsum : Nsum = ((1 : β) / k) * β j : Fin k, N (ws j)) :
β w, Z w = Zsum β§ N w = Nsum := by
| import Mathlib
open Function Set
/--
A finite collection of digits $0$ and $1$ is written around a circle. An \emph{arc} of length $L \geq 0$ consists of $L$ consecutive digits around the circle. For each arc $w$, let $Z(w)$ and $N(w)$ denote the number of $0$'s in $w$ and the number of $1$'s in $w$, respectively. Assume that $|Z(w)-Z(w')| \leq 1$ for any two arcs $w,w'$ of the same length. Suppose that some arcs $w_1,\dots,w_k$ have the property that $Z=\frac{1}{k}\sum_{j=1}^k Z(w_j)$ and $N=\frac{1}{k}\sum_{j=1}^k N(w_j)$ are both integers. Prove that there exists an arc $w$ with $Z(w)=Z$ and $N(w)=N$.
-/
theorem putnam_2013_a4
(n k : β)
(circle : Fin n β Fin 2)
(Z N : Fin n Γ Fin (n + 1) β β€)
(ws : Fin k β Fin n Γ Fin (n + 1))
(Zsum Nsum : β€)
(npos : n β₯ 1) (kpos : k β₯ 1)
(hZ : β w, Z w = β l : {x : Fin n | x < w.2}, if (circle (w.1 + l) = 0) then 1 else 0)
(hN : β w, N w = β l : {x : Fin n | x < w.2}, if (circle (w.1 + l) = 1) then 1 else 0)
(Zle1 : β w w', w.2 = w'.2 β |(Z w : β€) - Z w'| β€ 1)
(hZsum : Zsum = ((1 : β) / k) * β j : Fin k, Z (ws j))
(hNsum : Nsum = ((1 : β) / k) * β j : Fin k, N (ws j)) :
β w, Z w = Zsum β§ N w = Nsum :=
sorry
| A finite collection of digits $0$ and $1$ is written around a circle. An \emph{arc} of length $L \geq 0$ consists of $L$ consecutive digits around the circle. For each arc $w$, let $Z(w)$ and $N(w)$ denote the number of $0$'s in $w$ and the number of $1$'s in $w$, respectively. Assume that $|Z(w)-Z(w')| \leq 1$ for any two arcs $w,w'$ of the same length. Suppose that some arcs $w_1,\dots,w_k$ have the property that $Z=\frac{1}{k}\sum_{j=1}^k Z(w_j)$ and $N=\frac{1}{k}\sum_{j=1}^k N(w_j)$ are both integers. Prove that there exists an arc $w$ with $Z(w)=Z$ and $N(w)=N$. | null | [
"algebra"
] | null | null |
|
putnam_2010_b1 | 243a8817-3561-5d69-b3bc-0e9c06de39bf | train | abbrev putnam_2010_b1_solution : Prop := sorry
-- False
/--
Is there an infinite sequence of real numbers $a_1, a_2, a_3, \dots$ such that \[ a_1^m + a_2^m + a_3^m + \cdots = m \] for every positive integer $m$?
-/
theorem putnam_2010_b1
: (β a : β β β, β m : β, m > 0 β β' i : β, (a i)^m = m) β putnam_2010_b1_solution :=
sorry | import Mathlib
open Filter Topology Set
-- False
/--
Is there an infinite sequence of real numbers $a_1, a_2, a_3, \dots$ such that \[ a_1^m + a_2^m + a_3^m + \cdots = m \] for every positive integer $m$?
-/
theorem putnam_2010_b1
: (β a : β β β, β m : β, m > 0 β β' i : β, (a i)^m = m) β putnam_2010_b1_solution := by
| import Mathlib
open Filter Topology Set
abbrev putnam_2010_b1_solution : Prop := sorry
-- False
/--
Is there an infinite sequence of real numbers $a_1, a_2, a_3, \dots$ such that \[ a_1^m + a_2^m + a_3^m + \cdots = m \] for every positive integer $m$?
-/
theorem putnam_2010_b1
: (β a : β β β, β m : β, m > 0 β β' i : β, (a i)^m = m) β putnam_2010_b1_solution :=
sorry
| Is there an infinite sequence of real numbers $a_1, a_2, a_3, \dots$ such that \[ a_1^m + a_2^m + a_3^m + \cdots = m \] for every positive integer $m$? | Show that the solution is no such infinite sequence exists. | [
"analysis"
] | null | null |
|
putnam_1993_a4 | 1cf6abf7-fd91-5a0a-a774-58741f06954c | train | theorem putnam_1993_a4
(x : Fin 19 β β€)
(y : Fin 93 β β€)
(hx : β i, 0 < x i β§ x i β€ 93)
(hy : β j, 0 < y j β§ y j β€ 19) :
β (is : Finset (Fin 19)) (js : Finset (Fin 93)),
is β β
β§ (β i : is, x i) = (β j : js, y j) :=
sorry | import Mathlib
/--
Let $x_1,x_2,\dots,x_{19}$ be positive integers each of which is less than or equal to $93$. Let $y_1,y_2,\dots,y_{93}$ be positive integers each of which is less than or equal to $19$. Prove that there exists a (nonempty) sum of some $x_i$'s equal to a sum of some $y_j$'s.
-/
theorem putnam_1993_a4
(x : Fin 19 β β€)
(y : Fin 93 β β€)
(hx : β i, 0 < x i β§ x i β€ 93)
(hy : β j, 0 < y j β§ y j β€ 19) :
β (is : Finset (Fin 19)) (js : Finset (Fin 93)),
is β β
β§ (β i : is, x i) = (β j : js, y j) := by
| import Mathlib
/--
Let $x_1,x_2,\dots,x_{19}$ be positive integers each of which is less than or equal to $93$. Let $y_1,y_2,\dots,y_{93}$ be positive integers each of which is less than or equal to $19$. Prove that there exists a (nonempty) sum of some $x_i$'s equal to a sum of some $y_j$'s.
-/
theorem putnam_1993_a4
(x : Fin 19 β β€)
(y : Fin 93 β β€)
(hx : β i, 0 < x i β§ x i β€ 93)
(hy : β j, 0 < y j β§ y j β€ 19) :
β (is : Finset (Fin 19)) (js : Finset (Fin 93)),
is β β
β§ (β i : is, x i) = (β j : js, y j) :=
sorry
| Let $x_1,x_2,\dots,x_{19}$ be positive integers each of which is less than or equal to $93$. Let $y_1,y_2,\dots,y_{93}$ be positive integers each of which is less than or equal to $19$. Prove that there exists a (nonempty) sum of some $x_i$'s equal to a sum of some $y_j$'s. | null | [
"algebra"
] | null | null |
|
putnam_1991_a3 | e3646514-9e79-535a-8644-3069386ad425 | train | abbrev putnam_1991_a3_solution : Set (Polynomial β) := sorry
-- {p : Polynomial β | p.degree = 2 β§ (β r1 r2 : β, r1 β r2 β§ p.eval r1 = 0 β§ p.eval r2 = 0)}
/--
Find all real polynomials $p(x)$ of degree $n \geq 2$ for which there exist real numbers $r_1<r_2<\cdots<r_n$ such that
\begin{enumerate}
\item $p(r_i)=0, \qquad i=1,2,\dots,n$, and
\item $p'(\frac{r_i+r_{i+1}}{2})=0 \qquad i=1,2,\dots,n-1$,
\end{enumerate}
where $p'(x)$ denotes the derivative of $p(x)$.
-/
theorem putnam_1991_a3
(p : Polynomial β)
(n : β)
(hn : n = p.degree)
(hge : n β₯ 2) :
p β putnam_1991_a3_solution β
(β r : β β β, (β i : Fin (n - 1), r i < r (i + 1)) β§
(β i : Fin n, p.eval (r i) = 0) β§
(β i : Fin (n - 1), (Polynomial.derivative p).eval ((r i + r (i + 1)) / 2) = 0)) :=
sorry | import Mathlib
open Filter Topology
-- Note: uses (β β β) instead of (Fin n β β)
-- {p : Polynomial β | p.degree = 2 β§ (β r1 r2 : β, r1 β r2 β§ p.eval r1 = 0 β§ p.eval r2 = 0)}
/--
Find all real polynomials $p(x)$ of degree $n \geq 2$ for which there exist real numbers $r_1<r_2<\cdots<r_n$ such that
\begin{enumerate}
\item $p(r_i)=0, \qquad i=1,2,\dots,n$, and
\item $p'(\frac{r_i+r_{i+1}}{2})=0 \qquad i=1,2,\dots,n-1$,
\end{enumerate}
where $p'(x)$ denotes the derivative of $p(x)$.
-/
theorem putnam_1991_a3
(p : Polynomial β)
(n : β)
(hn : n = p.degree)
(hge : n β₯ 2) :
p β putnam_1991_a3_solution β
(β r : β β β, (β i : Fin (n - 1), r i < r (i + 1)) β§
(β i : Fin n, p.eval (r i) = 0) β§
(β i : Fin (n - 1), (Polynomial.derivative p).eval ((r i + r (i + 1)) / 2) = 0)) := by
| import Mathlib
open Filter Topology
-- Note: uses (β β β) instead of (Fin n β β)
abbrev putnam_1991_a3_solution : Set (Polynomial β) := sorry
-- {p : Polynomial β | p.degree = 2 β§ (β r1 r2 : β, r1 β r2 β§ p.eval r1 = 0 β§ p.eval r2 = 0)}
/--
Find all real polynomials $p(x)$ of degree $n \geq 2$ for which there exist real numbers $r_1<r_2<\cdots<r_n$ such that
\begin{enumerate}
\item $p(r_i)=0, \qquad i=1,2,\dots,n$, and
\item $p'(\frac{r_i+r_{i+1}}{2})=0 \qquad i=1,2,\dots,n-1$,
\end{enumerate}
where $p'(x)$ denotes the derivative of $p(x)$.
-/
theorem putnam_1991_a3
(p : Polynomial β)
(n : β)
(hn : n = p.degree)
(hge : n β₯ 2) :
p β putnam_1991_a3_solution β
(β r : β β β, (β i : Fin (n - 1), r i < r (i + 1)) β§
(β i : Fin n, p.eval (r i) = 0) β§
(β i : Fin (n - 1), (Polynomial.derivative p).eval ((r i + r (i + 1)) / 2) = 0)) :=
sorry
| Find all real polynomials $p(x)$ of degree $n \geq 2$ for which there exist real numbers $r_1<r_2<\cdots<r_n$ such that
\begin{enumerate}
\item $p(r_i)=0, \qquad i=1,2,\dots,n$, and
\item $p'(\frac{r_i+r_{i+1}}{2})=0 \qquad i=1,2,\dots,n-1$,
\end{enumerate}
where $p'(x)$ denotes the derivative of $p(x)$. | Show that the real polynomials with the required property are exactly those that are of degree $2$ with $2$ distinct real zeros. | [
"algebra",
"analysis"
] | null | null |
|
putnam_1992_b2 | 5103f509-15b7-58d4-8c5d-4db51dfc1d06 | train | theorem putnam_1992_b2
(Q : β β β β β)
(hQ : Q = fun n k β¦ coeff ((1 + X + X ^ 2 + X ^ 3) ^ n) k)
(n k : β) :
Q n k = β j in Finset.Iic k, choose n j * (if 2 * j β€ k then choose n (k - 2 * j) else 0) :=
sorry | import Mathlib
open Topology Filter Nat Function Polynomial
/--
For nonnegative integers $n$ and $k$, define $Q(n, k)$ to be the coefficient of $x^k$ in the expansion of $(1 + x + x^2 + x^3)^n$. Prove that
\[
Q(n, k) = \sum_{j=0}^k \binom{n}{j} \binom{n}{k-2j},
\]
where $\binom{a}{b}$ is the standard binomial coefficient. (Reminder: For integers $a$ and $b$ with $a \geq 0$, $\binom{a}{b} = \frac{a!}{b!(a-b)!}$ for $0 \leq b \leq a$, with $\binom{a}{b} = 0$ otherwise.)
-/
theorem putnam_1992_b2
(Q : β β β β β)
(hQ : Q = fun n k β¦ coeff ((1 + X + X ^ 2 + X ^ 3) ^ n) k)
(n k : β) :
Q n k = β j in Finset.Iic k, choose n j * (if 2 * j β€ k then choose n (k - 2 * j) else 0) := by
| import Mathlib
open Topology Filter Nat Function Polynomial
/--
For nonnegative integers $n$ and $k$, define $Q(n, k)$ to be the coefficient of $x^k$ in the expansion of $(1 + x + x^2 + x^3)^n$. Prove that
\[
Q(n, k) = \sum_{j=0}^k \binom{n}{j} \binom{n}{k-2j},
\]
where $\binom{a}{b}$ is the standard binomial coefficient. (Reminder: For integers $a$ and $b$ with $a \geq 0$, $\binom{a}{b} = \frac{a!}{b!(a-b)!}$ for $0 \leq b \leq a$, with $\binom{a}{b} = 0$ otherwise.)
-/
theorem putnam_1992_b2
(Q : β β β β β)
(hQ : Q = fun n k β¦ coeff ((1 + X + X ^ 2 + X ^ 3) ^ n) k)
(n k : β) :
Q n k = β j in Finset.Iic k, choose n j * (if 2 * j β€ k then choose n (k - 2 * j) else 0) :=
sorry
| For nonnegative integers $n$ and $k$, define $Q(n, k)$ to be the coefficient of $x^k$ in the expansion of $(1 + x + x^2 + x^3)^n$. Prove that
\[
Q(n, k) = \sum_{j=0}^k \binom{n}{j} \binom{n}{k-2j},
\]
where $\binom{a}{b}$ is the standard binomial coefficient. (Reminder: For integers $a$ and $b$ with $a \geq 0$, $\binom{a}{b} = \frac{a!}{b!(a-b)!}$ for $0 \leq b \leq a$, with $\binom{a}{b} = 0$ otherwise.) | null | [
"algebra"
] | null | null |
|
putnam_1974_a6 | 29609dd5-296f-51a0-b451-e44e25fabd5b | train | abbrev putnam_1974_a6_solution : β := sorry
-- 25
/--
Given $n$, let $k(n)$ be the minimal degree of any monic integral polynomial $f$ such that the value of $f(x)$ is divisible by $n$ for every integer $x$. Find the value of $k(1000000)$.
-/
theorem putnam_1974_a6
(hdivnallx : Polynomial β€ β Prop)
(hdivnallx_def : hdivnallx = fun f => Monic f β§ (β x : β€, (10^6 : β€) β£ f.eval x))
: sInf {d : β | β f : Polynomial β€, hdivnallx f β§ d = f.natDegree} = putnam_1974_a6_solution :=
sorry | import Mathlib
open Set Nat Polynomial
-- 25
/--
Given $n$, let $k(n)$ be the minimal degree of any monic integral polynomial $f$ such that the value of $f(x)$ is divisible by $n$ for every integer $x$. Find the value of $k(1000000)$.
-/
theorem putnam_1974_a6
(hdivnallx : Polynomial β€ β Prop)
(hdivnallx_def : hdivnallx = fun f => Monic f β§ (β x : β€, (10^6 : β€) β£ f.eval x))
: sInf {d : β | β f : Polynomial β€, hdivnallx f β§ d = f.natDegree} = putnam_1974_a6_solution := by
| import Mathlib
open Set Nat Polynomial
abbrev putnam_1974_a6_solution : β := sorry
-- 25
/--
Given $n$, let $k(n)$ be the minimal degree of any monic integral polynomial $f$ such that the value of $f(x)$ is divisible by $n$ for every integer $x$. Find the value of $k(1000000)$.
-/
theorem putnam_1974_a6
(hdivnallx : Polynomial β€ β Prop)
(hdivnallx_def : hdivnallx = fun f => Monic f β§ (β x : β€, (10^6 : β€) β£ f.eval x))
: sInf {d : β | β f : Polynomial β€, hdivnallx f β§ d = f.natDegree} = putnam_1974_a6_solution :=
sorry
| Given $n$, let $k(n)$ be the minimal degree of any monic integral polynomial $f$ such that the value of $f(x)$ is divisible by $n$ for every integer $x$. Find the value of $k(1000000)$. | Show that the answer is 25. | [
"algebra"
] | null | null |
|
putnam_1969_a2 | a735b43f-68c1-5508-a6d2-b7bdaffbf2d1 | train | theorem putnam_1969_a2
(D : (n : β) β Matrix (Fin n) (Fin n) β)
(hD : D = fun (n : β) => Ξ» (i : Fin n) (j : Fin n) => |(i : β) - (j : β)| )
: β n, n β₯ 2 β (D n).det = (-1)^((n : β€)-1) * ((n : β€)-1) * 2^((n : β€)-2) :=
sorry | import Mathlib
open Matrix Filter Topology Set Nat
/--
Let $D_n$ be the determinant of the $n$ by $n$ matrix whose value in the $i$th row and $j$th column is $|i-j|$. Show that $D_n = (-1)^{n-1} * (n-1) * (2^{n-2}).$
-/
theorem putnam_1969_a2
(D : (n : β) β Matrix (Fin n) (Fin n) β)
(hD : D = fun (n : β) => Ξ» (i : Fin n) (j : Fin n) => |(i : β) - (j : β)| )
: β n, n β₯ 2 β (D n).det = (-1)^((n : β€)-1) * ((n : β€)-1) * 2^((n : β€)-2) := by
| import Mathlib
open Matrix Filter Topology Set Nat
/--
Let $D_n$ be the determinant of the $n$ by $n$ matrix whose value in the $i$th row and $j$th column is $|i-j|$. Show that $D_n = (-1)^{n-1} * (n-1) * (2^{n-2}).$
-/
theorem putnam_1969_a2
(D : (n : β) β Matrix (Fin n) (Fin n) β)
(hD : D = fun (n : β) => Ξ» (i : Fin n) (j : Fin n) => |(i : β) - (j : β)| )
: β n, n β₯ 2 β (D n).det = (-1)^((n : β€)-1) * ((n : β€)-1) * 2^((n : β€)-2) :=
sorry
| Let $D_n$ be the determinant of the $n$ by $n$ matrix whose value in the $i$th row and $j$th column is $|i-j|$. Show that $D_n = (-1)^{n-1} * (n-1) * (2^{n-2}).$ | null | [
"linear_algebra"
] | null | null |
|
putnam_1986_a5 | 72332255-8db4-554f-bcfc-9c763c217bcb | train | theorem putnam_1986_a5
(n : β)
(f : Fin n β ((Fin n β β) β β))
(xrepl : (Fin n β β) β Fin n β β β (Fin n β β))
(contdiffx : ((Fin n β β) β β) β Fin n β (Fin n β β) β Prop)
(partderiv : ((Fin n β β) β β) β Fin n β ((Fin n β β) β β))
(hpartderiv : partderiv = (fun (func : (Fin n β β) β β) (i : Fin n) => (fun x : Fin n β β => deriv (fun xi : β => func (xrepl x i xi)) (x i))))
(npos : n β₯ 1)
(hxrepl : xrepl = (fun (x : Fin n β β) (i : Fin n) (xi : β) => (fun j : Fin n => if j = i then xi else x j)))
(hcontdiffx : contdiffx = (fun (func : (Fin n β β) β β) (i : Fin n) (x : Fin n β β) => ContDiff β 1 (fun xi : β => func (xrepl x i xi))))
(hfcontdiff1 : β i : Fin n, β j : Fin n, β x : Fin n β β, contdiffx (f i) j x)
(hfcontdiff2 : β i : Fin n, β j1 j2 : Fin n, β x : Fin n β β, contdiffx (partderiv (f i) j1) j2 x)
(hfc : β c : Fin n β Fin n β β, β i j : Fin n, partderiv (f i) j - partderiv (f j) i = (fun x : Fin n β β => c i j))
: β g : (Fin n β β) β β, β i : Fin n, IsLinearMap β (f i + partderiv g i) :=
sorry | import Mathlib
open Real Equiv
/--
Suppose $f_1(x),f_2(x),\dots,f_n(x)$ are functions of $n$ real variables $x=(x_1,\dots,x_n)$ with continuous second-order partial derivatives everywhere on $\mathbb{R}^n$. Suppose further that there are constants $c_{ij}$ such that $\frac{\partial f_i}{\partial x_j}-\frac{\partial f_j}{\partial x_i}=c_{ij}$ for all $i$ and $j$, $1 \leq i \leq n$, $1 \leq j \leq n$. Prove that there is a function $g(x)$ on $\mathbb{R}^n$ such that $f_i+\partial g/\partial x_i$ is linear for all $i$, $1 \leq i \leq n$. (A linear function is one of the form $a_0+a_1x_1+a_2x_2+\dots+a_nx_n$.)
-/
theorem putnam_1986_a5
(n : β)
(f : Fin n β ((Fin n β β) β β))
(xrepl : (Fin n β β) β Fin n β β β (Fin n β β))
(contdiffx : ((Fin n β β) β β) β Fin n β (Fin n β β) β Prop)
(partderiv : ((Fin n β β) β β) β Fin n β ((Fin n β β) β β))
(hpartderiv : partderiv = (fun (func : (Fin n β β) β β) (i : Fin n) => (fun x : Fin n β β => deriv (fun xi : β => func (xrepl x i xi)) (x i))))
(npos : n β₯ 1)
(hxrepl : xrepl = (fun (x : Fin n β β) (i : Fin n) (xi : β) => (fun j : Fin n => if j = i then xi else x j)))
(hcontdiffx : contdiffx = (fun (func : (Fin n β β) β β) (i : Fin n) (x : Fin n β β) => ContDiff β 1 (fun xi : β => func (xrepl x i xi))))
(hfcontdiff1 : β i : Fin n, β j : Fin n, β x : Fin n β β, contdiffx (f i) j x)
(hfcontdiff2 : β i : Fin n, β j1 j2 : Fin n, β x : Fin n β β, contdiffx (partderiv (f i) j1) j2 x)
(hfc : β c : Fin n β Fin n β β, β i j : Fin n, partderiv (f i) j - partderiv (f j) i = (fun x : Fin n β β => c i j))
: β g : (Fin n β β) β β, β i : Fin n, IsLinearMap β (f i + partderiv g i) := by
| import Mathlib
open Real Equiv
/--
Suppose $f_1(x),f_2(x),\dots,f_n(x)$ are functions of $n$ real variables $x=(x_1,\dots,x_n)$ with continuous second-order partial derivatives everywhere on $\mathbb{R}^n$. Suppose further that there are constants $c_{ij}$ such that $\frac{\partial f_i}{\partial x_j}-\frac{\partial f_j}{\partial x_i}=c_{ij}$ for all $i$ and $j$, $1 \leq i \leq n$, $1 \leq j \leq n$. Prove that there is a function $g(x)$ on $\mathbb{R}^n$ such that $f_i+\partial g/\partial x_i$ is linear for all $i$, $1 \leq i \leq n$. (A linear function is one of the form $a_0+a_1x_1+a_2x_2+\dots+a_nx_n$.)
-/
theorem putnam_1986_a5
(n : β)
(f : Fin n β ((Fin n β β) β β))
(xrepl : (Fin n β β) β Fin n β β β (Fin n β β))
(contdiffx : ((Fin n β β) β β) β Fin n β (Fin n β β) β Prop)
(partderiv : ((Fin n β β) β β) β Fin n β ((Fin n β β) β β))
(hpartderiv : partderiv = (fun (func : (Fin n β β) β β) (i : Fin n) => (fun x : Fin n β β => deriv (fun xi : β => func (xrepl x i xi)) (x i))))
(npos : n β₯ 1)
(hxrepl : xrepl = (fun (x : Fin n β β) (i : Fin n) (xi : β) => (fun j : Fin n => if j = i then xi else x j)))
(hcontdiffx : contdiffx = (fun (func : (Fin n β β) β β) (i : Fin n) (x : Fin n β β) => ContDiff β 1 (fun xi : β => func (xrepl x i xi))))
(hfcontdiff1 : β i : Fin n, β j : Fin n, β x : Fin n β β, contdiffx (f i) j x)
(hfcontdiff2 : β i : Fin n, β j1 j2 : Fin n, β x : Fin n β β, contdiffx (partderiv (f i) j1) j2 x)
(hfc : β c : Fin n β Fin n β β, β i j : Fin n, partderiv (f i) j - partderiv (f j) i = (fun x : Fin n β β => c i j))
: β g : (Fin n β β) β β, β i : Fin n, IsLinearMap β (f i + partderiv g i) :=
sorry
| Suppose $f_1(x),f_2(x),\dots,f_n(x)$ are functions of $n$ real variables $x=(x_1,\dots,x_n)$ with continuous second-order partial derivatives everywhere on $\mathbb{R}^n$. Suppose further that there are constants $c_{ij}$ such that $\frac{\partial f_i}{\partial x_j}-\frac{\partial f_j}{\partial x_i}=c_{ij}$ for all $i$ and $j$, $1 \leq i \leq n$, $1 \leq j \leq n$. Prove that there is a function $g(x)$ on $\mathbb{R}^n$ such that $f_i+\partial g/\partial x_i$ is linear for all $i$, $1 \leq i \leq n$. (A linear function is one of the form $a_0+a_1x_1+a_2x_2+\dots+a_nx_n$.) | null | [
"analysis",
"linear_algebra"
] | null | null |
|
putnam_1972_b1 | 942542f9-d5e1-5836-b997-4e7bb451e7a6 | train | theorem putnam_1972_b1
(S : β β β)
(hS : S = fun (x : β) => β' n : β, x^n * (x - 1)^(2*n) / (Nat.factorial n))
(p : β β β)
(hp : β a : β, a > 0 β§ β x β ball 0 a, β' n : β, (p n)*x^n = S x)
: Β¬β n : β, p n = 0 β§ p (n + 1) = 0 β§ p (n + 2) = 0 :=
sorry | import Mathlib
open EuclideanGeometry Filter Topology Set MeasureTheory Metric
/--
Prove that no three consecutive coefficients of the power series of $$\sum_{n = 0}^{\infty} \frac{x^n(x - 1)^{2n}}{n!}$$ all equal $0$.
-/
theorem putnam_1972_b1
(S : β β β)
(hS : S = fun (x : β) => β' n : β, x^n * (x - 1)^(2*n) / (Nat.factorial n))
(p : β β β)
(hp : β a : β, a > 0 β§ β x β ball 0 a, β' n : β, (p n)*x^n = S x)
: Β¬β n : β, p n = 0 β§ p (n + 1) = 0 β§ p (n + 2) = 0 := by
| import Mathlib
open EuclideanGeometry Filter Topology Set MeasureTheory Metric
/--
Prove that no three consecutive coefficients of the power series of $$\sum_{n = 0}^{\infty} \frac{x^n(x - 1)^{2n}}{n!}$$ all equal $0$.
-/
theorem putnam_1972_b1
(S : β β β)
(hS : S = fun (x : β) => β' n : β, x^n * (x - 1)^(2*n) / (Nat.factorial n))
(p : β β β)
(hp : β a : β, a > 0 β§ β x β ball 0 a, β' n : β, (p n)*x^n = S x)
: Β¬β n : β, p n = 0 β§ p (n + 1) = 0 β§ p (n + 2) = 0 :=
sorry
| Prove that no three consecutive coefficients of the power series of $$\sum_{n = 0}^{\infty} \frac{x^n(x - 1)^{2n}}{n!}$$ all equal $0$. | null | [
"analysis"
] | null | null |
|
putnam_1978_b4 | e6e8ebb4-f11a-52e8-89fb-87662cb51cda | train | theorem putnam_1978_b4 :
β N : β,
β a b c d : β€,
a > N β§ b > N β§ c > N β§ d > N β§
a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = a * b * c + a * b * d + a * c * d + b * c * d :=
sorry | import Mathlib
open Set Real Filter Topology Polynomial
/--
Show that we can find integers $a, b, c, d$ such that $a^2 + b^2 + c^2 + d^2 = abc + abd + acd + bcd$, and the smallest of $a, b, c, d$ is arbitrarily large.
-/
theorem putnam_1978_b4 :
β N : β,
β a b c d : β€,
a > N β§ b > N β§ c > N β§ d > N β§
a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = a * b * c + a * b * d + a * c * d + b * c * d := by
| import Mathlib
open Set Real Filter Topology Polynomial
/--
Show that we can find integers $a, b, c, d$ such that $a^2 + b^2 + c^2 + d^2 = abc + abd + acd + bcd$, and the smallest of $a, b, c, d$ is arbitrarily large.
-/
theorem putnam_1978_b4 :
β N : β,
β a b c d : β€,
a > N β§ b > N β§ c > N β§ d > N β§
a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = a * b * c + a * b * d + a * c * d + b * c * d :=
sorry
| Show that we can find integers $a, b, c, d$ such that $a^2 + b^2 + c^2 + d^2 = abc + abd + acd + bcd$, and the smallest of $a, b, c, d$ is arbitrarily large. | null | [
"algebra"
] | null | null |
|
putnam_1999_a6 | c24ddbf1-bf19-551e-b8b5-ba103880ff9d | train | theorem putnam_1999_a6
(a : β€ β β)
(ha1 : a 1 = 1)
(ha2 : a 2 = 2)
(ha3 : a 3 = 24)
(hange4 : β n : β, n β₯ 4 β a n = (6 * (a (n - 1))^2 * (a (n - 3)) - 8 * (a (n - 1)) * (a (n - 2))^2)/(a (n - 2) * a (n - 3)))
: β n, n β₯ 1 β (β k : β€, a n = k * n) :=
sorry | import Mathlib
open Filter Topology Metric
/--
The sequence $(a_n)_{n\geq 1}$ is defined by $a_1=1, a_2=2, a_3=24,$ and, for $n\geq 4$, \[a_n = \frac{6a_{n-1}^2a_{n-3} - 8a_{n-1}a_{n-2}^2}{a_{n-2}a_{n-3}}.\] Show that, for all n, $a_n$ is an integer multiple of $n$.
-/
theorem putnam_1999_a6
(a : β€ β β)
(ha1 : a 1 = 1)
(ha2 : a 2 = 2)
(ha3 : a 3 = 24)
(hange4 : β n : β, n β₯ 4 β a n = (6 * (a (n - 1))^2 * (a (n - 3)) - 8 * (a (n - 1)) * (a (n - 2))^2)/(a (n - 2) * a (n - 3)))
: β n, n β₯ 1 β (β k : β€, a n = k * n) := by
| import Mathlib
open Filter Topology Metric
/--
The sequence $(a_n)_{n\geq 1}$ is defined by $a_1=1, a_2=2, a_3=24,$ and, for $n\geq 4$, \[a_n = \frac{6a_{n-1}^2a_{n-3} - 8a_{n-1}a_{n-2}^2}{a_{n-2}a_{n-3}}.\] Show that, for all n, $a_n$ is an integer multiple of $n$.
-/
theorem putnam_1999_a6
(a : β€ β β)
(ha1 : a 1 = 1)
(ha2 : a 2 = 2)
(ha3 : a 3 = 24)
(hange4 : β n : β, n β₯ 4 β a n = (6 * (a (n - 1))^2 * (a (n - 3)) - 8 * (a (n - 1)) * (a (n - 2))^2)/(a (n - 2) * a (n - 3)))
: β n, n β₯ 1 β (β k : β€, a n = k * n) :=
sorry
| The sequence $(a_n)_{n\geq 1}$ is defined by $a_1=1, a_2=2, a_3=24,$ and, for $n\geq 4$, \[a_n = \frac{6a_{n-1}^2a_{n-3} - 8a_{n-1}a_{n-2}^2}{a_{n-2}a_{n-3}}.\] Show that, for all n, $a_n$ is an integer multiple of $n$. | null | [
"algebra"
] | null | null |
|
putnam_2015_a1 | 29686b10-802c-50c1-a6f4-bae9593a6788 | train | theorem putnam_2015_a1
(hyperbola : Set (Fin 2 β β))
(hhyperbola : hyperbola = {p | p 1 = 1 / p 0 β§ p 0 > 0})
(A B P : Fin 2 β β)
(PPline : (Fin 2 β β) β (Fin 2 β β) β (β β β))
(hAB : A β hyperbola β§ B β hyperbola β§ A 0 < B 0)
(hP : P β hyperbola β§ A 0 < P 0 β§ P 0 < B 0 β§ (β P', (P' β hyperbola β§ A 0 < P' 0 β§ P' 0 < B 0) β MeasureTheory.volume (convexHull β {A, P', B}) β€ MeasureTheory.volume (convexHull β {A, P, B})))
(hPPline : β P1 P2, P1 0 β P2 0 β PPline P1 P2 = (fun x : β => ((P2 1 - P1 1) / (P2 0 - P1 0)) * (x - P1 0) + P1 1)) :
β« x in Set.Ioo (A 0) (P 0), (PPline A P) x - 1 / x = β« x in Set.Ioo (P 0) (B 0), (PPline P B) x - 1 / x :=
sorry | import Mathlib
/--
Let $A$ and $B$ be points on the same branch of the hyperbola $xy=1$. Suppose that $P$ is a point lying between $A$ and $B$ on this hyperbola, such that the area of the triangle $APB$ is as large as possible. Show that the region bounded by the hyperbola and the chord $AP$ has the same area as the region bounded by the hyperbola and the chord $PB$.
-/
theorem putnam_2015_a1
(hyperbola : Set (Fin 2 β β))
(hhyperbola : hyperbola = {p | p 1 = 1 / p 0 β§ p 0 > 0})
(A B P : Fin 2 β β)
(PPline : (Fin 2 β β) β (Fin 2 β β) β (β β β))
(hAB : A β hyperbola β§ B β hyperbola β§ A 0 < B 0)
(hP : P β hyperbola β§ A 0 < P 0 β§ P 0 < B 0 β§ (β P', (P' β hyperbola β§ A 0 < P' 0 β§ P' 0 < B 0) β MeasureTheory.volume (convexHull β {A, P', B}) β€ MeasureTheory.volume (convexHull β {A, P, B})))
(hPPline : β P1 P2, P1 0 β P2 0 β PPline P1 P2 = (fun x : β => ((P2 1 - P1 1) / (P2 0 - P1 0)) * (x - P1 0) + P1 1)) :
β« x in Set.Ioo (A 0) (P 0), (PPline A P) x - 1 / x = β« x in Set.Ioo (P 0) (B 0), (PPline P B) x - 1 / x := by
| import Mathlib
/--
Let $A$ and $B$ be points on the same branch of the hyperbola $xy=1$. Suppose that $P$ is a point lying between $A$ and $B$ on this hyperbola, such that the area of the triangle $APB$ is as large as possible. Show that the region bounded by the hyperbola and the chord $AP$ has the same area as the region bounded by the hyperbola and the chord $PB$.
-/
theorem putnam_2015_a1
(hyperbola : Set (Fin 2 β β))
(hhyperbola : hyperbola = {p | p 1 = 1 / p 0 β§ p 0 > 0})
(A B P : Fin 2 β β)
(PPline : (Fin 2 β β) β (Fin 2 β β) β (β β β))
(hAB : A β hyperbola β§ B β hyperbola β§ A 0 < B 0)
(hP : P β hyperbola β§ A 0 < P 0 β§ P 0 < B 0 β§ (β P', (P' β hyperbola β§ A 0 < P' 0 β§ P' 0 < B 0) β MeasureTheory.volume (convexHull β {A, P', B}) β€ MeasureTheory.volume (convexHull β {A, P, B})))
(hPPline : β P1 P2, P1 0 β P2 0 β PPline P1 P2 = (fun x : β => ((P2 1 - P1 1) / (P2 0 - P1 0)) * (x - P1 0) + P1 1)) :
β« x in Set.Ioo (A 0) (P 0), (PPline A P) x - 1 / x = β« x in Set.Ioo (P 0) (B 0), (PPline P B) x - 1 / x :=
sorry
| Let $A$ and $B$ be points on the same branch of the hyperbola $xy=1$. Suppose that $P$ is a point lying between $A$ and $B$ on this hyperbola, such that the area of the triangle $APB$ is as large as possible. Show that the region bounded by the hyperbola and the chord $AP$ has the same area as the region bounded by the hyperbola and the chord $PB$. | null | [
"geometry",
"analysis"
] | null | null |
|
putnam_1979_a3 | e7fff022-f8b1-518c-9e46-d3c7745384fc | train | abbrev putnam_1979_a3_solution : (β Γ β) β Prop := sorry
-- fun (a, b) => β m : β€, a = m β§ b = m
/--
Let $x_1, x_2, x_3, \dots$ be a sequence of nonzero real numbers such that $$x_n = \frac{x_{n-2}x_{n-1}}{2x_{n-2}-x_{n-1}}$$ for all $n \ge 3$. For which real values of $x_1$ and $x_2$ does $x_n$ attain integer values for infinitely many $n$?
-/
theorem putnam_1979_a3
(x : β β β)
(hx : β n : β, x n β 0 β§ (n β₯ 3 β x n = (x (n - 2))*(x (n - 1))/(2*(x (n - 2)) - (x (n - 1)))))
: (β m : β, β n : β, n > m β§ β a : β€, a = x n) β putnam_1979_a3_solution (x 1, x 2) :=
sorry | import Mathlib
-- fun (a, b) => β m : β€, a = m β§ b = m
/--
Let $x_1, x_2, x_3, \dots$ be a sequence of nonzero real numbers such that $$x_n = \frac{x_{n-2}x_{n-1}}{2x_{n-2}-x_{n-1}}$$ for all $n \ge 3$. For which real values of $x_1$ and $x_2$ does $x_n$ attain integer values for infinitely many $n$?
-/
theorem putnam_1979_a3
(x : β β β)
(hx : β n : β, x n β 0 β§ (n β₯ 3 β x n = (x (n - 2))*(x (n - 1))/(2*(x (n - 2)) - (x (n - 1)))))
: (β m : β, β n : β, n > m β§ β a : β€, a = x n) β putnam_1979_a3_solution (x 1, x 2) := by
| import Mathlib
abbrev putnam_1979_a3_solution : (β Γ β) β Prop := sorry
-- fun (a, b) => β m : β€, a = m β§ b = m
/--
Let $x_1, x_2, x_3, \dots$ be a sequence of nonzero real numbers such that $$x_n = \frac{x_{n-2}x_{n-1}}{2x_{n-2}-x_{n-1}}$$ for all $n \ge 3$. For which real values of $x_1$ and $x_2$ does $x_n$ attain integer values for infinitely many $n$?
-/
theorem putnam_1979_a3
(x : β β β)
(hx : β n : β, x n β 0 β§ (n β₯ 3 β x n = (x (n - 2))*(x (n - 1))/(2*(x (n - 2)) - (x (n - 1)))))
: (β m : β, β n : β, n > m β§ β a : β€, a = x n) β putnam_1979_a3_solution (x 1, x 2) :=
sorry
| Let $x_1, x_2, x_3, \dots$ be a sequence of nonzero real numbers such that $$x_n = \frac{x_{n-2}x_{n-1}}{2x_{n-2}-x_{n-1}}$$ for all $n \ge 3$. For which real values of $x_1$ and $x_2$ does $x_n$ attain integer values for infinitely many $n$? | We must have $x_1 = x_2 = m$ for some integer $m$. | [
"algebra"
] | null | null |
|
putnam_1970_a4 | 794c32c9-8eb9-5685-bba7-89070510babf | train | theorem putnam_1970_a4
(x : β β β)
(hxlim : Tendsto (fun n => x (n+2) - x n) atTop (π 0))
: Tendsto (fun n => (x (n+1) - x (n))/(n+1)) atTop (π 0) :=
sorry | import Mathlib
open Metric Set EuclideanGeometry Filter Topology
/--
Suppose $(x_n)$ is a sequence such that $\lim_{n \to \infty} (x_n - x_{n-2} = 0$. Prove that $\lim_{n \to \infty} \frac{x_n - x_{n-1}}{n} = 0$.
-/
theorem putnam_1970_a4
(x : β β β)
(hxlim : Tendsto (fun n => x (n+2) - x n) atTop (π 0))
: Tendsto (fun n => (x (n+1) - x (n))/(n+1)) atTop (π 0) := by
| import Mathlib
open Metric Set EuclideanGeometry Filter Topology
/--
Suppose $(x_n)$ is a sequence such that $\lim_{n \to \infty} (x_n - x_{n-2} = 0$. Prove that $\lim_{n \to \infty} \frac{x_n - x_{n-1}}{n} = 0$.
-/
theorem putnam_1970_a4
(x : β β β)
(hxlim : Tendsto (fun n => x (n+2) - x n) atTop (π 0))
: Tendsto (fun n => (x (n+1) - x (n))/(n+1)) atTop (π 0) :=
sorry
| Suppose $(x_n)$ is a sequence such that $\lim_{n \to \infty} (x_n - x_{n-2} = 0$. Prove that $\lim_{n \to \infty} \frac{x_n - x_{n-1}}{n} = 0$. | null | [
"analysis"
] | null | null |
|
putnam_2011_b3 | 131ddc24-4d7b-514a-b7f0-9e2931a198e0 | train | abbrev putnam_2011_b3_solution : Prop := sorry
-- True
/--
Let $f$ and $g$ be (real-valued) functions defined on an open interval containing $0$, with $g$ nonzero and continuous at $0$. If $fg$ and $f/g$ are differentiable at $0$, must $f$ be differentiable at $0$?
-/
theorem putnam_2011_b3 :
((β f g : β β β,
g 0 β 0 β ContinuousAt g 0 β
DifferentiableAt β (fun x β¦ f x * g x) 0 β
DifferentiableAt β (fun x β¦ f x / g x) 0 β
(DifferentiableAt β f 0))
β putnam_2011_b3_solution) :=
sorry | import Mathlib
open Topology Filter Matrix
-- True
/--
Let $f$ and $g$ be (real-valued) functions defined on an open interval containing $0$, with $g$ nonzero and continuous at $0$. If $fg$ and $f/g$ are differentiable at $0$, must $f$ be differentiable at $0$?
-/
theorem putnam_2011_b3 :
((β f g : β β β,
g 0 β 0 β ContinuousAt g 0 β
DifferentiableAt β (fun x β¦ f x * g x) 0 β
DifferentiableAt β (fun x β¦ f x / g x) 0 β
(DifferentiableAt β f 0))
β putnam_2011_b3_solution) := by
| import Mathlib
open Topology Filter Matrix
abbrev putnam_2011_b3_solution : Prop := sorry
-- True
/--
Let $f$ and $g$ be (real-valued) functions defined on an open interval containing $0$, with $g$ nonzero and continuous at $0$. If $fg$ and $f/g$ are differentiable at $0$, must $f$ be differentiable at $0$?
-/
theorem putnam_2011_b3 :
((β f g : β β β,
g 0 β 0 β ContinuousAt g 0 β
DifferentiableAt β (fun x β¦ f x * g x) 0 β
DifferentiableAt β (fun x β¦ f x / g x) 0 β
(DifferentiableAt β f 0))
β putnam_2011_b3_solution) :=
sorry
| Let $f$ and $g$ be (real-valued) functions defined on an open interval containing $0$, with $g$ nonzero and continuous at $0$. If $fg$ and $f/g$ are differentiable at $0$, must $f$ be differentiable at $0$? | Prove that $f$ is differentiable. | [
"analysis"
] | null | null |
|
putnam_2016_b2 | 1defa788-caa5-53b2-bfb8-6b9cabf01732 | train | abbrev putnam_2016_b2_solution : β Γ β := sorry
-- (3 / 4, 4 / 3)
/--
Define a positive integer $n$ to be \emph{squarish} if either $n$ is itself a perfect square or the distance from $n$ to the nearest perfect square is a perfect square. For example, $2016$ is squarish, because the nearest perfect square to $2016$ is $45^2 = 2025$ and $2025 - 2016 = 9$ is a perfect square. (Of the positive integers between $1$ and $10$, only $6$ and $7$ are not squarish.)
For a positive integer $N$, let $S(N)$ be the number of squarish integers between $1$ and $N$,
inclusive. Find positive constants $\alpha$ and $\beta$ such that
\[
\lim_{N \to \infty} \frac{S(N)}{N^\alpha} = \beta,
\]
or show that no such constants exist.
-/
theorem putnam_2016_b2
(squarish : β€ β Prop)
(hsquarish : β n, squarish n β IsSquare n β¨ β w : β€, IsSquare |n - w ^ 2| β§ β v : β, |n - w ^ 2| β€ |n - v ^ 2|)
(S : β€ β β)
(hS : S = fun n β¦ {i β Finset.Icc 1 n | squarish i}.card)
(p : β β β β Prop)
(hp : β Ξ± Ξ², p Ξ± Ξ² β Ξ± > 0 β§ Ξ² > 0 β§ Tendsto (fun N β¦ S N / (N : β) ^ Ξ±) atTop (π Ξ²))
: ((β Ξ± Ξ² : β, ((Ξ±, Ξ²) = putnam_2016_b2_solution β p Ξ± Ξ²)) β¨ Β¬β Ξ± Ξ² : β, p Ξ± Ξ²) :=
sorry | import Mathlib
open Classical Polynomial Filter Topology Real Set Nat List
-- (3 / 4, 4 / 3)
/--
Define a positive integer $n$ to be \emph{squarish} if either $n$ is itself a perfect square or the distance from $n$ to the nearest perfect square is a perfect square. For example, $2016$ is squarish, because the nearest perfect square to $2016$ is $45^2 = 2025$ and $2025 - 2016 = 9$ is a perfect square. (Of the positive integers between $1$ and $10$, only $6$ and $7$ are not squarish.)
For a positive integer $N$, let $S(N)$ be the number of squarish integers between $1$ and $N$,
inclusive. Find positive constants $\alpha$ and $\beta$ such that
\[
\lim_{N \to \infty} \frac{S(N)}{N^\alpha} = \beta,
\]
or show that no such constants exist.
-/
theorem putnam_2016_b2
(squarish : β€ β Prop)
(hsquarish : β n, squarish n β IsSquare n β¨ β w : β€, IsSquare |n - w ^ 2| β§ β v : β, |n - w ^ 2| β€ |n - v ^ 2|)
(S : β€ β β)
(hS : S = fun n β¦ {i β Finset.Icc 1 n | squarish i}.card)
(p : β β β β Prop)
(hp : β Ξ± Ξ², p Ξ± Ξ² β Ξ± > 0 β§ Ξ² > 0 β§ Tendsto (fun N β¦ S N / (N : β) ^ Ξ±) atTop (π Ξ²))
: ((β Ξ± Ξ² : β, ((Ξ±, Ξ²) = putnam_2016_b2_solution β p Ξ± Ξ²)) β¨ Β¬β Ξ± Ξ² : β, p Ξ± Ξ²) := by
| import Mathlib
open Classical Polynomial Filter Topology Real Set Nat List
noncomputable abbrev putnam_2016_b2_solution : β Γ β := sorry
-- (3 / 4, 4 / 3)
/--
Define a positive integer $n$ to be \emph{squarish} if either $n$ is itself a perfect square or the distance from $n$ to the nearest perfect square is a perfect square. For example, $2016$ is squarish, because the nearest perfect square to $2016$ is $45^2 = 2025$ and $2025 - 2016 = 9$ is a perfect square. (Of the positive integers between $1$ and $10$, only $6$ and $7$ are not squarish.)
For a positive integer $N$, let $S(N)$ be the number of squarish integers between $1$ and $N$,
inclusive. Find positive constants $\alpha$ and $\beta$ such that
\[
\lim_{N \to \infty} \frac{S(N)}{N^\alpha} = \beta,
\]
or show that no such constants exist.
-/
theorem putnam_2016_b2
(squarish : β€ β Prop)
(hsquarish : β n, squarish n β IsSquare n β¨ β w : β€, IsSquare |n - w ^ 2| β§ β v : β, |n - w ^ 2| β€ |n - v ^ 2|)
(S : β€ β β)
(hS : S = fun n β¦ {i β Finset.Icc 1 n | squarish i}.card)
(p : β β β β Prop)
(hp : β Ξ± Ξ², p Ξ± Ξ² β Ξ± > 0 β§ Ξ² > 0 β§ Tendsto (fun N β¦ S N / (N : β) ^ Ξ±) atTop (π Ξ²))
: ((β Ξ± Ξ² : β, ((Ξ±, Ξ²) = putnam_2016_b2_solution β p Ξ± Ξ²)) β¨ Β¬β Ξ± Ξ² : β, p Ξ± Ξ²) :=
sorry
| Define a positive integer $n$ to be \emph{squarish} if either $n$ is itself a perfect square or the distance from $n$ to the nearest perfect square is a perfect square. For example, $2016$ is squarish, because the nearest perfect square to $2016$ is $45^2 = 2025$ and $2025 - 2016 = 9$ is a perfect square. (Of the positive integers between $1$ and $10$, only $6$ and $7$ are not squarish.)
For a positive integer $N$, let $S(N)$ be the number of squarish integers between $1$ and $N$,
inclusive. Find positive constants $\alpha$ and $\beta$ such that
\[
\lim_{N \to \infty} \frac{S(N)}{N^\alpha} = \beta,
\]
or show that no such constants exist. | Prove that the limit exists for $\alpha = \frac{3}{4}$ and equals $\beta = \frac{4}{3}$. | [
"analysis"
] | null | null |
|
putnam_1964_b2 | 904425cb-3793-5a95-9869-7922eafa32a1 | train | theorem putnam_1964_b2
(S : Type*) [Fintype S] [Nonempty S]
(P : Finset (Set S))
(hPP : β T β P, β U β P, T β© U β β
)
(hPS : Β¬β T : Set S, T β P β§ (β U β P, T β© U β β
))
: (P.card = 2 ^ (Fintype.card S - 1)) :=
sorry | import Mathlib
open Set Function Filter Topology
/--
Let $S$ be a finite set. A set $P$ of subsets of $S$ has the property that any two members of $P$ have at least one element in common and that $P$ cannot be extended (whilst keeping this property). Prove that $P$ contains exactly half of the subsets of $S$.
-/
theorem putnam_1964_b2
(S : Type*) [Fintype S] [Nonempty S]
(P : Finset (Set S))
(hPP : β T β P, β U β P, T β© U β β
)
(hPS : Β¬β T : Set S, T β P β§ (β U β P, T β© U β β
))
: (P.card = 2 ^ (Fintype.card S - 1)) := by
| import Mathlib
open Set Function Filter Topology
/--
Let $S$ be a finite set. A set $P$ of subsets of $S$ has the property that any two members of $P$ have at least one element in common and that $P$ cannot be extended (whilst keeping this property). Prove that $P$ contains exactly half of the subsets of $S$.
-/
theorem putnam_1964_b2
(S : Type*) [Fintype S] [Nonempty S]
(P : Finset (Set S))
(hPP : β T β P, β U β P, T β© U β β
)
(hPS : Β¬β T : Set S, T β P β§ (β U β P, T β© U β β
))
: (P.card = 2 ^ (Fintype.card S - 1)) :=
sorry
| Let $S$ be a finite set. A set $P$ of subsets of $S$ has the property that any two members of $P$ have at least one element in common and that $P$ cannot be extended (whilst keeping this property). Prove that $P$ contains exactly half of the subsets of $S$. | null | [
"set_theory",
"combinatorics"
] | null | null |
|
putnam_2012_b1 | 873b9561-4e7f-5f29-84f8-a998cad46a3f | train | theorem putnam_2012_b1
(S : Set (Set.Ici (0 : β) β β))
(rngS : β f β S, β x : Set.Ici (0 : β), f x β Set.Ici (0 : β))
(f1 : Set.Ici (0 : β) β β)
(hf1 : f1 = fun (x : Set.Ici (0 : β)) β¦ exp x - 1)
(f2 : Set.Ici (0 : β) β β)
(hf2 : f2 = fun (x : Set.Ici (0 : β)) β¦ Real.log (x + 1))
(hf1mem : f1 β S)
(hf2mem : f2 β S)
(hsum : β f β S, β g β S, (fun x β¦ (f x) + (g x)) β S)
(hcomp : β f β S, β g β S, β gnneg : Set.Ici (0 : β) β Set.Ici (0 : β), ((β x : Set.Ici (0 : β), g x = gnneg x) β (fun x β¦ f (gnneg x)) β S))
(hdiff : β f β S, β g β S, (β x : Set.Ici (0 : β), f x β₯ g x) β (fun x β¦ (f x) - (g x)) β S)
: (β f β S, β g β S, (fun x β¦ (f x) * (g x)) β S) :=
sorry | import Mathlib
open Matrix Function Real
/--
Let $S$ be a class of functions from $[0, \infty)$ to $[0, \infty)$ that satisfies:
\begin{itemize}
\item[(i)]
The functions $f_1(x) = e^x - 1$ and $f_2(x) = \ln(x+1)$ are in $S$;
\item[(ii)]
If $f(x)$ and $g(x)$ are in $S$, the functions $f(x) + g(x)$ and $f(g(x))$ are in $S$;
\item[(iii)]
If $f(x)$ and $g(x)$ are in $S$ and $f(x) \geq g(x)$ for all $x \geq 0$, then the function
$f(x) - g(x)$ is in $S$.
\end{itemize}
Prove that if $f(x)$ and $g(x)$ are in $S$, then the function $f(x) g(x)$ is also in $S$.
-/
theorem putnam_2012_b1
(S : Set (Set.Ici (0 : β) β β))
(rngS : β f β S, β x : Set.Ici (0 : β), f x β Set.Ici (0 : β))
(f1 : Set.Ici (0 : β) β β)
(hf1 : f1 = fun (x : Set.Ici (0 : β)) β¦ exp x - 1)
(f2 : Set.Ici (0 : β) β β)
(hf2 : f2 = fun (x : Set.Ici (0 : β)) β¦ Real.log (x + 1))
(hf1mem : f1 β S)
(hf2mem : f2 β S)
(hsum : β f β S, β g β S, (fun x β¦ (f x) + (g x)) β S)
(hcomp : β f β S, β g β S, β gnneg : Set.Ici (0 : β) β Set.Ici (0 : β), ((β x : Set.Ici (0 : β), g x = gnneg x) β (fun x β¦ f (gnneg x)) β S))
(hdiff : β f β S, β g β S, (β x : Set.Ici (0 : β), f x β₯ g x) β (fun x β¦ (f x) - (g x)) β S)
: (β f β S, β g β S, (fun x β¦ (f x) * (g x)) β S) := by
| import Mathlib
open Matrix Function Real
/--
Let $S$ be a class of functions from $[0, \infty)$ to $[0, \infty)$ that satisfies:
\begin{itemize}
\item[(i)]
The functions $f_1(x) = e^x - 1$ and $f_2(x) = \ln(x+1)$ are in $S$;
\item[(ii)]
If $f(x)$ and $g(x)$ are in $S$, the functions $f(x) + g(x)$ and $f(g(x))$ are in $S$;
\item[(iii)]
If $f(x)$ and $g(x)$ are in $S$ and $f(x) \geq g(x)$ for all $x \geq 0$, then the function
$f(x) - g(x)$ is in $S$.
\end{itemize}
Prove that if $f(x)$ and $g(x)$ are in $S$, then the function $f(x) g(x)$ is also in $S$.
-/
theorem putnam_2012_b1
(S : Set (Set.Ici (0 : β) β β))
(rngS : β f β S, β x : Set.Ici (0 : β), f x β Set.Ici (0 : β))
(f1 : Set.Ici (0 : β) β β)
(hf1 : f1 = fun (x : Set.Ici (0 : β)) β¦ exp x - 1)
(f2 : Set.Ici (0 : β) β β)
(hf2 : f2 = fun (x : Set.Ici (0 : β)) β¦ Real.log (x + 1))
(hf1mem : f1 β S)
(hf2mem : f2 β S)
(hsum : β f β S, β g β S, (fun x β¦ (f x) + (g x)) β S)
(hcomp : β f β S, β g β S, β gnneg : Set.Ici (0 : β) β Set.Ici (0 : β), ((β x : Set.Ici (0 : β), g x = gnneg x) β (fun x β¦ f (gnneg x)) β S))
(hdiff : β f β S, β g β S, (β x : Set.Ici (0 : β), f x β₯ g x) β (fun x β¦ (f x) - (g x)) β S)
: (β f β S, β g β S, (fun x β¦ (f x) * (g x)) β S) :=
sorry
| Let $S$ be a class of functions from $[0, \infty)$ to $[0, \infty)$ that satisfies:
\begin{itemize}
\item[(i)]
The functions $f_1(x) = e^x - 1$ and $f_2(x) = \ln(x+1)$ are in $S$;
\item[(ii)]
If $f(x)$ and $g(x)$ are in $S$, the functions $f(x) + g(x)$ and $f(g(x))$ are in $S$;
\item[(iii)]
If $f(x)$ and $g(x)$ are in $S$ and $f(x) \geq g(x)$ for all $x \geq 0$, then the function
$f(x) - g(x)$ is in $S$.
\end{itemize}
Prove that if $f(x)$ and $g(x)$ are in $S$, then the function $f(x) g(x)$ is also in $S$. | null | [
"algebra"
] | null | null |
|
putnam_1965_a5 | 81755c9f-1905-55ff-87e1-b013b7c3d065 | train | abbrev putnam_1965_a5_solution : β β β := sorry
-- fun n => 2^(n - 1)
/--
How many orderings of the integers from $1$ to $n$ satisfy the condition that, for every integer $i$ except the first, there exists some earlier integer in the ordering which differs from $i$ by $1$?
-/
theorem putnam_1965_a5
: β n > 0, {p β permsOfFinset (Finset.Icc 1 n) | β m β Finset.Icc 2 n, β k β Finset.Ico 1 m, p m = p k + 1 β¨ p m = p k - 1}.card = putnam_1965_a5_solution n :=
sorry | import Mathlib
open EuclideanGeometry Topology Filter Complex
-- fun n => 2^(n - 1)
/--
How many orderings of the integers from $1$ to $n$ satisfy the condition that, for every integer $i$ except the first, there exists some earlier integer in the ordering which differs from $i$ by $1$?
-/
theorem putnam_1965_a5
: β n > 0, {p β permsOfFinset (Finset.Icc 1 n) | β m β Finset.Icc 2 n, β k β Finset.Ico 1 m, p m = p k + 1 β¨ p m = p k - 1}.card = putnam_1965_a5_solution n := by
| import Mathlib
open EuclideanGeometry Topology Filter Complex
abbrev putnam_1965_a5_solution : β β β := sorry
-- fun n => 2^(n - 1)
/--
How many orderings of the integers from $1$ to $n$ satisfy the condition that, for every integer $i$ except the first, there exists some earlier integer in the ordering which differs from $i$ by $1$?
-/
theorem putnam_1965_a5
: β n > 0, {p β permsOfFinset (Finset.Icc 1 n) | β m β Finset.Icc 2 n, β k β Finset.Ico 1 m, p m = p k + 1 β¨ p m = p k - 1}.card = putnam_1965_a5_solution n :=
sorry
| How many orderings of the integers from $1$ to $n$ satisfy the condition that, for every integer $i$ except the first, there exists some earlier integer in the ordering which differs from $i$ by $1$? | There are $2^{n-1}$ such orderings. | [
"combinatorics"
] | null | null |
|
putnam_2016_a2 | 4ea7a3eb-1821-52c6-b455-9c653d59475c | train | abbrev putnam_2016_a2_solution : β := sorry
-- (3 + β 5) / 2
/--
Given a positive integer $n$, let $M(n)$ be the largest integer $m$ such that
\[
\binom{m}{n-1} > \binom{m-1}{n}.
\]
Evaluate
\[
\lim_{n \to \infty} \frac{M(n)}{n}.
\]
-/
theorem putnam_2016_a2
(M : β β β)
(hM : β n > 0, IsGreatest {m | 0 < m β§ (m - 1).choose n < m.choose (n - 1)} (M n)) :
Tendsto (fun n β¦ M n / (n : β)) atTop (π putnam_2016_a2_solution) :=
sorry | import Mathlib
open Polynomial Filter Topology Real Set Nat
-- (3 + β 5) / 2
/--
Given a positive integer $n$, let $M(n)$ be the largest integer $m$ such that
\[
\binom{m}{n-1} > \binom{m-1}{n}.
\]
Evaluate
\[
\lim_{n \to \infty} \frac{M(n)}{n}.
\]
-/
theorem putnam_2016_a2
(M : β β β)
(hM : β n > 0, IsGreatest {m | 0 < m β§ (m - 1).choose n < m.choose (n - 1)} (M n)) :
Tendsto (fun n β¦ M n / (n : β)) atTop (π putnam_2016_a2_solution) := by
| import Mathlib
open Polynomial Filter Topology Real Set Nat
noncomputable abbrev putnam_2016_a2_solution : β := sorry
-- (3 + β 5) / 2
/--
Given a positive integer $n$, let $M(n)$ be the largest integer $m$ such that
\[
\binom{m}{n-1} > \binom{m-1}{n}.
\]
Evaluate
\[
\lim_{n \to \infty} \frac{M(n)}{n}.
\]
-/
theorem putnam_2016_a2
(M : β β β)
(hM : β n > 0, IsGreatest {m | 0 < m β§ (m - 1).choose n < m.choose (n - 1)} (M n)) :
Tendsto (fun n β¦ M n / (n : β)) atTop (π putnam_2016_a2_solution) :=
sorry
| Given a positive integer $n$, let $M(n)$ be the largest integer $m$ such that
\[
\binom{m}{n-1} > \binom{m-1}{n}.
\]
Evaluate
\[
\lim_{n \to \infty} \frac{M(n)}{n}.
\] | Show that the answer is $\frac{3 + \sqrt{5}}{2}$. | [
"analysis"
] | null | null |
|
putnam_1983_a4 | 8537b715-5ebc-5110-84f2-9738fe9620c5 | train | theorem putnam_1983_a4
(k m : β)
(S : β€)
(kpos : k > 0)
(hm : m = 6 * k - 1)
(hS : S = β j in Finset.Icc 1 (2 * k - 1), (-1 : β€) ^ (j + 1) * choose m (3 * j - 1))
: (S β 0) :=
sorry | import Mathlib
open Nat
/--
Prove that for $m = 5 \pmod 6$,
\[
\binom{m}{2} - \binom{m}{5} + \binom{m}{8} - \binom{m}{11} + ... - \binom{m}{m-6} + \binom{m}{m-3} \neq 0.
\]
-/
theorem putnam_1983_a4
(k m : β)
(S : β€)
(kpos : k > 0)
(hm : m = 6 * k - 1)
(hS : S = β j in Finset.Icc 1 (2 * k - 1), (-1 : β€) ^ (j + 1) * choose m (3 * j - 1))
: (S β 0) := by
| import Mathlib
open Nat
/--
Prove that for $m = 5 \pmod 6$,
\[
\binom{m}{2} - \binom{m}{5} + \binom{m}{8} - \binom{m}{11} + ... - \binom{m}{m-6} + \binom{m}{m-3} \neq 0.
\]
-/
theorem putnam_1983_a4
(k m : β)
(S : β€)
(kpos : k > 0)
(hm : m = 6 * k - 1)
(hS : S = β j in Finset.Icc 1 (2 * k - 1), (-1 : β€) ^ (j + 1) * choose m (3 * j - 1))
: (S β 0) :=
sorry
| Prove that for $m = 5 \pmod 6$,
\[
\binom{m}{2} - \binom{m}{5} + \binom{m}{8} - \binom{m}{11} + ... - \binom{m}{m-6} + \binom{m}{m-3} \neq 0.
\] | null | [
"algebra"
] | null | null |
|
putnam_2010_b4 | a9502866-f8d8-57fc-93e5-8c19a9b1e8dd | train | abbrev putnam_2010_b4_solution : Set (Polynomial β Γ Polynomial β) := sorry
-- {(p, q) : Polynomial β Γ Polynomial β | p.degree β€ 1 β§ q.degree β€ 1 β§ p.coeff 0 * q.coeff 1 - p.coeff 1 * q.coeff 0 = 1}
/--
Find all pairs of polynomials $p(x)$ and $q(x)$ with real coefficients for which $p(x)q(x+1)-p(x+1)q(x)=1$.
-/
theorem putnam_2010_b4
(p q : Polynomial β)
: (β x : β, p.eval x * q.eval (x + 1) - p.eval (x + 1) * q.eval x = 1) β (p, q) β putnam_2010_b4_solution :=
sorry | import Mathlib
open Filter Topology Set
-- {(p, q) : Polynomial β Γ Polynomial β | p.degree β€ 1 β§ q.degree β€ 1 β§ p.coeff 0 * q.coeff 1 - p.coeff 1 * q.coeff 0 = 1}
/--
Find all pairs of polynomials $p(x)$ and $q(x)$ with real coefficients for which $p(x)q(x+1)-p(x+1)q(x)=1$.
-/
theorem putnam_2010_b4
(p q : Polynomial β)
: (β x : β, p.eval x * q.eval (x + 1) - p.eval (x + 1) * q.eval x = 1) β (p, q) β putnam_2010_b4_solution := by
| import Mathlib
open Filter Topology Set
abbrev putnam_2010_b4_solution : Set (Polynomial β Γ Polynomial β) := sorry
-- {(p, q) : Polynomial β Γ Polynomial β | p.degree β€ 1 β§ q.degree β€ 1 β§ p.coeff 0 * q.coeff 1 - p.coeff 1 * q.coeff 0 = 1}
/--
Find all pairs of polynomials $p(x)$ and $q(x)$ with real coefficients for which $p(x)q(x+1)-p(x+1)q(x)=1$.
-/
theorem putnam_2010_b4
(p q : Polynomial β)
: (β x : β, p.eval x * q.eval (x + 1) - p.eval (x + 1) * q.eval x = 1) β (p, q) β putnam_2010_b4_solution :=
sorry
| Find all pairs of polynomials $p(x)$ and $q(x)$ with real coefficients for which $p(x)q(x+1)-p(x+1)q(x)=1$. | Show that the pairs $(p,q)$ satisfying the given equation are those of the form $p(x)=ax+b,q(x)=cx+d$ for $a,b,c,d \in \mathbb{R}$ such that $bc-ad=1$. | [
"algebra"
] | null | null |
|
putnam_1965_b5 | c8a11025-e33c-52e9-bd76-6679f9f03842 | train | theorem putnam_1965_b5
{K : Type*}
[Fintype K]
(V E : β)
(hV : V = Nat.card K)
(hE: 4*E β€ V^2)
: β G : SimpleGraph K, G.edgeSet.ncard = E β§ β a : K, β w : G.Walk a a, w.length β 3 :=
sorry | import Mathlib
open EuclideanGeometry Topology Filter Complex SimpleGraph.Walk
/--
Prove that, if $4E \le V^2$, there exists a graph with $E$ edges and $V$ vertices with no triangles (cycles of length $3$).
-/
theorem putnam_1965_b5
{K : Type*}
[Fintype K]
(V E : β)
(hV : V = Nat.card K)
(hE: 4*E β€ V^2)
: β G : SimpleGraph K, G.edgeSet.ncard = E β§ β a : K, β w : G.Walk a a, w.length β 3 := by
| import Mathlib
open EuclideanGeometry Topology Filter Complex SimpleGraph.Walk
/--
Prove that, if $4E \le V^2$, there exists a graph with $E$ edges and $V$ vertices with no triangles (cycles of length $3$).
-/
theorem putnam_1965_b5
{K : Type*}
[Fintype K]
(V E : β)
(hV : V = Nat.card K)
(hE: 4*E β€ V^2)
: β G : SimpleGraph K, G.edgeSet.ncard = E β§ β a : K, β w : G.Walk a a, w.length β 3 :=
sorry
| Prove that, if $4E \le V^2$, there exists a graph with $E$ edges and $V$ vertices with no triangles (cycles of length $3$). | null | [
"combinatorics"
] | null | null |
|
putnam_1996_a3 | 67867311-e17b-5dc4-835d-e53b8700c5c0 | train | abbrev putnam_1996_a3_solution : Prop := sorry
-- False
/--
Suppose that each of 20 students has made a choice of anywhere from 0 to 6 courses from a total of 6 courses offered. Prove or disprove: there are 5 students and 2 courses such that all 5 have chosen both courses or all 5 have chosen neither course.
-/
theorem putnam_1996_a3 :
(β choices : Fin 20 β Set (Fin 6),
β (students : Finset (Fin 20)) (courses : Finset (Fin 6)),
students.card = 5 β§
courses.card = 2 β§
(βcourses β β s β students, choices s β¨ βcourses β β s β students, (choices s)αΆ))
β putnam_1996_a3_solution :=
sorry | import Mathlib
-- False
/--
Suppose that each of 20 students has made a choice of anywhere from 0 to 6 courses from a total of 6 courses offered. Prove or disprove: there are 5 students and 2 courses such that all 5 have chosen both courses or all 5 have chosen neither course.
-/
theorem putnam_1996_a3 :
(β choices : Fin 20 β Set (Fin 6),
β (students : Finset (Fin 20)) (courses : Finset (Fin 6)),
students.card = 5 β§
courses.card = 2 β§
(βcourses β β s β students, choices s β¨ βcourses β β s β students, (choices s)αΆ))
β putnam_1996_a3_solution := by
| import Mathlib
abbrev putnam_1996_a3_solution : Prop := sorry
-- False
/--
Suppose that each of 20 students has made a choice of anywhere from 0 to 6 courses from a total of 6 courses offered. Prove or disprove: there are 5 students and 2 courses such that all 5 have chosen both courses or all 5 have chosen neither course.
-/
theorem putnam_1996_a3 :
(β choices : Fin 20 β Set (Fin 6),
β (students : Finset (Fin 20)) (courses : Finset (Fin 6)),
students.card = 5 β§
courses.card = 2 β§
(βcourses β β s β students, choices s β¨ βcourses β β s β students, (choices s)αΆ))
β putnam_1996_a3_solution :=
sorry
| Suppose that each of 20 students has made a choice of anywhere from 0 to 6 courses from a total of 6 courses offered. Prove or disprove: there are 5 students and 2 courses such that all 5 have chosen both courses or all 5 have chosen neither course. | Show that the solution is that the statement is false. | [
"combinatorics"
] | null | null |
|
putnam_2022_a2 | 6d990233-8b96-50af-8ea0-54434f8ed440 | train | abbrev putnam_2022_a2_solution : β β β := sorry
-- fun n => 2*n - 2
/--
Let $n$ be an integer with $n \geq 2$. Over all real polynomials $p(x)$ of degree $n$, what is the largest possible number of negative coefficients of $p(x)^2$?
-/
theorem putnam_2022_a2
(n : β)
(hn : n β₯ 2)
(S : Set β[X])
(hS : S = {P | natDegree P = n})
(negs : β[X] β β)
(hnegs : β P : β[X], negs P = β i in Finset.range (P.natDegree + 1), if P.coeff i < 0 then 1 else 0)
: sSup {negs (P^2) | P β S} = putnam_2022_a2_solution n :=
sorry | import Mathlib
open Polynomial
-- fun n => 2*n - 2
/--
Let $n$ be an integer with $n \geq 2$. Over all real polynomials $p(x)$ of degree $n$, what is the largest possible number of negative coefficients of $p(x)^2$?
-/
theorem putnam_2022_a2
(n : β)
(hn : n β₯ 2)
(S : Set β[X])
(hS : S = {P | natDegree P = n})
(negs : β[X] β β)
(hnegs : β P : β[X], negs P = β i in Finset.range (P.natDegree + 1), if P.coeff i < 0 then 1 else 0)
: sSup {negs (P^2) | P β S} = putnam_2022_a2_solution n := by
| import Mathlib
open Polynomial
abbrev putnam_2022_a2_solution : β β β := sorry
-- fun n => 2*n - 2
/--
Let $n$ be an integer with $n \geq 2$. Over all real polynomials $p(x)$ of degree $n$, what is the largest possible number of negative coefficients of $p(x)^2$?
-/
theorem putnam_2022_a2
(n : β)
(hn : n β₯ 2)
(S : Set β[X])
(hS : S = {P | natDegree P = n})
(negs : β[X] β β)
(hnegs : β P : β[X], negs P = β i in Finset.range (P.natDegree + 1), if P.coeff i < 0 then 1 else 0)
: sSup {negs (P^2) | P β S} = putnam_2022_a2_solution n :=
sorry
| Let $n$ be an integer with $n \geq 2$. Over all real polynomials $p(x)$ of degree $n$, what is the largest possible number of negative coefficients of $p(x)^2$? | Show that the solution is $2n - 2$. | [
"algebra"
] | null | null |
|
putnam_1999_b5 | 2e471053-4acb-5cc4-822d-9dccd00e8dbf | train | abbrev putnam_1999_b5_solution : β β β := sorry
-- fun n => 1 - n^2/4
/--
For an integer $n\geq 3$, let $\theta=2\pi/n$. Evaluate the determinant of the $n\times n$ matrix $I+A$, where $I$ is the $n\times n$ identity matrix and $A=(a_{jk})$ has entries $a_{jk}=\cos(j\theta+k\theta)$ for all $j,k$.
-/
theorem putnam_1999_b5
(n : β)
(hn : n β₯ 3)
(theta : β)
(htheta : theta = 2 * Real.pi / n)
(A : Matrix (Fin n) (Fin n) β)
(hA : A = fun j k => Real.cos ((j.1 + 1) * theta + (k.1 + 1) * theta)) :
(1 + A).det = putnam_1999_b5_solution n :=
sorry | import Mathlib
open Filter Topology Metric
-- fun n => 1 - n^2/4
/--
For an integer $n\geq 3$, let $\theta=2\pi/n$. Evaluate the determinant of the $n\times n$ matrix $I+A$, where $I$ is the $n\times n$ identity matrix and $A=(a_{jk})$ has entries $a_{jk}=\cos(j\theta+k\theta)$ for all $j,k$.
-/
theorem putnam_1999_b5
(n : β)
(hn : n β₯ 3)
(theta : β)
(htheta : theta = 2 * Real.pi / n)
(A : Matrix (Fin n) (Fin n) β)
(hA : A = fun j k => Real.cos ((j.1 + 1) * theta + (k.1 + 1) * theta)) :
(1 + A).det = putnam_1999_b5_solution n := by
| import Mathlib
open Filter Topology Metric
noncomputable abbrev putnam_1999_b5_solution : β β β := sorry
-- fun n => 1 - n^2/4
/--
For an integer $n\geq 3$, let $\theta=2\pi/n$. Evaluate the determinant of the $n\times n$ matrix $I+A$, where $I$ is the $n\times n$ identity matrix and $A=(a_{jk})$ has entries $a_{jk}=\cos(j\theta+k\theta)$ for all $j,k$.
-/
theorem putnam_1999_b5
(n : β)
(hn : n β₯ 3)
(theta : β)
(htheta : theta = 2 * Real.pi / n)
(A : Matrix (Fin n) (Fin n) β)
(hA : A = fun j k => Real.cos ((j.1 + 1) * theta + (k.1 + 1) * theta)) :
(1 + A).det = putnam_1999_b5_solution n :=
sorry
| For an integer $n\geq 3$, let $\theta=2\pi/n$. Evaluate the determinant of the $n\times n$ matrix $I+A$, where $I$ is the $n\times n$ identity matrix and $A=(a_{jk})$ has entries $a_{jk}=\cos(j\theta+k\theta)$ for all $j,k$. | Show that the answer is $(1 - n^2)/4$. | [
"linear_algebra"
] | null | null |
|
putnam_1986_b1 | e9e276f0-c6ff-5ea7-ada9-61a44e03528f | train | abbrev putnam_1986_b1_solution : β := sorry
-- 2 / 5
/--
Inscribe a rectangle of base $b$ and height $h$ and an isosceles triangle of base $b$ (against a corresponding side of the rectangle and pointed in the other direction) in a circle of radius one. For what value of $h$ do the rectangle and triangle have the same area?
-/
theorem putnam_1986_b1
(b h : β)
(hbh : b > 0 β§ h > 0 β§ b ^ 2 + h ^ 2 = 2 ^ 2)
(areaeq : b * h = 0.5 * b * (1 - h / 2))
: h = putnam_1986_b1_solution :=
sorry | import Mathlib
open Real Equiv
-- Note: This strays from the problem statement due to the area formulas.
-- 2 / 5
/--
Inscribe a rectangle of base $b$ and height $h$ and an isosceles triangle of base $b$ (against a corresponding side of the rectangle and pointed in the other direction) in a circle of radius one. For what value of $h$ do the rectangle and triangle have the same area?
-/
theorem putnam_1986_b1
(b h : β)
(hbh : b > 0 β§ h > 0 β§ b ^ 2 + h ^ 2 = 2 ^ 2)
(areaeq : b * h = 0.5 * b * (1 - h / 2))
: h = putnam_1986_b1_solution := by
| import Mathlib
open Real Equiv
-- Note: This strays from the problem statement due to the area formulas.
noncomputable abbrev putnam_1986_b1_solution : β := sorry
-- 2 / 5
/--
Inscribe a rectangle of base $b$ and height $h$ and an isosceles triangle of base $b$ (against a corresponding side of the rectangle and pointed in the other direction) in a circle of radius one. For what value of $h$ do the rectangle and triangle have the same area?
-/
theorem putnam_1986_b1
(b h : β)
(hbh : b > 0 β§ h > 0 β§ b ^ 2 + h ^ 2 = 2 ^ 2)
(areaeq : b * h = 0.5 * b * (1 - h / 2))
: h = putnam_1986_b1_solution :=
sorry
| Inscribe a rectangle of base $b$ and height $h$ and an isosceles triangle of base $b$ (against a corresponding side of the rectangle and pointed in the other direction) in a circle of radius one. For what value of $h$ do the rectangle and triangle have the same area? | Show that the only such value of $h$ is $2/5$. | [
"geometry",
"algebra"
] | null | null |
|
putnam_1979_a1 | 1b44121e-e86f-538e-8dbc-eef95f3cb064 | train | abbrev putnam_1979_a1_solution : Multiset β := sorry
-- Multiset.replicate 659 3 + {2}
/--
For which positive integers $n$ and $a_1, a_2, \dots, a_n$ with $\sum_{i = 1}^{n} a_i = 1979$ does $\prod_{i = 1}^{n} a_i$ attain the greatest value?
-/
theorem putnam_1979_a1
(P : Multiset β β Prop)
(hP : β a, P a β Multiset.card a > 0 β§ (β i β a, i > 0) β§ a.sum = 1979) :
P putnam_1979_a1_solution β§ β a : Multiset β, P a β putnam_1979_a1_solution.prod β₯ a.prod :=
sorry | import Mathlib
-- Multiset.replicate 659 3 + {2}
/--
For which positive integers $n$ and $a_1, a_2, \dots, a_n$ with $\sum_{i = 1}^{n} a_i = 1979$ does $\prod_{i = 1}^{n} a_i$ attain the greatest value?
-/
theorem putnam_1979_a1
(P : Multiset β β Prop)
(hP : β a, P a β Multiset.card a > 0 β§ (β i β a, i > 0) β§ a.sum = 1979) :
P putnam_1979_a1_solution β§ β a : Multiset β, P a β putnam_1979_a1_solution.prod β₯ a.prod := by
| import Mathlib
abbrev putnam_1979_a1_solution : Multiset β := sorry
-- Multiset.replicate 659 3 + {2}
/--
For which positive integers $n$ and $a_1, a_2, \dots, a_n$ with $\sum_{i = 1}^{n} a_i = 1979$ does $\prod_{i = 1}^{n} a_i$ attain the greatest value?
-/
theorem putnam_1979_a1
(P : Multiset β β Prop)
(hP : β a, P a β Multiset.card a > 0 β§ (β i β a, i > 0) β§ a.sum = 1979) :
P putnam_1979_a1_solution β§ β a : Multiset β, P a β putnam_1979_a1_solution.prod β₯ a.prod :=
sorry
| For which positive integers $n$ and $a_1, a_2, \dots, a_n$ with $\sum_{i = 1}^{n} a_i = 1979$ does $\prod_{i = 1}^{n} a_i$ attain the greatest value? | $n$ equals $660$; all but one of the $a_i$ equal $3$ and the remaining $a_i$ equals $2$. | [
"algebra"
] | null | null |
|
putnam_1989_a3 | 7f2f4f43-677c-5f6b-bd8a-c1f5cdbf47d1 | train | theorem putnam_1989_a3
(z : β)
(hz : 11 * z ^ 10 + 10 * I * z ^ 9 + 10 * I * z - 11 = 0)
: (βzβ = 1) :=
sorry | import Mathlib
open Complex
/--
Prove that if
\[
11z^{10}+10iz^9+10iz-11=0,
\]
then $|z|=1.$ (Here $z$ is a complex number and $i^2=-1$.)
-/
theorem putnam_1989_a3
(z : β)
(hz : 11 * z ^ 10 + 10 * I * z ^ 9 + 10 * I * z - 11 = 0)
: (βzβ = 1) := by
| import Mathlib
open Complex
/--
Prove that if
\[
11z^{10}+10iz^9+10iz-11=0,
\]
then $|z|=1.$ (Here $z$ is a complex number and $i^2=-1$.)
-/
theorem putnam_1989_a3
(z : β)
(hz : 11 * z ^ 10 + 10 * I * z ^ 9 + 10 * I * z - 11 = 0)
: (βzβ = 1) :=
sorry
| Prove that if
\[
11z^{10}+10iz^9+10iz-11=0,
\]
then $|z|=1.$ (Here $z$ is a complex number and $i^2=-1$.) | null | [
"algebra"
] | null | null |
|
putnam_2015_b5 | 10384718-7427-5785-b75b-409fa617c34f | train | abbrev putnam_2015_b5_solution : β := sorry
-- 4
/--
Let $P_n$ be the number of permutations $\pi$ of $\{1,2,\dots,n\}$ such that
\[
|i-j| = 1 \mbox{ implies } |\pi(i) -\pi(j)| \leq 2
\]
for all $i,j$ in $\{1,2,\dots,n\}$. Show that for $n \geq 2$, the quantity
\[
P_{n+5} - P_{n+4} - P_{n+3} + P_n
\]
does not depend on $n$, and find its value.
-/
theorem putnam_2015_b5
(P : β β β)
(hP : P = fun n β¦ {pi : Finset.Icc 1 n β Finset.Icc 1 n | Bijective pi β§ β i j : Finset.Icc 1 n, Nat.dist i j = 1 β Nat.dist (pi i) (pi j) β€ 2}.ncard)
: (β n : β, n β₯ 2 β
(P (n + 5) : β€) - (P (n + 4) : β€) - (P (n + 3) : β€) + (P n : β€) = putnam_2015_b5_solution) :=
sorry | import Mathlib
open Function
-- 4
/--
Let $P_n$ be the number of permutations $\pi$ of $\{1,2,\dots,n\}$ such that
\[
|i-j| = 1 \mbox{ implies } |\pi(i) -\pi(j)| \leq 2
\]
for all $i,j$ in $\{1,2,\dots,n\}$. Show that for $n \geq 2$, the quantity
\[
P_{n+5} - P_{n+4} - P_{n+3} + P_n
\]
does not depend on $n$, and find its value.
-/
theorem putnam_2015_b5
(P : β β β)
(hP : P = fun n β¦ {pi : Finset.Icc 1 n β Finset.Icc 1 n | Bijective pi β§ β i j : Finset.Icc 1 n, Nat.dist i j = 1 β Nat.dist (pi i) (pi j) β€ 2}.ncard)
: (β n : β, n β₯ 2 β
(P (n + 5) : β€) - (P (n + 4) : β€) - (P (n + 3) : β€) + (P n : β€) = putnam_2015_b5_solution) := by
| import Mathlib
open Function
abbrev putnam_2015_b5_solution : β := sorry
-- 4
/--
Let $P_n$ be the number of permutations $\pi$ of $\{1,2,\dots,n\}$ such that
\[
|i-j| = 1 \mbox{ implies } |\pi(i) -\pi(j)| \leq 2
\]
for all $i,j$ in $\{1,2,\dots,n\}$. Show that for $n \geq 2$, the quantity
\[
P_{n+5} - P_{n+4} - P_{n+3} + P_n
\]
does not depend on $n$, and find its value.
-/
theorem putnam_2015_b5
(P : β β β)
(hP : P = fun n β¦ {pi : Finset.Icc 1 n β Finset.Icc 1 n | Bijective pi β§ β i j : Finset.Icc 1 n, Nat.dist i j = 1 β Nat.dist (pi i) (pi j) β€ 2}.ncard)
: (β n : β, n β₯ 2 β
(P (n + 5) : β€) - (P (n + 4) : β€) - (P (n + 3) : β€) + (P n : β€) = putnam_2015_b5_solution) :=
sorry
| Let $P_n$ be the number of permutations $\pi$ of $\{1,2,\dots,n\}$ such that
\[
|i-j| = 1 \mbox{ implies } |\pi(i) -\pi(j)| \leq 2
\]
for all $i,j$ in $\{1,2,\dots,n\}$. Show that for $n \geq 2$, the quantity
\[
P_{n+5} - P_{n+4} - P_{n+3} + P_n
\]
does not depend on $n$, and find its value. | Prove that answer is $4$. | [
"algebra"
] | null | null |
|
putnam_2000_a5 | 91d867fe-7ed8-5b8e-8904-ff38c69763c6 | train | theorem putnam_2000_a5
(r : β)
(z : EuclideanSpace β (Fin 2))
(p : Fin 3 β (EuclideanSpace β (Fin 2)))
(rpos : r > 0)
(pdiff : β n m, (n β m) β (p n β p m))
(pint : β n i, p n i = round (p n i))
(pcirc : β n, p n β Metric.sphere z r) :
β n m, (n β m) β§ (dist (p n) (p m) β₯ r ^ ((1 : β) / 3)) :=
sorry | import Mathlib
open Topology Filter
/--
Three distinct points with integer coordinates lie in the plane on a circle of radius $r>0$. Show that two of these points are separated by a distance of at least $r^{1/3}$.
-/
theorem putnam_2000_a5
(r : β)
(z : EuclideanSpace β (Fin 2))
(p : Fin 3 β (EuclideanSpace β (Fin 2)))
(rpos : r > 0)
(pdiff : β n m, (n β m) β (p n β p m))
(pint : β n i, p n i = round (p n i))
(pcirc : β n, p n β Metric.sphere z r) :
β n m, (n β m) β§ (dist (p n) (p m) β₯ r ^ ((1 : β) / 3)) := by
| import Mathlib
open Topology Filter
/--
Three distinct points with integer coordinates lie in the plane on a circle of radius $r>0$. Show that two of these points are separated by a distance of at least $r^{1/3}$.
-/
theorem putnam_2000_a5
(r : β)
(z : EuclideanSpace β (Fin 2))
(p : Fin 3 β (EuclideanSpace β (Fin 2)))
(rpos : r > 0)
(pdiff : β n m, (n β m) β (p n β p m))
(pint : β n i, p n i = round (p n i))
(pcirc : β n, p n β Metric.sphere z r) :
β n m, (n β m) β§ (dist (p n) (p m) β₯ r ^ ((1 : β) / 3)) :=
sorry
| Three distinct points with integer coordinates lie in the plane on a circle of radius $r>0$. Show that two of these points are separated by a distance of at least $r^{1/3}$. | null | [
"algebra"
] | null | null |
|
putnam_2011_a3 | 19b1f604-a1e7-5f4a-947f-1fe6dfde5c9d | train | abbrev putnam_2011_a3_solution : β Γ β := sorry
-- (-1, 2 / Real.pi)
/--
Find a real number $c$ and a positive number $L$ for which $\lim_{r \to \infty} \frac{r^c \int_0^{\pi/2} x^r\sin x\,dx}{\int_0^{\pi/2} x^r\cos x\,dx}=L$.
-/
theorem putnam_2011_a3
: putnam_2011_a3_solution.2 > 0 β§ Tendsto (fun r : β => (r ^ putnam_2011_a3_solution.1 * β« x in Set.Ioo 0 (Real.pi / 2), x ^ r * Real.sin x) / (β« x in Set.Ioo 0 (Real.pi / 2), x ^ r * Real.cos x)) atTop (π putnam_2011_a3_solution.2) :=
sorry | import Mathlib
open Topology Filter
-- Note: There may be multiple possible correct answers.
-- (-1, 2 / Real.pi)
/--
Find a real number $c$ and a positive number $L$ for which $\lim_{r \to \infty} \frac{r^c \int_0^{\pi/2} x^r\sin x\,dx}{\int_0^{\pi/2} x^r\cos x\,dx}=L$.
-/
theorem putnam_2011_a3
: putnam_2011_a3_solution.2 > 0 β§ Tendsto (fun r : β => (r ^ putnam_2011_a3_solution.1 * β« x in Set.Ioo 0 (Real.pi / 2), x ^ r * Real.sin x) / (β« x in Set.Ioo 0 (Real.pi / 2), x ^ r * Real.cos x)) atTop (π putnam_2011_a3_solution.2) := by
| import Mathlib
open Topology Filter
-- Note: There may be multiple possible correct answers.
noncomputable abbrev putnam_2011_a3_solution : β Γ β := sorry
-- (-1, 2 / Real.pi)
/--
Find a real number $c$ and a positive number $L$ for which $\lim_{r \to \infty} \frac{r^c \int_0^{\pi/2} x^r\sin x\,dx}{\int_0^{\pi/2} x^r\cos x\,dx}=L$.
-/
theorem putnam_2011_a3
: putnam_2011_a3_solution.2 > 0 β§ Tendsto (fun r : β => (r ^ putnam_2011_a3_solution.1 * β« x in Set.Ioo 0 (Real.pi / 2), x ^ r * Real.sin x) / (β« x in Set.Ioo 0 (Real.pi / 2), x ^ r * Real.cos x)) atTop (π putnam_2011_a3_solution.2) :=
sorry
| Find a real number $c$ and a positive number $L$ for which $\lim_{r \to \infty} \frac{r^c \int_0^{\pi/2} x^r\sin x\,dx}{\int_0^{\pi/2} x^r\cos x\,dx}=L$. | Show that $(c,L)=(-1,2/\pi)$ works. | [
"analysis"
] | null | null |
|
putnam_1975_b1 | 6ca4aba2-4aab-5015-a096-c5e6449f16e9 | train | abbrev putnam_1975_b1_solution : β€ := sorry
-- 7
/--
Let $H$ be a subgroup of the additive group of ordered pairs of integers under componentwise addition. If $H$ is generated by the elements $(3, 8)$, $(4, -1)$, and $(5, 4)$, then $H$ is also generated by two elements $(1, b)$ and $(0, a)$ for some integer $b$ and positive integer $a$. Find $a$.
-/
theorem putnam_1975_b1
(H : Set (β€ Γ β€))
(hH : H = {(x, y) : (β€ Γ β€) | β u v w : β€, (x, y) = (u*3 + v*4 + w*5, u*8 + v*(-1) + w*4)})
: (β b : β€, H = {(x, y) : (β€ Γ β€) | β u v : β€, (x, y) = (u, u*b + v*putnam_1975_b1_solution)}) β§ putnam_1975_b1_solution > 0 :=
sorry | import Mathlib
open Polynomial Real Complex
-- 7
/--
Let $H$ be a subgroup of the additive group of ordered pairs of integers under componentwise addition. If $H$ is generated by the elements $(3, 8)$, $(4, -1)$, and $(5, 4)$, then $H$ is also generated by two elements $(1, b)$ and $(0, a)$ for some integer $b$ and positive integer $a$. Find $a$.
-/
theorem putnam_1975_b1
(H : Set (β€ Γ β€))
(hH : H = {(x, y) : (β€ Γ β€) | β u v w : β€, (x, y) = (u*3 + v*4 + w*5, u*8 + v*(-1) + w*4)})
: (β b : β€, H = {(x, y) : (β€ Γ β€) | β u v : β€, (x, y) = (u, u*b + v*putnam_1975_b1_solution)}) β§ putnam_1975_b1_solution > 0 := by
| import Mathlib
open Polynomial Real Complex
abbrev putnam_1975_b1_solution : β€ := sorry
-- 7
/--
Let $H$ be a subgroup of the additive group of ordered pairs of integers under componentwise addition. If $H$ is generated by the elements $(3, 8)$, $(4, -1)$, and $(5, 4)$, then $H$ is also generated by two elements $(1, b)$ and $(0, a)$ for some integer $b$ and positive integer $a$. Find $a$.
-/
theorem putnam_1975_b1
(H : Set (β€ Γ β€))
(hH : H = {(x, y) : (β€ Γ β€) | β u v w : β€, (x, y) = (u*3 + v*4 + w*5, u*8 + v*(-1) + w*4)})
: (β b : β€, H = {(x, y) : (β€ Γ β€) | β u v : β€, (x, y) = (u, u*b + v*putnam_1975_b1_solution)}) β§ putnam_1975_b1_solution > 0 :=
sorry
| Let $H$ be a subgroup of the additive group of ordered pairs of integers under componentwise addition. If $H$ is generated by the elements $(3, 8)$, $(4, -1)$, and $(5, 4)$, then $H$ is also generated by two elements $(1, b)$ and $(0, a)$ for some integer $b$ and positive integer $a$. Find $a$. | $a$ must equal $7$. | [
"abstract_algebra",
"number_theory"
] | null | null |
|
putnam_2007_b4 | 6970d0b2-dbf5-5263-aabf-34762817e98c | train | abbrev putnam_2007_b4_solution : β β β := sorry
-- fun n β¦ 2 ^ (n + 1)
/--
Let $n$ be a positive integer. Find the number of pairs $P, Q$ of polynomials with real coefficients such that
\[
(P(X))^2 + (Q(X))^2 = X^{2n} + 1
\]
and $\deg P > \deg Q$.
-/
theorem putnam_2007_b4
(n : β) (npos : n > 0) :
({(P, Q) : (Polynomial β) Γ (Polynomial β) | P ^ 2 + Q ^ 2 = Polynomial.X ^ (2 * n) + 1 β§ P.degree > Q.degree}.ncard = putnam_2007_b4_solution n) :=
sorry | import Mathlib
open Set Nat Function
-- fun n β¦ 2 ^ (n + 1)
/--
Let $n$ be a positive integer. Find the number of pairs $P, Q$ of polynomials with real coefficients such that
\[
(P(X))^2 + (Q(X))^2 = X^{2n} + 1
\]
and $\deg P > \deg Q$.
-/
theorem putnam_2007_b4
(n : β) (npos : n > 0) :
({(P, Q) : (Polynomial β) Γ (Polynomial β) | P ^ 2 + Q ^ 2 = Polynomial.X ^ (2 * n) + 1 β§ P.degree > Q.degree}.ncard = putnam_2007_b4_solution n) := by
| import Mathlib
open Set Nat Function
abbrev putnam_2007_b4_solution : β β β := sorry
-- fun n β¦ 2 ^ (n + 1)
/--
Let $n$ be a positive integer. Find the number of pairs $P, Q$ of polynomials with real coefficients such that
\[
(P(X))^2 + (Q(X))^2 = X^{2n} + 1
\]
and $\deg P > \deg Q$.
-/
theorem putnam_2007_b4
(n : β) (npos : n > 0) :
({(P, Q) : (Polynomial β) Γ (Polynomial β) | P ^ 2 + Q ^ 2 = Polynomial.X ^ (2 * n) + 1 β§ P.degree > Q.degree}.ncard = putnam_2007_b4_solution n) :=
sorry
| Let $n$ be a positive integer. Find the number of pairs $P, Q$ of polynomials with real coefficients such that
\[
(P(X))^2 + (Q(X))^2 = X^{2n} + 1
\]
and $\deg P > \deg Q$. | Show that the number of pairs is $2^{n+1}$. | [
"algebra"
] | null | null |
|
putnam_1990_a5 | 1d9294d3-71d1-5ede-94d6-78895d6102fc | train | abbrev putnam_1990_a5_solution : Prop := sorry
-- False
/--
If $\mathbf{A}$ and $\mathbf{B}$ are square matrices of the same size such that $\mathbf{ABAB}=\mathbf{0}$, does it follow that $\mathbf{BABA}=\mathbf{0}$?
-/
theorem putnam_1990_a5 :
putnam_1990_a5_solution β
(β n β₯ 1, β A B : Matrix (Fin n) (Fin n) β,
A * B * A * B = 0 β B * A * B * A = 0) :=
sorry | import Mathlib
open Filter Topology Nat
-- False
/--
If $\mathbf{A}$ and $\mathbf{B}$ are square matrices of the same size such that $\mathbf{ABAB}=\mathbf{0}$, does it follow that $\mathbf{BABA}=\mathbf{0}$?
-/
theorem putnam_1990_a5 :
putnam_1990_a5_solution β
(β n β₯ 1, β A B : Matrix (Fin n) (Fin n) β,
A * B * A * B = 0 β B * A * B * A = 0) := by
| import Mathlib
open Filter Topology Nat
abbrev putnam_1990_a5_solution : Prop := sorry
-- False
/--
If $\mathbf{A}$ and $\mathbf{B}$ are square matrices of the same size such that $\mathbf{ABAB}=\mathbf{0}$, does it follow that $\mathbf{BABA}=\mathbf{0}$?
-/
theorem putnam_1990_a5 :
putnam_1990_a5_solution β
(β n β₯ 1, β A B : Matrix (Fin n) (Fin n) β,
A * B * A * B = 0 β B * A * B * A = 0) :=
sorry
| If $\mathbf{A}$ and $\mathbf{B}$ are square matrices of the same size such that $\mathbf{ABAB}=\mathbf{0}$, does it follow that $\mathbf{BABA}=\mathbf{0}$? | Show that the answer is no. | [
"linear_algebra"
] | null | null |
|
putnam_1996_b5 | 01619d1d-7c81-5071-8101-8664ab6ebe67 | train | abbrev putnam_1996_b5_solution : β β β := sorry
-- (fun n : β β¦ 2 ^ β(n + 2) / 2ββ + 2 ^ β(n + 1) / 2ββ - 2)
/--
Given a finite string $S$ of symbols $X$ and $O$, we write $\Delta(S)$ for the number of $X$'s in $S$ minus the number of $O$'s. For example, $\Delta(XOOXOOX)=-1$. We call a string $S$ \emph{balanced} if every substring $T$ of (consecutive symbols of) $S$ has $-2 \leq \Delta(T) \leq 2$. Thus, $XOOXOOX$ is not balanced, since it contains the substring $OOXOO$. Find, with proof, the number of balanced strings of length $n$.
-/
theorem putnam_1996_b5
(n : β)
(Ξ : (Fin n β β€Λ£) β Fin n β Fin n β β€)
(balanced : (Fin n β β€Λ£) β Prop)
(hΞ : β S, β a b, a β€ b β Ξ S a b = β i in Finset.Icc a b, (S i : β€))
(hbalanced : β S, balanced S β β a b, a β€ b β |Ξ S a b| β€ 2) :
{S : Fin n β β€Λ£ | balanced S}.ncard = putnam_1996_b5_solution n :=
sorry | import Mathlib
open Function Nat
-- (fun n : β β¦ 2 ^ β(n + 2) / 2ββ + 2 ^ β(n + 1) / 2ββ - 2)
/--
Given a finite string $S$ of symbols $X$ and $O$, we write $\Delta(S)$ for the number of $X$'s in $S$ minus the number of $O$'s. For example, $\Delta(XOOXOOX)=-1$. We call a string $S$ \emph{balanced} if every substring $T$ of (consecutive symbols of) $S$ has $-2 \leq \Delta(T) \leq 2$. Thus, $XOOXOOX$ is not balanced, since it contains the substring $OOXOO$. Find, with proof, the number of balanced strings of length $n$.
-/
theorem putnam_1996_b5
(n : β)
(Ξ : (Fin n β β€Λ£) β Fin n β Fin n β β€)
(balanced : (Fin n β β€Λ£) β Prop)
(hΞ : β S, β a b, a β€ b β Ξ S a b = β i in Finset.Icc a b, (S i : β€))
(hbalanced : β S, balanced S β β a b, a β€ b β |Ξ S a b| β€ 2) :
{S : Fin n β β€Λ£ | balanced S}.ncard = putnam_1996_b5_solution n := by
| import Mathlib
open Function Nat
abbrev putnam_1996_b5_solution : β β β := sorry
-- (fun n : β β¦ 2 ^ β(n + 2) / 2ββ + 2 ^ β(n + 1) / 2ββ - 2)
/--
Given a finite string $S$ of symbols $X$ and $O$, we write $\Delta(S)$ for the number of $X$'s in $S$ minus the number of $O$'s. For example, $\Delta(XOOXOOX)=-1$. We call a string $S$ \emph{balanced} if every substring $T$ of (consecutive symbols of) $S$ has $-2 \leq \Delta(T) \leq 2$. Thus, $XOOXOOX$ is not balanced, since it contains the substring $OOXOO$. Find, with proof, the number of balanced strings of length $n$.
-/
theorem putnam_1996_b5
(n : β)
(Ξ : (Fin n β β€Λ£) β Fin n β Fin n β β€)
(balanced : (Fin n β β€Λ£) β Prop)
(hΞ : β S, β a b, a β€ b β Ξ S a b = β i in Finset.Icc a b, (S i : β€))
(hbalanced : β S, balanced S β β a b, a β€ b β |Ξ S a b| β€ 2) :
{S : Fin n β β€Λ£ | balanced S}.ncard = putnam_1996_b5_solution n :=
sorry
| Given a finite string $S$ of symbols $X$ and $O$, we write $\Delta(S)$ for the number of $X$'s in $S$ minus the number of $O$'s. For example, $\Delta(XOOXOOX)=-1$. We call a string $S$ \emph{balanced} if every substring $T$ of (consecutive symbols of) $S$ has $-2 \leq \Delta(T) \leq 2$. Thus, $XOOXOOX$ is not balanced, since it contains the substring $OOXOO$. Find, with proof, the number of balanced strings of length $n$. | Show that the number of balanced strings of length $n$ is $3 \cdot 2^{n/2}-2$ if $n$ is even, and $2^{(n+1)/2}-2$ if $n$ is odd. | [
"algebra"
] | null | null |
|
putnam_1978_a4 | c676e7de-07c0-581f-9c94-e26d260c8b43 | train | theorem putnam_1978_a4
(bypass : (S : Type) β [inst : Mul S] β Prop)
(hbypass : bypass = fun S [Mul S] β¦ β a b c d : S, (a * b) * (c * d) = a * d)
: ((β (S : Type) (_ : Mul S), bypass S β β a b c : S, a * b = c β (c * c = c β§ β d : S, a * d = c * d))
β§ (β (S : Type) (_ : Mul S) (_ : Fintype S), bypass S β§ (β a : S, a * a = a) β§ (β a b : S, a * b = a β§ a β b) β§ (β a b : S, a * b β a))) :=
sorry | import Mathlib
open Set
-- Note: This formalization uses "Type" instead of "Type*" for an algebraic structure (a set with a bypass operation). Also, the original problem asks for a witness to the existentially quantified statement in the goal.
/--
A binary operation (represented by multiplication) on $S$ has the property that $(ab)(cd) = ad$ for all $a, b, c, d$. Show that:
\begin{itemize}
\item[(1)] if $ab = c$, then $cc = c$;
\item[(2)] if $ab = c$, then $ad = cd$ for all $d$.
\end{itemize}
Find a set $S$, and such a binary operation, which also satisfies:
\begin{itemize}
\item[(A)] $a a = a$ for all $a$;
\item[(B)] $ab = a \neq b$ for some $a, b$;
\item[(C)] $ab \neq a$ for some $a, b$.
\end{itemize}
-/
theorem putnam_1978_a4
(bypass : (S : Type) β [inst : Mul S] β Prop)
(hbypass : bypass = fun S [Mul S] β¦ β a b c d : S, (a * b) * (c * d) = a * d)
: ((β (S : Type) (_ : Mul S), bypass S β β a b c : S, a * b = c β (c * c = c β§ β d : S, a * d = c * d))
β§ (β (S : Type) (_ : Mul S) (_ : Fintype S), bypass S β§ (β a : S, a * a = a) β§ (β a b : S, a * b = a β§ a β b) β§ (β a b : S, a * b β a))) := by
| import Mathlib
open Set
-- Note: This formalization uses "Type" instead of "Type*" for an algebraic structure (a set with a bypass operation). Also, the original problem asks for a witness to the existentially quantified statement in the goal.
/--
A binary operation (represented by multiplication) on $S$ has the property that $(ab)(cd) = ad$ for all $a, b, c, d$. Show that:
\begin{itemize}
\item[(1)] if $ab = c$, then $cc = c$;
\item[(2)] if $ab = c$, then $ad = cd$ for all $d$.
\end{itemize}
Find a set $S$, and such a binary operation, which also satisfies:
\begin{itemize}
\item[(A)] $a a = a$ for all $a$;
\item[(B)] $ab = a \neq b$ for some $a, b$;
\item[(C)] $ab \neq a$ for some $a, b$.
\end{itemize}
-/
theorem putnam_1978_a4
(bypass : (S : Type) β [inst : Mul S] β Prop)
(hbypass : bypass = fun S [Mul S] β¦ β a b c d : S, (a * b) * (c * d) = a * d)
: ((β (S : Type) (_ : Mul S), bypass S β β a b c : S, a * b = c β (c * c = c β§ β d : S, a * d = c * d))
β§ (β (S : Type) (_ : Mul S) (_ : Fintype S), bypass S β§ (β a : S, a * a = a) β§ (β a b : S, a * b = a β§ a β b) β§ (β a b : S, a * b β a))) :=
sorry
| A binary operation (represented by multiplication) on $S$ has the property that $(ab)(cd) = ad$ for all $a, b, c, d$. Show that:
\begin{itemize}
\item[(1)] if $ab = c$, then $cc = c$;
\item[(2)] if $ab = c$, then $ad = cd$ for all $d$.
\end{itemize}
Find a set $S$, and such a binary operation, which also satisfies:
\begin{itemize}
\item[(A)] $a a = a$ for all $a$;
\item[(B)] $ab = a \neq b$ for some $a, b$;
\item[(C)] $ab \neq a$ for some $a, b$.
\end{itemize} | null | [
"abstract_algebra"
] | null | null |
|
putnam_2007_b2 | 1bc52f83-1246-5b74-84c1-403fb6335109 | train | theorem putnam_2007_b2
(f : β β β)
(hf : ContDiffOn β 1 f (Icc 0 1))
(hfint : β« x in (0)..1, f x = 0)
(max : β)
(heqmax : β x β Icc (0 : β) 1, |deriv f x| = max)
(hmaxub : β x β Icc (0 : β) 1, |deriv f x| β€ max)
: (β Ξ± β (Ioo (0 : β) 1), |β« x in (0)..Ξ±, f x| β€ (1 / 8) * max) :=
sorry | import Mathlib
open Set Nat Function
/--
Suppose that $f: [0,1] \to \mathbb{R}$ has a continuous derivative and that $\int_0^1 f(x)\,dx = 0$. Prove that for every $\alpha \in (0,1)$,
\[
\left| \int_0^\alpha f(x)\,dx \right| \leq \frac{1}{8} \max_{0 \leq x
\leq 1} |f'(x)|.
\]
-/
theorem putnam_2007_b2
(f : β β β)
(hf : ContDiffOn β 1 f (Icc 0 1))
(hfint : β« x in (0)..1, f x = 0)
(max : β)
(heqmax : β x β Icc (0 : β) 1, |deriv f x| = max)
(hmaxub : β x β Icc (0 : β) 1, |deriv f x| β€ max)
: (β Ξ± β (Ioo (0 : β) 1), |β« x in (0)..Ξ±, f x| β€ (1 / 8) * max) := by
| import Mathlib
open Set Nat Function
/--
Suppose that $f: [0,1] \to \mathbb{R}$ has a continuous derivative and that $\int_0^1 f(x)\,dx = 0$. Prove that for every $\alpha \in (0,1)$,
\[
\left| \int_0^\alpha f(x)\,dx \right| \leq \frac{1}{8} \max_{0 \leq x
\leq 1} |f'(x)|.
\]
-/
theorem putnam_2007_b2
(f : β β β)
(hf : ContDiffOn β 1 f (Icc 0 1))
(hfint : β« x in (0)..1, f x = 0)
(max : β)
(heqmax : β x β Icc (0 : β) 1, |deriv f x| = max)
(hmaxub : β x β Icc (0 : β) 1, |deriv f x| β€ max)
: (β Ξ± β (Ioo (0 : β) 1), |β« x in (0)..Ξ±, f x| β€ (1 / 8) * max) :=
sorry
| Suppose that $f: [0,1] \to \mathbb{R}$ has a continuous derivative and that $\int_0^1 f(x)\,dx = 0$. Prove that for every $\alpha \in (0,1)$,
\[
\left| \int_0^\alpha f(x)\,dx \right| \leq \frac{1}{8} \max_{0 \leq x
\leq 1} |f'(x)|.
\] | null | [
"analysis"
] | null | null |
|
putnam_2010_a4 | 81ed5d30-8d16-5383-ac24-9221343c4b82 | train | theorem putnam_2010_a4
: β n : β, n > 0 β Β¬Nat.Prime (10^10^10^n + 10^10^n + 10^n - 1) :=
sorry | import Mathlib
/--
Prove that for each positive integer $n$, the number $10^{10^{10^n}} + 10^{10^n} + 10^n - 1$ is not prime.
-/
theorem putnam_2010_a4
: β n : β, n > 0 β Β¬Nat.Prime (10^10^10^n + 10^10^n + 10^n - 1) := by
| import Mathlib
/--
Prove that for each positive integer $n$, the number $10^{10^{10^n}} + 10^{10^n} + 10^n - 1$ is not prime.
-/
theorem putnam_2010_a4
: β n : β, n > 0 β Β¬Nat.Prime (10^10^10^n + 10^10^n + 10^n - 1) :=
sorry
| Prove that for each positive integer $n$, the number $10^{10^{10^n}} + 10^{10^n} + 10^n - 1$ is not prime. | null | [
"number_theory"
] | null | null |
|
putnam_2019_a4 | 778eb424-1a83-5165-ade0-ad535c962c95 | train | abbrev putnam_2019_a4_solution : Prop := sorry
-- False
/--
Let $f$ be a continuous real-valued function on $\mathbb{R}^3$. Suppose that for every sphere $S$ of radius $1$, the integral of $f(x,y,z)$ over the surface of $S$ equals $0$. Must $f(x,y,z)$ be identically 0?
-/
theorem putnam_2019_a4
(P : (EuclideanSpace β (Fin 3) β β) β Prop)
(P_def : β f, P f β β C, β« x in sphere C 1, f x βΞΌH[2] = 0) :
(β f, Continuous f β P f β f = 0) β putnam_2019_a4_solution :=
sorry | import Mathlib
open MeasureTheory Metric Topology Filter
-- False
/--
Let $f$ be a continuous real-valued function on $\mathbb{R}^3$. Suppose that for every sphere $S$ of radius $1$, the integral of $f(x,y,z)$ over the surface of $S$ equals $0$. Must $f(x,y,z)$ be identically 0?
-/
theorem putnam_2019_a4
(P : (EuclideanSpace β (Fin 3) β β) β Prop)
(P_def : β f, P f β β C, β« x in sphere C 1, f x βΞΌH[2] = 0) :
(β f, Continuous f β P f β f = 0) β putnam_2019_a4_solution := by
| import Mathlib
open MeasureTheory Metric Topology Filter
abbrev putnam_2019_a4_solution : Prop := sorry
-- False
/--
Let $f$ be a continuous real-valued function on $\mathbb{R}^3$. Suppose that for every sphere $S$ of radius $1$, the integral of $f(x,y,z)$ over the surface of $S$ equals $0$. Must $f(x,y,z)$ be identically 0?
-/
theorem putnam_2019_a4
(P : (EuclideanSpace β (Fin 3) β β) β Prop)
(P_def : β f, P f β β C, β« x in sphere C 1, f x βΞΌH[2] = 0) :
(β f, Continuous f β P f β f = 0) β putnam_2019_a4_solution :=
sorry
| Let $f$ be a continuous real-valued function on $\mathbb{R}^3$. Suppose that for every sphere $S$ of radius $1$, the integral of $f(x,y,z)$ over the surface of $S$ equals $0$. Must $f(x,y,z)$ be identically 0? | Show that the answer is no. | [
"analysis"
] | null | null |
|
putnam_1980_b4 | 6004c57b-450a-5025-8262-ea4db1246bb6 | train | theorem putnam_1980_b4
{T : Type}
(X : Finset T)
(A : Fin 1066 β Finset T)
(hX : X.card β₯ 10)
(hA : β i : Fin 1066, A i β X β§ (A i).card > ((1 : β)/2) * X.card)
: β Y : Finset T, Y β X β§ Y.card = 10 β§ β i : Fin 1066, β y β Y, y β A i :=
sorry | import Mathlib
/--
Let $X$ be a finite set with at least $10$ elements; for each $i \in \{0, 1, ..., 1065\}$, let $A_i \subseteq X$ satisfy $|A_i| > \frac{1}{2}|X|$. Prove that there exist $10$ elements $x_1, x_2, \dots, x_{10} \in X$ such that each $A_i$ contains at least one of $x_1, x_2, \dots, x_{10}$.
-/
theorem putnam_1980_b4
{T : Type}
(X : Finset T)
(A : Fin 1066 β Finset T)
(hX : X.card β₯ 10)
(hA : β i : Fin 1066, A i β X β§ (A i).card > ((1 : β)/2) * X.card)
: β Y : Finset T, Y β X β§ Y.card = 10 β§ β i : Fin 1066, β y β Y, y β A i := by
| import Mathlib
/--
Let $X$ be a finite set with at least $10$ elements; for each $i \in \{0, 1, ..., 1065\}$, let $A_i \subseteq X$ satisfy $|A_i| > \frac{1}{2}|X|$. Prove that there exist $10$ elements $x_1, x_2, \dots, x_{10} \in X$ such that each $A_i$ contains at least one of $x_1, x_2, \dots, x_{10}$.
-/
theorem putnam_1980_b4
{T : Type}
(X : Finset T)
(A : Fin 1066 β Finset T)
(hX : X.card β₯ 10)
(hA : β i : Fin 1066, A i β X β§ (A i).card > ((1 : β)/2) * X.card)
: β Y : Finset T, Y β X β§ Y.card = 10 β§ β i : Fin 1066, β y β Y, y β A i :=
sorry
| Let $X$ be a finite set with at least $10$ elements; for each $i \in \{0, 1, ..., 1065\}$, let $A_i \subseteq X$ satisfy $|A_i| > \frac{1}{2}|X|$. Prove that there exist $10$ elements $x_1, x_2, \dots, x_{10} \in X$ such that each $A_i$ contains at least one of $x_1, x_2, \dots, x_{10}$. | null | [
"set_theory",
"combinatorics"
] | null | null |
|
putnam_2018_b6 | 071c8ed5-8552-5ce6-85f3-5dde77798224 | train | theorem putnam_2018_b6
(S : Finset (Fin 2018 β β€))
(hS : S = {s : Fin 2018 β β€ | (β i : Fin 2018, s i β ({1, 2, 3, 4, 5, 6, 10} : Set β€)) β§ (β i : Fin 2018, s i) = 3860}) :
S.card β€ 2 ^ 3860 * ((2018 : β) / 2048) ^ 2018 :=
sorry | import Mathlib
/--
Let $S$ be the set of sequences of length $2018$ whose terms are in the set $\{1,2,3,4,5,6,10\}$ and sum to $3860$. Prove that the cardinality of $S$ is at most $2^{3860} \cdot \left(\frac{2018}{2048}\right)^{2018}$.
-/
theorem putnam_2018_b6
(S : Finset (Fin 2018 β β€))
(hS : S = {s : Fin 2018 β β€ | (β i : Fin 2018, s i β ({1, 2, 3, 4, 5, 6, 10} : Set β€)) β§ (β i : Fin 2018, s i) = 3860}) :
S.card β€ 2 ^ 3860 * ((2018 : β) / 2048) ^ 2018 := by
| import Mathlib
/--
Let $S$ be the set of sequences of length $2018$ whose terms are in the set $\{1,2,3,4,5,6,10\}$ and sum to $3860$. Prove that the cardinality of $S$ is at most $2^{3860} \cdot \left(\frac{2018}{2048}\right)^{2018}$.
-/
theorem putnam_2018_b6
(S : Finset (Fin 2018 β β€))
(hS : S = {s : Fin 2018 β β€ | (β i : Fin 2018, s i β ({1, 2, 3, 4, 5, 6, 10} : Set β€)) β§ (β i : Fin 2018, s i) = 3860}) :
S.card β€ 2 ^ 3860 * ((2018 : β) / 2048) ^ 2018 :=
sorry
| Let $S$ be the set of sequences of length $2018$ whose terms are in the set $\{1,2,3,4,5,6,10\}$ and sum to $3860$. Prove that the cardinality of $S$ is at most $2^{3860} \cdot \left(\frac{2018}{2048}\right)^{2018}$. | null | [
"algebra"
] | null | null |
|
putnam_2009_b2 | 3bf82b38-8782-59e0-b22f-44e1e30da542 | train | abbrev putnam_2009_b2_solution : Set β := sorry
-- Ioc (1 / 3) 1
/--
A game involves jumping to the right on the real number line. If $a$ and $b$ are real numbers and $b > a$, the cost of jumping from $a$ to $b$ is $b^3-ab^2$. For what real numbers $c$ can one travel from $0$ to $1$ in a finite number of jumps with total cost exactly $c$?
-/
theorem putnam_2009_b2
: ({c : β | β s : β β β, s 0 = 0 β§ StrictMono s β§ (β n : β, s n = 1 β§ ((β i in Finset.range n, ((s (i + 1)) ^ 3 - (s i) * (s (i + 1)) ^ 2)) = c))} = putnam_2009_b2_solution) :=
sorry | import Mathlib
open Topology MvPolynomial Filter Set
-- Ioc (1 / 3) 1
/--
A game involves jumping to the right on the real number line. If $a$ and $b$ are real numbers and $b > a$, the cost of jumping from $a$ to $b$ is $b^3-ab^2$. For what real numbers $c$ can one travel from $0$ to $1$ in a finite number of jumps with total cost exactly $c$?
-/
theorem putnam_2009_b2
: ({c : β | β s : β β β, s 0 = 0 β§ StrictMono s β§ (β n : β, s n = 1 β§ ((β i in Finset.range n, ((s (i + 1)) ^ 3 - (s i) * (s (i + 1)) ^ 2)) = c))} = putnam_2009_b2_solution) := by
| import Mathlib
open Topology MvPolynomial Filter Set
abbrev putnam_2009_b2_solution : Set β := sorry
-- Ioc (1 / 3) 1
/--
A game involves jumping to the right on the real number line. If $a$ and $b$ are real numbers and $b > a$, the cost of jumping from $a$ to $b$ is $b^3-ab^2$. For what real numbers $c$ can one travel from $0$ to $1$ in a finite number of jumps with total cost exactly $c$?
-/
theorem putnam_2009_b2
: ({c : β | β s : β β β, s 0 = 0 β§ StrictMono s β§ (β n : β, s n = 1 β§ ((β i in Finset.range n, ((s (i + 1)) ^ 3 - (s i) * (s (i + 1)) ^ 2)) = c))} = putnam_2009_b2_solution) :=
sorry
| A game involves jumping to the right on the real number line. If $a$ and $b$ are real numbers and $b > a$, the cost of jumping from $a$ to $b$ is $b^3-ab^2$. For what real numbers $c$ can one travel from $0$ to $1$ in a finite number of jumps with total cost exactly $c$? | Prove that the possible costs are $1/3 < c \leq 1.$ | [
"analysis",
"algebra"
] | null | null |
|
putnam_1978_b3 | 71b9ed59-da2a-552f-bf2b-238622d4d41e | train | theorem putnam_1978_b3
(P : β+ β Polynomial β)
(hP1 : P 1 = 1 + X)
(hP2 : P 2 = 1 + 2 * X)
(hPodd : β n, P (2 * n + 1) = P (2 * n) + C ((n : β) + 1) * X * P (2 * n - 1))
(hPeven : β n, P (2 * n + 2) = P (2 * n + 1) + C ((n : β) + 1) * X * P (2 * n))
(a : β+ β β)
(haroot : β n, (P n).eval (a n) = 0)
(haub : β n, β x, (P n).eval x = 0 β x β€ a n)
: (StrictMono a β§ Tendsto a atTop (π 0)) :=
sorry | import Mathlib
open Set Real Filter Topology Polynomial
/--
The polynomials $P_n(x)$ are defined by
\begin{align*}
P_1(x) &= 1 + x, \\
P_2(x) &= 1 + 2x, \\
P_{2n+1}(x) &= P_{2n}(x) + (n + 1) x P_{2n-1}(x), \\
P_{2n+2}(x) &= P_{2n+1}(x) + (n + 1) x P_{2n}(x).
\end{align*}
Let $a_n$ be the largest real root of $P_n(x)$. Prove that $a_n$ is strictly monotonically increasing and tends to zero.
-/
theorem putnam_1978_b3
(P : β+ β Polynomial β)
(hP1 : P 1 = 1 + X)
(hP2 : P 2 = 1 + 2 * X)
(hPodd : β n, P (2 * n + 1) = P (2 * n) + C ((n : β) + 1) * X * P (2 * n - 1))
(hPeven : β n, P (2 * n + 2) = P (2 * n + 1) + C ((n : β) + 1) * X * P (2 * n))
(a : β+ β β)
(haroot : β n, (P n).eval (a n) = 0)
(haub : β n, β x, (P n).eval x = 0 β x β€ a n)
: (StrictMono a β§ Tendsto a atTop (π 0)) := by
| import Mathlib
open Set Real Filter Topology Polynomial
/--
The polynomials $P_n(x)$ are defined by
\begin{align*}
P_1(x) &= 1 + x, \\
P_2(x) &= 1 + 2x, \\
P_{2n+1}(x) &= P_{2n}(x) + (n + 1) x P_{2n-1}(x), \\
P_{2n+2}(x) &= P_{2n+1}(x) + (n + 1) x P_{2n}(x).
\end{align*}
Let $a_n$ be the largest real root of $P_n(x)$. Prove that $a_n$ is strictly monotonically increasing and tends to zero.
-/
theorem putnam_1978_b3
(P : β+ β Polynomial β)
(hP1 : P 1 = 1 + X)
(hP2 : P 2 = 1 + 2 * X)
(hPodd : β n, P (2 * n + 1) = P (2 * n) + C ((n : β) + 1) * X * P (2 * n - 1))
(hPeven : β n, P (2 * n + 2) = P (2 * n + 1) + C ((n : β) + 1) * X * P (2 * n))
(a : β+ β β)
(haroot : β n, (P n).eval (a n) = 0)
(haub : β n, β x, (P n).eval x = 0 β x β€ a n)
: (StrictMono a β§ Tendsto a atTop (π 0)) :=
sorry
| The polynomials $P_n(x)$ are defined by
\begin{align*}
P_1(x) &= 1 + x, \\
P_2(x) &= 1 + 2x, \\
P_{2n+1}(x) &= P_{2n}(x) + (n + 1) x P_{2n-1}(x), \\
P_{2n+2}(x) &= P_{2n+1}(x) + (n + 1) x P_{2n}(x).
\end{align*}
Let $a_n$ be the largest real root of $P_n(x)$. Prove that $a_n$ is strictly monotonically increasing and tends to zero. | null | [
"algebra",
"analysis"
] | null | null |
|
putnam_1985_a3 | b1e84496-f6e1-56c5-bcc2-27647e842590 | train | abbrev putnam_1985_a3_solution : β β β := sorry
-- fun d β¦ exp d - 1
/--
Let $d$ be a real number. For each integer $m \geq 0$, define a sequence $\{a_m(j)\}$, $j=0,1,2,\dots$ by the condition
\begin{align*}
a_m(0) &= d/2^m, \\
a_m(j+1) &= (a_m(j))^2 + 2a_m(j), \qquad j \geq 0.
\end{align*}
Evaluate $\lim_{n \to \infty} a_n(n)$.
-/
theorem putnam_1985_a3
(d : β)
(a : β β β β β)
(ha0 : β m : β, a m 0 = d / 2 ^ m)
(ha : β m : β, β j : β, a m (j + 1) = (a m j) ^ 2 + 2 * a m j)
: Tendsto (fun n β¦ a n n) atTop (π (putnam_1985_a3_solution d)) :=
sorry | import Mathlib
open Set Filter Topology Real
-- fun d β¦ exp d - 1
/--
Let $d$ be a real number. For each integer $m \geq 0$, define a sequence $\{a_m(j)\}$, $j=0,1,2,\dots$ by the condition
\begin{align*}
a_m(0) &= d/2^m, \\
a_m(j+1) &= (a_m(j))^2 + 2a_m(j), \qquad j \geq 0.
\end{align*}
Evaluate $\lim_{n \to \infty} a_n(n)$.
-/
theorem putnam_1985_a3
(d : β)
(a : β β β β β)
(ha0 : β m : β, a m 0 = d / 2 ^ m)
(ha : β m : β, β j : β, a m (j + 1) = (a m j) ^ 2 + 2 * a m j)
: Tendsto (fun n β¦ a n n) atTop (π (putnam_1985_a3_solution d)) := by
| import Mathlib
open Set Filter Topology Real
noncomputable abbrev putnam_1985_a3_solution : β β β := sorry
-- fun d β¦ exp d - 1
/--
Let $d$ be a real number. For each integer $m \geq 0$, define a sequence $\{a_m(j)\}$, $j=0,1,2,\dots$ by the condition
\begin{align*}
a_m(0) &= d/2^m, \\
a_m(j+1) &= (a_m(j))^2 + 2a_m(j), \qquad j \geq 0.
\end{align*}
Evaluate $\lim_{n \to \infty} a_n(n)$.
-/
theorem putnam_1985_a3
(d : β)
(a : β β β β β)
(ha0 : β m : β, a m 0 = d / 2 ^ m)
(ha : β m : β, β j : β, a m (j + 1) = (a m j) ^ 2 + 2 * a m j)
: Tendsto (fun n β¦ a n n) atTop (π (putnam_1985_a3_solution d)) :=
sorry
| Let $d$ be a real number. For each integer $m \geq 0$, define a sequence $\{a_m(j)\}$, $j=0,1,2,\dots$ by the condition
\begin{align*}
a_m(0) &= d/2^m, \\
a_m(j+1) &= (a_m(j))^2 + 2a_m(j), \qquad j \geq 0.
\end{align*}
Evaluate $\lim_{n \to \infty} a_n(n)$. | Show that the limit equals $e^d - 1$. | [
"analysis"
] | null | null |