dahe827's picture
End of training
e3f305a verified
|
raw
history blame
4.58 kB
metadata
license: mit
base_model: xlnet/xlnet-base-cased
tags:
  - generated_from_trainer
metrics:
  - f1
model-index:
  - name: xlnet-base-cased-airlines-news-multi-label-8-actions
    results: []

xlnet-base-cased-airlines-news-multi-label-8-actions

This model is a fine-tuned version of xlnet/xlnet-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1864
  • F1: 0.9349
  • Jaccard: 0.6652

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 150
  • num_epochs: 45

Training results

Training Loss Epoch Step Validation Loss F1 Jaccard
No log 1.0 57 0.3740 0.8583 0.4115
No log 2.0 114 0.2826 0.8583 0.4115
No log 3.0 171 0.2538 0.8890 0.4558
No log 4.0 228 0.2369 0.8936 0.5007
No log 5.0 285 0.2252 0.9036 0.5236
No log 6.0 342 0.2181 0.9070 0.5450
No log 7.0 399 0.2147 0.9168 0.5793
No log 8.0 456 0.2105 0.9172 0.5653
0.3052 9.0 513 0.2058 0.9199 0.5874
0.3052 10.0 570 0.2046 0.9204 0.6040
0.3052 11.0 627 0.2018 0.9214 0.5962
0.3052 12.0 684 0.1990 0.9242 0.6132
0.3052 13.0 741 0.1987 0.9223 0.6103
0.3052 14.0 798 0.1974 0.9235 0.6191
0.3052 15.0 855 0.1962 0.9213 0.6169
0.3052 16.0 912 0.1958 0.9255 0.6235
0.3052 17.0 969 0.1932 0.9264 0.6176
0.2221 18.0 1026 0.1927 0.9276 0.6423
0.2221 19.0 1083 0.1926 0.9279 0.6338
0.2221 20.0 1140 0.1910 0.9288 0.6434
0.2221 21.0 1197 0.1924 0.9271 0.6316
0.2221 22.0 1254 0.1904 0.9285 0.6353
0.2221 23.0 1311 0.1883 0.9288 0.6475
0.2221 24.0 1368 0.1877 0.9302 0.6504
0.2221 25.0 1425 0.1890 0.9291 0.6442
0.2221 26.0 1482 0.1878 0.9318 0.6659
0.2088 27.0 1539 0.1882 0.9308 0.6593
0.2088 28.0 1596 0.1867 0.9347 0.6597
0.2088 29.0 1653 0.1864 0.9349 0.6652
0.2088 30.0 1710 0.1866 0.9345 0.6681
0.2088 31.0 1767 0.1871 0.9341 0.6670
0.2088 32.0 1824 0.1862 0.9324 0.6622
0.2088 33.0 1881 0.1878 0.9325 0.6589
0.2088 34.0 1938 0.1866 0.9332 0.6633
0.2088 35.0 1995 0.1858 0.9330 0.6674
0.2021 36.0 2052 0.1863 0.9298 0.6479
0.2021 37.0 2109 0.1858 0.9325 0.6630
0.2021 38.0 2166 0.1861 0.9320 0.6652
0.2021 39.0 2223 0.1854 0.9325 0.6652
0.2021 40.0 2280 0.1852 0.9330 0.6674
0.2021 41.0 2337 0.1856 0.9318 0.6608
0.2021 42.0 2394 0.1857 0.9318 0.6608
0.2021 43.0 2451 0.1856 0.9324 0.6652
0.198 44.0 2508 0.1855 0.9325 0.6652
0.198 45.0 2565 0.1855 0.9325 0.6652

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1