File size: 4,579 Bytes
102362d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3f305a
 
 
102362d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3f305a
102362d
 
 
 
 
 
 
 
 
 
 
 
e3f305a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102362d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: mit
base_model: xlnet/xlnet-base-cased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlnet-base-cased-airlines-news-multi-label-8-actions
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlnet-base-cased-airlines-news-multi-label-8-actions

This model is a fine-tuned version of [xlnet/xlnet-base-cased](https://huggingface.co./xlnet/xlnet-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1864
- F1: 0.9349
- Jaccard: 0.6652

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- num_epochs: 45

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Jaccard |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log        | 1.0   | 57   | 0.3740          | 0.8583 | 0.4115  |
| No log        | 2.0   | 114  | 0.2826          | 0.8583 | 0.4115  |
| No log        | 3.0   | 171  | 0.2538          | 0.8890 | 0.4558  |
| No log        | 4.0   | 228  | 0.2369          | 0.8936 | 0.5007  |
| No log        | 5.0   | 285  | 0.2252          | 0.9036 | 0.5236  |
| No log        | 6.0   | 342  | 0.2181          | 0.9070 | 0.5450  |
| No log        | 7.0   | 399  | 0.2147          | 0.9168 | 0.5793  |
| No log        | 8.0   | 456  | 0.2105          | 0.9172 | 0.5653  |
| 0.3052        | 9.0   | 513  | 0.2058          | 0.9199 | 0.5874  |
| 0.3052        | 10.0  | 570  | 0.2046          | 0.9204 | 0.6040  |
| 0.3052        | 11.0  | 627  | 0.2018          | 0.9214 | 0.5962  |
| 0.3052        | 12.0  | 684  | 0.1990          | 0.9242 | 0.6132  |
| 0.3052        | 13.0  | 741  | 0.1987          | 0.9223 | 0.6103  |
| 0.3052        | 14.0  | 798  | 0.1974          | 0.9235 | 0.6191  |
| 0.3052        | 15.0  | 855  | 0.1962          | 0.9213 | 0.6169  |
| 0.3052        | 16.0  | 912  | 0.1958          | 0.9255 | 0.6235  |
| 0.3052        | 17.0  | 969  | 0.1932          | 0.9264 | 0.6176  |
| 0.2221        | 18.0  | 1026 | 0.1927          | 0.9276 | 0.6423  |
| 0.2221        | 19.0  | 1083 | 0.1926          | 0.9279 | 0.6338  |
| 0.2221        | 20.0  | 1140 | 0.1910          | 0.9288 | 0.6434  |
| 0.2221        | 21.0  | 1197 | 0.1924          | 0.9271 | 0.6316  |
| 0.2221        | 22.0  | 1254 | 0.1904          | 0.9285 | 0.6353  |
| 0.2221        | 23.0  | 1311 | 0.1883          | 0.9288 | 0.6475  |
| 0.2221        | 24.0  | 1368 | 0.1877          | 0.9302 | 0.6504  |
| 0.2221        | 25.0  | 1425 | 0.1890          | 0.9291 | 0.6442  |
| 0.2221        | 26.0  | 1482 | 0.1878          | 0.9318 | 0.6659  |
| 0.2088        | 27.0  | 1539 | 0.1882          | 0.9308 | 0.6593  |
| 0.2088        | 28.0  | 1596 | 0.1867          | 0.9347 | 0.6597  |
| 0.2088        | 29.0  | 1653 | 0.1864          | 0.9349 | 0.6652  |
| 0.2088        | 30.0  | 1710 | 0.1866          | 0.9345 | 0.6681  |
| 0.2088        | 31.0  | 1767 | 0.1871          | 0.9341 | 0.6670  |
| 0.2088        | 32.0  | 1824 | 0.1862          | 0.9324 | 0.6622  |
| 0.2088        | 33.0  | 1881 | 0.1878          | 0.9325 | 0.6589  |
| 0.2088        | 34.0  | 1938 | 0.1866          | 0.9332 | 0.6633  |
| 0.2088        | 35.0  | 1995 | 0.1858          | 0.9330 | 0.6674  |
| 0.2021        | 36.0  | 2052 | 0.1863          | 0.9298 | 0.6479  |
| 0.2021        | 37.0  | 2109 | 0.1858          | 0.9325 | 0.6630  |
| 0.2021        | 38.0  | 2166 | 0.1861          | 0.9320 | 0.6652  |
| 0.2021        | 39.0  | 2223 | 0.1854          | 0.9325 | 0.6652  |
| 0.2021        | 40.0  | 2280 | 0.1852          | 0.9330 | 0.6674  |
| 0.2021        | 41.0  | 2337 | 0.1856          | 0.9318 | 0.6608  |
| 0.2021        | 42.0  | 2394 | 0.1857          | 0.9318 | 0.6608  |
| 0.2021        | 43.0  | 2451 | 0.1856          | 0.9324 | 0.6652  |
| 0.198         | 44.0  | 2508 | 0.1855          | 0.9325 | 0.6652  |
| 0.198         | 45.0  | 2565 | 0.1855          | 0.9325 | 0.6652  |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1