|
--- |
|
language: |
|
- en |
|
- ja |
|
--- |
|
|
|
|
|
llama3.1-8bのAWQ量子化版です。 |
|
4GB超のGPUメモリがあれば高速に動かす事ができます。 |
|
|
|
This is the AWQ quantization version of llama3.1-8b. |
|
If you have more than 4GB of GPU memory, you can run it at high speed. |
|
|
|
量子化時に日本語と中国語を多めに使っているため、[hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4](https://huggingface.co./hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4)より日本語データを使って計測したPerplexityが良い事がわかっています |
|
Because Japanese and Chinese are used a lot during quantization, It is known that Perplexity measured using Japanese data is better than [hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4](https://huggingface.co./hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4). |
|
|
|
|
|
## セットアップ(setup) |
|
``` |
|
pip install transformers==4.43.3 autoawq==0.2.6 accelerate==0.33.0 |
|
``` |
|
|
|
|
|
## サンプルスクリプト(sample script) |
|
``` |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig |
|
|
|
model_id = "dahara1/llama3.1-8b-Instruct-awq" |
|
|
|
quantization_config = AwqConfig( |
|
bits=4, |
|
fuse_max_seq_len=512, # Note: Update this as per your use-case |
|
do_fuse=True, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
device_map="auto", |
|
quantization_config=quantization_config |
|
) |
|
|
|
prompt = [ |
|
{"role": "system", "content": "あなたは親切で役に立つアシスタントです。常に海賊のように返答してください"}, |
|
{"role": "user", "content": "ディープラーニングとは何ですか?"}, |
|
] |
|
inputs = tokenizer.apply_chat_template( |
|
prompt, |
|
tokenize=True, |
|
add_generation_prompt=True, |
|
return_tensors="pt", |
|
return_dict=True, |
|
).to("cuda") |
|
|
|
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256) |
|
print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0]) |
|
|
|
``` |
|
|
|
![kaizoku](kaizoku.png) |
|
|