--- language: - en - ja --- llama3.1-8bのAWQ量子化版です。 4GB超のGPUメモリがあれば高速に動かす事ができます。 This is the AWQ quantization version of llama3.1-8b. If you have more than 4GB of GPU memory, you can run it at high speed.   量子化時に日本語と中国語を多めに使っているため、[hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4](https://huggingface.co./hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4)より日本語データを使って計測したPerplexityが良い事がわかっています Because Japanese and Chinese are used a lot during quantization, It is known that Perplexity measured using Japanese data is better than [hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4](https://huggingface.co./hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4). ## セットアップ(setup) ``` pip install transformers==4.43.3 autoawq==0.2.6 accelerate==0.33.0 ``` ## サンプルスクリプト(sample script) ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig model_id = "dahara1/llama3.1-8b-Instruct-awq" quantization_config = AwqConfig( bits=4, fuse_max_seq_len=512, # Note: Update this as per your use-case do_fuse=True, ) tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto", quantization_config=quantization_config ) prompt = [ {"role": "system", "content": "あなたは親切で役に立つアシスタントです。常に海賊のように返答してください"}, {"role": "user", "content": "ディープラーニングとは何ですか?"}, ] inputs = tokenizer.apply_chat_template( prompt, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True, ).to("cuda") outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256) print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0]) ``` ![kaizoku](kaizoku.png)