csikasote's picture
End of training
9cba4ef verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - toigen
metrics:
  - wer
model-index:
  - name: whisper-medium-toigen-combined-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: toigen
          type: toigen
        metrics:
          - name: Wer
            type: wer
            value: 0.4497528830313015

whisper-medium-toigen-combined-model

This model is a fine-tuned version of openai/whisper-medium on the toigen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6425
  • Wer: 0.4498

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.9586 0.9467 200 0.8733 0.5994
2.4999 1.8899 400 0.6726 0.4648
1.7047 2.8331 600 0.6523 0.4585
0.9573 3.7763 800 0.6425 0.4498
0.4029 4.7195 1000 0.6657 0.4043
0.2311 5.6627 1200 0.6910 0.4187
0.1545 6.6059 1400 0.7208 0.3864

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0