File size: 2,221 Bytes
7a2b404 9cba4ef 7a2b404 9cba4ef 7a2b404 9cba4ef 7a2b404 9cba4ef 7a2b404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- toigen
metrics:
- wer
model-index:
- name: whisper-medium-toigen-combined-model
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: toigen
type: toigen
metrics:
- name: Wer
type: wer
value: 0.4497528830313015
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-toigen-combined-model
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the toigen dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6425
- Wer: 0.4498
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 3.9586 | 0.9467 | 200 | 0.8733 | 0.5994 |
| 2.4999 | 1.8899 | 400 | 0.6726 | 0.4648 |
| 1.7047 | 2.8331 | 600 | 0.6523 | 0.4585 |
| 0.9573 | 3.7763 | 800 | 0.6425 | 0.4498 |
| 0.4029 | 4.7195 | 1000 | 0.6657 | 0.4043 |
| 0.2311 | 5.6627 | 1200 | 0.6910 | 0.4187 |
| 0.1545 | 6.6059 | 1400 | 0.7208 | 0.3864 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|