clt013's picture
End of training
f329df2 verified
metadata
language:
  - ms
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - clt013/malay-speech-1.6-million-rows-dataset
metrics:
  - wer
model-index:
  - name: Whisper Medium FT Malay - CLT013
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Malay Speech 1.6 million
          type: clt013/malay-speech-1.6-million-rows-dataset
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 39.65666891696403

Whisper Medium FT Malay - CLT013

This model is a fine-tuned version of openai/whisper-medium on the Malay Speech 1.6 million dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7057
  • Wer: 39.6567

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.0434 0.1 100 0.9250 53.3417
0.8131 0.2 200 0.8394 46.5908
0.7852 0.3 300 0.8033 45.1635
0.7643 0.4 400 0.7769 53.5732
0.7424 0.5 500 0.7582 46.6969
0.7406 0.6 600 0.7451 39.6760
0.7913 0.7 700 0.7288 39.3866
0.7452 0.8 800 0.7164 37.9979
0.718 0.9 900 0.7099 38.7694
0.7328 1.0 1000 0.7057 39.6567

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1