--- language: - ms license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - clt013/malay-speech-1.6-million-rows-dataset metrics: - wer model-index: - name: Whisper Medium FT Malay - CLT013 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Malay Speech 1.6 million type: clt013/malay-speech-1.6-million-rows-dataset config: default split: train args: default metrics: - name: Wer type: wer value: 39.65666891696403 --- # Whisper Medium FT Malay - CLT013 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the Malay Speech 1.6 million dataset. It achieves the following results on the evaluation set: - Loss: 0.7057 - Wer: 39.6567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.0434 | 0.1 | 100 | 0.9250 | 53.3417 | | 0.8131 | 0.2 | 200 | 0.8394 | 46.5908 | | 0.7852 | 0.3 | 300 | 0.8033 | 45.1635 | | 0.7643 | 0.4 | 400 | 0.7769 | 53.5732 | | 0.7424 | 0.5 | 500 | 0.7582 | 46.6969 | | 0.7406 | 0.6 | 600 | 0.7451 | 39.6760 | | 0.7913 | 0.7 | 700 | 0.7288 | 39.3866 | | 0.7452 | 0.8 | 800 | 0.7164 | 37.9979 | | 0.718 | 0.9 | 900 | 0.7099 | 38.7694 | | 0.7328 | 1.0 | 1000 | 0.7057 | 39.6567 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1