|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
base_model: bert-base-uncased |
|
model-index: |
|
- name: final-lr2e-5-bs16-fp16-2 |
|
results: [] |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# final-lr2e-5-bs16-fp16-2 |
|
|
|
This model is a fine-tuned version of [GroNLP/hateBERT](https://huggingface.co./GroNLP/hateBERT) on an https://github.com/rewire-online/edos dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4219 |
|
- F1 Macro: 0.8457 |
|
- F1 Weighted: 0.8868 |
|
- F1: 0.7658 |
|
- Accuracy: 0.887 |
|
- Confusion Matrix: [[2809 221] |
|
[ 231 739]] |
|
- Confusion Matrix Norm: [[0.92706271 0.07293729] |
|
[0.23814433 0.76185567]] |
|
- Classification Report: precision recall f1-score support |
|
0 0.924013 0.927063 0.925535 3030.000 |
|
1 0.769792 0.761856 0.765803 970.000 |
|
accuracy 0.887000 0.887000 0.887000 0.887 |
|
macro avg 0.846902 0.844459 0.845669 4000.000 |
|
weighted avg 0.886614 0.887000 0.886800 4000.000 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 12345 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | F1 | Accuracy | Confusion Matrix | Confusion Matrix Norm | Classification Report | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:------:|:--------:|:--------------------------:|:--------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| 0.3177 | 1.0 | 1000 | 0.2894 | 0.8323 | 0.8812 | 0.7373 | 0.886 | [[2904 126] |
|
[ 330 640]] | [[0.95841584 0.04158416] |
|
[0.34020619 0.65979381]] | precision recall f1-score support |
|
0 0.897959 0.958416 0.927203 3030.000 |
|
1 0.835509 0.659794 0.737327 970.000 |
|
accuracy 0.886000 0.886000 0.886000 0.886 |
|
macro avg 0.866734 0.809105 0.832265 4000.000 |
|
weighted avg 0.882815 0.886000 0.881158 4000.000 | |
|
| 0.2232 | 2.0 | 2000 | 0.3370 | 0.8405 | 0.8830 | 0.7579 | 0.8832 | [[2802 228] |
|
[ 239 731]] | [[0.92475248 0.07524752] |
|
[0.24639175 0.75360825]] | precision recall f1-score support |
|
0 0.921407 0.924752 0.923077 3030.00000 |
|
1 0.762252 0.753608 0.757906 970.00000 |
|
accuracy 0.883250 0.883250 0.883250 0.88325 |
|
macro avg 0.841830 0.839180 0.840491 4000.00000 |
|
weighted avg 0.882812 0.883250 0.883023 4000.00000 | |
|
| 0.1534 | 3.0 | 3000 | 0.4219 | 0.8457 | 0.8868 | 0.7658 | 0.887 | [[2809 221] |
|
[ 231 739]] | [[0.92706271 0.07293729] |
|
[0.23814433 0.76185567]] | precision recall f1-score support |
|
0 0.924013 0.927063 0.925535 3030.000 |
|
1 0.769792 0.761856 0.765803 970.000 |
|
accuracy 0.887000 0.887000 0.887000 0.887 |
|
macro avg 0.846902 0.844459 0.845669 4000.000 |
|
weighted avg 0.886614 0.887000 0.886800 4000.000 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |