File size: 4,426 Bytes
2f6ceea
 
 
 
 
 
c482872
2f6ceea
801d89b
2f6ceea
c482872
 
 
 
2f6ceea
 
 
 
 
801d89b
2f6ceea
c482872
2f6ceea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c482872
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
base_model: bert-base-uncased
model-index:
- name: final-lr2e-5-bs16-fp16-2
  results: []
language:
- en
library_name: transformers
pipeline_tag: text-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# final-lr2e-5-bs16-fp16-2

This model is a fine-tuned version of [GroNLP/hateBERT](https://huggingface.co./GroNLP/hateBERT) on an https://github.com/rewire-online/edos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4219
- F1 Macro: 0.8457
- F1 Weighted: 0.8868
- F1: 0.7658
- Accuracy: 0.887
- Confusion Matrix: [[2809  221]
 [ 231  739]]
- Confusion Matrix Norm: [[0.92706271 0.07293729]
 [0.23814433 0.76185567]]
- Classification Report:               precision    recall  f1-score   support
0              0.924013  0.927063  0.925535  3030.000
1              0.769792  0.761856  0.765803   970.000
accuracy       0.887000  0.887000  0.887000     0.887
macro avg      0.846902  0.844459  0.845669  4000.000
weighted avg   0.886614  0.887000  0.886800  4000.000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 12345
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | F1     | Accuracy | Confusion Matrix           | Confusion Matrix Norm                              | Classification Report                                                                                                                                                                                                                                                                                                                           |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:------:|:--------:|:--------------------------:|:--------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| 0.3177        | 1.0   | 1000 | 0.2894          | 0.8323   | 0.8812      | 0.7373 | 0.886    | [[2904  126]
 [ 330  640]] | [[0.95841584 0.04158416]
 [0.34020619 0.65979381]] |               precision    recall  f1-score   support
0              0.897959  0.958416  0.927203  3030.000
1              0.835509  0.659794  0.737327   970.000
accuracy       0.886000  0.886000  0.886000     0.886
macro avg      0.866734  0.809105  0.832265  4000.000
weighted avg   0.882815  0.886000  0.881158  4000.000             |
| 0.2232        | 2.0   | 2000 | 0.3370          | 0.8405   | 0.8830      | 0.7579 | 0.8832   | [[2802  228]
 [ 239  731]] | [[0.92475248 0.07524752]
 [0.24639175 0.75360825]] |               precision    recall  f1-score     support
0              0.921407  0.924752  0.923077  3030.00000
1              0.762252  0.753608  0.757906   970.00000
accuracy       0.883250  0.883250  0.883250     0.88325
macro avg      0.841830  0.839180  0.840491  4000.00000
weighted avg   0.882812  0.883250  0.883023  4000.00000 |
| 0.1534        | 3.0   | 3000 | 0.4219          | 0.8457   | 0.8868      | 0.7658 | 0.887    | [[2809  221]
 [ 231  739]] | [[0.92706271 0.07293729]
 [0.23814433 0.76185567]] |               precision    recall  f1-score   support
0              0.924013  0.927063  0.925535  3030.000
1              0.769792  0.761856  0.765803   970.000
accuracy       0.887000  0.887000  0.887000     0.887
macro avg      0.846902  0.844459  0.845669  4000.000
weighted avg   0.886614  0.887000  0.886800  4000.000             |


### Framework versions

- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2